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Abstract

This thesis presents an example-based approach for learning visual concepts that
encode the properties of an image class. Extracted concepts are simple relational
templates that capture the color and spatial properties of the class. We show that for
a range of image classes, simple representations/concepts that encode the properties
of a small set of image regions and relations between them can be learned from a
small set of examples. We also show that (1) the learned concept often captures
the set of salient properties and relations that define the image class and (2) these
learned representations are sufficient to detect a variety of image classes efficiently and
reliably (with few false positives). Such class detectors can be used for applications
such as (a) image database retrieval and (b) object detection and localization.

In this thesis we explore an automatic way to extract "visual concepts" from a few
example images which can be used in content-based image retrieval. We adapt the
Multiple Instance Learning paradigm as a way of modeling the ambiguity in images
and learning "visual concepts" to classify new images. In this framework, a user
labels an image as positive if the image contains the concept. Each example image is
a bag of instances (sub-images) where only the bag is labeled - not the individual
instances (sub-images). From a small collection of positive and negative examples,
the system learns the concept and uses it to retrieve images that contain the concept
from a large database.

We also describe a matching technique that uses one-dimensional warps of simple
templates to detect and localize objects while allowing for clutter and pose variations.
The method recovers three of the six degrees of freedom of motion (2 translation, 1
rotation), and accommodates two more degrees of freedom in the search process (1
rotation, 1 translation).

Thesis Supervisor: W.E.L. Grimson
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: W.M. Wells
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Chapter 1

Introduction

1.1 Image Classification

This thesis presents an example-based approach for learning visual concepts that

encode the properties of a class of images. Extracted concepts are simple relational

templates that capture the color and spatial properties of the clas,. We. show that for

a range of image classes, simple representations/concepts that encode the properties

of a small set of image regions and relations between them can be learned from a

small set of examples. We also show that (1) the learned concept often captures the

set of salient properties and relations that define the image class, (2) these learned

representations are sufficient to detect a variety of image classes efficiently and reliably

(with few false positives) and (3) such templates can be matched efficiently to detect

and localize objects in new images while accommodating pose variations.

People (even young children) can recognize objects at the level of some basic

categories. We can recognize a chair or a car whether or not we have seen that

particular one before. Changes in internal configuration and individual variations are

largely irrelevant to categorization. For example, we don't have trouble recognizing

people despite changes in shape, size, height and color. Philosophers (e.g. Quine

[Quine1960] among others) have suggested many theories and psychologists have used

several procedures to study how people make classifications and learn concepts. Some

of the early psychological studies in categorization were done by Rosch [Rosch1978].
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Figure 1-1: Example showing the within-class variability in images. Images in the same
class (waterfalls) can vary in their color, texture, scale and illumination

She studied the hierarchical organization of natural categories by using three levels to

describe them (super-ordinate, basic and subordinate). Rosch's findings also provide

some evidence that the basic-level categories (e.g. car, chair, bird, mouse, etc.) are

most differentiated from each other, they are the first categories we learn and that

some items are more representative of the category than others.

In order to build machines to perform this task, we need a theory of object recogni-

tion that can recognize objects at the level of abstract categories (classes) in addition

to recognizing specific individual instances. Although there have been advances in

object recognition techniques, current systems are not general enough to detect a

variety of objects under a variety of conditions like humans can. We need model

representations that capture the commonalities in the class while tolerating in-class

variations and have the ability to generalize to new instances of the class. Given

the large number of possible classes and the variations that could occur, it might

not be practical to build detailed models that capture all the relevant properties and

variations for all objects.

The problem of automatically interpreting a large and diverse set of visual images

has proved to be extremely challenging for machine vision researchers over the past 20

years. This is difficult because there is a great deal of variability in images. The same

object can appear very different in different images due to changes in pose, lighting,

occlusion and sensor noise. In addition, to these variations, a good detection system

has to deal with variations within the class of objects as well. For example, Figure

1-1 shows how images in the same class can differ in their color, texture, shape and

size.
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1.2 Flexible templates for image classification

The flexible/qualitative template approach [Sinhal994], [Lipson et al. 1997] provides a

way to capture the within-class variablity in images by encoding the qualitative rela-

tions in color and luminance between image patches. The ratio-template constructed

by Sinha [Sinhal994] captures the changes in luminance between fixed image patches.

These templates have been used successfully to detect faces under varying illumina-

tion conditions. Lipson [Lipson et al.1997] extended the ratio-templates approach by

constructing flexible templates that encode the qualitative color, luminance and spa-

tial relations between image patches that can vary in location. The flexible templates

constructed by Lipson have been used successfully to capture concepts like fields,

waterfalls and cityscapes for the task of scene classification. Each template is defined

as a set of regions with color and texture properties and the spatial and photometric

relations between those regions. A template can be deformed to represent a class of

images. Lipson pre-defined "a numbeir of these teiplates and showed that they can

be useld to classify natural scenes' (e.g. fields, waterfalls, sunsets, etc.) efficiently and

reliably while accommodating variations in absolute size, color and location.

1.3 Thesis

In this thesis, we build on this idea of flexible templates and develop methods to

learn these templates automatically from a small set of positive and negative example

images and to match such templates efficiently to detect and localize objects in new

images while accommodating class variations and pose changes. We discuss how such

methods can be used effectively in application domains of natural scene classification

and object localization.

1.3.1 Application: Natural Scene Classification

With the recent explosion of digital image and video information due to the World-

Wide Web, there is a need for automated techniques to index into these large collec-
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tions of images based on content. Currently there exist systems that index into large

text databases with keywords that are related to the content of the document. While

we can annotate images with keywords and descriptions based on their content, this

is impractical because (1) it is time-consuming for a person to go through all the

images and annotate them and (2) images are inherently ambiguous and could have

many interpretations depending on the user's experiences. For example, given the

image in Figure 1-2, it is difficult to say what is relevant about the image in order to

retrieve other images that are "visually similar" to it. Do we retrieve images of Mt.

McKinley, any snow covered peak, deer, grassy fields or some combination of these

objects? It is thus challenging for a classification system to interpret this image even

if all the objects in the image can be recognized separately. While we cannot say

much about the "visual content" of an image from a single image, we can use a few

examples (labeled positive or negative) to make the ambiguity explicit and attempt

to find commonalities within the positive examples that do not appear in the negative

examples.

It would be useful to have a flexible, automated way to extract "visual con-

cepts" from example images which can then be used to index into these large image

databases. Examples of "visual concepts" include "mountains", "cars", "sunsets" etc.

Many existing image classification strategies depend crucially on the representa-

tion and features picked. Most current systems require the user to specify salient

regions in an image as well as the relevant cues (e.g. color, shape, texture etc.) for a

particular query. For example, Figure 1-3 shows the results obtained for a classifica-

tion task using the Virage system [Bach et al.1996] where search is performed using

4 cues (color, texture, composition and structure). These results are not consistent

with what we expect for mountains even though the cues chosen seem reasonable.

The figure illustrates the importance of choosing relevant cues and the appropriate

weights for combining these cues for good classification performance. Thus, for this

application, it would be valuable to have the system automatically learn the relevant

combination of features from example images.

In this thesis we describe methods to learn "visual concepts" in the form of flexi-
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Figure 1-2: Images are inherently ambiguous and can have many interpretations based on
the user's experiences. For instance, this image can be interpreted as an example of (a)
Mt. McKinley, (b) any snow covered peak, (c) deer, (d) grassy fields or some combination
of these objects

ble, relational templates that capture the relative photometric and spatial properties

of classes of natural scenes (e.g. snowy mountains, waterfalls, sunsets, lakes) from

a few examples. These learned templates be used to classify new images while ac-

commodating within-class variations in color, texture and scale. We also provide a

framework to (a) automatically select/learn the relevant features from a few examples

at query time, (b) evaluate the effects of user interaction with positive and negative

feedback and (c) evaluate the role of positive and negative examples for classification.

1.3.2 Application: Object Localization

Model-based object recognition can be formulated as follows: "Is there an instance

of a particular object in this image, and if so where is it?" This is difficult to do

because the same object can appear very different in different images due to changes

in viewpoint, lighting, occlusion and sensor noise. In addition to these variations, a

good detection system has to deal with variations within the class of objects as well.
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Figure 1-3: Classification results given an example of a mountain scene. This illustrates
the importance of picking the right cues together with the right representation of features
for that cue.

For example, in face detection, faces of two different individuals in the same pose

can appear quite different due to variations in color, texture, shape and size between

them.

One way to account for variations in object classes due to changes in pose and

lighting conditions is to model them using examples. This approach to training sys-

tems to account for variations using examples is called "example-based" learning in

the literature. These learning techniques have been used successfully in drug design

[Jain et al.1994, Dietterich et al.1994] and object detection [Sung and Poggio1994,

H. Rowley and Kanade1995, Turk and Pentland1991, Murase and Nayar1994] among

other applications. Exisiting detection methods model the object as a set of 2D views

[Sung and Poggio1994, H. Rowley and Kanade1995] or in terms of their projection

into a low-dimensional subspace [Turk and Pentland1991, Murase and Nayar1994,

Pentland et al.1994] which capture variations in the appearance of the object due

to pose changes, lighting changes and within-class changes. At detection time, each

of the input patterns are matched against each image location to find the closest

match of the input to the image. These detection techniques typically need a large
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number of examples to model all these variations and detect the object class effi-

ciently and reliably. Another problem is that the examples typically need to contain

the object without any background variations or distractors. It might not be possible

to find such examples for every object class. Ideally, we would like to just give the

system a few examples of images containing the object without having to perfectly

segment the object from the background first and let the system (a) pick the relevant

regions in the image corresponding to the object (b) represent the object using a set

of features that can handle variations within the object class as well as other external

variations and (c) match the object model to retrieve new instances of the object

while accommodating changes in lighting, pose and noise.

In addition to detecting the presence or absence of an instance of the model ob-

ject in an image, an object recognition system might need to verify or refute the

hypothesis that a particular object exists in the image. Most existing verification

methods find the alignment of model with data.by minimizing some error criterion

[Huttenlocher and Ullman1990, Viola and Wells1995, Ullman and Basri1991]. Some

of these methods [Huttenlocher and Ullman1990, Ullman and Basri1991] extract fea-

tures like points and lines from the modle and data and identify pairings between

model and data features that yield a consistent transformation of the model object

into image coordinates. If we have a cluttered image, the large number of pairings be-

tween model and image features makes this search combinatorially explosive. Other

methods [Viola and Wells1995] find the alignment of model with data by locally min-

imizing some error criterion. An example of this is the Alignment by Maximization of

Mutual Information [Viola and Wells1995]. While these techniques register the model

with the image very accurately, the problem is that they have narrow capture radii.

We need methods for representing and matching object classes that will converge

to the optimal solution from inaccurate initial measurements and in the presence of

clutter and occlusions.

In this thesis, we introduce a matching and detection technique combines the

general detection flavor of patch correlation with the ability to accommodate more

degrees of freedom of object motion that are traditionally associated with feature-
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based recognition systems. We provide a detection technique that localizes objects in

an cluttered images and extracts rough pose information which can then be fed into

existing alignment engines for accurate verification. We demonstrate our method

on face detection, as faces naturally suit the approach (heads are usually oriented

upwards, but appear facing in varying directions). We show performance comparable

to some current face detectors, and demonstrate that our method generalizes naturally

to other classes of objects, such as vehicles.

1.3.3 Thesis contributions

In this thesis, we address these issues by suggesting methods to build simple detectors

for classes of objects. Given a small number of examples, we build "class concepts"

which capture the photometric and spatial relations between regions in the object

class. We demonstrate the use of these detectors in two domains (1) natural scene

classification (2 detection and lo'aizaion of objects for reccgnition We show that

. For a range of image classes, simple concepts/templates that encode the prop-

erties of a small set of image regions and relations between them can be learned

from a small set of examples.

* The learned concept often captures the set of salient properties and relations

that define the object class.

* For certain classes of objects, one dimensional warps in these simple templates

can be used to detect and localize objects efficiently while allowing for within

class variation and pose changes.

We will describe the primitives used and discuss the process of learning visual rep-

resentations/templates by building detectors for 3 specific classes (1) natural scenes,

(2) faces and (3) cars. We will also describe a matching technique that uses one-

dimensional warps of a simple template to detect and localize objects while allowing

for clutter and variations in pose. At runtime, these class detectors can be used for
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Figure 1-4: Results for the waterfall concept using the single blob with neighbors
concept. The dataset contained 2600 images of a variety of scenes (e.g. mountains,
lakes, sunsets, flowers etc.) from the COREL image library. Top row: Initial training
set-5 positive and 5 negative examples. Second Row: Additional false positives. Last
three rows: Top 30 matches retrieved from the large test set. The red squares indicate
where the closest instance to the learned concept is located.

(a) image classification or image retrieval and (b) detection/pose estimation. We will

demonstrate the use of these "object class detectors" in both these domains.

1.3.4 Thesis Overview

The thesis is organized into four chapters which describe methods for (a) capturing

flexible, relational templates from examples and using them for classification and (b)
matching these templates for localization of objects in images.

In Chapters 2, 3 and 4, we discuss methods for capturing relational templates

from a small set of examples using a concrete natural scene classification example.

Natural scene classification is an open problem in machine vision and has applications

in image and video database indexing. In Chapter 5 we discuss a method for matching

templates to detect and localize instances of objects like heads while accommodting

more degrees of freedom of motion than existing template-based correlation methods.
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In Chapter 2, we describe the features used and the template extraction method

using a few positive examples of the scene class. In this chapter, we describe a

simple reinforcement scheme for learning the flexible templates that Lipson hand-

crafted and show that the learned templates can classify new images effectively. The

scheme proposed here is a variation on simple discrete intersection of common color

and spatial properties in all the example images. The experiments in this chapter

demonstrate proof of concept that this scheme classifies natural scenes efficiently and

reliably.

In Chapter 3, we formulate the extraction of scene concepts using color and spatial

properties as a multiple instance learning problem. We use a general architecture that

employs a method called Diverse Density [Maronl998] to learn scene concepts from a

set of positive and negative examples. A key part of our system is the bag generator: a

mechanism which takes an image and generates a set of instances where each instance

is a possible description of what the image is about. We show that simple learned,

concepts perform well in this task. We also evaluate the effects of user interaction

with positive and negative feedback. Figure 1-4 shows a preview of the results from

Chapter 3. As we see in the figure, this system for query learning and classification

can be used effectively to classify waterfalls. The system is able to learn the concept

from the small set of positive and negative examples automatically without any need

for the user to mark out salient regions.

In Chapter 4, we extend the bag generator described in Chapter 3 to generate

more complex instances using multiple cues and show that this extension can be used

to learn object concepts (e.g. cars). We demonstrate that rough segmentation of high

resolution images into salient connected components greatly reduces the number of

instances per bag and the running time of the algorithm. Our experiments on "car

classification" show that a combination of cues (color, texture and primitive shape),

some feature selection and more complicated concepts (conjunctions of instances with

spatial relations) play a significant role in improving classifier performance. Figure

1-5 shows a preview of the car detection results. The learned concept is a 2-blob

concept and the red squares in the figure indicate the location in the image closest to

29



Figure 1-5: Results for the cars concept using the cc2 concept. The database
contained 538 images from of a variety of objects and scenes from the COREL
library. The training set and the test set were disjoint i.e. the examples used
to learn the concept were not included in the test set. Top row: Initial training
set-5 positive and 5 negative examples. Positive examples are highlighted in
red. Last three rows: Top 30 matches retrieved from the test set. The red
squares indicate where the closest instance to the learned concept is located.

the learned concept. The results indicate that the "wheel" regions are closest to the

learned "car" concept in the retrieved images.

In Chapter 5, we discuss a method for detection and localization of objects. We

develop a new correlation-based method for building detectors for object classes using

a single, simple, stretchable 2D template. This detection scheme allows extraction of

useful 3D pose information from the template to image match which can then be used

to recognize the object accurately using conventional recognition methods. Figure 1-6

shows an example of the detection and localization process.
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(a)

(b)

(c)

Figure 1-6: (a) Input image (b) Detection results showing the mapping be-
tween template features and image features for the detected instance (c) results
of the partial pose solver which uses the mapping from (b) to compute 3 DOF
pose (x and z translation, y rotation). The model is rendered using the recov-
ered pose. Visual inspection shows that the recovered pose matches the input
pose quite well.

31



Chapter 2

Natural Scene Classification

In the past few years, a new field has emerged for the understanding of natural

images. The growing number of digital image and video libraries has led to the need

for flexible, automated content-based image retrieval systems which can efficiently

retrieve images from a database that are similar to a user's query. Because what a

user wants can vary greatly, we also want to provide a way for the user to explore

and refine the query by letting the system bring up examples. For example, given

a picture of a snowy mountain scene, what is it about the image that causes it to

be labeled as a snowy mountain. Is it the sky, the mountain, the snow or the house

in the corner? It is hard to determine this by looking at only one image. The best

we can say is that at least one of these constituent features or some combination of

them makes this image a snowy mountain scene. However, given a few examples,

we can extract those features that are common in all the examples as the ones that

cause them to be labeled as snowy-mountain scenes. In this chapter and the next, we

suggest methods to learn concepts that capture the relevant properties (features) of

classes of natural scenes from a few examples.

2.1 Previous Work

In this section, we review some of the existing techniques for content-based image

retrieval.
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2.1.1 Histogramming methods to capture color distributions

One of the most popular global techniques for indexing is color-histogramming which

measures the overall distribution of colors in the image [Swain and Ballard1991].

While histograms are useful because they are relatively insensitive to position and

orientation changes, they do not capture the spatial relationships of color regions and

thus have limited discriminating power. Many of the existing image-querying systems

work on entire images or in user-specified regions by using distribution of color, tex-

ture and structural properties. The QBIC system [Flickner et al.1995] and the Virage

system [Bach et al.1996] are examples of such systems. Figure 2-1 shows an example

of images retrieved using color histogram matching. The results in the figure show

the top few matches that are closest in color composition to the first image.

Examples of some recent systems that try to incorporate some spatial infor-

mation into their color feature sets are [Smith and Chang1996, Huang et al.1997,

Belongie et al.1998, Pass et al.1996, Stricker and Dimail996, Hsu et al.1995]- among

others. Pass et al. [Pass et al.1996] have a technique that is better than color his-

togramming by splitting the global histogram into coherent and scattered components

which identify connected color regions. However, it does not support querying with

spatial locations of the color regions. Stricker et al. [Stricker and Dimai1996] divide

the image into five overlapping regions and compute the first three moments of the

color distributions in each region. They allow querying by using the five absolute

region locations and properties and the method is insensitive to small rotations. VI-

SUALSeek [Smith and Chang1996] is another system that supports query by color,

texture and spatial layout. It also partitions the image into regions, but allows a

region to contain multiple colors and lets pixel belong to several different categories.

Promising work by Rubner [Rubner et al.1998] using the Earth Mover's Distance

provides a metric that overcomes the binning problems of existing definitions of dis-

tribution distances for indexing.

All of the methods described above use the absolute color and texture properties

of the whole image or fixed regions in the image and some incorporate spatial relations
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Figure 2-1: This figure shows the set of images retrieved by the QBIC system
[Flickner et al.1995] using global color histogramming. These images are the top few
matches that are closest in color composition to the query (first image). The results il-
lustrate that images with very different content can have similar color composition.

between connected regions having similar color properties. If we consider the domain

of natural scene classification, these absolute properties can vary between images of

the same class.

These methods also use a single image as the query to the search engine. As we

mentioned earlier, it is hard to extract the relevant properties of a scene from just

one image and this results in false positives from matching the irrelevant parts of the

image. Most of these techniques overcome this issue by requiring the user to specify

the salient regions in the query image. One of the goals of our system is to use a small

set of examples to automatically learn (a) the relevant regions in the image that best

describe the example class and (b) the color and spatial properties of these regions

in order to classify natural scenes efficiently and reliably (with few false positives).
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2.1.2 Flexible templates to capture color and spatial layout

More recently, work by Lipson [Lipson1996, Lipson et al.1997] illustrates that pre-

defined flexible templates that describe the relative color and spatial properties in

the image can be used effectively for scene classification. Figure 2-2 shows an exam-

ple of a template that captures the "snowy-mountain" concept. The flexible templates

constructed by Lipson [Lipson et al.1997] encode the scene classes as a set of image

patches and qualitative relationships between those patches. This is similar to the

ratio-template constructed by Sinha [Sinhal994] to detect faces under varying illu-

mination conditions. The ratio template captures the changes in luminance between

fixed image patches.

The flexible templates constructed by Lipson for the task of scene classification

include spatial and photometric relationships between image patches. Each image

patch has color and luminance properties, and the templates describe the relation-

ships between the patches in terms of color (relative changes in the RG;B channels),

luminance (relative changes in the luminance channel) and spatial layout... Lipson

hand-crafted these flexible templates for a variety of scene classes and showed that

they could be used to classify natural scenes efficiently and reliably. In this section,

we would like to create an interactive system that allows the user to build his own

templates by selecting a set of example images and letting the system extract a set

of templates that capture the common relations within the set of images.

Example of a predefined template

Figure 2-2 is an example of a predefined template used to classify scenes (Lipson

[Lipson et al.1997]). The template consists of a set of regions, with a set of spatial

relationships (above, below, left, right). For example, two regions A and B could

have the spatial relation A is above B. The template also describes the color and

luminance relationship between the image regions. The relations used for the color

(R, G, B) and luminance channels are (>, <,=). For example, two regions A and B

could be related by color relations such as Ar > Br, Ag < Bg, Ab = Bb. These hand-
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built templates capture the relevant color and spatial relations of classes of natural

images and have been used to classify scenes efficiently.

These templates are matched to candidate images by measuring the extent to

which a similar representation of an image meets the relative relationships of the

template, and the extent to which patches in the image template must be spatially

altered to best match these other constraints. The deformation of a template is

defined in terms of

* Inter-region spatial layout which measures the extent to which the template

regions need to be moved to match the image,

* Intra-region spatial layout which measures the extent to which the boundary of

the template needs to be stretched to fit the image,

e Inter-region photometry which measures the extent to which the photometric

properties between template regions must be varied to. match the image and

* Intra-region photometry which measures the extent to which the absolute pho-

tometric values in a region of the template needs to be altered to fit the image.

More details on this matching algorithm can be found in [Lipsonl996].

2.1.3 Complex features to capture image patterns

Texture properties have been used successfully in segmentation and discrimination.

Some examples include [J.Malik and P.Perona1990, H.Greenspan1994, W.Forstnerl994,

J.Garding and T.Lindebergl996]. Texture properties have also been used in object

recognition [Rao and Ballard1995, Viola1996]. These texture properties are com-

monly described as responses to a set of oriented filters and many existing image re-

trieval systems use the distribution of these texture properties (texture histograms) in

addition to color to discriminate between images. Some examples of such systems in-

clude [Manjunath and W.Y.Ma1991, J.Malik and P.Perona1990, Belongie et al.1998,

Pentland et al.1996, Minka and Picard1996]. Salesin et al. [Jacobs et al.1995] use a

wavelet based approach for indexing into image databases. They use the information
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Spatial Relationships:

AmnB BltoC

Luminiance Relationships:

A B, B C

Color Relationships:

Ar< Br, Ag <Bg, Ab< Bb
Ag >Cg, Ab>Cb
Br >Cr, Bg > Cg, Bb>Cb
Ab > Ar, Ab > Ag

Figure 2-2: Example of a pre-defined template. This figure is taken from [Lipson et al.1997]
with permission of the author.
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encoded in the dominant wavelet coefficients to obtain a signature which can then

be used to retrieve images that are visually similar to the query. This algorithm pre-

processes all the images in the database by transforming them using the Haar wavelet

decomposition in each of the color channels. For each image, the average color and

the indices of the top 40 largest wavelet coefficients are stored. The same wavelet

transform is applied to the query image and the indices of the top 40 coefficients are

retained. The query is a single image or a sketch and the algorithm retrieves images

that are similar in structure to the query image. This algorithm is very sensitive to

small rotations (5 degrees). and small translations (5 pixels) when the query images

have a reasonable amount of detail. Experiments analyzing this algorithm can be

found in [Ratan and Dang1996]. Using just the top 40 coefficients is probably in-

sufficient for queries in a large database since they could be discarding many of the

significant coefficients in the process. While the idea of using wavelet coefficients and

other filter outputs for. representing the structure of the image is a good one, what

we need is a good way to extract the relevant coefficients for an image. -

DeBonet et al. [J.S.DeBonet and P.Viola1997) introduce a method which extracts

thousands of complex features that represent color, edge orientation and other local

properties at several resolutions. Their approach uses both the first order properties

(oriented edges etc.) and the relationships between the first order properties. The

process of finding relationships between features with specific local properties leads to

complex features which are more discriminating and more specific. They show that

these complex features can be used effectively to retrieve images that are structurally

similar to the query (e.g. planes,cathedrals etc.).

2.1.4 Learning for image database indexing

Most of the systems described in the previous sections require users to specify pre-

cisely the desired query. Minka and Picard [Minka and Picard1996] introduced a

learning component in their system by using positive and negative examples which

let the system choose image groupings within and across images based on color and

texture cues; however, their system requires the user to label various parts of the
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scene, whereas our system only gets a label for the entire image and automatically

extracts the relevant parts of the scene. Forsyth et al. [D. Forsyth1997] learned

representations for horses by training the system using the appropriate color, tex-

ture and edge configuration. Cox et al. [Cox et al.1998] modeled relevance feedback

in a Bayesian framework that uses an explicit model of the user's selection process.

More recently, Nastar et al. [C.Nastarl998] introduced a relevance feedback system

for query refinement over time using a set of positive and negative images. They

estimate the distribution of relevant images and minimize the probability of retriev-

ing non-relevant images. Our system uses the Multiple Instance learning framework

(which we will describe in the next chapter) to learn a query concept and feature

weights automatically from a small set of positive and negative examples. Our sys-

tem finds the simplest concept (template) that can be used to explain the query set

and retrieves similar images from the database by finding the location of the concept

in the image..

2.2 Our Natural Scene Classification System

In this chapter and the next, we describe our approach to learning queries of natural

scenes like sunsets, waterfalls, fields etc. Natural scene classification is a difficult

problem for computer vision since classes of natural scenes can vary significantly in

viewpoint, scale, brightness and color. Figure 2-3 shows an example of the color and

spatial variations that can occur in the class of waterfall scenes.

In order to classify new images, we need methods to compare the query im-

age/images to other images in the database. However, correlation cannot be used

directly on the high-resolution images since even a small shift of a few pixels can

cause large changes in the correlation coefficients. Correlation on smoothed and

down-sampled images is less sensitive to translation and scale variations between im-

ages but works well when there is a single object in the image without any background

clutter. In more complex images, there are often multiple objects and the object of

interest occupies only a small part of the image. In this case, we need to compare
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Figure 2-3: Example showing the variations that can occur in the class of waterfalls. The

waterfalls vary in size, color and brightness values. These variations are preserved even in
smoothed and down-sampled images. Since the waterfall forms only a small part of the
image in some examples, correlation on the whole image gives poor results.
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sub-regions in one image with sub-regions in the other image in order to classify them.

Now we are left with the problem of choosing the relevant sub-regions in a particular

image. As we mentioned earlier, it is difficult is say which regions are relevant from

a single example. If we have a few examples, however, we can pick the common re-

gions in all the examples as being relevant to the query concept. In our approach, we

consider all possible sub-images in an image and pick those that are common in all

the examples.

This still leaves the problem of how to compare the sub-images: by directly us-

ing correlation on the pixels or by extracting other features. As Figure 2-4 shows,

the absolute color in classes of natural scenes varies significantly. For example, we

see in the figure that the absolute color for the class of fields varies from green to

yellow to brown. These variations are preserved in the smoothed and down-sampled

images even when the colors are quantized into a few bins (3 bins in each of the

R,G,B channels) Direct correlation on these sub-images even after smoothing and

down-sampling will give poor results. We need methods that can generalize well

by accommodating these variations. However, while the absolute color varies in the

images of the fields, the relations between the regions (sky and field regions) are pre-

served in all the examples (Figure 2-4). The features used in our system are based on

the color and spatial relations between image regions. The next few sections describe

how we extract the set features from images, pick the key features that describe the

query class from a set of examples and use these key features to classify new images.

The query learning system described here was motivated by Lipson's pre-defined

flexible templates [Lipson et al.1997] described in section 2.1.2 which captured the

color and spatial layout of the image which could then be used for classification. The

flexible templates constructed by Lipson [Lipson et al.1997] encode the scene classes

as a set of image regions and the qualitative relationships between those regions.

Our goal is to automatically construct such flexible templates that capture the

common color and luminance patterns and their spatial relationships present in a

small set of positive example images.

41



Down-sampled
& quantized

1 - [R,G,B] [0,28,155]
(R,G,B]= [28,155,0]

lo [R,G,B]= [l55,155,0]

W [R,G,B] = [0,28,155]

61 [R,GB]= [28,155,0]

[R,GB] = [0,28,155]

[R,G,B]= [28,155,0]

Absolute color
varies

No match

Relations ate invariant

Ar<Br
Ag<Bg
Ab>Bb

Figure 2-4: This example illustrates the differences in absolute color in the class of fields.
The example also shows that the color and spatial relations are invariant across the set of
images even when the absolute color and spatial properties change.
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Figure 2-5: Framework for generating feature nodes.

2.2.1 Extracting templates using reinforcement of color re-

lations

The method we use to construct these flexible templates from a training set of images

consists of the following steps:

1. extracting features from example images

2. extracting template units from features

3. building templates

4. classifying new images (template matching)

We now introduce some terminology and the general framework for extracting

features from an image. In this framework, each example image is divided into many

sub-images (blobs) which capture the color relationships within pixel neighborhoods.

Each blob is a node. As shown in Figure 2-5, we transform images into a set of feature

nodes. We experimented with a couple of hypothesis classes which we will describe

in the next few sections.
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2.3 Hypothesis Classes

Since we want to capture the commonalities in a set of images while allowing for

spatial and color variations, we cannot just use correlation on the smoothed and

down-sampled images as we discussed above. Instead, we extract features (pixel and

its neighbors) that are reinforced in all the example images and build a template

from these features by linking them with appropriate color and spatial relations. We

experimented with two different hypothesis classes of features which are given below.

All the images were smoothed using a Gaussian filter and down-sampled to 16x16

images. We use the [R, G, B] color space to represent color values. There are other

color spaces that have been explored in the literature like HSV (hue,saturation,value)

in [Mahmood1993, Das et al.1997] and YIQ ("W-Bk", "magenta-green", "R-cyan")

in [Jacobs et al. 1995] among others. Details on the different color spaces can be found

in [Foley and Dam1984]. In our experiments, we did not experiment with other color

spaces since we found that the R, G, B color space gave satisfactory resits, 'The

luminance (brightness) is can be expressed as a weighted sum of the R G, R values

(L = 0.30R + 0.59G + 0.11B). In all of the images, the [R, G, B] values for each

pixel are quantized into a few bins. Figure 2-6 shows some examples of smoothed,

down-sampled and quantized images of natural scenes.

2.3.1 single blob with mean color

" Each 2x2 pixel neighborhood P in the low resolution (16x16) image is now a

unit represented with (a) its mean color and luminance value and (b) the color

and luminance difference between P and its neighboring 2x2 regions in the 4

directions. Figure 2-7 shows an example of this feature class.

" P is described as a vector [x 1 , x2 , ... , x 2 0], where x 1, x 2 , X3 , x 4 are the mean

RGB and luminance values of the central blob, x 5 , X6 , x7 , x8 are the differences

in mean RGB and luminance values between the central blob and the blob above

it, etc.
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Down-sampled image

Figure 2-6: Examples of smoothed, down-sampled and quantized images of some natural
scenes.
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[r1,g1,b1]
EXAMPLE IMAGE INSTANCES

[r2,g2,b2]

hto e [x,y,r,g~b,r1,g1,b1,r2,g2,b2,..r4,g4,b4]
Downsample :1 are differences in mean color between
and generate central blob and blob above it..
instan ces

Figure 2-7: Instances of single blob with mean color class

* The distance between two instances P. and P is given by

|p -P||p 2I - 11f2 = _p~~- ~k (2.1)
k

where Pik is the kth feature in the instance P.

2.3.2 single blob with relational histograms

* We smooth the images with a Gaussian filter and down-sample them to low-

resolution (16x16) images.

* We then quantize all the images as described above.

" Each 2x2 pixel neighborhood P in the low resolution image is now a unit repre-

sented with (1) a rough color P(col) and (2) histograms of luminance and color

relationships in 2 directions (below it and to the right of it) P(histd), d = 1, 2

(Figure 2-8).

* Histograms of color and luminance relationships:

The relationships are defined on k channels for every pixel (e.g. red, green and

blue color channels, luminance, texture, etc.) and there are 3 choices of symbols

for a relationship between a pair of pixels (>, <, =). This implies that there

are 3 k bins into which a pair of pixels can cast a vote.

For each pixel in the low resolution image, take a neighborhood of pixels in 4

directions relative to it. For example, in the North-South (NS) direction, the
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neighborhood for a pixel P(i, j) is given by the set of pixels P(i + k, j +1) where

k = -1, 0, 1 and 1 = 1...6. For each pixel, record the signature of the color

and luminance relations between the key pixel and pixels in the neighborhood

corresponding to a particular direction (i.e. the set of relationship symbols as

defined above). Histogram these signatures into bins. Each bin in the his-

togram represents a particular relationship defined on the red, blue, green and

luminance channels using the relations (>,=, <). For each pixel, build these

histograms for different directions separately. We ignore the bin which repre-

sents the equality relation i.e. uniform regions in the image do not contribute

to the histogram peaks. Thus:

* Distance between nodes P and P is measured by the

2

D(P, P1 ) = CDif f - HistDif f
k=P

where

CDiif = ((P(R) - P (R))2 + (P (G) - P(G))2 + (P(B) - P(B))2

bins

HistDif f = E (P (histk) - P(histk)) 2

k=O
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I NODE

1. Direction of neighbourhood = BELOW

2. Rough Node Color = (Red)

3. HISTOGRAM OF RELATIONS

cnt
Relations

R2 = (R<, B>, G=, Lum =)
R3 = (R<, B=, G>, Lum=)

R1 R2R3
Relations

1. Direction of neighbourhood = RIGHT

2. Rough Node Color = (Red)

3. HISTOGRAM OF RELATIONS

Relations
cnt

R2 = (R=, B<, G>, Lum >)
R3 = (R<, B=, G>, Lum=)

R1 R2R3
Relations

Figure 2-8: A single node in single blob with relational histograms hypothesis
class. The blob node has a (1) rough node color and (2) a histogram defining the rela-
tions between the blob and other pixels in the neighborhoods below it and to the right of
it.
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2.4 Extracting the template (largest matching sub-

graph)

Each example image can be viewed as a graph with 16*16 nodes and pairwise spatial

relations between those nodes. The extracted template is then the largest sub-graph

which has consistent color properties and pairwise spatial relations across the set

of examples. Each sub-graph consists of a set of nodes with color properties and a

set of edges with the spatial relations between pairs of nodes. The largest matching

sub-graph is found as follows:

1. Find all the distinct features (nodes) in the first image that have matches in all

of the example images. The nodes in the examples are compared using their

color properties given above in section 2.3. This is equivalent to doing a discrete

intersection of the nodes.to get a set.of nodes Nt whose color and luminance

properties are reinforced in all of the n example images Ik, k = 1..n .

2. If there is just one matched node then this node is the template.

3. Prune the nodes in Nt such that

* For every pair of nodes (u, v) E Nt such that u E Nt matches u' E Ik and

v E Nt matches v' E Ik, the spatial relation between u and v in preserved

in the corresponding pair of nodes u and v' for k = 1...n (i.e. the spatial

relationship between u and v in Nt is preserved in the matching pair of

nodes in each of the example images).

4. The model template now consists of the largest matching sub-graph in all the

example images and has color, luminance and spatial properties that can be

used to describe all of the positive examples (Figures 2-9,2-10). The template

has a set of nodes Nt and a set of edges Et such that

e Every node in Nt has color and luminance properties that are reinforced

in all of the example images
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* Every pair of nodes in Nt have consistent color and spatial relations in all

of the example images. The relations between every pair of nodes in Nt

form the edges in Et.

2.5 Model Graph

The template is represented as a graph TG where each node in the intersection set Nt

forms a node in the graph and pairs of nodes are connected with edges that describe

the color and spatial relations between the two nodes.

TG = [Nt,ECt, RCt, RLt, RSt|

where

* Nt gives the set of nodes intkhe graph (these nodes are reinforced

positive examples a described' in sectioi 2.4)

in all the

* Et gives the set of edges in the graph (all pairs of nodes that have color and

spatial relations)

" Ct(u) gives the color (R, G, B) and neighborhood color relations of a node u E Nt

as described by the hypothesis-class.

* RCt(u, v) gives the color differences between two nodes u and v where (u, v) C Et

* RLt(u, v) gives the distance between the (x, y) coordinates of two nodes u and

v where (u, v) E Et

e RSt(u, v) gives the spatial relation

RSt(u, v) =

1

2

3

4

between u and v where (u, v) E Et.

if v is to the left of u

if v is to the right of u

if v is above u

if v is below u
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Figure 2-9: Example of a template extraction process for the single blob with
relational histogram class. Note that the patches can vary in size and shape. Patches
that are not common in both images do not appear in the template.

Figure 2-9 and Figure 2-10 illustrates this process for the two hypothesis classes

described above. Graph representations have been used successfully in model-based

object recognition before in [Mahmoodl993] among others. In [Mahmoodl993], the

model color region information is represented as a region adjacency graph (MG) and

matched to similar region adjacency graphs extracted from the image regions IG at

recognition time. The model is located in the image by finding subgraphs in the image

that satisfy the model description. MG forms a sub-graph of IG if an instance of the

model is in the image. [Mahmood1993]. Graph representations have also been used

successfully in image database retrieval as can be seen in [Lipson1996, Das et al.1997

among others. In [Lipson1996], Lipson matches a model (flexible template as shown in

51

EXTRACT COMMON PEAKS

Spatial relation be een Common Nodes

Common
Peaksr

r- 
RIGHT

LEFT -

FINAL TEMPLATE

R = A(red) < B(red)R1=A(blue) > B(blue)

A(green) = B(green)
A(lum) = B(lum)

R2 = B(red) > C(red)
B(blue) < C(blue)

B(green) = C(green)
B(lum) = C(lum)



Example:
Extracting the Snowy Mountain Template

Images Instances Template

Classification

New Image

<x. y, r, g b, rl, g2, bI..

Figure 2-10: Example of the template extraction process for the single blob with mean
color class on the "snowy mountain" query.

section 2.1.2) with color and spatial relations to subgraphs extracted from the image

which satisfy the absolute color properties of the model nodes, the spatial relations

between pairs of model nodes and the color and luminance relations between pairs of

model nodes.

2.6 Classifying new images: The template match-

ing process

We match the template against all the images in the database and rank the new

images based on how well they are explained by the template. This can be viewed as a

graph matching problem where the nodes are the color properties and edges between

nodes are the color and spatial relations between two nodes. More formally, this

graph matching problem between a model graph and an image graph is an instance

of the subgraph isomorphism problem. The subgraph isomorphism problem (finding

the largest matching subgraph) can be formally defined as follows: given a graph

G - (V 1, E1 ) with V nodes and E edges and a graph H = (V 2 , E 2 ), does G contain

a subgraph isomorphic to H i.e. a subset V C V1 and E C E1 such that || V ||=1|
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V2 ||, || E 11=11 E2 || and there exists a one-to-one function f : V2 -+ V satisfying

u, V E E2 if and only if f(u), f(v) E E. This problem is known to be NP-complete

[Corman et al.]. If G has m nodes and H has n nodes, then the number of subgraphs

m
that need to be hypothesized in order to find the isomorphism is n! which

(n)
grows exponentially [Corman et al.]. In our example, if the template graph has 5

nodes and the image graph has 100 nodes, the number of subgraphs that have to be

hypothesized is approximately 1005 which is computationally impractical. However,

as will discuss in the next section, if the nodes have to satisfy certain constraints, we

can significantly reduce the number of feasible subgraphs that need to be matched. In

our system, we use low resolution images with a few nodes and additional constraints

(color and spatial constraints) to prune the search space.

A new image is classified by searching for sub-graphs in it that satisfy the model

description. We will describe the matching process in more detail below.

Given a new image, cqnvert it into a bag of nodes as described in section 2.3

rhe image is represented as a graph 1G = [Ni, Ej, C, RC, RLj, RSi].. N is the set

of nodes, E is the set of all edges connecting every pair of nodes, Ci (u) is the color

description of node u E Ni as specified by the hypothesis class, RCi(u, v) is the color

difference in the [RGB] channels between u and v, RLi(u, v) is the distance between

the coordinates of u and v and RSi(u, v) is the relative spatial relation between u and

v as given above in the model graph description.

2.6.1 Constraints

1. Node color constraint: For each u E Nt in the template graph TG, find the

matching nodes u' E N in the image such that Ct(u) = Ci(u'). Ct(u) and

Ci(u') are matched using the similarity measures given in section 2.3 depending

on their hypothesis class.

2. Spatial relations constraint: For each pair of nodes (u, v) E Et in the template

graph TG, find matching pairs of nodes in the image such that the spatial relation

between the pair of nodes is maintained i.e. RSt(u, v) = RS (u', v').
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2.6.2 Obtaining image subgraphs

If the template graph has just one node, find the node in the image graph that best

satisfies the node color constraint.

If the template graph has more than one node, enumerate all subgraphs from the

image graph and pick the ones that satisfy the color and spatial constraints given

above. Find Ik = [Nk, Ek, Ck, RCk, RLk, RSk] such that

1 || Nk ||<|| N ||, || Ek || || Et || and

* V(u',v') C Nk, Ct(u) = Ck(u'), Ct(v) = Ck(v'), RSt(u,v) = RSk (u',v')

This step prunes the number of subgraphs to be considered by the matching step

by only considering those subgraphs that satisfy the color and spatial constraints.

2.6.3 Subgraph Matching

Out. of.the set of image subgraphs I =[Nk, Ek, Ck, RQk, RLk, RSk] that s tisfy the

contraints given above, we want to find the one that best matches the template graph.

To do this we match each candidate subgraph Ik in the image with the template graph

TG to find the one that minimizes the score metric S given below. The best subgraph

gives the location of the extracted template (concept) in the new image.

S(TG, ik) = (1 -| Nk + E(uv)e Et:Ct (u)=Ck(u')andCt (v)=Ck(v)(ACu + ACv + ARL + A.RC)
S(TG, EIk|Nt || Et |

where

ACu = (Ct(u) - Ck(U'))2

AC = (Ct(v) - Ck(V))2

ARL = (RLt(u,v) - RLk(u, v' 2

ARC = (RCt(u, v) - RCk(u', v'))2

This best (lowest) score is obtained when the number of nodes in the template

is equal to the number of nodes in the subgraph and the color and spatial relations

between the template regions are preserved well in the image subgraph.
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We reduce the search space in the subgraph matching process since(a) there are

a small number of nodes in the low resolution images and (b) the number of feasible

subgraphs in the image is reduced significantly after applying the two constraints.

2.7 Experiments and Results

We have built an interactive classification system which allows the user to pick a

few examples from a random set of images (top two rows of Figure 2-16) from the

database. The system extracts the dominant luminance and color relations between

image patches and their spatial relations from the query images and searches the

database for other images that have the same relationships. The system returns an

ordered set of images that belong the query-class. The dataset consists of images

of natural scenes like "sunsets", "lakes and rivers", "snowy mountains", "fields",

"bcoasts" etc. from the COREL' libraries. All the images are smoothed using a!..

Gaussian filter and down-sainpled to 16x16 iiriages. All the templates were built

using' coarsely quantized 16x16 images.

2.7.1 Experimental setup

We tried to learn three different concepts: waterfall, mountain, and field. For training

and testing we used natural images from the COREL library, and the labels given

by COREL. These included 100 images from each of the following classes: waterfalls,

fields, mountains, sunsets and lakes. We also used a larger test set of 2600 natural

images from various classes.

We created a potential training set that consisted of 20 randomly chosen images

from each of the five classes mentioned above. This left us with a small test set

consisting of the remaining 80 images from each of the five classes. We separated

the potential training set from the testing set to insure that results of using various

lWe would like to thank the Corel@whose preview thumbnails, comprise our image database.
These 120x80 preview thumbnails were acquired from Corel@in accordance with their Image and
Pricing Specifications.
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Figure 2-11: Comparison of learned concept (solid curves) with hand-crafted tem-
plates (dashed curves) for the mountain concept on 240 images from the small test
set. The top and bottom dashed precision-recall curves indicate the best-case and
worst-case curves for the first 32 images retrieved by the hand-crafted template which
all have the same score.

training schemes and hypothesis classes can be compared fairly. Finally the large test

set contained 2600 natural images from a large variety of classes.

2.7.2 Proof of concept

In order to test the training procedure, we performed the following experiments to

compare its templates with hand-built templates. We took a dataset of 240 images

and compared the performance on the "mountain" concept. There were 80 mountain

images in the dataset and the images used to build the template were not included

in the test set. We used precision-recall and recall curves to compare the methods.

Precision is the ratio of the number of correct images to the number of images seen

so far. Recall is the ratio of the number of correct images to the total number of

correct images in the test set. The graphs in Figure 2-11 shows that this method is

competitive with the hand-crafted templates. The false positives for the mountains

in both cases included pictures of fields with clouds in the sky.

2.7.3 Results using trained templates

We compared the performance of the trained templates with global histogramming

on the small test set of 400 images. The global histogram is computed for each of
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Figure 2-12: Comparison of simple trained templates averaged over the hypothesis
classes (solid curves) with global histogramming method (dashed curves) for 3 con-
cepts on 400 images from the small test set.
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Figure 2-13: Comparison of simple trained templates (solid curves) with global his-
togramming method (dashed curves) for 3 concepts on 2600 images images from the
large test set.

57

F0IdsV -I

0 0
0 0.2 0.4 0e-a1 0-s 2~

rounta .11,
Fielas

we t err.,



FIELD-TEMPLATE MOUNTAIN TEMPLATE

B > R G

R>,G>,Ium >

R<, G<, B<, 1I n<

Figure 2-14: Top Rows: Examples of images in fields and snowy-mtns classes and the
same low resolution quantized images. Bottom Row: Templates for fields and snowy
mountains built from these examples.

the query images. Each image is represented by three histograms, one for each color

channel (R,G,B). Figure 2-12 shows the best precision recall and recall curves for

3 concepts (mountains, fields and waterfalls) over both the hypothesis classes. The

dashed curves show the performance on global histogramming using the same queries.

We see that the trained templates perform much better than global histogramming

on this dataset. This holds even for the larger dataset of 2600 images as seen in

Figure 2-13.

Figure 2-15(a) shows the results of training the template on the example field

images selected in red in the top two rows of the figure. The query images are

selected from a random set of 20 images that the user can bring up from the database.

The database is the small test set of 400 images which is disjoint form the training

images. The top 30 matches that matched the field-template are also shown. The

false positives (Figure 2-15)(b) indicate that the simple color relationships defined by

the template might not be sufficient to make finer distinctions when the color and

spatial relations are satisfied by 2 classes (for example, the difference between a beach

and a brown field with sky). Figure 2-14 shows examples of the quantized patches

in the low resolution images for fields. The templates were built from these low-



Class FP FP
in top 30 in top 100

Fields 5 28

Snowy Mountains 3 26

Table 2.1: Summary of Results using trained templates. The table has the average number
of false positives in the top 30 and the top 100 matches over 50 runs.

resolution images by extracting the dominant luminance and color relations (units of

the template) and assembling the template units using spatial relations.

Figure 2-16 shows the results of running our system on the example snowy-

mountain images which are the ones selected in red in the top two rows of the

figure. The database has 2600 images. The top 30 matches that matched the snowy-

mountain-template in the order they were found are also shown in the last three rows

of the figure. The false.positives for this query were mostly fields withelouds. Figure

2-14:shows examples of the quantized patches. in the low resolution imag Es for snowy

mountains. The snowy-mountain template extracted from the examples is a 3-patch

template in the N-S direction (see figure 2-14).

Table 2.1 summarizes the average performance of the system over 50 trials for two

classes (fields and snowy-mountains). There were 110 field images and 100 snowy

mountain images in the dataset. These were classified manually for the purpose of

evaluating the performance of the system.

2.8 Summary

In this chapter, we have described a simple reinforcement scheme for learning the

flexible templates that Lipson hand-crafted and have shown that the learned tem-

plates can classify new images effectively. The scheme proposed here is a variation

on simple discrete intersection of common color and spatial properties in all the ex-

ample images. This scheme uses only positive examples and classifies natural scenes

surprisingly well. The system extracts the most complex graph (all instances) that is
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Figure 2-15: (a) The query images are the ones selected in red in the top two rows. The
next 3 rows are the top 30 matches returned by the system, based on the constructed
template. (b) Some examples of the false positives.
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Figure 2-16: Training images for mountains are the ones selected in red in the top
two rows. Bottom Rows: Top 30 matches for mountain template. The dataset has
2600 images.
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common to all positive examples, emphasizes both the color and spatial relations in

the examples by treating the classification as a graph matching problem. The system

finally does an exhaustive subgraph match at classification time. This is feasible here

since we are using very low resolution images and the number of nodes in the graph

is small. In the next chapter, we will explore the following issues.

" the role of optimizing for the target concept in a continuous domain instead of

the discrete intersection used in this chapter

" the role of adding negative examples to train the system

We will see that, for more general concepts, moving to the continuous domain and

adding negative examples help reduce the false positives and hence improve classifier

performance.
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Chapter 3

Pictorial Query Learning as a

Multiple Instance Learning

Problem

As we mentioned earlier, current training schemes for image database indexing require

the user to specify exactly what he wants by labeling parts of the query image and

specifying the importance of the features like color composition, color layout, texture,

shape and location from a set of preferences. The selected region and the feature

weights are then used to retrieve new images that match the user's query preferences.

Our goal is to have a framework which will automatically pick the relevant regions in

the image as well as the weights for the different features.

While a user can create templates corresponding to the different visual categories

(e.g. waterfalls, mountains) by hand, this is not very practical for a diverse set of

queries. In this thesis, our goal is to allow the user to train the system by selecting

positive and negative examples and letting the system construct a template that

captures the relevant parts of the scene from those examples. The user can then

refine the template by providing the system with positive and negative feedback from

the set of retrieved images. Our approach to training image retrieval systems builds

on the idea of Multiple Instance Learning [Dietterich et al. 1997, Dietterich et al. 1994]

using the Diverse Density algorithm [Maron and Lozano-P6rez1998, Maron1998].
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The method described in the previous chapter extracts templates using a small

set of positive examples by a simple intersection of feature instances common to all

the examples. The template is then used to classify new images from the database.

The experimental results are encouraging and show that simple learned concepts can

be used effectively in this domain. In order to extend the current system, we need to

understand (1) the role of negative examples in the initial training process and (2)

the role of positive and negative feedback in the template refinement process through

user interactions. We encode the influence of negative examples on the scene concept

as follows: color and spatial properties encoded in the scene concept are common

to regions in the positive examples and their importance is reduced if they share

attributes with regions in the negative examples.

To deal with these issues, we consider an alternative framework for learning queries

of visual concepts. We apply the Multiple-Instance learning framework to extract and

refine scene concepts from a small number of positive and negative examples. Multiple

Instance Learning explicitly addresses the ambiguity inherent in learning concepts

from images. In this chapter, we describe the Multiple Instance Learning framework

and show that it is applicable for learning query concepts for image retrieval. We

also show that (a) very simple features that encode color and spatial properties of

pixel neighborhoods are sufficient to classify images of natural scenes efficiently and

reliably, (b) complicated concepts (e.g. conjunctions) perform better that simple ones

and (c) user interaction helps improve classifier performance.

3.1 Example Based Learning

Example Based Learning is a branch of machine learning which allows programs to

learn a task from examples and use it to adapt to new situations. In example-based

learning, the system is trained with input values and their corresponding output val-

ues and the system "learns" the mapping between the inputs and outputs for that

task and adapts this mapping to predict outcomes for new input values that it has not

been trained on. These learning techniques are particularly useful in problems where
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it is hard to precisely model all possible outcomes and have been used in a variety of

applications like speech recognition, pedestrian detection [Oren et al.1997], face de-

tection [Sung and Poggio1994, H. Rowley and Kanade1995, Pentland et al.1994] etc.

In a typical machine learning problem, the task is to learn a function

y = f(Xi, x 2 , . ..xn) given a set of input-output values so that the approximated func-

tion f maps the input values to the correct output values and interpolates between

the outputs in regions where there is no input value provided. For example, in a face

detection task, input values can be pixel values from a face image and the output

value y is a boolean value indicating whether the input is a face. f is the function

which we would like to learn from examples so that it can be applied to new input

values. A large data sample gives more information about f since it has the output

values for f for a large number of input points. The choice of input values also affects

how well we can learn an approximation of f. Ideally, we want the training data to

span the input space and provide a good representation of f. In order to learn a-good

approximation of f at all locations, we need (1) a well distributed training data set

that spans the input space and (2) more data at input points where f changes rapidly.

Thus, the quality and the number of training examples affects the performance of the

learning algorithm.

In typical supervised learning, the examples are given in terms of (yi, xi 1 , Xi2 , ... , zin),

where each set of input values is labeled with the correct output value yi. In tradi-

tional unsupervised learning, the set of input values is given to the learner with no

information about the output value. In the context of image classification, a Su-

pervised Learning approach would give a class label to every pixel in the example

images and use these labels to retrieve new images. On the other extreme, an Un-

supervised Learning approach would not use any labels on the images or the pixels

which indicate if the example is good or bad. The approach we describe in this chap-

ter is called Multiple Instance Learning [Dietterich et al.1997, Long and Tan1996,

Auer et al.1996, Blum and Kalail998] and falls in between these two extremes. In

the Multiple-Instance learning paradigm, the learner gets a set of positive and neg-

ative labeled examples of the concept to be learned. Each example is a collection
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of instances. An example is labeled positive if at least one instance in it is positive

and labeled negative if all the instances in it are negative. In our image classification

example, the learner gets a small set of labeled images indicating whether they are

positive or negative examples. Thus, given a positive example, the learner knows that

somewhere in the example is the class concept. Since the instances are unlabeled, the

system does not know which instance in the positive example is relevant and deduces

this automatically.

3.2 Multiple-Instance Learning

In traditional supervised learning, a learning algorithm receives a training set which

consists of individually labeled examples. There are situations where this model fails,

specifically when the teacher cannot label individual instances, but only a collection

of instances. For example, given a picture containing a waterfall, what: is it about

the image that causes it. to be labeled. as a waterfall? Is it the butterfly hovering

in the corner, the blooming flowers, or the white stream of water? It is impossible

to tell by looking at only one image. The best we can say is that at least one of

the objects in the image is a waterfall. Given a number of images (each labeled as

waterfall or non-waterfall), we can attempt to find commonalities within the waterfall

images that do not appear in the non-waterfall images. Multiple-Instance learning is

a way of formalizing this problem, and Diverse Density is a method for finding the

commonality.

In Multiple-Instance learning, we receive a set of bags, each of which is labeled

positive or negative. Each bag contains many instances, where each instance is a point

in feature space. A bag is labeled negative if all the instances in it are negative. On

the other hand, a bag is labeled positive if there is at least one instance in it which is

positive. From a collection of labeled bags, the learner tries to induce a concept that

will label unseen bags correctly. This problem is harder than even noisy supervised

learning because the ratio of negative to positive instances in a positively-labeled bag

(the noise ratio) can be arbitrarily high.
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HYPOTHESIS CLASSES

SINGLE-BLOB SINGLE BLOB
WITH NEIGHBS

2-BLOB
WITH NEIGHBS

Figure 3-1: Hypothesis classes used for the experiments.

The multiple-instance learning model was only recently formalized by Dietterich

et al. in [Dietterich et al.1997], where they develop algorithms for the drug activity

prediction problem. This work was followed by [Long and Tan1996, Auer et al. 1996,

Blum and Kalail998], who showed that it is difficult to PAC-learn in the Multiple-

Instance model unless very restrictive independence assumptions are made about the

way in which examples are generated. Auer [Auerl997] shows that despite these as-

sumptions, the MULTINST algorithm performs competitively on the drug activity

prediction problem. Maron et al. [Maron and Lozano-P6rez1998] develop an algo-

rithm called Diverse Density, and show that it performs well on a variety of problems

such as drug activity prediction, stock selection, and learning a description of a person

from a series of images that contain that person.

3.2.1 Multiple-instance learning for scene classification

In our framework, each training image is a bag. The instances in a particular bag are

various sub-images. If the bag is labeled as a waterfall (for example), we know that
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Figure 3-2: (a) The positive and negative examples are converted to bags of feature
instances (b) each instance is a point in a high dimensional space. The "ideal" feature
vector is the point with maximum Diverse Density. This point corresponds to the
learned concept. To classify new images, find the location of the instance closest to
the learned concept.
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at least one of the sub-images (instances) is a waterfall. If the bag is labeled as a

non-waterfall, we know that none of the sub-images contains a waterfall. Each of the

instances, or sub-images, is described as a point in some feature space. As discussed

in section 3.5, we have experimented with several ways of describing an instance.

Figure 3-1 shows the hypothesis classes that we used in our experiments. We will

discuss one of them (single blob with neighbors) in detail: a sub-image is a 2x2

set of pixels (referred to as a blob) and its four neighboring blobs (up, down, left, and

right). The sub-image is described as a vector [x1 , x 2 , ... ,iX15 ], where x 1, x 2 , x 3 are

the mean RGB values of the central blob, x 4 , X5 , X6 are the differences in mean RGB

values between the central blob and the blob above it, etc. One bag is therefore a

collection of instances, each of which is a point in a 15-dimensional feature space. We

assume that at least one of these instances is the template that contains the waterfall.

We would now like to find a description which will correctly classify new images as

Waterfalls or non-waterfalls. This can be done by finding what is in common between

the waterfall images given during training and the differences between those and the

non-waterfall images. The main idea behind the Diverse Density (DD) algorithm is

to find areas in feature space that are close to at least one instance from every positive

bag and far from every negative instance. The algorithm searches the feature space

for points with high Diverse Density. Once the point (or points) with maximum DD

is found, a new image is classified positive if one of its sub-images is close to the

maximum DD point. As seen in Section 3.5, the entire database can be sorted by the

distance to the learned concept. Figure 3-2 is a schematic of how the system works.

In the following subsection, we will describe a derivation of Diverse Density and

how we find the maximum in a large feature space. We will also show that the

appropriate scaling of the feature space can be found by maximizing DD not just

with respect to location in feature space, but also with respect to a weighting of each

of the features.

69



3.2.2 Diverse density

In this section, we derive a probabilistic measure of Diverse Density. More details are

given in [Maron1998]. We denote positive bags as B', and the jth instance in that

bag as B'. Likewise, B2-j represents an instance from a negative bag. For simplicity,

let us assume that the true concept is a single point t in feature space. We can find t

by maximizing Pr(t |B,- , B, Bi-, -- , B) evaluated for t at all points in feature

space. Using Bayes' rule and a uniform prior over the concept location, we see that

this is equivalent to maximizing the likelihood:

arg max Pr(B -... , I B-, - B- I t). (3.1)

By making the additional assumption that the bags are conditionally independent

given the target concept t, this decomposes into

argmiaxfl1Pr (R4~ Jt) fJP 37 t)3.2),
t

which is equivalent (by similar arguments as above) to maximizing

arg max J [Pr(t I B+) fPr(t I B-) (3.3)
t i i

This is a general definition of Diverse Density, but we need to define the terms in

the products to instantiate it. In this paper, we use the noisy-or model as follows:

Pr(t I B+) = 1 - 11(1 - Pr(t I B+)). (3.4)

The noisy-or model makes two assumptions: one is that for t to be the target concept

it is caused by (hence close to) one of the instances in the bag. It also assumes that

the probability of instance j not being the target is independent of any other instance

not being the target.

Finally, we estimate the distribution Pr(t I Bt) with a Gaussian-like distribution
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of

exp(- B - t 112).

A negative bag's contribution is likewise computed as

Pr(t | B-) = fl(1 - Pr(t I B-)).

This leads to an algorithm which performs a kernel density estimate with the

instances from each bag. The algorithm then multiplies the contribution of each den-

sity estimate to get the Diverse Density at a point. A supervised learning algorithm

such as nearest-neighbor or kernel regression would average the contribution of each

bag, computing a density of instances. This algorithm computes a product of the

contribution of each bag, hence the name Diverse Density. Note that Diverse Density

at an intersection of n bags is exponentially higher than it is at an intersection of

n - 1 bags, yet all it takes is one well placed negative instance to drive the Diverse

Density down.

The initial feature space is probably not the most suitable one for finding common-

alities among images. Some features might be irrelevant or redundant, while small

differences along other features might be crucial for discriminating between positive

and negative examples. The Diverse Density framework allows us to find the best

weighting on the initial feature set in the same way that it allows us to find an appro-

priate location in feature space. If a feature is irrelevant, then removing it can only

increase the DD since it will bring positive instances closer together. On the other

hand, if a relevant feature is removed then negative instances will come closer to the

best DD location and lower it. Therefore, a feature's weight should be changed in

order to increase DD. Formally, the distance between two points in feature space (Bij

and t) is

|| Bij - t 112= Z Wk(Bijk - tk)2 (3.5)
k

where Bijk is the value of the kth feature in the jth point in the ith bag, and wk is a

non-negative scaling factor. If wk is zero, then the kth feature is irrelevant. If wk is
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large, then the kth feature is very important. We would like to find both t and w such

that Diverse Density is maximized. We have doubled the number of dimensions in

our search space, but we now have a powerful method of changing our representation

to accommodate the task.

We can use also use this technique to learn more complicated concepts than a

single point. To learn a 2-disjunct concept t V s, we maximize Diverse Density as

follows:

argrmax J(1 - l(1 - Pr(t Vs|B)))

l f Pr(t V s | B-) (3.6)
i j

where Pr(t V s | Bt) is estimated as max{Pr(t | B+), Pr(s | Bt)}. Other approxima-

tions (such as noisy-or) are also possible.

Finding the maximum Diverse Density in .a high-Aimensional space is a difficult

problem. In general, we are searching an arbitrary landscape and the number of local

maxima and size of the search space could prohibit any efficient exploration. In this

paper, we use gradient ascent (since DD is a differentiable function) with multiple

starting points. This has worked successfully because we know what starting points

to use. The maximum DD point is made of contributions from some set of positive

points. If we start an ascent from every positive point, one of them is likely to be

closest to the maximum, contribute the most to it and have a climb directly to it.

Therefore, if we start an ascent from every positive instance, we are very likely to find

the maximum DD point. When we need to find both the location and the scaling of

the concept, we perform gradient ascent for both sets of parameters at the same time

(starting with all scale weightings at 1). The number of dimensions in our search

space has doubled, though. When we need to find a 2-disjunct concept, we can again

perform gradient ascent for all parameters at once. This carries a high computational

burden because the number of dimensions has doubled, and we perform a gradient

ascent starting at every pair of positive instances.

Our goal in the next section is to show that: (1) Multiple-Instance learning by
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maximizing diverse density can be used in the domain of natural scene classification,

(2) simple concepts in low resolution images are sufficient to learn some of these

concepts, (3) negative examples help improve performance , (4) working in the con-

tinuous domain helps when the query class has a lot of variation (e.g. images of

fields) and (5) adding false positives and false negatives over multiple iterations (user

interaction) can be used to improve the classifier performance. We also discuss how

this general architecture can be extended to object classification and show that rough

segmentation and feature selection (scaling) play an important role in this domain.

3.3 Discrete Intersection

Discrete intersection is a special case of the current formulation of Diverse Density

when we do not optimize for either location or scaling of the target concept. Finding

the target concept using Discrete Litersection consists of the following steps:

e Convert each exam ple image ito a bag of instances

" Every positive bag has at least one positive instance and every negative bag has

only negative instances.

" Start the minimization from every positive instance but run it without optimiz-

ing for location or scaling i.e. find the positive instance that maximizes Diverse

Density after one iteration.

* The instance with the maximum DD is the target concept In this case, the

target concept is the positive instance which minimizes the Euclidean distance

to at least one instance in each of the positive bags and maximizes the distance

to all of the negative instances.

The algorithm we described in Chapter 2, can also be formulated as a special case

of Diverse Density since the target concept (template graph) is made up of positive

instances that are reinforced in all of the positive examples. A template graph with

k nodes from Chapter 2 can be viewed as the target concept obtained from a discrete
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intersection of positive bags each containing many k - blob instances where each

k - blob instance is a point in the feature space and the target concept is the "ideal"

point that minimizes the distance to at least one instance in each positive bag.

In the next section we show that while simple discrete intersection is computation-

ally less expensive, the ability to interpolate between positive examples by optimizing

for position using diverse density helps improve performance and get better general-

ization capabilities to accommodate variations in the query class.

3.4 Finding structure in the feature space

In our image database, each image is represented by a collection of instances. Each

instance is a k dimensional vector < x1, x2, ... , ok > where xi represent the color,

texture, geometric and spatial properties of an image region and its neighbors. For

the task of classification we would like the space to be made up of several tight clusters,

each belonging to a different class. In reality, ho-wever, the space of images has a lot

of overlapping clusters and features belonging to the same class do not cluster well

in all dimensions. Figure 3-3 (a) and (b) shows an example where 10 images of the

same class cluster well in some projections and do not cluster well in other projections.

Choosing the right dimensions for a class can improve classification performance since

the features are consistent in the examples in these projections and this leads to

good clustering. Scaling the feature space also gives us a way of determining which

properties are salient for a particular query and learning a concept that focuses on

these relevant image properties. However, the important dimensions in the feature

space vary from class to class and need to be determined only at query time. Figure

3-3 (c) shows an example of 10 images of a different class projected onto the same

axes which caused the examples to cluster well in 3-3. Thus, for this application of

image classification, it is hard to determine which dimensions are important prior to

analyzing the query.
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Figure 3-3: (a) 10 feature instances from one class cluster well when projected in these
two dimensions (b) the same feature instances do not cluster well in other dimensions
(c) 10 instances from another class do not cluster well when projected in the same
dimensions as (a). The other dots represent all of the instances from all the images.
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3.4.1 Feature selection using Principal Components Analysis

Many existing feature extraction techniques involving linear transformations are based

on eigenvector analysis of the covariance matrix. These techniques rely on the input

data entirely without using any information about the target data and are thus a

form of unsupervised learning. These techniques fall under the broad category of

principal components analysis (PCA). They represent the sample space with the

vectors (directions) for which the variances (eigenvalues ) are the largest. These

directions which have the largest uncertainty are retained as features. For example, for

the task of image classification, we want to explore a low dimensional representation

of the image feature space that captures the relevant properties of the image class.

As we mentioned in Chapter 1, Principal Components Analysis (PCA) has been

used effectively for applications like face detection and recognition [Pentland et al. 1994]

among others. PCA and other subspace methods project the high dimensional data

onto a few principal components (eigenvectors) of large variance. These components

form a low dimensional subspace which captures the key sources of variation in the

class. At detection time, these methods compute the distance between the new image

and this low dimensional subspace.

If we think of an image as an NxN array of pixels, then we can represent this array

as an observation vector with N2 values.

Given a set of observations

Xk E RN,k = 1,..., M

such that
M

Z Xk = 0,
k=1

PCA diagonalizes the covariance matrix

C =3 j=1
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To do this one has to solve the eigenvalue equation

Cv = Av

for eigenvalues

and eigenvectors

v E RN

In the case of image database indexing, the features are distributed such that

there is a lot of spread between classes. The dimensions we want to preserve are

those that separate the data well and retain the clustering within classes. We did the

following experiment to demonstrate that a linear and unsupervised method like PCA

is not suited for feature selection in image classification. We computed the ptincipal:

components from. a database of 400 images'containing 5 classes of natural scenes.

Each feature was a 15 dimeisional vector' iapturing the color and spatial properties

of a pixel and its neighbors. We kept 8 eigenvectors having the largest eigenvalues and

tried to classify new images by projecting onto this 8-dimensional subspace. Figure

3-4 shows a 3D plot of the projections of 20 images of two classes (mountains and

waterfalls) onto the top three principal components. This figure illustrates a case

where the largest eigenvectors do not separate the classes and hence do not provide

good classification results. Figure 3-5 shows the results of classifying 400 images using

the distance from the 8 dimensional subspace given by the principal components. We

see that the results are no better than random. Given the complexity of the space

of images and given that the salient dimensions could vary from class to class, a

linear and unsupervised method like PCA is not well suited to capture an adequate

low dimensional representation of the feature space a priori. As a consequence, we

explore the alternative of extracting the salient dimensions at query time.

While PCA is not suited to finding salient dimensions a priori, can we use it in a

supervised mode to extract the consistencies between labeled examples in a class at
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Figure 3-4: Plot showing the projections of 20 images from the waterfall and snowy moun-
tain class onto top 3 principal components.

Figure 3-5: Classification results of PCA on a database of 400 images
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query time? In order to explore this, we took a set of positive examples belonging to

the waterfalls class. We extracted the instance (15 dimensional vector) corresponding

to the waterfall concept in each example and computed the eigenvectors. We kept the

8 smallest eigenvectors (low variance) and classified new images by projecting them

onto these 8 eigenvectors. Figure 3-6 shows the classification results on a database of

400 images. We see that the classifier gets all the members in the class but also gets a

number of false positives. Since we did not use any negative examples in the training,

the subspace could capture the salient properties of all the positive examples as well

as many negative examples. As we mentioned before, the distribution of the negative

examples in this image feature space make it difficult for linear methods like PCA

to separate the positives from the negatives. In this chapter, we discuss a method

for classifying images that brings the positive examples close together while pulling

them away from all the negative examples. The method which we will describe max-

imizes diverse density rather than just minimizing the variance between the positive

examples. Figure 3-6 shows that the ciassificatioi performance of our method.using.

positive and negative examples is better than the classification using PCA. Until now

we have been discussing ways of learning structure in the feature space by reducing

the dimensionality. In our treatment of the image classification problem, not only

do we need to find the salient dimensions for a given query set, we also need to find

the location of the concept that adequately captures the consistencies in the posi-

tive examples and separates it from the negative examples. For example, given two

images of a tiger in a lake and a tiger in the woods, we want to be able to say the

"tiger" concept is common in both images and that color and the striped texture are

important feature dimensions. In the PCA experiments described above, we had to

train the system with instances (sub-images) that contained the concept (object) and

nothing else. In our tiger example, this means giving the system images that con-

tained the tiger without the background. Our system finds both the location of the

target concept ("tiger") as well as the salient dimensions for the "tiger" concept from

examples with varying backgrounds and in the presence of other distractor objects.
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Figure 3-6: Classification results of PCA vs DD

3.5 Experiments: Natural Scene Classification

In this section, we show four different types of results from running the system: one

is that Multiple-Instance learning is applicable to this domain. A second result is

that one does not need very complicated hypothesis classes to learn concepts from

the natural image domain. We also compare the performance of various hypotheses,

including the global histogram method. Finally, we show how user interaction would

work to improve the classifier.

3.5.1 Experimental setup

We tried to learn three different concepts: waterfall, mountain, and field. For training

and testing we used natural images from the COREL library, and the labels given

by COREL. These included 100 images from each of the following classes: waterfalls,

fields, mountains, sunsets and lakes. We also used a larger test set of 2600 natural

images from various classes.

We created a potential training set that consisted of 20 randomly chosen images

from each of the five classes mentioned above. This left us with a small test set

consisting of the remaining 80 images from each of the five classes. We separated

the potential training set from the testing set to insure that results of using various

training schemes and hypothesis classes can be compared fairly. Finally the large test

set contained 2600 natural images from a large variety of classes.

For a given concept, we create an initial training set by picking five positive
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examples of the concept and five negative examples at random, all from the potential

training set. After the concept is learned from these examples (by finding the the

location of the target concept (point with maximum DD) and scaling of feature space

which maximized DD), the unused 90 images in the potential training set are sorted

by distance from the learned concept. An image/bag's distance from the concept is

the minimum distance of any of the image's subregions/instances from the concept.

This sorted list can be used to simulate what a user would select as further refining

examples. Specifically, the most egregious false positives (the non-concept images at

the beginning of the sorted list) and the most egregious false negatives (the concept

images at the end of the sorted list) would likely be picked by the user as additional

negative and positive examples.

We attempted four different training schemes: initial is simply using the initial

five positives and five negative examples. +5f p adds the five most egregious false

positives, after initial learning and sorting.of the training set. +3fp+2fn adds 3. false

positives and 2 false negatives after initial trainingi +10fp repeats the +5f p scheme

twice i.e. with a second-sorting.

3.5.2 Features/Instances

All images were smoothed using a Gaussian filter and sub-sampled to 8 x 8. We used

the RGB color space in these experiments. The RGB values were normalized to be

in the [0, 1]3 cube. For every class and for every training scheme, we tried to learn

the concept using one of seven hypothesis classes (Figure 3-1 shows some examples):

" row: An instance is the mean color of a row in the image and the color difference

in the rows above and below it given by a vector (Xi, ..., x), where (x 1, x2 , X3)

are the mean RGB values of row j, (x 4 , x 5 , X6 ) are the mean RGB values of row

j+1 minus the mean RGB values of row j , and (x 7 , x 8 , x) are the mean RGB

values of row j-1 minus the mean RGB values of row j.

" single blob with neighbors: An instance is the mean color of a 2 x 2 blob

and the color difference with its 4 neighboring blobs given by a vector (x 1 , ... ,
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where (x 1 , x 2 , x 3 ) are the mean RGB values of the blob centered at (i + 2, j),

(x 4 , X5 , X6 ) are the mean RGB values of the blob centered at (i, j) minus the

mean RGB values of the blob centered at (i + 2, j), (x7r, x 8 , X9 ) are the mean

RGB values of the blob centered at (i, J + 2) minus the mean RGB values of

the blob centered at (i, j) (x 1 0i, X1 1 , x 1 2 ) are the mean RGB values of the blob

centered at (i - 2, j) minus the mean RGB values of the blob centered at (i, j)
and (x 13 , x 1 4 , X15 ) are the mean RGB values of the blob centered at (ij - 2)

minus the mean RGB values of the blob centered at (i, j).

e single blob with no neighbors: An instance is the color of each of the pixels

in a 2 x 2 blob given by a vector (x 1, ... , x 12 ) where (x 1 , x 2 , X3 ) are the RGB values

of pixel (i, j), (x 4 , x 5 , X6 ) are the RGB values of pixel (i - 1, j), (x 7 , x8 , X9 ) are

the RGB values of pixel (i - 1,j - 1), (x1o, xu, x 12 ) are the RGB values of pixel

(i, j - 1).

e two blob with zeighbors: Ar instance is the mean color cf two descriptions

of two single blob with neighbors and their relative spatial relationship

(whether the second blob is above or below, and whether it is to the left or

right, of the first blob). An instance (i, j, k, 1) is given by the vector (x 1 , ... , x 3 2 )

where (x 1, ... , x 1 5 ) is a description of one single blob with neighbor instance,

(Xi6, ... , x 30 ) is a description of the second single blob with neighbor instance

which can be in any direction relative to the first (x 3 1 ) and (X3 2 ) gives the

distance between the blobs (i - k) and (j - 1) respectively.

" two blob with no neighbors: An instance is the mean color of two descrip-

tions of two single blob with no neighbors and their relative spatial rela-

tionship.

" disjunctive blob with neighbors: An instance is the same as the single

blob with neighbors but the concept learned is a disjunction of two single blob

concepts and can be expressed as (ci, cl) V (cf, c2). The 2-disjunct concept has

different feature weightings in each disjunct. A new bag is labeled positive if at
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least one of its instances is in either of the disjuncts (in (ci, c,) or in (c2, c)).

* disjunctive blob with no neighbors: An instance is the same as the single

blob with no neighbors but the concept learned is a disjunction of two single

blob concepts.

In our experiments, learning a concept took anywhere from a few seconds for the

simple hypotheses to a few hours for the 2-blob and disjunctive hypotheses. The more

complicated hypotheses take longer to learn because of the higher number of features

and because the number of instances per bag is large (and to find the maximum DD

point, we perform a gradient ascent from every positive instance). Because this is a

prototype, we have not tried to optimize the running time; however, a more intelligent

method of generating instances (for example, a rough segmentation using connected

components) will reduce both the number of instances and the running time by orders

of magnitude. We will discuss some of these methods in the next chapter.

305'3 Results

In this section we show results of testing the various hypothesis classes., training

schemes, and concept classes against the small test set and the larger one. The small

test set does not intersect the potential training set, and therefore more accurately

represents the generalization of the learned concepts. The large test set is meant to

show how the system scales to larger image databases.

3.5.4 Precision and Recall Graphs

The graphs shown are precision-recall and recall curves. Precision is the ratio of the

number of correct images to the number of images seen so far. Recall is the ratio of the

number of correct images to the total number of correct images in the test set. Figure

3-7 shows the perfect precision-recall and recall curves. For example, in Figure 3-9,

the waterfall precision-recall curve has recall 0.5 with precision of about 0.7, which

means in order to retrieve 40 of the 80 waterfalls, 30% of the images retrieved are not
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Figure 3-7: The perfect precision-recall and recall curves

waterfalls. We show both curves because (1) the beginning of the precision-recall is

of interest to applications where only the top few objects are of importance, and (2)

the middle of the recall curve is of interest to applications where correct classification

of a large percentage of the database is important.

3.5.5 Experiments

Figure 3-8 shows that the performance of the learned mountain concept is competitive

with a hand-crafted mountain template (from [Lipson et al.1997]1). The test set

consists of 80 mountains, 80 fields, and 80 waterfalls. It is disjoint from the training

set. The hand-crafted model's precision-recall curve is flat at 84% because the first

32 images all receive the same score, and 27 of them are mountains. We also show

the curves if we were to retrieve the 27 mountains first (best-case) or after the first

five false positives (worst-case).

In Figure 3-9, we show the performance of the best hypothesis and training method

on each concept class. The dashed lines show the poor performance of the global his-

togram method. The global histogram method [Flickner et al.1995, Bach et al.1996)

retrieves new images based on the color composition of the query image. As we dis-

cussed earlier, this method does not capture any spatial information. The solid lines

'Lipson's classifier was modified to give a ranking of each image, rather than its class.
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Figure 3-8: Comparison of learned concept (solid curves) with hand-crafted templates
(dashed curves) for the mountain concept on 240 images from the small test set. The
top and bottom dashed precision-recall curves indicate the best-case and worst-case
curves for the first 32 images retrieved by the hand-crafted template which all have
the same score.

in the precision-recall graph show the performance of single blob with neighbors

with +10fp for waterfalls, row with +10fp for fields, and disjunctive blob with

no neighbors with +10fp for mountains. The solid lines in the recall curve show the

performance of the single blob with neighbors with +10fp for waterfalls, single

blob with neighbors with +3fp+2fn for fields, and row with +3fp+2fn for moun-

tains. This behavior continues for the larger test set.

In Figure 3-10, we show the precision-recall curves for each of the four training

schemes. We average over all concepts and all hypothesis classes. We see that per-

formance improves with user interaction. This behavior continues for the larger test

set as well.

In Figure 3-12, we show the precision-recall and recall curves for each of the seven

hypotheses averaged over all concepts and all training schemes. Note that these curves

are for the larger 2600 image database. We see that the single blob with neighbors

hypothesis has good precision. We also see that the more complicated hypothesis

classes (i.e. the disjunctive concepts and the two-blob concepts) tend to have better

recall curves.

In Figure 3-13, we show a snapshot of the system in action. The system is trained

using training scheme +10fp for the waterfall concept. It has learned a waterfall
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Figure 3-10: Different training schemes, averaged over concept and hypothesis class,
using a small test set.

concept using the single blob with neighbors hypothesis. The learned waterfall

concept is shown in Figure 3-11. The concept can be interpreted as somewhere in the

image there is a blob with the properties given in Table 3.1.

These properties are weighted in the order given, and any irrelevant features have

weight 0.0. A new image has the rating of the minimum distance of one of its instances

to the learned concept, where the distance metric uses the learned scaling to account

for the importance of the relevant features. As we can see in Figure 3-13, this simple

learned concept is able to retrieve a wide variety of waterfall scenes.

The top 20 images in the figure are the training set. The first 10 images are the

initial positive and negative examples used in training. The next 10 images are the

false positives added. The last 30 images are the top 30 returned from the large
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Figure 3-11: Illustration of the learned waterfall concept extracted by DD for Figure 3-13

dataset after retraining.

Role of feature selection

In Figure 3-14, we compare the performance of the system with and without the

scaling option. As we discussed in Section 3.2.2, the architecture proposed here

allows us to compute the scaling as well as the location of the target concept. The

results indicate that scaling doesn't help very much in this domain of natural scene

classification with this particular choice of features (color and spatial relations). We

will show in the next chapter on object classification that the feature selection plays

an important role when we have a more diverse set of cues.

Role of negative examples

In Figure 3-16, we compare the performance of the system when trained with only

positive examples with its performance when trained with both positive and negative

examples. The training in both cases was done without the scaling option. We see

that adding negatives improves the recall and precision.
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Feature Value Weight
description

Blue change to left 0.277 20.57
Blue in blob 0.50 13.33

Blue change above 0.08 10.25
Red in blob 0.47 7.30

Blue change below -0.03 6.36
Red change to the left 0.62 5.43

Red change above 0.07 5.07
Green in blob 0.55 0.84

Table 3.1: Learned waterfall concept. The table shows the feature descriptions, the feature
value and the feature scaling. The features are listed in order of decreasing importance. All
other features were found to be unimportant (i.e. with weight 0)
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Figure 3-12: Different hypothesis classes
using a large test set with 2600 images.
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Discrete intersection vs. Diverse Density

Figure 3-15 compares the performance of DD vs discrete intersection as described

in Section 3.3. We see that discrete intersection is competitive with diverse density

for the "mountains" and the "waterfalls" but diverse density performs significantly

better for the "fields" class. The "fields" class has the most variation. Optimizing

for the location of the target concept allows for interpolation between the positive

instances and this results in a more general target concept which accommodates a

wider set of variations.
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Figure 3-13: Snapshot of the system working. The database contained 2600 images
of varied scenes from the COREL library. The figure shows the results for the wa-
terfall class using the single blob with neighbors concept with +10fp. Top row:
Initial training set-5 positive and 5 negative examples. Second Row: Additional false
positives. Last three rows: Top 30 matches retrieved from the large test set. The red
squares indicate where the closest instance to the learned concept is located.
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and without feature selection.

Figure 3-15: Comparing performance of DD (solid curves) with discrete intersect with
no position or scale optimization (dashed curves)

3.6 Our Indexing System

We have built an indexing system which retrieves images of natural scenes from a

few positive and negative examples. The system uses the Multiple Instance Learn-

ing paradigm to learn scene concepts in the form of relational templates from the

examples. The system presents the user with a random set of images from which the

user selects some positive and negative examples. The system then extracts the class

concept using the framework we described in this chapter and retrieves images from

the database that satisfy the concept. The user can then modify the query in suc-
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Figure 3-16: Comparing performance of DD with only positives (solid) vs positives
and negatives (dashed)

cessive iterations by adding more true positives from the retrieved set and/or adding

the false positives as negative examples in order to further refine the concept learned

and improve the performance of the system.

3.7 Results on the Corel database

Figure 3-19, figure 3-21 and figure 3-20 show the results of running the indexing

system on different queries. In each of these figures, we see the set of positive and

negative examples selected by the user and the top 30 images retrieved by the system

form a database of 3000 assorted images from the COREL database.

3.8 Results on Greenspun Photo Collection

We also ran the system on another collection of photos from the Greenspun stock

photo database. This collection has 5849 assorted images of people,places and events.

Figure 3-22, figure 3-23 and figure3-24 show the results of running the system on the

"mountains", "sunsets" and "bear in waterfall" queries respectively. The figures

show the positive and negative examples selected by the user and the top 20 images

retrieved. Figure 3-25 show the recall and precision curves for the mountain and

sunset queries. These class labels were obtained manually by going through the

database for the purpose of evaluating the performance of the system. There were 92
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Figure 3-17: Blob World: Interface and Results for a snowy mountain query.
These results were taken from the Blob World demonstration program at
http://elib.cs.berkeley.edu/photos/blobworld/
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Figure 3-18: Blob World: Results of the system vary significantly when small
changes are made to the features selected. These two results for the zebra
query have texture selected to be very important in the first case and some-
wiat important in the second case with all the other features remaining the same.
These results were obtained by running the Blob World demonstration program at
http://elib.cs.berkeley.edu/photos/blobworld/
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Figure 3-19: Results on the flower query.
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Figure 3-20: Results on the sunset query.
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Figure 3-21: Results on the fields query.
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Figure 3-22: Results on the mountain road query.
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Figure 3-24: Results on the "bears in waterfall" query.
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Figure 3-25: Recall and precision recall curves for the waterfall and sunset queries on
the Greenspun database of 5849 images.
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Figure 3-26: Examples from a text keyword based search on the Greenspun database
for 3 queries. (a) "sunset" (b) "cloudy skies" (c) "coast"
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sunsets and 222 mountain images using this labeling.

While text based retrieval based on captions can be used to index into collections

like these, text is often insufficient by itself for this task. Annotating every photograph

is time consuming and every image can have a variety of interpretations which the

annotator has to describe exhaustively. Figure 3-26 shows some examples of such

captions from running a text based search on the same database. Thus, it is useful to

have an automatic way to search through images based on visual content in addition

to textual keywords.

3.9 Other Systems

In this section, we discuss some of the other existing image database indexing systems.

3.9.1 Blob World

Blob-World is an image representation based, onimage regions ("blobs") developedaby

Belongie et al. [Belongie et al.1998]. In this representation, the image is segmented

into regions based on color and texture characteristics. Figure 3-17 shows the blob-

world representation where each region is replaced by its average color for visualization

purposes. Figure 3-17 also shows the query interface. The user picks one image

from a random set and is then presented with the query image and its blob-world

representation as shown in the figure. The user then picks one or two blobs from this

new representation and specifies the importance of each blob and its features (color,

texture, shape and location) from a set of preferences. The system then uses the

selected blobs and the feature weights selected for each blob to retrieve other images

that are closest to it based on the user's preferences. Figure 3-17 shows the results

to the earlier query.

In a querying task, the user can access the regions directly in order to see the

segmentation of the query image and specify which aspects of the image are central

to the query. When query results are returned, the user sees the Blob-world rep-

resentation of the returned images; this assists greatly in refining the query. While
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these features are all useful in the query and refinement stages of database indexing,

the system depends on the user for input on the weights of the different features.

Different combinations of feature weight selections can result in very different results

as we can see in Figures 3-18. In these figures, the input image and specified blobs

are the same but the feature weights for color and texture are different and this leads

to very different results. In many applications, it would be valuable to have a system

that can automatically extract the regions that are salient and select the relevant

features for these regions based on a small set of user-selected examples. Our system

addresses these issues of query learning and refinement. Since images are inherently

ambiguous and it is hard to say what is salient in an image given one example and

no prior knowledge, we use a small set of examples instead of one to automatically

extract those regions and features that are salient in the examples. These salient

regions and their relationships are learned as the target concept which can then be

used to retrieve other images that belong to the same concept-class.

3.9.2 Alta Vista - Photo Finder

This system2 uses a combination of text annotations and image content to retrieve

new images that belong to the user specified class. The first stage of the query engine

is text based and the system crawls the web to bring up images which have the user

specified keyword either in its name or description. The second stage allows the user

to pick one of the returned images as a query in order to return other images that

are "visually" similar to the query image. This system also uses a single image as

the query and uses a combination of color and texture properties of the image for

classification. The system does not explicitly use any spatial information between

image regions. The idea of using text and image content in a two-stage retrieval

process is a nice one since text alone might not be sufficient especially if the concept

cannot be described easily by a keyword. Text-based image retrieval alone can also

result in false positives when the description of the image contains words that are not
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associated with the image.

3.9.3 QBIC

The QBIC system [Flickner et al.1995] provides an interface where the user can select

a query image from a set of random images. The user can also choose one of a few

options for the cueing/retrieval technique. These options are color composition (color

histograms), color layout and texture. Different cueing techniques (features) can give

very different results for the same query. It would also be useful to allow combinations

of features like Blob-World does [Belongie et al.1998] instead of asking the user to

pick one of the allowable features (e.g. color histograms or texture or layout). In this

application, it would be valuable to have the system automatically learn the relevant

combination of features from example images.

3.9.4 Complex feature based indexing

The approach proposed by DeBonet et al. in [J.S.DeBonet and P.Viola1997] uses

both the first order properties (color, edges etc.) and the relationships between the

first order properties. The process of finding relationships between image regions with

local properties generates features which are more complex and more specific. They

show that these complex features are more discriminating and can be used effectively

to retrieve images that are structurally similar to the query (e.g. crowds of people,

gothic cathedrals etc.). Given a set of positive and negative examples, the search

is performed by comparing the signature of the new image to the mean signature

of the query images. The importance of each element is inversely proportional to

its variance across the examples. This approach is complementary to the flexible

template based approach that we focus on in this thesis. The flexible templates model

color properties in regions and the relationships between regions. These templates

are good at capturing the global configuration of scenes by explicitly using the spatial

relationships between relevant image regions while the complex features can specify

structural queries that do not depend on global scene properties.
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3.10 Summary

In this chapter, we have demonstrated a general system for query learning and for

image classification using a small number of examples. We describe an architecture

that allows the user to train the system, by selecting positive and negative examples,

letting the system create and use an initial template based on those examples and

finally refine the template by adding incorrect matches (false positives). Our approach

to training indexing systems treats query learning as a Multiple Instance Learning

problem and builds on the method of Diverse Density. The system has been tested for

a few classes on a database of 2600 images of natural scenes from the COREL photo

library. The scenes in the database include "sunsets", "coasts", "fields", "mountains

and glaciers" among others.

We show that Multiple-Instance learning by maximizing diverse density can be

used to classify images of natural scenes. Our results are competitive with hand-

crafted models, and much better than a global histogram approach. We have aise.

demonstrated that simple learned concepts that capture color relations in low res-

olution images can be used effectively in the domain of natural scene classification.

Our experiments indicate that complicated concepts (e.g. disjunctive concepts) tend

to have better recall curves and that user interaction (adding false positives and

false negatives) over multiple iterations can improve the performance of the classifier.

Our experiments also show that optimizing for position of the target concept (in the

continuous domain) works better than discrete intersection for classes that have vari-

ations (e.g. fields) and need the target concept to be general enough to accommodate

the variations. We also note that the role of position and scale optimization for the

features depends on the positive query set used and the amount of generality needed

to describe the class adequately. For example, in the case of queries that have very

little variation, discrete intersection without any feature selection works as well as

Diverse Density.
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3.11 Discussion

In this section, we discuss the possible extensions of our current classification system

using diverse density.

" Speed

As we mentioned earlier, the time taken to learn a concept ranges from a few

seconds to a few days. We have used this prototype system to demonstrate

that DD can be used to learn scene concepts which can be used effectively

in classification. In the next chapter we introduce a more intelligent method

of generating instances (for example, a rough segmentation using connected

components) will reduce both the number of instances and the running time by

orders of magnitude.

" Classification Performance

As we saw in the earlier section, the classification results of the prototype sys-

tem are encouraging but we would like to investigate ways of improving the

classification performance. The current framework extracts the simplest con-

cept that separates the positive examples from the negatives. While it is doing

the correct thing from a machine learning point of view, we have run some tests

on hand-built concepts that indicate that the simplest concept is not the most

discriminating one that we would like to have for classification. We discuss ex-

tensions to the current framework in the next chapter by using a combination

of cues to describe each instance so that the extracted concept does not overfit

in order to return the simplest concept.

Example selection plays a crucial role in classifier performance. Ideally, we

would like to have a large number of training examples that give us a dense and

comprehensive sampling of the input space. We can expect to get better clas-

sifier performance by generating representative positive and negative examples

rather than randomly sampling to get the training set. Our experiments show

that adding negative examples definitely helps classifier performance. However,
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it can be extremely difficult to obtain a small and relevant sample of negative

examples as training data. The number of negative examples can also grow

very large without a reasonable selection strategy. One such strategy is to pick

the "near misses" from initial classification as the negative examples. In this

case, the system will return the concept that separates the positives and neg-

atives (false positives that confused the system) which in turn will be a more

discriminating concept that reduces the number of false positives in future it-

erations. We discuss a few ways to extend the current system and improve

classifier performance below.

1. Iterative refinement

The learned scene concept can be refined with user interaction. The user

can select some of the returned images or select some new positive and

negative examples. The system can refine the existing concept by adding

and modifying the relations in the template so that the new con cept -to

explain the new set of examples.

2. Feature Selection

The Diverse Density algorithm finds the target feature vector t and the

feature weight values w which maximize Diverse Density. From our ex-

periments, we see that the algorithm tends to push most of the weights to

zero leavin very few large weight values. This tendency to overfit leads to

the simplest concept that separates the positive examples from the nega-

tive examples. It might not be desirable to overfit in the domain of image

classification since we have very little training data and such a simple

concept might not have the power to discriminate between classes in the

larger test set. One way to modify the algorithm to overcome this overfit-

ting problem is to force all the weights to be 1 (not perform any feature

selection). As we discussed earlier in this chapter, this modification per-

forms well in the domain of natural scene classification with our simple

color features. However, if we had more diverse features (e.g. color and
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texture), the initial feature space might not be the best one to separate

the positives form the negatives. Cheng [Yang1998] discusses an alternate

approach to controlling the feature weights. He constrains the weight fac-

tors during the optimization process. He controls the change in weights

Wk by setting a lower bound for the sum of weights and shows that the

constraint improves classification performance. We would like to explore

other constraints based on the selectivity of features. We plan to estimate

the selectivity of concepts (starting with a single blob concept to more

complicated k-blob concepts) on a large, unlabeled database. Since the

database is large and diverse enough, we assume that it is fairly represen-

tative of the set of digital images. Weighting learned concepts by their

selectivity could help improve the discrimination power of the concept and

hence improve classification performance.
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Chapter 4

Extending the framework:

Learning object concepts using

complex instances

4.1 Introduction

In chapter 3, we introduced the Multiple-Instance Learning framework for the domain

of natural scene classification and demonstrated that the Diverse Density algorithm

can be used effectively to learn templates for a range of natural scene classes. We

also used it to explore the effects of positive and negative feedback on the queries.

In the domain of natural scenes, the predominant color and spatial relations ex-

plained most parts of the image and were preserved even in very low resolution im-

ages. For many other types of queries, we might want to retrieve new images based

on smaller sub-regions of the query image. For these queries, we need to preserve

some detailed high resolution properties of image sub-regions for classification. In

this chapter, we explore a few extensions to the previous system:

* we start with high resolution images and segment them into a few coherent

connected components,
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" we use the segmented regions to generate complex instances 1 (2 and 3 blob

conjunctions) where each instance is a point in feature space and is a possible

description of what the image is about,

" we show that the new system can be used to extract and retrieve images of object

classes like cars in addition to images of natural scenes like fields and waterfalls

described in Chapter 3. While natural scene concepts generally spanned the

entire image and the color and spatial properties were preserved in low resolution

images, object concepts typically tend to occupy only a small portion of the

image we need to preserve some high resolution properties of the sub-images in

order to classify them.

We test our approach on images from the COREL photo library. We begin by ex-

tending the flexible template representation introduced by Lipson [Lipson et al.1997]

to the class of cars and then describe how one can learn this template from examples

using Multiple Instance Learning.

4.2 Flexible templates for Car Detection

As we discussed in Chapter 2, the original flexible templates constructed by Lipson

[Lipson et al.1997] used color and other photometric relationships between image re-

gions. Here, we extend this template representation to incorporate simple geometric

properties. As proof of concept, we construct a template for the class of "cars" which

uses color and simple geometric properties of image regions. Figure 4-1 shows the

template and illustrates how it can be used to represent the relevant properties of

cars. The car template is made up 6 regions (A,B,C,C1,C2,D1,D2,E) and relations

between them. Some of these regions have color properties and others have color

and geometric properties (wheel instances in this case). The geometric properties are

defined on on high resolution images (384x256) and the color relations are defined on

low resolution images (48x32). Specifically, the template has the following relations.

'The definition of the instance is the same as the one described in Chapter 3 when we introduced
the Multiple Instance Learning framework
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" Color relations defined on low resolution images:

A(col) = C1(col)

B(col) = C2(col)

D1(col) = D2(col)

D1(col) C1(col)

D2(col) #C2(col )

C(col ) = E (col )

* Shape properties on high resolution images:

D1 and D2 contain instances of "wheels" where the wheel is detected in the

image using shape properties.

Color properties alone are not sufficient to represent the class since there could

be other objects in the image that satisfy the same color relations. Using only the

geometric properties (wheels) can lead to many false positives as well as seen in the

Figure4-1. For example, we see in the figure that non-wheel regions like the sun

is detected as a wheel by the circle detector. The combination of these two cues,

however, captures the essential properties for a wide variety of cars with varying size,

pose and shape. We use the Hausdorff matching technique [Huttenlocher et al.1993,

Rucklidge1994] to match the geometric properties in the template (circle) and edge

features extracted from an image. We will describe the the wheel detection algorithm

and the template matching process below.

4.2.1 The Hausdorff distance for matching shapes

Given two sets of points A = a1, ..., am and B = bi, ..., bn, the Hausdorff distance

[Huttenlocher et al.1993, Rucklidge1994] is defined as

H(A, B) = max(h(A, B), h(B, A))
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where

h(A, B) = max min || a - b
acA bEB

where || a - b || represents Euclidean distance.

The function h(A, B) is called the directed Hausdorff distance from A to B. It

identifies the point a E A that is farthest from any point in B, and measures the

distance from a to its nearest neighbor in B. Thus, H(A, B) measures the degree of

mismatch between the two sets of points. For example, if the Hausdorff distance is d,

then every point of A must be within a distance d of some point in B and vice versa.

A nice property of the Hausdorff distance is that it allows for the image to contain

many instances of the model, or no instances. It also accommodates transformations

of the model (2 dimensional translation, rotation and scaling) and partial occlusion.

In our application, we use an extension of the Hausdorff distance [Rucklidgel994]

which defines a fraction of points in set A that lie within c of some point in B.

Fe(A, B) = min(fc(A, B), fc(B, A))

fc (A, B) =( c
S(A)

where BC is the point set B dilated by c. f(A, B) is the fraction of points in A

that lie within c of some point in B. The Hausdorff fraction maximizes the fraction

of model edge points that lie near image edge points.

4.2.2 Wheel detection using the Hausdorff fraction

The model template that we use to detect "wheels" in images is a bitmap of a circle.

Given a new image, we smooth it using a Gaussian filter and detect edges using the

Canny edge detector [Canny1986].

We use the Hausdorff fraction to detect "wheels" in the image since it (a) tolerates

errors as well as the presence of extra or missing data points between data sets and

(b) operates on an arbitrary, user defined transformation function. In the case of
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wheel detection, we search for the circle template over 2 dimensional translation and

scale. The ability of the Hausdorff distance to accommodate these transformations is

useful since it accommodates deformations in the wheel (from a circle to an ellipse)

due to change in pose and viewpoint.

To match the model (circle template) with the image, we find all instances of

circle/ellipses in the image that have a with a Hausdorff fraction above a certain

threshold (currently 85%). The Hausdorff matcher gives the location (x, y) of each

instance and the scaling of the model in x and y directions.

Figure 4-1 shows an example of the wheel detection using the Hausdorff fraction.

4.2.3 The car detection algorithm

We now describe the steps involved in matching the car template to a new image in

order to determine if the image has an instance of a car in it.

Start with a high resolution (384x256) image and a model image (bitmap of a

circle). Smooth the image using a Gaussian filter and detect edges in it using the

Canny edge detector [Cannyl986]. Match the circle model with the image to search

over all 2 dimensional translations and scales to find all instances of circles/ellipses

in the image.

For each detected instance of the circle, we have the location (x, y) in the high

dimensional image, the scaling in the x and y directions and the size of the model

template (mX, my).

For each pair of detected circles in the image

" find the corresponding locations in a low resolution 48x32 image (al, bl) and

(a2, b2)

" find the bounding boxes D1 and D2 for the wheels using the location (al, bl),

scaling and model size (m., im.)

" find the mean color [R,G,B] of (1) the wheel regions (D1 and D2), (2) the region

between the wheels (C), (3) the region below C, (4) sub-region of C adjacent
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to D1 (C1), (5) the sub-region of C adjacent to D2 (C2), (6) the (3x3) region

above D1 (A), (7) the (3x3) region above D2 (B)

* A car is detected if the following color relations are satisfied: A(col) = C1(col)

B(col) = C2(col)

D1(col) = D2(col)

D1(col) j C1(col)

D2(col) # C2(col)

C(col) k E(col)

Figure 4-1 shows an example of the detection process using the car template.

Figure 4-2 shows the detection performance on a random set of images form the

COREL library.

An alternate way to match the temphate to the image would be to find all instances

in the image which satisfy the color and spatial constraints and then verify the exis-

tence of a car in a hypothesized location with the wheel detector. In our experiments,

we found that, for the Hausdorff wheel matcher, the false positive rate was higher

than the false negative rate i.e. the matcher always found the wheels but also de-

tected circles/ellipses in non-wheel regions. There were also only a few wheel regions

detected in every image. Thus, we used the color and spatial constraints to weed out

the false matches from the shape matcher instead of using them to hypothesize car

instances.

We would now like to learn such a representation from examples. In the next

few sections, we discuss how the learning system from Chapter 3 can be extended to

extract complex templates using multiple cues (e.g. the car template) from examples.

4.3 Extending the Bag Generator

As we saw in Chapter 3, a key part of our system is the bag generator: a mechanism

which takes an image and generates a set of instances, where each instance is a possible
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wheel
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wheel

E

D1 (col) = D2(col)
A(col) Cl (col)
B co) =C2(co)

D2(col < C2(Co)

C(col) <>E(col)

(a)

(b) (c)

(d)
(e)

(f)

Figure 4-1: (a) Car template (b) Original image (c) region selection using color and
spatial relations (d) and (e) wheel detection using hausdorff matching (f) final results
superimposed on the original image
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Figure 4-2: Car detection results on a set of 20 random images. The images with cars
are highlighted in green.

description of what the image is about.

The instances in a particular bag are various subimages in a very low resolution

image (8x8). Each of the instances, or subimages, is described as a point in some

feature space. For the (single blob with neighbors) instance: a subimage is a

2x2 set of pixels (referred to as a blob) and its four neighboring blobs (up, down, left,

and right). The subimage is described as a vector [x1, x 2 ,... , Xi5, where x 1, x 2, X3

are the mean RGB values of the central blob, X4 , X5 , X6 are the differences in mean

RGB values between the central blob and the blob above it, etc. One bag is there-

fore a collection of instances, each of which is a point in a 15-dimensional feature

space. Even with these very low resolution images, the number of instances grows

very large especially when we consider conjunctions. For example, let us consider

a 2-blob conjunction. For the two blob with neighbors concept, each instance is

the mean color of two descriptions of two single blob with neighbors and their

relative spatial relationship (whether the second blob is above or below, and whether

it is to the left or right, of the first blob). An instance (i, j, k, 1) is given by the

vector (x 1 , ... , X3 2 ) where (X1 , ... , X1 5 ) is a description of one single blob with neighbor

instance, (x16 , ... , x 30 ) is a description of the second single blob with neighbor instance

which can be in any direction relative to the first (X3 1 ) and (x 32) gives the distance
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between the blobs (i - k) and (j - 1) respectively.

Each instance is a 32 dimensional vector and there are 362 = 1296 instances per

image. As we mentioned before, we double the number of dimensions in order to find

both the location and the scaling of the target concept. Performing gradient descent

in a high dimensional space (64 dimensions) with this many instances can take a

long time with more complicated concepts (conjunctions and disjunctions). In this

chapter, we use a bag generator that generates subregions with color, texture and

simple shape properties, which limits the number of instances per bag and therefore

improves the efficiency of an algorithm such as Diverse Density. We show that by

using a more complex representation and features within the same framework, we can

learn certain object classes (e.g. cars) in addition to natural scene classes. Our ex-

periments on "car" classification show that a combination of cues (color, texture and

simple shape), some feature selection, and more complicated concepts (conjunctions)

play a significant role in. improving classifier performance for this class. We also show

that rough segmentation of high res6lution images into salient connected compaonents

greatly reduces the number of instances and the running time of the algorithm espe-

cially when low resolution pixel-instances are not sufficient (e.g. when we move from

the domain of natural scenes to objects).

4.4 Segmentation

In the domain of natural scenes, the predominant color and spatial relations in the

target concept captured the global configuration of the image and were preserved

even in very low resolution images. For many other types of queries, we might not

be interested in the whole image and might want to retrieve new images based on

specific parts of the query image. For example, we might want to retrieve images that

contain a certain object class like cars. For these queries, we need a representation

that retains some detailed high resolution properties of image sub-regions in order

to be able to (a) extract the query object as the target concept from the positive

examples and (b) retrieve new images containing the object.
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To do this, the system needs to ignore the background and clutter and select

out the object of interest from the positive examples. We extend the architec-

ture described in the previous chapter to generate instances that can capture ob-

ject concepts. The instances here differ from the ones used in the previous system

in that they are segmented components of the high resolution image. These seg-

mented regions have a richer set of descriptive properties and the number of seg-

mented regions (connected components) in the image is small on the order of 10-15.

There have been many methods proposed in the literature for segmenting images

into multiple regions with coherent properties [Zahn1971, Z.Wu and R.Leahy1993,

Shi and Malik1997, Felzenszwalb and Huttenlocher1998, Comaniciu and Meer1997].

We use the method by Felzenszwalb et al. [Felzenszwalb and Huttenlocher1998] to

roughly decompose the image into the dominant set of regions using its color proper-

ties. Figure 4-3 shows an example of the segmentation results using this algorithm.

Each image in these examples has 10 - 15 components.

The segmentaticn helps generate instances- that correspond to salient regions irp

the image. This reduces both the number of instances and the running time for iore

complicated concepts (e.g. conjunctions). For example, let us compare the number

of instances for a 2-blob conjunction concept using segmented components vs pixel

neighborhood in an 8x8 image. As we mentioned before, each each instance is a 32

dimensional vector and we double the number of dimensions in order to determine the

scaling. Each bag has 362 = 1296 instances when we consider pixel neighborhoods

in the low-resolution (8x8) image and 152 = 225 instances when we use segemented

components. This reduction in the number of instances reduces the running time

while performing the gradient descent in the 64 dimensional space to get the location

and scaling of the target concept.

4.5 Bag Generator using Multiple Cues

In this section, we will demonstrate how the Diverse Density algorithm can be used

to learn a representation for the class of cars. We would like to show that we can
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Figure 4-3: Segmentation results on a few images from the COREL
database
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use the Multiple Instance Learning framework to learn the car template described in

section 4.2 which encodes the geometric properties of the two wheels and the color

and texture relations between the wheel regions and its neighbors. Such a template

could be used to detect cars while accomodating within-class variations in color,

texture and pose. We describe a new bag generator which uses a combination of cues

(which includes color, texture and simple shape properties) and rough segmentation

to generate instances.

4.5.1 Hypothesis Classes

In our experiments, all images were pre-segmented using the algorithm described in

[Felzenszwalb and Huttenlocherl998]. All images were also smoothed and edge de-

tected. We tried to learn the concept using the hypothesis classes given below:

cc1; each instance is a 13 dimensional vector x1 , 12, -.. 13 > which describes

the color, texture and basic shape properties of a segmented region in the image.

1. Color properties of segmented components.

x1 , x 2 gives the position of the centroid of the component, x 3, x4, X 5 gives

the representative color of the component.

2. Geometric primitives

We use the Hausdorff matching technique [Rucklidgel994] which was de-

scribed in section 4.2 to detect instances of a simple shape primitive (circle)

in the segmented component. The circles are detected in the edge detected

image. As we mentioned in section 4.2, the Hausdorff matcher searches for

the circle over all 2 dimensional translations and scale thus detecting el-

lipses as well as circles. x 6 , X7 , is, 9 gives the location and scaling of the

circle in the image. x6 gives the distance to the detected circle, X gives the

Hausdorff fraction that says how well it matched the model circle, x 8 , X9

gives the scaling of the model circle in the image.
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3. Oriented filter responses

The oriented derivative-of-Gaussian operators have been used as a set of

natural basis functions for image segmentation and classification by

[J.Malik and P.Perona1990, Manjunath and W.Y.Ma1991] and in image

indexing by [J.S.DeBonet and P.Viola1997, Pentland et al.1996] among oth-

ers. The image is filtered using a set of oriented Gaussian derivative basis

filters denoted by:

Gon, n = 3,O6, = 0, ..., ,ik = 1,...,n
n ~~~n + 1 1..

where n is the order of the filter and On gives the orientation of the filter.

The response of an image patch I centered at (X0, Yo) to a filter G is

obtained by convolving the image patch with the filter:

tj(2V0, yo)-= ]JG 3( - x,yo -y)I(x, y)dxdy

The steerable pyramid is an invertible image representation. It is an

oriented transform that decomposes the image into several spatial fre-

quency bands. In addition it divides each frequency band into a set

of orientation bands. We use the output of the Steerable Pyramid to

get a multi-scale, multi-orientation image decomposition with a 4 orien-

tation band filter set in a neighborhood around the segmented compo-

nent [Freeman and Adelson1991]. We include these responses to give some

measure of texture where the segmented regions have are non-uniform

and have a lot of scatter (e.g. snow capped mountains, wheel regions

of a car). These filter responses are obtained using the Steerable Filter

Software Library designed by Simoncelli et al.[Freeman and Adelson1991,

E. Simoncelli and Farid1995].

The features X1 0 , x, X12 , x 13 give the sum of the squared oriented filter
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responses for each of the 4 orientations across 3 scales respectively.

3

Si(I) = E E (R,,i(I))2
o=1 pixels

where I is the sub-image, i indexes over the 4 orientations, R,,i(I) is the

response of the oriented filter F at scale a refers to a = 1 is the original

I, a = 2 refers to I downsampled by 2 and a = 2 refers to I downsampled

by 4,

Figure 4-4 shows the oriented filters and the image pyramid consisting of

the responses of these filters on an image across 3 scales. The pyramid was

built using a 4-orientation band filter set which are essentially the third

derivatives. Such multi-scale responses of oriented filters have been used

successfully in image indexing in [J.S.DeBonet and P.Viola1997]. DeBonet

and Viola use a more comprehensive set of filters at various orientations

across 3 scales. Fo r each iage, they use the first order properties (oriented

edges) and the relations between first order properties at several resolu-

tions to get a complex set of features (45000 features) which can then be

used to index into the database.

We now summarize the process of generating ccl instances. Each image is

segmented into coherent color regions. The image is also smoothed and the

edge image is computed using the Canny edge detector [Canny1986]. For each

segmented component in the image, record the location of the centroid of the

component, the representative [R,G,B] color of the component, the results of

circle/ellipse detection using the Hausdorff distance on the component and the

responses of a set of oriented filters on the component. Each instance describes

the location and the rough color, shape and texture properties of a particular

component. Figure 4-5 illustrates how the ccl instances are generated.
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* cc2 : an instance is the conjunction of two connected components (ccl vectors).

Each instance is a vector [x1 , x 2 , ... , X2 6] where [X1 ..., x 1 3] is a cc1 instance of the

first connected component. x 14 , x15 are the differences in the x, y location of the

second component with respect to the first. x 16 , x 17 , x18 are the color differences

(RGB) between the second component and the first, X1 9 , x 2 0 , x 2 1 , x 2 2 gives the

location and scaling of the closest circle and x 2 3 , X2 4 , X2 5, X26 gives the oriented

filter responses around the second component.

4.6 Experiments

While one does not need very complicated hypothesis classes to learn concepts from

the natural image domain [Maron and Lakshmi Ratan1998], one can learn a more

diverse set of queries (e.g. object queries) by using complex instances which describe

a combination of properties. In the next section, we evaluate the performance of

the system on four query classes ("fields", "mountains", "waterfalls?, "cars") and

show that complicated concepts (conjunctions) and feature selection improve classifier

performance.

4.7 Experimental setup

We tried to learn each of four concepts ("fields", "mountains", "waterfalls", "cars")

using the new bag generator. For training and testing we used natural images from

the COREL library, and the labels given by COREL. These included 100 images from

each of the following classes: waterfalls, fields, mountains, sunsets, lakes, cars, race-

cars. We had a training set of 140 images with 20 images from each of the classes,

a small test set of 538 images which was disjoint from the training set, and a larger

test set of 2600 images. The training scheme used five positives and five negative

examples. We attempted different training schemes: initial is simply using the

initial five positives and five negative examples. +5fp adds the five most egregious

false positives after a round of testing on a held-out set of images. +10fp repeats the
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Figure 4-4: Response of an oriented filter bank with 4 oriented filters on an image of
a car across 3 scales. The output is a four dimensional vector corresponding to the
sum of the filter responses in the sub-image for each orientation across all scales.
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GENERATING INSTANCES WITH MULTIPLE CUES
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Figure 4-6: Comparison of system using segmentation (solid curves) and without using
segmentation (dashed curves) for three concepts (mountains, fields and waterfalls) on
538 images from the small test set.

+5f p scheme twice i.e. select the second set of 5 negative instances after the second

round of classification. This simulates the behavior of a user interacting with the

system.

4.8 Natural Scene Classification

We compared the best curves for three natural scene classes ("fields", "mountains",

"waterfalls") with the previous version of the system that uses low resolution sub-

images as instances. Figure 4-6 shows that the performance is comparable to our

previous results for the natural scene concepts, which is significantly better than

global histogramming. While the classification performance is about the same for

the "snowy-mountains" and the "waterfalls" classes, we see the the new system does

worse for the "fields" class. The "fields" class is the most general of the natural

scene classes and has a lot of variability in color (ranging from green to brown) and

texture. Smoothing and down-sampling to low-resolution images the images (as we

did in Chapter 3) accommodates a wider set of variations and avoid false matches

due to the effects of high-frequency sensor noise. In addition, the current system has

the advantage of better running time and a more general framework which can be

extended to other classes of objects.
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Even when using extremely low resolution images (8x8), learning a concept using

the previous system took anywhere from a few seconds for the simple hypotheses

to a few days for the more complicated hypotheses (conjunctions and disjunctions).

The more complicated hypotheses take longer to learn because of the higher number

of features and because the number of instances per bag is large (and to find the

maximum DD point, we perform a gradient ascent from every positive instance).

However, the current system uses a better method of generating instances (a rough

segmentation using connected components) and this reduces both the number of

instances and the running time by orders of magnitude. There are roughly 10 - 15

components per image and the system takes a few seconds to learn the simple ccl

concept and tens of minutes to learn the more complicated ones

Figure 4-9 shows a snapshot of the new system working on the larger dataset

of 2600 images for the waterfall concept using the cc2 hypothesis class. The red

square indicates the location of the instance that is closest to the target concept in

the retrieved image.

4.9 Classification of Cars

Figure 4-8 (a) compares the performance of the two hypothesis classes ccl (denoted

by the solid lines) and cc2 (denoted by the dashed lines) on the "cars" class. We see

that both the recall and precision-recall 2 are better for the conjunction concept cc2.

This indicates that a single circle detector alone is not sufficient to classify cars.

As we discussed in Chapter 3, all the attributes in an instance may not be equally

important. The Diverse Density framework allows us to find the best weighting (scal-

ing) on the initial feature set that emphasizes the relevant attributes for a particular

query. Figure 4-8 (b and c)shows the role of scaling (feature selection) in the presence

of multiple cues. The solid lines represent the case where there is no feature selec-

tion and the dashed lines represent the case where there is feature selection. Both

2Precision is the ratio of the number of correct images to the number of images seen so far. Recall
is the ratio of the number of correct images to the total number of correct images in the test set
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the recall and precision-recall is significantly better when there is feature selection.

This indicates that for this class certain dimensions are redundant or irrelevant and

selecting the salient dimensions helps improve classifier performance.

Figure 4-7 compares the performance of DD with feature selection against the

structure driven image database retrieval using complex features by DeBonet

in [J.S.DeBonet and P.Viola1997] on the small dataset of 538 images. The training

set for this example consisted of 5 positive examples and 5 negative examples. We

see that our method performs competetively with this method and has the advantage

of being able to locate the target concept position and its salient feature dimensions

from examples. Our method performs better in the case of cars since we use a shape-

primitive (wheel detector) that is specific to cars in addition to color and texture

properties. As we demonstrated earlier, using our hand-crafted car template, the

combination of shape and color properties can effectively classify side views of cars.

The use of relevant shape primitives in instances together with other general low level

properties can improve classifier performance.

Figure 4-10 shows a snapshot of the system working on the cars concept on the

test set of 538 images which are disjoint from the training set. The query is a set of

5 positive car images and 5 non-car images. A cc2 concept is extracted using these

examples. A new image is converted into a bag of cc2 instances. The new is image

rated on the distance from the learned concept to the closest instance in the image

weighted by the learned scaling factor for each of the features (color, position, shape

etc.) in the concept. The figure also shows the top 30 images retrieved by the system

for this query. The location of the learned 2-component concept cc2 is marked by the

red-boxes. The closest matching instance to the learned concept corresponding to the

"wheel" regions in this example. As we see the system is able to retrieve images of

cars given a few examples of cars with varying backgrounds without having the user

select out "car regions" in the examples.

127



4.10 Summary

In this chapter, we have demonstrated a general system for query learning and for

image classification using a small number of examples. We described an architecture

that allows the user to train the system, by selecting positive and negative examples,

letting the system create and use an initial template based on those examples and

finally refine the template by adding incorrect matches (false positives). Our approach

to training indexing systems treats query learning as a Multiple Instance Learning

problem and builds on the method of Diverse Density. The system has been tested

for a few classes on a database of 2600 images from the COREL photo library.

We show that rough segmentation of high resolution images into salient connected

components greatly reduces the number of instances and the running time of the

algorithm especially when low resolution pixel-instances are not sufficient (e.g. when

we move from the domain of natural scenes to objects). We also have experiments

to show that by using a more complex representation and features within the same

framework, we can learn certain object classes (e.g. cars). Our experiments on "car"

classification show that segmentation, combination of cues (color, texture and simple

shape), some feature selection and more complicated concepts (conjunctions) help

improve classifier performance.

We have used a small combination of primitives which were suitable for natural

scenes and vehicles to demonstrate the learning, feature selection and retrieval capa-

bilities of our system. However, the issue of which primitives/invariants we need to

use to generate the instances is still open. In the future, we would like to explore

this issue and extend the bag generator to use a base set of low-level primitives that

captures a larger set of class concepts.
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Figure 4-9: Snapshot of the system running on a database of 2600 images of varied
scenes from the COREL library. The figure shows the results for the waterfall con-

cept using the cc2 concept. Top row: Initial training set-5 positive and 5 negative

examples. Last three rows: Top 30 matches retrieved from the large test set. The
red squares indicate where the closest instance to the main component of the learned
concept is located.
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Figure 4-10: Snapshot of the system running on a database of 2600 images of varied
scenes from the COREL library. The figure shows the results for the cars concept
using the cc2 concept. Top row: Initial training set-5 positive and 5 negative ex-
amples. Positive examples are highlighted in red. Last three rows: Top 30 matches
retrieved from the large test set. The red squares indicate where the closest instance
to the learned concept is located.
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Chapter 5

Object detection and localization

using dynamic template warping

5.1 Introduction

In Chapters 2,3 and 4, we discussed methods of extracting simple template represen-

tations form examples and showed that they can be used to learn a diverse set of class

concepts and tolerate within-class variations in position, color, luminance and scale.

In this chapter, we change the focus a little from template generation to template

matching and explore ways to exploit simple template representations to search for

instances of a given model template in the image.

Many recent approaches to object recognition are really verification and localiza-

tion methods, because they address the question: "Is there an instance of a specific

object in this image, and if so, where is it?" Thus, such methods verify or refute the

hypothesis that a particular object exists in the imagel, but often don't address:

* Detecting and localizing instances from classes of objects (e.g., faces or cars),

rather than specific objects.

'Of course not all current recognition methods are so restricted. For example,
[Murase and Nayar1994] and related methods attempt to find the best object from a library that
accounts for the data.
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" Constructing object models that support object detection from 2d images while

allowing for three dimensional pose changes. One could use an explicit 3D

model, or a large set of 2D images (real or virtual). Ideally, one would like to

use a very small set, e.g., one image.

" Efficiently seeding the search for an instance of an object in an image. Many

recognition methods find the alignment of model with data by minimizing some

error criterion. Such methods often have narrow capture radii. An alternative

is to provide multiple seed hypotheses, e.g., by considering matches of minimal

pairings of data and model features, but this runs the danger of being over-

whelmed by the search combinatorics. We need methods that will converge to

optimal solutions from highly inaccurate initial estimates.

To address these issues, we present a method that:

* detects instances of a class of objects, while allowing for object class variation;

and pose changes;

e extracts approximate pose data that can seed more detailed verification, and

" verifies the existence and pose of an object by the Mutual Information (MI)

[Viola and Wells1995] approach to recognition, which supports a very general

matching of model and image data, without direct feature correspondence.

The technique we develop has several critical properties that make it robust in

extracting the 2D image location and 3D pose estimate of an object whose pose in

the image is unknown. It differs from the view-based correlation methods in that

the model is a single, simple, flexible template extracted from a nominal view of the

object and it is used in a matching method that can handle a wide range of pose

variations.

Key properties of our approach include:

* The model for an object class is a single, simple template that may be stretched

or warped in one dimension.
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" This warped template can be matched to instances of an object under widely

different poses, accommodating scaling, translation and out of plane rotations

about the vertical axis.

* The method converts the search for object instances and poses into one (or a

few) one dimensional matching problem(s).

* Dynamic programming is used to establish a mapping from the deformable

template representing the object class into the image.

" While the method can recover good estimates of three degrees of freedom of

object motion (x and z translation, y rotation), it can also accommodate up

to two more DOFs of motion in the search process (x rotation, y translation).

Extensions allow one to also search for the final rotation. Depending on the

implementation, some information about y translation may be available from

knowledge of the actual match of template to iamge.

Our approach combines the general detection flavor of patch correlation with the

ability to accommodate more degrees of freedom of object motion that are tradition-

ally associated with feature-based recognition systems. We demonstrate our method

on face detection, as faces naturally suit the approach (heads are usually oriented up-

wards, but appear facing in varying directions). We show performance comparable to

some current face detectors, and demonstrate that our method generalizes naturally

to other classes of objects, such as vehicles.

The flexible shape model we propose deals with 2D deformations that are more

severe than traditional transformations. Figure 5-1 shows an example of 2D trans-

formations that the method can handle. The first image in the set is the prototype

(nominal) image and the rest of the images illustrate warps due to y-translation,

vertical shifts, scaling and shearing variations that are accomodated as long as the

overall ordering of the features are maintained. The experiments described above

show how this method can be used to accomodate class variations due to variation

of features across a population or variations of an individual over time (e.g. facial

expressions).
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Figure 5-1: This class of cartoon faces shows the 2D deformations handled by the
system. The last row shows the resulting of matching the template (nominal view)
to a novel image.

5.1.1 Background

A primary difficulty in object detection is accommodating the wide range of variations

in object appearance due to pose, lighting and class variations, while maintaining

good detection performance. Existing approaches for dealing with these variations

are described below.

In view-based methods, one computes the similarity between a template and im-

age locations and returns all matches above a threshold. Since most classes of objects

cannot be modeled by a single template, these techniques typically use a set of tem-

plates to accommodate variations in pose, lighting and shape, by synthesizing views

from a set of examples [D.Beymerl993], or by using networks to learn an object

class from several examples with varying pose and lighting [Sung and Poggio1994,

H. Rowley and Kanade1995]. Most of the existing methods for face detection per-

form extremely well on upright, frontal faces and do not handle 3D pose variations.

Recently, some systems like [Rowley et al.1998, Schneiderman and Kanade1998] de-

tect faces with arbitrary rotations in the image plane. However, these systems are

not as robust with off-plane rotations of faces (profiles). In this chapter, we propose

a method that can handle off-plane rotations (rotations about the vertical axis for
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faces) efficiently and reliably.

A related set of methods to the view-based correlation techniques is the linear

combination approach for modelling classes of objects. Early work in this field was

done by Ullman and Basri [Ullman and Basril991] who showed that an intermediate

view of an object can be written as a linear combination of three 2D views that span

it assuming orthographic projection and barring self occlusion. This was followed

by work by Vetter and Poggio [Vetter and Poggio1996] who showed how to model,

learn and match classes of objects (faces) by using a linear combination of prototypes.

In these methods, images are represented by the locations of a small set of labeled

features. Work by [D.Beymerl993, Jones and Poggio1996] extend this approach by

modeling classes of objects (faces) by a linear combination of a small number of proto-

types where the example images are represented by dense pixel-wise correspondence

between the examples and a reference image. These methods depend crucially on a

good set of features and accurate correspondence.

Betke [Betke and Makris1995] uses simulated annealing for fast 2D object recog-

nition (traffic signs) in noisy images by matching a new scene to a set of templates

generated by transforming model images.

In deformable template matching, templates are constructed to model the non-

rigid features of the object, and at recognition time the templates are aligned to the

image by minimizing an energy function for the individual features. Some examples

of this method include [A. Yuille and Cohen1992, Cootes and Taylorl993]. These

methods work well when the deformations are small - they provide a detailed analysis

of the image in terms of the template, but do not address non-local search issues.

Eigenspace methods represent the varying appearances of objects by using princi-

pal components analysis (PCA) on a set of sample views to identify a low-dimensional

subspace of the view-space. Examples of this methods are [Turk and Pentland1991,

Pentland et al. 1994, Murase and Nayar1994, Huttenlocher et al. 1996]. Images are ac-

cepted or rejected based on their distance from the pre-computed subspace. These

methods need a large set of views of the object to be sampled under varying pose and

lighting conditions.
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The ratio-template [Sinhal994] detects faces under varying illumination condi-

tions, by capturing changes in luminance between fixed image patches. While this

method performs well for frontal faces under varying lighting conditions, it is not as

robust under 3D pose variations.

Hornegger [Horneggerl995] converts feature based object recognition under or-

thography into several 1D search subproblems. The technique constructs 1D images

from the more conventional 2D images by a process of marginalization, which projects

image features onto the x axis (and discards their y coordinates). This effectively dis-

charges two degrees of freedom (DOF) of object motion, namely x rotation and y

translation 2 . The remaining three DOFs are then searched exhaustively. The result-

ing candidate partial solutions are then completed with a full 5 DOF localization.

In this paper, we advocate the use of dynamic programming to address the 3

DOF search that remains after conversion to ID matching subproblems. Dynamic

programming (DP) has been used successfully in speech recognition to produce an

optimal time alignment of an actual speech Istream to be recognized to an acous-

tic model, via the Viterbi algorithm [Viterbil967, Forney1973, Sakoe and Chiba],

and we were motivated to apply it to search problems in object recognition. DP

is well established as a methodology for solving the stereo matching problem, e.g.,

[Baker and T.O.Binfordl981, Ohta and Kanadel985]. It has also been used for con-

tour adjustment and other boundary oriented scoring or identification tasks e.g.,

[Ballard and Brown1982, H.G.Barrowl976, Shashua and Ullman1988].

DP matching techniques typically will accommodate fairly general ID warpings

in the matches that are found, subject to order constraints. This might seem to be

a drawback because in object recognition, it would allow distortions that can not be

generated by a rigid object moving in front of a camera. However, within the warps

that DP accepts are embedded some useful mappings, for example x translation and

the overall scale changes that can occur as an object moves away from a camera. In

addition, y rotations of a vertically oriented cylindrical object will induce (primarily)

2To make the descriptions concrete, we use the convention that the 1D searches are carried out
along the x-axis in the image.
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Figure 5-2: Rotations and scale changes induce 1-D warps.

stretches and shrinks along x, which may be accommodated in a DP match. Figure

5-2 illustrates the iD-warps induced by rotations and scale changes. We have found

in our experiments that this feature can be used to accurately recover the y rotation

when the object in question is approximately cylindrical.

5.2 Comparison with Affine Models

There has been considerable work in the computer vision literature on recognition sys-

tems that accomodate affine transformations on objects [Huttenlocher and Ullman1990,

Rucklidge1994] among others. Part of the motivation is that for planar objects, affine

transforms are equivalent to rigid body motion under orthography. The flexible shape

model that we propose handles five of the six DOF of affine transformations. Figure

5-3 shows the allowable set of affine deformations and Figure 5-4 shows a shear that

is not handled by the system. Our technique finds a match between members of a
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Figure 5-3: 2D affine warps handled by the system.

SHEAR THAT CANNOT BE HANDLED

Figure 5-4: 2D shear that cannot be handled by the system.

class by relating new images in the class to the prototype (template) through the

set of allowable deformations based on stretches and shifts in the template features,

subject to order contraints. The ability of our system to handle these affine warps is

similar to the constrained-affine shape model proposed by T.F. Syeda-Mahmood in

[Mahmood and Zhu1998]. The constrained-affine shape model is a region-topology

based model that captures the spatial layout similarity between members of a class

by a set of affine deformations from a prototypical member.
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5.3 Dynamic Template Warping

The information flow used in our system including 3D pose recovery is outlined in

Figure 5-5. In brief, the class model consists of many 3D surface patches. A template

(whose details are provided below) is constructed from a characteristic (typically

frontal) view of a representative object in the class. The actual mapping from surface

patches to elements of the template is determined once for the model. At recognition

time, dynamic programming (DP) is used to solve one-dimensional matching sub-

problems and thus determine mappings from elements of the image to corresponding

elements of the template. A partial solution for the unknown object pose is obtained

by solving an optimization in which the projection of the model surface patches

into template columns, via the hypothesized pose and the runtime column mapping

determined by DP, are made to best agree with their true values.

Below, we provide more details about the detection and localization process.

5.3.1 Representing objects

Our goal is to represent classes of objects in a flexible manner, capturing 3D pose

changes and class variations in a simple system. Initially, we assume that the images

we will be processing are taken in an upright position, i.e., the gravity vector runs

vertically through the image. As a consequence, we choose to represent a class of

objects by a sequence of image columns, each column consisting of a set of intensity

patterns. To construct our model template, we begin with an image of the object

rendered in the nominal pose (Figure 5-8) - e.g., for the case of faces, we use an image

of a face model in a roughly frontal view. This image is smoothed, downsampled and

intensity-normalized, then separated into columns. Each column is described as a

sequence of intensity classes obtained by coarsely quantizing the intensities present in

the smoothed, downsampled and intensity-normalized image. The rough quantization

allows for class variations in intensity, and as we shall see shortly, the use of separated

columns will allow us to accomodate 3D pose variation.
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Figure 5-6: DP Matcher data structures

5.3.2 Finding template matches in the image

To find matches of such a template in an image, we ieed to consider the variations

that a template may undergo as a function of class variation and pose variation. Class

variations will be discussed shortly, when we describe the measurement of similarity.

We break pose variation into several pieces, initially focusing on three of the six

degrees of freedom. Translation of the template in the two image dimensions can

be straightforwardly handled through a search process. Rotation about the vertical

axis will have the effect of inducing a warping on the columns of the template. In

particular, some of the template's columns will be stretched out to cover several

image columns, and other columns will be foreshortened and thus compressed into

fewer columns. This implies that our matching of template columns to image columns

is no longer a one-to-one map, and cannot be dealt with by simple techniques such as

correlation. On the other hand, such a warping of the template naturally lends itself

to dynamic programming methods.

Dynamic Programming (DP) is a search technique that has been applied to many

problems that are formulated as the minimization of a cost function over paths in
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a graph. It may also be applied to find optimal matchings among features if cer-

tain monotonicity constraints are met. The dynamic programming algorithm we

have used is derived from the longest common subsequence algorithm described in

[Corman et al.]. In the present application, sequences of image and template features

are compared by a measure of their degree of match rather than the binary-valued

measure used in the standard subsequence algorithm.

For a given model template, a set of overlapping horizontal strips is extracted that

cover the input image (Figure 5-6). The strips are 1.5 times higher than the template

height, and overlap by three fourths of their height - they have been designed so that

some strip will entirely cover an instance of the object with nominal height. Within

each strip, the template column features are matched with the image column features

by a correlation-like process that locates the best matched section of the image column

feature. This embedded problem of measuring the agreement of template and image

column features is somewhat similar to the surrounding problem of matching image

and template, and it is similarly useful to address it with a mechanism that is able

to tolerate vertical shifts, and moderate sealing and stretching.

In this case, we are interested in finding a many to one matching between ele-

ments of the image and template column features. The process operates by searching

for equivalent structure in terms of uniform intensity class subsequences while ac-

comodating some variation in subsequence length (up to a factor of two). In more

detail, each template and image column is a vector of pixels given by (tc1 .. .tcm) and

(ic1 ... ica). Starting from all pairs of pixels in the template and image column vector,

match the content of pairs of pixels based on their intensity or color. The match

score between pairs of pixels (tci, icy) are used to fill a cost table. Dynamic program-

ming can then be used to find the optimal subsequence that satisfies the following

constraints: (1) the overall spatial ordering of elements in the template column is

preserved in the image column and (2) the extent of stretch of a template column

element (tci) in the image column is bounded by a fixed threshold 6 3. This column

matching algorithm gives the longest common set of corresponding elements between

3This stretching is is caused by many image column elements matching the same template element
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the template and image columns which match in their content, have the same overall

spatial ordering while allowing for some bounded vertical shifts and scale variations.

To match across the sequence of column matches, we use the standard subse-

quence algorithm for dynamic programming, which assumes that matches are order-

preserving and have scores that are independant of one another. The algorithm

constructs two tables, the cost table, and the index table, that we index by every

pair of template (t1 .. .tm) and image (ii .. .in) column-features (the cost table is illus-

trated in (Figure 5-6)). The dynamic programming approach to finding the optimal

subsequence proceeds from left to right. By consulting the cost table, and by exam-

ining previously computed solutions to problems ending in the previous position, the

algorithm efficiently computes and stores in the tables the scores and sub-sequence

predecessor information for the optimal solutions to the problem at the current posi-

tion.

Our algorithm extends the standard one to return all subsequences having-sgores

-above a threshold (rather that a single best: subsequence), by preserving informa-

tion defining the previously most promising subsequence when a new subsequence is

initiated.

The algorithm needs more space to store this information, but the time complexity

remains the same (O(MN)) for M model features and N image features. In addi-

tion, we employ a look-ahead technique similar to those used in DP stereo-matching

systems to accomodate partial occlusions, by requiring several columns of match fail-

ure before the initiation of a new subsequence. When combined with the column

matcher described above, and run at a single scale, the DP template matching algo-

rithm has equivalent complexity to simple template correlation while accomodating

larger rotations about the y-axis.

The DP matching algorithm described above is used to find ordered image strip

columns that are deemed to be explained by the template by having scores greater

than a given threshold. The matches found by the DP algorithm are ranked according

to score.

We can repeat this process for each horizontal strip of the image. Note that using
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multiple strips covers the y translation, and finding the optimal column match using

DP directly covers the x translation and rotation about the y axis. Note that the

flexiblity of the matching - both the roughly quantized intensity sequence matching

within each column, and the flexible matching across columns - allows for a range of

class variations as well.

When the DP matcher has finished, the following information is available for use

by the partial pose solver (which will be described below):

" The horizontal position of the matched instance of the model in the image if

the model is present.

" The "active patch" in which the match was found i.e. the horizontal position

together with the vertical position given by the horizontal strip.

" A detailed column mapping between image columns and template columns

where many image columns can map to the same model column (tc account for

horizontal stretching cauied by rotations about the y-axis and scaling). ;mage *

columns may also map to the "no" model column (this accommodates partial

occlusions).

5.3.3 Scale Hierarchy

Our initial strategy uses a fixed template height of 64 pixels. Because the column

matcher is able to accomodate some variation in scale, and the DP matching algorithm

can accomodate scale variation as a "stretching" of the match, this mechanism can

accomodate object instances with apparent heights ranging from roughly 40 to 80

image pixels, and the scale may be later recovered from information recorded in the

detailed column mapping.

A heirarchical implementation was used for the rest of the experiments. A set

of three templates were constructed with heights of 16, 32, and 64 pixels by pixel

replication, and three sets of image strips were prepared, as described above. The

DP matching algorithm was then run at the three scales, in order to accomodate
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Figure 5-7: Probed values of the objective unct jon used in the recognition-t ime pose
estimation (the mean squaredi difference between pfddicted and true template columns
for projected model surface patches). The plots display the objective function against
the difference between the three pose adjustment parameters and their known true
values.

objects instances with apparent heights ranging from roughly 10 to 80 image pixels.

Note that this implictly allows us to solve for the third translational component of

the pose.

5.3.4 Partial Pose from DP Match Results

In this section we describe a method for recovering a rough, or partial, object pose

from the detailed column mapping that is obtained as a result of the DP match from

image to template columns. Figure 5-5 shows the flow of information that is used in

the pose determination process.

We seek a pose such that a rendering of the model by that pose looks like the input

image. We assume that the DP matcher has determined the correct column map (the
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"runtime column map") that maps image columns to their corresponding template

columns. Thus we want to find a pose such that when the model is rendered by that

pose, the resulting synthetic image will (like the input image) be correctly related

to the template columns via the runtime column map. This suggests the following

approach for evaluating a hypothesized model pose:

" Project the model surface patches into the image by rendering them according

to the hypothesized pose, and send the resulting image coordinates through the

runtime column mapping. This process will produce a mapping from model

surface patches to their corresponding template columns.

* Evaluate the consistency of the hypothesized pose by comparing these predicted

surface patch coordinates (template indices) with their true values.

An objective function may be constructed to measure this consistency - we have

used the mean squared difference between the predicted and true template coordinates

of, the surface patches

As it happens, there is a simple method a'vailable for establishing an approximation

to the true mapping from object surface patches to template columns - we simply

render the model at a nominal (in this case, frontal) pose, and use the DP matcher

to establish a nominal column map from the nominal image to the template. We

then establish the mapping from surface patches to template columns in the manner

described above.

The mechanism outlined above provides detailed information relating to x and z

translations, and also the y rotations of the model.

Useful, but less precise, information related to the x and y translations is available

from our knowledge of the the "active patch" in the image (the section of the image

strip this is involved in the match that just includes the columns at the beginning

and and of the DP match to the template).

In our experiments, the partial pose solution is determined in the following way.

9 Starting with the nominal pose, an initial pose estimate is obtained by applying

a motion to the object that adjusts the apparent azimuth and elevation of the
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object in order to center it in the active patch. While this motion is applied to

the object, in terms of the relation of the object and the camera, it is equivalent

to a rotation of the camera about x and y.

e The initial pose estimate is used as a starting value for a second stage of pose

estimation. An additional motion is applied to the object that consists of a

rotation of the object about y (measured in degrees), and translations along

x and z (in millimeters). These parameters are optimized with respect to the

objective function described above, using the first stage estimate as a starting

value.

The effect of the first stage described above is to move the object from the nominal

pose in order to place it in approximately the right part of the image, while the second

stage provides relatively precise adjustment of some of the pose parameters from the

match.

After this process; x and z translation and y rotation have been determined rela-

tively precisely from the matoh, and y translation has been approximately determined

from knowledge of the active patch. The remaining parameters of motion, x and z

rotation are not recovered by the method, and their values will be whatever is ob-

tained from the application of the two stages of adjustment to the nominal pose (the

adjustments have minor effects in this regard).

Some plots of the pose objective function are shown in figures 5-7, for a match

done against a synthetic image (top left image in Figure 5-9) where the true pose is

known. The plots suggest a prominent minima near the true value for the adjustment

parameters, although some noise and local minima are apparent.

5.4 Image Matching Results using DP

In this section we show some simple experiments to demonstrate that dynamic pro-

gramming with a simple, stretchable template can be used as an efficient search

strategy that can perform better than normalized correlation for detection and lo-
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Figure 5-8: Results of the DP matcher on the nominal pose image. The left image
shows the low resolution model columns copied into the appropriate matching image
columns. The images in the middle and right show the column mappings. The
color code on the model template and the image lines show the mapping. The red
box on the image indicates the horizontal strip in which the best match was found.
The middle image shows the nominal view (frontal face) from which the template is
extracted.

Figure 5-9: Results of DP matcher on images with varying backgrounds. The colored
vertical lines indicates the mapping from template columns to input image columns.
The box on the image indicates the strip in which the best match was found.
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Figure 5-10: ROC Curves: Plot of False Positives vs True Positives for varying thresh-
old values. Each point represents the (False Positive, True Positive) pair for a partic-
ular threshold value. The threshold values increase from 0 to 1 from the upper right

corner to the lower left. LEFT: The curves show the detection performance of the DP
matcher (solid line) and Normalized correlation (dotted line) on the synthetic dataset
with rotated images of the head in cluttered backgrounds. RIGHT: The curves show
the detection performance of the DP matcher (dotted line) and Normalized corre-
lation (solid line) on a synthetic dataset with images where the scale varies upto a
factor of two.
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Figure 5-11: ROC Curves: Plot of False Positives vs True Positives for varying thresh-
old values. Each point represents the (False Positive, True Positive) pair for a par-
ticular threshold value. The threshold values increase from 0 to 1 from the upper
right corner to the lower left. The curves compare the detection performance of the
DP matcher (solid line) and Romano's facefinder (dotted line) on a dataset of frontal
faces in cluttered backgrounds with varying lighting.
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calization tasks under translations, y-rotations and partial vertical occlusions. The

method also provides a detailed column mapping from matched image columns onto

model columns which can then be used for 3D pose estimation. We will describe

experiments that address these issues below.

We used five Cyberware4 scans of heads rendered at various poses using a graphics

package. The Cyberware scanner is a structured light scanning device that simulta-

neously obtains 3D surface and surface texture information. The rendered heads were

then embedded in a variety of backgrounds as shown in Figure 5-9. The cyberware

models were rendered with varying horizontal and vertical translations, a large range

of y-rotations (-50 to 50 degrees from the nominal pose) and a small range of x-

rotations (-5 to 5 degrees from the nominal pose). There were no z-rotations of the

model. In addition to the cyberware scans, we tested the system on real images of

heads and compared detection performance with normalized correlation (Figures 5-16

and 5-12)

-This technique can handle rotations about the Y-axis since they are approximated

by stretches and shrinks-of the model columns in the image. The model can be thought

of as a flexible template that consists of a set of ordered columns that can be stretched

and shifted to fit the image.

The template is a set of columns extracted from the quantized frontal face (model

face at the nominal pose) at low resolution. The color code on the model face (right)

and the input image lines (left) show the mapping. The red box on the image indicates

the horizontal strip in which the best match was found. Figure 5-8 describes the

process of getting the nominal column mapping used to approximate the true column

mapping for the model surface patches. A single template at 3 different scales is used

for all the experiments. The results (Figure 5-9) illustrate how rotations about the Y-

axis are handled as horizontal deformations of model columns. The best match finds

the longest common subset of ordered model columns that explain an image region.

Figure 5-9 also shows that simple vertical occlusions can be naturally accomodated

by the matcher and that a single template can be used to locate heads in general.
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Figure 5-16 shows an example of scale changes handled by the system. This figure also

illustrates that the system can localize the head and get accurate column mapping

information in real images.

5.4.1 Comparison to Normalized correlation

These experiments compare the performance of the DP search to normalized correla-

tion in a domain with rotations about the Y-axis and clutter.

Normalized correlation has been used in a variety of detection tasks to find in-

stances of an object in the image. This technique has been used successfully in the face

detection literature, for example in [Sung and Poggio1994, H. Rowley and Kanade1995],

to locate instances of face-like patterns in cluttered scenes, with low computational

cost. It works well when the object is not rotated or scaled much in the image and

the lighting varies uniformly.

In this experiment we compare the DP matcher with normalized correlationw ith a.

single frontal template extracted from the noininal pose shown in Figure 5-8 (rendered

face facing forward). For each threshold value, we ran normalized correlation on 20

images with varying backgrounds and varying rotations of the face (-50 to 50 degrees)

about the Y-axis and rotations of (-5 to 5 degrees) about the X-axis. The template

used was extracted from the image of the face facing forward with no rotation about

the Y-axis as shown in the figure. The search window size was the size of the template.

The search was centered at pixels (i, j) for (i = 0, i < ImageWidth, i = i + 2) and

(j = 0, j < ImageHeight, j = j + 5) in all the images.

The detection performance of the two methods are compared using a "Receiver

Operating Characteristic" (ROC) shown on the left in Figure 5-10. The ROC is fre-

quently used in the detection literature to evaluate detection performance by plotting

the percentage of true positives detected as a function of the false alarms due to clut-

ter. A higher curve indicates better performance. We see that for detecting faces with

cluttered backgrounds and varying rotations about the Y-axis this method performs

significantly better than normalized correlation with a single template. Techniques

like [Sung and Poggio1994] and [H. Rowley and Kanade1995] use several templates
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Figure 5-12: Some examples showing the detection performance of the system

extracted from several views of the object to accommodate y-rotations. The advan-

tage with the DP matcher is that a wide range of y-rotations can be accommodated

with a single stretchable template.

Figure 5-11 compares the DP-imatcher with norrnlized ()rreJati)n ith a single

frontal template on a dataset of synthetic irhages of varying scales (variations upto

a factor of two in scale). Here again we see that the DP matcher is able to acco-

modate larger variations in scale using a single template than traditional normalized

correlation.

5.4.2 Comparison with Romano's facefinder

We compared the detection performance of the DP matcher to a robust facefinder

[R. Romano and Poggio1996] technique in a domain where normalized correlation is

known to perform well.

The input consisted of a dataset of 50 images which contained frontal views of

faces. The template is extracted from one of the faces in the dataset by specifying

the coordinates of the locations of the left and right eye, the left and right nose lobes

and the the left and right extremities of the mouth. This template was then matched

against the images in the dataset using normalized correlation for different thresholds.

Our algorithm was run on the same dataset of 50 images. Our template was ex-
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CAR TEMPLATE: SEQUENCE OF GEOMETRIC PRIMITIVES

AND IMAGE PATCH PROPERTIES

Figure 5-13: Top Row: Car template. Middle
Bottom Row: Example of cars not detected.

Row: Examples of cars detected.

tracted from the same face image that was used to extract the template for Romano's

method. The input images were split into overlapping strips as described earlier and

the output consisted of image regions with column mapping scores that were greater

than the given threshold.

The ROC-curve in Figure 5-11 shows that the DP matcher performs slightly worse

for this dataset for low thresholds but is comparable to normalized correlation for

thresholds in the middle to high range.

5.4.3 Detection Experiments

We also ran the system on a set of face and non-face images, to determine is perfor-

mance as a class detection system. Figure 5-12 shows examples of faces detected by

the system. The database had a total of 188 faces. The true positive fraction of faces

detected by the system was 0.91. The false positive fraction was 0.23.
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5.4.4 Initial experiments on car detection

We conducted initial experiments to test the same general framework of feature se-

quence matching using dynamic template warping in the domain of car detection.

Figure 5-13 illustrates the features used in this experiment. They are a combination

of patch properties (color and spatial properties of image patches) and geometric

primitives. Geometric primitives (e.g. wheels) are detected with an edge based shape

matcher (using Hausdorff distance [Huttenlocher et al.1993, Rucklidgel994]). This

model template for the car is similar to the hand-crafted car template described in

Chapter 2. It encodes the same combination of features. The match strategy we

use to detect new instances of cars differs here. Instead of considering pairs of wheel

regions and matching the color properties around the wheels as we did earlier, we di-

vide the image up into overlapping strips and look for subsequences of features in the

image that match the template. The matching subsequence simultaneously searches

for both the color and geometric features and preserves the order of features in. the

template. In addition, the matching process systematically ,handles variations in the

image due to pose changes (stretching and shrinking of regions due to rotations and

scale) as well as missing features due to errors in feature detection. For example if a

wheel is missing due to occlusion or noise but the rest of the features are matched in

the correct order, the match is accepted as an instance of the car.

The template is a sequence of features as in the head experiments. Figure 5-13

shows the template used in the detection experiments. A new image is divided into

overlapping horizontal strips as in the head detection examples. The match between

template features and image patch features accomodates scaling in the x-direction

and rotations about the y-axis by stretching of the individual template features and

finding the longest common subsequence of features. Detecting the individual features

like the wheels without any information on their relationship to the rest of the car can

lead to many false identifications. This method detects instances of cars by ensuring

that a subset of individual features given in the car template are found in the image

in the correct order (spatial configuration).
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Figure 5-14: Snapshot of the car-detection system working on a real video sequence.
The frames with cars are highlighted in red

In a preliminary detection experiment on a dataset of 100 cars from the COREL

photolibrary there were 73 true positives and 27 false negatives. Figure 5-13 shows

some selected results from the COREL database and Figure 5-14 shows a snapshot

of the system working on a real video sequence.

5.4.5 Pose Solving Experiment

Partial Pose Solution Figures 5-15 and 5-16 shows examples of running the pose

solver. For the experiment shown in Figure 5-15, we have optimized the adjustment

parameters by using the downhill simplex method [Press et al.1992]. The initial sim-

plex was established with displacements of 1 and 5 millimeters in x and z, and 3.5

degrees in y rotation. These values allow the optimization to step past small local

minima in the initial movements of the optimization. For this (synthetic) test im-

age, the ground truth for the object pose is available, and the resulting errors in the

estimated pose were 3.3 mm in x position, 12.8 mm in z position, and 1.2 degrees

in y rotation. Note that the error in depth is slight, considering that the object is

1000 mm from the camera. The x and z positions, and y rotation, have been well

determined from the information in the DP match, while the approximate y position
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Figure 5-15: Complete System: Detection and Pose estimation. The input image
with a 20 deg. rotation, and the DP match are shown at top left. Results of the
partial 3D pose solution using the DP-method, which is used as the initial pose given
to the MI recognition system are shown at bottom left. This pose is illustrated by
an overlay of points subsampled from the object. The partial pose estimate is too
high - the y estimate is off by a few cm. The y information was derived only from
knowledge of which image strip was involved in the match. The estimated y-rotation
is off by about 2 degrees from the ground truth pose. The final pose is illustrated by
a rendering of the 3D model in the top right, and by an overlay of points subsampled
from the object surface in the bottom right. The figure shows that the final solution
given by the MI alignment has corrected the y-displacement, and the pose shown in
the final rendered image agrees with the input pose.
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(a)

(b)

(c)
Figure 5-16: End to end system running on a real image. The template and results
of the DP column match are shown in the top row. Results of the partial 3D pose
solution using the DP-method, which is used as the initial pose given to the MI
recognition system are shown in the next row. This pose is illustrated by a rendering
and by an overlay of points subsampled from the object. The final pose is illustrated
by a rendering of the 3D model, and by an overlay of points subsampled from the
object surface in the next row. From the figure, we see that the final solution given
by the MI alignment has corrected the x-rotation error, and the pose in the final
rendered image agrees with the input pose.
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has been determined from the vertical position of the "active patch" in the image.

Figure 5-16 shows the results of the pose solver running on a real image.

Two Stage Pose Determination using Mutual Information The pose de-

termined by the pose solver was used as an initial pose for a final pose refine-

ment by the method of Alignment by Maximization of Mutual Information (MI)

[Viola and Wells1995]. The final pose determined by MI is illustrated on the right

in Figures 5-15 and 5-16. This refinement was carried out as a local minimization

over the six degrees of freedom of motion of the model. Upon visual inspection, the

refinement has effectively corrected errors in the initial pose and aligned the model

with the image.

5.5 Summary

We heve demonstrated a simple viAual seaich techniqupe, based on dynamik program-

ming, that is useful as a first stage forlnodel based object recognition. The method.

has some of the characteristics of template correlation, but can solve for more DOF

of object motion, while retaining similar complexity.

We have shown experiments to demonstrate that the method is nearly as robust

as template correlation, in a domain where template correlation is successful. We

have also shown that our method is more robust than simple template correlation in

a domain having significant out of plane rotations.

The run-time efficiency of dynamic programming does not come for free - there

are constraints that must be met in the design of the objective function, in order

to get the guaranteed optimality properties in the solutions, along with the econ-

omy. One of these constraints implies that the matches between image and template

columns be evaluated independently. This weakens the overall match strictness, by

allowing column matches that have inconsistent vertical positions. One may ask: is

the method is able to maintain adequate robustness despite this relaxation. The em-

pirical evidence shown in Experiments 3 and 4 suggests that the answer is a qualified
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"yes", at least in our test domain.

An additional benefit of our method is that partial pose information may be

obtained for downstream use by local search and verification methods.

In speech recognition using DP, learning methods are well established for auto-

matically deriving the templates (in the form of hidden Markov models) from training

examples, and such a technique might be applicable here as well.

As we mentioned earlier, object recognition and localization is challenging due to

the variations caused in the appearance of an object in the image due to pose and

lighting variations as well as sensor noise and occlusions.

5.6 Future Directions

The templates for the object classes are currently hand crafted. We plan to learn these

automatically from examples. In speech rec:ognition using DP, methods using Hidden

Marken Models are well estabfished for learniig miodels fom training data: We would

like to try some of these techniques to derive our class models for recognition.
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Chapter 6

Conclusions

In this thesis, we have presented methods for (a) learning visual concepts in the form

of flexible templates to model object classes from a small number of positive and

negative examples and (b) matching templates efficiently to detect and localize new

instances of the object class. These learned templates encode the relevant color and

spatial properties of the dlass. We showed that these simple learned -epresentations:

are compact, they can be extracted efficiently and reliably from a small number of

examples, they can be matched efficiently and they can be used effectively in a number

of image understanding tasks. We demonstrated the use of these learned templates

in the application domains of image database indexing and object detection and

localization.

As we discussed in Chapter 2, the growing number of digital image and video

libraries has led to the need for automated, content-based image retrieval systems

which can efficiently retrieve images from a database that are similar to a user's

query. This is a difficult problem because (1) images are inherently ambiguous and

can have many interpretations based on the users experiences and (2) there is a great

deal of variability between images of the same class. Pre-defined flexible templates

[Sinhal994, Lipson1996] have been used successfully to capture this variability for

some classes of objects like faces and natural scenes. While a user can create templates

corresponding to different visual concepts like waterfalls and mountains by hand, this

is inconvenient when the user wants to browse and explore a wide variety of concepts.
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In this thesis, we provide a framework that allows the user to train the system, by

selecting a few example images and letting the system create a flexible template

representation based on those examples. This "example-based" training framework

provides a useful way for users to create and refine queries based only on a few

examples. This framework also provides a way for the user to focus a query and

refine the initial template by adding more positive and negative examples from the

set of images retrieved by the system.

The learning approach presented here uses the Multiple Instance Learning paradigm

and the Diverse Density algorithm [Maron1998] to address the ambiguity inherent

in learning concepts from images. It differs from other "example-based" training

schemes for image retrieval in that (1) it abstracts out the relevant properties that

are reinforced in the examples and locates the learned concept in a new image, (2)

learns the concept without requiring the user to select out the relevant regions in the

examples, (3) it does~ not require expensive preprocessing and (4) it finds the scaling

of the feature space that givp. the best concept i e. it weighs the differdnt features

based on how relevant they are to the extracted concept. This feature weighting

could potentially be quite useful in learning salient features as well as reducing the

dimensionality of very high dimensional image feature spaces. While we have used a

basic, unconstrained version of this scaling in our experiments, we think this can be

explored further to improve classification performance as we discussed at the end of

Chapter 3.

A key feature of our architecture is the bag-generator which Generates features

(instances) that capture the local color relations within subregions as well as color

and spatial relations between subregions. In Chapter 4, we discussed how the bag

generator can be extended using multiple cues to capture more complicated concepts.

The bag generator separates the image representation from the learning technique

thus allowing advances in machine vision (e.g. segmentation, object recognition etc.)

to simplify the learning process. For example, if we can generate more sophisticated

instances (e.g. objects) then the learning mechanism can be simplified significantly.

In addition to providing a framework to learn object class models in the form of

162



flexible templates, we also showed how to match such templates efficiently in order to

detect objects in new images. In Chapter 5, we presented a simple method for detect-

ing, localizing and recognizing classes of objects, that accommodates wide variation

in an object's pose. The method utilizes a small two-dimensional template that is

warped into an image, and converts localization to a one-dimensional sub-problem,

with the search for a match between image and template executed by dynamic pro-

gramming. The method recovers three of the six degrees of freedom of motion (2

translation, 1 rotation), and accommodates two more DOF in the search process (1

rotation, 1 translation), and is extensible to the final DOF. Our experiments demon-

strate that the method provides an efficient search strategy that outperforms normal-

ized correlation. This is demonstrated in the example domain of face detection and

localization, and is extended to more general detection tasks. We also showed that we

can integrate the matcher into an end-to-end system where we recover a rough object

pose. from the match results and use it in a two stage recognition experinent using

emaximization cf mutual information. Our approach (cnbines the generali etection

flavor of patch correlation with the ability to accommodate more degrees of free-

dom of object motion that are traditionally associated with feature-based recognition

systems.

6.1 Future Directions

In this thesis we addressed the problem of representing and learning "visual concepts"

in order to classify images based on their visual content. We explored the Multiple

Instance learning framework to learn image queries represented as simple relational

templates and showed that these learned concepts were effective in classifying natural

scenes. We now look at ways to extend and adapt the current framework to capture a

more comprehensive representation that could be used on a larger variety of images.

163



6.1.1 Combining image representations for classification

As we mentioned in Chapter 2, the flexible template representation [Lipson et al.1997]

provided a way to capture global color and spatial properties of the image and

were very effective for classifying natural scenes. The Complex-feature approach by

DeBonet et al. [J.S.DeBonet and P.Viola1997], on the other hand, captures relations

between local image properties and can be used to capture finer structure in queries

like "cathedrals" or "people with hats". The framework we provide in this thesis

treats images as a combination of instances and can be used to specify queries that

span the whole image (e.g. natural scenes) or queries that occupy a small portion of

the image (e.g. objects). We currently learn very simple low-resolution properties of

the image using the flexible templates. We showed in Chapter 4, that by generating

more complex instances, we can represent a wider set of queries. We used a combi-

nation of basic color, texture and shape there as proof of concept. Extending that

framework to (a) generate instances using segmented components with rore'complex

f6htures that capture fine stiucture aiid (b) Cnombining them using the e-xplicit spatial

relations as represented in the flexible templates could potentially capture compact

representations for a variety of images.

6.1.2 The role of learned templates in model-based object

recognition

Model based object recognition is a difficult task for a machine to solve directly. It

is often convenient to divide up the recognition task into (a) model building which

refers to the representation of the model and (b) matching which refers to the process

of matching the model with the selected region. We think the work presented in this

thesis can help address some of these issues as follows.

* Model Building: Model representation forms a key part of object recognition.

We want a representation that can accommodate variations due to lighting,

pose, within-class differences and noise among other things. One option is to
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model all these variations explicitly and the other is to learn them from exam-

ples. Example based techniques have been used successfully in face recognition

in [D.Beymerl993, Vetter and Poggio1996, Jones and Poggio1996] among oth-

ers. These techniques however require the model images to be well segmented so

that they contain just the model object (e.g. face) with a constant background.

We would like to have a more flexible method for generating representations of

model objects by extracting them from noisy examples. The framework pro-

vided in this thesis could be useful in generating image based models from a

few examples. As shown in the thesis, very simple learned models that encode

basic color and spatial relations between image regions can be quite effective

in detecting a variety of objects (e.g. natural scenes, faces, cars). While these

simple representations are useful for detecting object classes, we might need a

more informative representation for recognizing objects. We could explore the

use of a hierarchical approach starting with low resolution representatiois and

adding richer descriptions (e.g. texture and shape) for further discriminaioin

power at high resolutions. These hierarchical templates could be extracted- from

examples using a framework similar to the prototype system described in this

thesis (in Chapters 3 and 4).

* Matching: We presented a technique to match simple templates in images to

detect objects like faces. Instead of using a pre-defined template like we did

there, we would like to explore if we can combine models learned from few

examples using Diverse Density with this matching technique in order to detect

instances of objects with varying pose.
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