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Abstract

Most network naming schemes force applications to specify the network location of
resources they wish to use. However, applications typically want a particular service
and do not know where in the network the service is located. We argue that applica-
tions should be able to simply describe their needs in an intentional name, and that
the network infrastructure should be able to resolve this name to its network locations.
To this end, we have designed and implemented the Intentional Name System (INS).
In this thesis we present the design of a key component of INS: the naming scheme.
We describe the expressive syntax of its intentional names and the data structures
and algorithms it uses to perform the name-to-location resolution. We analyze these
algorithms, describe a prototype implementation, and present performance results
that show the feasibility of our ideas. Finally, we describe three applications that
demonstrate the utility of intentional names.
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Chapter 1

Introduction

1.1 Motivation for Intentional Naming

Computer systems use naming as a layer of abstraction. For example, in computer

architecture, virtual addresses are names that can be resolved to physical addresses.

This abstraction allows code to use static addresses, and still be located anywhere

in physical memory. It also permits the safe sharing of memory, through a secure

resolution process.

In computer networks naming abstractions have also been used to add function-

ality. Domain Name System (DNS) [25] names are mapped onto IP addresses when

a session is initiated, and are used to provide a human-friendly identifier for a host.

IP addresses are naming abstractions as well: each router locally maps the IP ad-

dress of the packet it is forwarding into the next-hop router that the packet should

be delivered to. By incrementally performing this resolution the network provides a

more robust packet routing service than if it were to resolve the address to a path of

routers in advance.

However, all of these naming abstractions maintain the idea that a name should

specify where the object it names is located: IP addresses need to be assigned ac-

cording to the routing topology of the network1 ; DNS names reflect the location of

'Though one could assign IP addresses randomly, it would have poor scaling properties: every
router would have to keep state for every host in its domain, and the core routers would have to
keep state for every host on the internet.
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the resource within an administrative hierarchy; URLs include a DNS name, but also

are extended with a site-local name that is typically a location in a filesystem.

This abstraction from one type of location to another is not always the most

useful one. When an application or a user wants to access a service on a computer

network, they usually start by knowing what they want, rather than where it is

located. Naming that is based on location forces the user to manually remember

and perform the mapping from what they want to where it is. For example, a user

may know that she wants to retrieve a closing quote for stock she owns. She needs

to remember the name of a specific URL that provides a stock quote service, and

then navigate its web pages to find her quote. Other complications may occur in this

process: the server she chooses may be far away on the network, heavily overloaded,

or even have failed! A more powerful naming system would map what the application

wanted to where on the network it is located. Such a system would encourage users

to specify what they want, and move the burden of resolving "what is desired" to

"where it is" from the user to the network infrastructure.

Our goals, therefore, are to (a) provide a system that allows users to express their

intent by defining an intentional name for a service, and (b) have the network in-

frastructure perform the mapping from this intentional name to the actual network

location of the service. The following section gives an overview of the network infras-

tructure, which we call the Intentional Naming System or INS. The rest of this thesis

describes our approach to intentional names.

1.2 The Intentional Naming System (INS)

The Intentional Naming System (INS) is an architecture that allows applications to

refer to network resources using intentional names. The architecture contains two

distinct components:

" Applications, that use a library to access INS services.

" Intentional Name Resolvers or INRs, that are part of the network infrastructure.
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The applications use the library to create and interpret intentional names, and to

access services by communicating with the INRs. The INRs provide these services

to the applications by sharing information with other INRs. The applications can

communicate with the INRs in the following ways (illustrated in Figure 1-1):

" An application can ask an INR to resolve an intentional name to its network

location. The application can then send data directly to the network location

for an entire session. We call this early binding, since the intentional name is

bound to the network location at session initiation time.

" An application can ask an INR to send some data to an intentional name. The

INR then forwards it through a network of INRs until it gets to the network

location. We call this late binding, since the intentional name is bound to the

network location at data delivery time.

" An application can tell an INR that it is the network location for an inten-

tional name. The INR propagates this information to its neighbors, and begins

forwarding data for that intentional name to the application. We call this ad-

vertisement.

" An application can ask to be notified when an INR learns about new intentional

names. We call this discovery.

The applications may connect to any INR, but picking the nearest one is bene-

ficial in reducing delay and bandwidth consumption. The INRs form a communica-

tion network among themselves. While this network can have an arbitrary topology,

it is desirable that neighbor relationships match the underlying network topology.

Through this network INRs forward application data and send updated information

about the intentional names they know about. The updates contain metrics indi-

cating how desirable that particular advertiser of the intentional name is from the

INR's location in the network. INRs run a variant of the distributed Bellman-Ford

routing algorithm [4] on these updates to find which advertisers are best for them.

This information is then used to resolve requests and forward data.
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Application using early binding 3 Application providing service
data for an intentional name

network location
intentional nameX2

Application announcing
an intentional name

intentional name

intentional name + data*

---- HtApplication discovering
Application using late binding INR network an intentional name

Figure 1-1: The architecture of the Intentional Naming System. The upper-left corner
shows an application using early binding: the application sends an intentional name
to an INR to be resolved (1), receives the network location (2), and sends the data
directly to the destination application (3). The lower-left corner shows an application
using late-binding: the application sends an intentional name and the data to an INR,
which forwards it through the INR network to the destination application. The lower-
right corner shows an application announcing an intentional name to an INR. The
intentional name is beginning to be propagated throughout the INR network, and
has reached an application performing discovery.

1.3 Related Work

Because intentional names border on many different areas, there exists a wide variety

of related work. The areas that contain work that relates to INS are:

" Naming systems. Several other network naming systems have been devel-

oped. The most commonly used naming system is the Domain Name System

(DNS), whose development is detailed in [25]; the most common implementation

of DNS software, called BIND, is documented in [38]. Other naming systems

include IEN116 [32], XEROX Grapevine [6], and Active Names [36].

" Intentional names. There has been some prior work on making the case for

intentional names [26, 19, 14]. For example, the Semantic File System [17] uses

intentional names for file retrieval.

" Descriptive names. Systems have been developed that define object descrip-

tion languages, and allow communication using these descriptions. Variants

of these include Jini [20], T Spaces [24], XML [7], and The Information Bus
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(R) [27].

* Generic application-level services. Other systems exist for providing application-

level infrastructure that is not specific to a particular application. These include

Application Layer Anycasting [5] and Active Services [1].

" Research areas where intentional names may be useful. There are also

many efforts related to some of the areas intentional names may have benefits.

These include resource discovery [37, 31], caching [2, 8, 10, 15, 23, 34, 39, 18],

load balancing [9], group communication via multicast [11, 12, 3, 13, 22] and

anycast [28], and mobility [30].

1.4 Outline

This thesis focuses on the design and implementation of intentional names, a key

component of the Intentional Naming System; applications use intentional names to

describe their services and INRs store a mapping from intentional names to network

locations, as well as communicate information on intentional names to other INRs.

First, we discuss our design criteria for intentional names in the context of INS.

Then we present a conceptual design of an intentional name for INS, which we call

a name-specifier. We solidify this design by explaining how INRs represent a name-

specifier internally and externally (Chapter 2). Building on this work, we present

the name-tree, which is the data structure that INRs use to store information about

name-specifiers. We also detail and analyze the algorithms that are used to perform

operations on the name-tree (Chapter 3). Next we turn to our implementation of

name-trees and explain our decisions and the structure of the implementation. To

evaluate the performance of our implementation we discuss some experiments and

their results (Chapter 4). In order to show how applications use INS, we define

an application program interface for creating and manipulating name-specifiers, and

describe a few demonstration applications that benefit from using INS (Chapter 5).

We then conclude with a summary of our work (Chapter 6).
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Chapter 2

Design of Name-Specifiers

An intentional name refers to any name that allows a user to express their intent. We

use call the particular kind of intentional names that INS uses name-specifiers, and

use this term when we are specifically referring to them rather than to the general use

of intentional names. In Section 2.1 we present our design criteria for name-specifiers

and explain their rationale. Section 2.2 shows our conceptual design of the name-

specifier. Section 2.3 gives the concrete representations of the name-specifier: the in-

memory data structure that the INS library uses, and the on-the-wire representation

that is transmitted among INRs and applications.

2.1 Design Criteria

Our design criteria for name-specifiers fits into four categories: expressiveness, effi-

ciency, generality, and deployability. Expressiveness is critical, since it is what gives

users of INS an advantage over other naming approaches. Efficiency is important for

any system that expects to provide good performance. Generality makes sure that

the system is applicable to a wide range of applications. Deployability is necessary if

the system is to be used in a larger community. Our design criteria for name-specifiers

is summarized in Figure 2-1.
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1. Expressiveness

(a) Name-specifiers should be able to describe a rich variety of network re-
sources.

(b) Name-specifiers should be expressive enough that applications can se-
lect services without having to learn additional information through other
means (for example, by contacting the service).

(c) Name-specifiers should be expressive enough that applications can use
them to name their data without having to place additional information
in the packet.

(d) Name-specifiers should allow applications to describe services without in-
cluding every detail.

2. Efficiency

(a) Name-specifiers should support fast resolution by INRs.

(b) Name-specifiers should support efficient storage by INRs.

(c) Name-specifiers should be computationally simple to handle, so that ap-
plications can run on platforms with small amounts of memory or slow
processors (such as mobile nodes or networked devices).

(d) Name-specifiers should allow for aggregation of information by permitting
the suppression of details.

3. Generality

(a) Name-specifiers should be resolvable by INRs without any additional
application-specific information (such as database schema).

(b) Name-specifiers should not be required to correspond to any physical, net-
work, or administrative boundaries.

(c) Name-specifiers should not impose implicit semantics regarding whether
they refer to a single destination or many destinations.

(d) Name-specifiers should support forms that are global in scope.

4. Deployability

(a) Name-specifiers should support distributed application name space design.

(b) Name-specifiers should be conceptually simple so that application design-
ers can easily adopt them.

(c) Name-specifiers should allow applications to evolve by providing reasonable
approaches to backwards and forwards compatibility in the face of changing
name spaces.

Figure 2-1: Summary of design criteria for name-specifiers.
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Expressiveness:

la. Name-specifiers should be able to describe a rich variety of network resources.

This is necessary to ensure that INS is applicable to the wide range of present

and future network services. These services have a large number of parameters

and options, and name-specifiers should be able to express them.

1b. Name-specifiers should be expressive enough that applications can select ser-

vices without having to learn additional information through other means. If

name-specifiers are not expressive enough to do this, they lose many of their

benefits (specifically, resource discovery and end point selection) since applica-

tions need to consult some other directory service or communicate directly with

the service in an application-specific way.

ic. Name-specifiers should be expressive enough that applications can use them to

name their data without having to place additional information in the packet.

This expressiveness is desirable since such additional information is inaccessible

by INRs, and therefore cannot be used to affect resolution decisions. Although

there are cases in which it seems that certain information should never need

to affect resolution, this is rarely clear at the time the application is created.

For example, consider "layer 4 switches" [29]. These are network-layer devices

that take application-layer information into account in making their forwarding

decisions. To accomplish this, the switches need to be programmed with specific

knowledge for each application protocol they handle, which is undesirable.

Id. Name-specifiers should allow applications to describe services without including

every detail. Services may offer many options, and an application should not

need to specify (or even be aware of) all of them.

Efficiency:

2a. Name-specifiers should support fast resolution by INRs. As the use of the system

grows, so will the number of queries the INRs will face. Although additional

13



INRs can be deployed, designing the name-specifiers such that fast resolution

is possible helps to abate this problem.

2b. Name-specifiers should support efficient storage by INRs. Greater use of the

system also implies that INRs will need to store more name-specifiers. There-

fore, the name-specifiers should be structured in such a way that they can be

efficiently stored when there are many of them.

2c. Name-specifiers should be computationally simple to handle, so that applica-

tions can run on platforms with small amounts of memory or slow processors

(such as mobile nodes or networked devices). These platforms are those most in

need of intentional names (since there are many of them, and they have complex

parameters), so it is important that applications require only minimal resources

to use name-specifiers.

2d. Name-specifiers should allow for aggregation of information by permitting the

suppression of details. This helps the system to scale by allowing INRs that are

farther away to know less about the services. For example, a cluster of machines

providing similar services may appear as one name-specifier to distant INRs,

but local INRs may have additional information to dispatch requests within

that cluster.

Generality:

3a. Name-specifiers should be resolvable by INRs without any additional application-

specific information (such as database schema). The principle behind this is

that name-specifiers should be self-contained. Requiring additional detail in-

troduces hard state into the system, which raises the likelihood of failure and

the complexity of INR behavior.

3b. Name-specifiers should not be required to correspond to any physical, network,

or administrative boundaries. The principle behind this is that name-specifiers

should be purely used to describe what an application wants, not where it is. If

14



name-specifiers need to include a physical, network, or administrative location

then INS will suffer from some of the same problems as existing naming systems.

3c. Name-specifiers should not impose implicit semantics regarding whether they

refer to a single destination or many destinations. Some naming systems im-

plicitly impose delivery semantics on their names. For example, certain IP

addresses are set aside for multicast delivery, and the rest are used for unicast

delivery. Name-specifiers should avoid this, and allow applications to explicitly

select the type of delivery they desire.

3d. Name-specifiers should support forms that are global in scope. It is easy to

produce intentional names that are limited in scope, for example, that only

make sense to those in a single building or organization. However, for com-

plete generality it should be possible to have name-specifiers that are globally

meaningful.

Deployability:

4a. Name-specifiers should support distributed application name space design. If

the name space needs to be designed centrally or adopted universally it will be

very difficult to define. Different organizations should be able to define parts of

the name space without affecting other organizations.

4b. Name-specifiers should be conceptually simple so that application designers can

easily adopt them. If name-specifiers are difficult to understand, application

designers will shun INS in favor of existing naming systems. The complexity

must be commensurate with the benefits it provides.

4c. Name-specifiers should allow applications to evolve by providing reasonable ap-

proaches to backwards and forwards compatibility in the face of changing name

spaces. Old applications should have some reasonable behavior when faced with

name-specifiers that use new name space components they don't understand.

New applications should be able to use old name-specifiers which may lack some

of the new name space components.
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2.2 Conceptual Design

Name-specifiers fill two distinct roles in INS: they are used by applications as (a) query

expressions for services they are interested in, and (b) descriptions of the services

they provide. Although overloading the name-specifier in this way may reduce the

flexibility of the system, it does make the system easier to understand and streamlines

the implementation of applications.

Keeping in mind the design criteria, we have developed the following conceptual

design for name-specifiers. Most naming schemes in computer systems have either a

flat structure (for example, memory addresses) or a simple hierarchical structure (for

example, DNS names). In contrast, name-specifiers use a tree structure to allow for

even more flexibility in describing intent.

The two basic building blocks of name-specifiers are textual fields called the at-

tribute and the value. An attribute is a category in which an object can be classified.

For example, the "color" of an object is such a category, as is the "floor" it is on.

A value is an object's classification within that category. For example, the color of

the object could be "red" or "blue" while its floor could be "4" or "5." INS (delib-

erately) does not understand the semantics of individual attributes and values, and

only performs opaque comparisons on them. There is no predefined set of attributes

or values that applications must use: they are free to define a set of attributes and

values that best suits their application

When a specific value is used to classify an object with respect to a specific

attribute, this relationship is called an attribute-value-pair or av-pair. For example,

an av-pair might convey that an object's "color is blue" or that its "floor is 5." In

the simplest view an av-pair is just an association between an attribute and a value.

However, an av-pair by itself may not carry all the information about the object: in

the above examples we don't know what shade of blue the object is, or what room

or wing of the 5th floor the object is in. To solve this problem, an av-pair has a set

'However, it may be desirable to standardize certain attributes and values. For example, if there
were standard ways of describing colors or physical locations, different application designers could
use these standards to reduce design time and provide interoperability.
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of child av-pairs, which further describe the object. For example, the child av-pair

of "color is blue" may be "shade is light" while "floor is 5" may have child av-pairs

that include "room is 503" and "wing is north." Thus, child av-pairs provide added

detail, within the context of their parent av-pair.

A name-specifier, then, is just an arrangement of av-pairs in a tree structure. The

root of the tree is an implicit null value, which has as its children a set of top-level

attributes. Figure 2-2 shows a graphical representation of an example name specifier.

root

city service dns

washington amera bill.whitehouse.gov

building format x-res y-res

whitehouse gif 640 400

wing

west

room

oval-office

Figure 2-2: A graphical view of an example name-specifier. The hollow circles are used
to identify attributes; the filled circles identify values. This name-specifier describes
an object in the oval-office that provides a camera service (with 640-by-400 GIF
images) and has a DNS name of bill.whitehouse.gov.

2.3 Concrete Representations

The previous section described the conceptual design of the name-specifier; this sec-

tion describes the concrete representations of the name-specifier. The INS library

provides a name-specifier data structure and functions to manipulate it; these are

used by applications and within the INRs. The INS library also provides the ability

to convert this data structure to and from a wire representation, which is in commu-

nication among different INRs and applications.

The name-specifier data structure, which follows the conceptual design closely,

is defined in Figure 2-3. The name-specifier itself simply contains an av-pair which

is the root of the name-specifier. Each av-pair contains an attribute attribute and
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its associated value value, as well as a list of av-pairs that are the children of this

av-pair. There are a set of functions that applications and INRs use to manipulate

name-specifiers and their components, without having to understand the details of

the representation; these are fully described in the Applications chapter (Chapter 5)

and Appendix A.

name-specifier:
av-pair root

av-pair:
attribute attribute
value value
list of av-pair children

Figure 2-3: The name-specifier data structure. Each definition contains a list of
member variables for which the type and name are given. list of represents an abstract
compound data structure.

In order to transmit name-specifiers across the network, it is necessary to have a

flat representation. We use the following wire representation. Attributes and values

are arbitrary length strings. To create an av-pair, they are separated by an equals sign

(=). To create a tree of av-pairs, children are individually bracketed (with [ and ])

and placed after their parents. White space (spaces, tabs, etc.) can be used anywhere

within the name-specifier, except in the middle of attributes and values; this allows

name-specifiers to be formatted in a way that makes them easy for humans to read,

which assists with debugging. An informal 2 BNF syntax of the wire representation

is shown in Figure 2-4. Figure 2-5 shows a wire representation of the name specifier

from Figure 2-2.

2 The syntax is "informal" because we don't bother (a) specifying exactly what characters can be
part of "a string" and instead assume they are limited to characters that don't cause ambiguities
in the syntax, and (b) formally indicating that white space can be used anywhere within the name-
specifier except in the middle of attributes and values. The limitations necessary to make the
assumptions from (a) hold are:

1. An equals sign cannot appear in an attribute (since it is used between attributes and values).

2. A right bracket cannot appear in a value (since it is used to terminate an av-pair).

For consistency and simplicity, we suggest disallowing equals signs and brackets within either at-
tributes or values.
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attribute a string
value a string
av-pair = '[', attribute, '=', value, { av-pair }, ]'

name-specifier = { av-pair }

Figure 2-4: Informal BNF syntax of the wire representation of a name-specifier.

[city = washington
[building = whitehouse

[wing = west
[room = oval-office]]]]

[service = camera
[format = gif]
[x-res = 640]
[y-res = 400]]

[dns = bill.whitehouse.gov]

Figure 2-5: A wire representation of the name-specifier shown in Figure 2-2.

Alternative wire representations. The wire representation we use for name-

specifiers was chosen to be readable by humans, in the spirit of other application-level

protocols such as SMTP [33], HTTP [16], NNTP [21], etc. Having a human readable

format makes testing and debugging quite easy, but is not the most compact or

computationally efficient representation. If bandwidth or processing power is scarce,

a different format may be desirable. For example, attributes and values need not be

human readable strings, since it is expected that applications will be aware of the

semantics of the attributes and values they use. More concretely, the use of name-

specifiers require that applications have agreed on a set of attributes and values to

communicate with a priori; there is no reason that the attribute or value can't be

represented as a binary number rather than a human readable string in order to save

bandwidth. Similarly, the structure of the name-specifier could be represented using

a binary encoding rather than textual delimiters.
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Chapter 3

Design of Name-Trees

The data structures that are used by INRs to store information about name-specifiers

are called name-trees. Many of our design criteria for name-specifiers manifest them-

selves in name-tree design decisions. The design of name-specifiers and the design

of name-trees also have a significant degree of interplay: choices made in design-

ing name-specifiers constrain and guide options for name-trees, while the needs of

name-tree operations influence the structure of name-specifiers.

There are two parts of an INR that interact with the name-tree. One of these is

the code that handles the resolution of name-specifiers, and the other is the code that

is responsible for sharing information about name-specifiers with other INRs. Thus,

the function of a name-tree is similar to that of an IP routing table [35] or name

server cache [38].

For resolving name-specifiers, the name-tree supports a LOOKUP-NAME opera-

tion, which returns the information associated with a name-specifier in the name-tree.

Since the rate of lookups an INR must perform will grow as the system becomes more

heavily used, lookups must be extremely efficient and scale well.

For sharing information about name-specifiers with other INRs, we use a protocol

that is based on the Bellman-Ford routing protocol [4]: each INR sends the name of

individual name-specifiers it knows about, as well as their metric and other associated

information to its neighbors. To support this, the name-tree provides a GET-NEXT-

NAME operation to iterate through the name-specifiers in the name-tree, and an
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ADD-NAME operation to add a new name-specifier to the name-tree. Performance

is less of a concern for these operations, because they are not used as frequently.

The number of neighbors an INR has can be kept small, since the INR network is a

controlled topology.

In Section 3.1 we define the name-tree data structure. The next three sections

present the name-tree operations: Section 3.2 describes the LOOKUP-NAME opera-

tion, Section 3.3 describes the GET-NEXT-NAME operation, and Section 3.4 describes

the ADD-NAME operation. An analysis of the LOOKUP-NAME operation is provided

in Section 3.5.

3.1 Data Structure

The name-tree data structure is used to store information about the name-specifiers an

INR knows. It is similar in structure to a name-specifier, resembling a superposition

of all of the name-specifiers.

The fundamental components of name-trees are the attribute-node and value-node,

which are analogous to the attribute and value of a name-specifier. However, in a

name-specifier there is a one-to-one relationship between attributes and values, which

are associated to form an av-pair. In name-trees, there is no analog to the av-pair.

Like values, value-nodes have as their children attribute-nodes that are more specific

categorizations of their value. However, unlike attributes, attribute-nodes also have

multiple value nodes as children, which represent the different values the name-tree

knows.

The name-tree also needs some way to keep distinguish among its different name-

specifiers and retrieve information for a particular one. We call this per-name-specifier

information a name-record. Each value-node in the name-tree contains a list of the

name-records for the name-specifiers it is a part of. Thus, if a name-specifier is in the

name-tree, the following condition holds: for each of the value-nodes in the name-

tree that correspond to a leaf av-pair of the name-specifier, the name-record for the

name-specifier will be in the value-node's list of name-records.
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A name-tree, then, is an arrangement of alternating levels of value-nodes and

attribute-nodes in a tree structure. The root of the tree is a value-node, whose value

value and attribute-node parent are implicitly null. Figure 3-1 shows a graphical rep-

resentation of part of an example name-tree. The name-tree also contains additional

information for bookkeeping and efficiency that is detailed below, but not illustrated

in the figure.

The precise definition of a name-tree is given in Figure 3-2. The name-tree itself

contains only two variables: a value-node which is the root of the tree, and a list of

name-record records. The list of name-record contains all of the name-records in the

name-tree, and is used by the GET-NEXT-NAME algorithm to iterate through the

name-specifiers in the tree.

Each value-node has several variables. The value value stores the value that

this value-node represents. The list of attribute-node children contains all of the

attribute-nodes that are children of this value-node; these are created when the name-

specifiers in the name-tree have more specific av-pairs. The attribute-node parent

contains the parent attribute-node of this value-node; it is used by the GET-NEXT-

NAME algorithm when it traces up the tree. The list of name-record records contains

all of the name-records for name-specifiers that end at this part of the name-tree.

Finally, the av-pair PTR is usually null, but is used to store temporary values during

the execution of the GET-NEXT-NAME algorithm.

An attribute-node has fewer variables. The attribute attribute stores the attribute

that this attribute-node represents. The list of value-node children contains all of

the value-nodes that are children of this attribute-node; these contain the possible

values for the attribute that are in this name-tree. The value-node parent contains

the parent value-node of this attribute-node; it is used by the GET-NEXT-NAME

algorithm when it traces up the tree.

A name-record contains a list of value-nodes that are its parents in the name-tree.

These are used by the GET-NEXT-NAME algorithm when it traces up the tree. It

also contains other information about the name-specifier which the INR uses. These

include next-hop INRs, network layer locations, metrics for these locations, and an
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expiration time for the name-record.

In order to simplify the presentation of the operations in the following sections,

the recursive functions are written to be called on the root value-node of the name-

tree. In an actual implementation, a short wrapper function would be called on the

name-tree, which in turn would start the recursive function on the root value-node.

city servicdn

lwashington amera bill.whitehouse.gov

buidling / format x-res -res

whitehouse gif 0 4640 400

wing

$ 6 wet

room

oval-office .

Figure 3-1: A graphical view of part of an example name-tree. The name-tree consists
of alternating levels of attribute-nodes and value-nodes. Value-nodes contain a list of
name-records for all the name-specifiers with corresponding leaf av-pairs. The part
of the name-tree corresponding to the example name-specifier shown in Figure 2-2 is
in bold.
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name-tree:
value-node root
list of name-record records

value-node:
value value
list of attribute-node children
attribute-node parent
list of name-record records
av-pair PTR

attribute-node:
attribute attribute
list of value-node children
value-node parent

name-record:
list of value-node parents

... other name information...

Figure 3-2: The name-tree data structure. Each definition contains a list of member
variables for which the type and name are given. list of represents an abstract
compound data structure. The other name information is information used by the
INR in resolving requests; these include the next-hop INR, the destination IP address,
and a unique announcer ID. This information is not used by the name-tree algorithms.
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3.2 The LOOKUP-NAME Operation

The algorithm for the LOOKUP-NAME operation, shown in Figure 3-3, is used to

retrieve the name-records for a particular name-specifier n from the name-tree T.

The main idea behind the algorithm is that a series of recursive calls reduce the set of

candidate name-records S by intersecting it with the records at the value nodes of T

that correspond to the leaf values of n. When the algorithm terminates, S contains

only the relevant name-records.

Description. The algorithm starts by initializing S to the set of all possible name-

records' (line 1). Then, for each av-pair p that is a child of n it finds Ta, the child

attribute-node of T that corresponds to p's attribute (2-4). If there is no corre-

sponding attribute-node, it just moves on to the next one (5-6). This means that

applications can make queries that specify attributes which were not announced, and

still have the lookup match some routes. This allows announcers the option of not

advertising particular attributes and could be used, for example, if the announcer

supports all the values of that attribute. Next the algorithm looks at the value of

p. If the value is a wild card, then it computes S' as the union of all name-records

in the subtree rooted at the corresponding attribute-node, and intersects S with S'

(8-14). This means that specifying an attribute with a wild card value is actually

more restrictive than not specifying the attribute at all, since only the name-specifiers

that provide additional (more-specific) av-pairs are retained. If the value is not a wild

card, it finds the corresponding value-node in the name-tree (15-18). If it has reached

the leaf of either the name-specifier or the name-tree, the algorithm intersects S with

the name-records pointed to by the corresponding value-node (19-20), thus narrow-

ing down the set S to those name-records that meet the criteria of this branch. If

not, it makes a recursive call to compute the relevant set from the subtree rooted at

the corresponding value, and intersects that with S (21-22). Finally, the algorithm

returns the union of the name-records it has found below it that match the criteria

'Note that an implementation does not actually need to store all possible name-records explicitly,
since after the first intersection operation S will be reduced to the smaller list of records.
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(S), and the name-records at this location in the name-tree (24); this too assists in

allowing announcements to be made for only higher level attributes.

LOOKUP-NAME(T, n)

1 S +- the set of all possible name-records
2 for p <- each av-pair in n.children
3 Ta +- the attribute-node of T.children such that
4 Ta.attribute = p.attribute
5 if Ta = null
6 continue
7
8 if p.value *

9 > Wild card matching.
10 S' +- 0
11 for T, +- each value-node in Ta.children
12 S' +- S' U all of the records of value-nodes
13 in the subtree rooted at T,
14 S +- S n S'
15 else
16 > Normal matching.
17 T, +- the value-node of Ta.children such that
18 To.value = p.value
19 if T, is a leaf node or p is a leaf node
20 S <- S n Tv.records
21 else
22 S +- S n LOOKUP-NAME(p, Tv)
23
24 return S U T.records

Figure 3-3: The LOOKUP-NAME algorithm. This algorithm looks up the name-
specifier n in the name-tree T and returns all appropriate name-records.
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3.3 The GET-NEXT-NAME Operation

The GET-NEXT-NAME algorithm, shown in Figure 3-4, is used to iterate through the

name-specifiers stored in the name-tree. The INR calls GET-NEXT-NAME to retrieve

the next name-specifier to be sent in a periodic update to one of its neighbors. The

algorithm works by iterating through a list of name-records that is stored in the

name-tree, and returning the name-specifier associated with each one. To find the

name-specifier from a name-record, it uses the TRACE algorithm (shown in Figure 3-5)

to trace up through the name-tree from the name-record, reconstructing the name-

specifier as it goes along.

Description. The parameters for the algorithm are T, the name-tree, and j, a

counter that keeps the state of the iteration. The algorithm starts starts by pulling

a name-record out from records, based on j, and storing that in the variable record

(lines 1-2). Next it creates a new, empty list touched, which will be used to store all

of the value-nodes whose PTR has been set (4-5). It also creates a new, empty name-

specifier n that will eventually contain the return value of the algorithm (7-8). It ties

the name-specifier n to the name-tree T by setting the PTR of the root value-node of

the name-tree to point to the top of the name-specifier (10-12). Now the algorithm

is ready to begin reconstructing the rest of the name-specifier from the name-tree.

To do this, it traces back from all of the value-nodes that contain record (14-16). It

passes to the TRACE algorithm the place to start tracing from T,, the fragment of

the name-specifier reconstructed so far (null at this point), and the list of touched

value-nodes. Now that the name-specifier n has been reconstructed, it restores the

name-tree to its original condition by resetting all of the PTRs of the value-nodes in

touched back to null (18-20). Finally it returns the name-specifier n (22).

The TRACE algorithm traces up the name-tree from value-node T. As it traces it

creates a name-specifier fragment (of which n is the bottom part), and adds any value-

nodes whose PTR it sets to the list touched. The main idea behind the algorithm is

that as it traces up the name-tree it looks at the PTR variable of the value-nodes. If

the PTR is filled in, it has found part of the name-specifier that has been reconstructed
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already, and it adds the fragment it has reconstructed on to it; if it isn't filled in, it

reconstructs another av-pair of the name-specifier fragment and proceeds upwards.

The details of the TRACE algorithm as as follows. First, the algorithm checks the

PTR (T.PTR) to see if it has been filled in. If so, then it contains an av-pair, which

means the algorithm has found the main name-specifier (lines 1-2). If the algorithm

has reconstructed a fragment of the name-specifier (i.e. n / null), then it attaches

the fragment (n) to the av-pair of the main name-specifier and terminates (3-5). If

the PTR hasn't been filled in (i.e. T.PTR = null), it reconstructs more of the name-

specifier fragment (6-7). It does this by creating a new av-pair, whose value is taken

from Tn's value and whose attribute is taken from Tn's parent's attribute; this av-pair

is assigned to T.PTR (8-9). Since T.PTR has been modified, T, is added to the

list of touched value-nodes (10). If part of the name-specifier has been reconstructed

already (i.e. n # null), then it attaches n to the new av-pair stored in T.PTR (12-

14). Finally, it continues up the name-tree by recursively calling TRACE to trace up

from the grandparent of T, (i.e. the value-node above T, in the name-tree), adding

onto the top of the name-specifier fragment T.PTR (which will be the new n), and

passing along the list of touched value-nodes.

Example. An illustration of an in-progress execution of the GET-NEXT-NAME

algorithm is shown in Figure 3-6. In this execution, almost all of a name-specifier

has been recreated. The left branch of the name-specifier associated with the name-

record record has been traced all the way up to the root, as can be seen by the

presence of PTR assignments. The bottom value-node of the right branch has also

been traced, and the algorithm is currently grafting the name-specifier fragment of

the right branch onto the main name-specifier. It does this by noticing it has reached

a value-node T, whose PTR (T.PTR) already has an av-pair, and then adding the

fragment rooted at n as a child av-pair of T.PTR. Since all branches of record have

been traced, the name-specifier is fully created and the algorithm terminates.
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GET-NEXT-NAME(T, j)
1 > Get the next name-record to extract a name for.
2 record +- the jth element of records
3
4 > Create a list of value-nodes whose PTR has been touched.
5 touched <- a new, empty list of value-node
6
7 r> Create the name-specifier to be returned.
8 n +- a new, empty name-specifier
9
10 c> Attach the name-specifier to the root, and mark it as touched.
11 T.PTR +- n
12 append T to touched
13
14 > Construct the name-specifier by tracing backwards.
15 for T, +- each value-node in record.parents
16 TRACE(T,, null, touched)
17
18 > Clear the PTRs that have been touched.
19 for T, +- each value node in touched
20 T,.PTR <- null
21
22 return n

Figure 3-4: The GET-NEXT-NAME algorithm. This algorithm extracts and returns
the name-specifier for the name-record r in the name-tree T.
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TRACE(To, n, touched)

1 if T.PTR # null
2 > We've found the main name-specifier!
3 if n # null
4 > Graft the fragment we've recreated on to it, and we're done.

5 append n to Tv.PTR.children
6 else
7 > We haven't found the main one yet; recreate more of the fragment.
8 T.PTR +- a new av-pair consisting of
9 T,.value and T,.parent.attribute

10 append T, to touched
11
12 if n 4 null
13 > Graft the fragment we've recreated onto the new part.

14 append n to T,.PTR.children
15
16 > Continue up the name-tree.

17 TRACE(To -parent.parent, To .PTR, touched)

Figure 3-5: The TRACE algorithm. This algorithm recursively traces up the name-
tree from a value-node T., building part of a name-specifier as at goes up, and grafting

it on to the name-specifier to be returned when it reaches it.

root.PTR root

Ty.PTR T Graft

PTR

record name-record

Figure 3-6: An illustration of an in-progress execution of the GET-NEXT-NAME
algorithm. The name-specifier being created is shown in gray on the left, while the
name-tree it is being created from is shown black on the right. The parts of the
name-tree that are circled with dotted lines are the paths through the name-tree that
have been traced. The dotted arrows are used to illustrate the assignments of the
PTR variables. The thick arrows indicate the parts of the data structures that are
currently being manipulated. In this example, the name-specifier fragment rooted at

n is being grafted onto T.PTR, which is part of the main name-specifier.
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3.4 The ADD-NAME Operation

The ADD-NAME algorithm, shown in Figure 3-7, is used to add a name-record r for

a name-specifier n into the name-tree T. The INR calls ADD-NAME to add new

name-specifiers that it has learned about to the name-tree. The algorithm is similar

in structure to the LOOKUP-NAME algorithm: a set of recursive calls are used to

descend through the name-tree, creating additional nodes as needed, and adding the

name-record to the records at the value-nodes that correspond to the values at the

bottom of the name-specifier.

Description. The algorithm starts by adding the name-record r to the list of

records (lines 1-2); this list is used by GET-NEXT-NAME algorithm to iterate through

the name-records in the name-tree. Then, for each av-pair p that is a child of n it does

the following (4). First it finds Ta, the child attribute-node of T that corresponds to

p's attribute (5-7). If there is no corresponding attribute-node (i.e. Ta = null), it

creates a new attribute-node, assigns it to Ta, and then adds it as a child of T (8-10).

Next the algorithm finds T, the child value-node of T that corresponds to p's value

(12-14). If there is no corresponding value-node (i.e. T, = null), it creates a new

value-node, assigns it to T,, and then adds it as a child of T (15-17). Finally the

algorithm checks if it is at the bottom of the name-specifier (i.e. if p is a leaf node)

(19-20). If so, it adds the name-record r to the records at this node in the name-tree

(21); if not, it makes a recursive call to add the name-record r to the part of the

subtree rooted at T, that corresponds to the part of the name-specifier rooted at p.
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ADD-NAME(T, n, r)

1 > Add the name-record to the list of records.
2 append r to records
3
4 for p +- each av-pair in n.children
5 > Find or create the attribute-node.
6 Ta +- the attribute-node of of T.children such that
7 Ta.attribute = p.attribute
8 if Ta = null
9 Ta +- a new attribute-node with p.attribute
10 append Ta to T.children
11
12
13
14
15
16
17
18
19
20
21
22
23

> Find or create the value-node.
T, <- the value-node of Ta.children such that

T,.value = p.attribute
if T, = null

T, o- a new value-node with p.value
append T, to Ta.children

> Add the name-record here, or recurse further down.
if p is a leaf node

append r to To.records
else

ADD-NAME(To,p, r)

Figure 3-7: The ADD-NAME algorithm. This algorithm adds the name-record r for
the name-specifier n in the name-tree T.
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3.5 Analysis

Since the scalability of INRs under heavy load is a major concern, it is important to

analyze the performance of the lookup algorithm. While many of the tasks involved

in resolving an name-specifier take a constant amount of time (e.g., copying the data,

transmitting it over the network), the time to perform a lookup depends on the

structure and quantity of name-specifiers in the name-tree. It is therefore important

to determine the worst-case run-time of the algorithm.

To simplify the analysis of our lookup algorithm, we assume that name-specifiers

are uniform trees with the following dimensions: d, one-half the depth of name-

specifiers; ra, the range of possible attributes in name-specifiers; re, the range of

possible values in name-specifiers; and, nm the actual number of attributes in name-

specifiers. These are summarized in Figure 3-8 and illustrated in Figure 3-9.

d One-half the depth of name-specifiers
ra Range of possible attributes in name-specifiers
rV Range of possible values in name-specifiers
na Actual number of attributes in name-specifiers

Figure 3-8: The dimensions of a uniform name-specifier.

Name-tree Name-specifier

O---ra --- O 2d na-

00Q--- r, -- +

Figure 3-9: An illustration of the dimensions for a uniform name-specifier. Note that
d = depth/2 =1 for this tree.

Analysis In each invocation, the algorithm iterates through the attributes in the

name-specifier, finding the corresponding attribute-node and value-node in the name-

tree, and making a recursive call. Thus, the run-time is given by the recurrence,

T(d) = na - (ta +tv +T(d - 1)),
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where ta and t, represent the time to find the corresponding attribute-node and

value-node, respectively. Assume that it takes time b for the base case such that:

T(O) - b

Setting t = t, + t, and performing the algebra yields:

T(d) = na -(t+T(d -1))

= na t+ na T(d -1)

= a-t+n - (t) + n -T(d-2)

= na t+..±+n 1 -t+nd-1 -b

nad -1
= a -

na -1

= 8(ni-(t + b))

If linear search is used to find attribute-nodes and value-nodes, the running time

would be:

T(d) = 8(ni (ra+ r, + b)),

because ta oc ra and t, oc r, in this case.

However, using a straightforward hash table to find these reduces the running

time to:

T (d) = E)(na - (1 + b))

Implications. From the above analysis, it seems that the nid factor may suffer from

scaling problems if d grows large. However, both na and d, will scale up with the

complexity of a single application associated with the name-specifier. There are only

as many attributes or levels to a name-specifier as the application designer needs

to describe the objects that are used by their application. Consequently, we expect

that that na and d will be near constant and relatively small; indeed, the sample

applications we describe in Applications chapter (Chapter 5) have this property.
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The cost of the base case, b, is the cost of an intersection operation between the

set of route entries at the leaf of the name-tree and the current target route set.

Taking the intersection of the two sets of size si and S2 takes 8(max(si, S2)) time,

assuming the two sets are sorted (as in our implementation). In the worst case the

value of b is on the order of the size of the universal set of route entries (8(|UI)),

but is usually significantly smaller. Unfortunately, an average case analysis of b is

difficult to calculate analytically since it depends on the number and distribution of

names. However, in the following chapter we discuss experimental results that were

produced by an actual implementation, and indicate that the cost of the base case is

relatively low.
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Chapter 4

Implementation

In order to demonstrate the advantages of intentional names, we developed a pro-

totype implementation of the INS components. This chapter discusses our imple-

mentation of the INS library, which allows applications and INRs to manipulate

name-specifiers, and of the name-tree, which is used by the INRs to store information

on name-specifiers.

In Section 4.1 we describe the components of our implementation. Section 4.2

explains our choice of Java as an implementation language, and discusses the language

features we use. Section 4.3 evaluates the performance of our implementation.

4.1 Implementation Components

Our implementation of the INS library and name-tree is made up of several compo-

nents. In our Java prototype, these components are classes that are named closely

after their data structures. Figure 4-1 contains a list of the classes in the implemen-

tation; the actual source code can be found in Appendix B.

The classes that make up the INS library are NameSpecifier, AVPair, Attribute,

and Value. NameSpecifier, Attribute, and Value fairly simple, since they only contain

methods to access their data; Value contains more methods than Attribute since it

handles the special case of wild card values. In addition to the access methods,

AVPair contains a method that parses the wire representation of a name-specifier,
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Java class Data structure or use Lines
NameSpecifier name-specifier 96
AVPair av-pair 314
Attribute attribute 62
Value value 103
NameTree name-tree 140
AttributeNode attribute-node 123
ValueNode value-node 299
NameRecordSet name-record-set 274
NameRecord name-record 71
TestNameSpecifier name-specifier tests 73
TestNameTree name-tree tests 436
TestNameRecordSet name-record-set tests 109
TestNameTreePerformance name-tree performance tests 320
Total 2420

Figure 4-1: Classes in the prototype Java implementation and their associated data
structure or use. Lines gives the number of source lines of code, including comments
and whitespace.

and an equality testing method.

The classes that implement the name-tree are Name Tree, AttributeNode, ValueN-

ode, NameRecord, and NameRecordSet. Name Tree contains only wrapper methods,

which initialize the algorithms that the name-tree provides; ValueNode provides most

of the implementation of these algorithms. AttributeNode is simple and provides only

access methods; a future implementation may find it more elegant to move some of

the algorithm code into this class, if possible. NameRecordSet implements an or-

dered list, to allow fast set union and intersection operations. NameRecord contains

many access methods for the information that the INR uses; these are not used by

the name-tree and are omitted from the line count in Figure 4-1. A better way to

implement NameRecord would be to move that information into a separate class

that can be treated opaquely by the name-tree. There are also two other classes,

CantParseString and ElementNotFound, which are used only as identifiers for Java

exceptions.

There are also classes that non-operational code and are used for testing. Test-

NameSpecifier, TestNameTree, and TestNameRecordSet are used to test that the im-
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plementations of their associated classes are working correctly. TestName TreePerfor-

mance is used to produce the experimental results in Section 4.3.

4.2 Implementation Language

We made the decision to use Java as the language for our prototype implementation

of INS based on its cross platform portability, and the rapid development that a high-

level, object-oriented language with well-documented and relatively complete libraries

allows. However, since the INS design is deliberately language-independent, we also

strove to make our implementation techniques as language-independent as possible.

The following features of Java are used by our implementation. The implemen-

tation makes modest use of inheritance: NameSpecifier is a subclass of AVPair and

Name Tree is a subclass of ValueNode. These could easily be changed to have Name-

Specifier store a copy of AVPair, for example, if inheritance isn't available. The

implementation also only makes minimal use of exceptions, and they could easily be

replaced by special return values. However, the implementation does make heavy

use of a few Java library classes. Vectors, which provide an automatically resizable

array, are used to store sets that hold the children of attribute-nodes and value-nodes,

the name-records of a value-node, the list of all name-records, the parents of name-

records, and the list of value-nodes whose PTR has been touched by the TRACE

algorithm. Enumerations, which provide an iteration abstraction, are used to iterate

through these sets. StringTokenizers, which flexibly break a string into tokens, are

used to parse the wire representation of name-specifiers.
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4.3 Evaluation

In this section we evaluate the performance of our implementation. In particular, we

look at the rate of lookups that the name-tree is capable of sustaining, and how this

depends on the number of name-specifiers the INR knows about. Then we examine

if the memory usage of the name-tree is a limiting factor in the number of name-

specifiers an INR can maintain.

Methodology. We create a number of randomly constructed name-trees, and time

how long it takes to perform 1000 random lookup operations on the tree. Since this ex-

periment is designed to extend the analytical work, the name-tree and name-specifiers

are chosen to be uniform with the same parameters as the analysis in Section 3.5. We

create an empty name-tree, and add to it a set of n random name-specifiers, each with

a unique name-record. These random name-specifiers are also recorded separately so

they can be looked up in the name-tree.

The random name-specifiers are created as follows. For each of the d levels of

the name-specifier, na different attributes are chosen randomly from a total of r

possible attributes. Then for each attribute, a value is chosen randomly from a

total of r, possible values. The actual attributes and values used are just the string

representation of the integers from 0 to ra - 1 and r, - 1, respectively; these are

smaller than the actual attributes and values used in our sample applications, but

are representative of what attributes and values would be like if our design and

implementation supported integer types.

The experiment then precomputes a set of 1000 random numbers that are indices

into the separate list of name-specifiers. It then records the start time, does a lookup

in the name-tree for each one of those name-specifiers, and subtracts the start time

from the finish time to get the total time taken. From this we calculate the number

of lookups per second.

We also attempt to determine the total amount of memory used by the name-tree

as follows. After we have run our lookup test there are three major consumers of

memory: the name-tree, the list of name-specifiers, and other objects. Of these, only
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the name-tree and the list of name-specifiers depend on the number of name-specifiers

in the name-tree; the space consumed by the other objects is constant across different

trials. There are two ways to measure the memory consumed by the name-tree. The

obvious way is to call the Java garbage collector to remove any unreferenced objects,

record the amount of free memory, remove any references to the name-tree, call the

garbage collector again, and then subtract the original amount of free memory from

the current amount of free memory. However, in doing this we discovered that the

garbage collector does not always free the name-tree; this produces results in which

the name-tree appears to have consumed no space. The method actually used is a

more rough estimation, but does not seem to produce this anomaly. Instead of trying

to look at the difference in free space, we just remove our reference to the list of

name-specifiers and calculate the name-tree size as the difference between the total

memory and the free memory. The assumption made here is that it is the list of name-

specifiers consumes most of the memory, not the name-tree. This approach produces

results that are consistent with the more obvious approach, but are off by the amount

of space consumed by other objects associated with the experiment (approximately

200 kb).

Parameters and environment. We chose the parameters to be ra = 3, rv = 3,

na - 2, and d = 3, as illustrated in Figure 4-2. These parameters were chosen based

on the name spaces of our demonstration applications, which we present in Chapter 5.

We varied n, the number of name-specifiers in the name-tree between 100 and 14300,

in increments of 100. The range of experiments possible was limited by the extra

memory required to store the list of name-specifiers to be looked up in the name-tree,

and not by the much smaller name-tree.

We performed our experiment on a standard PC with an Intel Pentium II pro-

cessor running at 450 MHz and containing 512 kb cache and 128 Mb RAM. The

machine was running Red Hat Linux 5.2 with the default kernel (version 2.0.36). The

code was compiled and run with the Blackdown Java-Linux port of Sun's JDK (Java

Development Kit) 1.1.7. We limited the maximum heap size of the Java interpreter
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Figure 4-2: Experiment parameter. This diagram shows the structure of a uniform
name-tree and name-specifier with parameters ra = 3, r = 3, na = 2, and d = 3.

to 64 Mb and set the initial allocation to that amount to avoid artifacts from other

memory allocation on the machine.

Results. The name-tree lookup performance results are shown in Figure 4-3. For

this name-tree and name-specifier structure, our performance went from a maximum

of about 900 lookups per second to a minimum of about 700 lookups per second.

Extrapolating from the trend in the graph, it appears that the name-tree should

be capable of sustaining over 100 lookups per second for name-trees of up to 75000

names. This experiment also give us a practical idea of the cost of set intersection

an union operations (the base case b from Section 3.5) affects the performance of the

lookup algorithm.
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Figure 4-3: Experimental name-tree lookup performance. This graph shows how the

name-tree lookup performance of an INR varies according to the number of names in

its name-tree.

The name-tree size results are shown in Figure 4-4. The amount of memory

allocated to the name-tree went from approximately 0.5 megabytes to 4 megabytes as

the number of names was increased. Based on these results, a name-tree with 75000

names would require approximately 16 megabytes of space.

We believe that this order-of-magnitude of lookup performance is adequate for

intra-domain deployment, because of the load balancing provided by having multiple

INRs, and the parallelism inherent in independent name lookups. In addition, the

memory consumption is low enough that it doesn't present a barrier to deployment.
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Figure 4-4: Experimental name-tree size. This graph shows how the name-tree size

varies according to the number of names in its name-tree.
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Chapter 5

Applications

In this chapter we discuss how applications use INS. In Section 5.1 we present the

Application Program Interface (API) for the INS library, and offer some advice on

its use. Next, we present some of the demonstration applications that we have im-

plemented to validate our design and get some experience in application design using

INS. Section 5.2 presents Floorplan, a graphical service discovery tool; Section 5.3

presents Camera, a mobile camera service; and Section 5.4 presents Printer, a printer

service.

5.1 Application Program Interface

In order to allow applications to easily handle intentional names we provide a library

that has abstractions for creating, understanding, and manipulating name-specifiers

and their components. It is expected that applications will insulate the user from the

structure of name-specifiers. In other words, a name-specifier should never explicitly

be presented as output or required as input from a user. Instead, the application

should present an interface that matches the intent of the name-specifier. For exam-

ple, it would be poor practice to have a user enter a name-specifier for a location.

Instead, the user should be able to use a map or hierarchical list to choose the loca-

tion they want to express. Similarly, the choice of resolution for a camera application

should be presented to the user as a list of options, rather than as an arbitrary text
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or numeric input.

The functions of the Application Program Interface (API) for the library are shown

in Figure 5-1; the complete API can be found in Appendix A. The design of the library

is object-oriented, and objects are the four main components of name-specifiers: the

name-specifier itself, the av-pair, the attribute, and the value.

All objects provide a constructor that creates an object from its wire representa-

tion, a copy constructor that creates an equal but different instance of the object, an

equality operator for testing whether two objects are the same, and an operator that

can produce a human readable representation of the object.

The name-specifier object provides methods for creating an empty name-specifier,

creating a name-specifier from its wire representation, and getting the av-pair that is

the root of the name-specifier. The equality and other common operators are omitted

from the name-specifier, since they can be performed by first getting the av-pair that

is the root of the name-specifier, and then performing the desired operation on the

av-pair.

The av-pair object provides the largest number of methods. It provides construc-

tor methods for creating an av-pair from an attribute and value, access methods

for retrieving its attribute and value, and methods for handling its child av-pairs

which allow adding a child, removing a child or all children, testing for the presence

of children, iterating through the children, and retrieving children with a particular

attribute.

The attribute object provides only the common operators, but the value object

also includes methods for creating wild card values and testing if a value is a wild

card.
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name-specifier:
name-specifier

name-specifier

name-specifier

av-pair

av-pair:
av-pair

av-pair

av-pair

attribute
value

void

void

void
boolean

av-pair

av-pair

boolean

string

attribute:
attribute
attribute
boolean

string

value:
value

value

value

boolean

boolean

string

createNamespecifierEmpty()
createNamespecifierFromString(string s)
createNamespecifierFromNamespecifier(name-specifier n)
namespecifierGetRoot(name-specifier n)

createAvpair(attribute a, value v)
createAvpairFromString(string s)
createAvpairFromAvpair (av-pair p)
avpairGetAttribute(av-pair p)
avpairGetValue(av-pair p)
avpairAddChild(av-pair p, av-pair child)
avpairRemoveChild(av-pair p, av-pair child)
avpairRemoveAllChildren(av-pair p)
avpairIsLeaf(av-pair p)
avpairGet Child (av-pair p, attribute a)
avpairGetNextChild (av-pair p, iteration-state j)
avpairsEqual(av-pair pl, av-pair p2)
avpairToString(av-pair p)

createAttributeFromString(string s)
createAttributeFromAttribute(attribute a)
attributesEqual(attribute al, attribute a2)
attributeToString(attribute a)

createValueFromString(string s)
createValueWildcard()
createValueFromValue (value v)
valuelsWildcard(value v)
valuesEqual(value vi, value v2)
valueToString(value v)

Figure 5-1: The functions of the name-specifier API.
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5.2 Floorplan: A Graphical Service Discovery Tool

In the process of building the mobile camera and printer services, we realized that we

needed an easy way to start up applications that access these services. The simplest

way would have been to have an application which just takes the name-specifier of the

camera or printer to contact on the command line, but this is problematic because

the camera or printer you wish to contact may not exist. A slightly more complex

way would be to use the discovery services of INS to present a list of the existing

name-specifiers to user, and have her pick one. However, this has the undesirable

quality that it exposes raw name-specifiers to the user, which may be difficult to

understand. Instead, we have constructed a graphical service discovery tool called

Floorplan which presents the intent conveyed by the name-specifiers to the users in

a way that makes intuitive sense.

Floorplan uses the location information contained in the name-specifiers to show

the user where the services it knows about are located, and uses the service infor-

mation in the name-specifiers to decide what icon to use for the service. Figure 5-2

shows a screenshot from Floorplan.

Location information is conveyed through the use of a location name space within

the name-specifier. Figure 5-3 shows the layout of the location name space. The top-

level location attribute that we have chosen to use is "organization." All applications

need to be aware of this top-level location attribute in order to find the location infor-

mation. The value of the organization attribute indicates the organization that the

location information is for. After this, all the attributes and values can be arbitrarily

chosen by each organization. For MIT, whose value is "mit," the next attribute is

"building" and is followed by "floor" and "room." Although MIT's part of the loca-

tion branch doesn't take advantage of the fact that attributes can vary based on the

value (all MIT locations contain building, floor and room attributes), the top part

of the location branch uses this to allow per-organization attributes. For example,

an organization that has only one building may want to start directly with a "floor"

attribute, or use "wing" or some other subdivision instead of "building."
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Figure 5-2: A screenshot from Floorplan. The circle by NE43 on the MIT map

indicates a service has been discovered at that location. Clicking on the circle brings

up a map of NE43, which has another circle on the 5th floor. Clicking on that brings
up a floorplan of the 5th floor. The floorplan shows the discovered services: three

printers in the lounge, one by room 537, and a camera in 503.

root

organization

(Organization name) mit

(Arbitrary building

per-org.

location (MIT building number)
name space)

floor

(first part of MIT room number)

room

(MIT room number)

Figure 5-3: The location name space. The top-level attribute is "organization." The

value of organization is the name of the organization, and the children of this value

form an arbitrary per-organization location branch. The right hand branch is an

example of such a branch for MIT.
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5.3 Camera: A Mobile Camera Service

Camera is an application that provides a mobile camera service. When a user of

Floorplan notices a camera icon in a particular location she can click on it to start

the Camera client, shown in Figure 5-4. Camera supports two methods of access.

The first way via a request-response protocol, the second is via a subscription style

protocol. In the request-response protocol the client just sends a request to the

server, which sends back the picture. In the subscription style protocol, the client

sends a request informs the INRs on the path towards the server that it is interested

in receiving pictures. The pictures which the server has been multicasting will then

be sent to the client as well. If the Camera server changes location, it just updates

the location information to indicate its new location. Camera clients can choose to

track either the camera (following it to different locations) or the location (regardless

of what camera happens to be there at the moment) by specifying one or the other

as a destination of requests or subscriptions.

U pdate

Subscribe U.n.. ib

Figure 5-4: A screenshot from Camera. The display shows the latest image that has

been received. "Update" will request an update of the picture from that location,
which will trigger a response from the camera. "Subscribe" and "Unsubscribe" are

used to start and stop sending subscription requests towards the camera; these re-

quests inform the INRs on the path that the application wishes to receive pictures,
and the multicast images the camera is sending out will be forwarded to it.

The Camera name space is shown in Figure 5-5. To convey location information,

Camera uses the location name space that was described in the previous section. For
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Camera-specific information, it uses the name space underneath the top-level av-pair

"'service is camera." (The printer application will use the name space underneath

"service is printer.") There are two pieces of Camera-specific information. The

"entity" attribute is used to identify the different participants in the Camera protocol.

When the Camera server advertises its service, it uses the value "transmitter." The

client can then send data towards this entity. When the client uses the request-

response protocol, the "receiver" value is used to identify the client; the response will

then be sent back to that particular receiver. When the client uses the subscription

style protocol, the "subscriber" value is advertised by the client to the INRs on the

path to the server. The multicast pictures that the server sends out this value will go

to the client, as well as any other multicast subscribes. The "id" attribute is a unique

ID associated with the particular entity. It is used by the Camera server to make

sure that responses go back to only a single receiver. If the Camera client wants to

track a camera as its location changes, it identifies the camera by its id but omits the

location name space; if the client just wants a camera at that location, it uses the

location name space but omits the camera id.

oot

service organization

mera (location name space)

ntity i
Tid

*subscriber Oreceiver *transmitter 0 (a unique ID associated with the entity)

Figure 5-5: The Camera name space. The area under the top-level av-pair "service

is camera" is where the Camera-specific information is. The "entity" attribute is

used to identify the different participants in the Camera protocol: the subscriber,
the receiver, and the transmitter. The "id" attribute is used to give entity a unique

identifier, even if it changes location. The location name space is used to express the

camera's location.
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5.4 Printer: A Printer Service

Printer is an application that provides a printer service. When a user of Floorplan

notices a printer icon in a particular location she can click on it to start the Printer

client, shown in Figure 5-6. The Printer client has several features. It can retrieve

a list of the jobs that are in the queue for the printer. It can remove a selected job

from the queue, if the user has permission to remove that job. It also allows the user

to submit files to the printer in two ways. The "submit job to name" will submit a

new job to the printer that the user has selected. The "submit job to location" will

submit a new job to any printer at the same location as the printer that the user has

selected. The Printer servers change the metric they advertise to the INRs based on

their queue length and error status, so the data will be sent to which ever printer is

currently the least loaded.

Printer Error: may need attention. (ot Responding for 90796 minutes)

Rank Owner Job File. Total Size

active robcheng 5 (standard input) 13535 byte.

1st wfang 6 /usr/tmp/figures.ps.Z3 48 4  
985 Job submitted t0 pastrami.

2nd liuba 0 nested.p., nested0 .p., nested1 .ps ... 121

3rd elliot 6 (standard input) 5 OK

update queue list Submit job to nastrami Submit job to room 537 Remove job

Figure 5-6: A screenshot from the printer application. The queue list displays the

jobs currently in the printer queue for the named printer. "Submit job to pastrami"

will submit a new job to the printer named pastrami, while "Submit job to room 537
will submit a new job to any printer whose location is room 537. The INRs will send
the job to the printer that is advertising the best metric at the time.

The Printer name space is shown in Figure 5-7. To convey location information,

Printer uses the location name space in the same way Camera does. For Printer-

specific information, it uses the name space underneath the top-level av-pair "service

is printer." As with Camera, there is an "entity" attribute which is used to identify

the different participants. However, since Printer only support a request-response

protocol, the only values for entity are "client" and "spooler." Rather than having an

id attribute, Printer has a "name" attribute, which is the name of the printer that

is used by the traditional print spooling system. When the client wishes to submit
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a job to a particular printer, it sends the data to a name-specifier that includes the

entity and name attributes. When the client wishes to submit a job to any printer at

that location, the name-specifier includes the entity attribute and the location name

space, but not the name attribute; this allows INS to forward the data to any printer

at that location. Since the printers choose their metric based on their operational

status, the job will be directed to the best one.

oat

service organization

rinter (location name space)

name

client spooler (the name of the printer)

Figure 5-7: The Printer name space. The area under the top-level av-pair "service is

printer is where the Printer-specific information is. The "entity" attribute is used to

identify the different participants in the Printer protocol: the spooler and the client.

The "name" attribute is the name of the printer.

5.5 Benefits of Intentional Names

Our experience with designing applications for INS has shown us that there are several

benefits of intentional names which were not obvious beforehand.

Floorplan demonstrated how intentional names enable resource discovery, by al-

lowing users to discover new services. Since the services have a very descriptive name,

the name can be used to determine and select the service best suits the a user's needs.

When designing Camera, we noticed that it would be useful to cache pictures at

various places in the network, so that requests don't have to go back to the original

server every time. To this end, we have designed an application-inspecific extension

to INS that allows INRs to cache data packets; this means that once a particular piece

of data has passed through an INR nearby applications can have their requests served

locally. Intentional names made this design fairly simple. With traditional naming

schemes each application provides its own opaque names for its data units. In con-
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trast, intentional names give applications a rich vocabulary with which to name their

data, yet keep the structure of these names understandable without any application-

specific knowledge. Thus, the intentional names can be used as a handle for a cached

object. Of course, it is still necessary to provide additional information to describe

if or how the object should be cached; INS provides additional fields in its packet

header that convey this information to the INRs.

Camera also demonstrated how intentional names can be used to support mobility

in a network. Both mobility of individual machines, as well as of users and services,

can be supported with intentional names. If a user wants to track a particular machine

as it moves across multiple subnets, she can use an intentional name that specifies

a unique and persistent identifier for the machine. More commonly, users are just

interested in particular services: as long as the user specifies her intent, the naming

system can map the intent to whichever machine happens to be providing the service

at the moment. Similarly, if a user moves from machine to machine, another user can

use intentional names to maintain a persistent relationship with her (for example, a

"talk" session) by referring to the her name rather than the name of the machine she

was originally using.

Intentional names made providing application-level group communication services

easy, since the names can be used to refer to either a single entity or many of them.

In Camera, the servers are periodically sending out new pictures to a name-specifier

that expresses the server's intent to send the picture to all "clients that wish to

receive a picture from this location." The INRs deliver the picture to all clients

who have informed the INR (by sending a subscription towards the server) that they

wish to receive the picture. In Printer, the clients have the option to submit a job

to any "printer at this location." The INRs submit the job to whichever printer

has advertised the best metric at the time-this ability to change metric of a name

enables load balancing among multiple destinations that provide the same service.

INS provides a field in its header which allows the applications to select whether data

is forwarded to any destination that matches a name-specifier (anycast semantics),

or to all destinations that match the name-specifier (multicast semantics).
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Chapter 6

Conclusions

As the Internet grows to include more services, it is increasingly necessary to be able

to identify these services in a more flexible way than giving their network location. To

this end, we have proposed the use of intentional names, which allow applications to

describe "what they want" rather than "where it is." We have designed, implemented,

and evaluated the Intentional Naming System (INS), a system that provides network

infrastructure to resolve these intentional names to their network locations.

In this thesis have presented the design of a key component of INS: the naming

scheme. We described the expressive syntax of its intentional names, and the data

structures and algorithms it uses to perform the name-to-location resolution. We

have analyzed these algorithms, described a prototype implementation, and presented

performance results that show the feasibility of our ideas.

Based on our experience in developing demonstration applications for use with

INS, we believe that the use of intentional names has significant benefits for the

development of distributed applications. By using INS, our applications have access

to network infrastructure that simplifies resource discovery, caching, mobility, and

load balancing. Furthermore, the use of intentional names simplifies the development

of the applications, making them easier and faster to develop than they would be with

a traditional network programming model. We believe that as the Intentional Naming

System evolves to include even greater flexibility and scalability, it will provide even

more significant advantages for the developers of Internet services.
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Appendix A

Name-Specifier API

name-specifier functions

createNamespecifierEmpty
name-specifier createNameSpecifierEmpty(

Creates an new, empty name-specifier. This is the default constructor.

Parameters: None.
Returns: The new, empty name-specifier.

createNamespecifierFromString
name-specifier createNamespecifierFromString(string s)

Creates a name-specifier from its wire representation.
Parameters: s - the wire representation.

Returns: The name-specifier that s represents.

createNamespecifierFromNamespecifier
name-specifier createNamespecifierFromNamespecifier(name-specifier n)

Creates a copy of a name-specifier. This is the copy constructor.
Parameters: n - the name-specifier to be copied.
Returns: A name-specifier that is a copy of n.

namespecifierGetRoot
av-pair namespecifierGetRoot(name-specifier n)

Returns the root av-pair of a name-specifier.
Parameters: n - the name-specifier to get the root of.

Returns: The av-pair that is the root of n.
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av-pair functions

createAvpair
av-pair createAvpair(attribute a, value v)

Creates an av-pair from an attribute and a value.
Parameters: a - the attribute of this av-pair.

v - the value of this av-pair.

Returns: A new av-pair with attribute a and value v.

createAvpairFromString
av-pair createAvpairFromString(string s)

Creates an av-pair from its wire representation.
Parameters: s - the wire representation.
Returns: The av-pair that s represents.

avpairGetAttribute
attribute avpairGetAttribute(av-pair p)

Gets the attribute of an av-pair.
Parameters: p - the av-pair to get the attribute of.
Returns: The attribute of p.

avpairGetValue
value

Gets the value
Parameters:
Returns:

avpairGetValue(av-pair p)
of an av-pair.

p - the av-pair to get the value of.

The value of p.

createAvpairFromAvpair
av-pair createAvpairFromAvpair(av-pair p)

Creates a copy of an av-pair. This is the copy constructor.
Parameters: p - the av-pair to be copied.
Returns: An av-pair that is a copy of p.

avpairAddChild
void

Adds an av-pair
Parameters:

Returns:

avpairRemoveChil
vo

avpairAddChild(av-pair p, av-pair child)
as a child of another av-pair.
p - the parent av-pair.
child - the av-pair to be added as a child.
Nothing.

I
id avpairRemoveChild(av-pair p, av-pair child)
Removes a child of an av-pair.
Parameters: p - the parent av-pair.

child - the child av-pair to removed.

Returns: Nothing.
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avpairRemoveAllChildren
void avpairRemoveAllChildren(av-pair p)

Removes all children of an av-pair.
Parameters: p - the av-pair to remove all children of.
Returns: Nothing.

avpairIsLeaf
boolean avpairIsLeaf(av-pair p)

Tests if an av-pair is a leaf (i.e. has no children).
Parameters: p - the av-pair to test.

Returns: true if p is a leaf, false otherwise.

avpairGetChild
av-pair avpairGetChild(av-pair p, attribute a)

Gets the av-pair child of an av-pair with a particular attribute.
Parameters: p - the av-pair to get a child av-pair of.

a - the attribute that the child av-pair should have.
Returns: The child av-pair with attribute a, or null if not found.

avpairGetNextChild
av-pair avpairGetNextChild(av-pair p, iteration-state j)

Gets the "next" av-pair child of an av-pair.
This provides an iteration abstraction.
Parameters: p - the av-pair to get the next child av-pair of.

j - the state of the iteration; determines what "next" is.
Returns: The next (according to j) av-pair child of p.

avpairsEqual
boolean avpairsEqual(av-pair p1, av-pair p2)

Tests the equality of two av-pairs.
Two av-pairs are equal if their attribute and value are equal,
and they have an identical set of child av-pairs.
Parameters: pl - one of the av-pairs.

p2 - the other av-pair.
Returns: true if p1 and p2 are equal, false otherwise.

avpairToString
string avpairToString(av-pair p)

Produces a human readable representation of an av-pair.
Parameters: p - the av-pair to produce a human readable representation of.

Returns: The string that is a human readable representation of p.

57



attribute functions

createAttributeFromString
attribute createAttributeFromString(string s)

Creates an attribute from its wire representation.
Parameters: s - the wire representation.
Returns: A new attribute that s represents.

createAttributeFromAttribute
attribute createAttributeFromAttribute (attribute a)

Creates a copy of an attribute. This is the copy constructor.
Parameters: a - the attribute to be copied.
Returns: An attribute that is a copy of a.

attributesEqual
boolean attributesEqual(attribute al, attribute a2)

Tests the equality of two attributes.
Parameters: al - one of the attributes.

a2 - the other attribute.

Returns: true if al and a2 are equal, false otherwise.

attributeToString
string attributeToString(attribute a)

Produces a human readable representation of an attribute.
Parameters: a - the attribute to produce a readable representation of.

Returns: The string that is a readable representation of a.
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value functions

createValueFromString
value createValueFromString(string s)

Creates a value from its wire representation.
Parameters: s - the wire representation.
Returns: A new value that s represents.

createValueWildcard
value cr

Creates a value th
Parameters: N
Returns: A

eateValueWildcard()
it is a wildcard.
one.
new value that is a wildcard.

createValueFromValue
value createValueFromValue(value v)

Creates a copy of a value. This is the copy constructor.
Parameters: v - the value to be copied.

Returns: A value that is a copy of v.

valueIsWildcard
boolean

Tests if a value
Parameters:
Returns:

valuelsWildcard(value v)
is a wildcard.
v - the value to test.
true if v is a wildcard, false otherwise.

valuesEqual
boolean valuesEqual(value vI, value v2)

Tests the equality of two values.
Parameters: vI - one of the values.

v2 - the other value.
Returns: true if vi and v2 are equal, false otherwise.

valueToString
string valueToString(value v)

Produces a human readable representation of a value.
Parameters: v - the value to produce a human readable representation of.

Returns: The string that is a human readable representation of v.
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Appendix B

Source Code

NameSpecifier

import java.util.Vector;
import java.util.Enumeration;
import java.util.StringTokenizer;

* Implements a NameSpecifier.
*7

public class NameSpecifier extends AVPair

{
/7 VARIABLES 10

// all inherited from AVPair
7/ a and v are not used

* Creates a new, empty NameSpecifier. This is the default constructor.
*/

public NameSpecifier()

{
super(; 20

}

* Creates a NameSpecifier that is a copy of ns.

* @param ns the NameSpecifier to be copied.
*/

public NameSpecifier(NameSpecifier ns)

{
super(;

30
for (Enumeration e = ns.getAVPairs(; e.hasMoreElementso; ) {

addAVPair(new AVPair((AVPair)e.nextElement());
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}
}

* Creates a NameSpecifier.
* @param s the String to create the NameSpecifier from
* @exception CantParseString the String given was bad

40

public NameSpecifier(String s)
throws CantParseString

{
supero;

StringTokenizer st;
int level; 7/ bracket nesting level
String next; 77 the next token
String child; 7/ the current AVPair string

50
st = new StringTokenizer(s, "[]", true);

while (st.hasMoreTokenso) {

// The child starts when we reach a "[" (and includes it).
child = "";
while (st.hasMoreTokenso) {

child = st.nextTokeno;

if (child.equals("[")) 60
break;

}

7/ We're inside the child, so we 're at level 1.
level = 1;

while (st.hasMoreTokenso) {
// Append the token to the child.
next = st.nextTokeno;
child = child + next; 70

77 Keep track of brackets to figure out when the child
/7 has ended. "[" indicates another level of nesting
77 within the child; "]" indicates a level of nesting has
77 finished. When we go back down to level 0, this child
// is done.
if (next.equals(" [")) {

level++;
} else if (next.equals("]")) {

level--; 80

if (level == 0)
break;

}

7/ Create the AVPair from the child string
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// and add it to our list.
AVPair c = new AVPair(child);
addAVPair(c);

} 90

}

}

AVPair

import java.util.Vector;
import java.util.Enumeration;
import java.util.StringTokenizer;

* Represents an Attribute- Value tree node in a NameSpecifier.
*7

public class AVPair
{

77 VARIABLES 10

private Attribute a;
private Value v;
private Vector children; // Vector of AVPair

// (children of this AVPair)

/7 CONSTRUCTORS

* Creates an AVPair. Used by NameSpecifier. 20
*/

protected AVPair()

{
children = new Vectoro;

}

* Creates an AVPair from an Attribute and a Value.
* @param a the Attribute in the AVPair.
* @param v the Value in the AVPair. 30
*/

public AVPair(Attribute a, Value v)

{
this.a = a;
this.v = v;

children = new Vectoro;
}

40

* Creates an AVPair from its wire representation..
* @param s the String to create the AVPair from.
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* @exception CantParseString the String given was bad.

public AVPair(String s)
throws CantParseString

{
StringTokenizer st;
int level; 77 bracket nesting level

String next; 77 the next token 50

String child; /7 the currnet AVPair string

children = new Vector(;

st = new StringTokenizer(s, "[= ", true);

// We discard stuff until we get to the first "
while (st.hasMoreTokens() {

next = st.nextToken(;
60

if (next.equals(" ["))
break;

}

/7 The next token is the Attribute

if (! st.hasMoreTokens() {
throw new CantParseString("Expected an Attribute, " +

"but ran out of tokens in " + s);

} 70

next = st.nextTokeno;

if (next.equals(" [") || next.equals("=") next.equals("]")) {
throw new CantParseString("Expected an Attribute, not a " +

next + " in " + s);

}

a = new Attribute(next);
80

/7 The next token is the

if (! st.hasMoreTokenso) {
throw new CantParseString("Expected an , " +

"but ran out of tokens in " + s);

}

next = st.nextTokeno;

if (! next.equals("=")) { 90

throw new CantParseString("Expected an =, not a " +

next + " in " + s);

I

// The next token is the Value
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if (! st.hasMoreTokens() {
throw new CantParseString("Expected a Value, " +

"but ran out of tokens in " + s);

} 100

next = st.nextTokeno;

if (next.equals(" [") | next.equals("=") | next.equals("]")) {
throw new CantParseString("Expected a Value, not a " +

next + " in " + s);

}

v = new Value(next);
110

7/ Now we deal with the children of this AVPair.

/7 We start off at bracket level 1, add one every time we see a

7/ and subtract one every time we see a "].

/7 If we get back to 1, we've finished a child.

/7 If we get back to 0, we've finished this A VPair.

level = 1;
child = "";
while (st.hasMoreTokenso) {

// Append the token to the child. 120

next = st.nextTokeno;
child = child + next;

if (next.equals("[")) {
level++;

} else if (next.equals("]")) {
level--;
if (level == 1) {

7/ Done the child. Create it, add it, and clear the string.
130

AVPair c = new AVPair(child);
children.addElement((Object)c);
child = "";

} else if (level == 0) {
// Done the whole AVPair.

break;

}
}

} 140

* Creates an AVPair that is a copy of ave.

* param ave the AVPair to copy.
*7

public AVPair(AVPair ave)

{
a = new Attribute(ave.a);
v = new Value(ave.v); 150
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children = new Vectoro;

for (Enumeration e = ave.children.elements(); e.hasMoreElementso; ) {
children.addElement(new AVPair((AVPair)e.nextElement());

}

}

77 METHODS

* Add AVPair c as a child of this AVPair.
* @param c the AVPair to be added as a child
*7

public void addAVPair(AVPair c)

{
children.addElement(c);

}

* Remove AVPair c as a child of this AVPair.
* @param c the AVPair to be removed as a child
*/

public void removeAVPair(AVPair c)

{
children.removeElement (c);

}

/**
* Remove all AVPairs (children)
*7

public void removeAllAVPairso
{

children.removeAllElements();
}

* Checks if an AVPair is a leaf
* Greturn true if this AVPair is
*7

public boolean isLeaf()

{
return(children.isEmpty());

I

/ **
* Gets the Attribute of this AVPair.
* Greturn the Attribute of this AV~air.

*/7
public Attribute getAttribute()
{

return(a);

I
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of this AVPair.

(i.e. has no children).
a leaf node, false otherwise. 190
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/ **
* Gets the Value of this AVPair.
* @return the Value of this AVPair.
*7

public Value getValue() 210

{
return(v);

}

* Returns an Enumeration of the AVPair children of this AVPair.
*7

public Enumeration getAVPairs()
{

return(children.elements0)); 220
}

* Gets the AVPair child of this AVPair with a particular Attribute.
* @param a the Attribute of the child AVPair to be returned.
* #return the child AVPair with Attribute a, or null if not found.

*/
public AVPair getAVPair(Attribute a)
{

230

for (Enumeration e = children.elements(; e.hasMoreElements(; ) {
AVPair c = (AVPair)e.nextElement(;

if (c.a.equals(a)) {
return(c);

}
}
return(null);

} 240

* Tests two AVPairs for equality.
* param obj the object to test equality with.
* #return true if they are equal, false otherwise.
*/

public boolean equals(Object obj)

{
if (!(obj instanceof AVPair)) return false;
AVPair ave = (AVPair)obj; 250

7/ First part of test is because the could both be null,
7/ as they are in a NameSpecifier

if (! (a == null && ave.a == null)) {
if (a == null I I ave.a == null) {

return(false);

}
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if (! a.equals(ave.a)) { 260

return(false);

}
}
if (! (v == null && ave.v null)) {

if (v == null | ave.v == null) {
return(false);

}

if (! v.equals(ave.v)) { 270

return(false);

}
}
for (Enumeration e = children.elements(); e.hasMoreElements(; ) {

AVPair cl = (AVPair)e.nextElement(;

7/ Not particularly efficient - may want to optimize for the

7/ common case that both AVPairs have their children in

/7 the same order. 280

AVPair c2 = ave.getAVPair(cl.a);

if (c2 == null I ! cl.equals(c2)) {
return(false);

}
}

return(true);

}
290

*Returns a String representation of the AVPair.
* @return a String representation of the AVPair.

*/
public String toString(

{
String output =

if (a != null && v != null)
output = output + "[" + a + "=" + v; 300

for (Enumeration e = children.elements(); e.hasMoreElementso; ) {
output = output + (AVPair)e.nextElemento;

}

if (a != null && v != null)
output = output + "]";

return(output);
310

}
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Attribute

* Represents an Attribute.
*7

public class Attribute

// VARIABLES

private String attribute;

7/ CONSTRUCTORS 10

* Creates an Attribute from string s.
* @param s the wire representation of the Attribute.
*7

public Attribute(String s)

attribute = s.trimO;
}

20

* Creates an Attribute that's a copy of a.
* @param a the Attribute to be copied.
*/

public Attribute(Attribute a)

{
attribute = a.attribute;

}

/7 METHODS 30

* Returns a String representation of the Attribute.
* #return a human readable String that represents this Attribute.
*/

public String toStringo

return (attribute);
}

40

* Tests if an Attribute is equal to this Attribute.
* @param a the Attribute to be tested.
* #return true if a equals this Attribute, false otherwise.
*/

public boolean equals(Attribute a)

I return (attribute.equalslgnoreCase (a. attribute));
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50

* Tests if two Attributes are equal.
* @param al one of the Attributes.
* @param a2 the other Attribute.
* @return true if al and a2 are equal, false otherwise.
*/

public static boolean equal(Attribute al, Attribute a2)

{
return(al.equals(a2));

} 60

}

Value

* Represents a Value.
*7

public class Value
{

77 VARIABLES

private String value;
private boolean wildcard;

10

77 Representation Invariant:
7/ wildcard true -> String null
77 wildcard != true -> String != null

77 CONSTRUCTORS

* Creates a Valuer from string s.
* @param s the wire representation of the Value.
*7 20

public Value(String s)
{

/7 Remove any extra spaces around the string,
/7 since they're not part of the value.
value = s.trim(;

if (value.equals("*")) {
// wildcard
value = null;
wildcard true; 30

} else {
wildcard false;

}
}
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* Creates a Value that's a wildcard.
*/

public Value()

{ 40

value = null;
wildcard = true;

}

* Creates a Value that's a copy of v.
* @param v the Value to be copied.
*7

public Value(Value v)

{ 50
value = v.value;
wildcard = v.wildcard;

I

7/ METHODS

* Returns a String representation of the Value.
* @return a human readable String that represents this Value.
*/ 60

public String toString(

{
if (wildcard)

return("*");
else

return(value);
}

* Tests if a Value is equal to this Value. 70

* @param v the Value to be tested.
* #return true if v equals this Value, false otherwise.
*7

public boolean equals(Value v)
{

7/ Values are case-insensitive.
if (wildcard I I v.wildcard)

return(true);

return(value.equalslgnoreCase (v.value)); 80

}

* Tests if two Values are equal.
* @param v1 one of the Values.
* @param v2 the other Value.
* return true if vi and v2 are equal, false otherwise.
*7

public static boolean equal(Value v1, Value v2)

{ 90
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return(v 1.equals(v2));

}

* Tests if a Value is a wildcard.
* return true if the Value is a wildcard, false otherwise.

public boolean isWildcard(

f
return(wildcard); 100

}

}

NameTree

import java.util.Vector;
import java.util.Enumeration;

* This class implements a tree that stores routing information.
*7

public class NameTree extends ValueNode

77 VARIABLES
10

77 v is not used.

private Vector nameRecords; // Vector of NameRecord

/7 (contains all NameRecord objects)
/7 used to do an iteration over all of the nameRecords
/7 but whoops, it looked like I deleted the storage of backpointer
77 information in the NameRecord because I forgot why I put it in <sigh>

77 CONSTRUCTORS
20

* Creates an empty NameTree.
*7

public NameTreeo

super(null);
nameRecords = new Vector(;

}

77 METHODS 30

* Lookup NameSpecifier s in the NameTree, and return its NameRecordSet.
*7

public synchronized NameRecord[] lookup(NameSpecifier s)

f
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NameRecordSet rs = super.lookup((AVPair)s);

return(rs.toArray());
} 40

* Adds NameRecord r for NameSpecifier s to this NameTree.
* Overrides addNameRecord in ValueNode.

public synchronized void addNameRecord(NameSpecifier s, NameRecord r)

{
77 Add r to the list of all Route Entries.
nameRecords.addElement(r);

50

77 Now recursively add the Route Entry to the tree.
super.addNameRecord((AVPair)s, r);

}

* Extracts and returns the NameSpecifier associated with the NameRecord r.
*/

public synchronized NameSpecifier getName(NameRecord r)

{
NameSpecifier n = new NameSpecifiero; 60
Vector touched = new Vector(; // Vector of ValueNode

7/ Precondition: all PTR's in the NameTree are null

7/ Set the root to the new NameSpecifier,
77 and add it to the touched list
PTR = n;
touched.addElement((ValueNode)this);

// For each parent of the NameRecord 70
for (Enumeration e = r.getParents(; e.hasMoreElements(; ) {

ValueNode v = (ValueNode)e.nextElement();

// Trace its way up to an AVE we've filled in already.
v.trace ((AVPair)null, touched);

}

// Clear all the pointers we've touched
for (Enumeration e = touched.elements(); e.hasMoreElements(; ) {

ValueNode v = (ValueNode)e.nextElement(); 80

v.PTR = null;

}

return(n);
}

* Returns an Enumeration of the nameRecords in this NameTree.
*/ 90
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public synchronized Enumeration getnameRecords()

{
return(nameRecords.elements());

}

* Returns an String that is a printed version of the nameRecords.

public synchronized String nameRecordsToString(
{ 100

String output

for (Enumeration e = nameRecords.elements(); e.hasMoreElements(; ) {
NameRecord re (NameRecord)e.nextElement();
NameSpecifier ns = getName(re);
output = output +

"For NameRecord:\n " + re + "\n" +
"The NameSpecifier is:\n " + ns + "\n";

}
110

return(output);
}

* Return a String representation of this NameTree that is pretty.
* Overrides toPrettyString in ValueNode.
*/

public synchronized String toPrettyString(

{
String output ""; 120

output = output + super.toPrettyString(0);

return(output);

}

* Returns a String representation of this NameTree.
* Overrides toString in ValueNode.
*/ 130

public synchronized String toString()

{
String output = "";

output = output + super.toString(;

return(output);

}

} 140
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AttributeNode

import java.util.Vector;
import java.util.Enumeration;

* Represents a AttributeNode in a NameTree.

*7
class AttributeNode

/7 VARIABLES

Attribute a;
private Vector children; 77 Vector of ValueNode

/7 (contains possible values)

private ValueNode parent;

/7 CONSTRUCTORS

* Creates a AttributeNode with a as its Attribute.
*7

AttributeNode(Attribute a)

I
this.a = a;
children = new Vector();
parent = null;

}

7/ METHODS

* Sets the parent of this AttributeNode to be the ValueNode v.
*/

void setParent(ValueNode v)

{
parent = v;

}

* Returns the parent of this AttributeNode.
*7

ValueNode getParent(

return(parent);

* Add ValueNode v as a child of this AttributeNode.
*7

void addValueNode(ValueNode v)

v.setParent(this);
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children.addElement((Object)v);

}

/ **
* Return a String representation of this sub-Name Tree that is pretty,
* and is indented to indentLevel.
*/

String toPrettyString(int indentLevel)
{ 60

String output
ValueNode v;

for (int i = 0; i < indentLevel; i++)
output = output + " ";

output = output + a + "\n";

for (Enumeration e = children.elements(); e.hasMoreElements(; ) {
v = (ValueNode)e.nextElement();
output = output + v.toPrettyString(indentLevel+1); 70

}

return(output);
}

/ **
* Returns a String representation of the AttributeNode.

public String toString()
{ 80

String output;
ValueNode v;

output = "(" + a;

for (Enumeration e = children.elements(); e.hasMoreElements(; ) {
v = (ValueNode)e.nextElemento;
output = output + + v.toStringo;

}
90

output = output + ")";

return(output);
}

/ **
* Returns the ValueNode with Value = vi, or throws an exception
* if not found.
*/

ValueNode findValueNode(Value v1) 100
throws ElementNotFound

{
for (Enumeration e = children.elements(); e.hasMoreElements(;) {

ValueNode ve = (ValueNode)e.nextElemento;
Value v2 = ve.v;
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I

if (vl.equals(v2)) {
return(ve);

I
110

throw(new ElementNotFoundo);

}

* Returns an Enumeration of the ValueNodes.
*7

Enumeration getValueNodes()

{
return(children.elements());

I
120

}

ValueNode

import java.util.Vector;
import java.util.Enumeration;

* Represents a Value element in a Name Tree.
*7

class ValueNode

{
/7 VARIABLES

10

Value v;
private Vector children;

private AttributeNode parent
private NameRecordSet route

AVPair PTR;

/7 CONSTRUCTORS

// Vector of AttributeNode
// (contains orthogonal values)

/7 Temporary data storage

77 used by an invocation of

77 NameRecord. trace()
7/ Access to this field in the

/7 entire route tree should be

77 serialized.

77
/7 Only not "private" because NameTree

/7 needs to access it.

20

30* Creates a new ValueNode.
* @param v the Value of the ValueNode
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*/
ValueNode(Value v)

{
this.v = v;
children = new VectorO;
parent = null;
routeSet = new NameRecordSet(;
PTR = null;

} 40

/7 METHODS

* Sets the parent of this ValueNode.
* @param a the AttributeNode to set the parent to
*7

void setParent(AttributeNode a)

{
parent = a; 50

}

* Add a child AttributeNode to this ValueNode.
* @param a the AttributeNode to be added
*/

void addAttributeNode(AttributeNode a)

{
a.setParent(this);
children.addElement((Object)a); 60

}

* Adds a NameRecord to the NameRecordSet of this ValueNode.
* @param r the NameRecord to be added
*/

private void addNameRecordHere(NameRecord r)

{
r.addParent(this);
routeSet.addNameRecord(r); 70

}

7/**
* Remove a NameRecord from the NameRecordSet of this ValueNode.
* @param r the NameRecord to be removed
*/

void removeNameRecordHere(NameRecord r)

{
routeSet.removeNameRecord(r);

} 80

7/**
* Returns true if this ValueNode is a leaf node.

*/
boolean isLeaf()
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{
return(children.isEmpty());

}

90

* Looks up (part of) a NameSpecifier.
* @param n the part of the NameSpecifier (AVPair) to be looked up
*7

NameRecordSet lookup(AVPair n)

{
// This code is the same as the code in NameTree.java

NameRecordSet S; // S is the NameRecordSet we're eventually going to return.

// Start with S = the set of all possible route entries 100
S = new NameRecordSet(;
S.addAllRouteEntries(;

// for each attribute-value pair p = (nanv) in n
for (Enumeration el = n.getAVPairs(; el.hasMoreElementso; ) {

AVPair p = (AVPair)el.nextElement(;
Attribute na p.getAttribute();
Value nv p.getValue(;

// Ta = the child of T (this) such that name(Ta) = name(na) 110
AttributeNode Ta;
try {

Ta = findAttributeNode(na);
} catch (ElementNotFound ex) {

continue;
}

ValueNode Tv;
// if nv == *
if (nv.isWildcardo) { 120

// Wildcard matching.

NameRecordSet Sprime = new NameRecordSet(;

for (Enumeration e2 = Ta.getValueNodes(;
e2.hasMoreElements(;

) {
Tv = (ValueNode)e2.nextElement(;
Sprime.unionWith(Tv.routeSet);

} 130

S.intersectWith(Sprime);
} else {

// Normal matching.

try {
Tv = Ta.findValueNode(nv);

} catch (ElementNotFound ex) {
return(new NameRecordSet());
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} 140

if (Tv.isLeaf() I I p.isLeaf ()) {
S.intersectWith (Tv.routeSet);

} else {
S.intersectWith(Tv.lookup(p));

}
}

}

S.unionWith(routeSet); 150

return(S);

}

* Recursively add a NameRecord to this substree of the NameTree.
* @param r the NameRecord to add
* @param n the part of the NameSpecifier to work on from here (this)
*/

void addNameRecord(AVPair n, NameRecord r) 160

{

/7 Figure out where to put it in the tree.
for (Enumeration e = n.getAVPairs(; e.hasMoreElements(; ) {

AVPair p = (AVPair)e.nextElement(;
Attribute na = p.getAttribute(;
Value nv = p.getValue(;

AttributeNode Ta;
try { 170

Ta = findAttributeNode(na);
} catch (ElementNotFound ex) {

// Didn't find the AttributeNode; create it.

Ta = new AttributeNode(na);
addAttributeNode(Ta);

}

ValueNode Tv;
try { 180

Tv = Ta.findValueNode(nv);
} catch (ElementNotFound ex) {

// Didn't find the ValueNode; create it.

Tv = new ValueNode(nv);
Ta.addValueNode(Tv);

}

// If this is the bottom of this part of the name specifier,
/7 add the route. Otherwise, to a recursive call (sort of). 190
if (p.isLeaf() {

Tv.addNameRecordHere(r);
} else {
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Tv.addNameRecord(p,r);

}

}
}

200

* Finds an AttributeNode with a particular Attribute.
* @param al the Attribute that is being looked for
* @return the AttributeNode that matches
* #exception ElementNotFound
* No AttributeNode with that Attribute was found.
*7

private AttributeNode findAttributeNode(Attribute al)
throws ElementNotFound

{
for (Enumeration e = children.elementso; e.hasMoreElementso;) { 210

AttributeNode ae = (AttributeNode)e.nextElement();
Attribute a2 = ae.a;

if (al.equals(a2)) {
return(ae);

}
}
throw(new ElementNotFound());

} 220

* Fills in the current PTR entry, if necessary, and then recursively
* calls itself on its parent.
*/

void trace(AVPair s, Vector touched)

{
if (PTR != null) {

/7 This has already been done, just add the subtree s on.
230

if (s != null)
PTR.addAVPair(s); // graft

} else {
77 This hasn't been done yet.

7/ Create new AVPair, and mark the PTR as touched.
PTR = new AVPair(parent.a, v);
touched. addElement (this);

240

77 Add the subtree on.
if (s != null)

PTR.addAVPair(s); // graft

77 Now try to create the parent, with the AVPair we
7/ just created as the subtree.
parent.getParent ().trace(PTR, touched);
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}
}

250

* Return a String representation of this sub-NameTree that is pretty,
* and is indented to indentLevel.
*7

public String toPrettyString(int indentLevel)

{
String output = "";
AttributeNode a;

for (int i = 0; i < indentLevel; i++) 260
output output +

output = output + v;

String rs = routeSet.toString();
int spaces = 79 - output.length() - rs.length(;

for (int i = 0; i < spaces; i++)
output = output + " ";

output = output + rs + "\n";
270

for (Enumeration e = children.elements(); e.hasMoreElementso; ) {
a = (AttributeNode)e.nextElement(;
output = output + a.toPrettyString(indentLevel+1);

I

return(output);

}

* Returns a String representation of the ValueNode. 280
*/

public String toString()

{
String output;
AttributeNode a;

output = "(" + v;

for (Enumeration e = children.elements(); e.hasMoreElementso; ) {
a = (AttributeNode)e.nextElement(; 290
output = output + + a.toString(;

I

output = output + ")";

return(output);

}

}
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NameRecordSet

import java.util.Vector;
import java.util.Enumeration;
import java.lang.ArrayIndexOutOfBoundsException;

* This class represents a set of NameRecord objects.
*/

public class NameRecordSet

{
/7 VARIABLES

// if true, NameRecordSet contains all NameRecord objs
private boolean alINameRecords;

private Vector nameRecords; 77 Vector contains type NameRecord

// Representation Invariant:
7/ if (allNameRecords == true) nameRecords.isEmpty() = true;
7/ nameRecords is sorted in ascending order of NameRecord.id

77 CONSTRUCTORS

* Creates an empty NameRecordSet.
*7

NameRecordSet()

{
allNameRecords = false;
nameRecords = new Vectoro;

}

/7 METHODS

* Adds all the NameRecord objects to the NameRecordSet.
*7

void addallNameRecords()

{
allNameRecords = true;
nameRecords.removeAllElements();

}

* Adds the NameRecord r to the NameRecordSet.
*7

void addNameRecord(NameRecord r)

{
77 If we're storing allNameRecords, it's already in here.
if (allNameRecords) {

return;

I
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// If nameRecords is empty, we can just add it.
if (nameRecords.isEmptyO) {

nameRecords.addElement(r);
return;

I

// We've got at least one entry.
for (int i=O; i < nameRecords.size(); i++) { 60

NameRecord r2 = (NameRecord)nameRecords.elementAt(i);

// It's already in there.
if (r2.id == r.id) {

return;

I

// This is the spot.
if (r2.id > r.id) {

nameRecords.insertElementAt(r, i); 70

return;

}
}
/7 We didn't find a spot for it, so we insert it at the end.
nameRecords.addElement (r);

}

* Removes the NameRecord r from the NameRecordSet. 80

*/
void removeNameRecord(NameRecord r)

{
/7 Can't really remove a single route from allNameRecords.
if (allNameRecords) {

return;

I

nameRecords.removeElement(r);
} 90

* Intersects the NameRecordSet with NameRecordSet s.
* (r = r intersect s)
*7

void intersectWith(NameRecordSet s)

{
int i, j; 77 index in this, s
NameRecord m, n; // NameRecord at i, j

100

7/ If s contains allNameRecords, intersection with it is same.
if (s.allNameRecords) {

return;

I
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// If this contains aliNameRecords, copy routes from s.

if (alINameRecords) {
alINameRecords = false;
for (j=0; j < s.nameRecords.size(); j++) {

nameRecords.addElement(s.nameRecords.elementAt(j)); 110

}

return;

}

7/ Neither contains allNameRecords; see which ones in this are in s.

// Start with the first element of each Vector.
i 0;
j =0; 120
try {

m = (NameRecord)nameRecords.elementAt(i);
n (NameRecord)s.nameRecords.elementAt(j);

7/ We'll eventually break out of this infinite loop with an
7/ exception, when we get to the end of one of the Vectors,
/7 since each option of the if statement makes progress towards
/7 the end.
while (true) {

if (n.id == m.id) { 130

7/ The id is the same; we keep the element and move on
/7 in both Vectors.

i++;
M = (NameRecord)nameRecords.elementAt(i);
j++;
n = (NameRecord) s.nameRecords. element At (j);

} else if (n.id < m.id) {
/7 j is behind; help it catch up by increasing it.

140

j++;
n = (NameRecord)s.nameRecords.elementAt(j);

} else { // (n.id > m.id)
7/ i is behind; help it catch up by removing the
7/ current element, which slides everything else back.

nameRecords.removeElementAt(i);
m = (NameRecord)nameRecords.elementAt(i);

}
} 150

} catch (ArraylndexOutOfBoundsException e) {
7/ If we've come to the end of i, then we can stop.

/7 If we 've come to the end of j, we delete everything else in i,
/7 and then we can stop.

if (j == s.nameRecords.size())
nameRecords.setSize(i);

// falls through to return
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} 160

}

* Unions the NameRecordSet with NameRecordSet s.

* (r = r union s)

void unionWith(NameRecordSet s)

{
int i; / index in this
NameRecord m; 77 NameRecord in this at i 170

NameRecord n = null; 77 Route entry in s; null to placate compiler

// If this contains allNameRecords, it still does.

if (allNameRecords)
return;

7/ If s contains allNameRecords, now this does too.

if (s.allNameRecords) {
allNameRecords = true;
nameRecords.removeAllElements(; 180

return;

I

// Neither contains allNameRecords; add ones from s to this.

Enumeration e = s.getnameRecordso;
try {

/7 If this ends before s, we'll get an exception and then we can

/7 add everything from s onto the end of this.
190

/7 Start with the first element of this

i = 0;

// Add the elements of s to the right spot in this

while (e.hasMoreElements() {
n = (NameRecord)e.nextElement();

// Try to fetch the NameRecord for this
m = (NameRecord)nameRecords.elementAt(i);

200

/7 Keep on going through nameRecords until at the right spot

while (m.id <= n.id) {
i++;
m = (NameRecord)nameRecords.elementAt(i);

}

7/ Stick it here, and advance i to the element it was at before

/7 the insert.
nameRecords.insertElementAt (n,i);

i++; 210

} catch (ArraylndexOutOfBoundsException ex) {
// We've come to the end of this, add everything from s.

85



nameRecords.addElement(n);
while (e.hasMoreElements() {

n = (NameRecord)e.nextElement();
nameRecords.addElement(n);

}
220

}
}

* Return true if the NameRecordSet is empty.
*7

public boolean isEmpty()
{

return((! alINameRecords) && nameRecords.isEmptyo);
} 230

* Return an Enumeration over the NameRecord objects in the set.
*/

public Enumeration getnameRecordso

{
return nameRecords.elements(;

I

public NameRecord[] toArray( 240

{
NameRecord[] a = new NameRecord[nameRecords.size()];

nameRecords.copylnto(a);

return(a);

}

* Returns a String representation of this NameRecordSet. 250
*/

public String toStringo

{
String output;

if (allNameRecords) {
return("{ *

I

output = "{"; 260

for (Enumeration e = nameRecords.elements(; e.hasMoreElements(; ) {
output = output + ((NameRecord)e.nextElemento).id;
if (e.hasMoreElements() {

output = output + ",

}
}
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output = output + "}";
270

return(output);

}

}

NameRecord

import java.util.Vector;
import java.util.Enumeration;

* This represents a NameRecord in the NameTree.

public class NameRecord

{

/7 VARIABLES 10

/7 the id to be assigned to the next NameRecord
private static int next-id = 0;

final int id; // the id of this NameRecord

private Vector parents; // Vector of ValueNode

// (contains parents in the routing tree)
7/ used for determining the NameSpecifier
/7 of a NameRecord 20

777777777777777777777777777777777777777777777777777777
77 Non-NameTree related instance variables omitted. /
777777777777777777777777777777777777777777777777777777

/7 CONSTRUCTORS

* Creates a new NameRecord.
*7 30

public NameRecord(...)

{
// Access to next-id needs to be serialized
id = next-id++;

parents = new Vectoro;

}

7/ METHODS
40

* Adds ValueNode p as a parent of this NameRecord.
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*7
void addParent(ValueNode p)

I
parents.addElement(p);

}

* Returns an Enumeration over the parents of this NameRecord. 50

*7
Enumeration getParentso
I

return(parents.elements());

* Returns a String representation of the NameRecord.

*7
public String toString( 60

String output = "[" + id + "]";

return(output);

}

/7 Non-NameTree related methods omitted. /7

70

}

Test NameTreePerformance

import java.lang.Math;
import java.lang.Runtime;

* This program tests the performance of routing.

* @see NameTree
* @see NameSpecifier
* @author Elliot Schwartz <elliotOmit.edu>
*7

public class TestNameTreePerformance 10

* Test routing performance.
*/

public static void main(String[] args)

I
Parameter[] p = new Parameter[6];

// low high inc def 20
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p[O] new Parameter( "d", 0, 4, 0, 3);
p[l] = new Parameter("ra", 2, 10, 0, 3);
p[2] new Parameter("rv", 1, 10, 0, 3);
p[3] new Parameter("na", 1, 3, 0, 2);

p[4] = new Parameter( "n", 100, 15000, 100, 50);

p[5] = new Parameter( "1", 1000, 1000, 0, 1000); // No inc of 1.

runPerfTests(p);

}
30

* Runs many performance tests.

private static void runPerfTests(Parameter[] p)

{
boolean repeat-param;

// Repeat the first run of this parameter to avoid caching problems.

repeat-param = false;
40

/7 For each parameter
for (int i=0; i<6; i++) {

// Skip over this parameter if there's no increment.

if (p[i].i == 0)
continue;

7/ Set all parameters to the default

System.out.print("# Constants:");
int[] params = new int[6]; 50

for (int j=0; j<6; j++) {
params[j] = p[j].d;
if (j != i) {

System.out.print(" " + p[j].n + "=" + p[j].d);

}
}
System.out.println(" \n" + "# Variables: "+p[i].n+" ips");

// Range through the chosen parameter

for (int k=p[i].l; k<=p[i].h; k+=p[i].i) { 60

params[i] = k;
int range-repeat = 1;
for (int rr=0; rr < range-repeat; rr++) {

Result result
- perfTest(params[0], // d

params[1], 7/ ra
params[2], /7 rv

params[3], /7 na

params[4], 77 n

params[5]); 77 1 70

System.gco;

System.out.println(k + " " +
(float)params[5]*1000.0/
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(float)result.time + +
result.memory);

}
}

System.out.print("\nNEXT SET\n\n"); 80

// Repeat if first run of this parameter.

if (repeat-param) {
i--;
repeat-param = false;

}
}

}
90

* Runs the performance test.

* @param d the depth of the NameTree

* @param ra the number of possible different attributes in the NameTree

* @param rv the number of possible different values in the NameTree

* param na the number of attributes for each Route/NameSpecifier

* Lparam n the number of routes in the NameTree

* @param I the number of lookups to do

* #return the Result of the test
*/

private static Result perfTest(int d, int ra, int rv, int na, int n, int 1) 100

{
NameTree rt; 77 Name Tree to run tests on.

NameSpecifier[] ns; /7 The NameSpecifiers that are in rt.

NameRecord[] re; // The RouteEntries that are in rt.

int[ ] rand; /7 Random numbers.

long time; 77 For computing the elapsed time.

// Preliminary sanity checks.

if (na > ra) { 110

System.out.println("na must be <= ra!");
return new Result(;

}

/7 Create the new NameTree.
rt = new NameTree(;

77 Add RouteEntries with random NameSpecifiers to it. Keep a list of

/7 the NameSpecifiers and Route Entries.

ns = new NameSpecifier[n]; 120

re = new NameRecord[n];

77 NameTree creation.

77 time = System.currentTimeMillis();

for (int i=O; i<n; i++) {

NameSpecifier s = createNameSpecifier(d, ra, rv, na);

90



ns[i] = s;
130

NameRecord r = new NameRecord(...

re[i] = r;

rt.addNameRecord(s, r);

}

// NameTree lookups.

7/ Pregenerate random numbers

rand = new int[l]; 140

for (int i=O; i<l; i++) {
rand[i] = random(n);

}

NameRecord[] Ires;

System.gc;
time = System.currentTimeMillis(;
for (int i=O; i<l; i++) {

Ires = rt.lookup(ns[rand[i]]); 150

}
time = System.currentTimeMillis() - time;

// System.out.println("Looked up "+I+" Routes in "+time+" ms.");

Runtime runtime = Runtime.getRuntime(;

long total, free;
ns = null;
re = null;
rand = null;
System.gco; 160

total = runtime.totalMemory(;
free = runtime.freeMemory(;

Result result = new Result(;
result.time = time;
result.memory = total-free;
return(result);

}

170

* Creates a random NameSpecifier.

* @param d the depth of the NameSpecifier

* @param ra the number of possible different attributes

* param rv the number of possible different values

* @param na the actual number of attributes used at each level

* Oreturn the random NameSpecifier.
*7

private static NameSpecifier createNameSpecifier(int d, int ra, int rv,
int na)

180

/7 Create the new NameSpecifier

NameSpecifier ns = new NameSpecifiero;
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// Check if the requested depth is zero.
if (d == 0) {

return(ns);

}

/7 If not, create the first level of AVPairs.
190

7/ Create an array to make sure we don't reuse attribute numbers.
boolean[] used = new boolean[ra];

// Create na AVPairs.
for (int i=0; i < na; i++) {

77 Pick a random number between 0 and ra-1,
/7 and keep picking one if it's already used.
int a;
do { 200

a = random(ra);
} while (used[a]);

// Mark it as being used.
used[a] = true;

// Pick a value to use; it's alright to reuse values.
int v;
v = random(rv);

210

/7 Create the AVPair by calling createAVPair to
/7 recursively fill in the rest of the NameSpecifier.
AVPair ave = createAVPair(new Attribute(Integer.toString(a)),

new Value(Integer.toString(v)),
d - 1, ra, rv, na);

7/ Add the AVPair to the NameSpecifier.
ns.addAVPair(ave);

}
220

return(ns);
}

* Creates a random AVPair.
* @param d the depth of the NameSpecifier from this AVPair
* param ra the number of possible different attributes
* @param rv the number of possible different values
* @param na the actual number of attributes used at each level

* @return the random AVPair. 230

*/
private static AVPair createAVPair(Attribute attribute, Value value,

int d, int ra, int rv, int na)

{
/7 Create the new AVPair
AVPair avElement = new AVPair(attribute, value);
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// Check if we're at the end of the recursion.
if (d == 0) {

return(avElement); 240

}

77 If not, create the next level of AVPairs.

7/ Create an array to make sure we don't reuse attribute numbers.
boolean[] used - new boolean[ra];

// Create na AVPairs.
for (int i=0; i < na; i++) {

250

7/ Pick a random number between 0 and ra-1,
/7 and keep picking one if it's already used.
int a;
do {

a = random(ra);
} while (used[a]);

// Mark it as being used.
used[a] = true;

260

/7 Pick a value to use; it's alright to reuse values.
int v;
v = random(rv);

/7 Create the child AVPair by calling createAVPair to
/7 recursively fill in the rest of the AVPair.
AVPair ave = createAVPair(new Attribute(Integer.toString(a)),

new Value(Integer.toString(v)),
d - 1, ra, rv, na);

270

/7 Add the child AVPair to our AVPair.
avElement.addAVPair(ave);

}

return(avElement);

}

* Returns a random number between 0 and x - 1.
*7 280

final static int random(int x)

{
double r;

do {
r = Math.randomo;

} while (r == 1.0);

return((int)(r * x));
1 290
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private static void usageo

System.err.println("Usage: java namespace. TestNameTreePerformance n");
System.err.println(" n = the number of routes");
System.exit(- 1);

}

}
300

class Result

p
public long time;
public long memory;

I

class Parameter

public String n;
public int 1, h, i, d; 310

public Parameter(String n, int 1, int h, int i, int d)

this.n n;
this.1 = 1;
this.h =h;

this.i = i;
this.d =d;

}
} 320
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