
Intelligent Integration of Information
Design and Implementation of a Web Wrapper

by

Kenneth C. Lau

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements of the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 1999

Copyright 1999 Kenneth C. Lau. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Authoi
Department of Electrical Engineering and Computer Science

May 19, 1999

Certified by
11 Prof. Stuart Madnick

Co-Thesis Supervisor

Certified by

Accepted by

v - . -' I
Dr. Michael Siegel

-6IThesis Supervisor

Arthur C. Smith
Chairman, Department mittee on Graduate Thesis

MASSAC INSTITUTE

I UL ENG

7) ~7 ~/) 2

Intelligent Integration of Information
Design and Implementation of a Web Wrapper

by

Kenneth C. Lau

Submitted to the Department of Electrical Engineering and Computer Science
In partial fulfillment of the requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1999

Abstract

This thesis describes the design and the implementation of a wrapper engine to query
semi-structured remote data sources for the Context Interchange group. Research is
focused on the continued development of the query execution engine, and the design and
implementation of a planner to structure and optimize user queries. Major problems dealt
with include the automatic extraction of data, manipulation of information using
relational operations, search for plans to order sub-query executions, circumvention of
network delays, and composition of results to be returned to the receiver of the mediated
query.

Co-Thesis Supervisor: Stuart Madnick
John Norris Maguire Professor of Information Technology
Sloan School of Management

Co-Thesis Supervisor: Michael Siegel
Principal Research Scientist
Sloan School of Management

2

Table of Content
Table of Content ..---........ . 3

Figures and Tables ... - - - - - - -........... 5
Acknowledgement ...-----.---... 6
Chapter 1......................................---------------------------------..------ 7

Introduction..------ .-.-- - - - - - 7
1.1 The COIN Framework .. 7

1.1.1 Client Processes .. - 8
1.1.2 Server Processes... 8
1.1.3 M ediator Processes ... 9

1.2 Wrapper Generator.. 9

1.3 Goal of the Thesis 9

1.4 Motivation... 10

1.4 Organization of Thesis.. ..- - 14

Chapter 2..----. - - - - - - - - -.. . --............................ 15

Literature Review.. 15

2.1 Context Mediation 15

2.1.1 The Tight-Coupling Strategy 15

2.1.2 The Loose-Coupling Strategy 16

2.1.3 Context Interchange Strategy.. 16

2.2 Wrapper Technology.. 17

2.2.1 COIN Architecture.. 18

2.2.2 Wrapper Generation - University of Maryland 19

2.2.3 Wrapper Technology - University of Alberta ... 20

2.2.4 WebL - A Programming Language on the Web 22

2.2.5 Medved's Quote Tracker 23

2.2.6 Alpha M icrosystems StockVue 99.. 23

Chapter 3...---------------------------------... 25

W rapper Engine .. .----------------- 25

Chapter 4..----------------------------------... 27

Query Execution .. 27

4.1 Relational Algebra 27

4.1.1 Select and Project...-... 27

4.1.3 Set Operations: Union, Intersection, Set-Difference, Cross-Product 27

4.1.4 Other Operators... 28

4.1.5 Relational Completeness.................................. 28

4.2 Execution Tree.. 28

4.3 Relational Operators .. 30

4.3.1 Select............................-- - - 30

4.3.2 Project 30

4.3.3 Join........................- ----------. - - --... 30

4.3.4 U nion.. - -- - - -- - -- - - -- - -- - -..... 31

4.4 Physical Operators ... 31

3

4.4.1 Submit... 31
4.4.2 Join-Subm it.. -... .. . 32
4.4.3 Regular-Expression... 32

Chapter 5...----------------------------------........................ 33

Planner ----------------------------.........................-- - - - - .. 33

5.1 Specification File-- - - - 33
5.1.1 Header .. 34

5.1.2 Body.. 34

5.2 Ordering Sources ...--. 35

5.3 Planning 36

Chapter 6...----... - - - - - - - --........................ 38

Implementation Details... 38

6.1 Implementation Language .. 38

6.2 M odules..- 38
6.2.1 N etwork A ccess M odule.. 39

6.2.2 Boolean Operations M odule ... 40

6.2.3 Data Module.. 41

6.2.4 Pattern M atching M odule 42

6.2.5 Relational Operations M odule ... 42

6.2.6 SQL Parser Module.. 43

6.2.7 Specification File Parser M odule.. 43

6.2.8 Planner Module.. 43

6.2.9 Interface Module... 44

6.3 Scheduling Threads... 45

6.4 Concurrent Execution .. 46

6.5 Dynam ic Optim ization.. 47

Chapter 7... - -- --- --- --- --- ---..-- - - - - 49

Conclusion and Future Research .. 49

7.1 System Evaluation ... 49

7.2 Future Research and Concluding Thoughts... 49

References..------ . . . - - --... 51

Appendix A: User's Manual.. 53

Appendix B: Sample Specification Files ... 54

Appendix C: Query Trace .. 56

4

Figures and Tables
Figure 1.1: COIN Framework...8
Figure 1.2: Query 1 Results... 12

Figure 1.3: USA Today - Trading Prices for IBM; Fastquote - Headlines for IBM......... 12

Figure 1.4: Query 2 Results 13

Figure 1.5: Yahoo - Trading Price, Time for Intel... 13

Figure 2.1: COIN Wrapper Architecture .. 18

Figure 2.2: Maryland Architecture 20

Figure 2.3: University of Alberta Architecture.. 21

Table 2.1: Summary of Findings .. 24

Figure 3.1: Wrapper Architecture ... 25

Figure 4.1: Execution Tree ... -....... 29

Figure 6.1: Module Dependency... 39

Figure 6.2: Accessdata Classes Inheritance Tree.. 40

Figure 6.3: Bool op Classes Inheritance Tree .. 41

Figure 6.4: Data Classes Inheritance Tree ... 42

Figure 6.5: Relationalop Classes Inheritance Tree .. 43

Figure 6.6: Interface of the Wrapper Engine .. 44

Figure 6.7: Scheduler... 45

Figure 6.8: Concurrency Model... 46

5

Acknowledgement
I would like thank my thesis supervisors, Professor Stuart Madnick and Dr. Michael
Siegel, for giving me the opportunity to work in the Context Interchange group. The
group provides an excellent environment to conduct research. Particular thanks to Aykut
Firat and Tom Lee for all their help and encouragement.

Thank you to my many friends at MIT for making my life sometimes difficult, but always
interesting and enjoyable. Finally, I would like to thank my parents and my brother for
their love and their support.

6

Chapter 1

Introduction

In the past several years, advances in computer networking and telecommunications have
led to the explosive growth in the number of information sources that are being
connected. This connectivity has given way to a proliferation of data stored in various
databases in a distributed fashion. With this growing abundance of data, the problem of
retrieving information and interpreting information becomes an important challenge.

The ability to exchange information physically has taken giant steps forward with the
explosive growth in computer networking, but the ability to exchange information in a
meaningful manner has lagged significantly behind. The meaning of information is often
dependent on a particular context - a context which embodies a number of underlying
assumptions. For example, "07-04-98" might mean 4* of July in the US, but in Europe it
means April the 7th. Different context of data lead to possible confusion and conflicts
when the information from heterogeneous sources is brought together. This problem is
referred to as the need for semantic interoperability among distributed data source; any
data integration effort must be capable of reconciling possible semantic conflicts [4].

1.1 The COIN Framework

The Context Interchange (COIN) project seeks to mediate the problem of interoperability
using a context mediator [4]. This mediator sits between the users of data and the
sources. The meaning and underlying assumptions about the data set are explicitly
represented as data contexts. When the need to bring together data of different context
arises, it is the job of the context mediator to determine semantic conflicts between
contexts and apply any transformations necessary to exchange the data in a meaningful
way.

7

The mediator uses the Structured Query Language (SQL) as a means of issuing queries to
data sources. Mediation is the process of rewriting queries posed in the receiver's or the
client's context into a new set of queries where all potential conflicts are explicitly solved.
Each query issued by the receiver is translated to a source context and then passed on to
the data source. The data returned is similarly translated to the receiver's context and
presented to the receiver. This process allows users to extract disparate data from
different sources and produce consistent results. Figure 1.1 shows an overview of the
COIN framework [3].

SERVER PROCESSSES MEDIATOR PROCESSSES CLIENT PROCESSSES

Figure 1.1: COIN Framework

1.1.1 Client Processes

Client processes provide the interaction with receivers and route all database requests to
the Context Mediator [3]. An example of a client process is the multi-database browser,
which provides a point-and-click interface for formulating queries to multiple sources
and for displaying the answers obtained. Specifically, any application program that posts
queries to one or more sources can be considered a client process. This can include all the
programs (e.g. spread sheet software programs like Excel or Access) that can
communicate using the ODBC bridge to send SQL queries and receive results.

1.1.2 Server Processes

Server processes refer to database gateways and wrappers. Database gateways provide
physical connectivity to databases on a network. The goal is to insulate the Mediator
Process from the idiosyncrasies of different database management systems by providing a
uniform protocol for database access as well as canonical query language (and data

8

model) for formulating the queries. Wrappers, on the other hand, provide richer
functionality by allowing semi-structured documents on the World Wide Web to be
queried as if they were relational databases [3]. This is accomplished by defining an
export schema for each of these web sites and describing how attribute-values can be
extracted from a web site using pattern matching.

1.1.3 Mediator Processes

Mediator processes refer to the system components that collectively provide the
mediation services. These include SQL-to-datalog compiler, context mediator, and query
planner/optimizer and multi-database executioner. SQL-to-datalog compiler translates a
SQL query into its corresponding datalog format. Context mediator rewrites the user-
provided query into a mediated query with all the conflicts resolved. The
planner/optimizer produces a query evaluation plan based on the mediated query. The
multi-database executioner executes the query plan generated by the planner. It
dispatches sub-queries to the server processes, collates the intermediary results, and
returns the final answer to the client processes.

1.2 Wrapper Generator

Client applications interact with data sources and route all database requests to the
context mediator by issuing SQL queries. An example of a client process is the multi-
database browser, which provides a point-and-click interface for formulating queries to
multiple sources and for displaying the answers obtained. When the data sources do not
comply with the relational database model, the SQL query is translated to the native
query format of the source. This gives the client a homogeneous way of querying sources
which might not be relational databases, but semi-structured documents on the World
Wide Web, for example.

The wrapper generator is an engine that allows for the incorporation of the data
originating from Web sites [8]. The Wrapper automatically performs all the steps
necessary to obtain data values from the site. It issues commands directly to data servers,
thus mimicking the interaction between a human user and the World Wide Web site.

1.3 Goal of the Thesis

The goal of the thesis is to seek and identify the major design decisions taken for the
implementation of a wrapper generator. The wrapper generator takes a list of accessible
sources, executes the queries to those sources, and combines the result into a table to be
presented to the receiver. My contributions are as follow:
(i) research on current wrapper generation technology;
(ii) continued development of the query execution engine (which was originally

designed and partially built last year to be a robust, and easy to migrate execution
model);

9

(iii) design and implementation of a planner/optimizer that is responsible for planning
the order of execution of the user's SQL query;

(iv) design and implementation of a friendly interface to interact with the various
components of the wrapper engine; and

(v) documentation on the current status of the wrapper technology within the Context
Interchange Group.

1.4 Motivation

Consider the following example as a motivational scenario - a businessman who regularly
updates his stock portfolio. Current and historical information on the stock movement
can be tracked and visualized in a spreadsheet. To keep this information up to date, the
businessman will need to collect the relevant information of the stock on a daily basis and
then update the spreadsheet. The New York Stock Exchange (NYSE) provides a very
useful web site with pages for each of the companies trading on the exchange. These
pages hold information such as the last stock price and the company ticker. Yahoo stock
pages show the price, percentage and point changes, the volume sold for the trading
period. Bloomberg pages provide news headlines for each companies. USA Today
pages provide the high and low of the stock price during the trading day. This is a
simple, hypothetical scenario. There are web sites that provide much of this information,
but the scenario serves to illustrate the motivation for this research effort.

Although the information is very easily accessible, the only way to get to this information
is to manually browse and click to load up the required pages. For a single company, this
may not be very difficult but when dealing with a large portfolio, the manual gathering of
the data becomes a bit more tedious. An even graver problem occurs if the search set is
not predefined to certain companies. Below, two web-intensive data-extraction situations
will be described and the procedures, which can be used to automate this extraction, will
be highlighted.

The first example, the businessman would like to get the names of companies, their
tickers, last selling price, high and low trading price during the trading day, and company
headlines from a portfolio of stocks. This information is provided by Fastquote and USA
Today pages. This example is quite manageable, however, and the process can be
automated, as it is a monotonous everyday activity. The query (representing the
example) and the results returned by the wrapper engine are illustrated in Figure 1.2. For
comparison, the screen shots of the actual web sites from which the information is
collected are shown in Figure 1.3.

The second example, the businessman would like to get the ticker, the last trading price
and the time the quote is obtained from a portfolio providing that the recent stock price is
less than $100. This example is quite similar to the first one but the additional clause
illustrates the use of relational operations. Information on the ticker, the last trading
price, and the time is provided by Yahoo pages. Relational operations are then performed
to return the appropriate results (trading price less than $100) to the receiver. The query

10

(representing the example) and the results returned by the wrapper engine are illustrated
in Figure 1.4. For comparison, the screen shots of the actual web sites from which the
information is collected are shown in Figure 1.5.

Solving the problems above requires an intermediary agent that will allow the user to
formulate a structured request. The agent will automatically extract the data from the
required sources to manipulate the data to produce the desired results and then present
this result to the user [1]. The automatic nature of such a system will definitely be
limited by the varying structures of stored data e.g. if one requires data from both a web
site and an Excel spreadsheet to produce the result of the request. The problems are even
clearer when dealing with two different web sites, where data may be stored in
completely different formats.

The sites can easily be seen as being tables (providing certain specific attributes), but
automating the extraction remains a problem due to the varying structures of the sites.
Wrapping the sources can hide these structural differences. Using an object that knows
how to access a source and extract the information can then provide information on that
particular source. It's clear that the main information needed here is the list of attributes
provided along with the method of extraction; in this system this information is stored in
a source specification file. The make up of the specification file is explained in detail in a
later chapter.

11

SELECT
FROM
WHERE

Ouerv 1

Ticker, LastTrade, High, Low, Headline
usatoday, fastquote
Ticker in ["AAPL", "IBM"]

Results

tgpiet started.

Figure 1.2: Query 1 Results

Screen Shots of Actual Web Pages

flueArame pmeam. .ee n ss
o9.6. ir j". maS b L L

Iside Market
Scoreboard -M ID

Click Hee 7N Last Trade &19 16:17

inside Money IIM intemational Business Machines Corp.

* Mosln lne er sw foranan& We
*Woda #Mff= 235.8760 2385=X)

* Week *bteS

" Econey Track -2.6250 -110

* Sanns Amener 23 B.7500 0a

Savina mnw 233.0625 246.000
*80010d"a news 3B95elm 1060000

*Calculatom

Aldu NYSELAMEX del ed20rmnnNASDAQde edi5 mn
*TAuch Trick

* Traelerbls
~eklenmas-

05/19M 1L)s bass WOpdN: AGNyb.i..malerAamn.
in i MmsATkhiestet7%r heniha m sr

05/19J99 13-50 Np CeartNceevB

BustnessWe, 735 words

05/11 1332

03/19,99 1312 ETVDhtBA.ULmnmdbsReuters,5s2 words

05r9,962rd.
05/1969 13:12 O.Dbplay Teami Wti6li~i PreShM il Cnt.Sta

Figure 1.3: USA Today - Trading Prices for IBM; Fastquote - Headlines for IBM

12

Ouerv 2

Ticker, Time, LastTrade

yahoo

Ticker in ["MSFT", "YHOO", "INTC", "IBM"]
100AND LastTrade <

Results

Applet started.

Figure 1.4: Query 2 Results

Screen Shot of Actual Web Page

T'hu May 20 14am ET -U:SMresoe 9hus2 uue

WEC 4- 01P 9 +1 2/%117,302.900100'

Select a Symbol for a detaded quote Quotes delayed 15 mautes for Nasdaq, 20 nmnutes otherwise
Custome Fmance (Yahool ID reqred) - COL JOBS a YAHOO - Yahool Fmance Home

Non-Tabes Verien - Dalvioad Spreadsheet Fermat

Wed May 19 INTC [eatemall Price ofLmua computers falg- at News.Com

Wed May 19 INTC Internetmedical portal Healtheon plans WebMD merger - Reuters

Figure 1.5: Yahoo - Trading Price, Time for Intel

13

SELECT

FROM
WHERE

1.4 Organization of Thesis

This thesis is divided into seven chapters and several appendices.

* Chapter 1 gives an overview of the research conducted at the Context Interchange
Group at the Massachusetts Institute of Technology, as well as provides a brief
motivational example to illustrate the purpose and the goal of this research effort.

* Chapter 2 is a thorough literature review on the current technology, both in academia
and in the marketplace, of querying semi-structured data from the World Wide Web.

* Chapter 3 briefly summarizes the wrapper engine and the architecture of its design.

* Chapter 4 provides a detail summary of the query execution engine as designed and
implemented.

* Chapter 5 looks into the design of the planner and the optimizer that was
implemented.

* Chapter 6 provides all the implementation details of the engine and the decisions
made to satisfy the various design criteria.

* Chapter 7 is the conclusion of the thesis, giving some insights into how the system
can be improved, directions for future research and the limitation of the current
technology.

* The list of references and appendices at the end provide various technical annotations
such as a user's manual of the engine application, examples of specification files, and
system trace during engine execution.

14

Chapter 2

Literature Review

The goal of this chapter is to provide a thorough literature review consisting of a brief but
comprehensive investigation of the approaches towards context mediation, and an
extensive analysis on web wrapper technology. The review on context mediation serves
as an initial motivation for the research. Given the distributed nature of information
storage within the World Wide Web, semantic interoperability is unavoidable. However,
the decentralized system of information storage is still superior to the alternative of a
central database - hence there is a need for context mediation. With the initial
motivation, our focus is narrowed on web wrapper technology. A web wrapper is an
engine that allows for the incorporation of the data originating from public World Wide
Web sites. The wrapper automatically performs all the necessary steps to obtain data
values from different distributed data sources, which in essence mimics the interaction
that would normally take place between a human user and a public web site. This
literature review and the analysis on academic and marketplace web wrapper technology
in this section lay the foundation for the rest of this research effort.

2.1 Context Mediation

Within the last decade, there has been a proliferation of proposals and research prototypes
aimed at achieving interoperability among autonomous and heterogeneous databases.
Primarily, these proposals differ from one another in either the choice of the underlying
data model for conflict resolution or the subscription to a tight-coupling or a loose-
coupling integration strategy [6]. With respect to the choice of the underlying data
model, semantically rich data models have gained greater popularity over traditional
systems. The distinction between tight-coupling and loose-coupling systems, on the
other hand, can be characterized by:
" who is responsible for identifying what conflicts exists and how they can be

circumvented; and
" when the conflicts are resolved.

2.1.1 The Tight-Coupling Strategy

15

In the case of tightly-coupled systems, the detection of conflicts is performed by a system
administrator and the actual resolution is accomplished by defining, a priori, one or more
views, which define the shared schemas for the system. A shared schema insulates the
receiver from underlying data heterogeneity. Queries formulated against a shared schema
can be transformed to sub-queries, which are submitted to component sources.

Conflicts in underlying sources are encapsulated via the introduction of a supertype,
which has methods or functions, which are defined with reference to its subtypes [6]. For
instance, consider the following conflict for student grades reported by two databases: the
first database represents student grades using letter grades, and the second represents the
same as points in the range of 0 to 100. In a tightly-coupled systems, this integration can
be accomplished by introducing a supertype which integrates the two student types and
allow all attributes of the subtypes to be inherited. Hence, if the attribute Name is
common to Student1 and Student2, the invocation of method Name on Student will be
automatically translated to the invocation of Name on one of the subtypes. Semantic
conflicts are circumvented by providing the necessary conversion functions to effect the
translation.

2.1.2 The Loose-Coupling Strategy

Systems constructed using the loose-coupling approach, on the other hand, subscribe to
the belief that the creation and maintenance of shared schemas is infeasible for any
nontrivial number of sources. Hence, instead of resolving all conflicts a priori, conflict
detection and resolution are undertaken by receivers themselves, who need only interact
with a limited subset of the sources at any one time [6]. To facilitate this task, research
has focused on the invention of data manipulation languages, which are sufficiently
expressive so that queries on multiple sources can be interleaved with operations for
effecting data transformations.

2.1.3 Context Interchange Strategy

In reality, most integration systems fall between the continuum, and few would venture to
the extremes. The context interchange strategy combines the best features of existing
loose-coupling and tight-coupling approaches to semantic interoperability among
autonomous and heterogeneous systems. It allows the complexity of the system to be
harnessed in small chunks, by enabling sources and receivers to remain loosely-coupled
to one another, and by sustaining an infrastructure for data integration.

The context interchange strategy seeks to address the problem of semantic
interoperability by using both a data model and a logical language [13]. The data model
and language are used to define the domain model, which is a collection of semantic
elements within the receiver and the data source, and the context associated with them.
The data model contains the definitions for the types of information units that constitute a
common vocabulary for capturing the semantics of data in disparate systems. Contexts,
associated with both information sources and receivers, are collections of statements
defining how data should be interpreted and how potential conflicts should be resolved.

16

The modular design of the strategy, both in components and protocol, keeps the
infrastructure scalable, extensible, and accessible [13]. Scalability means that the
complexity of creating and administering the mediation services does not increase
exponentially with the number of participating sources and receivers. Extensibility refers
to the ability to incorporate changes into the system in a graceful manner. Accessibility
refers to how a user in terms of its ease-of-use perceives the system and the flexibility in
supporting a variety of queries.

2.2 Wrapper Technology

Typically, queries have access to a data source to get the desired information. The data
source used can be accessed by anyone on the World Wide Web. In order to access web
sources, a technology is developed that lets users treat web sites as relational data
sources. The users then issue SQL queries just as they would to any relation in a
relational database, thus combining multiple sources and creating queries as the one
above. This technology is called web wrapping and an implementation for this
technology is called a wrapper engine. Using a web wrapper engine, application
developers can very rapidly wrap a structured or semi-structured web site and export the
schema for the users to query against.

This section provides an overview of current web wrapper technology, both in the
marketplace and in the academia. The section begins with a description of the wrapper
technology used by the COIN project. Besides the COIN architecture developed at MIT,
there are many other different technologies employed for data wrapper from the World
Wide Web. Traditionally, these are first developed from academic institutions, including
the ones developed at the University of Maryland and the University of Alberta. As the
growth of the World Wide Web continues and the need for commercial data wrapping
manifests, commercial organizations begin to develop and market different wrapper
engines, mostly derivations from ideas developed within the academia. These
marketplace wrapper engines usually involve wrapping quotes or other business data;
several such engines are included in the following sections as a review.

17

2.2.1 COIN Architecture

Query
Query Results
Query

Compiler/
Interpreter

Executioner

Planner/
Optimizer Pattern Matching

i
Specification Network Access

Compiler/
Interpreter

Specifications Web documents

Figure 2.1: COIN Wrapper Architecture

The above figure shows the architecture of the COIN web wrapper. The system takes the
SQL query as input. It parses the query along with the specifications for the given web
site. A query plan is then constituted. The query plan contains a detailed list of web sites
to sent http requests, the order of those requests and the list of documents that will be
fetched from those web sites. The executioner then executes the plan. Once the pages
are fetched, the executioner then extracts the required information from the pages and
presents the collated results to the user.

In order to wrap a site, you need to create a specification file. This file is plain text file
and contains information like the exported schema, the URL of the web site to access and

18

a regular expression that will be used to extract the actual information from the web page.
A simple specification file is included below:
#HEADER

#RELATION=quotes
#HREF=GET http://qs.cnnfn.com
#EXPORT= quotes.Cname quotes.Last

#ENDHEADER

#BODY

#PAGE

#HREF=POST http://qs.cnnfn.com/cgibin/stockquote?symbols=

##quotes . Cname##

#CONTENT=1ast:
<FONTSIZE=+1>##quotes.Last##</TD>

#ENDPAGE

#ENDBODY

The specification has two pasts, Header and Body. The Header part specifies information
about the name of the relation and the exported schema. In the above case, the schema
exported has two attributes, Cname, the name of the company, and Last, the latest quote.
The Body portion of the file specifies how to actually access the page (as defined in the
HREF field) and what regular expression to use (as defined in the CONTENT field).

Once the specification file is written and placed where the web wrapper can read it, the
system is ready for use. Users can start making queries against the new relation that are
just created.

2.2.2 Wrapper Generation - University of Maryland

The architecture of the University of Maryland model allows query translation and
answer extraction from a single document. It typically requires that an exact address of
the web site representing the HTML document containing the answers (or a script, which
can provide the answers) must be produced [7].

The architecture differentiates between a simple extractor and a complex extractor. A
simple extractor extracts the relevant data from the corresponding HTML document and
produces answer objects. In many cases, however, this simple scenario is inadequate.
For example, when answers of the same type must be extracted from multiple documents,
a complex extractor would iteratively call other simple extractors to extract objects from
each document. In other cases, a complex extractor is needed to use the output of another
extract, in constructing another URL, or in constructing an answer object. Finally, when
the output format of a document may not always be known a priori, as is common for
many Web accessible sources, then a complex extractor would conditionally call other
extractors.

With the Maryland architecture, specification files are unnecessary because the exact
address of the site containing the information requested must be provided in order to
wrap data. A URL as well as a pattern matching expression are included as part of the

19

query; the results returned are in a tabular format, similar to the results returned under the
COIN architecture. Under the Maryland architecture, query planning and optimization
are also unnecessary, resulting in an architecture that is simple and easy to implement.
With simplicity, the Maryland architecture sacrifices performance; because an exact
address must be provided in order to wrap information, this wrapper technology proves to
be less general and less useful than the COIN technology. Figure 2.2 below shows the
architecture of the Maryland wrapper.

Query and
Site

Address

I Results

Web documents

Figure 2.2: Maryland Architecture

2.2.3 Wrapper Technology - University of Alberta

The prototype of the wrapper technology developed by Lee at the University of Alberta
in 1996 operates as a standard web-type application. There are HTML pages, scripts, and
an underlying oracle database, which helps to process requests. The interface is created
through the reading of a static HTML file (e.g. such as a form) or through the creation of

20

Executioner

Pattern Matching

Network Access

a dynamic web page through a perl script (CGI-compliant) [9]. Thus, the actual look and
feel of the system is created through the linking of scripts and files.

Oracle is used as the underlying DBMS. It has two main functions: first relations are kept
to store the data on the producer sources and consumer interfaces. The producer's need to
store two tables: One table for the general description of a repository, and a second table
for more synonyms of each keyword. The interfaces have two tables: (1) storage of the
interface description and (2) storage of interface keyword synonyms.

Under this architecture, the relational database is not the entire World Wide Web but
rather a pre-specified portion of it - in this case the Yahoo site. Simple querying of
Yahoo is done through the simple. query. cgi script. It translates the form data into
Yahoo URL calls, executes the URL calls in parallel, gets the return data, translates the
data into Oracle tables, and returns an HTML table result. Thus, URL from users or
specification files are not necessary in this implementation; instead they are replaced by
Oracle tables stored at the source for both the producer (the source) and the consumer
(Yahoo site). Figure 2.3 shows the wrapper architecture from the University of Alberta.

Interface

Query Results

Executioner

Compiler/
Interpreter PPattern Matching

Network Access

Oracle
Tables

Yahoo documents

Figure 2.3: University of Alberta Architecture

21

2.2.4 WebL - A Programming Language on the Web

WebL is a web scripting language for processing documents on the World Wide Web. It
is different from all the previous technologies because WebL is not an engine or an
application to wrap information. Rather, it is a programming language used as a
foundation where wrapper engines can be easily built. The language allows programmers
an interface to extract information from specified web sites using Java and regular Perl
expressions [11].

WebL is well suited for retrieving documents from the web, extracting information from
the retrieved documents, and manipulating the contents of documents. In contrast to
other general purpose programming languages, WebL is specifically designed for
automating tasks on the web. Not only does the WebL language have a built-in
knowledge of web protocols like HTTP and FTP, but it also knows how to process
documents in plain text, HTML and XML format [11]. The flexible handling of
structured text markup as found in HTML and XML documents is an important feature of
the language. In addition, WebL also supports features that simplify handling of
communication failures, the exploitation of replicated documents on multiple web
services for reliability, and performing multiple tasks in parallel. WebL also provides
traditional imperative programming language features like objects, modules, closures,
control structures, etc.

To give a better idea of how WebL can be applied for web task automation, and what
makes WebL different from other languages, it is instructive to discuss the computational
model that underlies the language. In addition to conventional features you would expect
from most languages, the WebL computation model is based on two new concepts,
namely service combinators and markup algebra [11].

Service combinator is a formalism that can provide more reliable access to web resources
and services. Very succinctly, service combinator is an exception handling mechanism
that is powerful enough to encode robust behavior when communication failures occur.
This concept is especially important for performing any reliable computation on the
unreliable web structures. It often happens that web services are unavailable, suddenly
fail or become unacceptably slow. These are very serious complications for
computations that depend so much on the web infrastructure. Although service
combinators cannot make a web-based computation completely failure-proof, it does add
a certain amount of robustness to programming on the web.

Markup algebra is a formalism for extracting information from structured text documents
and the manipulation of those documents [11]. It consists of functions to extract
elements and patterns from web documents, operators to manipulate what has been
extracted in this manner, and functions to change a page, for example to insert or delete
parts. The functions and operators all work on the high-level concept of a parsed web
page, and there is little need to do lower level string manipulation.

22

2.2.5 Medved's Quote Tracker

Medved's Quote Tracker is a commercial application that automatically tracks
information regarding stock quotes, index changes and a variety of other data of publicly
traded companies. The application represents a good way to collect a lot of information
about a security without having to visit many different web sites.

The engine technology is similar to the COIN technology - users can choose to wrap
information from a variety of different data sources such as E-Trade, Yahoo, and
Realtime Quotes. The main drawbacks include

" inability to wrap information from non-specified sites
- unable to wrap information which are not inherently specified by the application

2.2.6 Alpha Microsystems StockVue 99

Alpha Microsystems' StockVue 99 is a Web-based application designed to automatically
track stocks and mutual funds, using a variety of on-line resources. Knowledge workers,
ranging from corporate finance officers to investors and traders, will find the application
integrates many tools and functions they have used separately on a daily basis into a
single, self-managing application. StockVue is able to track the following:

- stock quotes, including current value, current day's opening price, change, volume
- company news
- company SEC filings
- research data from Zacks Research
* number of shares owned and purchase price
m investment valuations
* portfolio performances

StockVue is able to export data to a variety of applications, including text files, word
processors, spreadsheets, Quicken databases, Web pages, fax machines, e-mail addresses,
even alphanumeric pagers. StockVue organizes information into multiple portfolios, with
file folder views. It features a moving stock ticker and is self-updating through the built-
in update manager.

2.2.7 Summary of Findings

COINArchitecture e allow for access to the e reliance on
entire universe of semi- specification files
structured data sources on
the web

* simplicity in design
* SQL-like queries are

accepted and processed
e ODBC compatible

23

University of Maryland
Architecture

University of Alberta
Architecture

WebL

Medved's Quote Tracker

Alpha Microsystems
Stockvue 99

Current Design and
Implementation

e

0

e0

0

simplicity in design
no need for specification
file, or any other pattern
matching mechanisms

concurrent execution
no need to specify
address and pattern
mechanisms

* allow for access to the
entire universe of semi-
structured data sources on
the web

" can process HTTP, FTP,
and XML pages

" rapid speed of execution

e0

e0

rapid speed of execution
allows for data to be
exported to a wide variety
of user applications

e allow for access to the
entire universe of semi-
structured data sources on
the web

* concurrent execution
" relational operations can

be performed
* SQL-like queries are

accepted and processed
* rapid speed of execution

e performance is
sacrificed

e exact address and
'location' of data have to
be provided

e

e

limited to Yahoo pages
CGI scripts to do
pattern matching
defined in advance

* complicated
'programming language'

* can only wrap
information from
inherently defined sites

* can only wrap
information from
inherently defined sites

e reliance on
specification files

Table 2.1: Summary of Findings

24

Chapter 3

Wrapper Engine

The wrapper engine is divided into various parts: query and specification file compilers,
planner and optimizer, and query execution. The focus of the thesis is the design and
implementation of a query engine. In addition, the SQL and specification file compilers,
the planner and optimizer, and an interface are also built to facilitate the construction and
the use of the system. The design is modular in order to be easily manipulated and
updated in future implementations.

Query

Compiler/
Planner/

Optimizer

t

Results

Relational Operators

Pattern Matchingj

Z Net Access

"Ft

Figure 3.1: Wrapper Architecture

25

The following steps provide a brief overview into the dynamics of the wrapper engine.
These broad steps are taken by the engine to wrap information every time the input is
entered and the user requests an execution:

1. The SQL query from the user is parsed into a tree.
2. The sources of the query, taken from the input SQL, determine which specification

files and Perl regular expressions to use. All the relevant specification files are
parsed into trees.

3. According to the parse SQL tree, a plan is formulated to fetch information and to
conduct relational operations.

4. Data are fetched concurrently from multiple web sites, with the results returned in a
table format.

5. Relational operations are performed on the returned data, represented as tables; the
final output is displayed to the user.

In the following chapters, the current design and implementation as well as the

mechanisms behind the query execution engine and the planner/optimizer will be

described in detail.

26

Chapter 4

Query Execution

The main focus of this thesis centers on the creation of a framework that will allow the
effective and efficient execution of a SQL query, which accesses multiple data sources
via the Internet. The engine will be designed to support read-only queries.

4.1 Relational Algebra

Relational algebra is a formal query language associated with relational database model.
Queries in algebra are composed using a collection of operators. A fundamental property
is that every operator in the algebra accepts relation instances as arguments and returns a
relation instance as the result. This property makes it easy to compose operators to form
a complex query. There are five basic operators of the algebra - select, project, union,
cross-product and difference. All other operators can be defined in terms of the basic
operators [12].

4.1.1 Select and Project

Relational algebra provides operators to select rows from a relation and to project
columns. These operations allow us to manipulate data in a single relation. The select
operator specifies the tuples to retain through a selection condition. In general, the
selection condition is a boolean combination of terms that have the form attribute op
constant or attribute] op attribute2, where op is one of the comparison operators. The
schema of the result of a selection is the schema of the input relation instance. The
project operator allows us to extract columns from a relation. The schema of the result of
a projection is determined by the fields that are projected.

4.1.3 Set Operations: Union, Intersection, Set-Difference, Cross-Product

The following standard operations on sets are also available in relational algebra: union,
intersection, set-difference, and cross-product
* Union: RuS returns a relation instance containing all tuples that occurs in either

relation instance R or relation instance S (or both). R and S must be union-
compatible, and the schema of the result is defined to be identical to the schema of R.

27

* Intersection: RnS returns a relation instance containing all tuples that occur in both R
and S. The relations R and S must be union-compatible, and the schema of the result

is defined to be identical to the schema of R. Intersection is in fact redundant; Rrn)S

can be defined as R-(R-S).
* Set-difference: R-S returns a relation instance containing all tuples that occurs in R

but not in S. The relations R and S must be union-compatible, and the schema of the
result is defined to be identical to the schema of R.

* Cross-product: RxS returns a relation instance whose schema contains all the fields or

R followed by all the fields of S. The result of RxS contains one tuple <r, s> for each

pair of tuples re R, se S.

4.1.4 Other Operators

All other operators can be defined as an expression using the five basic operators. For

example, join can be defined as a cross-product followed by selections and projections.
The five basic operators serve as the building block for all relational algebra expressions.

4.1.5 Relational Completeness

If a query language can express all the queries that can be expressed in relational algebra,
it is said to be relationally complete [12]. A practical query language is expected to be

relationally complete. In addition, commercial query languages (including SQL)
typically support features that allow users to express some queries that cannot be

expressed in relational algebra. In other words, even if our query execution engine is

relationally complete, it still does not ensure full compatibility with SQL or any other
commercial query languages.

4.2 Execution Tree

Our query execution engine has a set of instructions to operate on. These instructions
include relational operators such as select, project, join, and union, and physical operators
such as submit, regular-expression and scan. Execution trees are made up of a tree of

operators with their required parameters. The specific parameters would differ

depending on which operator is being used. The tree is compiled into a directed graph
where a single node in the graph represents each operator [1]. Figure 4.1 shows the

execution tree for query 1, examples of relational and physical operators that may be
used. The connections within the graph represent data streams, which allow data to flow

in one direction. A single data table is produced by each relational or physical operation.

Query 1

SELECT Ticker, LastTrade, High, Low, Headline

FROM usatoday, fastquote

WHERE Ticker in ["AAPL", "IBM"]

28

Execution Tree:

Select

Union

Select Select

t
Join

Scan

USA Today
for Apple

Join

Scan

USA Todayl
for IBM

Scan

Fastquote
for Apple

Scan

Fastquote
for IBM

Figure 4.1: Execution Tree for Query 1

In this query, USA Today pages, which provide the last trading price, the day's high and
the day's low trading prices, are accessed concurrently for Apple and IBM.
Simultaneously, Fastquote pages, which provide the headlines, are accessed concurrently
for the same two companies. The appropriate join, select and union operations are
applied in the correct order, as shown in the execution tree above, to tabulate the results
to the receiver.

29

4.3 Relational Operators

Relational operators are the set of standard operators on collections of structured data [1].
Select, project, join and union provide the basics of relational operations. Other complex
operations can be built with these four elementary operators, to allow for the evaluation
of arithmetic expressions and the evaluation of boolean comparisons. The
implementation of the system provides for the extension of the base operators.

4.3.1 Select

The class constructor for this operator is of the following form:
Select(SelectionList, Conditions, Subtree)

SelectionList: This is the list of attributes to be selected from the relation. These
attributes will be involved in the join conditions of the query and those in the final
projection list of the query.
Conditions: A set of boolean operations applied to the attributes of the relation. Each
attribute is replaced by an index into the relation.
Subtree: This is the data structure for the subtree, which gives the set of tuples that are
used in this operator.

This select node is used to apply conditions to intermediate results. Only the set of tuples
that pass the condition will be propagated up the tree.

4.3.2 Project

The class constructor for this operator is of the following form:
Project(ProjectionList, Subtree)

ProjectionList: This is very similar to the selection list of select; it is a list of attributes to
be projected from the relation.
Subtree: This is the data structure for the subtree, which gives the set of tuples that are
used in this operator.

Project is used to extract attributes from a given Subtree. The results will be propagated
up the tree.

4.3.3 Join

The class constructor for this operator is of the following form:
Join(SelectionList, Conditions, Subtreel, Subtree2)

SelectionList: This is very similar to that of select, but the attributes are indices from both
the incoming relations.

30

Conditions: A set of join conditions on the relations. If no conditions are given then the
result of the join will be a full cross product of the two relations.
Subtreel: This is the data structure for the subtree, which gives the set of tuples that are
used in this operator.
Subtree2: This is the data structure for the subtree, which gives the set of tuples that are
used in this operator.

For each pair of tuples in the two relations gotten from Subtreel and Subtree2, the
operator will check to determine whether the join condition will hold. If it does hold,
then concatenating the two tuples forms a new tuple, which is then put onto the result
stream for the join operator.

4.3.4 Union

The class constructor for this operator is of the following form:
Union(Subtreel, Subtree2)

Subtreel: This is the data structure for the subtree, which gives the set of tuples that are
used in this operator.
Subtree2: This is the data structure for the subtree, which gives the set of tuples that are
used in this operator.

This is used to get the union of the results obtained by executing the two subtrees.

4.4 Physical Operators

Physical operators are those that perform functions other than relational operations.
These include submit, join-submit and regular-expression. Submit and join-submit are
two access operators which send requests for data and stores the result of the request as
sets of data tuples. Regular-expression is the pattern matching operator which extracts
the relevant attributes from a stream of output. The resulting tuples are propagated up the
tree.

4.4.1 Submit

The class constructor for this operator is of the following form:
Submit(Sourceaddress, Sourcetype)

Sourceaddress: A string representation of the absolute address from where the required
data has to be extracted.
Sourcetype: The type of data source being accessed.

This is the first of the two access operators. Both access operators send requests for data,
located at sourceaddess, to the system scheduler. The response from the scheduler is a
handle to a data stream, which holds the result of the request - from this point on, all data

31

within the system needs to be transferred as sets of tuples passing through the buffered
data streams between operators.

4.4.2 Join-Submit

The class constructor for this operator is of the following form:
Join-Submit(Sourceaddress, Sourcetype, Subtree)

Sourceaddress: A parameterized address that has to be completed by one or more
attribute values.
Sourcetype: This is same as in the submit operator.
Subtree: This is the data structure for the subtree, which gives the set of tuples that are
used in this operator.

This operator is used when the address of a data source depends on the value of a
particular attribute, e.g. the stock information of IBM can be accessed from the following
web address:

http://qs.cnnfn.com/cgi-bin/stockquote?symbols=IBM

The address includes the value of the Ticker attribute IBM and is only a partial address
without this attribute. The attributes needed to construct the complete address are
accessed from another relation that is gotten from the Subtree. For each tuple in the
Subtree relation, a new address will be constructed and a request sent to the scheduler.
Once the resulting stream returns it will be appended onto the appropriate tuple as a new
attribute and the tuple is put on the buffered data stream.

4.4.3 Regular-Expression

The class constructor for this operator is of the following form:
Regular-expression(RegularExp, AttrList, Subtree)

RegularExp: A string parameter that holds the regular expression used in the pattern
matching process to extract data.
AttrList: The AttrList gives a list of all the attributes that the system extracts from the
input stream and the types of these attributes. The attributes are represented by the index
into the regular expression.

Once a stream result from a source is passed on from one of the access operators, the
regex operator will take this stream and extract the attributes stored in the stream. The
input stream is taken from the last attribute of the incoming result from the Subtree
execution. Using the pattern matching techniques with the RegularExp, this operator
produces a list of attributes, which are all appended to the tuple from which the attributes
used to complete the address for the request were taken.

32

Chapter 5

Planner

The planner represents the missing connection between the user supplied SQL query and
the execution tree. This chapter outlines the design and implementation of the planner to
facilitate the wrapper engine outlined in the preceding chapter.

5.1 Specification File

Before a source can be used by the system, information such as the type of source, the
source address, means of data extraction, list of provided attributes and their types must
put into a specification file.

Type of source
The type of source can vary from web pages to local files to relationship database. Each
type of source requires a particular set of access procedures hence the necessity of having
the source type as one of the parameters stored in the source specification file.

Source address
Source address varies as well according to the source type. The address is vital for it
provides the location of the source.

Means of data extraction
In addition to source type, in the case of web pages the method of access is also necessary
piece of information as web sites use a combination of POST and GET access methods in
the HTTP protocol.

List of provided attributes and their types
The list of provided attributes and their types allow the planner knowledge of what kinds
information to look for within the source. This list is matched up with the information
requested in the user SQL query and, if matched, will retrieve the requested information
from the source and deliver back to the user.

The specification files have a tagged-based syntax to make it simple to identify the
various parts of the specification description both for the system administrators who will

33

be writing the files and to simplify the specification file compiler. The tagged

components are neatly cased into the header and the body of the specification.

5.1.1 Header

The header contains the general information for each source. Most of the information is
not actually used in the planning or the execution but is there for identification and

registry purposes. The <HEADER> tags clearly identify the region of the file that

represents the specification file header. The following is the header part of the
specification file for Yahoo site.

<HEADER>
<RELATION>yahoo</RELATION>
<HREF>GET http://quote.yahoo.com</HREF>
<SCHEMA> Ticker:string, Time:string,

LastTrade:real, Changepts:real,

Changepct:real, Volume:integer
</SCHEMA>

</HEADER>

Relation
The name of the relation is also the name of the system file in which the information is

stored. The string between the <RELATION> tags always identifies the relation.

HREF
Another parameter is the hrefthat holds the base address of the main source stored within

the file. The string between the <HREF> tags identifies the hrefparameter.

Schema
The last and probably the most important parameter in the header is the schema. All the

attributes that the source provides or requires are stored within the schema. Types are

necessary to facilitate comparisons and certain types of operations that may be carried out

by the execution engine. The string between the <SCHEMA> tags identifies the schema.

5.1.2 Body

The second section of the specification file is called the body and is marked by the

<BODY> tags. This section is made up of all the information that is necessary to allow

the planner to make an execution tree. The body is made up of a set of pages. Each page

has a method, a URL and a pattern. Within the body section all attributes are referenced

with the attribute name surrounded by two pairs of ## characters. The following is the

body part of the specification file for Yahoo site.

<BODY>
<PAGE>

<METHOD> GET </METHOD>

34

<URL>http://quote.yahoo.com/q?s=##Ticke

r##&d=vl&o=t</URL>

<PATTERN>.* ?\s+##Time:(

.*?)##\s+##LastTrade:(.*?)##\s+#
#Changepts:(.*?)##\s{2,}##Changepct:(.*

?)##\s+##Volume:(.*?)## <small>
</PATTERN>

</PAGE>

</BODY>

Method
The method gives the method of remote access (POST or GET) according to the HTTP
protocol. In the case of pages with POST methods, there may also be a content
parameter. The string between the <METHOD > tags identifies the method.

URL
The URL gives the access location of the remote data source. This represents the exact
address of web site that is accessed to obtain the given attributes. The string between the
<URL> tags identifies the URL.

Pattern
The pattern is a regular expression that is used to extract the attributes from the remote
data source. Each attribute that needs to be extracted is named, along with the regular
expression with which it must be matched. The name of each attribute and its
corresponding regular expression is surrounded by two pairs of ## characters for
identification purpose. This regular expression is applied to page source. The string
between the <PATTERN> tags identifies the pattern.

5.2 Ordering Sources

The capability and requirements of the sources sometimes implicitly determine the order
in which the selected source can be accessed. Other times, ordering is necessary and an
algorithm is applied during execution to determine the ordering and return the ordered list
of sources, if such ordering can be found. The main idea is to treat all pages as individual
sources with a list of attributes it requires and a list of attributes provided. Starting with
the set of required attributes from the query, the system would construct the list of
sources by checking for those that supplied the required attributes. Query conditions
normally adds to the initial list of required attributes, but in the case of an assignment
constraint, the condition statement then becomes a source. This source will be
represented as a constant data source in the execution engine, with tuples being made up
from the values used in the assignment. The ordering algorithm uses a beam search,
depth first search with the major difference being the fact that at any one point in time
there are n active nodes to be extended.

35

5.3 Planning

Once an appropriate list of data sources is produced, the plan generation module takes the
initial set of required attributes, the query conditions and the resulting list of sources and
uses them to construct the final execution tree. This is done by traversing the list of
sources and creating the appropriate set of relational operators needed to extract the
attributes required from that source and to use those attributes as they are needed within
the entire query execution.

Query 1

SELECT Ticker, LastTrade, High, Low, Headline
FROM usatoday, fastquote
WHERE Ticker in ["AAPL", "IBM"]

Plan constructed:

select(true,truetruetruefalsetrue, , TRUE)
regexfn(com.oroinc.text.regex.Perl5Pattern@2269c4
join-submit (
[http://fast.quote.com/fq/quotecom/headlines?mode=headlines
&symbols=,0, &mode=NewsHeadlines])
select(true,true,false,false,true,true,false,false,
TRUE)
regexfn(com.oroinc.text.regex.Perl5Pattern@226af0
join-submit (
[http://quote.bloomberg.com/usatoday/bquote.cgi?ticker=, 0,
])
constanttable ([AAPL, IBM]

High Level Explanation:

The constanttable operator creates a data structure to hold the basic elements of the
search. In our example, it creates the structure to hold the Ticker AAPL and IBM, as
they form the basis of the search. Then the join-submit operator performs the actual
extraction of the attributes, using the exact web address (USA Today) given and the
regular expression provided by the regex fn operator. The results from this concurrent
execution are joined together in an appropriate fashion. The select operator selects the
necessary attributes according to the request of the original query. Simultaneously,
another join-submit and regex fn accesses the Fastquote pages for headlines regarding
AAPL and IBM. The final select operator will select the necessary attributes and
formulate the result to the receiver.

36

Query 2

SELECT Ticker, Time, LastTrade

FROM yahoo

WHERE Ticker in ["MSFT", "YHOO"I, "INTC", "IBM"]
AND LastTrade < 100

Plan constructed:

select(truetrue,true,false,false,false, , int 2

INTATT:0/0 < 100)
regexfn(com.oroinc.text.regex.Perl5Pattern@223c3c

join-submit ([http://quote.yahoo.com/q?s=, 0, &d=vl&o=t]

constanttable ([MSFT, YHOO, INTC, IBM]

High Level Explanation:

The constanttable operator creates a data structure to hold the Ticker MSFT, YHOO,
INTC and IBM, as they form the basis of the search. Then the join-submit operator
performs the actual extraction of the attributes, using the exact web address given (Yahoo
in this case) and the regular expression provided by the regex fn operator. The results
from this concurrent execution are joined together in an appropriate fashion. The select
operator selects the necessary attributes according to the request of the original query.
This select operator also performs the boolean operations to test whether the last trading
price of each of the four companies lies below $100. The companies with last trading
prices below $100 are returned to the receiver along with all the other information
requested; the ones with last prices above $100 are taken out.

37

Chapter 6

Implementation Details

6.1 Implementation Language

The entire system implementation was done in Java, with the objective being to develop a
wrapper engine that could be integrated into the COIN system and several other
architectures including client software on personal computers. There are numerous
reasons to choose Java over other languages - it is platform independent, it supports
interactive content on web pages, it is well suited to distributed networking applications
because of its built-in networking support, and it directly supports the object-oriented
concepts of encapsulation, inheritance, messages and methods, and data hiding. Most
important of all, however, is the availability of threads; this is the main reason for
choosing Java as the language of implementation. Threads allow for concurrent data
accesses, which are the primary means of reducing bottlenecks that may develop when
trying to import data not stored on the local disk. On a sequential execution, the latency
of the application is the combined time of all remote accesses; in comparison, on a
concurrent execution, the latency can be reduced to just the time of the longest network
access. Programming in threads to facilitate concurrency could be done with another
language but the processes that these languages launch will cause too much of a drain on
the processor. Semantec Visual Cafe Version 3 is the chosen Java compiler because it
offered the ability to compile Java code into Native Win32 DLLs and into Win32
executable.

6.2 Modules

The implementation of the wrapper engine includes a number of different modules for the
convenient reuse of often required functionality. The purpose of this chapter is to
introduce these modules. Within the Java implementation, these modules are written as
different packages; in order to use any of them, a programmer must import the package
and refer to the exported variables of the package. Figure 6.1 provides a brief overview
of the interaction between the different modules.

38

Module Dependency

Data
Module

Figure 6.1: Module Dependency

6.2.1 Network Access Module

All remote network accesses are done via the Hypertext Transfer Protocol (HTTP) or the
File Transfer Protocol (FTP). This module is implemented as a package called
accessdata using the base java.net package. The package contains three classes, together
they function to retrieve data from remote network sources and return the results as an
output stream buffer. Figure 6.2 shows the inheritance tree of the accessdata package.

39

Accessdata Classes Inheritance Tree

get_pages

t
data3access

t
web_page

Figure 6.2: Accessdata Classes Inheritance Tree

6.2.2 Boolean Operations Module

The boolean operations module is implemented as a package called bool op. The

package facilitates the representation of specific boolean elements as well as the use and

the evaluation of various conditional statements. The base operators (true, false) always

return their named values (true, false). Another set of operators (and, or, not) use the

results from other operators to determine their value. Hence, a condition can be

described as a tree of boolean operator. This structure lent itself to a few optimizations in

the experimental concurrent implementation, as not all sub-trees had to be evaluated.
The following figure shows the inheritance relationship between the different classes in
the bool op package.
bool-op == const bool op I static boolop I normbool-op
constboolop == true I false

normboolop == not bool op I and boolop bool op I or bool op bool-op
staticbooleval == static-op data data
static-op == =>|<=|<

40

BooLop Classes Inheritance Tree

bool-op

bool and bool or bool e Uo e boolnot

boolcomp

bool-lt

booljlteq

Ibool_gt b

typedboolop

str-bool-op

intboolop

bool-gteq float-boolop

Figure 6.3: Bool op Classes Inheritance Tree

6.2.3 Data Module

This module is implemented as a package called data. It is used as a container data

structure to make manipulation of single and multiple pieces of data more manageable.
The main classes within this module are the datatable and the tuple classes. A tuple is a

container for attributes and a datatable a container for tuples. Figure 6.4 shows the data
classes inheritance tree.

41

ol-

Data Classes Inheritance Tree

data

datatable tuple container dataint data_str datafloat

dataLintZconst data-float att

dataintatt data/floatconst

dataEstr-att

Figure 6.4: Data Classes Inheritance Tree

6.2.4 Pattern Matching Module

The pattern matching module uses a commercial regular pattern matcher in Java to

conduct data extraction. The package downloaded and used is the OROMatcher version
1.1. The OROMatcher package is a set of regular expression pattern matching and utility

classes for Java descended from a package originally written by Daniel Saverese. It is

geared toward programmers who are already familiar with regular expressions, having
used them with other languages, and who now want to apply them in their Java programs.
In brief, a regular expression is a pattern denoted by a sequence of symbols representing a

state-machine or mini-program that is capable of matching particular sequences of

characters. Regular expression provides a very powerful technique for matching and
extracting data from semi-structured web pages.

6.2.5 Relational Operations Module

Relational operations module is implemented as a package called relational-op. Main

classes include project, union, join, select, regex, scan, submit, multiscan and

constanttable. Figure 6.5 provides the class inheritance tree of the classes within

relational-op.

42

[

data-str-const I

Relational op Classes Inheritance Tree

relational op

projec no join constanttable seet regex scanj

sub rel-op

multiscan submit

Figure 6.5: Relationalop Classes Inheritance Tree

6.2.6 SQL Parser Module

The SQL parser is generated by the Java Compiler Compiler (JavaCC) automatically with
a limited grammar as input. The resulting parser is not an exact SQL parser because of
the limited grammar. The advantage is that it provides more flexibility in terms of the
amount and the variety of queries that can be processed and parsed. The disadvantage of
the limited grammar is that the resulting parser is not mutually compatible with standard
SQL queries. A complete SQL parser can be implemented by feeding into the parser
generator the full set of grammar describing the semantics of SQL. JJTree, the tree
building preprocessor which is used with JavaCC, enables the generation of a
compilation tree that hold the components of the SQL that are needed. The compilation
tree is converted into an internal SQL data structure, which is used throughout the
planning.

6.2.7 Specification File Parser Module

The specification file parser is written from scratch because of the simplicity of the
design of the specification files. This compiler uses the same regular expression
technology as in data extraction. As with the SQL compilation, there is a SPEC data
structure that holds all the relevant parameters as needed.

6.2.8 Planner Module

The planner module is implemented as a collection of classes. They include planner,
SPEC, SQL, constant, path, condition, conditionSet, attribute, attributeSet, and several

43

others. The main classes are the planner which determines the plan and also call the
execution engine to carry out the query execution, the SQL which holds the data structure
for the parsed SQL query, and the SPEC which holds the data structure for the parsed
specification files.

6.2.9 Interface Module

The interface module is implemented to facilitate testing and usage of the execution
engine and the planner. It is implemented as a simple applet; it allows the user to input
the appropriate query and it returns the result on another frame within the same applet.
The interface is primitive and it does not have any exception handling mechanisms to
catch input errors and other illegal query accesses. However, it suffices for our stated
purpose to test and to facilitate the initial usage of the wrapper engine. The eventual
objective of our research effort is to create a more intelligent and user-friendly interface
or to incorporate our engine into the existing COIN architecture to allow access to the
wrapper engine via existing interfaces. Figure 6.6 below provides a shot of the interface
as implemented.

Interface of the Wrapper Engine

Figure 6.6: Interface of the Wrapper Engine

44

pplet started.

6.3 Scheduling Threads

Limited machine resources require that a monitor be used to ensure that the number of
active data access threads does not threaten to use all the available resources. This
necessitated the implementation of a scheduler that controlled the total number of access

threads that could be opened simultaneously. Access operators can only make request for

data through the scheduler. Once this request is made, the scheduler will assign a new

accessthread to the operator's request. The thread will only be started if the number of

active requests is below some pre-determined number. In addition to being a system that

controls the use of machine resources, this functionality can actually be used as a tuning

device for the system. Given that the trade-off is between network parallelism and thread

processing overhead, changing the maximum number of active threads can affect both of

these factors and then observations can be used to determine what sort of dependency the

total execution time has on the two factor, and hence find the best setting. In the current

implementation, the maximum number of active data access threads is 25. Preliminary

experiments conducted have shown the thread maintenance scheduling overhead will

become excessive once the number of active threads goes above 25. The accessthread
will initialize the data access for the request and deliver the resulting stream to the

operator that originally submitted the request to the scheduler. Figure 6.7 shows the

scheduler's operation. All the data that is read is returned to the access operators as an

output stream.

Scheduler

Scheduler

Figure 6.7: Scheduler

45

6.4 Concurrent Execution

The system is operated on a single processor machine, but the model used to implement
the concurrency was geared towards leveraging the ability for the network parallelism
and hence reducing the average network access time. Although the average access time

may be reduced, there is a definite overhead in the scheduling of various threads. Hence,
the sequential version will require less local processing. However, the concurrent model
is fairer in that it produces early results as soon as possible and is able, in this task, to
avoid bottlenecks created by data sources with low data rates (e.g. "slow" web sites). As
most of the time is spent on the network retrieving data, the higher network parallelism

(as per requests) should result in an improved performance (although this is bound by the
network bandwidth and the servers' ability to handle multiple requests).

Figure 6.8 shows the concurrency model implemented in the system. The concurrency

goes both vertically and horizontally. Each operator is a thread that will start to execute
once the engine begins executing the plan. This allows interleaving of lower level

instructions, hence increased parallelism. The fact that all the operators can execute
concurrently maximizes the number of active access nodes, where the higher network
parallelism is manifested.

Concurrency Model

/n

Figure 6.8: Concurrency Model

46

6.5 Dynamic Optimization

Whether the engine is to be used for ad hoc queries or queries which can be compiled,
planned and optimized in advance, the availability of dynamic optimization mechanisms
is critical for the system to be able to react to unpredictable and uncontrolled behaviors

and performances of the network and sources. Network access is prone to slow or non-

responding servers and networks being randomly congested. One simple way to reduce

the system susceptibility to these random events is to eliminate unnecessary access.

Dynamic optimization can help to reduce unnecessary access to data sources. Consider
the following query:

SELECT Ticker, LastTrade, Headline

FROM usatoday, fastquote
WHERE Ticker in ["AAPL", "IBM"] AND LastTrade>100

Ticker and Headline are attributes for the Fastquote web site, while Ticker, LastTrade are

attributes for the USA Today site. There are two ways to return the correct result of this

query. The first involves concurrently accessing USA Today pages to find the last
trading price of Apple and IBM, while simultaneously accessing Fastquote pages to find

all recent headlines involving Apple and IBM. The results are then tabulated and the

relational operations are evaluated. Because the stock price of Apple is trading below
100 and those of IBM are trading above, all the information about Apple are taken out,
returning only the last trading price and the headlines of IBM to the receiver. The second

method involves getting the last trading price of Apple and IBM. Relational operations

are performed next to take out Apple. Only then are sites from Fastquote accessed to get
the recent headlines of IBM. Obviously, the second method, one involving dynamic

optimization, is much better than the first because it eliminates one access to Fastquote

for Apple's headlines. The implementation uses the second method. The heuristic for

choosing the second method is to choose to access sites involving relational operations
first and suspend access to all other sites. Relational operations can then be performed to

screen out unnecessary accesses before further network accesses are resumed. Although
some advantages from concurrent execution are sacrificed to implement this feature,
experiences with remote access reveal that the bottleneck often lies with network delays
while the loss in sequential execution against concurrent execution is minor in
comparison.

Consider the following query:
SELECT Ticker, LastTrade, Headline
FROM yahoo, bloomberg

WHERE Ticker in ["AAPL", "IBM", .. , "INTC"]

Ticker and Headline are attributes for the Bloomberg web site, while Ticker and

LastTrade are attributes for the Yahoo site. Assume for the example that there are 25

stocks in the portfolio and the number of active threads allowed is 25. There are two

ways to return the result to the query. This first is to concurrently access yahoo sites and

to get the last trading price of the 25 stocks. Then issue 25 requests to Bloomberg for

headlines. The second method does the reverse - Bloomberg is accessed first for

headlines. However, because each company has multiple headlines, the resulting data

47

table for this intermediate result has many more than 25 entries. Thus, this system will
need to issue many more than 25 requests for last trading prices of the stocks. Again, it is
obvious which method is better; with dynamic optimization, the first method is chosen
and unnecessary network accesses can be eliminated and avoided. This example is much
more difficult to implement than the first. The application cannot know in advance
which of the various network accesses will generate unnecessary accesses in the future.
Instead of issuing 25 threads to Yahoo sites or 25 threads to Bloomberg sites, the current
implementation issues half to them to Yahoo and half to Bloomberg to determine which
of the two methods is optimal. The remaining execution follows that of optimal method
described.

There are also many cases involving sources that are non-responding, taking into
consideration that useful work towards answering the original query can still be done
with the remaining sites. In future implementation, a partial answer could be returned
using a form of query scrambling.

48

Chapter 7

Conclusion and Future Research

7.1 System Evaluation

The wrapper engine implemented, running as a server process, has been tested with
hundreds of queries and it has proven to be useful and reliable. The first run of the

engine is typically very slow, often requiring more than one to two minutes of execution
time. This can be explained because the local processor needs this overhead processing
time to load all the Java classes into its memory and operating systems. Further runs of

an opened application are very fast; even complicated and work-intensive queries are
usually executed within one minute of query submission.

The system can be easily incorporated into a larger framework, such as COIN. The query
execution, the planner and the optimizer are all necessary components; together they will
serve as a back-end web wrapper engine and they are compatible with the various front-
end applications available within COIN.

7.2 Future Research and Concluding Thoughts

There are numerous improvements to be made within the existing design and
implementation of the wrapper engine:
* An intelligent mechanism to facilitate the process of maintaining and generating

specification files. This will require some additional research and design; in
particular, it can be very difficult for users unfamiliar with the system to create
specification files even with the help of an intelligent tool and a friendly interface.

" Current implementation uses a pseudo-SQL parser generated by a parser-generator.

A pseudo-SQL grammar is fed into a JAVA language parser and it generates a parser

according to those rules. Future implementation can provide a more complete SQL
parser.

" Extension of the engine to accept non-HTML sources, for example XML sites. This

is an important extension because other sources, such as XML, can provide a better

information structure to facilitate mediated querying in a remote, distributed fashion.

49

" The current planner is not implemented to find the most optimal solution. The
algorithm used is depth-first search but without expanding all the leaves at any given
node of the planning tree. Hence, the planner finds a reasonably good solution but it
is not guaranteed to be the optimal one. A novel approach must be employed to find
the optimal path because the time required to correctly depth-first search the query
execution tree is simply too long and unjustified.

" The current implementation does not allow for nested SQL query. The issue with this
problem begins with our SQL parser that cannot parse nested query in the first place.
In addition, changes in the implementation are required to return the results of a query
as input of another even in the presence of a complete SQL parser.

* Future implementation should also allow for access to password protected sites as
well as data sites that require cookies.

" Network delays are major issues in spite of concurrent execution. Often useful work
is accomplished but the query cannot be completed because part of it involves
accessing information from busy or shut-downed sites. Future design and
implementation should look into this area of concern.

* The planner and executioner can be designed to aggregate all the queries to relations
in the same data source, so that each source would only need to be assessed once.

Some of these further works can be achieved in a matter of a few days; others involve a
coordinated effort among many different components of the system. This list is by no
means exhaustive as possibilities of future research are unlimited. Yet, one should not be
discouraged by the current design and implementation limitations. From a simple,
sequential wrapper engine to the current complex and concurrent implementation, a lot of
grounds have been covered in web wrapper technology development in a very short span
of time.

50

References

[1] Ambrose, R. A Lightweight Multi-Database Execution Engine. MIT Sloan
School of Management CISL Working Paper (1998).

[2] Bressan, S. and Bonnet, P. Extraction and Integration of Data from Semi-
structured Documents into Business Applications. Conference on Industrial
Applications of Prolog (1997).

[3] Bressan, S., Fynn, K., Goh C., Madnick, S., Pena, T., and Siegel, M. Overview
of a Prolog Implementation of the Context Interchange Mediator. Proceedings of
the Fifth International Conference and Exhibition on the Practical Applications of
Prolog (1997).

[4] Bressan, S., Goh, C., Fynn, K., Jakobisiak, M., Hussein, K., Lee, T.,
Madnick, S., Pena, T., Qu, J., Shum, A., and Siegel, M. Context Interchange
Mediator Prototype. ACM SIGMOD International Conference on Management of
Data (1997).

[5] Fynn, Kofi. A Planner/Optimizer/Executioner for Context Mediated Queries.
MIT Sloan School of Management CISL Working Paper #97-0 7 (1997).

[6] Goh, C. Representing and Reasoning about Semantic Conflicts in Heterogenous
Information Systems. MIT Sloan School of Management CISL Working Paper
#97-01 (1997).

[7] Gruser, J., Raschid, L., Vidal, M., Bright, L. Wrapper Generation for Web
Accessible Data Sources. University ofMaryland, In Proceedings CoopIS (1998).

[8] Jakobisiak, Marta. Programming the Web - Design and Implementation of a
Multidatabase Browser. MIT Sloan School of Management CISL Working Paper
#96-04 (1996).

[9] Lee, Y. Rainbow: Prototyping the DIOM Interoperable System. University of
Alberta (1996).

[10] Liu, L. and Pu, C. A Metadata Based Approach to Improving Query
Responsiveness. Proceedings of the 2nd IEEE Metadata Conference (1997).

[11] Marais, H. WebL - A Programming Language for the Web. Compaq Computer
Corporation Systems Research Center (1998).

[12] Ramakrishnan, Raghu. Database Management Systems. University of Wisconsin

(1998).

51

[13] Shah, S. Design and Architecture of the Context Interchange System. MIT Sloan
School of Management CISL Working Paper #98-05 (1998).

[14] Shum, A. Open Database Connectivity Development of the Context Interchange
System. MIT Sloan School of Management CISL Working Paper #96-07 (1996).

52

Appendix A: User's Manual

Modules
* Network Access Module: Java source and class files of this module are kept in the

wrapper\accessdata directory and the corresponding files are compiled into a
accessdata. lib library object.

* Boolean Operations Module: Java source and class files of this module are kept in
the wrapper\boolean operator directory and the corresponding files are compiled
into a bool_op.lib library object.

* Data Module: Java source and class files of this module are kept in the
wrapper\datatype directory and the corresponding files are compiled into a data.lib
library object.

* Pattern Matching Module: Java source and class files of this module are kept in the
wrapper\regexp\com\oroinc\text\regex directory.

* Relational Operations Module: Java source and class files of this module are kept in
the wrapper\rel op directory.

* SQL Parser Module: Java source and class files of this module are kept in the
wrapper\planner\SQL directory.

* Specification File Parser Module: Java source and class files of this module are kept
in the wrapper\planner\SPEC directory.

" Planner Module: Java source and class files of this module are kept in the
wrapper\planner directory.

" Interface Module: Java source and class files of this module are kept in the
wrapper\demol directory.

Because of the level of dependency amongst the various modules, source and class files
must be kept in their corresponding directory before successful attempts can be made to
recompile the source code.

Specification Files
All the specification files must be kept in the registry directory and have the spec

extension. Simply use the name of the file in the query statement will allow the engine to
identify and use the specification file accordingly. In creating the file, you need to find
an appropriate data source and, within it, the appropriate regular expression. Place the
name of the attribute along with the regular expression required to extract it, separated by
colon, between two pairs of ##'s. For example: ##Ticker(.*?)##. The specification files

are a major part of the wrapper engine and it ceases to function in the absence of

appropriate and properly maintained specification files. A system administrator is
required to regularly update and monitor the data sources and the regular expression as

specified within the specification files for changes in the remote data sources.

53

Appendix B: Sample Specification Files

Yahoo Specification

<HEADER>
<RELATION>yahoo</RELATION>
<HREF>GET http://quote.yahoo.com</HREF>
<SCHEMA> Ticker:string, Time:string,

LastTrade:real, Changepts:real, Changepct:real,

Volume:integer</SCHEMA>
</HEADER>
<BODY>

<PAGE>
<METHOD> GET </METHOD>
<URL>
http://quote.yahoo.com/q?s=##Ticker##&d=vl&o=t
</URL>
<PATTERN>.*?\s+##Time: (.*?)##\s+<

b>##LastTrade:(.*?)##\s+##Changepts:(.*?)##\s
{2,}##Changepct:(.*?)##\s+##Volume:(.*?)##
<small> </PATTERN>
</PAGE>

</BODY>

Fastquote Specification

<HEADER>
<RELATION> fastquote </RELATION>

<HREF> GET http://fast.quote.com </HREF>

<SCHEMA> Ticker:string, NewsURL:string,

Headline:string </SCHEMA>

</HEADER>
<BODY>

<PAGE>

<METHOD> GET </METHOD>

<URL>

http://fast.quote.com/fq/quotecom/headlines?mode=
headlines&symbols=##Ticker##&mode=NewsHeadlines

</URL>
<PATTERN> ##Headline: (.*?)##
 </PATTERN>

</PAGE>

</BODY>

54

Nasdaq Specification

<HEADER>
<RELATION> nasdaq </RELATION>

<HREF> GET http://www.nasdaq-amex.com/ </HREF>

<SCHEMA> Ticker:string, Cname:string</SCHEMA>

</HEADER>

<BODY>

<PAGE>

<METHOD> GET </METHOD>

<URL> http://www.nasdaq-

amex.com/asp/quotes-multi.asp?mode=Stock&symbol=#

#Ticker##</URL>
<PATTERN><td colspan=4

valign=middle>##Cname:(.*?)##</PATTE
RN>

</PAGE>
</BODY>

Bloomberg Specification

<HEADER>
<RELATION> bloomberg </RELATION>

<HREF> GET http://quote.bloomberg.com </HREF>

<SCHEMA> Ticker:string, LastTrade:Real,

Changepts:String, Changepct:String, High:Real,

Low:Real, Open:Real, Volume:Real, NewsURL:string,

Headline:string </SCHEMA>

</HEADER>

<BODY>
<PAGE>

<METHOD> GET </METHOD>

<URL>
http://quote.bloomberg.com/analytics/bquote.cgi?v
iew=bq&version=marketslong99.cfg&ticker=##Ticker#

</URL>
<PATTERN>
<SPAN

CLASS="headln">##Headline:(.*?)##

</PATTERN>

</PAGE>
</BODY>

55

Appendix C: Query Trace

The trace is not entirely self-explanatory to anyone unfamiliar with the workings of the

application. Comments italicized and in bold are annotations to provide some

understanding.

Query 1

SELECT

FROM
WHERE

Ticker, LastTrade, High, Low, Headline

usatoday, fastquote

Ticker in ["AAPL", "IBM"]

Query 1 Trace

query begins by parsing the SQL query
Start
selectnode
selectlist
Column: Ticker
Column: LastTrade
Column: High
Column: Low
Column: Headline
fromnode
Identifier: usatoday
Identifier: fastquote

wherenode
Binary operator : null
comparator: in
Column: Ticker
inlist
Value: "AAPL"
Value: "IBM"

SQL Parser Version 1.1: SQL program parsed successfully.
Done with step 1

retrieves and parses the appropriate specification files

2 spec files need for this query
Number of spec files: 2
first file - specification for USA Today
c:/wrapper/registry/usatoday.spec
Got the table
http://quote.bloomberg.com/usatoday/bquote.cgi?ticker=
Ticker
<TD ALIGN=CENTER VALIGN=TOP>

LastTrade:(.*?)
</TD><TD ALIGN=CENTER VALIGN=TOP><FONT FACE="arial,helvetica" SIZE="-

1 ">##Changepts:(.*?)##</TD><TD ALIGN=CENTER VALIGN=TOP><FONT
FACE="arial,helvetica"
SIZE="-1 ">##Changepct:(.*?)##</TD><TD ALIGN=CENTER VALIGN=TOP><FONT

FACE="arial,helvetica" SIZE="-1 ">##High:(.*?)##</TD><TD ALIGN=CENTER
VALIGN=TOP><FONT FACE="arial,helvetica" SI

56

ZE="-1 ">##Low:(.*?)##</TD><TD ALIGN=CENTER VALIGN=TOP>##Open:(.*?)##</TD><TD ALIGN=CENTER
VALIGN=TOP><FONT FACE="arial,helvetica"
SIZE="-1 ">##Volume:(.*?)##
</TD><TD ALIGN=CENTER VALIGN=TOP>

Changepts:(.*?)
</TD><TD ALIGN=CENTER VALIGN=TOP><FONT FACE="arial,helvetica" SIZE="-
1 ">##Changepct:(.*?)##</TD><TD ALIGN=CENTER VALIGN=TOP><FONT

FACE="arial,helvetica" SIZE="-1 ">##High:(.*?)##</FON
T></TD><TD ALIGN=CENTER VALIGN=TOP><FONT FACE="arial,helvetica" SIZE="-
1 ">##Low:(.*?)##</TD><TD ALIGN=CENTER VALIGN=TOP>##Open:(.*?)##</TD><TD
ALIGN=CENTER VALIGN=TOP><FONT FACE="arial,helvetica" SIZE="-

1 ">##Volume:(.*?)##
</TD><TD ALIGN=CENTER VALIGN=TOP>
Changepct:(.*?)
</TD><TD ALIGN=CENTER VALIGN=TOP><FONT FACE="arial,helvetica" SIZE="-
1 ">##High:(.*?)##</TD><TD ALIGN=CENTER VALIGN=T
OP>##Low:(.*?)##</TD><TD ALIGN=CENTER
VALIGN=TOP>##Open:(.*?)##</TD><TD
ALIGN=CENTER VALIGN=TOP>##Volume:(.*?)##
</TD><TD ALIGN=CENTER VALIGN=TOP>

High:(.*?)
</TD><TD ALIGN=CENTER VALIGN=TOP><FONT FACE="arial,helvetica" SIZE="-

1 ">##Low:(. *?)##</TD><TD ALIGN=CENTER VALIGN=TOP><FONT

FACE="arial,helvetica" SIZE="-l ">##Open:(.*?)##</TD><TD
ALIGN=CENTER VALIGN=TOP><FONT FACE="arial,helvetica" SIZE="-
1 ">##Volume:(.*?)##
</TD><TD ALIGN=CENTER VALIGN=TOP>
Low:(.*?)
</TD><TD ALIGN=CENTER VALIGN=TOP><FONT FACE="arial,helvetica" SIZE="-
I ">##Open:(.*?)##</TD><TD ALIGN=CE
NTER VALIGN=TOP>##Volume:(.*?)##
</TD><TD ALIGN=CENTER VALIGN=TOP>
Open:(.*?)
</TD><TD ALIGN=CENTER VALIGN=TOP><FONT FACE="arial,helvetica" SIZE="-
1 ">##Volume:(.*?)##
</TD><TD ALIGN=CENTER VALIGN=TOP>
Volume:(.*?)

Made the parser
second file: specification for Fastquote
c:/wrapper/registry/fastquote.spec
Got the table
http://fast.quote.com/fq/quotecom/headlines?mode=headlines&symbols=
Ticker
&mode=NewsHeadlines
<A HREF="
NewsURL:(.*?)
">##Headline:(.*?)##

">
Headline:(.*?)

Made the parser
Done with step 2

57

attributes are taken from the query and stored into an array-like structure
((class: class collections.LLMap) (size: 13) (elements: ((83) (fastquote)) ((82) (NewsURL)) ((81)
(Volume)) ((80) (Open)) ((79) (Changepct)) ((78) (Changepts)) ((77) (Headline)) ((76)
(Low)) ((75) (High)) ((74) (LastTrade)) ((73) (Ticker)) ((72) (bloomberg)) ((71) (usatoday))))

attributes required by the query
Ticker
LastTrade
High
Low
Headline

search for plan to execute the mediated query
Now to start the actually plan phase....
Plan found...
a plan is found
select(true,true,true,true,false,true, , TRUE)
regex fn(com.oroinc.text.regex.Perl5Pattern@2269c4)
join-submit ([http://fast.quote.com/fq/quotecom/headlines?mode=headlines&symbols=,0,
&mode=NewsHeadlines])
select(true,true,false,false,true,true,false,false, , TRUE)

regex fn(com.oroinc.text.regex.Perl5Pattem@226afD)

join-submit ([http://quote.bloomberg.com/usatoday/bquote.cgi?ticker-, 0,])
constanttable ([AAPL, IBM])
Done with step 3

query execution; remote data sources are accessed and results formulated according to

the query execution plan
In select, run()
Data display: done
In regex, run()
In multiscan, run()
In select, run()
Data display: done
In regex, run()
In multiscan, run()
In constanttable, run()
In constanttable: done
In multiscan: done

scanning the USA Today sites first
IBM,209.1875,+4.3750,+2.14,211.0000,203.4375,208.5000,4515500
in select:

select the appropriate attributes; in this case Ticker, LastTrade, High, Low
attributes: true,true,false,false,true,true,false,false,
cond: TRUE
IBM
209.1875
+4.3750
+2.14
211.0000
203.4375
208.5000
4515500
AAPL,46.0000,+3.0000,+6.98,47.1250,44.0000,44.0000,13140600
in select:

58

attributes: true,true,false,false,true,true,false,false,
cond: TRUE
AAPL
46.0000
+3.0000
+6.98
47.1250
44.0000
44.0000
13140600
In regex fn:done
In select: done
In multiscan: done

scanning the Fastquote sites second
IBM,209.1875,211.0000,203.4375,news?story=9966179&symbols=IBM,IBM Design Center Helps
Customers Build Advanced e-businesses
in select:
select the appropriate attributes; in this case Ticker, LastTrade, High, Low, Headline
attributes: true,true,true,true,false,true,
cond: TRUE
IBM
209.1875
211.0000
203.4375
news?story=9966179&symbols=IBM
IBM Design Center Helps Customers Build Advanced e-businesses
IBM,209.1875,211.0000,203.4375,news?story=9966169&symbols=IBM,New IBM S/390 G6 Servers
Power e-business and ERP, Extend Leadership In Data Centers
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
IBM
209.1875
211.0000
203.4375
news?story=9966169&symbols=IBM
New IBM S/390 G6 Servers Power e-business and ERP, Extend Leadership In Data Centers

IBM,209.1875,211.0000,203.4375,news?story=9965085&symbols=IBM,WALL ST WEEK AHEAD -
Bulls navigate data, Goldman
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
IBM
209.1875
211.0000
203.4375
news?story=9965085&symbols=IBM
WALL ST WEEK AHEAD - Bulls navigate data, Goldman
IBM,209.1875,211.0000,203.4375,news?story=9964954&symbols=IBM,RealNetworks Releases MP3

Software
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
IBM
209.1875

59

211.0000
203.4375
news?story=9964954&symbols=IBM
RealNetworks Releases MP3 Software
IBM,209.1875,211.0000,203.4375,news?story=9963163&symbols=IBM,IBM To Unveil Powerful
Mainframe
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
IBM
209.1875
211.0000
203.4375
news?story=9963163&symbols=IBM
IBM To Unveil Powerful Mainframe
IBM,209.1875,211.0000,203.4375,news?story=9962419&symbols=lBM,IBM To Unveil Powerful
Mainframe
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
IBM
209.1875
211.0000
203.4375
news?story=9962419&symbols=IBM
IBM To Unveil Powerful Mainframe
IBM,209.1875,211.0000,203.4375,news?story=9961295&symbols=IBM,New IBM mainframes to ship in
May, ahead of plan
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
IBM
209.1875
211.0000
203.4375
news?story=9961295&symbols=IBM
New IBM mainframes to ship in May, ahead of plan
IBM,209.1875,211.0000,203.4375,news?story=9961160&symbols=IBM,IBM may testify for US in

Microsoft case -NY Times
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
IBM
209.187
5
211.0000
203.4375
news?story=9961160&symbols=IBM
IBM may testify for US in Microsoft case -NY Times
IBM,209.1875,211.0000,203.4375,news?story-9953491&symbols=IBM,SmartPortfolio.Com Announces

Investment Opinion
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
IBM
209.1875

60

211.0000
203.4375
news?story=995349 1&symbols=IBM
SmartPortfolio.Com Announces Investment Opinion
IBM,209.1875,211.0000,203.4375,news?story=9951266&symbols=lBM,U.S. names 12 firms to vie for
$25 bln in contracts

in select:
attributes: true,true,true,true,false,true,
cond: TRUE
IBM
209.1875
211.0000
203.4375
news?story=9951266&symbols=IBM
U.S. names 12 firms to vie for $25 bln in contracts
AAPL,46.0000,47.1250,44.0000,news?story=9953491&symbols=AAPL,SmartPortfolio.Com Announces
Investment Opinion
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
AAPL
46.0000
47.1250
44.0000
news?story=9953 4 91&symbols=AAPL
SmartPortfolio.Com Announces Investment Opinion
AAPL,46.0000,47.1250,44.0000,news?story=9947436&symbols=AAPL,DIARY - U.S. technology news

events from May 3
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
AAPL
46.0000
47.1250
44.0000
news?story-9947436&symbols=AAPL
DIARY - U.S. technology news events from May 3
AAPL,46.0000,47.1250,44.0000,news?story=9947183&symbols=AAPL,Singapore-Based Singapore
Computer Systems Agrees to Distribute F5 Networks' Products
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
AAPL
46.0000
47.1250
44.0000
news?story=9947183&symbols=AAPL
Singapore-Based Singapore Computer Systems Agrees to Distribute F5 Networks' Products

AAPL,46.0000,47.1250,44.0000,news?story=9946495&symbols=AAPL,ValleyJobs.com Offers Free Job

Postings for Silicon Valley Companies
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
AAPL
46.0000
47.1250

61

44.0000
news?story=9946495&symbols=AAPL
ValleyJobs.com Offers Free Job Postings for Silicon Valley Companies
AAPL,46.0000,47.1250,44.0000,news?story=9944102&symbols=AAPL,SOFTBANK Names Roizen
Partner & Portfolio Mentor Capitalist
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
AAPL
46.0000
47.1250
44.0000
news?story=9944102&symbols=AAPL
SOFTBANK Names Roizen Partner & Portfolio Mentor Capitalist
AAPL,46.0000,47.1250,44.0000,news?story=9938629&symbols=AAPL,Japan PC Shipments Jump 10%
In FY98 - Study 04/29/99
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
AAPL
46.0000
47.1250
44.0000
news?story=9938629&symbols=AAPL
Japan PC Shipments Jump 10% In FY98 - Study 04/29/99
AAPL,46.0000,47.1250,44.0000,news?story=9933445&symbols=AAPL,Wright Williams & Kelly Adds
Another Top 10 IC Manufacturer to Its TWO COOL Client List
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
AAPL
46.0000
47.1250
44.0000
news?story=9933445&symbols=AAPL
Wright Williams & Kelly Adds Another Top 10 IC Manufacturer to Its TWO COOL Client List

AAPL,46.0000,47.1250,44.0000,news?story=9927212&symbols=AAPL,Investors Forecast Surveys Show

Optimism in Net and Tech Stocks for This Friday.
in select:
attributes: true,true,true,true,falsetrue,
cond: TRUE
AAPL
46.0000
47.1250
44.0000
news?story=9927212&symbols=AAPL
Investors Forecast Surveys Show Optimism in Net and Tech Stocks for This Friday.

AAPL,46.0000,47.1250,44.0000,news?story=9917713&symbols=AAPL,Friends And Family Call

Entrepreneurs 'Paupers Or Princes, Bums Or Workaholics" -- Survey
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
AAPL
46.0000
47.1250
44.0000

62

news?story=9917713&symbols=AAPL
Friends And Family Call Entrepreneurs "Paupers Or Princes, Bums Or Workaholics" -- Survey
AAPL,46.0000,47.1250,44.0000,news?story=9907330&symbols=AAPL,Pixar sees big year ahead with
new "Toy Story"
in select:
attributes: true,true,true,true,false,true,
cond: TRUE
AAPL
46.0000
47.1250
44.0000
news?story=9907330&symbols=AAPL
Pixar sees big year ahead with new "Toy Story"
In regex fn:done
In select: done

63

SELECT
FROM
WHERE

Ticker, Time, LastTrade
yahoo

Ticker in ["MSFT", "YHOO", "INTC", "IBM"]
AND LastTrade < 100

Query 2 Trace

query begins by parsing the SQL query
Start
selectnode
selectlist
Column: Ticker
Column: Time
Column: LastTrade

fromnode
Identifier: yahoo

wherenode
Binary operator: and
comparator: in
Column: Ticker
inlist
Value: "MSFT"
Value: "YHOO"
Value: "INTC"
Value: "IBM"

comparator: <
Column: LastTrade
Value: 100

SQL Parser Version 1.1: SQL program parsed successfully.
2nd one
Done with step 1

retrieves and parses the appropriate specification files
1 spec file need for this query
Number of spec files: I
specification for Yahoo
c:/wrapper/registry/yahoo.spec
Got the table
http://quote.yahoo.com/q?s=
Ticker
&d=vl&o-t
.*?\s+
Time:(.*?)
\s+##LastTrade:(.*?)##\s+##Changepts:(.*?)##\s{2,}##Changepct:(.*?)##\s+##Volume:(.*?)##
<small>
\s+
LastTrade:(.*?)
\s+##Changepts:(.*?)##\s{2,}##Changepct:(.*?)##\s+##Volume:(.*?)## <small>
\s+
Changepts:(.*?)
\s{2,}##Changepct:(.*?)##\s+##Volume:(.*?)## <small>

64

\s{2,}
Changepct:(.*?)
\s+##Volume:(.*?)## <small>
\s+
Volume:(.*?)
<small>
Made the parser
Done with step 2

attributes are taken from the query and stored into an array-like structure
((class: class collections.LLMap) (size:9) (elements: ((77) (Volume)) ((76) (Changepct)) ((75)

(Changepts)) ((74) (Time)) ((73) (LastTrade)) ((72) (Ticker)) ((71) (yahoo)))
attributes required by the query
Ticker
Time
LastTrade
search for plan to execute the mediated query
Now to start the actually plan phase....
Plan found...
a plan is found
select(true,true,true,falsefalse,false, , int 2 :: INTATT:0/0 < 100)
regex-fn(com.oroinc.text.regex.Perl5Pattern@223c3c)
join-submit ([http://quote.yahoo.com/q?s=, 0, &d=vl&o-t])
constanttable ([MSFT, YHOO, INTC, IBM])
Done with step 3

query execution; remote data sources are accessed and results formulated according to
the query execution plan
In select, run()
Data display: done
In regex, run()
In multiscan, run()
In constanttable, run()
In constanttable: done
In multiscan: done
MSFT,12:41PM,79 9/16,+7/16,+0.55%,12,189,100
in select:
attributes: true,truetrue,false,false,false,
cond: int 2 :: INT ATT:0/0 < 100
MSFT
12:41PM
79 9/16
+7/16
+0.55%
12,189,100
scanning the Yahoo sites
YHOO,12:41PM,157 7/8,-3 15/16,-2.43%,2,070,600
in select:

select the appropriate attributes; in this case Ticker, Time, LastTrade
attributes: true,true,true,false,false,false,
relational operations on Last Trade
cond: int 2 :: INTATT:0/0 < 100
INTC,12:41PM,58 15/16,-9/16,-0.95%,7,513,400
in select:

65

attributes: true,true,true,false,false,false,
cond: int 2 :: INTATT:0/0 < 100
INTC
12:41PM
58 15/16
-9/16
-0.95%
7,513,400
IBM,12:41PM,238 9/16,+1 1/16,+0.45%,1,786,800
in select:
attributes: true,true,true,false,false,false,
cond: int 2 :: INTATT:0/0 < 100
In regex fn:done
In select: done

66

