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Chapter 1

Introduction

1.1 Background

Beamforming has been employed in telecommunications radar and antenna array

applications for many decades. The recent technological advancements in digital signal

processors have prompted beamforming to be utilized in source location, speech

enhancement, as well as many other broadband applications. While many source location

and beamforming algorithms have been developed, not too many of them yield

satisfactory real-time performance. Factors that lead to the degradation of system

performance are usually background noise and reverberation.

The conventional approach to minimize the detrimental effects of reverberation

often involves blind deconvolution. Blindness implies having no priori information about

the reverberant characteristics of the enclosure. Blindness is often assumed so that the

algorithms will be suitable for a wide variety of reverberant conditions. However, there

is no rule that says one cannot first access information about the reverberant

characteristics and then perform deconvolution accordingly.

The goal of this project was to outline a methodology for a beamformer to first

learn about the reverberant condition of the room during the setup stage. The information

will then facilitate the beamformer to re-calibrate itself and create filters accordingly for

future real-time signal processing. The conventional approach dictates blind

deconvolutions to be performed in order to offset some unknown effects. The

beamformer of this project will first learn what kind of effects a room has on a known
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speech signal and then recover the future speech accordingly. As chapter 7 will show,

the beamformer is capable of learning about its environment under certain conditions.

1.2 The Intelligent Examination Room Project

The research conducted for this thesis was part of the effort that went into the

Intelligent Examination Room project, sponsored by Kaiser Permanente. The goal of this

project is to design and implement a beamformer that is capable of:

e locating the doctor in the room

" recording the doctor speech

" attenuating undesirable noise

This research project has two main focuses: vision and room acoustics. The

vision part investigated ways to improve beamforming using information from a video

camera. The room acoustics part developed a methodology for a beamformer to learn

about its reverberant environment a during setup stage and re-calibrate itself accordingly

for future real-time signal processing.

1.3 Overview

The following gives an outline of the topics covered in this thesis:

* Chapter 2 covers the theory behind beamforming, the parallel between spatial

filter design and temporal filter design, and basic localization techniques.

* Chapter 3 covers the basics of adaptive filtering and outlines a few common

adaptive filtering algorithms.
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* Chapter 4 covers the overall system design, including mircrophone

preamplication, digital compensation filters, as well as different aspects of the

beamformer design.

* Chapter 5 covers a methodology for the beamformer to learn about its

reverberant environment.

* Chapter 6 covers implementation and discusses some technical issues

countered.

* Chapter 7 covers experimental results and analysis.

* Chapter 8 includes conclusions and possible future application for this project.
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Chapter 2

Beamforming Theory

Beamforming is a terminology given to a large collection of array processing

algorithms that focus the array's signal-capturing capabilities in a pre-selected direction.

The main lobe of an array's directivity pattern is called a beam, analogous to the beam of

a flashlight. Delay-and-sum beamforming, a classic array signal processing algorithm,

"steers". the beam to the desired direction by inserting appropriate delays into sensor

outputs and summing the output signals to positively reinforce the desired signal with

respect to the noise and waves from another direction.[1] One way to characterize the

beam is through its array pattern. A table is included at the end of this chapter for quick

equation reference.

2.1 Array Pattern

Suppose a plane wave s(t) propagates towards the beamformer with M equally-

spaced (of distance d) sensors at an angle. (See Figure 2.1) The wavefield within the

array's aperture can be expressed by [1]:

f(e,t)= s(t - a " - ) (2.1)

where d" is the slowness vector (with magnitude of 1/c ) that indicates propagation

direction and i is the location vector.

10



Figure 2.1 Plane wave propagates towards microphone array

Each sensor m has an output of

y,,(t) = s(t -e - ,,,) (2.2)

The output of the delay-and-sum beamformer that assumes the propagation direction to

be d (and therefore "points" towards -a) can be written as a weighted sum of M

different sensors:

M-1

z(t)= I WS(t +(a -ao) -im) (2.3)

From equation 2.3 it is easy to see that z(t) is the faithful reproduction of the original

signal s(t), multiplied by a constant, when the beamformer assumes the same direction as

11
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the propagation direction of the signal. If the original signal s(t) is further constrained to

be a plane wave with only one temporal frequency co", equation 2.3 can be rewritten as

follows[1]:

z(t) = W(w'd - E)e'"' (2.4)

where k" = cofd and W(*) represents the Fourier Transform of the sensor weights [1]:

N

W(k) = Lwe k'9
m=-N

(2.5)

Equation 2.5 is also known as the array pattern. Given the signal's temporal frequency,

propagation direction, and the direction the beamformer's assumed propagation direction,

the array pattern can determine the output signal's amplitude and phase.

2.2 Spatial Filter Design and Temporal Filter Design

From Figure 2 and Table 1 it is can be shown that a- i = mdsinG and
C

a .. = ko = mdsino After substituting c = ' and setting u = sin 0 "and v = sin0 , the

array pattern W(w 0d - k") becomes:

M-1 -VL!
W(co'a - k") = I wne '

m=0

(2.6)

Lining equation 2.6 side by side with the Fourier transform X(el') of a uniformly

sampled signal,

X(el'') = Ex[n]e-'" (2.7)

where w, denotes temporal frequency, one can see the striking similarity between the

array pattern and the Fourier transform of a FIR filtered signal.[2] After transforming c,
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to I (u - v), one can get from temporal space to u-space. To get from temporal space to

9 *-space, one can perform the following transformation:

04 = sin-'(' +sin9) (2.8)

where 0" is the actual direction of propagation and 0 is the direction the beamformer

assumes the wave is coming from. As a simple example, assume the following condition:

. Assumed propagation direction (not the actual one) 0 = 0 (thus v = 0)

. The number of sensors M = 8

" All weights Wm =1

. The 8 sensors are equally spaced (d = 0. 12m ) such that the set of Xm 's are:

{-3.5X, -2.5 X, -1.5 X, -0.5 X, 0.5 X , 1.5 X, 2.5 X, 3.5 x } where x is a vector

whose magnitude equals to d = 0.12m .

* Frequencyf= 2000Hz, therefore 2 = c /f = 0.1 725m

Under the above conditions, here are the plots in u-space and U-space:

Figure 2.2a Array pattern in u-space
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90 8

Figure 2.2b Array pattern in 0 -space

2.3 Spatial Aliasing

Since the Fourier transform of the filtered signal has the periodicity of 2)r,

Vo, I - ) must be true in order to avoid temporal aliasing. Having |0,|>- ) usually means

the sampling frequency is not greater than the Nyquist rate and consequently temporal

aliasing is introduced. Similarly, - A- ) must be true to avoid spatial aliasing in

the array pattern. Spatial aliasing usually manifests itself in the form of grating lobes in

the visible region.[2] In other words, there may be extra beams pointing at directions not

intended by the original design. Therefore, the inter-sensor spacing d must be chosen

such that the condition I - A < r is satisfied for all combinations of u and v. After a

little mathematical manipulation, the lowest upperbound for d can be shown as (when

v=I or 0 = 900 or beam steered towards endfires) [2]:

14
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d - mm (2.8)2

where Amin is the shortest possible wavelength (thus the highest possible frequency) for

the beamformer system. Using the same example as section 2.2 where d = 0. 12 m and

A = c /f = 0.1725m, one can notice that the condition in equation 2.8 has been violated.

Figure 2.3 shows the array pattern when the assumed propagation angel0 = 600.

Figure 2.3 Array pattern showing spatial aliasing
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2.4 Beamwidth Variation

In the previous section, it was pointed out that the temporal frequency content

(which is basically the inverse of the wavelength, multiplied by c) of the signal played an

important role in determining whether there will be spatial aliasing. Upon examining

equation 2.6 once more,

N _M 2,0iu_2-1v)

W(CO - k ) = we
m=-N

it is obvious that the array pattern is a function of the signal's wavelength (as well as

temporal frequency). The beamwidth of a beamformer's main lobe is traditionally

defined to be the angular difference between the two -3dB points of the main lobe and is

therefore also a function of the signal's temporal frequency. Assuming all of the section

2.2 example's conditions except for the one concerning the signal's wavelength (or

temporal frequency) for the example, the following figures show the array pattern and

beamwidth varies with respect to the temporal frequency.

200Hz 500Hz
BW=1070  

" BW=37.4 8

6 6

150 / 150 50 4 30

71 / 1), I -

210 3310 330

21 33 221 ~

0 240 300 240 30 0

270 270

Figure 2.4a Beam at 200Hz Figure 2.4b Beam at 400Hz
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Figure 2.4c Beam at 1000Hz Figure 2.4d Beam at 2000Hz

There are two adverse effects due to this beamwidth variation that one should be

aware of when designing a spatial filter. [2] First, the beam becomes much wider as

frequency decreases and loses its resolution, as the 200Hz plot can clearly show. Second,

the higher frequency content of a broadband signal is sometimes filtered due to the

narrowing of the beam as frequency goes up. For instance, a signal with a frequency

content between 500Hz and 1000Hz is coming in from 150. Its 1000Hz content will be

significantly attenuated because the 3dB points are at -9.20 and +9.20.

It is also worth noting that one way to keep the beamwidth constant as temporal

frequency changes is by changing the inter-sensor spacing d.[3] Referring back to

equation 2.6 once more, one can keep the amplitude of the array pattern constant by keep

12 7du -2Advthe argument of the exponential A - constant. Therefore, as temporal frequency

decreases (and wavelength increases), inter-sensor spacing should be increased to keep

the beam from widening.

17
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2.5 Localization: Generalized Cross Correlation

As mentioned in section 2.1, the beamformer must "point" to the correct direction

in order to recover the original signal z(t). After revisiting equation 2.3,

N

z(t)= LWS(t +(a -ao). ,,m)
m=-N

one can see that "pointing" at the right direction is equivalent to inserting appropriate

amount of delay or advance ( T= (a -ao)- ,,,) for each individual sensor output. A

classic algorithm known as the Generalized Cross-Correlation Time-Delay Estimation is

based on this very idea. It can be summarized as follows [4]:

rGCC = arg(maX R (1r))

where rGCC is the optimal delay and R2 (r) is the cross-correlation between signal x, (t)

and x2 (t). The cross-correlation is defined as

R (t) = fx (t + )x 2(r)dr
-00

Therefore, if x, (t) is a delayed version of x2(t), the cross-correlation is maximized when

the optimal advance is applied to x, (t).

The Generalized Cross-Correlation Time-Delay Estimation works fairly well in

an open environment with little to no echo. However, it has been shown that the

performance of this algorithm degrades drastically in reverberant enclosures. Many other

variations to this classic algorithm have been proposed to minimize the adverse effect

introduced by the reverberation. Most of them define a new objective function to be

maximized or minimized for any given reverberant condition. [5,6]

18



However, once a beamformer has been constructed in a reverberant enclosure, its

position is unlikely to be altered. Also, the reverberation characteristics of the enclosure

are unlikely to change dramatically. Therefore, it is conceivable that a better objective

function can be defined if one can first access the reverberation characteristics of the

enclosure. And it was precisely this point that this project intended to prove.

19
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Plane wave: s(t - d-

Slowness vector: a = k/m= 1/c

Wavenumber vector: k = ma |k|= 2rr/A

Wavelength and frequency: c = A17 /2r



Chapter 3

Adaptive Filter Algorithms

This chapter intends to give a brief synopsis of some of the more popular adaptive

filter algorithms but does not go through detailed derivations of them. Most of the

outlines and conclusions about the algorithms are taken from Adaptive Filter Theory by

Simon Haykin.

The most classic family of adaptive filter algorithms is known as the Least Mean

Squares (LMS) algorithms. It is essentially a feedback control system that adjusts the

coefficients of the filter until the desired response is achieved. Figure 3.1 illustrates the

feedback loop as well as the detailed look inside the filter. [7]

As signal x[n] streams into the filter h[n], output y[n] is compared with the

desired signal d[n] that system aims to achieve and the difference between them e[n] is

fed into the adaptive weight-control mechanism, which subsequently updates the

coefficients of the filter h[n]. The system usually starts off with a filter that may lead to

the optimal filter. One common approach is to initialize all the filter coefficients to be

zeros.

One way to visualize the convolution between input signal x[n] and the filter h[n]

is matrix multiplication, as figure 3.1 has already shown. As input signal x[n] streams in,

the system can take a vector of M (length of filter) most recent samples x[n] and multiply

it with h[n].

20



x[n]
y[n]

+

d[n]

Inside filter h[n]

x[n-M+I]

y[n]

+

d[n]

Figure 3.1 Feedback loop and the detailed look inside an adaptive filter
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3.1 General Least Mean Square Algorithm

The basic steps for a general LMS algorithm can be summarized as follows, in

matrix form [7]:

1) Initialization. (n=O) Set all the filter coefficients to zero. Assume zero initial

state for input.

x[O]=h[O]=[O 0 0 ... 0]

For n>O:

2) Calculate error.

e[n]= d[n] - y[n]= d[n] h T [n]x[n]

3) Adjust filter coefficients.

h[n+l]=h[n]+2pe[n]x[n]

p is a constant that is critical in determining the convergence rate of the algorithm.

Larger p means larger incremental steps in updating the filter coefficients and can lead to

faster convergence rate. However, it can also result in an increase in instantaneous error,

inaccurate filter coefficients adjustment, and, potentially, divergence of the solution. As

a matter of fact, the general LMS algorithm usually does not perform well in real

implementation due to the instantaneous error.

3.2 Normalized Least Mean Square Algorithm

One algorithm, known as the Normalized Least Mean Square (NLMS) algorithm,

is developed to minimize the squares of the instantaneous error. The steps of NLMS can

be summarized as follows [7]:

22



1) Initialization. (n=O) Set all the filter coefficients to zero. Assume zero initial

state for input.

x[O]=h[O]=[O 0 0 ... 0]T

For n>0:

2) Calculate error.

e[n] = d[n] - y[n] = d[n] h T [n]x[n]

3) Adjust filter coefficients.

h[n +1] = h[n] + p e[n]x[n]
y + xT [n]X[n]

Coefficients po should be in the range between 0 and 2 for convergence rate. Coefficient

y should be a small constant and is introduced to keep the denominator from becoming

too large (and therefore keep the incremental step to a reasonable size) when input x[n]

becomes too small.

3.3 Affine Projection Algorithm

One of the assumptions that both the general and Normalized LMS algorithms

make is that the input x[n] and the desired signal d[n] are uncorrelated. This is hardly an

assumption one can make, especially when one is dealing with reverberation. An

algorithm called the Affine Projection algorithm was developed to handle correlated d[n]

and x[n]. Its strength is in its ability to uncorrelate the two signals at the cost of more

computation. The Affine Projection Algorithm is summarized as follows [8]:
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1) Initialization. (n=O) Set all the filter coefficients to zero. Assume zero initial

state for input.

x[O]=h[O]=[O 0 0 ... 0]T

For n>O:

2) Calculate error.

e[n] = d[n] - y[n] = d[n] h T [n]x[n]

3) Uncorrelate the signal.

z[n] = x[n] - xT[n]- Ix[n - 1] x[n - 1]xI[n-]T x[n -1]

4) Adjust filter coefficients.

h[n +1] = h[n] + ae[n]z[n]
y + xT [n]z[n]

3.4 Adaptive Filtering and Beamforming

Adaptive filtering is extremely popular in the mobile phone industry due to its

great performance at modeling echo path. The echo, or reverberation, of a cellular phone

comes mainly from the speaker (not the person, but the transmitter the person listens to).

Filters are created to model echo and the modeled echo is subsequently substracted from

the receiever end. This reverberation scenario is not completely dissimilar from what a

beamformer has to deal with. That was why the project had chosen to implement

adaptive filters as a way for the beamformer to learn about its reverberant environment.

Instead of modeling the reverberation and subtracting it from the input signal x[n], this

project implemented filters that will directly dereveberate the input signal x[n].
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One standard measurement of the reduction in echo, or reverberation, is called the

Echo Return Loss Enhancement (ERLE) and is defined as [9]:

2

ERLE =10lo10g -d

where 0-2 and o are the variances (or powers) of the desired signal, the error,

respectively. The ERLE is analogous to the more commonly known Signal-to-Noise

Ratio (SNR). The desired signal in ERLE is analogous to the signal in SNR, whereas the

error is analogous to the noise.
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Chapter 4

Beamformer Design

4.1 Overall System Design

0

0~aoc

0

Figure 4.1 Overall information flow of the system

Figure 4.1 shows the overall information flow of the system. The eight sensors

convert sound pressure into voltage and send signals to the eight pre-amplifiers, one for

each sensor. The amplified signals are then converted from analog signals into digital

signals and passed through another set of digital compensation filters. After that, the

signals are passed through another set of filters, designed and calibrated during the setup

stage to counteract the reverberation of the room. (Details of the design of these filters

will be discussed in Chapter 5.) After dereverberation, the signals are delayed and
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summed by the beamformer, which in turn outputs the summed signal to the PC's

ViaVoice speech recognition software.

4.2 Microphone Signal Preamplification and Over Sampling

Since the magnitude of the microphone output voltage is about a few millivolts, a

preamplifier was built to compensate and amplify the weak signal to the line voltage level

(max ±1.0 volt). The compensation stage had included a high-pass filter in order to

attenuate most of the 60-Hz vibrations (i.e., air-conditioning). The high-pass filter is then

cascaded with a low-pass anti-aliasing filter to keep the signals band-limited. The order

of the low-pass filter was not very high because the signals, after preamplication, would

be over-sampled by the A/D converter. The benefits of oversampling are twofold:

1) to prevent temporal aliasing; 2) to increase the Signal-to-Noise Ratio.[10]

4.3 Digital Compensation Filters

Since no two microphones can have identical frequency responses, it is often

desirable to digitally filter the sampled signal so that their frequency responses do match

up to a certain reference level. A compensation filter was designed for each of the eight

microphones with the reference level being the mean of the all the eight frequency

responses.
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4.4 Beamformer

ViaVoice

Figure 4.2 Information flow within the beamformer
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Figure 4.2 shows the overall information flow within the beamformer. In order to

avoid spatial aliasing while keeping the beam to a reasonable width, the microphone

sensors are grouped into three different frequency-range groups, with four sensors per

group and some sensors belonging to more than one group. The details of how the

sensors are grouped will be discussed in in section 4.3.1. Each group of signals is then

delayed and summed accordingly. The necessary delay can be provided in one of two

ways: 1) cross-correlation or 2) vision. Cross-correlation will be covered in section 4.3.3,

whereas vision is the other focus of the Intelligent Examination Room and is beyond the

scope of this thesis. After the delays have been inserted, the three groups of seisor

signals are bandpass-filtered to the appropriate range, depending on the groups to which

they belong. The three groups of signals are then recombined to form the final signal to

be fed into ViaVoice.

4.4.1 Microphone Placement

In Chapter 2, two major points regarding inter-sensor spacing were made. First,

the inter-sensor spacing must be less than half of the shortest possible wavelength to

avoid spatial aliasing. Second, the inter-sensor spacing should be increased in order to

counteract the beamwidth widening effect. To capture signals of all frequencies without

introducing spatial aliasing while still maintaining a reasonably narrow beamwidth, the

eight sensors are grouped, or positioned, to form three linear equally spaced sub-arrays,

each with a different distance of separation.[3] Figure 4.3 shows the physical layout of

the microphone sensors where di = 9.Ocm, d2 = 4.5cm, and d3 = 1.5cm.
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Figure 4.3 Physical placement of the eight sensors

The sub-arrays' highest possible frequencies can be calculated by manipulating equation

2.8:

C C
fhghest = 2 )chighest A m 2*d (4.1)

and are equal to 1277Hz, 3833Hz, and 11.5kHz, respectively. Sub-array 1, which

consists of sensors MO, Ml, M6, and M7, is positioned to capture the low-frequency

range of 200Hz to 1200Hz. Sub-array 2, which consists of sensors Ml, M2, M5, and M6,

is responsible for the mid-frequency range of 1200Hz to 3800Hz. Sub-array 3, which

consists of M2, M3, M4, and M5, takes care of high-frequency range of 3800Hz to

11000Hz. The beam patterns of the three sub-array are shown below. (BW stands for

Beamwidth, in degrees) Notice that in figure 4.4a, sub-array 1 has an extremely wide

beam at frequency 200 Hz. Given the number of sensors of the system, this sacrifice is

hardly avoidable unless one is willing to give up the performance of the other sub-arrays.
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Figure 4.4a Widest (left) and narrowest (right) possible beam for sub-array 1.
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Figure 4.4b Widest (left) and narrowest (right) possible beam for sub-array 2.
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Figure 4.4c Widest (left) and narrowest (right) possible beam for sub-array 3

4.4.2 Localization Using Cross-Correlation

In chapter 2, the generalized cross-correlation algorithm used for localization was

covered. To gain the highest possible resolution, the sensors farthest apart (sensor MO

and M7) are chosen to perform cross-correlation. Given that the signal of sensor MO

leads the signal of sensor M7 by n sample units, the incident angle 0 of the plane wave

can be computed as follows:

c *n
"= sin-'(d07 * s (4.2)

where d07 stands for the distance between sensor MO and sensor M7 and s stands for the

sampling rate. Equation 4.1 is simply a result of the mathematical manipulation and

geometrical construction, as shown in Figure 4.5
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Figure 4.5 Geometrical construction for delay calculation

4.4.3 Delay and Sum

In chapter 2, it was pointed out that to steer a beamformer towards a certain

direction is no more than inserting the appropriate delay or advances. (For simplicity, the

rest of this section shall refer to both delay and advance as delay, for an advance is

equivalent to a negative delay.) However, since the signals are sampled at discrete-time

units, inserting non-integral time-unit delay is obviously not possible. Therefore, when

non-integral time-unit delay insertion is necessary, linear interpolation is employed to

figure out the value between the integral time-unit samples. Suppose that the
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beamformer is steered towards angle9 and that the delay Ano, of a particular sensor m

lands between integral time unit n and n2 , the basic linear interpolation equation is as

follows:

Y(An,m)= (An,, -n,)+ y[n] (4.3)
n2 - nh

where the quantity n2 -n =1 . After setting the fraction An,,, - n to Ax,,, equation

4.3 becomes:

y(An,,,) = y[n, + 1] * Axm + y[n,] *(1 - Ax9 ,,,) (4.4)

While equation 4.4 might strike one as painfully obvious, there is some significance to it.

It indicates that for every sensor m at every steering angle 9, there is an associated

delay An,,, that can be represented by the sum of the integral delay n and the fractional

delay Ax,,,. Both of the integral delay and the fractional delay can be pre-computed and

stored in a lookup table. Therefore, to figure out the interpolated value Y(An,,m) for

sensor m at angle 9, the beamformer can simply access the pre-computed delays in the

memory, as opposed to recalculating An,,, for every single sensor every time the

beamformer steers towards a new angle.

To further conserve computation time and memory storage, the beampattern

should once again be examined. As figures 4.4a, 4.4b, and 4.4c have shown, the smallest

beam obtainable has the width of 280. What that implies is that the beamformer's

reception, when the beam is steered towards 00, remains strong (meaning within -3dB to

OdB) as long as the incident angle of the plane wave stays within 0" ± 14". To cover the

span of 180 degrees (from +900 to -90"), only seven discrete beams are necessary. (See
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figures 4.6a,b,c) Within each discrete beam, an angle that minimizes the number of

interpolations is chosen as the representative angle for the beam and all the other angles

will share the representative's pre-computed delays. [11] For instance, a plane wave with

incident angle of 50 falls under the same beam as 0" and therefore no delays or

interpolations are needed for the sensors.
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Chapter 5

A Methodology for a Beamformer to Learn about

Its Environment

One can easily draw an analogy between a room and a filter. Imagine a small

room. Person A claps. Person B hears the original clap and many echoes following after

it. So the room basically takes the original clap signal and makes multiple scaled-down

delayed versions of it. In signal processing terms, the room convolves the original signal

with a train of impulses, or a filter.

The characteristics of the echoes are extremely location-dependent. If person A

claps at a different location, what person B hears will be completely different, as is the

case if person B moves but person A stays. The room filtering function is basically a

function of locations of the source and the microphone sensors.

To express how a room affects speech signal mathematically, one can set the

original source speech signal to be s(t), the room filtering function to be h,,, (t, ,,)

where F, is a location vector from sensor m to the source, and the signal y, (t, F,,) at each

sensor m as:

Ym(t,,,)= s(t) * hroo,(t,F) (5.1)

The distortion introduced by the sensors themselves are included as part of hroom (t, ,)

for notation simplicity. To recover the original signal, an inverse filter function

h,-',,m (t,,,) must be obtained to recover the original signal:
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s(t)= y,(t,F)* h (t,f) (5.2)

In Chapter 3, the basics of adaptive filtering were covered. By setting s(t) to be

d[n] and y,,,(t,F)to be x[n], 8 different adaptive filters h[n] can be obtained for the 8

different sensors at each different location.

During setup stage, the beamformer would "learn" about its reverberant

environment. Or more accurately put, the beamformer would learn ways to combat the

undesirable effect dues to reverberation. It would first be informed of the source's

location. It would compare the original signal with the eight different sensor output

signals and come up with a different filter for each sensor. And it would keep on

"learning" and updating the filters, through adaptive filtering algorithm, until a desired

performance is reached. And it would then associate those eight filters with the location

it was told, store it for future use, and proceed to "learn" about the reverberant condition

of the next location.

To obtain the original signal s(t) or the desired signal d[n], an extra microphone

was used, in addition to the eight sensors of the beamformer. During the "learning"

period, all nine microphones would sample simultaneously, with the sound source

generating the original signal directly into the extra microphone.

Since all the "learning" occurs during the setup stage, there is no real constraint in

terms of convergence rate. Therefore, the Affine Projection Algorithm was implemented

for its ability to whiten the correlated speech signal. Normalized Least Mean Square

Algorithm was also implemented to serve as part of the comparative analysis.

Since it is unrealistic to come up with a set of filters for every possible locations,

the beamformer only would learn a finite set of locations. For real-time dereverberation
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after the setup period, the beamformer would choose from its memory the set of filters for

the location that is closest to the speaker's location. There is an obvious tradeoff between

the beamformer's performance in dereverberation and the amount of time that is available

for setup. The choice would be up to the user. Figure 5.1 summarizes the whole learning

process.

Select a set of locations
for beamformer to learn
about.

Beamformer picks an
untrained location and
steers towards it.

Sensors record signals
from the chosen
location.

Beamformer learns to counteract the
reverberation condition of the location
through adaptive filtering.

Beamformer stores the the
location and its associated
filters in its memory

Figure 5.1 Illustration of the learning process for the beamformer
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Chapter 6

Implementation

6.1 Preamplification and Oversampling

220k

220k

2.2k

5.6k

15pF

1OnF

10k

Figure 6.1 Schematic of the preamplifier

Figure 6.1 shows the schematic of the preamplifier. Each preamplifier consists of

two stages and is powered by a 5 DC volt power supply. The two 220-kn resistors in

series create a virtual ground of 2.5 volt to allow full (positive and negative) swing of the

microphone signals. In the first stage a National Semiconductor LM6144AIN operational

amplifier, which amplifies the microphone signal, is cascaded with a low-pass filter with

a cutoff frequency at 20kHz to prevent time-aliasing. The low-filter filter is made up of a

470-kQ resistor, a 5.6-kQ resistor, a 15-pF capacitor, a 1.3-nF capacitor, and a 10kW
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potentiometer. The second stage is another LM6144AIN operational amplifier, which

serves as voltage-follower, cascaded with a high-pass filter, which filters out any

frequency below 100 Hz. The high-pass filter is made up of a 10-nF capacitor and a 150-

kQ resistor. Since the preamplifier's output is subsequently sampled by the Signalogic

Sig32C system board's A/D converter which takes input of ± 1 volt, the high-pass filter

also helps remove the virtual ground introduced at the first stage. (The Signalogic

Sig32C system board is a board consists of a 8-channel A/D converter that converts

analog signal to digital signal and a digital signal processor which performs the

beamforming.) Figure 6.2 shows the Bode diagrams of the frequency response of the

preamplifier. Notice that the higher cutoff frequency end does not have as steep roll-off

as the lower cutoff frequency end. The low-pass filter was mainly designed to keep the

signal band-limited. The A/D converter already has 64x oversampling that will take care

of the temporal aliasing, provided that the signal is not completely band-unlimited. As a

result, building a higher-order low-pass filter for the purpose of avoiding temporal

aliasing would simply be redundant.

Figure 6.2 Bode diagrams of the preamplifier
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6.2 Digital Compensation Filters

As mentioned in chapter 4, no two electronic components have identical

responses. To compensate for the difference in the frequency response of the eight

microphone-preamplifier pairs, digital compensation filters were implemented.

To determine the frequency response of the eight pairs, one microphone at a time

was placed directly in front of a speaker to record a logarithmic chirp. A logarithmic

chirp is basically a signal that sweeps through the pre-designated range of frequency (in

this case, from 200Hz to 10kHz) logarithmically. And the reason the chirp was

logarithmic, as opposed to linear, was to get higher resolution in the lower frequency

range, where most speech occurs.

After the frequency responses of all eight microphone-preamplifiers have been

determined, eight compensation filters were designed on MATLAB to get the individual

microphone-preamplifier pairs to match the mean frequency response of the eight pairs.

Appendix A includes all the MATLAB files used to determine the original responses as

well as files used to design the compensation filters.

6.3 Training the Microphones through Adaptive Filtering

As mentioned in chapter 5, a reference signal d[n] was necessary for the eight

sensor signals xm[n] to adapt to it. A headset microphone was originally employed to

serve as the reference signal. The signals sampled by the eight microphones were

sampled through a DOS program HSMacro whereas the signal sampled by the headset

microphone was sampled through the software Goldwave. Immediately two problems

occurred. The first problem was due to the difference in frequency responses between
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the array sensors and the headset microphone. With the foam on the headset microphone,

damping was introduced and the phase of the signal was modified, in addition to its

magnitude. The second problem was even more severe. Because the array sensor signals

and the headset microphone signal were sampled by two different programs, the

simultaneity was lost. It was difficult to keep track of the exact delay between the

activation of Goldwave and the activation of HSMacro, since both of them were activated

manually. Simultaneity is critical in determining the echo-path. Without it, the filters

were simply useless.

To circumvent the simultaneity problem, the headset microphone were discarded

and one of the array sensors were used to replace it. The reference sensor was placed

directly in front of the sound source and the rest of the array sensors were mounted on the

wall. Different kinds of signals were recorded simultaneously by the reference sensor

and the array sensors. The kinds of signals include:

" Sinusoidal wave of 400Hz

" Vowels: a, e, i, o, u

" Single word: Hello

After the signals were recorded, adaptive filters were implemented on MATLAB

following the Normalized Least Mean Square (NLMS) algorithm and Affine Projection

(AP) algorithm as outlined in chapter 3. Different values for the convergence factors

a and p were used to see their effects on the convergence rate as well as performance.

For the detailed MATLAB code, see Appendix B.

To observe the trend of the Echo Return Loss Enhancement over time, the powers

of a frame size of 500 most recent samples of desired signal d[n] and echo residual e[n]
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were calculated for every step size of 250 samples. As chapter 7 will show, the ERLE

did increase over time, with the ERLE of some signals more so than the others.
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Chapter 7

Experimental Results and Analysis

As previously mentioned in chapter 3, one way to measure the performance of a

echo-canceling adaptive filter is through the Echo Return Loss Enhancement (ERLE).

This chapter shows the ERLE of the Affine Projection (AP) algorithm as well the ERLE

of the Normalized Least Mean Square (NLMS) algorithm with different convergence

factors (a for AP, m for NLMS) of varying values (0.01, 0.1, 0.9). The graphs of the

ERLE's are attached at the end of this chapter. All 'a'-graphs show the ERLE of the AP

algorithm. All 'b'-graphs show the ERLE of the NLMS algorithm. All 'c'-graphs

compare the best AP's ERLE with the best NLSM's ERLE, with best meaning the best

out of the three ERLE's with different values for the convergence factors.

The ERLE's with 400-Hz sinusoidal signals (Figures 7.2a, 7.2b, 7.2c) and the

ERLE's of the vowels 'a' (Figures 7.3a, 7.3b. 7.3c), 'e' (Figures 7.4a, 7.4b. 7.4c), 'i'

(Figures 7.5a, 7.5b. 7.5c), 'o' (Figures 7.6a, 7.6b. 7.6c), 'u' (Figures 7.7a, 7.7b. 7.7c)

all increase in time as predicted.

The ERLE's of the word 'Hello' (Figures 7.8a, 7.8b. 7.8c), however, may appear

disconcerting. The ERLE's start off as OdB at t = 0 second and start increasing at t = 0.35

second. The ERLE's then reach their peaks, start diving down at around t = 0.8 second

and hit bottom around t = 0.9 second. Then the ERLE's increase again, only to take a

final plunge at t = 1.4 seconds. Some values of ERLE's at t = 1.5 seconds end up being

smaller than they were at t = 0 second, meaning the adaptive filter ended up doing a
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worse job than a filter than simply zeroes out all of its input. (Recall at initialization,

h[0]=[0 0 0 0 0 ... 0].)

However, if one would line up in time the desired signal d[n], the spectrogram,

and the ERLE (Figure 7.1 top, middle, bottom), one would realize that t = 0.8 second

marks the end of the syllable 'Hel-' and that t = 0.9 second is the beginning of the

syllable '-lo'. From the spectrogram (dark = high amplitude, light = low amplitude), one

can see that the frequency content of 'Hel-' is quite different from the frequency content

of '-lo'. From t = 0 second to t = 0.35 second (before 'Hel-' begins), the desired

reference microphone signal d[n] is basically low-energy white background noise, as is

the array sensor signal x[n]. Consequently, the ERLE is at OdB. From t = 0.35 second on

to t = 0.8 second, the algorithm is trying to build a filter that will capture 'Hel-'. When '-

lo' begins at t = 0.9 second, the filter is not ready to capture '-lo' and as a result, the

ERLE drops down. Around t = 1.4 seconds the filter has finally adapted itself to capture

the syllable '-lo', but that is when '-lo' ends and the frequency content of d[n] once again

changes drastically. As a result, the ERLE once again dips down. This time the filter has

already adapted to capture that frequency range of '-lo' and is therefore still capturing

(meaning amplifying) the white noise in that frequency range after t = 1.4 second. As a

result, some of the ERLE's (note that the worst-performing ones in this case are the ones

with small convergence factor) end up diving below the OdB point.
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ERLE(bottom)
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Figure 7.5a AP ERLE of vowel 'i' with varying a
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Figure 7.7a AP ERLE of vowel 'u' with varying a
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AP ERLE of word 'Hello' with varying a

Figure 7.8b

Figure 7.8c
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Chapter 8

Conclusion

As the experimental results have shown, the strength of the adaptive filtering lies

in its ability to adapt to the desired signal and change in time. An optimal filter for the

first quarter of a second may be less than optimal for the next quarter of a second.

Therefore, adaptive filtering was not the best way to accomplish what the project

originally intended: to create for each sensor a single filter whose performance is time

and signal independent. However, there is still potential utilization for this design. For

example, this design will be most applicable for activating the beamformer from its idle

state. Suppose the filters are adapted to the word "start" or "begin" or words with one or

two syllables during the setup stage. For words with two or more syllables or words with

fluctuations in frequency content, two or more filters (i.e. one for "be-" and one for "-

gin") will have to be stored in memory and they must be switched from one to the other

after a certain time lapse. While the beamformer is idling, these filters will be employed

to specifically pick up the activation word. Since the filters are designed to pick up and

amplify the frequency content of the activation word, words other than the activation

word (or words with other frequency content) will be attenuated. Therefore the

beamformer will only turn on when the specific activation word is spoken by the specific

speaker who trained it during the setup stage.
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Appendix A Digital Compensation Filters

A.1 MATLAB Code for evaluating the frequency responses of

the microphone-preamplifier pairs and determining the

frequency responses of the compensation filters

load MFT/mft0file;
load MFT/mftlfile;
load MFT/mft2file;
load MFT/mft3file;
load MFT/mft4file;
load MFT/mft5file;
load MFT/mft6file;
load MFT/mft7file;

meanfilt = mean(abs([mftO; mftl; mft2; mft3; mft4; mft5; mft6; mft7]),

1);

fq = linspace(0, 44100, 441001);

fo
fi
f2
f3
f4
f5
f6
f7

meanfilt./abs(mft0)
meanfilt./abs(mftl)
meanfilt./abs(mft2)
meanfilt./abs(mft3)
meanfilt./abs(mft4)
meanfilt./abs(mft5)
meanfilt./abs(mft6)
meanfilt./abs(mft7)

MFT/filt0 fO
MFT/filt fl
MFT/filt2 f2
MFT/filt3 f3
MFT/filt4 f4
MFT/filt5 f5
MFT/filt6 f6
MFT/filt7 f7

MFT/meanfilt

fq;
fq;
fq;
fq;

fq;
fq;
fq;
fq;
meanfilt fq;

save
save
save
save
save
save
save
save
save
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A.2 MATLAB Code for finding the breakpoints in the

frequency responses of the compensation filters and creating

the filters

clear;
LoadFiltX;

[fq0c, mag0c] = DwnSampMFT2(fO);
F = [fq0c 9000 11025]/11025;
M = [mag0c 0 0];
BO = fir2(99, F, M);

BFT(1,:) =fft(BO, 400);
[fqlc, maglc] = DwnSampMFT2(fl);
F = [fqlc 9000 11025]/11025;
M = [magic 0 0];
B1 = fir2(99, F, M);
BFT(2,:) =fft(B1, 400);
[fq2c, mag2c] = DwnSampMFT2(f2);
F = [fq2c 9000 11025]/11025;
M = [mag2c 0 0];
B2 = fir2(99, F, M);
BFT(3,:) =fft(B2, 400);
[fq3c, mag3c] = DwnSampMFT2(f3);
F = [fq3c 9000 11025]/11025;
M = [mag3c 0 0];
B3 = fir2(99, F, M);
BFT(4,:) =fft(B3, 400);
[fq4c, mag4c] = DwnSampMFT2(f4);
F = [fq4c 9000 11025]/11025;
M = [mag4c 0 0];
B4 = fir2(99, F, M);
BFT(5,:) =fft(B4, 400);
[fq5c, mag5c] = DwnSampMFT2(f5);
F = [fq5c 9000 11025]/11025;
M = [mag5c 0 0];
B5 = fir2(99, F, M);
BFT(6,:) =fft(B5, 400);
[fq6c, mag6c] = DwnSampMFT2(f6);
F = [fq6c 9000 11025]/11025;
M = [mag6c 0 0];
B6 = fir2(99, F, M);
BFT(7,:) =fft(B6, 400);
[fq7c, mag7c] = DwnSampMFT2(f7);
F = [fq7c 9000 11025]/11025;
M = [mag7c 0 0];

B7 = fir2(99, F, M);
BFT(8,:) =fft(B7, 400);

Bfir = [B0; B1; B2; B3; B4; B5; B6; B7];

fqB = linspace(O, 22050, 400);

save MFT/BFILT Bfir BFT fqB;
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# LoadFiltX.m

load MFT/filt0;
load MFT/filtl;
load MFT/filt2;
load MFT/filt3;
load MFT/filt4;
load MFT/filt5;
load MFT/filt6;
load MFT/filt7;

#######################

# DwnSampMFT2 #

function [freq, Mag] = DwnSampMFT2(mfilter);

freq(1:2) = [0 100];
Mag(1:2) = [0 0];
count=2;

while freq(count)<2200,
count=count+1;
freq(count)= freq(count-1)+100;
sampindex = freq(count)*10;
Mag(count) = mean(mfilter(sampindex:samp_index+999),2);

end

while freq(count)<5200,
count=count+1;
freq(count)= freq(count-1)+500;

sampindex = freq(count)*10;
Mag(count) = mean(mfilter(samp_index:samp index+4999),2);

end

while freq(count)<8200,
count=count+1;
freq(count)=freq(count-1)+1000;
sampindex = freq(count)*10;
Mag(count) = mean(mfilter(samp_index:samp index+9999),2);

end

Mag(1:2)=[Mag(3) Mag(3)];
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Appendix B Adaptive Filtering

B.1 Affine Projection Algorithm MATLAB Code

rawd = wavread('../Ada3Wave/b37.wav', [1 22050*1.5]);

rawx = wavread('../Ada3Wave/b33.wav', [1 22050*1.5]);

maxx = max(abs(rawx));
maxd = max(abs(rawd));
d = rawd*maxx/maxd;

filtlength = 500;
alpha = 0.9;
gamma = 1;
NumIteration = length(rawd);
padded x = [zeros(filtlength-1, 1); rawx];

% n=0, initialization

x = zeros(filt length, 1);

h = zeros(filtlength, 1);

% n=l,

prevx = x;
x = padded x(1:filtlength);
e(1) = d(1)-h'*x;
z =x;

h = h +(alpha*e(1)*z)/(l+x'*z);

% n=2 and so on
for n=2:NumIteration

if mod(n, 1000)==0,
n
count = round(n/1000);
hh500(:,count)=h;

end
prevx = x;
x = paddedx(n:n+filtlength-1);
e(n) = d(n)-h'*x;
z = x - ((x'*prevx)/(prevx'*prevx))*prevx;
h = h + (alpha*e(n)*z)/(gamma+x'*z);

end

hh500(:,count+1) = h;
eh500 = e;

dhello =d;

save Mh500 hh500 eh500 dhello;

['done Mh500']
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B.2 Normalized Least Mean Square Algorithm MATLAB

Code

rawd = wavread('../Ada3Wave/b37.wav', [1 22050*1.5]);
rawx = wavread('../Ada3Wave/b33.wav', [1 22050*1.5]);

maxx = max(abs(rawx));
maxd = max(abs(rawd));

d = rawd*maxx/maxd;

filtlength = 500;
mu = 0.9;
gamma = 1;
NumIteration = length(d);
%NumIteration = 5000;

padded x = [zeros(filtlength-1, 1); rawx];

% n=0, initialization

x = zeros(filtlength, 1);
h = zeros(filtlength, 1);

% n=1,

x = padded x(1:filtlength);
e(1) = d(1)-h'*x;
h = h +(mu*e(1)*x)/(gamma+x'*x);

% n=2 and so on
for n=2:NumIteration

if mod(n, 1000)==0,

n
count = round(n/1000);
LhHP9(:,count)=h;

end
x = paddedx(n:n+filtlength-1);
e(n) = d(n)-h'*x;
h = h +(mu*e(n)*x)/(gamma+x'*x);

end

LhHP9(:,count+1)=h;
LeHP9 = e;
LdHP9 = d;

save LHP9 LhHP9 LeHP9 LdHP9;

['done LMuP9']
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