
Extending the Metaglue Multi-Agent System

by

Nimrod Warshawsky

Submitted to the Department of Electrical Engineering and Computer

Science in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 19, 1999

@ Copyright 1999 Nimrod Warshawsky. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis and to grant

others the right to do so.

Department of Electrical Engineering and Computer Science
May 19, 1999

Certified by

2
Barbara Liskov

_-Thesis Supervisor

Accepted by
Athur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
L LBRI

LIBRARIES

Author

Extending the Metaglue Multi-Agent System
by

Nimrod Warshawsky

Submitted to the Department of Electrical Engineering and Computer
Science

May 19, 1999

In Partial Fulfillment of the Requirements for the Degree of Master of
Engineering in Electrical Engineering and Computer Science

ABSTRACT

Metaglue is a platform for the development and administration of distributed, intercon-
nected computational elements. It is the development platform for the IT Artificial
Intelligent Laboratory's applications in Hal and the Intelligent Room.

This thesis extends Metaglue to make it more effective and robust. Metaglue now allows
computational elements to dynamically reestablish their communications channels. In ad-
dition, these elements can now begin asynchronously, and they can depend on each other in
a circular fashion.

Thesis Supervisor: Barbara Liskov
Title: NEC Professor of Software Science and Engineering

2

TABLE OF CONTENTS

Introduction..

1.1 The Intelligent Room & H al.. 8

1.2 M ulti-A gent System s ... 12

1.3 Resting Dem o ... 14

1.4 Design G oals...16

1.4.1 Establishing Coninmnication Channels 16

1.4.2 Establishing and M aintaining Agent Configuration.. 17

1.4.3 Dynamic Agent Loading >..........18

1.4.4 Debugging a Runming M ulti-Agent System 18

1.5 M etaglue Extensions...19

M etaglue... 21

2.1 Prim itives ... 22

2.1.1 reliesO n () 23

2 .1.2 A ttrib u te 25

2 .1.3 tie d To () 2 6

2.1.4 freezeo/defrosto................................ ... 28

2.2 Supporting Infrastructure... 30

2 .2 . A g e n D ... 3 0
2 .2 .2 M eta g l e C atalo g .. 3 1

2 .2 .3 M eta g e A g en t .. 32

Extensions to M etaglue......... 36

3.1 M VM M odifications...36

3.1.1 Catalog Sep ation.. 37

3.1.2 R em oving G l e Spread ..

3 .g 3 9

3.2 Dynam ic Agent Reconnection .. 40

3.2.1 Agent-M ethod Invocation .. 41

3.3 Circular Agent Dependencies.. 43

Extension Specifics... 46

4.1 Java RM I ... 46

4 .1.1 E rro r H an d lin g 4 9

4 .1 .2 A g e n tP rim e r.. 5 0

4 .1.3 A gentE xceptionH andler.. 52

4.2 Asynchronous reliesO no .. 57

4 .2 .1 re lie sO n (.. 5 8

4 .2 .2 E H A W rap p ers .. 5 8

4 .2 .3 M eta g lu e C atalo g 5 9

4 .2 .4 relie sO n S y n ch() ... 6 0

Conclusion.. 63

5.1 Future W ork .. 64

Bibliography ... 66

4

LIST OF FIGURES

Number Page

Figure 1 Hal 10

Figure 2 Command Post of the Future 1]

Figure 3 Stereo/IR Agent Connection 15

Figure 4 IRAgent inheritsfrom AgentAgent 22

Figure 5 Directed Graph ofAgent Dependencies 23

Figure 6 'CRIR Reliance 24

Figure 7 JR Agent startup with tiedTo() 27

Figure 8 VCRAgent/java 29

Figure 9 Multiple AlVls on wonderbug 33

Figure 10 A Running Metaglue System. 35

Figure I1 JAM with a catalog and agents 37

Figure 12 Java RMI Example 47

Figure 13 LampEHA.java 51

Figure 14 AgentExceptionHandler.java 53

Figure 15 A synchronous reliesOn 0 62

5

ACKNOWLEDGMENTS

This material is based upon work supported by the Advanced Research Projects Agency of

the Department of Defense under contract number F30602-94-C-0204, monitored through

Rome Laboratory.

6

Chapter 1

INTRODUCTION

The Metaglue system was assembled as a platform for the development and administration

of distributed, interconnected computational elements. It is intended as a way of "manag-

ing systems of interactive, distributed computations, i.e. those in which different

components run asynchronously on a heterogeneous collection of networked computers"

[Phillips].

Systems like Metaglue are useful in situations where a large amount of computational

power is provided through a collection of networked, distributed hosts. Metaglue is an ex-

tension to the Java programming language. It is designed to express the interrelationships

of a system of distributed computational elements while minimizing the number of primi-

tives added. By building upon Java, a small number of stable and programmer-friendly

primitives was designed and implemented.

Though Metaglue was usable in its initial implementation, it had several limitations. This

thesis will discuss how I addressed these limitations by extending the Metaglue system.

7

My extensions include the ability for computational elements to dynamically reestablish

their interconnections and for these elements to initialize themselves asynchronously.

Metaglue development has been heavily influenced by the requirements of the Intelligent

Room project in the MIT Artificial Intelligence Laboratory. Most of the testing and re-

search has taken place in the Intelligent Room and its sister project, Hal. Examples will be

drawn directly from applications developed in these two environments, and much of the

discussion will be laced with Room and Hal references. Therefore, the following section

will provide a brief introduction to these projects.

1.1 THE INTELLIGENT RooM & HAL

The Intelligent Room project in the Artificial Intelligence Laboratory is a research effort

that embeds computers in the user's work/living space. The project began as an enhanced

office space/laboratory, where a user could interact with computers using non-standard in-

put modalities. The room gets its input from speech recognition and machine vision

systems. With an assortment of devices, such as cameras, microphones, and projectors, as

well as varied software components, the Room is a distributed headache. The original

monolithic C infrastructure proved to be overly burdensome to modify. A subsequently

written Perl multi-agent programming language, Sodabot [Coen94], "was too ambitious,

and proved to be too difficult to learn and use. For example, variables in the code could be

8

prefaced by over thirty different modifiers for describing their scope and persistence"

[Phillips].

Control of the Intelligent Room's dynamic elements requires vast amounts of processing

power. In mid- 1997 a new environment was proposed, whose computational requirements

dwarfed those of the Intelligent Room. Named Hal, this environment is composed of liter-

ally dozes of hardware and software components and simulates a living quarter, where an

individual can work, relax, and socialize. Hal has real-time control over its devices, which

includes the ability to modify ambient light levels, the state of the blinds/drapes, a stereo

system, two projectors, a VCR, and six cameras. A user can interact with Hal using

speech, postures (such as lying down, entering/leaving the room), laser pointers, and other

input modalities. Hal is connected to software such as Boris Katz's START system,

through which a wide assortment of queries can be handled. Administering all of these de-

vices and their interactions requires a sophisticated software and hardware infrastructure.

9

Figure 1 Hal

A sample application implemented for Hal is called the Command Post of the Future. Hal

displays a dynamic map of the world on one projector, and a Netscape browser on another.

The map dynamically plots the locations of tropical storms, hurricanes, Mir, and NASA's

space shuttle, overlaid on a world map. Using a laser pointer, a user can direct the Com-

mand Post's attention to a region and request information or perform an action. For

example, the user can use the laser pointer to point at the Balkans region and say aloud,

"Computer, zoom in." Hal will zoom in on the region and redraw the map with additional

detail (such as cities). The user can ask the Command Post a question, such as "Does

Yugoslavia have nuclear missile capabilities?" or, if Yugoslavia has already been selected

by the laser pointer, the user can ask, "Does this country have nuclear missile capabilities?"

The Command Post will redirect the query to START, and Hal will provide the response

10

using digitized speech. The user can further ask, "What is the weather in Belgrade?"

Again, Hal will redirect the query to START and display the result in the Netscape

browser.

Figure 2 Command Post of the Future
.............

...... I
....

..
... -

..................
.....

......
............

.....
..

..... ...
. ... -...

............

..........
..........MI.X x

.........I _ _ _ X......... I

This application combines the functionality of a dynamic map, a context- sensitive speech

recognition system, START, a Netscape browser, a speech synthesis system, two vision

systems (to observe the laser pointer on each of the two projection screens), as well as doz-

ens of software components responsible for administering the projectors, the lamps, the

VCR, the blinds/drapes, etc... Orchestration of all the various components is clearly an

engineering challenge.

The Command Post application demonstrates how Hal can serve as an assistant in a "work"

environment. Developers have also written an application that shows how Hal can improve

an individual's living environment. To observe the user, multiple cameras have been situ-

I I

ated in the room. Using machine vision, Hal observes when the user lies down on the

couch. Under the appropriate conditions, Hal assumes the user is prepared to take a nap,

and so it closes the drapes, dims the lights, and plays a user's selection of music (such as

Mozart) at low volume. When the user resumes a sitting position on the couch (or rises

from the couch completely), the music is stopped, the drapes opened and the light levels are

raised. This application can be expanded so that Hal automatically takes phone messages,

asks the user for a wake-up time, and records any shows/news the user "usually" watches.

Even without the additional functionality, the "resting demo" requires eighty software

components running on over a dozen workstations.

The complexity of these scenarios is further heightened by the requirement for real-time

responsiveness from the environment. [Coen97] discusses the difficulties in building a

monolithic system capable of handling the processing requirements of such systems. Using

a distributed multi-agent approach, Metaglue has successfully met the computational and

performance demands of systems such as Hal and the Room.

1.2 MULTI-AGENT SYSTEMS

In the field of Computer Science, the term "agent" has come into regular use. Unfortu-

nately, the term has adopted varied meanings. A commonly used definition is a

"computational system which is: long lived; has goals, sensors and effectors; decides

12

autonomously which actions to take in the current situation to maximize progress towards

its (time-varying) goals" [Maes]. We have found that agents of this type are overly com-

plex for our needs and poorly express the interdependencies of an environment like Hal.

The term "agent" in the context of multi-agent systems is quite different. Our use of the

term originates from [Minsky]. In Society of Mind the term is used as a computational

element that is conceptually simple and has no inherent "intelligence." By connecting

these simple agents, complex and "intelligent" behaviors emerge. In Hal, eighty very sim-

ple software agents are connected, resulting in a system with sophisticated behaviors.

Minsky argues that the human mind's intelligence can be similarly "constructed" by con-

necting unintelligent agents.

A specialized, computationally simple element that interacts with similar, independent

elements is an excellent way of expressing the relationships among components in Hal. As

long as an agent has a means of communicating/interconnecting with other agents, they are

physically independent. In Metaglue, barring a physical dependency on a machine, e.g. a

vision agent must run on a machine equipped with a frame grabber, an agent can run on

any host, as long as both hosts can communicate with each other over a network.

A discussion of Hal's "resting demo", where the user lies down on the couch, will show

how Minsky's concept of agents has been used in Metaglue.

1 3

1.3 RESTING DEMO

The "resting demo" involves the cooperation of most of the computer-controllable devices

in Hal. How these devices are controlled will now be discussed.

Devices in Hal fall into one of three categories, those that can be controlled using a serial

port, those that can be controlled using X-101, and those that must be controlled through

their IR receiver. Hal has two motorized, steerable cameras that can be controlled by issu-

ing commands from a computer's serial port. The lamps in Hal are controlled using X-10

modules. However, to control devices such as the VCR, HAL must simulate the VCR's

remote-control IR signals. This is accomplished by using an IR controller device con-

nected to a computer's serial port. The IR controller works by storing the composition of

an IR signal in assigned banks. These signals can then be regenerated through IR emitters

that are placed over the appropriate device's IR receiver.

When the user begins the "resting demo", agents responsible for the cameras, the lamps, the

stereo, speech recognition, speech synthesis, X- 10, and IR are started. Each of these agents

will move to the appropriate computer. The camera agent will automatically move to the

computer with a frame grabber, the X- 10 agent moves to the computer connected to the X-

An X-10 controller is connected to a computer, and transmits signals over a room's electrical wiring. Devices such as
lamps are plugged into X-10 modules on the same circuit. The computer can issue instructions through the X-10 con-
troller asking the X- 10 module to close the switch (turning the lamp on), to adjust the current flow (dining the lamp),
or to open the switch (turning the lamp off).

14

10 controller, the IR agent moves to the computer connected to the IR controller, the

speech recognition agent moves to the computer running IBM's Via Voice, and the speech

synthesis agent moves to the computer running the Laureate speech synthesis system.

When the vision agent sees a person lying down on the couch, the lights agents are in-

structed to dim the lights, the stereo agent begins playing music, speech recognition listens

to the user, and output is directed through the speech synthesis agent.

Figure 3 Stereo/IR Agent Connection

Computer X Computer Y IR

Stereo Ag7ent - -IR Agent r < Controller

Stereo r

CD Player

Each agent is responsible for a relatively simple task. For example, the lamp agent needs

only know how to interact with the X- 10 agent to modify the state of the lamp. With

minimal additional logic, an application like the "resting demo" can be implemented by

connecting these conceptually simple agents.

15

1.4 DESIGN GOALS

In this section I will discuss the specific goals we viewed as important while designing

Metaglue. From experience with the two prior multi-agent systems used in the Intelligent

Room, certain goals emerged as essential. These are:

1. Establish communication channels between soft-
ware components that may or may not have been
designed to explicitly cooperate.

2. Establish and maintain the configuration that each
agent specifies in its requirements for operation.

3. Permit the introduction and modification of agents
without taking the whole system down.

4. Support the debugging of a running system of
agents [Phillips].

A multi-agent system, called Metaglue, was implemented with these design goals in mind.

To better understand Metaglue, as well as my extensions, I will now discuss each design

goal in turn.

1.4.1 ESTABLISHING COMMUNICA TION CHANNELS

Metaglue is designed to provide computational glue for integrating dispa-
rate agents. Computational glue is the establishment of paths of
communication between individual software components that use one an-
other's services even when those components were not designed to
explicitly work with each other. Providing computational glue for integrat-
ing different kinds of agents is motivated by the fact that there are
applications such as Hal that face three engineering challenges: they are
complex, they are computationally intensive, and their components were not
designed to work with each other [Phillips].

16

The fact that Hal is complex and computationally intensive should be clear, though the re-

maining engineering challenge requires some elucidation. Communication between agents

on different hosts, using different operating systems is a challenge in and of itself To

compound the difficulty, Hal requires that certain software components, such as Netscape

Navigator on a Solaris based computer, communicate information with a Windows 95

based speech recognition system. These software components were not designed to work

with each other. These communication channels are the computational "glue" that ties the

agent system together.

Using Java, the original implementation of Metaglue was very successful in realizing this

goal. Java's inherent platform independence and Remote Method Invocation (RMI) proto-

col are a strong foundation upon which to build a multi-agent system.

1.4.2 ESTABLISHING AND MAINTAINING A GEN T CONFIGURATION

Metaglue is designed to establish and attempt to maintain the configuration
that each agent specifies in its requirements for performing tasks. Agents
have external needs such as what hardware they need access to. They also
specifically require other agents to help them accomplish their tasks. For
example, if one agent relies on a second agent...the second agent needs to
exist and be functional.

Not only should Metaglue establish the agents and their interconnections,
but also it should attempt to maintain them [Phillips].

17

The original Metaglue platform was successful in establishing agent interconnections,

however provided no mechanism for the preservation of these connections. If an agent

fails, or the programmer stops it and restarts it, Metaglue could not automatically reestab-

lish the connections. In extending Metaglue, I have provided a means for persistent agent

connections through dynamic reconnections. Among other extensions, this thesis will dis-

cuss how agent connections are preserved when communication failures occur, when

agents move from one host to another, or when an agent is stopped and restarted.

1.4.3 DYNAMJC AGENT LOADING

Metaglue is designed to permit the introduction and modification of agents
without taking the whole system down.

New agents may be introduced to control newly introduced hardware and
software [Phillips].

Metaglue has successfully provided the agent programmer with this functionality by

building upon Java's Reflection API. Hal can be extended dynamically without having to

shut the system down, and new functionality is often introduced in this manner.

1.4.4 DEBUGGING^A RUNNING MULTI-A GENT SYSTEM

A running system of Metaglue agents should be debuggable... However,
debugging agent systems requires non-traditional debugging strategies
[Phillips].

18

Introducing an effective debugging mechanism to Metaglue is the same task as developing

an effective debugger for a (possibly massively) distributed system, an area of continuing

research, both in the Intelligent Room project and in the larger multi-agent system research

community. At this time, an interactive debugger has not been integrated. Metaglue does

contain a program called AgentTester that is used to start agents and observe any excep-

tions generated. This falls short, however, of a general-purpose debugger.

1.5 METAGLUE EXTENSIONS

This thesis will describe the extensions to Metaglue along three principal axes. The first is

modifications to the infrastructure of Metaglue. The second involves giving agents the

ability to dynamically reestablish communication channels. The third involves allowing

agents to start asynchronously.

The Metaglue infrastructure was simplified conceptually. Components of Metaglue that

made sense at design time, but proved unsatisfactory, were modified or removed.

Dynamic agent reconnection is a vital capability of a real-world system. In an environment

as complex as Hal, components of the room occasionally fail or are restarted. I have given

Metaglue the ability to reestablish the communication channels to these components. By

19

automatically intercepting an agent's method calls, Metaglue can attempt to resolve any

communication problems.

Prior to asynchronous agent startup, circular agent dependencies were not allowed in Meta-

glue. This was an artifact of a faulty implementation, which I corrected.

The remainder of this thesis will give a thorough introduction to Metaglue, and a discussion

of my modifications. Chapter two will discuss Metaglue in detail, while Chapter three will

provide the reader with an overview of the above mentioned extensions. Chapter four will

describe the implementation details of these extensions, and Chapter five will conclude the

thesis, and describe areas for future work.

20

Chapter 2

METAGLUE

The Metaglue system is an extension of Java 1.2. Only a superficial knowledge of Java

will be required to understand this introduction to Metaglue. Later chapters will delve into

the implementation details of the Metaglue system and its extensions, and as such, comfort

with Java and its Remote Method Invocation (RMI) mechanism will be required.

Metaglue has introduced three new primitives (as well as an assortment of supporting

functionality), tiedToo, reliesOno, and freeze()/defrost(), to the Java API. The be-

haviors of these primitives serve as the "glue" that ties Metaglue agents together. Using

these primitives, and Java's large API and platform independence, Metaglue has success-

fully provided an infrastructure capable of handling the computational requirements of a

system as sophisticated as Hal. More than half a dozen programmers have developed ap-

plications for both Hal (the Command Post of the Future, the "resting demo", etc...), as

well as the Intelligent Room. Metaglue has proven to be a stable, efficient, easily main-

tainable, and effective platform for the development of multi-agent systems.

21

The following section will introduce Metaglue's primitives as presented in [Phillips], along

with several subsequent modifications that are not directly part of my thesis.

2.1 PRIMITIVES

A Metaglue agent is simply a Java class that inherits from the AgentAgent super class.

This class provides the agent with the primitives required for successful operation in a

Metaglue system. A Metaglue agent is identified by an AgentD that is composed of a

society, an occupation and a designation. The occupation of an agent is what task the agent

is responsible for, e.g VCR, IR, X-10, AgentTester, Lamp. The AgentD will be further

discussed in the section on Supporting Infrastructure.

Figure 4 IRAgent inherits from AgentAgent

AgentAgent

reliesOn()
Attribute
tiedTo()
freeze()
defrost()

IRAgent extends AgentAgent

signalPulse()
signalStart()
signalStop()

22

2. 1. 1 RELIESON()

The reliesOn() primitive is used to establish dependencies, as well as to provide a com-

munication channel between agents. This method effectively serves to define a directed

graph of agent dependencies. In the original implementation of Metaglue, cyclic agent-

dependencies were functionally disallowed. This was an implementation deficiency that

was corrected, and will be discussed in the section on asynchronous reliesOn (). Reliance

can only be established between Metaglue agents, i.e. an agent can not rely on a computer,

a device, an object, or a value. A reliesOn() invocation can generate a flurry of activity as

the dependence graph expands.

Figure 5 Directed Graph of Agent Dependencies

The simplified syntax of a Metaglue reliesOn() is as follows:

ir = reliesOn("I R");

An expanded version of the above statement is used in Hal to establish a connec-

tion/dependence between the calling agent (in this case VCR) and the IR agent. If the IR

agent is not already running, reliesOn() will start the agent. The object returned from

23

reliesOn() (ir in the example above) can be used as a "handle" to the target agent, and

method invocations can be issued using standard Java notation: ir.signalStart(...).

Figure 6 VCR/IR Reliance

VCR reliesOn() IR
Agent Agent

In the Phillips implementation, the handle returned by reliesOn() had no error-

handling/reconnect capabilities. If an agent was shutdown and then restarted (called agent

swapping), any objects that had a reference to the agent would fail on the next method in-

vocation. I will discuss how I improved the system by introducing dynamic agent

reconnection later in this thesis.

reliesOn () is a method that belongs to the AgentAgent 2 class. Every agent inherits this

functionality. Calls to reliesOn () are "local" versus "remote", they are executed using lo-

cal method invocations, rather than Java's remote method invocations (RMI). All inter-

agent communication uses RMI, since every agent is defined to be its own remotely call-

able object. This fact is crucial for agent reconnection, and we will return to it in the

section on dynamic agent reconnection.

2 Every Metaglue agent is comprised of an interface defmnition file (a Java interface), as well as the actual agent code. The
uiterface definition file is fonned by assigning it the occupation of the agent, e.g. VCR.java. The actual agent code file
name (and therefore the class name as well) is fonned by taking the occupation and appending the word Agent, e.g.
VCRAgent.java. This convention was maintained throughout the system, and AgentAgent is the implementation
of the Agent interface.

24

A semantic rule of the Metaglue system requires that agent dependencies be established

using the reliesOn() primitive, i.e. agent X may not pass its reference of agent Y to agent

Z. If communication of this sort is necessary it should be conducted using an agent's

AgentD, i.e. agent X should pass agent Z's ID to agent Y. As an example agent X can

pass the requisite information to agent Y using:

agentY.useThisAgent (agentZ.getAgent|D ();

Whereas the following is disallowed: agentY.useThisAgent(agentZ);

2.1.2 ATTRIBUTE

An attribute is a way for an agent programmer to conveniently store dynamic characteris-

tics of an agent. The attribute is stored in a persistent SQL database, and its value can be

changed without modification to an agent's source code. Attributes are meant to describe

an agent, not its state. For example, if an agent opens a socket connection, the socket num-

ber can be stored as an attribute. If this value changes in the future, the programmer need

only change the value in the SQL database, without modifying and recompiling the agent

source code.

25

An attribute is described by the ID of the agent that owns it, as well as a string, such as

"Isocket" or "port". Therefore, the same string can be used in different agents without con-

flict.

Here is a way to retrieve the port value from the Attribute database into a variable:

Attribute port=new Attribute("port");
int portlD=port.getValue();

2.1.3 TIEDTO()

The tiedTo() primitive is used to notify the system of an agent's physical reliance on a

specific host. For example, the IR controller device is connected, through a serial cable, to

a workstation in the lab whose hostname is wonderbug. Therefore, the IR agent can

only execute on wonderbug. If the IR agent is started on another machine in Hal, such

as kit (another computer used for Hal), it should be automatically shutdown and restarted

on wonderbug. The tiedTo() primitive allows the agent programmer to handle envi-

ronmental/physical constraints such as this. If an agent is not explicitly tied to a specific

computer, then it is possible for that agent to run on any one of the hosts that have been

registered with the Metaglue system. Furthermore, if an agent that has been explicitly tied

to a specific machine is started on a different machine, the Metaglue system will shut the

agent down on the local machine and will dynamically restart it on the correct machine.

26

Though dynamic load balancing can be performed using this infrastructure, this capability

is presently lacking.

Figure 7 IR Agent startup with tiedTo()

kit wonderbug kit wonderbug
tiedlo()

Like reliesOn(), tiedTo() is a method inherited from the AgentAgent super class, and

so every agent has this functionality. An invocation of tiedTo() should be performed in

the agent's constructor, prior to any actions that may cause side effects. This restriction

arises because Metaglue may (if the agent is running on the wrong host) shut the agent

down and then begin a new instance on the appropriate host. If the IR agent were started

on host kit, then it would be shut down and a new instance started on host wonderbug.

It should be noted that if the current host has the same name as the hostname passed as an

argument to tiedToo, the method will return normally and commands following the

tiedTo() will be executed sequentially. If the hostnames differ, these commands will

never be reached in this instance.

The fact that an agent may be shut down and restarted means that some work may be per-

formed twice. For example, if variables are given default values, the evaluations will be

27

performed twice. Similarly, if commands are executed prior to the tiedToo, they will be

executed twice if the agent needs to be restarted.

The IR agent constructor has been slightly simplified, but effectively appears as follows:

public IRAgent() {
Attribute host=new Attribute("host");
tiedTo (host.getValue());

The process of moving to a different host is called spreading, and requires that a registered

MetaglueAgent exist on the target machine, i.e. in the IR example, Metaglue must be

running on wonderbug at the moment of the tiedTo() invocation. If this is not the case,

tiedTo() will block, waiting for the user to start Metaglue on the appropriate machine.

2.1.4 FREEZE()/DEFROST()

freeze() and defrost() are new primitives added to the Metaglue system that allow for

persistent storage of volatile information such as field values, state, etc... Using a SQL

database, agents now have the ability to store any serializable objects for future retrieval.

This functionality is useful in preserving the state of a device. An agent responsible for the

light levels of the lamps in Hal can save this information and retrieve it the next time the

agent is instantiated.

28

In pseudo-code, here is a skeletal implementation of the VCR agent in Hal

(Note: this code will not compile)

Figure 8 VCRAgent.java

public class VCRAgent

private IR ir;
public boolean powerStatus;
public boolean muteStatus;

public VCRAgent()
ir = (IR) reliesOn ("lR"));
powerStatus = defrostBoolean("power");
muteStatus = defrostBoolean("mute");

public void setPowerStatus(boolean on)
powerStatus = on;
freeze("power", powerStatus);

private void press(String b)
send(b);

private void send(String b)

ir.signalPulse(signalOf(b));
if(b.equals(" POWER"))

setPowerStatus (!powerStatt

//reliesON
//defrost

//freeze

//inter-agent communication

public void togglePower)
press ("POWER");

public boolean getMuteStatus)
return muteStatus;

public boolean getPowerStatus()
return powerStatus;

}

public void turnOn)
if (!powerStatus) press("POWER");

}

public void turnOff)
if (powerStatus) press("POWER");

}

public void rewind()
if (!powerStatus) press("POWER");
press("REWIND");

}

public void fastForward()
if (!powerStatus) press("POWER");
press("FAST FORWARD");

public void play)
if (!powerStatus) press ("POWER");
press ("PLAY");

}

29

}

}

2.2 SUPPORTING INFRASTRUCTURE

Besides the described primitives, Metaglue also provides supporting infrastructure that

identifies agents, allows agents to find each other, and identify computers as Metaglue ca-

pable. Each of these capabilities will now be described.

2.2.1 AGENTID

The namespace of Metaglue agents is broken into three groups: society, occupation, and

designation. An agent's society indicates what "universe" the agent belongs to, e.g. our

project has a hal society for Hal, and a lab society for the Intelligent Room. An agent's

occupation is self explanatory, examples being IR, VCR, Lamp, etc... Finally, an agent's

designation differentiates between agents that belong to the same society, and have the

same occupation, but refer to different instances. Inside the Hal environment, there are two

computer-controlled lamps. The first is adjacent to the window, and the second is situated

next to the door. Light levels can be controlled independently for the two lamps, however

from a programmer's perspective they behave identically. Therefore, the agents that con-

trol these lamps are identical except for their designations, and corresponding X- 10 module.

The Agent|D is expressed in human-readable form as:

society:occu pation-desig nation

30

and the two lamp agents have the following names:

hal:Lamp-door
hal:Lamp-window

2.2.2 METAGLUE CATALOG

The Metaglue system requires a centralized repository cataloging which agents are running.

This is accomplished through a catalog agent that builds directly upon Java's RMI registry

capabilities. A Metaglue catalog can handle three basic requests, add(), lookup(, and

remove().

When a programmer issues a reliesOn(, Metaglue first checks if the agent exists in the

catalog. If it does not, Metaglue will start the agent and add it to the catalog. If the agent

already exists in the catalog, Metaglue simply returns a reference to the agent.

A single catalog is meant to be a resource shared across societies, i.e. multiple societies can

share a single catalog, and there can be only one catalog per host. In the original imple-

mentation of Metaglue, a catalog could share a JVM with other Metaglue agents. For

reasons that will be discussed in the following chapter, this has been disallowed.

31

2.2.3 META (;LUEAGENT

The MetaglueAgent is responsible for administering dynamic aspects of Metaglue. For

a Java Virtual Machine (JVM) to have the capability of running agents, a

MetaglueAgent must be running inside the JVM. The combination of a

MetaglueAgent running in a JVM is called a Metaglue Virtual Machine (MVM).

A MetaglueAgent has three primary roles:

1. Starting the Metaglue system

2. Starting agents

3. Identifying hosts as having Metaglue capabilities

MetaglueAgent has a main method that accepts arguments consisting of the appropri-

ate society, the hostname of the catalog host, and an agent to run. The following command

is how one would start Metaglue and run the VCR agent in society hal, with a catalog on

wonderbug.

java metaglue.MetaglueAgent hal wonderbug agentland.device.VCR3

A computer is identified as having Metaglue capabilities when there is a

MetaglueAgent running on the host. Multiple instances of the MetaglueAgent can

3 The metaglue aid agentland.device are Java package names required for identifying components of Metaglue
and Hal, but will not be explored further 1i this thesis.

32

run simultaneously on a single computer in different JVMs, but there can be only one

MetaglueAgent per JVM. Multiple MVMs on a host is useful if multiple programmers

are running Metaglue agents on the same computer. In the Phillips implementation of

Metaglue, if multiple MetaglueAgent instances were running on the same host, only

one of the instances would be registered with the Metaglue catalog. The registration of the

MetaglueAgent with the catalog is important because agents can only get a handle to

registered instances. Those agents running in unregistered MVMs are still accessible to

other agents, but new agents can not be started on these MVMs. This behavior has been

modified so that all MetaglueAgent instances are registered with the Metaglue catalog.

This is a relatively minor point, and one need only remember that there is a one-to-one

mapping between MetaglueAgents and JVMs, while there is a many-to-one mapping

between MVMs and computers.

Figure 9 Multiple MVMs on wonderbug

wonderbug

JVM JVM

MetaglueAgent MetaglueAgent

VCRAgent IRAgent

33

MetaglueAgent has its own naming representation different from normal AgentlDs. A

MetaglueAgent is identified by its society, the IP address of its host, and the IP address

of its catalog. For a MetaglueAgent running on kit, and using the catalog on

wonderbug the ID is:

hal:MetaglueAgent-1 28.52.54.22%128.52.54.59{d782a53e77}

where 128.52.54.22 is the IP address of kit, while 128.52.54.59 is the IP address of

wonderbug. The remainder of the ID ({d782a53e77}) is a unique identifier that dif-

ferentiates between MVMs running on the same host that belong to the same society, and

use the same catalog.

34

Figure 10 A Running Metaglue System.

JVM

......--- ---------.- c a ta lo g
hal:Metaglue-1 28.52.54.59%128.52.54.59
hal:Metaglue-128.52.54.22%128.52.54.59
hal:VCR
hal:IR

JVM

............. 1ha:Metaglue-128.52.54.59%128.52.54.59

hal:IR .

kit (128.52.54.22)

JVM

........................ ih :Metaglue-1 28.52.54.22%128.52.54.59

P' hal:V C R.

35

wonderbug (128.52.54.59)

Chapter 3

EXTENSIONS TO METAGLUE

Most of the extensions to the Metaglue system have been "under-the-hood", and so a de-

tailed discussion of the implementation specifics will be undertaken. Unlike the previous

chapter, a strong grasp of Java will be required to fully understand this discussion.

My extensions to the Metaglue system lie in three domains:

1. MVM modifications

2. Dynamic agent reconnection

3. Allowing circular agent dependencies

3.1 MVM MODIFICATIONS

Three substantial modifications were performed to the Metaglue infrastructure:

1. Providing the Metaglue catalog with an independent JVM

2. Removing Glue Spread

3. Allowing the catalog registration of every MetaglueAgent

36

3.1.1 CATALOG SEPA RATION

In the original implementation of Metaglue, the catalog was not an independent component

of the MVM, i.e. it was not a distinct entity. This allowed for situations where the JVM on

a host machine would include a Metaglue agent, a user's agents, as well as a Metaglue

catalog.

Figure I1 JVM with a catalog and agents

kit

JVM
Metaglue Catalog

MetaglueAgent

VCRAgent

Experience has shown this to be a poor design choice. Because the Metaglue catalog is a

resource shared between users and societies, it is undesirable for a user's programs to be

running on the same JVM. If a user decides to shut down the JVM that is serving as his

MVM as well as his catalog, both will be lost. Any other user that was using this catalog

would eventually come across irrecoverable errors. In an environment where debugging of

agents is a continuous activity, and over six agent programmers are working at once, pro-

grammers are continuously starting and stopping entire MVMs. The destruction of the

shared catalog was not a rare occurrence.

37

It became apparent that a better implementation would give the catalog its own JVM, with-

out a registered MetaglueAgent. Lack of a registered MetaglueAgent ensures that

the catalog's JVM remains "pure", without user's agents or programs. Termination of the

catalog's JVM would have to be deliberate and the reasons clearly explained to the other

programmers. Though this change was relatively simple to implement, it was conceptually

and practically important. This modification meant that a catalog would have to be explic-

itly started and could not be dynamically initiated if Metaglue detected that one was not

running. This was accomplished through a command line argument.

java metaglue.MetaglueAgent -catalog starts a catalog on the current host. Note

that though a MetaglueAgent is started, it's only purpose is to start the catalog, and

does not register itself

3.1.2 REMOvIN(GLUE SPREAD

Coupled with the decision to separate the MVM from the Metaglue catalog was the deci-

sion to remove the glue spreader. Phillips describes the Metaglue glue spreader as follows:

Starting an MVM on a host where one is needed is called spreading. The
tiedTo primitive uses spreading when there is no MVM on a destination
host. Metaglue accomplishes spreading using a glue spreader.

38

The glue spreader is an extremely lightweight daemon process that runs on
each host that a Metaglue MVM can spread to. When an MVM needs to
spread, a predetermined socket that the glue spreader listens to is contacted
on the host, and a message is passed to instruct the glue spreader to start an
MVM which in turn, establishes a Metaglue Manager agent. This Metaglue
Manager agent can then be contacted to start and stop agents on the MVM
[Phillips].

The glue spreader daemon process proved to be an unnecessary aspect of the Metaglue

system. In an effort to achieve conceptual and implementation simplicity, the distinction

between a MVM and a glue spreader was removed. For an agent to run on, or spread to a

host, it is required that a MVM be running and registered with the catalog. From the user's

perspective, the distinction is invisible; the user types mg instead of glue at the command

prompt on the desired host.

In practice, it was found that an unused MVM is not an excessive burden on the machine.

Therefore, the "light-weight" reasoning behind the glue spreader proved to be overly cau-

tious. The conceptual simplicity gained by removing the glue spreader far outweighs the

slight performance degradation introduced.

3.1.3 M ETAGLUEA GENT REGISTRATION

As described earlier, if multiple MetaglueAgents were running concurrently under the

same society, on the same host, only the first instance created would register itself with the

catalog. The reason for this was that agent programmers should not have to be cognizant of

39

the fact that multiple MVMs exist on the machine. Therefore, when asking for a handle to

a MetaglueAgent, simply describing the agent's society, host and catalog should be suf-

ficient.

How then should Metaglue differentiate between the different MVMs? I added a unique

identifier to each MetaglueAgent. When the agent registers itself in the catalog it stores

this unique ID. However, when the programmer asks for a MetaglueAgent from the

catalog, the catalog will return the first functioning agent to have registered itself, irrespec-

tive of the unique ID. Therefore, the programmer need not concern himself with

knowledge of how many MVMs exist on a host, or what their unique IDs are.

3.2 DYNAMIC AGENT RECONNECTION

As discussed in the first chapter, the original version of Metaglue was unable to persistently

"maintain the configuration that each agent specifies in its requirements for operation"

[Phillips]. If the communication channel between two agents was severed, Metaglue had

no automated away to restore the connection.

40

3.2. 1 A GENT-ME THOD INVO(A TION

The manner in which methods exposed by Metaglue agents are invoked is a compromise

between readability and run-time control. Three possible approaches to agent method in-

vocation were considered:

1. agentlnvoke(myAgent.method, parameters);

2. myAgent.agentlnvoke(method,parameters);

3. myAgent.method (parameters);

The first and second forms introduce agentinvoke as a new primitive added to the

Metaglue system. The third possibility is the more "natural" form with which Java pro-

grammers are already familiar, and was the one chosen.

The first two approaches to agent method invocation make a clear distinction between

method calls targeted at agents and those for non-agent objects. This is a somewhat artifi-

cial and undesirable arrangement. Nevertheless, either of the first two approaches would

allow for run-time control of agent method invocations, e.g. agent reconnection, traffic

flow control, etc....

At design time, it was decided that agent calls and normal method calls should appear to be

identical to the agent programmer. Metaglue allows the programmer to connect agents

without knowing where they are running, or if they are remote or local. Therefore, "net-

work" calls should be no different than local calls. Aesthetically, this approach makes

41

agent code appear clean and elegant, agents are treated as regular Java objects. However,

for any run-time control to be introduced, we had to find a way of intercepting method calls

targeted at agents.

The most pressing need for dynamic agent reconnection was introduced with the addition

of agent swapping. Agent swapping is the ability to shut an agent down, and replace it dy-

namically with a new instance. This is useful when debugging an agent and the

programmer does not wish to shut down all other agents, simply to introduce a new version

of an already running agent. Clearly, any agent that has a reference to the original instance

of the agent will fail when trying to its methods. Agent swapping does not make sense un-

less the communication channel between the two agents could be dynamically restored.

Dynamic agent reconnection is vital to any real-world agent system. Even when the pro-

grammer does not intentionally terminate an agent, the agent may crash, or network traffic

may be such that communication may be suspended for a period of time. For the Metaglue

system to be robust, as well as to provide greater flexibility, agent connections must be al-

lowed to reestablish themselves dynamically. It would be ideal for the reconnection to be

transparent to the agent programmer, while allowing him to maintain some control over the

reconnection system.

42

Because agent communication is built upon Java's RMI capabilities, we can introduce our

error handling logic into the RM/I protocol. An original attempt at introducing reconnect

logic involved modifying Java's RMI code and incorporating the logic into the generated

stub files. This is a poor choice because Java's RMI compiler can change the format of its

output in future versions. This solution is also exceedingly dependent on the specifics of

Java's volatile RMI specifications. The solution we chose was to generate a new, interme-

diary class, that would intercept method calls, and pass them on to the stub, while

performing all the necessary error catching/correction logic for the programmer.

3.3 CIRCULAR AGENT DEPENDENCIES

In the Phillips implementation of Metaglue, reliesOn() was a synchronous (blocking) op-

eration, i.e. a call to reliesOn() does not return until the constructor of the agent being

relied upon completes. Most agent dependencies are established in an agent's constructor,

because this is where almost all setup/initialization is performed.

What happens if a cyclic dependency of agents is declared, e.g. agent X depends on agent

Y which itself depends on agent X? When agent X invokes reliesOn() with agent Y's ID

as an argument, reliesOn() performs a catalog lookup() to see if the agent already exists,

let's assume agent Y has not been started by another agent or user. The catalog lookup()

fails, and reliesOn() needs to start the agent. To start an agent, the MetaglueAgent is

43

notified, and it creates a new instance of the class corresponding to this agent. Only when

the class has been instantiated, i.e. the agent constructor has completed, does the

MetaglueAgent register the started agent with the catalog.

Now we return to our original question. What will happen if in agent Y's constructor it

invokes reliesOn() with agent X's ID? Let's assume that both invocations of reliesOn()

take place during the constructor of the corresponding agent. When agent Y invokes

reliesOn(), the MetaglueAgent has not registered agent X with the catalog (agent X is

still in its constructor waiting for the reliesOn() on agent Y to terminate). So when agent

Y invokes catalog lookup for agent X, the call will fail. reliesOn() will now start a new

instance of agent X. Clearly, this process continues ad infinitum.

What if reliesOn() stores a marker in the catalog notifying other agents that in fact the

agent is in the process of being instantiated? If reliesOn() was simply a means of ex-

pressing agent dependencies, then this proposal would solve the problem. However,

reliesOn() both declares dependence, and opens a communication channel. Therefore,

reliesOn() must return a handle to the target agent. What should reliesOn() return if the

agent is still being initialized? Metaglue had nothing to return, and so could not allow this

situation to occur. The solution to this problem in the initial version of Metaglue was to

state that any dependencies that might result in a circular dependence could only be de-

44

clared in the body of the agent, after it has been registered with the catalog. Clearly this

was a deficiency in the implementation of the system.

A solution to this problem introduced itself once the intermediary classes from dynamic

agent reconnection had been added to the system. By making the intermediary classes

"intelligent", they can be returned from a reliesOn() invocation before the agent instantia-

tion has completed. These intelligent wrappers will only block when the agent's methods

are invoked. Therefore agent startup becomes an asynchronous process, and circular agent

dependencies can be allowed, fixing the implementation flaw. The programmer still needs

to beware of a deadlock situation in which both agents rely on each other and also make

method calls to each other, in their constructors. The method invocations will block, and

neither agent will ever complete its constructor.

45

Chapter 4

EXTENSION SPECIFICS

I will provide a brief introduction to Java's RMI before discussing the specifics of the ex-

tensions I made to Metaglue. This will serve as a refresher for people who already have

programming experience with the API. For others, a reading of [Horstman] or the Java

Remote Method Invocation Specification is highly recommended.

4.1 JAVA RMI

Motivation for this section stems from the fact that all inter-agent communication uses Java

RMI. For a Java class to be available for remote method invocation, the programmer must

process the class appropriately. First, the target class must extend the Java

UnicastRemoteObject class. Second, the target class must implement an interface that

itself extends the Remote interface. Third, the class must be compiled using the normal

Java compiler as well as the RI compiler. Only those public methods that are declared in

the above mentioned interface will be available as remote methods. An example should

help clarify this:

46

Figure 12 Java RMI Example

RSamplelmpl.java

public class RSamplelmpl extends UnicastRemoteObject implements RSample
public RSamplelmpl() throws RemoteException

public void firstMethod() throws RemoteException
System.out.println ("Inside firstMethod");

public void secondMethod() throws RemoteException
System.out.println ("Inside secondMethod");

The first Java file is an interface definition by the name of RSample, while the second is

a class definition by the name of RSampleimpl4. Together these files define an object

that can handle remote method invocations. The methods that can be invoked remotely are

firstMethod and secondMethod. Every method available for remote invocation must,

by Java semantics, be declared to throw a RemoteException. This is because method

Metaglue uses the RSampleAgent convention instead of Rsamplelmpl because it is more descriptive than the vanilla
RMI convention.

47

RSample.java

public interface RSample extends Remote
public void firstMethod() throws RemoteException;
public void secondMethod() throws RemoteException;

invocations on a remote object can fail for a variety of reasons, and the

RemoteException is the JVM's means for notifying the caller of an invocation failure.

Compilation of the file RSamplelmpl.java will generate the normal

RSamplelmpl.class. The programmer must then pass the RSamplelmpl.class through

the rmic compiler. This compiler will generate a RSamplelmplStub.class and

RSamplelmplSkel.class. The stub file acts as a server that starts a new thread with

every incoming remote method invocation. Therefore, a single remote object can handle

multiple RMI invocations concurrently.

To use RSample from a remote machine, RSample must be registered with an RMI reg-

istry. This registry is simply a centralized repository of classes available for remote

invocation. To use a remote object, the programmer can perform a lookup() in the regis-

try, which will return a stub. The programmer then uses this returned object as he would

any other class reference and invoke methods the same way he would a normal method.

In the event of a communication failure, a RemoteException will be thrown. A pro-

grammer must either wrap the remote method invocation in a try/catch block or declare

that the calling method throws a RemoteException.

48

4.1.1 ERROR HANDLING

As described earlier, every remote method invocation has the possibility of generating a

RemoteException. Since every agent method invocation is in fact a remote method in-

vocation, every agent call can generate this error. For agent programming to be robust, the

programmer must wrap every remote invocation with a try/catch block (or the less dis-

criminating approach of placing a single block that catches all remote exceptions). This is

a tremendously tedious task, since much of the exception handling logic would be similar,

but not necessarily identical across method invocations. In the Phillips implementation of

Metaglue, the remote exception was simply ignored, and each method that invoked agent

methods was also declared to throw remote exceptions. Phillips understood this to be a

temporary solution that required modification.

A remote exception can be thrown for reasons other than network degradation and an agent

crash. When agent swapping takes place, the reference to the agent is no longer valid, and

method invocations will generate this exception.

Using Java's Reflection API, I have written a system that provides dynamic agent recon-

nection in a way that is transparent to the agent programmer, while still providing him with

control over the reconnection system's behavior. This system uses an intermediary class

that is built using the AgentPrimer program.

49

4.1.2 AGENTPRIMER

AgentPrimer works by building an intermediary class between the calling agent and the

called agent's rmic generated stub. For example the VCR agent is composed of the

VCR.java interface file as well as the VCRAgent.java file. The only methods that need

to have error handling/dynamic reconnection capabilities are those in the interface file,

since those are the only methods that can be invoked remotely. Using Java Reflection on

VCR.class (the compiled version of VCR.java) the AgentPrimer generates a new class

(original interface name appended with the string "EHA" for error-handled agent), i.e.

VCREHA.java.

The AgentPrimer works by iterating through each of the interface methods, and generat-

ing wrappers. These wrappers catch the RemoteException and pass it to an error

handler. Below is part of the generated EHA file for Hal's computer-controlled lamps.

50

Figure 13 LampEHA.java

public class LompEHA implements ExceptionHandlerlnterface,
agentland.device.Lamp, metaglue.Agent

private AgentException Handler aeh;
private Lamp agent; /reference to stub
private AgenID agent|D;
private MetagluePrimitives mp;

public void replaceExceptionHandler(AgentExceptionHandler r)

aeh=r;

public void brighten() throws java.rmi.RemoteException
{I

boolean repeat;
if(agent==null) //used for asynchronous reliesOno

instantiate (mp.reliesOnSynch (agent|D,false));

do

try

repeat=false;
agent.brighten ();

/allow for reinvocation
//actual method invocation

catch(RemoteException e) {
repeat=aeh.handleRemoteException(e,this,"brighten");

while (repeat==true);

public void dim() throws
java.rmi. Remote Exception

boolean repeat;
if(agent==null)

instantiate (mp.reliesOnSynch(agentD,false));

do

try

repeat=false,
agent.dim();

catch(RemoteException e)
repeat=
aeh.handleRemoteException(e, this,"dim");

while (repeat==true);

51

{

}

Every EHA class has fields for an AgentExceptionHandler, Agent|D,

MetagluePrimitives, and the corresponding agent occupation (in this case Lamp) inter-

face. The AgentException Handler encompasses almost all of the error handling logic.

As can be seen from the replaceException Handler method (added to every EHA by

the primer), the handler can be dynamically swapped for a user-defined implementation,

thereby providing programmer control. The agent occupation interface is the EHA's han-

dle to the actual stub, and the method invocation is performed through this object. The

remaining two objects are required to perform asynchronous reliesOn(), which will be

discussed later in the thesis.

The wrappers simply intercept the agent method invocations and pass a

Remote Exception to the error handler, described in the following section. The repeat

field allows the exception handler to re-invoke the problematic method. Though run-time

debugging abilities have not been introduced, it would be a simple matter to modify the

wrappers so that they store information regarding method invocations to disk, or notify a

central agent whose purpose is to log such information.

4.1.3 A GENTEXCEPTIONHANDLER

The AgentException Handler encompasses the actual error handling logic. It will be

easiest to discuss this object after reviewing the source code.

52

Figure 14 AgentExceptionHandler.java

Public class AgentExceptionHandler

private Catalog catalog;
private Agent|D id;
private MetagluePrimitives callerAgent;

public AgentExceptionHandler(MetagluePrimitives ap,AgentlD aid,Catalog c)
id=aid;
catalog=c;
callerAgent=ap;

}

public boolean handleRemoteException(RemoteException re,ExceptionHandlerlnterface caller,
String method-name)

System.out.println (method name+" Threw Exception: "+re);
try {
catalog.alive(; // Test that the catalog is alive

catch(Exception e)
System.out.printn("METAGLUE: Exception handler found the catalog to be dead");
throw new CatalogAccessError();

}
try

System.out.printn("METAGLUE: Exception handler looking for a working stub in the catalog");
caller.instantiate (catalog.lookup(id)); 2,3

catch(Exception e) {
System.out.println("METAGLUE:Lxception handler attempting a new reliance "+id);
caller.instantiate (callerAgent.reliesOnSynch (id,false));

return(true); - 5

53

The code performs the following actions:

1. Test if the Metaglue catalog is alive

2. Perform a Catalog lookup() to check for a working stub5

3. If a working stub exists, replace the wrapper's current stub with the working stub

from the catalog

4. If a working stub does not exist, perform a reliesOn() (the appended synch refers

to a request for a synchronous agent startup)

5. Repeat the method invocation

A lost catalog is considered an irrecoverable error, because all bindings have been lost and

reestablishment is ill defined. Therefore, when a dead catalog is detected, a Java error is

thrown, which is meant to halt the agent. If, on the other hand, the catalog is still func-

tioning, the error handler checks to see if a working stub for the failed agent exists. A

working stub may exist in the catalog if a user has shut an agent down and then restarted it

(agent swapping). If there is no working stub, the error handler tries restarting it by issuing

a new reliesOn(). When a handle is returned, the problematic method invocation will be

repeated, and the error handling process may in fact repeat itself, e.g. due to an agent that

continually crashes. The current exception handler has no sense of "frustration", i.e. it will

A Metaglue catalog lookup() checks the RMI registry for a binding of a stub class file to the provided agent name.
Next, the catalog makes a test method invocation into the stub to ensure that the agent is "alive". If the agent is alive,
the lookup() will return the stub. If the agent is not found "alive", a RemoteException will be generated by the
JVM and caught inside lookup (). The binding will be removed from the RMI registry and the caller notified that the
agent is not running.

54

repeat the described process indefinitely. Nor does the exception handler try delaying be-

tween restarts. I have, however, provided the programmer with a means for modifying this

behavior. The exception handler can be viewed as a monitor that can be swapped out and

dynamically replaced with a user's implementation at run time. Therefore, a user can re-

place the error handling logic for those agents that he would like, while maintaining the

default behavior for the rest of the agents. Furthermore, the exception handler is provided

with the name of the method that failed. If a user wanted to have different error handling

behavior for different methods, he could accomplish this by checking against the method

name. Another modification of the error handler would treat subclasses of

RemoteException differently, i.e. different communication failures can be handled in

different ways.

When trying to introduce the EHA wrappers to the Metaglue system, it was initially felt

that the wrappers should be maintained by the Metaglue catalog. When reliesOn() per-

forms a catalog lookup(, it would receive an EHA wrapper instead of the stub. To

reliesOn (), as well as the agent, the two are indistinguishable, since agents are always ref-

erenced by their interface, and both implement the interface file for the agent. When the

catalog was implemented with the appropriate logic, it was found that this approach,

though attractive in theory, proved to be a poor choice. Calls into the catalog are in fact

remote method invocations (they are inter-agent communications). The RMI protocol

states that if an object that implements the Remote interface is passed as an argument in a

55

remote method invocation, that object must have a corresponding stub and skeleton file.

Because our wrappers implement the agent interface definition file, and these indirectly

extend Remote, the wrapper itself extends Remote. For this approach to work, we

would need to create stubs for the wrappers. This is clearly a bad idea, since we are back to

our original problem of having unwrapped remote method invocations.

The solution was to return the wrappers from local method call. Examination of the system

showed that reliesOn() itself is called using local method invocations (it is a primitive in-

herited from AgentAgent), and so the wrapping logic was placed there.

When reliesOn() is invoked, it checks to see if a wrapper for the agent exists. If it does, it

instantiates the agent and returns the wrapped version. If reliesOn () can not find a wrap-

per, it will return an unwrapped version. Therefore a programmer can choose not to wrap

certain agents.

EHA wrappers can not be passed as arguments in remote method invocations for the same

reason they could not be returned from the Metaglue catalog. An EHA wrapper imple-

ments the Agent interface, and therefore also the Remote interface. To allow the EHA

wrappers to be passed between agents, we would need to generate stub files. This brings us

back to the original problem of needing to generate stubs for the wrappers. Therefore,

56

Metaglue insists that the programmer pass references to agents using the AgentID and not

the reference to the agent.

With the introduction of the EHA wrappers, Metaglue can now persistently maintain agent

connections. If an agent programmer shuts an agent down, the wrapper will detect the fail-

ure and attempt to reestablish the connection with no programmer intervention. This

fulfills the requirements of the second design goal described in the first chapter, and pro-

vides the programmer with a means to introduce traffic-flow control or a debugging

system.

4.2 ASYNCHRONOUS RELIESON()

This discussion of asynchronous reliesOn() is detailed and entails substantial modifica-

tions to four aspects of the system:

1. reliesOn()

2. The EHA wrappers

3. The Metaglue catalog

4. reliesOnSynch()

57

4.2.1 RELIESON()

When reliesOn() is called, the first thing it does is try to place a marker in the catalog no-

tifying other agents that the designated agent is being started. This marker is an instance of

a class called AgentPlaceHolderAgent that has few methods, but has a rmic gener-

ated stub file and can be stored in the RMI registry. At this point the store in the catalog

can succeed, meaning that no other thread is trying to start the agent, or it can fail meaning

that an instance of the agent is already being initialized, or has already been initialized and

the appropriate stub stored in the catalog. If the catalog add fails, reliesOn() returns an

instance of the EHA wrapper.

If reliesOn() successfully adds the AgentPlaceHolderAgent to the catalog, it starts a

new thread that actually instantiates the agent, and immediately returns an instance of the

EHA wrapper. When instantiation completes, the thread replaces the

AgentPlaceHolderAgent stored in the catalog with the actual stub to the agent. The

AgentPlaceHolderAgent is, as its name implies, simply a placeholder. The

placeholder can be stored in the catalog and easily identified.

4.2.2 EHA WRAPPERS

Clearly, the EHA wrappers are a vital aspect of asynchronous agent startup. They provide

an object that can be returned immediately without concern for dependencies. When the
58

EHA wrapper is returned from reliesOn(), it does not have a valid reference to an agent

stub. In the sample LampEHA.java code provided in Figure 10, it is clear that the wrap-

pers ensure they have a valid (non-null) value for their interface reference. If the wrapper

detects that it does not have a handle to the stub it will invoke a reliesOnSynch () that will

block until a handle to the agent is available.

4.2.3 METAGLUE CATALOG

The Metaglue catalog had to be modified so that if an add() was performed, it would al-

low a rebind of a real stub replacing an AgentPlaceHolderAgent, but would disallow

rebinding an AgentPlaceHolderAgent for another AgentPlaceHolderAgent, or

for an agent stub. Furthermore, the lookup() method was modified so that it would block

if the provided agent name is bound to an AgentPlaceHolderAgent. If there is no

binding, lookup() fails.

The AgentPlaceHolderAgent stored in the catalog can belong to a MVM that has

crashed or was killed by the agent programmer. Therefore, if someone else tries starting

the agent, Metaglue needs to know whether the agent is still being started, or if the agent's

JVM has died. When a catalog add(/lookup() is performed, and an

AgentPlaceHolderAgent is bound in the RI registry, a test is performed to ensure

that the AgentPlaceHolderAgent is still responding. If the

59

AgentPlace HolderAgent is not responding, the add() will succeed (with a rebind) or

the lookup() will fail (and not block).

4.2.4 RELJESONSYN('Ho

The instantiation of an agent still needs to be performed synchronously. Imagine the asyn-

chronous (independent thread) startup of the agent has failed. At this point, the agent that

relied on this agent believes it has a working reference to the target agent, and will perform

a method invocation. However, the wrapper detects that it does not have a valid reference.

Therefore, the wrapper calls a reliesOnSyncho, that synchronously starts up the agent.

This method will not return until it has generated a valid instance of the target agent, either

through a catalog lookup or through a new instance. Therefore, if the agent is buggy and

always fails during construction, reliesOnSynch() will loop, notifying the user that it is

having difficulty starting the agent while continuously attempting the instantiation.

Similar to reliesOn(, reliesOnSynch() also attempts to store an

AgentPlaceHolderAgent in the catalog. If it fails (again, because the agent name is

bound to either a placeholder or a real stub) it calls the catalog's lookup() which will

block if the binding is to an AgentPlaceHolderAgent, or return the agent stub if it's

available. If the AgentPlaceHolderAgent store succeeds, reliesOnSynch() will start

the agent normally and return the stub when instantiation is complete.

60

In this new system, what happens if agent X depends on agent Y and agent Y depends on

agent X? Assume both agents have been primed and EHA wrappers exist for both. While

agent X is starting up, it has a placeholder saved in the catalog. When agent X invokes

reliesOn() with agent Y as an argument, the method will immediately return the EHA

wrapper to agent Y. Furthermore, agent Y will be started in its own thread. When agent Y

declares its dependence on agent X, the reliesOn() will return immediately with an EHA

wrapper, regardless of whether agent X has completed the startup or not. At this point,

both agents can complete their initialization in good time, and will not block each other.

Upon the first method invocation, the method will wait for the stub to be stored in the

catalog and then proceed normally.

61

Figure 15 Asynchronous reliesOn(

Catalog

agent X -0 AgentPlaceHolderAgent

I agent X reliesOn() agent Y

agent X receives agent Y's EHA Wrapper

agent X startup complete Catalog

agent X * agentXStub
agent Y 0 AgentPlaceHolderAgent

agent Y reliesOn() agent X
acent Y receives aaent X's EHA wraoper

agent Y startup complete

62

Catalog

agent X -+ AgentPlaceHolderAgent
agent Y 0 AgentPlaceHolderAgent

Catalog

agent X 0 AgentPlaceHolderAgent
agent Y * AgentPlaceHolderAgent

Catalog

agent X 0 agentXStub
agent Y - AgentPlaceHolderAgent

Catalog

agent X 0 agentXStub
agent Y 0 agentYStub

-1

Chapter 5

CONCLUSION

Metaglue is being used by seven agent programmers on a regular basis. The programmers

report that the system is simple to use, yet powerful enough for the demands of environ-

ments like Hal and the Intelligent Room. With only three primitives, new programmers

can be trained to use Metaglue quite quickly.

My extensions to Metaglue have served to simplify the programmer's task, as well as make

him more productive. Catalog interference is much less common, and programmers need

only concern themselves with Metaglue Virtual Machines and not glue spreaders. Pro-

grammers use dynamic agent reconnection extensively as they stop and restart agents

without needing to restart their applications. Furthermore, the system is more robust and

reliable now that components can fail, and Metaglue will automatically restart the agents.

It is interesting to note that none of the agent programmers have replaced the

AgentException Handler's default behavior. This serves to demonstrate that agent

programmers have found it unnecessary to modify the reconnection behavior, and that the

existing protocol is sufficient for most uses.

63

The possibility of circular agent dependencies has also been well received by the program-

mers. Various aspects of Hal have been modified to take advantage of this modification.

However, asynchronous agent startup has made debugging a more challenging endeavor.

Isolating bugs is more difficult when the path of execution is no longer linear through agent

initializations.

As reported by the agent programmers, these modifications have proven to be an improve-

mnent over the original Metaglue implementation.

5.1 FUTURE WORK

There remain areas in Metaglue that can be improved. The current implementation of the

EHA wrappers is overly simplistic. These wrappers should include the concept of "frus-

tration". If agent reconnect has failed for a certain number of minutes, or a certain number

of attempts, user intervention should be requested. Furthermore, performance could be im-

proved if the wrappers were to delay before reissuing the startup commands.

The addition of load balancing to Metaglue would make the system more powerful. This

capability will become increasingly important as applications become more complex and

demanding on their hosts.

64

Finally, Metaglue is still missing an effective debugging environment. Several program-

mers have attempted to develop a Metaglue debugger, all with limited success. Writing a

symbolic debugger for distributed programming environments is a very difficult task. As

with load balancing, the need for a symbolic debugger increases with the complexity of

applications being developed.

Metaglue remains a system in continuous development. We have found the fundamental

design to be sound and easily expandable. With my modifications and extensions, Meta-

glue has been improved, and is more effective in multi-agent programming environments.

There remain, however, areas in need of further development.

65

Chapter 6

BIBLIOGRAPHY

Coen, Michael H. Design Principles for
Intelligent Environments. Proceedings
of AAAI 1998 Spring Symposium on
Intelligent Environments. AAAI
Technical Report SS-98-02, 1998.

Coen, Michael H. Building Brainsfor
Rooms: Designing Distributed Soft-
ware Agents. Proceedings of the Ninth
Conference on Innovative Applications
of Artificial Intelligence. 1997.

Coen, Michael H. SodaBot: A Software
Agent Environment and Construction

System. MIT AI Lab Technical Report
1493, June, 1994.

Horstman, Cay S., Cornell, Gary. ('ore
Java 1.1: Fundamentals Volume 1.
Prentice Hall Computer Books, 1997.

Horstman, Cay S., Cornell, Gary. ('ore
Java 1.1 Volume II. Advanced Fea-
tures. Prentice Hall Computer Books,
1998.

Horstman, Cay S., Cornell, Gary. Core
Java 2 Volume 1: Fundamentals.
Prentice Hall Computer Books, 1997.

Java Remote Method Invocation Specifi-
cation. Revision 1.50, October 1998.

Maes, Pattie. "CH197 Software Agents
Tutorial." CHI, April, 1997.

Minsky, Marvin. The Society of Mind
Simon & Schuster, Inc. 1988.

Phillips, Brenton. Metaglue: A Program-
ming Language for Multi-Agent
Systems. Master of Engineering The-
sis. 1999.

66

