
Code Compaction and Parallelization for

VLIW/DSP Chip Architectures

by

Tsvetomir P. Petrov

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1999

© Tsvetomir P. Petrov, MCMXCIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis docume

in whole or in part.

LIBRAR
Author ,...............

Department of Electrical Engineering and Computer Science
May 21, 1999

Certified by.
Saman P. Amarasinghe

Assistant Professor, MIT Laboratory for Computer Science
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Departmental Committee on Graduate Theses

Code Compaction and Parallelization for VLIW/DSP Chip

Architectures

by

Tsvetomir P. Petrov

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 1999, in partial fulfillment of the

requirements for the degree of
Master of Engineering

Abstract

The Master of Engineering Thesis presented in this paper implements an assembly
code optimizer for Discrete Signal Processing (DSP) or Very Long Instruction Word
(VLIW) processors. The work is re-targetable and takes as input minimal generalized
chip and assembly language syntax description and unoptimized assembly code and
produces optimized assembly code, based on the chip description. The code is not
modified, but only re-arranged to take advantage of DSP/VLIW architecture paral-
lelism. Restrictions are placed to make the problem more tractable and optimality
is sought using linear programming and other techniques to decrease the size of the
search space and thus performance close to that of native compilers is achieved, while
maintaining retargetability. This document discusses motivation, design choices, im-
plementation details and algorithms, performance, and possible extensions and ap-
plications.

Thesis Supervisor: Saman P. Amarasinghe
Title: Assistant Professor, MIT Laboratory for Computer Science

2

Contents

1 Introduction

1.1 M otivation .

1.1.1 Hand Optimization Techniques are not Scalable

1.1.2 Hand-Optimized Code is not Portable

1.1.3 Code Optimizer as an Evaluation Tool for New Chip Designs

1.2 Benefits of Focusing on VLIW/DSP Chip Architectures

1.2.1 Widespread Use and Variety of Algorithms

1.2.2 Generally More Limited Instruction Set and Simpler Pipelines

1.2.3 Design Peculiarities Make Optimizations Difficult

1.2.4 Performance Requirements Justify Longer Optimization Times

2 Approach

2.1 Related W ork .

2.2 Attempt at Retargetable Optimality

2.3 Restricting the Problem to Re-arranging Code

2.4 Generalized Chip and Assembly Language Description . . .

2.5 Assuming Memory Aliasing and Basic Block Self-Sufficiency

2.6 M odularity .

3 Module Overview

4 Describable Chip Architectures

4.1 Description Sem antics .

12

. 12

. 13

. 14

. 14

. 15

. 15

17

20

20

3

7

8

8

8

9

9

9

9

10

10

4.1.1 Multiple Instruction Issued on the Same Cycle 20

4.1.2 Pipeline Delay Slots Support 21

4.1.3 Resource Modification Oriented Description 21

4.1.4 Conditional Instruction Execution Support 22

4.1.5 Support for Common Control Flow Instructions 22

4.2 Chip Description Syntax . 23

4.2.1 Convenience Features . 23

4.3 Exam ples . 24

4.3.1 Overview of TMS320C6201 24

4.3.2 Sample Instruction Definitions 26

5 Data Dependency Graph (DDG) 28

5.1 Parser O utput . 28

5.2 Fragmentator . 28

5.2.1 B asic Case . 29

5.2.2 Special Cases . 29

5.2.3 Optimization Controls at Fragmentator Level 30

5.3 DDG Builder . 30

5.3.1 Correctness Invariant . 30

5.3.2 Handling of Beginning and End of Block 31

5.3.3 Properties of This Representation 31

5.4 Live Range Analysis and Optimizations 32

6 Optimization Framework

6.1 General Framework .

6.2 Basic Steps at Every Cycle

6.3 Definition of Terms .

6.3.1 Dynamic Link Properties

6.3.2 The Ready List (LR) and the Links-to-unready List

6.3.3 Node Properties .

6.4 Generation of All Executable Combinations

(LUL)

34

34

34

35

. . 35

36

. . 36

37

4

7 Dynamic Constraint Analyzer

7.1 A Simple Example

7.2 Dynamic Constraints

7.2.1 Dynamic Constraint Analysis is Necessary

7.2.2 Greedy Might not Guarantee Any Solution

7.3 Types of Constraints

7.4 A lgorithm .

8 Linear Programming Bound Generator

8.1 Expressing The Problem As Linear Program

8.2 Limitations Of Linear Programs .

8.3 Static Bounds and User-Defined Heuristic Bounds

38

. 38

. 41

. 42

. 42

. 43

. 45

47

47

47

48

9 Optimizations, Heuristics and Results 49

9.1 Better or Faster Bounds . 49

9.2 Prioritization of Combinations to Try 50

9.3 R esults . 51

9.3.1 Better than Native Compiler 51

9.3.2 Two Examples of Simple Retargeting 51

9.3.3 Sample Code Fragment . 53

10 Extensions and Applications 56

10.1 Extensions . 56

10.2 Applications . 57

10.2.1 Evaluation Tool for New Chip Designs 57

10.2.2 Porting Existing Code . 57

10.2.3 Last Phase of Optimizing Compiler 58

59

60

11 Conclusion

A TMS320C6201 Chip Description

5

List of Figures

3-1 Module Overview

4-1

4-2

TMS320C6201 Schematics, [24]

Sample Definition of Addition Instructions

7-1 Sampe C Code Fragment

7-2 Sample Assembly Translation . .

7-3 DDG Graph of Sample Assembly

7-4 Solution of Original DDG

7-5 Solution of Modified DDG

7-6 RPL-RPL Constraints

7-7 DS-RPL Constraints

7-8 RPL-DS and DS-DS Constraints.

9-1 Performance Comparison Example

9-2 Sample Assembly Block for Different Chips .

6

. 18

25

26

. 3 8

. 3 9

. 3 9

. 4 0

. 4 0

. 4 3

. 4 4

. 4 4

. 5 2

54

Chapter 1

Introduction

In recent years the advances in process technology and chip design have led to many

high performance chips on the market, at more and more affordable prices per com-

putational power. At the same time, the "smart devices" model of computation has

also been gaining ground, giving rise to a large variety of embedded systems utilizing

high performance, often highly specialized chips.

In particular, many of those chips have been designed to address the needs of

signal processing application such as digital communications and digital television,

computer graphics, simulations, etc. Being intended for a large production volumes,

cost has been an even more pressing issue and a lot of the designs do not have the

complicated optimization circuitry doing branch prediction, pre-fetching and caching,

associated with modern general purpose microprocessors.

Because of the simplicity of the hardware design, which makes parallelism very

explicit to the user, most of the optimizations have been left to the programmer.

Still, providing optimal or nearly optimal solutions to the optimization problems in

the transition to high performance chips has been both interesting, challenging and

difficult.

This work presents an attempt at optimal or nearly optimal utilization of com-

puting capabilities for high-performance chips. Given an unoptimized or partially

optimized assembly code, this software tries to produce optimal or nearly optimal

version of the same code for a specific DSP/VLIW chip. In order to make the work

7

more practical, fairly general chip descriptions are allowed.

1.1 Motivation

1.1.1 Hand Optimization Techniques are not Scalable

While code parallelization of assembly code for VLIW/DSP chips has been an active

research issue for decades, in most cases even now, assembly code for powerful DSP

and other VLIW chips is hand-crafted and optimized. Unfortunately, a lot of the

techniques employed by humans in this process (if any systematic techniques are

employed at all) do not scale very well. For example, the introduction of the Texas

Instruments TMS320C6000 series, capable of issuing up to 8 instructions with variable

pipeline lengths per cycle, marks a new era, where it becomes increasingly hard to

hand-optimize code with that much parallelism, and in fact, to even write remotely

optimal code. In fact, one can argue that software such as the one presented here,

extended with more high-level optimizations, could often produce better results than

humans on long and algorithmically-complicated code. Thus, given the tendency of

creation of even more powerful chips and the use of more convoluted algorithms,

scalability becomes more and more important issue.

1.1.2 Hand-Optimized Code is not Portable

Not only techniques for hand optimization are not scalable, but they are also not

portable. Historically, each generation of DSP chips has been taking advantage of

process technology to optimize the instruction set architecture, because it is too costly

in terms of power and gates to emulate a single instruction set architecture. Thus,

with the introduction of new more powerful and different chips, all optimizations

to existing code need to be re-done, which is a long and difficult process, involving

both coding, optimization and validation. A generalized tool that provides good code

optimization, such as the one presented here, would certainly make the transition

much faster.

8

1.1.3 Code Optimizer as an Evaluation Tool for New Chip

Designs

In addition to easing the transition between generations of chips, a code optimizer,

extended with simulation or profiling capabilities can be very helpful in determining

what features in a new chip are most useful. Given the long turnaround times in

hardware design and the often fixed application code, a tool enabling specification

of hardware capabilities and providing ballpark figures for running time of optimized

code, could be very valuable just for that reason.

1.2 Benefits of Focusing on VLIW/DSP Chip Ar-

chitectures

1.2.1 Widespread Use and Variety of Algorithms

Well, obviously, in order to talk about parallelization, we have to have the capability of

executing many instructions in parallel and DSP/VLIW chips have this capability. In

addition, they are widely used and very likely to grow in both usage and capabilities.

Given the variety of applications those chips are used for (and the tendency of this

variety to grow, for example, with the introduction of Merced, (backwards compatible

with Intel x86 family)), seeking a general-purpose solution versus trying to optimize

every algorithm for every chip is a better approach.

1.2.2 Generally More Limited Instruction Set and Simpler

Pipelines

Since code parallelization is a hard problem, trying to solve it on a simpler architec-

tures is helpful. Since most DSP/VLIW chips have a more limited instruction set

and their pipelines are relatively simpler, one can achieve better optimization results.

9

1.2.3 Design Peculiarities Make Optimizations Difficult

While some of the high-performance DSP/VLIW chips (such as TI TMS320C6000

series) have had a very general, streamlined design, many of the older and more

specialized DSP chips have had a very programmer-unfriendly design. In particular,

because of the limited width of the instruction words, in high performance instruction

word encodings only certain combinations of operands might be allowed, while in

easier-to-encode, but less parallel instruction words all combinations are present. For

example, on Qualcomm's proprietary QDSP II, in a cycle with 5 parallel instructions,

the operands of multiply-accumulate instruction can only be certain sets of registers,

although data paths exist for more registers to be operands and indeed, if the MAC

instruction is combined with less instructions, more operand register sets can be used.

While the above problems are especially acute with more specialized chips, they

are present in most VLIW/DSP chips to some extent. Thus, just learning what

the instruction set is, can be an involved process with programmer's manuals easily

exceeding hundreds and often a thousand of pages. While all those issues make

optimization more difficult for both humans and compilers, as discussed in Section 1.1,

only compilers are capable of providing scalable and portable solutions.

1.2.4 Performance Requirements Justify Longer Optimiza-

tion Times

Finally, last, but not least, most of the applications currently running on DSP/VLIW

chips are applications in a framework of very limited resources and very rigid require-

ments - both in terms of data memory, instruction space, and running time.

In addition, because many of them are used in embedded systems, often the

problems solved are smaller and more self-contained and easier to achieve optimal or

near-optimal results.

Finally, in embedded systems, even if resources are available, optimizations are still

highly desirable, because of power consumption considerations, which often require

running at the lowest clock speeds or limiting code size.

10

Thus, contrary to general purpose processors where performance might be sac-

rificed for speed of compilation, with most applications on DSP/VLIW chips, it is

imperative that the the code is highly-optimized and therefore, slow, but good tools,

as the one proposed here, are viable.

11

Chapter 2

Approach

Having described the motivation and the focus of the project, it is now time to define

its place amidst other work in the field and define more clearly its objectives and

approach to achieving them.

2.1 Related Work

There has been a fair amount of work in the field with many semiconductor compa-

nies releasing powerful chips and compilers that do some optimizations as commercial

solutions. In fact some of the inspiration behind this work come from looking of older

version of assembly optimizer tools running in real time and attempting to achieve

better and more general solutions. The latest version (February, 1999) of the Op-

timizing C Compiler and Assembly Optimizer [24, 25, 26, 27] for TMS320C6201 by

Texas Instruments is used for comparison and examples, throughout this paper. In

fact they produce very good (but not always optimal) results but are limited by de-

velopment time and real-time compilation constraints. In addition, such commercial

tools are understandably non-retargetable.

Besides commercial code optimization solutions there has been a lot of research

into retargetable compilation. Most of the proposed solutions are complicated and

encompassing all from structural chip specification, register allocation and instruction

scheduling. MIMOLA ([22]), for example, starts from net list structural description;

12

AVIV ([11]), CodeSyn ([23)) and Chess ([14]) start from somewhat higher level chip

description, but go through register allocation, mapping high level instructions into

assembly ones using tree covering and code compaction (as presented in this work).

Solutions like those have more potential for overall improvement, but employ heuristic

solutions for code compaction and most likely would benefit from replacing their code

compactor with the tools in this paper.

Other publications relevant to this include work on languages for chip description

(several varieties, depending on granularity [17, 19] - some not much different than

the one chosen in this work) and work on dynamic programming, linear programming

(Wilson et al, [16]) and other techniques ([1-10]) for code compaction. Many of those

techniques are computationally infeasible (such as solving the entire optimization

problem as a single integer linear program) or partially used in this work (linear

programming for obtaining bounds), or inapplicable, because of different computation

framework.

2.2 Attempt at Retargetable Optimality

Amidst many complicated solutions, the intent of this work was to be fairly practical

and thus the following emerged as main priorities:

" simple, but retargetable, chip and assembly description - the first step to opti-

mizations is describing the chip architecture - if this is a daunting task, people

might as well not even attempt it

" attempt at optimal solutions - unlike many other tools, this work makes an

attempt at provably optimal solutions, given some constraints

" attempt at capturing many varieties of architectures, but not at the price of less

optimizations - if some instructions cannot fit in the optimization framework,

they are left unchanged

Given those priorities, among some of the contributions of this work are:

13

" devising simple, yet powerful, assembly and chip description language

" using techniques to make optimizations more tractable

" describing extensible infrastructure for doing such optimizations

2.3 Restricting the Problem to Re-arranging Code

Probably the most restrictive choice in achieving simplicity, was that code was not

to be modified, but just re-arranged. All valid re-arrangements allowable by the

data dependency constraints are considered, however. This requirement might seem

too restrictive from optimization point of view, but in practice it is not, if all other

standard optimizations such as dead code elimination, constant propagation, common

subexpression elimination and so on, are already performed. Peephole optimizations

can be used to find better instruction combinations.

In fact, the standard compiler optimizations are only applicable if compiling from

a high-level language - if the input is hand-crafted, those usually do not even apply.

In addition, this code can run standalone after any other opimizing compiler has done

its job, which is a good from systems design perspective.

2.4 Generalized Chip and Assembly Language De-

scription

In order to make the work more practical, a fairly general chip description is allowed at

a conveniently high level. In particular, the chip is described in terms of combinations

of assembly instructions that can be executed in a single cycle. The description of

assembly instructions itself contains both parsing information to allow describing

a fairly general custom assembly language syntax as well as information on data

dependencies and branch delay slots associated with every instruction.

Describing the system at a such a high level is simpler and easier and has the

added advantage of being less prone to errors than a lower level hardware description

14

in terms of functional units and datapaths.

2.5 Assuming Memory Aliasing and Basic Block

Self-Sufficiency

In order to determine whether memory accesses are aliased or not, a whole new

framework and a lot of infrastructure need to be created, and, it is still impossible to

always determine that at compile time, especially when dealing with identifiers and/or

pointer arithmetic inherited from a higher-level language (such as C). Thus, in this

work all memory accesses to the same memory unit are assumed to be dependent.

Similarly, by default, all labels are considered possible entry points (to allow for

optimizing of single components of a large hand-optimized application, for example)

and they limit the size of basic blocks for optimization purposes. For those purposes,

all calls or jumps are also delimiters, because of the difficulty (or impossibility) of ob-

taining information for required and modified resources for arbitrary (or non-present)

procedures. Some of those restrictions can be relaxed, through user hints, however.

Furthermore optimizations such as loop unrolling and trace scheduling can be used

to provide larger blocks, if necessary.

2.6 Modularity

Modularity as a design choice is present in two levels:

" The optimization tools employ modular design in order to allow for extensibility

and maintainability. An attempt at defining simple and easy to debug interfaces

between modules has been taken and indeed many of the modules can be easily

replaced or modified without major modifications to the rest of the code. An

overview of all modules can be found in Chapter 3.

" The optimizations are performed in modular fashion in order to guarantee scal-

ability. Optimizations are mostly done on basic blocks and although that might

15

sound too restrictive, in practice it is not, because often, in general, code cannot

be moved outside certain bounds (see Section 2.5). An added benefit of this

modular approach to processing is that this work might further be parallelized

or restricted to optimizing just parts of application code with very little effort.

16

Chapter 3

Module Overview

Figure 3-1 contains a diagram of the basic modules of the optimizer and the flow

of data through them. The process of optimizing assembly files for a particular

architecture can roughly be partitioned into 3 phases:

* The first pre-requisite is to describe the chip capabilities and assembly syntax

and run it through the Chip Description Analyzer and Parser Generator tool.

This only needs to be done once per chip description. Those tools generate

a parse tree and other data structures representing the chip for use later in

the process and can easily be modified or replaced to suit other assemblies or

different chip description styles. More detail on the input language and examples

can be found in Chapter 4.

* Having created the necessary infrastructure to support given assembly syntax

and chip capabilities once, one can run many assembly files through the op-

timizer. However, since it is desirable to take most of the work out of the

optimization loop, the code goes through several transformations before arriv-

ing there. In particular:

- The code is being parsed into internal representation using predictive

parser (allowing for a wider range of grammars to be supported).

- The code is then split into basic blocks. Doing so is essential for scalability.

It is also useful as an abstraction barrier. For the motivation of making this

17

Chip Description
Chip Description Analyzer

Assembly Parser Generator

Assembly Code

Search Engine

[Heuristics and User-Guided Search I
=Linear Programming Bound Generator

Dynamic Constraints Analyzer

Figure 3-1: Module Overview

18

a separate stage and discussion of some of the issues involved in splitting

the graph see Section 5.2.

- Once the code is fragmented into basic blocks, a data dependency graph

(DDG) preserving the most parallelism is derived. Note that the represen-

tation and terminology used in that is somewhat innovative. See Chapter 5

for more details.

- Even though the data dependency graph is a representation of the opti-

mization problem preserving correctness, there are additional properties

of the data dependency graph (DDG) that would enhance the search for

solution. They are described in Section 5.4.

Finally, given a data dependency graph and attempt at an optimal or nearly

optimal is made. The basic search framework is branch and bound with bounds

provided using linear programming, minimum distance to end and other meth-

ods, heuristic hints and directions provided by the user and an early detector of

futile branches of the search space. All those components are closely interleaved

in the code, but they are described in separate chapters, because each one of

them contains interesting algorithms and other issues.

19

Chapter 4

Describable Chip Architectures

Having described the scope of the project and given an overview of the tools, it is now

time to focus in detail on the range of chips describable within Assembly Description

Language (ADL) of this project. The general idea of the language is to be able

to describe the syntax of all assembly instructions together with with the minimum

required information about how they can be reordered. In order to highlight the

process of arriving at that language the supported features will be described first.

4.1 Description Semantics

All chip architectures that can be described correctly within the description semantics

listed below can benefit from this work. Furthermore, even if the chip as a whole

cannot be fully or correctly described within this framework, often by eliminating

offending instructions or situations (eg. waiting and servicing interrupts, etc) from

consideration, one could make this work applicable to many more architectures.

4.1.1 Multiple Instruction Issued on the Same Cycle

The description of the chip capabilities is in terms of assembly instructions capable

of being issued at the same cycle. In the simple case of non-pipelined processors this

translates to sets of instructions that can execute together in a single cycle. In fact, all

20

pipeline stages common to all instructions can be viewed as occurring in a single cycle

for the purpose of extraction of data dependencies from the source code in the case of

pipelined processors with same length non-blocking pipelines for all instructions and

no delay slots. Eliminating stages in this fashion is helpful when reasoning about the

chip.

4.1.2 Pipeline Delay Slots Support

Recognizing, however, that many chips feature variable length instruction pipelines

and delay slots (most commonly with branches, but also with other instructions) such

capabilities are also supported. Different delay slots for different resource updates are

also supported. An example of such situation would be a memory load instruction

with address register modification. The address register modifications typically are

in effect for the instructions issued on the next cycle, while the register getting data

read from memory might not be modified until several cycles later.

4.1.3 Resource Modification Oriented Description

The description of the chip functionality for the purposes of detecting dependencies is

based on specification of used and modified resources for each instruction. Registers

are typical such resources. Each instruction lists the registers it requires and modifies.

For the purposes of defining the chip semantics correctly unlimited number of other

resources can be defined with the same semantics as registers. Memory is a typical

example of such resource. Such additional resources can be used to capture "hidden"

registers such as the ones used in stack modifications, register flags, special modes of

operations and more. See Section 4.3 for examples.

Here are some of the key properties of that description (for simplicity, single-cycle

execution terminology is used; non-blocking pipeline semantics are the same):

* The values of all used resources are assumed to be read at the very beginning

of the cycle. Thus, if the same resource is used and modified at the same cycle,

the old value is used in computation.

21

" The modification of all modified resources is assumed to happen at the end of

the current cycle (ie. the modified value is to be used for the instructions issued

on the next cycle), unless delay slots for the modification of that resource are

specified, in which case the change is assumed to happen the specified amount

of delay slots later.

e The same resource cannot be modified by two different instructions in the same

cycle, because of unresolved ambiguity about the order of modification.

" Each resource can be used by any number of instructions and any number of

operands in a given cycle. To describe more stringent constraints based on use

of hardware data paths and so on, one could introduce resources for those data

paths and specify their modification as required (see Section 4.3 for examples).

4.1.4 Conditional Instruction Execution Support

Many modern chips allow conditional execution of instructions based on the value of a

certain register or flag. Conditional jumps or loops are the most essential examples of

such instructions, but support for any conditionally executed instruction is included.

Unless there is control flow transfer the semantics of those instructions are not much

different than any other instructions - the only difference is that the register or flag

being tested is an "used resource" in the above sense.

4.1.5 Support for Common Control Flow Instructions

Control flow operations are problematic in chip descriptions because they are less

standardized in encoding and functionality from chip to chip. Specialized loop in-

structions and their placement right before, after or within the loop body can be a

problem in describing the chip assembly and capabilities. Several common cases of

such placements are supported. The work can easily be extended to support oth-

ers. Calls, jumps and other similar instructions are supported, together with their

conditional and delay slot versions. For complete description see Section 5.2.

22

4.2 Chip Description Syntax

For an added convenience and ease of description, the description of the chip will

consist of description of all possible valid instructions in assembly. Note that the

description might aceept invalid entries as well, as long as it is not ambiguous - on

invalid input, the output is guaranteed to be invalid! All instructions, then, would be

partitioned into instuctions sets or classes, such that all instructions in the same class

combine in the same way with all other instructions (for example the class of ALU

instructions). Finally, all possible combinations of instructions that can occur on a

single cycle will be described in terms of instruction classes. Note that a class can

consist of a single instruction, if it combines uniquely with instructions from other

classes.

The description of a single instruction or a several instructions together when using

shortcuts (see below) consist of a name, list of tokens and 3 other lists (optionally

empty). The 3 additional lists are used to determine the data dependencies and

are requires, modifies and special list respectively. Each element of the requires and

modifies lists is either a number indicating which token in the token list (representing

register) is meant, or a string identifying other resource or a particular register. An

entry in the modifies list starting with the symbol '#' signifies signifies delay slots in

the modifications of the resource immediately preceding it. The special list contains

the type of a control-flow operation (eg. conditional, JUMP, JUMPD, CALL) and

other information, if necessary.

4.2.1 Convenience Features

In order to make the process of describing the chip and its assembly language easier

the following are supported:

* sets of registers

* sets of operators and other symbols

23

e use of - to signify optional nothing or several tokens always used together (eg.

<< 16) in operator descriptions

" the special token STRING matches any alphanumeric sequence - useful as a

placeholder for constants or identifiers in the source code

" definition of related resources (eg. if RO is 16-bit and its 8-bit parts are ROh and

RO1, then whenever RO is modified, ROh and RO1 are modified and vice versa) -

useful in register sets

4.3 Examples

Having described the describable chip architectures in general and the description

syntax features in detail, it is now time to give some examples.

Some of the chip architectures described within this framework include QDSP

II by Qualcomm Incorporated and TMS320C601 by Texas Instruments. However,

QDSP II is Qualcomm proprietary and therefore will not be used for examples, while

information about TMS320C6201 is publicly available and it is widely used chip, so

the examples here will be based on it.

4.3.1 Overview of TMS320C6201

TMS320C6201 is an Very Long Instruction Word chip, capable of issuing up to 8

instructions per cycle. Most instructions execute in a 11-cycle pipeline and the chip

can be clocked at 200 MHz making it one of the most powerful fixed point integer

DSP chips on the market. It features two sets of nearly identical computational units

and two general purpose register files associated with each set. The shematic can be

found on Figure 4-1. The L units perform long arithmetic operations such as addition

and subtractions. The S units perform similar operations on different arguments. The

M units perform 16 bit multiply operations and the D units perform memory loads

and stores. The L, S and M units can only write to their register block, while the

D units can store or load data from or to both register files. There are only 2 cross

24

Control
register

file

Figure 4-1: TMS320C6201 Schematics, [24]

25

register path so only one of the arguments of the L, S, M units on each side of the

chip can come from the other side. The arguments to the D units must come from

their respective part of the chip.

RSet AX AO Al A2 A3 A4 A5 A6 A7 A8 A9 A10 All A12 A13 A14 A15
RSet BX BO Bi B2 B3 B4 B5 B6 B7 B8 B9 B10 Bl B12 B13 B14 B15

OSet ADDLX ADDL ADDLSU ADDLU ADDLUS

OSet Number STRING -_STRING ;

inst ADDL1 ADDLX AX , AX, AX; 2 4; 6;
inst ADDL2 ADDLX Number , AX , AX ; 4 ; 6

inst ADDL3 ADDLX BX , AX, AX; 2 4; 6 x1
inst ADDL4 [AX] ADDLX AX , AX, AX; 2 5 7; 9 ; 13;
inst ADDL5 [AX] ADDLX Number ,AX, AX ; 2 7 ; 9; 13;
inst ADDL6 [AX] ADDLX BX , AX, AX; 2 5 7 ; 9 x1 ; 13;

ISet UnitL1 ADDL1 ADDL2 ADDL3 ADDL4 ADDL5 ADDL6 ;

Figure 4-2: Sample Definition of Addition Instructions

4.3.2 Sample Instruction Definitions

Given the above functionality of the chip and the format of its assembly, a sample def-

inition of a set of instructions executable on unit Li is given on Figure 4-2. (Note that

the ISet definition above, in practice, should include all other instructions executable

on that unit).

First AX and BX are defined as enumerations (sets) of registers. Then ADDLX

is defined as the set of several different instruction mnemonics for addition - note

that for the purposes of this work it is not important what the operation really is,

as long as the required and modified resources are identified correctly. Since the

addition instructions might make use of a constant operand, Number is defined as

an optionally signed alphanumeric sequence. Here, again the value of the operand is

immaterial. It does not even matter whether it is a number or a string constant in

the assembly - what is important is that there is no data dependency on it.

26

The 3 lists separated by commas in each inst statement indicate the token indices

of required and modified resources. A special resoure 'x1' corresponding to the cross

data path is introduced to make sure that only one operand of L, S or M unit comes

from it. Finally, the square bracket notation indicates conditional execution, which

is signified by the special code in the third semi-colon separated list.

Once the instruction dependencies and syntax are described in inst statements,

the ISet statement is used to define a set of instructions that combine uniquely with

all others. While on other chips those combinations can be very involved on the

TMS320C6201, describing all possible combinations of instructions is done by some-

thing like:

Combo UnitL1 UnitL2 UnitS1 UnitS2 UnitM1 UnitM2 UnitD1 UnitD2

Describing the rest of the assembly is just a simple addition of more syntactic

structures. Some of the other notable features of it are:

* one delay slot for the result of all multiply (MPY) operations on the M units

* four delays slots for the result of memory read (LD) operations on the D units

" five branch delays slots for branch instructions

" conditional execution of single instructions based on register value

The description of TMS320C6201 chip used for optimizations can be found in

Appendix A.

27

Chapter 5

Data Dependency Graph (DDG)

Once the unoptimized assembly file is parsed in, but before optimizations can be

done, a data dependency graph has to be generated in order to insure the correctness

of the output, and make it easier to pinpoint allowable instruction permutations.

5.1 Parser Output

The assembly parser takes in the unoptimized assembly file and produces a list of

assembly instructions each of which contains - its original parse string (in order to

allow printing it out) and the instruction word in the input in which it would have

been encoded. Labels are preserved in a similar fashion. The used and modified

resources are resolved to internal representation as well. This list is then passed on

for further processing.

5.2 Fragmentator

Since assembly files for real applications can be quite large and searching for optimal

or near-optimal solution in the optimization phase grows very fast with the size of

the problem, being able to split the input file into small blocks for further processing

is a necessity in order to provide a scalable solution.

28

5.2.1 Basic Case

The fragmentator module attempts to break up the input into more manageable

blocks such that performance is not sacrificed if all blocks are optimized individually.

In other words, those are blocks of code, where code cannot be moved into or outside

the limits of the block without correctness hazards. It is easy to establish that there

are basically two types of block delimiters:

* label - in order to allow for partial compilation, all labels are considered possible

entry points and therefore code cannot be moved beyond them and code can be

safely partitioned at them

9 control flow instructions - analogously, because the points where control is trans-

fered might be unavailable or called from many places, no code can be moved

beyond a control flow instructions (such as LOOP, JUMP, CALL, RETURN)

5.2.2 Special Cases

Note that there can be complications if the those special instructions are conditional

and they have delay slots. Specifying branch delay slots is supported and in order

to insure correctness under the above partial compilation assumptions, two possible

modes of operation are supported depending on the chip architecture:

* branch delay instructions always executed - in this mode all instructions placed

in the branch delay slots of a conditional flow control instruction are included

in its basic block together with the code before it

* branch delay slots executed only if branch not taken - since whether the branch

will be taken or not cannot be determined at compile time the instructions in the

branch delay slots cannot be moved outside those slots and therefore constitute

a basic block by themselves - there is no point in optimizing it, however, since

the possible gains have to be filled with NOPs anyway

29

Note that it is unwise to have instructions with delay slots past a control flow

change (e.g. a RETURN instruction), because this can give rise to resource conflicts

unless it is known where flow is transferred. Such situations are flagged and disallowed

by making sure that all instructions in a basic block have their delay slots filled

(possibly with NOPs) within the block.

5.2.3 Optimization Controls at Fragmentator Level

In addition to being essential to scalability, the fragmentator is an useful abstraction

barrier since many optimization directives can be applied at that level. For example,
the user can specify different optimization strategies for the current basic block, might

relax some correctness assumptions (eg. that all resources are needed upon exit,
which influences data dependency graph generation) or might provide a "weight" of

the block (eg. in an attempt to gain profiling information for the amount of speedup

by optimizations).

5.3 DDG Builder

Given a (presumably small) basic block, it is now time to analyze the data depen-

dencies and abstract the problem away from chip descriptions and program flow and

assembly language into more of a problem of collapsing a colored graph into boxes,
each of which can contain certain combinations of colors. (The colors here are the

instruction sets and the boxes are what is being executed on each cycle).

5.3.1 Correctness Invariant

The key idea in being able to abstract away the assembly optimization problem is

knowing what the key property guaranteeing correctness is. In fact, it turns out that

it is very simple: if in the original code, instruction A uses resource B, which was last

modified by instruction C, then the same should hold in the optimized code. In other

words, for every pair of instructions where one modifies a resource (say instruction

30

M modifies resource R) that and the other (say instruction U) is using, before any

other modifications to it, one could create a link from M to U, symbolizing that N

has to execute before U and no other instructions modifying resource R can occur in

between.

In order to accomodate delay slots the notion of the links can be extended by

adding a delay slot field on them and adding to the semantics that for the next delay

slot (DS) cycles the resource R is not modified, but it is modified at the end of the

DS cycle following instruction M. Therefore, U should occur after that and no other

modifications to resource R can occur after DS cycles after M, but before U.

5.3.2 Handling of Beginning and End of Block

In order to run the simple algorithm to create a DDG graph, however, one needs to

pay special attention to the borderline cases - and specifically to the beginning and

end of the block. One general enough and safe approach, commonly assumed, say for

procedures, is to assume that the beginning modifies everything and the end requires

everything. All that is saying is that if someone used a register value that was not

initialized in the block then that should be true in the output as well, and that the

original values of all resources upon exiting the block should be preserved. Using user

defined pragmas at the fragmentator level, those can be overrided, resulting in more

combinatorial possibilities and possibly more optimal code.

5.3.3 Properties of This Representation

It is important to note that all links like those capture both the data dependency

constraints and the correctness invariants and in fact, they are both sufficient to

guarantee correctness and at the same time preserve the most allowable parallelism,

given our assumptions. Note that many other representations are more restrictive

with respect to parallelism, but have less assumptions. By being restrictive at the

basic block level we can achieve those properties at the DDG level.

Here are some other properties of the graph:

31

" If there is no link (or chain of links) from instruction to the end of the block

the instruction is dead code and can be eliminated.

" If there is no link (or chain of links) from the start to an instruction then its

result is independent of the state of the resources upon the entry of the basic

block.

" There can be no two or more links with the same resource going into a node.

This is equivalent to saying that there is only one instruction which last modified

a certain resource.

" There can be many links with the same resource going out of a node, but they

must have the same delay slots. What this is saying is that a modified resource

might be used by many other instructions but is only modified at a certain time,

before being used.

It can also be noted, that in this structure, if there is no link (or chain of links)

from an instruction to the end of the block, the instruction is dead code and can be

eliminated, and if there is no chain of links to the start, then it can be executed before

the block (eg. an assignment statement).

5.4 Live Range Analysis and Optimizations

While the DDG structure outlined above is sufficient to guarantee correctness there

is more analysis that can be done statically before even starting optimizations, par-

ticularly related to live ranges. Consider the case of two long sequences of code both

using RO as accumulator, except that the first one writes RO to memory, while the

second one produces the value of RO available at the end of the block. Add to this all

sorts of computation that can be executed in parallel with them. Now, if there are

no large delay slots, one can conclude that the two accumulation sequences cannot

be interleaved, and that, in fact, the second one should be completed after the first

one, but this is not explicitly stated in the current form of the DDG.

32

What can go wrong in particular, is getting started on executing the second se-

quence and trying to combine it in all possible ways with other instructions, just to

realize in the end that the first sequence cannot be executed. This situation can be

amended by looking for continuous sequences of use and modification of a certain

resource ending in a certain instruction, running a search backwards from there and

adding constraints that the use or modify sequence should be executed no earlier than

any other use of the same resource eventually leading to that instruction. Note that

this optimization helps establish better bounds on shortest time to completion and

thus it is performed before those bounds are calculated.

As can be seen, this is a very interesting issue with a great computation-saving

potential, and attempting to solve it in the general case, involving many resources

and delay slots would be interesting, but unfortunately this is beyond the scope of

this work.

33

Chapter 6

Optimization Framework

6.1 General Framework

The process of optimizing a block of code given a data dependency graph consists

of attempting to fill in instructions for each cycle and attempt to achieve a solution

that is both correct and takes the least number of cycles. Some of the advantages

of this framework are that it is fairly simple, natural and easier to trace by humans,

that advancing and retracting by a cycle is relatively easy and that there is closure -

meaning that the problem after several instruction words of instructions are chosen

is similar to the original problem. Backtracking is supported and branch and bound

or other varieties can be specified.

6.2 Basic Steps at Every Cycle

At every cycle, there are several basic steps:

1. Checking whether all instructions have been scheduled and a best-so-far solution

has been achieved.

2. Checking whether bounds or heuristics indicate that no solution better than the

current best can be obtained and, if so, going back a cycle.

3. Generating all combinations of instructions that can be issued on that cycle.

34

4. Saving the current state.

5. Selecting a non-attemted combination of instructions to try at the current cycle.

If none going back a cycle.

6. Changing the state to reflect the current selection.

7. Advancing to the next cycle (a recursive call).

8. Restoring the state saved in step 4 and continuing from Step 5.

6.3 Definition of Terms

In order to describe the algorithms, it is necessary to introduce some terms and

explain some of the state at each cycle.

6.3.1 Dynamic Link Properties

Links between DDG nodes are widely used in the optimization process, because they

describe the constraints between nodes. In addition to the resource being modified

and some other static data, each link has 2 major properties, that can vary with the

cycle:

" resource path length (RPL) - the length of the longest path of links in the DDG,

modifying the same resource without delay slots, starting from the current link

- used as a lower bound on the number of cycles before any instruction using

that resource, but not on that path can be scheduled

" delay slots (DS) - the delay slots signify the remaining number of cycles before

the change in a modified resource takes place; for links whose start node has not

been scheduled, the the delay slots are the original delay slots in the instruction

definition; for links whose start node has been scheduled the delay slots decrease

every cycle

35

Note that by definition, for every link at any time, if RPL>O, DS must be 0.

Additionally, note that links that originally had delay slots, once their startnode is

scheduled and all the delay slots have passed, behave in the same way as links without

delay slots from then on. Indeed, links with delay slots turn into links without delays

slots after DS cycles.

To summarize, if a link in the DDG has no delay slots, then it has DS=0 and

RPL>=1, and that does not change. On the other hand, if the link has delay slots,

then the DS field is initialized to the delay slots and RPL to 0 and once the starting

node is scheduled, every subsequent cycle, DS is decreased until it reaches 0, when

RPL is updated to a positive value as if the link had no delay slots. Those properties

are restored to their correct value when backtracking.

6.3.2 The Ready List (LR) and the Links-to-unready List

(LUL)

The Ready List (RL) is intended to be a list of all instructions that can be executed

at the current cycle. At the beginning of the process in Section 6.2, it contains all

instructions whose pre-requisites in the DDG have been fulfilled (the starting nodes

of all links to them have been scheduled and all the links have their delay slots at

0). Some of them are later removed as unschedulable on the current cycle, through a

complicated process.

The Links-to-unready List (LUL) is a list of all links whose start nodes have

already been scheduled, but whose end nodes cannot be executed at the current cycle

(ie. are not in the ready list).

Note that LUL entries impose restrictions on whether instructions can be in RL

and might lead to the removal of RL entries. Note also, that the removal of instruc-

tions from RL leads to the placement of all their incoming links in the LUL.

6.3.3 Node Properties

Each node contains the following information:

36

. whether the instruction was scheduled and if so on what cycle

" if the node is not scheduled the highest DS and RPL values of all outgoing links

for all resources

" its instruction set number, parse string and other similar information inherited

from previous stages

6.4 Generation of All Executable Combinations

Since it is best to detect and eliminate combinations at the current cycle that will not

lead to a feasible solution as early as possible, generating all executable combinations

is a complicated process.

" RL is initialized as all non-scheduled instructions with fulfilled pre-requisites,

all links pointing to RL elements are removed from LUL

" The Dynamic Constraint Analyzer (DCA) is called (see Chapter 7), and it could

remove some elements of RL and put the links to them into LUL. Since the prob-

lem is more complex and just a list of executable instructions is inadequate, a

structure representing more complex dependencies among the executable in-

structions is returned. In particular, certain instructions can only execute, if

others execute on the same cycle, and some instructions can only execute all

together or not at all, and this is captured in the data structure.

" Given that information a list of all allowable combinations is generated, making

sure that all the restrictions are observed.

" The list of all combinations can then be heuristically sorted.

37

Chapter 7

Dynamic Constraint Analyzer

As discussed in Section 5.4, during the DDG generation phase, live ranges optimiza-

tions can result in great improvement in search times. However, many of the live

range issues are only exhibited within a search framework and give raise to a whole

new set of issues.

7.1 A Simple Example

b=abs (a) +1+a;
c=((a && 11) + 3) |I 12;

Figure 7-1: Sampe C Code Fragment

Is is probably better to consider an example. Consider the C code on Figure 7-1.

Some C compiler might translate it into the Assembly code given on Figure 7-2 - that

translation assumes, a is stored in Al, b in A2 and c in B2, and additionally, AO and

BO are temporary variables.

If the assembly code is fed into the optimization tool and (assuming it is a complete

basic block), the resulting DDG will be the one on Figure 7-3. The registers on

each edge indicate the resource being used that should not be modified between the

instructions (true dependency). Note, also, that on this graph, the dotted lines do

38

ABS A1,AO;
ADDL 1,AO,BO;
ADDL A1,BO,A2;

ANDL 11,A1,BO;

ADDL 3,BO,AO;
ORL 12,AO,B2;

Figure 7-2: Sample Assembly Translation

Figure 7-3: DDG Graph of Sample Assembly

39

ABS A1,A0;
ADDL 1,AO,BO;

ADDL A1,BO,A2 || ANDL 11,A1,B0;

ADDL 3,BO,AO;

ORL 12,AO,B2;

Figure 7-4: Solution of Original DDG

ABS A1,AO || ANDL 11,A1,B0;

ADDL 1,AO,BO || ADDL 3,BO,AO;

ADDL A1,B0,A2 || ORL 12,AO,B2;

Figure 7-5: Solution of Modified DDG

not have a resource associated with them - they are lines generated by the Live Range

Analyzer (see Section 5.4), to capture implicit dependences. In particular, because

of the dashed lines, indicating that the final values of AG and BO must come from

the instructions on the right side of the graph (output dependencies), they have to

execute after their left side counterparts modifying the same resources. Given this

DDG the optimal solution found by the tools takes 5 cycles and is given on Figure 7-4.

If the C compiler had specified that the values of AG and BO are unimportant at the

end of the block, then we can have 2 operations per cycle for 3 cycles, as shown on

Figure 7-5.

Let us step through some of the steps of obtaining the shorter solution. After Start

(which is treated quite like an ordinary instruction) is asserted, the instructions with

all their pre-requisites scheduled are ABS A1,A0 and ANDL 11,A1,B0. Since the first

executes on unit Li and the second on L2, they can execute together and therefore

there are 3 possible combinations - each one separately or both of them together. The

combination with both of them is heuristically prioritized and is selected.

On the next level ADDL 1,AO,BO and ADDL 3,BO,AO are available. They belong

to different units and can be combined, so one might think that again here we have

40

3 possible combinations - both or each one of them separately. Strangely enough,

however, the only option at this level is executing them together. Understanding

why this is the only option in order to preserve correctness, leads us to the Dynamic

Constraint Analyzer.

7.2 Dynamic Constraints

It turns out that in addition to the constraints on instruction combinations imposed

by the chip architecture and the constraints associated with non-modification of a

given resource more than once in a given cycle, there are constraints imposed by

previously scheduled instructions. They will be referred to as dynamic constraints

and further divided into two types:

1. Hard Constraints - constraints that unconditionally prevent instructions from

being scheduled or unconditionally require that they must be scheduled on the

current cycle

2. Soft Constraints - constraints indicating that certain instructions can execute

only if other instructions execute on the same cycle

In the example above, scheduling ABS A1,AO means that no instructions modify-

ing AO can be scheduled before scheduling ADDL 1,AO,BO and thus ADDL 3,BO,AO

must occur no earlier than ADDL 1,AO,BO. Similarly, scheduling ANDL 11,A1,BO

means that no instructions modifying BO can be scheduled before scheduling ADDL

3,BO,AO and thus ADDL 1,AO,BO must occur no earlier than ADDL 3,BO,AO. Those

are examples of Soft Constraints leading to the conclusion that ADDL 1,AO,BO and

ADDL 3,BO,AO must execute together or not at all to preserve correctness.

Note that the last statement is only true in the case where ABS A1,AO and ANDL

11,A1,BO are scheduled and ADDL 1,AOBO and ADDL 3,BOAO are not, and not

in general - the original assembly code on Figure 7-2 is a trivial example where this

situation does not occur.

The mere existence of such constraints, however, has major implications.

41

7.2.1 Dynamic Constraint Analysis is Necessary

As seen in the case above and in many other cases, analysis of those dynamic con-

straints is necessary to guarantee correctness, even though it is somewhat involved,

especially in the presence of delay slots.

Furthermore, not only is analysis necessary for correctness, but with little aug-

mentation it can be very useful computationally in eliminating areas of the search

space that cannot produce a solution.

Consider the example above as part of some much larger basic block and a chip

that cannot execute those two particular instructions together. By realizing that no

solution can be found given the initial scheduling of instructions right away, the po-

tentially huge computation of all possible ways to schedule the remaining instructions

can be spared.

On a final note, such analysis is practical because such cases arise fairly often in

practice. Any sequences of straight-line code without dependencies using temporary

registers give rise to such situations.

7.2.2 Greedy Might not Guarantee Any Solution

Not only the dynamic constraints analysis is necessary, but the fact that there are

cases where past choices might block progress means that if DDG is used as a starting

phase, greedy picking of instructions might not find solution. In fact, even with

backtracking any feasible solution might be problematic. In particular, if the input

code is written for a chip with different capabilities and there and the guidelines from

it cannot be used, there is no proof that any solution will be found or impossibility

of solving the problem will be proven within polynomial time. While in theory this

is disheartening, in practice, most problems in reasonable time using heuristics and

user hints.

42

7.3 Types of Constraints

Having described the need for analysis, in this section an overview of the constraints

handled will be presented and implementation details will be discussed later.

As disscussed in Chapter 6, in the beginning of the process of generating allowable

combinations for the current cycle list of links to "unready" (LUL) and list of "ready"

(RL) instructions are established and based on constrains in LUL some of the elements

of RL are removed. Since most constraints apply to situations of use of the same

register, throughout all the figures in this section, assumption of the same register on

the links will be used. On those figures boxes will represent instructions and links

without a starting box would represent links whose start has been scheduled, while

boxes without links pointing to them will generally be assumed to be in RL. The links

will be characterized by their RPL and DS properties as discussed in Section 6.3.1.

Subscripts of one and two will be used to refer to the properties of the links on the

left and on the right side of the Figure.

A Time: A scheduled

C A

B C
RLen>0 RLen>O

BD D

(a) (b)

Figure 7-6: RPL-RPL Constraints

Consider the situation on Figure 7-6(a). This situation might occur as we are

trying to schedule something like Figure 7-6(b). Basically, in this case we cannot

schedule C, before B, but we might be able to schedule them together in the special

case where RPL1 - 1 and B is executable (or in the RL list). If RPL1 > 1, this

means that B modifies the resource and since the resource cannot be modified more

than once C cannot execute together with it. Furthermore, if B is not executable

(and the link is in LUL) then C cannot be executed (and should be removed from

RL).

43

Time: A scheduled

A

C

DS=2 RPL=l

(a)

RPL>O

B z

B (b)

Figure 7-7: DS-RPL Constraints

A Time: A scheduled

RPL=2

B D

RPL= I

DS=1

E

(b)

Figure 7-8: RPL-DS and

(c)

DS-DS Constraints

The situation gets more complicated with the introduction of delay slots. Consider

Figure 7-7(a). For C to be executable the delay slots have to be enough for all

instructions using it to complete. Since C itself must be added what this means is that

DS1 must be greater than RPL2 for this to happen. In addition, if DS1 = RPL2 +1

and there was a link with the same resource to C then C must execute. This situation

is captured on Figure 7-7(c), where RPL2 is one larger than RPL2 of of Figure 7-7(a),

and if DS1 = RPL2 then C must execute on the current cycle.

The symmetric case is presented on Figure 7-8(a). There, again, the delay slots

have to be long enough in order to allow the completion of the uses of B. Those

requirements are strengthened if B is not executable (the link is in LUL). There are

3 cases:

44

>0 RPL>0

C

(c)

DS>O

(a)

" B is executable and RPL1 = DS 2 + 1. Then, D can be executed only if B is

executed (Soft Constraint).

" B is executable and RPL1 > DS 2. Then D cannot be executed.

" B is not executable and RPL1 >= DS2 . Then D cannot be executed.

The last case handled, is presented on Figure 7-8(c). There, if DS1 = DS 2 + 1

then Y is not executable because two instructions cannot modify the same resource

in the same cycle. More complicated analysis is possible at this level (ie. by looking

at the RPL chains after that), but it is not that useful to perform. One could also

make a point that more analysis could have been performed for all other cases, but

given the existence of dependences on other resources and other search-limiting and

optimization-guaranteeing mechanisms in the optimization framework, such efforts

are most likely not practical.

7.4 Algorithm

Here is a brief description of the algorithm:

1. RL is initialized to all instructions that have no incoming links with unscheduled

starts or positive delay slots.

2. LUL is initialized to all links from scheduled to non-scheduled instructions not

in RL.

3. RL and LUL are examined for Hard Constraints and members of RL are removed

and all their links are put in the LUL, potentially triggering additional removals.

4. If must-execute instructions are not in RL, backtracking is triggered.

5. If RL is empty, but there are links with positive delay slots in LUL, then the

list of allowable combinations contains just NOP, the empty operation.

45

6. A graph of all Soft Constraints is generated among the elements of RL. The

edges in the graph represent must-execute-no-later-than relation.

7. For instructions that must execute on the current cycle, links to all others

are added, indicating that any other instructions can execute only if they are

executed.

8. Topological sorting ([13]), based on that relation is performed by removing ele-

ments having no one earlier-or-together to them and their links in order. Max-

imal cycles (everyone-to-everyone directed connectivity) are identified, marked

as instructions that must either execute together or not at all and considered a

single instruction for the purposes of the topological sorting.

9. If the chip cannot do a set of instructions that must execute together, back-

tracking is triggered.

10. All combinations are generated making sure that instructions that must execute

together execute together and that all pre-requisites are fulfilled. This list is

guaranteed not to be empty.

46

Chapter 8

Linear Programming Bound

Generator

8.1 Expressing The Problem As Linear Program

In a constrained search framework, it is critical to be able to find a good bound

on the time to completion and go back as early as possible. One general approach

that can be used for obtaining such lower bounds is integer linear programming. In

particular, one can define xi,c > 0 for all instruction sets i present in the current

problem and all combinations c that they can be a part of. Then one can require

that Vi ((Eczi,c) > Xi), where Xi is the number of instructions in set i in the current

problem, and that Vc, Vi (zic < Y), where Y is the number of combinations of type

c used in the solution. Then by minimizing EcYc one will obtain a lower bound on

the total cycles required for a solution. One can also minimize or maximize on any

of xj,c or Y individually to obtain even more bounds.

8.2 Limitations Of Linear Programs

The linear program as defined above does not capture data dependencies or delay slots

and thus is often too low and inacurate to be useful. In addition, the problems can

be large and complicated for some instruction sets and integer solution might be hard

47

to obtain within reasonable time. TMS320C6201 has very streamlined architecture

and is not one of those cases, but even there solving the linear program in the integer

domain (more accurate, higher bounds) takes more time than in the real domain and

is not always justified.

While it might be possible to define the entire problem as a linear program as

past work suggests, the number of variables and constraints will be overwhelming

and there will be no gain from it, because that will be solving the same problem with

a more general approach and less specific knowledge, which is counterproductive. Still

in many cases, running real domain linear programming just for checking how far off

from optimality the solution is, is useful.

8.3 Static Bounds and User-Defined Heuristic Bounds

In cases where linear bounds do not fare too well, such as sequences with large delay

slots, an useful metric is minimum distance to end. This is computed statically in the

beginning along all paths from a given instructions to the end and can be modified

using user directives to help achieve faster unproductive search cut-offs. The more

restrictive of those static bounds and the bound obtained from linear programming

for all unscheduled instructions is returned.

48

Chapter 9

Optimizations, Heuristics and

Results

Heuristics and good handling of special cases can make a significant impact on the

running time of the tools.

9.1 Better or Faster Bounds

Better bounds can be achieved either deterministically by using more analysis on

any particular chip architecture or can be heuristically set by the user, in which case

the proof power of the extensive search is lost. One of the main advantages of such

bounds is that linear programming is often fairly slow.

One example of better and faster bounds for TMS320C6201 is that since there

is only one instruction set combination, where are 8 instructions sets (corresponding

to instructions executable on each computational unit) can be combined, one could

conclude that the linear programming code will just return the maximum of remaining

instructions over all units. By replacing the call to the linear programming code, the

speed of the code, especially in hard cases is more than doubled. Similar analysis

can be performed in more complicated situations. Furthermore, if the bounds are

computed so directly they could be augmented by adding the minimum (over all

remaining instructions in a instruction set) delay slots to the total. For example - if

49

there are 10 different memory loads that cannot be combined with each other and

each one has 4 delay slots, then they cannot be completed in less that 14 cycles, which

can be significant improvement over the LP generated bound. While TMS320C6201

is fairly simple and those bounds are sufficient, other bounds trying to capture more

of the data dependencies can be devised, if necessary.

9.2 Prioritization of Combinations to Try

Another important place for heuristic choice is choosing how to prioritize instruction

combinations to be attempted. With a simple chip architecture and easily computable

good bounds as in the case of TMS320C6201, and with small basic blocks (which is

often the case), those are not so important. However, with more complicated chips

where means of combination are limited by instruction encoding space a good (or

optimal) solution might be hard to obtain when using the wrong heuristic. The

problem is complicated by the Dynamic Constraints phenomena, where doing more

instructions earlier (which is good) might lead to an impossibility to construct a

solution later. Heuristics that address such problems, but potentially need longer to

converge to an optimal solution are choosing to do instructions with less outgoing

links, instructions in the approximately same order as in the input file or instruction

combinations with less instructions. A more flexible solution changing between some

of those strategies depending on the current state would generally perform better, but

again, those are not are not very commonly necessary. For the TMS320C6201, the

best performing heuristic seems to be picking the combination with the instruction

that has the longest path to completion, if equal, picking the combination with more

instructions, and if equal, finally picking the one with instructions earlier in the input

file.

50

9.3 Results

Given that heuristic, tests were run on all assembly files or C files compiled to assembly

coming with the TMS320C6201 optimizing tools (37 files). The segments that cannot

be optimized within this framework as defined in Section 5.2 were excluded. Note

that while the excluded sections probably take a significant portion of the time and

any performance evaluations are skewed, this is still code taken from an user manual

([271), and thus is an characteristic of typical signal processing routines, and most

likely tailored to exhibit the best performance of the TMS320C6201 software tools.

9.3.1 Better than Native Compiler

The code achieved solutions of the same length as the ones provided by the Texas In-

struments tools for all 471 basic blocks, performing exhaustive search and confirming

their optimality, in several minutes. It turned out that even the timing was compa-

rable. Even though that there are examples where the Texas Instrument tools do not

produce the optimal code, generated by this software, it turned out that in practice

their output is almost always optimal, probably because of some hidden invariants in

C-to-assembly conversion.

Here it is important to point out that the TMS320C6201 is a simple chip, not

taking advantage of the full capabilities of this work, and that a specialized solution

is always more likely to perform better on average (in this case slightly faster), or

have more features than a general one.

9.3.2 Two Examples of Simple Retargeting

The main feature of this product is its retargetability as illustrated by the following

examples, achievable by simple changes of several lines in the chip description file (see

Appendix A):

* Suppose that we had a chip with the same assembly as TMS320C6201, where

multiply instructions were executed by the L units instead, and there were no

51

M units. By making the changes and re-running in 5 minutes, all the 471 basic

blocks were converted to the new chip architecture, and for 460 of them the

solutions were provably optimal, within reordering constraints. Furthermore,

interestingly enough, only 13 blocks exhibited increase in running time, by an

average of about 30 per cent, while all others kept their original time. Those

results suggest, for example, that it might have been better to eliminate the M

units and integrate them more closely with the L units to save chip space. This

kind of experiments and reasoning are very characteristic of the way this tool

can be used.

20

2 4 6 8 10
TMS320C6201 Cycles

Figure 9-1: Performance Comparison Example

52

18

16

14

12

10

8

(I)
0)

0

C

0~

F--

------Pipelined Chip
Frequency

-I- -, - t-

6

4

2

0
0 12 14 16

* In another example, suppose that we only had 4 computational units and the

chip was pipelined in such a way that on a single cycle it could only issue

instructions utilizing a single half of the original chip - eg. either ones using

Mi, Si, Li and Di or ones using M2, S2, L2 and D2 (refer to Figure 4-1). Again,

by simple re-running, the code was converted to the new architecture. In this

case 323 blocks kept their original running time, while 142 exhibited increases

of about 30 per cent on average. For 6 blocks no solutions were found, because

they could not be executed without modification of code (see Chapter 7 for

discussion of such cases). The vast majority of solutions came with optimality

proof as well. Experiments like this can be useful, since they are suggestive of

the load of the system - in particular, on full load one could expect a factor of

2 slowdown overall. Figure 9-1 presents the actual average increase in running

time, by basic block cycles, together with their frequency. The X-axis is the

number of optimized cycles on TMS320C6201, the deshed line represents the

relative frequency of such blocks and the dotted line represents the average

increase in size over all blocks. Clearly the increase is not as significant as one

might have expected and this would have been hard to achieve without this

assembly optimizer.

9.3.3 Sample Code Fragment

Figure 9-2 presents a fairly representative code fragment, resulting from the Texas

Instruments optimizing C compiler. The first fragment is the output of the Texas

Instruments compiler. As can be seen they do not attempt too much packing and

the techniques described herein and that is why their results are not always optimal.

The middle fragment is the code produced by the assembly optimizer described in this

work for the original chip and for the chip without M units. It takes the same amount

of time (largely determined by the delay slots of the memory load and the branch),

but the effects of the heuristic attempting denser packing in the beginning can be

seen. The last fragment presents the code on the chip where instructions can execute

on a single side of the chip at a time. Note that those solutions are guaranteed optimal

53

ADDAH .D AO,A3,AO || MVK .S 512,B7;

MV .L AO,B5 || EXT .S B4,16,16,B6;

LDH .D *B5,B5 || CMPLT .L B6,B7,BO;

[!BO] B .S L21;

NOP;
NOP;

NOP;

SUB .L B5,1,B5 || MV .L B4,AO || MV .S AO,B8;
STH .D B5,*B8 || EXT .S AO,16,16,AO;

;; --- TI Original Solution ------------------------------------

ADDAH .D AO,A3,AO || MVK .S 512,B7;
MV .L AO,B5 || EXT .S B4,16,16,B6;
LDH .D *B5,B5 || CMPLT .L B6,B7,BO || MV .L B4,AO || MV .S AO,B8;
[!BOI B .S L21 || EXT .S A0,16,16,AO;

NOP;
NOP;
NOP;
SUB .L B5,1,B5;
STH .D B5,*B8;

;; --- Optimizer Solution for TMS320C6201 and No M Unit ---------

ADDAH .D AO,A3,AO;
MVK .S 512,B7 || MV .L AO,B5;
EXT .S B4,16,16,B6 || LDH .D *B5,B5;
CMPLT .L B6,B7,BO 1| MV .S AO,B8;
[!BO] B .S L21;
MV .L B4,AO;
EXT .S AO,16,16,AO;
SUB .L B5,1,B5;
STH .D B5,*B8;
NOP;

--- Optimizer Solution for M1 Li Si D1 or M2 S2 L2 D2 --------

Figure 9-2: Sample Assembly Block for Different Chips

54

by the exhaustive search, which by itself is not a trivial task, say to a human. It is

easy to demonstrate how compiler technology will clearly outperform hand-crafted

optimizations at this level for more complicated examples - all of those solutions are

found in several seconds, more than it would take a programmer to read the problem.

55

Chapter 10

Extensions and Applications

Having given an overview of what the tools can do, it is time to address possible

extensions of this work.

10.1 Extensions

o Although it is fairly self-sufficient, making the code more robust and extending

it to handle a wider variety of chips or better handle special cases might be

done (as discussed in Section 9.1).

o The work can also be extended to unroll loops to achieve better results in

pipelined chips, similarly to optimizations performed by the TMS320C6201

tools ([26, 27]).

o Relaxing some of the memory restrictions would also be necessary and providing

more flexible support and more memory access modes is also necessary.

o Another expansion path is to relax the non-modification of code. A step in that

direction would be allowing description using virtual registers and optimizing

their placement in appropriate register files together with optimizing the output.

This should be done carefully, in order not to lose the manageability of most

problems present when using the current version.

56

" An interesting idea for possible extension is providing feedback to upper levels

of compilation for bottlenecks and proposed solutions to them, while remaining

an independent tool focused on optimizations.

" One could also use neural nets, memoization and similar techniques for obtain-

ing solutions and converging to better solution faster on hard problems.

" Blocks can be allowed to "float" within other blocks provided that there are

no conflicting dependencies. Loops can be partially unrolled, as well. Both

optimizations hope to combine instructions better than done at the individual

block level.

10.2 Applications

The assembly optimizer at its current stage or together with some of the above ex-

tensions can be used in variety of different ways. They can also be supplemented by

additional tools such as profilers and statistics collection and visualization tools.

10.2.1 Evaluation Tool for New Chip Designs

As shown in Section 9.3.2, the optimizer can be used to evaluate new chips designs

even as presented here. However, some simple extensions, such as allowing reading file

in one chip assembly and optimizing it and outputting it for another chip assembly,

could make the process much smoother. With more support for different memory,

interrupts or chip architectures, the differences between input and output chip assem-

bly can go wider. With profiling capabilities and user-defined hints on performance

the optimizer can be a valuable tool in evaluation of new chip designs, by providing

good estimate on how long optimized code will run on the new chip.

10.2.2 Porting Existing Code

Not only can the optimizer provide evaluation data, but also, as soon as it goes

through the input files, we have a new version of the code. What this means is that

57

if there is correspondence between instruction sets, one could take a chip running

certain code, disassembly the code and recompile it for another chip. Note that no

assembly or higher level language source code is necessary. Note also that the new

chip can be more powerful, less powerful or just different and this approach might

still work for a large portion of the code. This portability feature is a very useful one

to have, indeed.

10.2.3 Last Phase of Optimizing Compiler

Since no high level source is necessary, this tool can be used as the last stage, or even

after all other stages of an optimizing compiler. Indeed, one can let the compiler

perform all its optimizations and generate assembly code (or disassembly the code it

produced), and run this assembly optimizer.

As a nice corollary, it might turn out that one could get by, without even devel-

oping any compilers for a chip architecture in some cases (of course performance will

be worse than with native compiler, but maybe not that much). For example since

Texas Instruments has good optimizing C compiler and linear assembly optimizer,

then one might use those tools to generate parallel assembly instructions (that might

be fairly generic). Capabilities like these are also very well worth the development

effort.

58

Chapter 11

Conclusion

Compilation for powerful chips is a difficult problem and there are many stages and

levels of optimization. Clearly, the task of optimal compilation from a high level lan-

guage like C, is impossible to accomplish for all but very simple C programs and chip

architectures. Each step of the process is a hard problem and is commonly solved

using heuristic solutions. Rather than focusing on solving the problem at a global

level, in this work a level was chosen and other design choices were made that would

make the optimization problem tractable, while still being useful and maintaining re-

targetability. Practical comparisons showed that the Assembly Description Language

devised was capable of capturing the architecture of fairly complex chips and that

the optimization framework was capable of providing same or better solutions than

commercial applications fairly close to their real-time frame. All that, together with

the simplicity of use and the modularity of the implementation, make this work a

good base for extensions and commercial applications, especially in embedded sys-

tems where processor architectures change very frequently.

59

Appendix A

TMS320C6201 Chip Description

RSet AX AO Al A2 A3 A4 A5 A6 A7 A8 A9 A10 All A12 A13 A14 A15 SP DP CSR;
RSet BX BO B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 Bll B12 B13 B14 B15 SP DP CSR;
RSet AL A1:A0 A3:A2 A5:A4 A7:A6 A9:A8 A1l:A10 A13:A12 A15:A14
RSet BL B1:B0 B3:B2 B5:B4 B7:B6 B9:B8 Bll:B10 B13:B12 B15:B14 ;
RSet ALX AO Al A2 A3 A4 A5 A6 A7 A8 A9 A10 All A12 A13 A14 A15 SP DP CSR
Al:A0 A3:A2 A5:A4 A7:A6 A9:A8 All:A10 A13:A12 A15:A14 ;
RSet BLX BO Bl B2 B3 B4 B5 B6 B7 B8 B9 B10 Bll B12 B13 B14 B15 SP DP CSR
B1:B0 B3:B2 B5:B4 B7:B6 B9:B8 B11:B10 13:D12 D15:B14 ;
RSet ABLX AO Al A2 A3 A4 A5 A6 A7 A8 A9 A10 All A12 A13 A14 A15 Al:AO A3:A2
A5:A4 A7:A6 A9:A8 All:A10 A13:A12 A15:A14 BO B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
Bll B12 B13 B14 B15 B1:B0 D3:B2 B5:B4 D7:D6 B9:D8 B11:B10 B13:D12 B15:B14 SP
DP CSR;
RSet ABX AO Al A2 A3 A4 A5 A6 A7 A8 A9 A10 All A12 A13 A14 A15 BO B1 B2 B3

B4 B5 B6 B7 B8 B9 B1O Bll B12 B13 B14 B15 SP DP CSR;

OSet Nmb STRING -_STRING STRING-+_STRING;
OSet MOD - [-STRING_];
OSet LInstl ABS NEG NORM MV NOT SAT;
OSet LInst2 ADD ADDU AND CMPEQ CMPGT CMPGT CMPGTU CMPLTU CMPLT
OR SADD SSUB SUB SUBU XOR;
OSet SInst ADD ADDU SUB SUBU ADD2 SUB2 AND CLR EXT NEG OR SHR SHRU
SHL XOR;
OSet DInst ADD ADDAB ADDAH ADDAW SUB SUBA SUBAH SUBAW;
OSet BBX B IRP NRP ;
OSet ECLR EXT EXTU CLR SET;
OSet LDX LDW LDB LDH LDBU LDHU;
OSet LDXL LDB LDH LDBU LDHU;
OSet STX STW STH STBU STHU;
OSet STXL STB STH STBU STHU;
OSet +- + -;
OSet ++- ++
OSet MPYX MPY MPYU MPYSU MPYUS MPYH MPYHU MPYHUS MPYHSU MPYLH

MPYLHU MPYLUHS MPYLSHU MPYHL;
OSet MVKX ADDK MVK MVKH MVKLH;

60

OSet UniS MV NOT NEG MVC;

inst ABSIA
inst ABSIB
inst ABS1C
inst
inst
inst

ABS2A
ABS2B
ABS2C

LInstl .L AX , AX ; 3; 5 ; ;
[ABX] LInst1 .L AX , AX ; 2 6
[! ABX] LInst1 .L AX , AX; 3
LInstl .L BX , BX ; 3 ; 5;
[ABX] LInst1 .L BX , BX ; 2 6
[! ABX] LInst1 .L BX , BX ; 3

inst ABSIXA Lln
inst ABS1XB [A
inst ABS1XC [!
inst ABS2XA LIn
inst ABS2XB [A
inst ABS2XC [!
inst INSTL1AAA
inst INSTL1AAB
inst INSTL1AAC
inst INSTL2AAA
inst INSTL2AAB
inst INSTL2AAC
inst INSTL3AAA
inst INSTL3AAB
inst INSTL3AAC
inst INSTL1BAA
inst INSTL1BAB
inst INSTL1BAC
inst INSTL2BAA
inst INSTL2BAB
inst INSTL2BAC
inst INSTL3BAA
inst INSTL3BAB
inst INSTL3BAC
inst INSTL4BAA
inst INSTL4BAB
inst INSTL4BAC
inst INSTLlBBA
inst INSTL1BBB
inst INSTLlBBC
inst INSTL2BBA
inst INSTL2BBB
inst INSTL2BBC
inst INSTL3BBA
inst INSTL3BBB
inst INSTL3BBC
inst INSTL1ABA
inst INSTL1ABB
inst INSTL1ABC

s
3

N
s

3
k

tl .L BX , AX; 3;
X] LInst1 .L BX ,
BX] LInstl .L BX
tl .L AX, BX; 3;
X] LInst1 .L AX,
BX] LInst1 .L AX

5 xl

AX;
; ;
2 6

, AX; 3
5 x2 ; ;
BX; 2 6

, BX; 3

8 xl ; 13;
7 ; 9 xl ; 14;

; 8
7 ;

x2 ; 13;
9 x2 ; 14;

LInst2 .L ALX , ALX , ALX ; 3 5 ; 7; ;
ABX] LInst2 .L ALX , ALX , ALX ; 2 6

[! ABX] LInst2 .L ALX , ALX , ALX ; 3
LInst2 .L Nmb , ALX , ALX; 5 ; 7; ;
[ABX] LInst2 .L Nmb , ALX , ALX; 2 8
[! ABX] LInst2 .L Nmb , ALX , ALX ; 3
LInst2 .L ALX , Nmb , ALX; 3; 7; ;
[ABX] LInst2 .L ALX , Nmb , ALX ; 2 6

[! ABX] LInst2 .L ALX , Nmb , ALX ; 3
LInst2 .L ALX , BLX , ALX; 3 5 ; 7 xl ; ;
{ABX] LInst2 .L ALX , BLX , ALX ; 2 6.
[! ABX] LInst2 .L ALX , BLX , ALX ; 3
LInst2 .L Nmb , BLX , ALX ; 5; 7 xl;;
[ABX] LInst2 .L Nmb , BLX , ALX; 2 8
[! ABX] LInst2 .L Nmb , BLX , ALX; 3
LInst2 .L BLX , Nmb , ALX; 3; 7 xl;;
[ABX] LInst2 .L BLX , Nmb , ALX ; 2 6:
[! ABX] LInst2 .L BLX , Nmb , ALX ; 3
LInst2 L BLX , ALX , ALX ; 3 5 ; 7
[ABX] LInst2 .L BLX , ALX , ALX;
[! ABX] LInst2 .L BLX , ALX , ALX
LInst2 .L BLX , BLX , BLX ; 3 5 ; 7;
[ABX] LInst2 .L BLX , BLX , BLX ;
[! ABX] LInst2 .L BLX , BLX , BLX
LInst2 .L Nmb , BLX , BLX; 5; 7 ; ;
[ABX] LInst2 .L Nmb , BLX , BLX;
[! ABX] LInst2 .L Nmb , BLX , BLX
LInst2 .L BLX , Nmb , BLX ; 3 ; 7; ;
[ABX] LInst2 .L BLX , Nmb, BLX;
[! ABX] LInst2 .L BLX , Nmb , BLX

8 ; 10 ; 13;
7 9 ; 11 ; 14;

; 10 ; 13;
9 ; 11 ; 14;

; 10; 13;
7 ; 11 ; 14;

8 ; 10 xl ; 13;
7 9 ; 11 xl ; 14;

;10 xl ; 13;
) ; 11 xl ; 14;

10 xl ; 13;
7'; 11 xl ; 14;

1 ; ;
2 6 8 ;
;3 7 9;

2

2

2

LInst2 .L BLX , ALX , BLX ; 3 5 ; 7 x2
[ABX] LInst2 .L BLX , ALX , BLX ; 2
[! ABX] LInst2 .L BLX , ALX , BLX ;

10 x ;
; 11 x1

13

; 14;

6 8 ; 10 ; 13;
3 7 9 ; 11 ; 14;

8 ; 10 ; 13;
3 9 ; 11 ; 14;

6 ; 10 ; 13;
3 7 ; 11 ; 14;

; ;

6 8
3 7

; 10 x2 ; 13;
9 ; 11 x2 ; 14;

61

; 13 ;
9 ; 14;

; 8
7 ;

; 8 ; 13 ;
7 ; 9 ; 14

inst INSTL2ABA LInst2 .L Nmb , ALX , BLX ; 5 ; 7 x2 ; ;
INSTL2ABB
INSTL2ABC
INSTL3ABA
INSTL3ABB
INSTL3ABC
INSTL4ABA
INSTL4ABB
INSTL4ABC

ABX LInst2 .L Nmb , ALX , BLX ; 2 8 ;
[! ABX I LInst2 .L Nmb , ALX BLX; 3 9
LInst2 .L ALX , Nmb , BLX ; 3; 7 x2;
[ABX] LInst2 .L ALX , Nmb , BLX ; 2 6;
[! ABX LInst2 .L ALX , Nmb , BLX ; 3 7
LInst2 .L ALX , BLX , BLX ; 3 5 ; 7 x2 ; ;
[ABX] LInst2 .L ALX , BLX , BLX; 2 6 8
[! ABX] LInst2 .L ALX , BLX , BLX ; 3 7

10 x2 ; 13 ;

; 11 x2 ; 14

10 x2 ; 13 ;
; 11 x2 ; 14;

inst
inst
inst
inst
inst
inst
inst
inst

13 ;
; 14;

inst LZERO1A ZERO .L ALX; ; 3; ;
LZERO1B
LZERO1C
LZERO2A
LZERO2B
LZERO2C

inst
inst
inst
inst
inst

inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst

ABX] ZERO .L ALX; 2; 6; 13;
[! ABX] ZERO .L ALX ; 3; 7 ; 14;
ZERO .L BLX ; ; 3; ;
[ABX] ZERO .L BLX ; 2 ; 6; 13;
[! ABX I ZERO .L BLX ; 3 ; 7; 14;

SInst .S

[ABX]
[! ABX
SInst .S

[ABX I
[! ABX
SInst .S

[ABX]I
[! ABX
SInst .S
[ABX]
[! ABX
Slnst .S

[ABX]
[! ABX
SInst .S
[ABX]
[! ABX
SInst .S

[ABX]
[! ABX
SInst .S
[ABX]
[! ABX
SInst .S

[ABX]
[! ABX
SInst .S
[ABX]
[! ABX
Slnst .S

ALX , ALX , ALX; 3 5; 7;
SInst .S ALX , ALX , ALX;
] SInst .S ALX , ALX , ALX
Nmb , ALX , ALX; 5; 7;;
SInst .S Nmb , ALX , ALX;

] SInst .S Nmb , ALX , ALX
ALX , Nmb , ALX ; 3; 7;;
Slnst .S ALX , Nnb ,
] SInst .S ALX , Nmb
ALX , BLX , ALX ; 3
SInst .S ALX , BLX ,
] Slnst .S ALX , BLX
Nmb , BLX, ALX; 5
SInst .S Nmb , BLX ,
] Slnst .S Nmb, BLX
BLX , Nmb, ALX; 3
SInst .S BLX , Nmb ,
] SInst .S BLX , Nmb
BLX , ALX , ALX; 3
SInst .S BLX , ALX ,
] SInst .S BLX , ALX
BLX , BLX , BLX; 3

2 6

; 3

8 ; 10 ; 13;
7 9 ; 11 ; 14;

2 8 ; 10 ; 13;
; 3 9 ; 11 ; 14;

ALX ; 2 6
, ALX; 3
5 ; 7 xl ; ;
ALX; 2 6

ALX; 3
7 xl ; ;

ALX ; 2 8
ALX; 3
7 xl ; ;

ALX ; 2 6
, ALX; 3
5 ; 7 xl ; ;
ALX; 2 6

, ALX; 3
5 ; 7; ;

; 10 ; 13 ;
7 ; 11 ; 14;

8 ; 10 xl ; 13
7 9 ; 11 xl; 14;

; 10 xl ; 13
9 ; 11 xl ; 14;

; 10 xl ; 13 ;
7 ; 11 xl; 14;

8 ; 10 xl; 13;
7 9 ; 11 xl ; 14;

INSTS1AAA
INSTS1AAB
INSTS1AAC
INSTS2AAA
INSTS2AAB
INSTS2AAC
INSTS3AAA
INSTS3AAB
INSTS3AAC
INSTS1BAA
INSTS1BAB
INSTS1BAC
INSTS2BAA
INSTS2BAB
INSTS2BAC
INSTS3BAA
INSTS3BAB
INSTS3BAC
INSTS4BAA
INSTS4BAB
INSTS4BAC
INSTS1BBA
INSTS1BBB
INSTS1BBC
INSTS2BBA
INSTS2BBB
INSTS2BBC
INSTS3BBA
INSTS3BBB
INSTS3BBC
INSTS1ABA

62

; 10 x2 ;
9 ; 11 x2

SInst .S BLX , BLX, BLX ; 2 6 8 ; 10 ; 13;
] SInst .S BLX , BLX , BLX; 3 7 9; 11 ; 14
Nmb , BLX , BLX ; 5; 7;;
SInst .S Nmb , BLX , BLX; 2 8 ; 10; 13;

] SInst .S Nmb , BLX , BLX; 3 9 ; 11 ; 14;
BLX , Nmb , BLX ; 3; 7;;
Slnst .S BLX , Nmb , BLX; 2 6 ; 10; 13

] SInst .S BLX, Nmb , BLX; 3 7; 11 ; 14;
BLX , ALX , BLX; 3 5 ; 7 x2; ;

inst INSTS1ABB
inst INSTS1ABC
inst INSTS2ABA
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst

INSTS2ABB
INSTS2ABC
INSTS3ABA
INSTS3ABB
INSTS3ABC
INSTS4ABA
INSTS4ABB
INSTS4ABC
BRANCH1A
BRANCHIB
BRANCH1C
BRANCH2A
BRANCH2BD
BRANCH2C
BRANCH3A
BRANCH3B
BRANCH3C
BRANCHDA
BRANCHDB
BRANCHDC
ECLRAA ECLR.S AX , Nmb , Nmb , AX; 3; 9;;
ECLRAB [ABX] ECLR .S AX , Nmb , Nmb, AX; 2 6; 12; 13;
ECLRAC [! ABX] ECLR .S AX, Nmb, Nmb, AX ; 3 7; 13; 14;
ECLRBA ECLR.S BX , Nmb , Nmb , BX; 3; 9;;
ECLRBB [ABX] ECLR .S BX, Nmb, Nmb, BX ; 2 6; 12 ; 13;
ECLRBC [! ABX] ECLR .S BX, Nmb, Nmb, BX; 3 7; 13; 14;
ECLRAXA ECLR .S BX , Nmb , Nmb , AX ; 3; 9 x1 ; ;
ECLRAXB [ABX] ECLR .S BX , Nmb , Nmb AX ; 2 6 ; 12 xl ; 13
ECLRAXC [! ABX] ECLR.S BX, Nmb, Nmb, AX; 3 7; 13 x1; 14;
ECLRBXA ECLR.S AX , Nmb , Nmb , BX ; 3 ; 9 x2 ; ;
ECLRBXB [ABX] ECLR.S AX, Nmb, Nmb, BX; 2 6; 12 x2; 13;
ECLRBXC [! ABX] ECLR.S AX, Nmb, Nmb, BX; 3 7; 13 x2; 14;
MVKA
MVKA
MVKA
MVKB
MVKB
MVKB
UNI1A
UNIlB
UNIIC
UNI2A
UNI2B
UNI2C

MVKX.S Nmb , AX; 5; 5;;A
B

3

[ABX]

[! ABX
MVKX
[ABX]
[! ABX

MVKX.S Nmb , AX; 2
] MVKX.S Nmb, AX;

.S Nmb , BX ; 5 ; 5; ;
MVKX.S Nmb , BX; 2
] MVKX.S Nmb, BX;

UniS .S AX , AX; 3; 5;;
ABX] UniS .S AX, AX;

[! ABX] UniS .S AX, AX
UniS .S BX , BX ; 3 ; 5;;

ABX] UniS .S BX BX;
[! ABX] UniS .S BX , BX

26

; 3
; 8
7 ;

2

8 ; 8 ; 13;
3 9 ; 9 ; 14;

8 ; 8 ; 13;
3 9 ; 9 ; 14;

; 13;
9 ; 14;

6 ; 8 ; 13 ;
3 7 ; 9 ; 14

63

[ABX] Slnst .S BLX , ALX , BLX ; 2 6 8 ; 10 x2 ; 13 ;
[! ABX] Slnst .S BLX , ALX , BLX; 3 7 9; 11 x2; 14;
SInst .S Nmb , ALX , BLX ; 5: 7 x2;
[ABX] Slnst .S Ninb , ALX , BLX ; 2 8 ; 10 x2 ; 13;
[! ABX] SInst .S Nmb , ALX, BLX ; 3 9 ; 11 x2 ; 14;
SInst .S ALX , Nmb . BLX ; 3; 7 x2;
[ABX] Slnst .S ALX , Nmb , BLX ; 2 6 ; 10 x2 ; 13;
[! ABX] SInst .S ALX , Nmb, BLX; 3 7 ; 11 x2 ; 14;
SInst .S ALX , BLX , BLX ; 3 5 ; 7 x2 ; ;
[ABX] SInst .S ALX , BLX , BLX; 2 6 8 ; 10 x2 ; 13
[! ABX] SInst .S ALX , BLX , BLX ; 3 7 9 ; 11 x2 ; 14;
B .S AX ; 3 ; ip #5 ; 10 ;
[ABX]B .S AX ; 2 6 ; ip #5; 11;
[! ABX] B .S AX ; 3 7 ; ip #5 ; 12
B .S BX; 3 ; ip #5; 10
[ABX] B .S BX ; 2 6 ; ip #5; 11;
[! ABX]B .S BX ; 3 7 ; ip #5 ; 12;
BBX .S STRING ; ; ip #5 ; 10 ;
[ABX] BBX .S STRING ; 2; ip #5; 11;
[! ABX] BBX .S STRING ; 3 ; ip #5; 12;
BD .S STRING ; ; ip #5 ; 10 ;
[ABX] BD .S STRING ; 2 ; ip #5; 11;
[! ABX] BD .S STRING ; 3; ip #5; 12;

inst
inst
inst
inst
inst
inst

inst UNI1XA
inst UNI1XB
inst UNI1XC
inst UNI2XA
inst UNI2XB
inst UNI2XC
inst SZERO1
inst SZERO1I
inst
inst
inst
inst

inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst

UniS .S BX , AX; 3;
[ABX] UniS .S BX ,
[! ABX j UniS .S BX
UniS .S AX , BX ; 3;

[ABX] UniS .S AX,
[! ABX] UniS .S AX
A
B

SZERO1C
SZERO2A
SZERO2B
SZERO2C

ZERO
[ABX

5 xl
AX;

, AX
5 x2
BX;

, BX

2 6
;3

2 6

; 3

;8 xl ; 13;
7 ; 9 xl ; 14;

; 8
7 ;

.S AX ; ; 3 ; ;

] ZERO .S AX ; 2; 6; 13

x2 ; 13;
9 x2 ; 14

[! ABX] ZERO .S AX; 3 ; 7; 14;
ZERO.S BX; ; 3; ;

ABX] ZERO .S BX; 2 ; 6 ; 13;
[!ABX] ZERO.S BX; 3; 7; 14;

DZERO1A ZERO .D AX;; 3;;
DZERO1B [ABX] ZERO.D AX; 2; 6; 13;
DZERO1C [! ABX] ZERO.D AX; 3; 7; 14;
DZERO2A ZERO .D BX; ; 3;;
DZERO2B [ABX] ZERO .D BX ; 2 ; 6 ; 13;
DZERO2C [! ABX] ZERO.D BX; 3; 7; 14;
INSTD1AAA
INSTD1AAB
INSTD1AAC
INSTD2AAA
INSTD2AAB
INSTD2AAC
INSTD3AAA
INSTD3AAB
INSTD3AAC
INSTD1BAA
INSTD1BAB
INSTD1BAC

inst INSTD2BAA
inst INSTD2BAB
inst
inst
inst
inst
inst

INSTD2BAC
INSTD3BAA
INSTD3BAB
INSTD3BAC
INSTD4BAA

inst INSTD4BAB
inst INSTD4BAC
inst INSTD1BBA
inst INSTD1BBB
inst INSTD1BBC
inst INSTD2BBA
inst
inst
inst

INSTD2BBB
INSTD2BBC
INSTD3BBA

DInst .D ALX , ALX , ALX ; 3
[ABX] DInst .D ALX , ALX ,
[! ABX] DInst .D ALX , ALX
DInst.D Nmb, ALX, ALX ; 5
[ABX] DInst.D Nmb , ALX,
[! ABX] DInst.D Nmb, ALX
Dlnst.D ALX , Nmb, ALX; 3
[ABX] Dlnst .D ALX , Nmnb ,
[! ABX] DInst .D ALX , Nmb
DInst .D ALX , BLX , ALX ; 3
[ABX] DInst.D ALX , BLX ,
[! ABX] DInst .D ALX , BLX
DInst .D Nmb , BLX , ALX ; 5
[ABX] DInst.D Nmb , BLX ,
[! ABX] DInst .D Nmb , BLX
DInst .D BLX , Nmb , ALX ; 3
[ABX] DInst.D BLX , Nmb ,
[! ABX] DInst.D BLX, Nmb

5; 7;
ALX;

, ALX
; 7 ;
ALX;
,ALX
; 7 ;
ALX;

, ALX
5 ; 7 x

ALX;
,ALX

7 xl
ALX;
,ALX

7 xl
ALX;

, ALX
Dlnst .D BLX , ALX , ALX; 3 5; 7 x
[ABX] Dlnst.D BLX, ALX , ALX;
[! ABX] DInst .D BLX , ALX , ALX
Dlnst .D BLX , BLX , BLX; 3 5; 7;:
[ABX] DInst.D BLX , BLX, BLX;
[! ABX] DInst .D BLX , BLX , BLX
Dlnst .D Nmb, BLX , BLX ; 5 ; 7;;
[ABX] DInst .D Nmb , BLX , BLX;
[! ABX] DInst .D Nmb , BLX , BLX
DInst .D BLX , Nmb , BLX; 3 ; 7;;

2 6 8 ; 10 ; 13;
3 7 9 :11; 14;

2 8 ; 10 ; 13;
3 9 ; 11 ; 14;

2 6 ; 10 , 13;

;3 7 ; 11; 14;
1 ; ;
2 6 8 ; 10 xl; 13;

3 7 9 ; 11 xl; 14;

2 8 ; 10 xl; 13;
3 9; 11 xl; 14;

2 6 ; 10 xl; 13;
3 7 ; 11 xl ; 14;

2 6 8 ; 10 xl; 13;
3 7 9 ; 11 xl ; 14;

2 6 8 ; 10 ; 13;
; 3 7 9 ; 11; 14;

2 8 ; 10 ; 13;
; 3 9 ; 11 ; 14;

64

;

inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst

INSTD3BBB
INSTD3BBC
INSTDlABA
INSTD1ABB
INSTD1ABC
INSTD2ABA
INSTD2ABB
INSTD2ABC
INSTD3ABA
INSTD3ABB
INSTD3ABC
INSTD4ABA
INSTD4ABB
INSTD4ABC
LOAD1AA L
LOAD1AB [.
LOAD1AC [!
LOAD2AA L
LOAD2AB [.
LOAD2AC [!
LOAD3AA L
LOAD3AB [.
LOAD3AC [!
LOAD4AA L
LOAD4AB [
LOAD4AC [!
LOAD5AA L
LOAD5AB [
LOAD5AC [!
LOAD6AA L
LOAD6AB [
LOAD6AC [!
LOAD7AA L
LOAD7AB [
LOAD7AC [!
LOADIBA L
LOAD1BB [1

LOAD1BC [!
LOAD2BA L
LOAD2BB [
LOAD2BC [!
LOAD3BA L
LOAD3BB [
LOAD3BC [!
LOAD4BA L
LOAD4BB [
LOAD4BC [!

DX.D
ABX]

ABX
DX.D
ABX]

ABX
DX.D
ABX]

ABX
DX.D
ABX]
!ABX
DX.D
ABX]
ABX

DX.D
ABX]
ABX

DX.D
ABX]

ABX
DX.D
ABX]

ABX
DX.D
ABX]

ABX
DX.D
ABX]

ABX
DX.D
ABX]

ABX

* +- AX [STRING] , ABLX
LDX .D * +- AX [STRING]
] LDX .D * +- AX [STRING i,

1;

5 mem1 ; 10 #4;;
ABLX ; 2 8 mem1;

, ABLX; 3 9 mem1
13 #4 ; 13;
; 14 #4; 14;

* ++- AX MOD, ABLX; 5 mem1; 5 8 #4;;
LDX.D * ++- AX MOD , ABLX ; 2 8 meml; 8 11 #4; 13;
]LDX.D * ++- AX MOD , ABLX; 3 9 mem1 ; 9 12 #4; 14;
*AX ++- MOD , ABLX; 4 meml; 4 8 #4;;
LDX.D * AX ++- MOD , ABLX; 2 7 meml; 7 11 #4; 13;
]LDX .D * AX ++- MOD , ABLX; 3 8 meml ; 8 12 #4; 14;
* +- AX [AX], ABLX; 5 7 mem1 ; 10 #4;;
LDX .D * +- AX [AX] , ABLX ; 2 8 10 mem1 ; 13 #4; 13;

LDX .D * +- AX [AX] , ABLX; 3 9 11 mem1 ; 14 #4; 14;
*++- AX [AX] , ABLX; 5 7 meml; 5 10 #4; ;
LDX.D * ++- AX [AX), ABLX; 2 8 10 meml; 8 13 #4 ; 13;
]LDX.D * ++- AX [AX] , ABLX; 3 9 11 meml ; 9 14 #4; 14;
*AX ++- [AX], ABLX; 4 7 meml; 4 10 #4;;
LDX.D * AX ++- [AX], ABLX; 2 7 10 meml; 7 13 #4; 13;
]LDX.D * AX ++- [AX], ABLX; 3 8 11 meml; 814 #4; 14;
* AX , ABLX ; 4 mem1 ; 6 #4;;
LDX .D * AX , ABLX ; 2 7 mem1 ; 9 #4; 13;
] LDX .D * AX, ABLX ; 3 8 mem1; 10 #4; 14;
* +- BX [STRING] , ABLX ; 5 mem2; 10 #4;;
LDX .D * +- BX [STRING], ABLX; 2 8 mem2; 13 #4; 13;
] LDX .D * +- BX [STRING] , ABLX ; 3 9 mem2; 14 #4; 14;
* ++- BX MOD , ABLX;
LDX .D * ++- BX MOD ,
]LDX .D * ++- BX MOD
* BX ++- MOD , ABLX;
LDX.D * BX ++- MOD ,
]LDX.D * BX ++- MOD
*+- BX [BX], ABLX; 5
LDX .D * +- BX [BX] , A
] LDX .D * +- BX [BX] ,

5 mem2
ABLX;

, ABLX
4 mem2
ABLX;

, ABLX
7 mem2
BLX; 2

; 5 8 #4; ;
2 8 mem2 ; 8 11 #4 ; 13;

3 9 mem2
4 8 #4 ; ;

2 7 mem2;
3 8 mem2
10 #4;;

8 10 mem2

; 9 12 #4; 14;

7 11 #4 ; 13;
8 12 #4 ; 14;

13 #4 ; 13;
ABLX ; 3 9 11 mem2; 14 #4; 14;

65

ABX] DInst .D BLX , Nnb , BLX; 2 6 ; 10; 13 ;
[! ABX] DInst .D BLX, Nmb , BLX ; 3 7; 11 ; 14;
DInst .D BLX , ALX , BLX ;3 5 ; 7 x2 ; ;
[ABX] DInst .D BLX , ALX , BLX; 2 6 8 ; 10 x2; 13;
[! ABX] DInst .D BLX , ALX , BLX ; 3 7 9 ; 11 x2 ; 14
DInst .D Nmb , ALX , BLX; 5 ; 7 x2 ; ;
[ABX] DInst .D Nmb , ALX , BLX ; 2 8; 10 x2; 13;
[! ABX] DInst .D Nmb, ALX , BLX; 3 9; 11 x2 ; 14;
DInst .D ALX , Nmb , BLX; 3 ; 7 x2; ;
[ABX] DInst .D ALX , Nmb , BLX; 2 6; 10 x2 ; 13;
[! ABX] DInst .D ALX, Nmb, BLX ; 3 7 ; 11 x2; 14;
DInst .D ALX , BLX , BLX ; 3 5; 7 x2 ;;
[ABX] DInst .D ALX , BLX , BLX; 2 6 8 ; 10 x2; 13;
[! ABX] DInst .D ALX , BLX , BLX; 3 7 9; 11 x2 ; 14 ;

inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst

LDX.D * ++- BX [BX],
[ABX I LDX.D * ++- BX[

[! ABX]LDX.D * ++- BX
LDX.D *BX ++- [BX],
[ABX] LDX.D * BX ++-
[! ABX LDX.D * BX ++-
LDX.D *BX , ABLX; 4 m
[ABX] LDX.D * BX, ABI
[! ABX] LDX.D * BX , AB

LOAD5BA
LOAD5BB
LOAD5BC
LOAD6BA
LOAD6BB
LOAD6BC
LOAD7BA
LOAD7BB
LOAD7BC
LOAD8BA
LOAD8BB
LOAD8BC
STR1AA S
STRIAB
STRIAC
STR2AA S
STR2AB[
STR2AC[
STR3AA S
STR3AB[
STR3AC[
STR4AA S
STR4AB[
STR4AC [
STR5AA S
STR5AB[
STR5AC [
STR6AA S
STR6AB[
STR6AC[
STR7AA S
STR7AB[
STR7AC[
STR1BA S
STR1BB
STR1BC
STR2BA S
STR2BB[
STR2BC [
STR3BA S
STR3BB [
STR3BC[
STR4BA S
STR4BB
STR4BC
STR5BA
STR5BB

ABLX ; 5 7 men2 ; 5 10 #4 ; ;
BX], ABLX; 2 8 10 mem2 ; 8 13 #4
[BX] ABLX; 3 9 11 inem2 ; 9 14 #4

ABLX ; 4 7 mem2 ; 4 10 #4; ;

BX] , ABLX ; 2 7 10 mem2 ; 7 13 #4

BX] , ABLX ; 3 8 11 mem2 ; 8 14 #4
em ; 6 #4; ;
X ; 2 7 mem ; 9 #4 ; 13;
LX ; 3 8 inem ; 10 #4 ; 14;

.D * B145 [STRING] , ABLX ; 4 mem2 ; 9 #4: ;

] LDXL .D * B145 [STRING] , ABLX ; 2 7 inem2 ; 12 #4;
X] LDXL .D * B145 [STRING] , ABLX ; 3 8 nem2; 13 #4

ABLX, * +- AX [STRING]; 3 7 ; memn1;
STX .D ABLX, * ±- AX [STRING]; 2 6 10 ; mem1 ; 13;

STX .D ABLX, * +- AX [STRING]; 3 7 11 ; mem1 ; 14;
ABLX, * ++- AX MOD; 3 7; 7 meml; ;
STX.D ABLX , *++- AX MOD; 2 6 10; 10 mem1 ; 13;

I STX.D ABLX , * ++- AX MOD; 3 7 11 ; 11 meml ; 14;
ABLX , * AX ++- MOD; 3 6; 6 meml ; ;
STX.D ABLX , * AX ++- MOD; 2 6 9; 9 nenil ; 13;
] STX.D ABLX, * AX ++-
ABLX , * +- AX [AX]; 3 7
STX.D ABLX , *+- AX [A

MOD ; 3 7
9 ; meni
X]; 2 6 10 1

10; 10 meml ; 14;

12 ; meml ; 13 ;

LDXL
[ABX
[! AB

TX.D
ABX]
! ABX
TX.D
ABX]
! ABX
TX .D
ABX]
! ABX
TX.D
ABX]
! ABX
TX .D
ABX]
! ABX
TX .D
ABX]
! ABX
TX .D
ABX]
! ABX
TX .D
ABX]
! ABX
TX .D
ABX]
! ABX
TX .D
ABX]
! ABX
TX .D
ABX]
! ABX

STX .D
ABX]

ABLX , * +1- AX [AX] ; 3
STX.D ABLX , * ++- AX [
] STX.D ABLX, * ++- AX
ABLX , * AX ++- [AX]; 3
STX.D ABLX , * AX ++- [
] STX.D ABLX , * AX ++-
ABLX , * AX; 3 6; mem;;
STX.D ABLX , * AX; 2 6 9
] STX.D ABLX, * AX; 3 7
ABLX , * +- BX [STRING]

STX .D ABLX , * +- BX [Si
] STX.D ABLX,* +- BX [
ABLX , * ++- BX MOD; 3
STX.D ABLX , * ++- BX M
] STX.D ABLX, * ++- BX

7 9
AX]
[AX
6 9;
AX]
[AX

13;
14;

13;
14;

13 ;

; 14;

7 meml
26 10 12; 10 mem1 ; 13;

3 7 1113 ; 11 meml ; 14;
6 meml;;

2 6 9 12 ; 9 meml ; 13
]; 3 7 10 13 ; 10 meml ; 14;

; mem ; 13;
10 ; mem ; 14;
; 3 7 ; mem2 ; ;

TRING]; 2 6 10 ; mem2 ; 13;
STRING] ; 3 7 11 ; mem2 ; 14
7; 7 mem2 ; ;
OD ; 2 6 10 ; 10 mem2 ; 13;
MOD ; 3 7 11 ; 11 mem2 ; 14;

ABLX ,*BX ++- MOD; 3 6; 6 mem2;;
STX.D ABLX, * BX ++- MOD; 2 6 9; 9 mem2; 13;

] STX .D ABLX ,*BX ++- MOD ; 3 7 10 ; 10 mem2 ; 14 ;
ABLX , * +- BX [BX] ; 3 7 9 ; mem2;;

STX .D ABLX ,* +- BX [BX] ; 2 6 10 12 ; mem2; 13;
] STX .D ABLX, * +- BX [BX] ; 3 7 11 13 ; mem2 ; 14;
ABLX , * ++- BX [BX] ; 3 7 9 ; 7 mem2;;
STX .D ABLX , * ++- BX [BX] ; 2 6 10 12; 10 mem2; 13;

66

] STX .D ABLX , * +- AX [AX] ; 3 7 11 13 ; niem1 ; 14 ;

inst STR5BC [! ABX] STX.D ABLX, * ++- BX [BX] ; 3 7 11 13; 11 mem2; 14;
inst STR6BA STX .D ABLX , * BX ++- [BX] ; 3 6 9; 6 mem2; ;
inst STR6BB [ABX] STX.D ABLX, * BX ++- [BX] ; 2 6 9 12 ; 9 mem2 ; 13;
inst STR6BC [! ABX I STX.D ABLX, * BX ++- [BX; 3 7 10 13 ; 10 mem2 ;14;
inst STR7BA STX .D ABLX , * BX ; 3 6 ; mem2 ;;
inst STR7BB [ABX] STX .D ABLX , * BX ; 2 6 9 ; mem2 ; 13;
inst STR7BC [! ABX] STX .D ABLX , * BX ; 3 7 10 ; mem2 ; 14;
inst STR8BA STXL .D ABXL , * B145 [STRING] ; 3 6 ; mem2 ;;
inst STR8BB [ABX] STXL .D ABXL , * B145 [STRING] ; 2 6 9; mem2 ; 13;
inst STR8BC [! ABX] STXL .D ABXL , * B145 [STRING]; 3 7 10 ; mem2; 14;
inst DMV1A MV .D AX , AX ;3; 5;;
inst DMV1B [ABX] MV .D AX, AX ; 2 6; 8; 13;
inst DMV1C [! ABX] MV.D AX, AX; 3 7; 9; 14;
inst DMV2A MV.D BX , BX; 3; 5;;
inst DMV2B [ABX] MV .D BX, BX ; 2 6; 8; 13;
inst DMV2C [! ABX] MV .D BX , BX; 3 7 ; 9; 14;
inst DMV1XA MV.D BX , AX; 3; 5 x1;;
inst DMV1XB [ABX]MV.D BX, AX; 2 6; 8 x1; 13;
inst DMV1XC [! ABX] MV.D BX, AX; 3 7; 9 x1 ; 14;
inst DMV2XA MV .D AX , BX ; 3 ; 5 x2 ;;
inst DMV2XB [ABX] MV .D AX , BX ; 26 ; 8 x2 ; 13;
inst DMV2XC [! ABX] MV .D AX, BX; 3 7; 9 x2; 14 ;
inst MPY1AAA MPYX.M ALX , ALX, ALX; 3 5; 7 #1;;
inst MPY1AAB [ABX] MPYX .M ALX , ALX , ALX ; 2 6 8; 10 #1; 13;
inst MPY1AAC [! ABX] MPYX .M ALX , ALX, ALX; 3 7 9; 11 #1; 14;
inst MPY2AAA MPYX .M Nmb , ALX , ALX ; 5 ; 7 #1 ; ;
inst MPY2AAB ABX] MPYX.M Nmb, ALX, ALX; 2 8; 10 #1; 13;
inst MPY2AAC [! ABX] MPYX .M Nmb , ALX , ALX ; 3 9 ;11 #1 ; 14;
inst MPY1BAA MPYX .M ALX , BLX , ALX ; 3 5 ; 7 #1 xl ;
inst MPY1BAB [ABX] MPYX .M ALX , BLX , ALX ; 2 6 8; 10 #1 xl ; 13;
inst MPY1BAC [! ABX] MPYX .M ALX , BLX , ALX; 3 7 9; 11 #1 xl; 14;
inst MPY2BAA MPYX.M Nmb , BLX , ALX; 5; 7 #1 xl;;
inst MPY2BAB [ABX] MPYX .M Nmb , BLX , ALX ; 2 8 ; 10 #1 xl ; 13;
inst MPY2BAC [! ABX] MPYX .M Nmb , BLX , ALX; 3 9; 11 #1 xl; 14;
inst MPY3BAA MPYX .M BLX , ALX , ALX ; 3 5 ; 7 #1 xl ; ;
inst MPY3BAB [ABX] MPYX .M BLX, ALX , ALX; 2 6 8; 10 #1 xl; 13;
inst MPY3BAC [! ABX] MPYX .M BLX , ALX , ALX; 3 7 9; 11 #1 xl; 14;
inst MPY1BBA MPYX.M BLX , BLX , BLX; 3 5; 7 #1;;
inst MPY1BBB [ABX] MPYX .M BLX, BLX , BLX; 2 6 8; 10 #1; 13;
inst MPY1BBC [! ABX] MPYX .M BLX , BLX , BLX ; 3 7 9; 11 #1; 14;
inst MPY2BBA MPYX .M Nmb , BLX , BLX ; 5 ; 7 #1 ; ;
inst MPY2BBB [ABX] MPYX .M Nmb, BLX , BLX; 2 8; 10 #1; 13;
inst MPY2BBC [! ABX] MPYX .M Nmb , BLX , BLX; 3 9; 11 #1; 14;
inst MPY1ABA MPYX .M BLX , ALX , BLX; 3 5; 7 #1 x2;;
inst MPY1ABB [ABX] MPYX .M BLX, ALX , BLX; 2 6 8; 10 #1 x2; 13;
inst MPY1ABC [! ABX] MPYX .M BLX , ALX , BLX; 3 7 9; 11 #1 x2; 14;
inst MPY2ABA MPYX.M Nmb , ALX , BLX; 5; 7 #1 x2;;

67

inst MPY2ABB [ABX] MPYX .M Nmb , ALX , BLX ; 2 8 ; 10 #1 x2 ; 13 ;
inst MPY2ABC [! ABX] MPYX .M Nmb, ALX , BLX; 3 9; 11 #1 x2; 14;
inst MPY3ABA MPYX .M ALX , BLX , BLX ; 3 5 ; 7 #1 x2 ; ;
inst MPY3ABB [ABX] MPYX .M ALX , BLX , BLX ; 2 6 8 ; 10 #1 x2 ; 13;
inst MPY3ABC [! ABX I MPYX .M ALX , BLX, BLX; 3 7 9; 11 #1 x2; 14;

ISet Li LZERO1A LZERO1B LZERO1C ABSiA ABS1B ABSiC ABSIXA ABS1XB ABS1XC
INSTL1AAA INSTL1AAB INSTL1AAC INSTL2AAA INSTL2AAB INSTL2AAC INSTL3AAA
INSTL3AAB INSTL3AAC INSTL1BAA INSTL1BAB INSTL1BAC INSTL2BAA INSTL2BAB
INSTL2BAC INSTL3BAA INSTL3BAB INSTL3BAC INSTL4BAA INSTL4BAB INSTL4BAC

ISet L2 LZERO2A LZERO2B LZERO2C ABS2A ABS2B ABS2C ABS2XA ABS2XB ABS2XC
INSTL1BBA INSTL1BBB INSTL1BBC INSTL2BBA INSTL2BBB INSTL2BBC INSTL3BBA
INSTL3BB INSTL3BBC INSTL1ABA INSTL1ABB INSTL1ABC INSTL2ABA INSTL2ABB
INSTL2ABC INSTL3ABA INSTL3ABB INSTL3ABC INSTL4ABA INSTL4ABB INSTL4ABC

ISet Si SZERO1A SZERO1B SZERO1C INSTS1AAA INSTSIAAB INSTS1AAC INSTS2AAA
INSTS2AAB INSTS2AAC INSTS3AAA INSTS3AAB INSTS3AAC INSTS1BAA INSTS1BAB
INSTSIBAC INSTS2BAA INSTS2BAB INSTS2BAC INSTS3BAA INSTS3BAB INSTS3BAC
INSTS4BAA INSTS4BAB INSTS4BAC BRANCHiA BRANCHiB BRANCHiC ECLRAA
ECLRAB ECLRAC ECLRAXA ECLRAXB ECLRAXC MVKAA MVKAB MVKAC UNI1A
UNI1B UNIC UNI1XA UNI1XB UNI1XC;

ISet S2 SZERO2A SZERO2B SZERO2C INSTS1BBA INSTS1BBB INSTS1BBC INSTS2BBA
INSTS2BBB INSTS2BBC INSTS3BBA INSTS3BBB INSTS3BBC INSTS1ABA INSTS1ABB
INSTS1ABC INSTS2ABA INSTS2ABB INSTS2ABC INSTS3ABA INSTS3ABB INSTS3ABC
INSTS4ABA INSTS4ABB INSTS4ABC BRANCH2A BRANCH2B BRANCH2C BRANCH3A
BRANCH3B BRANCH3C ECLRBA ECLRBB ECLRBC ECLRBXA ECLRBXB ECLR-
BXC MVKBA MVKBB MVKBC UNI2A UNI2B UNI2C UNI2XA UNI2XB UNI2XC BRANCHDA
BRANCHDB BRANCHDC;

ISet Di DMViA DMViB DMViC DMV1XA DMV1XB DMV1XC DZERO1A DZERO1B
DZEROIC INSTD1AAA INSTD1AAB INSTD1AAC INSTD2AAA INSTD2AAB INSTD2AAC
INSTD3AAA INSTD3AAB INSTD3AAC INSTD1BAA INSTD1BAB INSTD1BAC IN-
STD2BAAINSTD2BABINSTD2BACINSTD3BAAINSTD3BABINSTD3BACINSTD4BAA
INSTD4BAB INSTD4BAC LOADiAA LOADlAB LOAD1AC LOAD2AA LOAD2AB LOAD2AC
LOAD3AA LOAD3AB LOAD3AC LOAD4AA LOAD4AB LOAD4AC LOAD5AA LOAD5AB
LOAD5AC LOAD6AA LOAD6AB LOAD6AC LOAD7AA LOAD7AB LOAD7AC STRiAA
STR1AB STRiAC STR2AA STR2AB STR2AC STR3AA STR3AB STR3AC STR4AA
STR4AB STR4AC STR5AA STR5AB STR5AC STR6AA STR6AB STR6AC STR7AA
STR7AB STR7AC ;

ISet D2 DMV2A DMV2B DMV2C DMV2XA DMV2XB DMV2XC DZERO2A DZERO2B
DZERO2CINSTD1BBAINSTD1BBBINSTD1BBCINSTD2BBAINSTD2BBBINSTD2BBC
INSTD3BBA INSTD3BBB INSTD3BBC INSTD1ABA INSTD1ABB INSTD1ABC IN-

68

STD2ABAINSTD2ABBINSTD2ABCINSTD3ABAINSTD3ABBINSTD3ABCINSTD4ABA
INSTD4ABB INSTD4ABC LOADIBA LOAD1BB LOAD1BC LOAD2BA LOAD2BB LOAD2BC
LOAD3BA LOAD3BB LOAD3BC LOAD4BA LOAD4BB LOAD4BC LOAD5BA LOAD5BB
LOAD5BC LOAD6BA LOAD6BB LOAD6BC LOAD7BA LOAD7BB LOAD7BC LOAD8BA
LOAD8BB LOAD8BC STRiBA STR1BB STR1BC STR2BA STR2BB STR2BC STR3BA
STR3BB STR3BC STR4BA STR4BB STR4BC STR5BA STR5BB STR5BC STR6BA
STR6BB STR6BC STR7BA STR7BB STR7BC STR8BA STR8BB STR8BC;

ISet Mi MPY1AAA MPY1AAB MPY1AAC MPY2AAA MPY2AAB MPY2AAC MPY1BAA
MPY1BAB MPY1BAC MPY2BAA MPY2BAB MPY2BAC MPY3BAA MPY3BAB MPY3BAC

ISet M2 MPY1BBA MPY1BBB MPY1BBC MPY2BBA MPY2BBB MPY2BBC MPY1ABA
MPY1ABB MPY1ABC MPY2ABA MPY2ABB MPY2ABC MPY3ABA MPY3ABB MPY3ABC

Combo Li Sl D1 Mi L2 S2 D2 M2;

Parts A15:A14 A15 A14
Parts A13:A12 A13 A12
Parts Al:AlO A11 AiO
Parts A9:A8 A9 A8
Parts A7:A6 A7 A6
Parts A5:A4 A5 A4
Parts A3:A2 A3 A2
Parts A1:AO Ai AO;

69

Bibliography

[1] Scalable instruction-level parallelism through tree-instructions
J.H. Moreno, M. Moudgill; 1997 International Conference on Supercomputing,
Vienna, Austria, July 7-11, 1997, pp. 1-11.

[2] Performance analysis of a tree VLIW architecture for exploiting branch ILP in
non-numerical code
S.M. Moon, K. Ebcioglu; 1997 International Conference on Supercomputing,
Vienna, Austria, July 7-11, 1997, pp. 301-308.

[3] VLIW Compilation Techniques in a Superscalar Environment
K. Ebcioglu, R. Groves, K.C. Kim, G. Silbermam, I. Ziv; ACM SIGPLAN No-
tices, vol. 29, no. 6, pp. 36-48, June 1994 (PLDI'94).

[4] Making Compaction Based Parallelization Affordable
T. Nakatani, K. Ebcioglu; IEEE Transactions on Parallel and Distributed Sys-
tems, Vol. 4, No. 9, pp. 1014-1029, September 1993.

[5] On Performance and Efficiency of VLIW and Superscalar
S.M. Moon, K. Ebcioglu; in International Conference on Parallel Processing, vol.
2, pp. 283-287, 1993, CRC Press, Ann Arbor.

[6] An Efficient Resource-Constrained Global Scheduling Technique for Superscalar
and VLIW Processors
S.M. Moon, K. Ebcioglu; in Proceeding of MICRO-25, pp. 55-71, IEEE Press,
December 1992.

[7] Using a Lookahead Window in a Compaction based Parallelizing Compiler
T. Nakatani, K. Ebcioglu; in Proceedings of MICRO-23, pp. 57-68, IEEE Press,
1990.

[8] A New Compilation Technique for Parallelizing Loops with Unpredictable
Branches on a VLIW Architecture
K. Ebcioglu, T. Nakatani; in Languages and Compilers for Parallel Computing,
D. Gelernter, A. Nicolau, D. Padua (eds.), Research Monographs in Parallel and
Distributed Computing, pp. 213-229, MIT Press, 1990.

[9] Combining as a Compilation Technique for VLIW Architectures
T. Nakatani, K. Ebcioglu; in Proceedings of MICRO-22, pp. 43-57, ACM Press,
1989.

70

[10] A Global Resource-constrained Parallelization Technique
K. Ebcioglu, A. Nicolau; in Proceedings Third International Conference on Su-
percomputing, pp. 154-163, Crete, June 1989.

[11] AVIV: A Retargetable Code Generator for Embedded Processors
Silvina Zimi Hanono; MIT PhD Thesis, to be published June'99.

[12] Code Generation Using Tree Matching and Dynamic Programming
A. Aho, M. Ganapathi, S. Tjang; ACM Transactions on Programming Languages
and Systems 11(4):491-516, 1989

[13] Introduction to Algorithms
T. Cormen, C. Leiserson, R. Rivest; The MIT Press, 1990

[14] Chess: Retargetable Code Generation for Embedded DSP Processors
D. Lancer et al; In Code Generation for Embedded Processors, Kluwer Academic
Publishers

[15] Flexware: A Flexible Firmware Development Environment for Embedded Sys-
tems
P. Paulin et al; In Code Generation for Embedded Processors, Kluwer Academic
Publishers, 1995

[16] An ILP-Based Approach to Code Generation
Wilson et al; In Code Generation for Embedded Processors, pp. 103-118, Kluwer
Academic Publishers, 1995

[17] The nML Machine Description Formalism
M. Freericks; Technical Report, Technical University, Berlin, 1993

[18] Hardware-Software Cosynthesis for Digital Systems
R. K. Gupta and G. De Micheli; IEEE Design and Test of Computers, pages
29-41, September 1993

[19] ISDL: An Instruction Set Description Language for Retargetability
G. Hadjiyiannis, S. Hanono, S. Devadas; In Proceedingsa of the 34th Design
Automation Conference, pages 299-302, June 1997

[20] Instruction Selection, Resource Allocation, and Scheduling in the AVIA Retar-
getable Code Generator
S. Hanono, S. Devadas; In Proceedings of 35th Design Automation Conference,
pages 510-515, June, 1998

[21] Instruction Set Matching and Selection for DSP and ASIP Code Generation
C. Liem, T. May, P. Paulin; In Proceedings of the European Design and Test
Conference, pages 31-37, February, 1994

71

[221 The MiMOLA Design System: Tools for the Design of Digital Processors
P. Marwedel; In Proceedings of the 21st Design Automation Conference, pages
587-593, 1984

[23] CodeSyn: A Retargetable Code Synthesis System
P. G. Paulin, C. Liem, T. C. May, S. Sutarwala; In Proceedings of the 7th
International High-Level Synthesis Workshop, Spring 1994

[24] TMS320C6000 CPU and Instruction Set Reference Guide
Texas Instruments; literature number: SPRU189D,
http://www-s.ti.com/sc/psheets/sprul89d/sprul89d.pdf, February, 1999

[25] TMS320C62X / C67X Programmer's Guide
Texas Instruments; literature number: SPRU198B,
http://www-s.ti.com/sc/psheets/sprul98b/sprul98b.pdf, 1998

[26] TMS320C6000 Assembly Language Tools User's Guide
Texas Instruments; literature number: SPRU186E,
http://www-s.ti.com/sc/psheets/sprul86e/sprul86e.pdf, February, 1999

[27] TMS320C6000 Optimizing C Compiler User's Guide
Texas Instruments; literature inumber: SPRU187E,
http://www-s.ti.com/sc/psheets/spru187e/sprul87e.pdf, February, 1999

72

