
An Empirical Study of Automatic Document

Extraction

by

Irene M. Wilson

Submitted to the Department of Electrical Engineering and
Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer
Science

at the Massachusetts Institute of Technology

June 1999

@ Copyright 1999 Irene M. Wilson. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so. MASACUSETSIN
MASSACHUSETTS INS

OF TECHNOLOG'

Author -

Department of EleXkrical Engineering and Computer Science
May 21, 1999

Certified by.
Howard Shrobe

Associate Director, MIT Al Lab

Accepted by.... L.-.. . r<~>-.

,Art ur t
Chairman, Department Committee on Graduate Students

An Empirical Study of Automatic Document Extraction

by

Irene M. Wilson

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 1999, in partial fulfillment of the

requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

Abstract

This paper presents an information extraction system designed to function on all
types of textual input. It uses a combination of several statistical methods to extract
a user-specified number of sentences. In addition, to accommodate for the wide variety
of input types, a different "template" is used to cater to the statistical patterns of
each type. This project provides a flexible framework that could be easily extended
to become a trainable, multi-use extractor. Although it is not limited to any single
application, this product was specifically developed to be used in conjunction with
the START natural language processor. Together, they are capable of assimilating
and storing large quantities of diverse information for retrieval.

Thesis Supervisor: Howard Shrobe
Title: Associate Director, MIT AI Lab

2

Contents

1 Introduction

1.1 Why Summarize?

1.2 The Utility of Summarization . .

1.3 The Challenge of Summarization

1.4 Project Goals

2 Background

2.1 Natural Language Processing

2.2 Word Occurrence Statistics .

2.3 Other Statistical Methods . .

2.4 Information Extraction

Level Design

Project Background

The Function of the AutoExtractor . . .

User Input Modifications

3.3.1 Ensuring Sentences are Parseable

3.3.2 The Optimal START Input .

3.3.3 Types of User Modifications .

3.3.4 Automatic Sentence Modification

4 Sentence Extractor Design

4.1 Design Principles .

3

8

. 8

. 9

. 9

10

3 Top

3.1

3.2

3.3

12

. 12

. 13

. 13

. 14

15

by START

. . . . 15

. . . . 16

. . . . 17

. . . . 17

. . . . 18

. . . . 19

. . . . 20

22

24

4.1.1 Using Natural Language Processing 24

4.1.2 Using Word Occurrence Statistics 25

4.1.3 Using Statistical Methods . 25

4.1.4 Using Information Extraction 26

4.2 Analyzing Sentence Characteristics 26

4.2.1 Word Occurrence Statistics 27

4.2.2 Other Statistical Methods . 28

4.3 Evaluate Sentence Keyness . 29

4.3.1 Calculations . 30

4.3.2 Document templates . 31

5 Design Issues 35

5.1 Determining Document Type . 35

5.1.1 Automatically Determining Document Type 35

5.1.2 Direct User Type Input . 36

5.1.3 Necessary User Modifications 37

5.2 Parsing Issues . 37

5.2.1 Possible Parser Modifications 38

5.3 Compensating for Different Formats 39

6 Testing

6.1 Comparison Techniques.

6.2 Calculations

6.3 Test Input

6.4 Results

6.4.1 General Observations . .

6.4.2 Contrasting Input Types

6.4.3 Further Testing

7 Conclusions

7.1 Principles Discovered .

41

. 4 1

. 42

... 43

. 4 4

. 44

. 4 4

. 4 8

50

50

4

7.1.1

7.1.2

7.2 Future

7.2.1

7.2.2

7.2.3

7.2.4

Variety Causes Complexity .

The Importance of Knowledge

W ork .

Improving Upon Word Occurrence Statistics

Adding Additional Sentence Structure Factors

Adding Negative Keywords and Phrases

Altering Templates Through Automatic Learning Algorithms.

A Testing Instructions

B Code

B.1 Summ.lisp

B.2 Parse.lisp

B.3 Objects.lisp . . .

B.4 Char.lisp

B.5 Template.lisp . .

B.6 Rank.lisp

B.7 Lib.lisp

C Sample Output

C.1 Sample Article Output

C.2 Sample Documentation Output

C.3 Sample Report Output

C.4 Sample Speech Output

D Test Document Sources

D.1 Documentation Sources .

D .2 Report Sources .

E Templates Used in Testing

E.1 Article Tem plate .

E.2 Documentation Template .

51

51

52

52

55

55

55

58

60

. 60

. 62

. 66

. 7 1

. 76

. 78

. 80

83

. 83

. 85

. 88

. 92

95

95

95

96

96

97

5

E.3 Report Template . 98

E.4 Speech Template . 99

F Summary Analysis Results 101

6

List of Figures

3-1 Top Level Design . 16

4-1 AutoExtractor Design . 23

6-1 Summary Scores and Standard Deviation 45

6-2 Percentages for Input Types . 46

7

Chapter 1

Introduction

As time goes by, the ability to automatically summarize text has become more and

more useful. However, despite the fact that automatic summarization has been at-

tempted for decades, current techniques are far from perfect. The extractor which is

presented in this thesis, the AutoExtractor, utilizes the techniques of several other

systems in the attempt to create a flexible and robust method of summarization.

1.1 Why Summarize?

As the years go by and technology progresses, the amount of data available continues

to increase exponentially. We are besieged by mass amounts of information that we

have no hope of assimilating. It is therefore becoming increasingly valuable to be able

to sift quickly though information to discover its content [7].

Consider, for instance, an organization that is interested in keeping abreast of

all recent information pertaining to a particular subject, such as the import and

export of a type of material. It would begin by collecting all possible documents

that might contain this information. New data would have to be collected day by

day, forming a continuous stream of information. Most of this information would be

completely irrelevant. It might then try to narrow its search by looking for key words

or phrases that could indicate the presence of a relevant document. However, it would

undoubtedly find that even this narrowed search is prohibitively large; it simply does

8

not have sufficient resources to process the documents to determine if they are valid

or false hits. The cost of labor and the amount of information is simply too large.

The example given above is only one situation in which the ability to automatically

summarize a document would be extremely valuable. As the amount of available

information continues to increase, such examples become more and more common.

1.2 The Utility of Summarization

There are several distinct ways that a document summary can be useful. A few

examples are listed below:

o a shortened version of the real document

o a way to determine if the real document is useful

o a text over which to search automatically

o a summary of the results of the activities described

For example, one might wish to create a summary for a document because one does

not have time to read the entire document. Or one might need a summary to discover

quickly if the document covers relevant subject matter. There are many diverse

situations in which summaries are useful or even vital. The task of summarizing is

therefore very widely attempted and different implementations have been utilized for

many years.

1.3 The Challenge of Summarization

Despite the decades of accumulated research on the topic, however, a truly "intel-

ligent" document summarizer is yet to be developed. This task, which is relatively

simple for an educated adult, is simply counter-intuitive to the capabilities of a com-

puter.

9

To implement a summarizer that is truly reliable and accurate in every situation,

it must be able to process the text of the document and somehow "understand" the

content. No statistical analysis techniques are completely trustworthy. The program

must be able to analyze the essence of the document in order to understand what is

important and always produce a summary that humans would find understandable

and relevant.

Unfortunately, understanding the content of a document is no trivial task. Hu-

mans have access to massive amounts of data about the world and its interactions

that a computer does not possess. No computer, at present, is capable of reading a

sentence and understanding not only its literal import, but also all the implications

that do not directly follow from the text. For this reason, the task of summarization

is "Al hard"; in other words, it will never be satisfactorily completed until artificial

intelligence is successfully created.

1.4 Project Goals

This fact, however, does not discourage continuing efforts in the area. This thesis

project, though certainly not the only work of its kind, is unique in its combination

of several attributes:

* utilizes a combination of several extracting techniques

" easily alterable to place emphasis on different techniques

" functions over large array of input types

" creates summaries to user's need and specification

The AutoExtractor combines several extracting techniques because it has become

clear that any one technique will not perform robustly over such diverse input. There-

fore, several techniques are used so that the disadvantages of each is compensated for

by the advantages of the others.

10

It it written in a flexible format that makes it simple to utilize a different tech-

nique or place a new emphasis on certain document characteristics. This makes the

AutoExtractor extremely malleable, and also lends itself to the use of a learning

algorithm to automatically find the optimal setting for a given input-output type.

It functions relatively accurately over an unusually large and diverse array of

input types. Most summarizers are either specific to a certain input type or overly

generalized. Though the use of document type templates, the AutoExtractor handles

any number of document types while retaining the statistical accuracy that is normally

lost when the input type is generalized.

Finally, the AutoExtractor also can be easily adjusted to cater to the user's specific

summary needs. Previously in this chapter, several possible uses for a summary were

listed. Because each summary type indicates a different optimal summary content,

the AutoExtractor templates can also be used to choose sentences that are specific

to the type of summary needed.

11

Chapter 2

Background

Many techniques have been used over the years to solve the problem of automatic

document summarization. This is simply because no one technique is flexible enough

to solve the problem as a whole [12]. Each approach was developed to apply to

specific types of situations. In the paragraphs below, I have briefly described a few of

the more prevalent summarization methods. Each of these methods will be at least

partially incorporated into the structure of my implementation.

2.1 Natural Language Processing

The most obvious and elegant way to summarize a document is to process the content

and use the ideas and information gained to generate a more specific representation

[6]. This is, theoretically, the technique that humans use to summarize. However,

this approach is extremely difficult. Currently, no language processing system has

been developed that can even approach the level of understanding that a human

achieves almost effortlessly. The amount of interconnected information that a human

uses to parse and conceptualize a piece of text is staggering. Trying to represent this

knowledge artificially is a daunting task. As a result, natural language processing,

at present, is only useful when the text it is processing falls into a specific category

or format. The information base needed to represent this specialized data is then

manageable.

12

2.2 Word Occurrence Statistics

Another common technique used in summarization is word occurrence statistics. This

procedure is not complex in theory or application. It attempts to capture the essence

of a document by calculating the frequency of usage of significant words. This infor-

mation is usually stored in a vector, which can be compared with other such vectors

using a trivial computation. This technique, while quite simple and elegant, is not

always effective. While there often is a correlation between word occurrence and

content, this is not always the case [10].

Word occurrence methods are a rather unique technique that has its own set of

advantages and disadvantages. It can be especially helpful in situations where the

type of the document is unknown. The algorithm used is completely independent of

the document format, because it only uses frequency of word usage.

However, a word occurrence algorithm is also capable of making drastic errors.

For instance, instead of only recording the frequency of the key words used in the doc-

ument, it might become sidetracked by also recording the usage of unimportant words

that have nothing to do with the actual topic of the document. In addition, many

words in the English language are spelled the same but actually refer to completely

different objects. A word occurrence algorithm pays no attention to this fact. All

words that look the same are lumped together, regardless of whether they refer to the

same thing. This would create a false correlation, for instance, if one were comparing

two paragraphs, one of which was about the illegal drug "coke" (an abbreviation for

cocaine) and Coke, the popular soft drink [11].

2.3 Other Statistical Methods

Statistical methods assume that the target sentences usually have certain character-

istics. These characteristics can include, but are not limited to:

" sentence location in document

" structure of sentence

13

e occurrence of certain words or phrases in sentence

The document is searched for sentences whose characteristics are similar the the

characteristics that key sentences often have. These are then chosen as good can-

didates for key sentences. Once again, these methods cannot determine whether a

sentence actually contains relevant content; they can only make an educated guess

based upon previously gathered statistical data.

2.4 Information Extraction

Unlike the previous two summarization techniques, the method of information ex-

traction (also known as "template filling") does not pull sentences directly out of

a document to form the summary. Instead, one need only fill in the blanks of a

summary template that was pre-generated for a specific type of document [5].

For instance, a document might be known to have a certain format or a certain

type of content. Since it is known to contain this data, a template can then generated

for the summary of this document before it is even processed. Then the document

is searched for the specific information to plug into the template. There is no real

understanding of the content; the algorithm only looks for certain words in certain

locations to fill the slots in the summary.

This technique is, obviously, very specialized. Each template can only be used

for one certain type of document. If there are more than one type of document

in the system, a new template much be generated for each. This is a very useful

and accurate method in certain cases, but it is almost useless when one is trying to

summarize input that cannot be easily categorized [3].

14

Chapter 3

Top Level Design

In combination with a natural language processor, my code creates a system that is

capable of analyzing, documenting, storing, and retrieving textual data.

3.1 Project Background

The AutoExtractor was designed for a specific use as part of a larger project. This

larger project is concerned with the difficulty of processing and storing large amounts

of data. Its goal is to be able to automatically assimilate data such that it can later

be accessed and utilized. The principle tool that is used to accomplish this is the

START natural language processor. START is currently under construction in the

MIT Artificial Intelligence Laboratory. While this system is not comprehensive, it is

capable of processing typical sentences and representing them as interactions between

basic objects. This information can then be accessed by querying the database of

objects and interactions.

Unfortunately, given the difficulty of natural language processing, the START

system is limited in its ability to process input. It cannot understand sentences that

have a complicated sentence structure or that use unfamiliar vocabulary. However,

START is capable of assimilating a more complicated piece of data by associating it

with simple annotations. For example, a long, technical paper can be summarized

into a few sentences that are simple enough for the NLP to process. These sentences

15

DOCUMENT

raw text

USER

0 0

AUTO summary annotation
EXTRACTOR

: r

document !ye
sentences

user modification

START

-> mandatory

-------- > optional

Figure 3-1: Top Level Design

are then added to the database, with the full text of the paper attached. In this way,

very complicated text can be assimilated by the system. The same technique can be

applied to other forms of data, such as pictures, charts, discussions, etc.

3.2 The Function of the AutoExtractor

The task of the AutoExtractor is to provide START with parseable annotations for

text that is too long and/or too complicated for START to process. While there

are many programs designed to construct summaries of text, the AutoExtractor is

a sentence extraction algorithm. This means that instead of trying to construct

sentences to form a coherent summary, the AutoExtractor chooses sentences verbatim

from the document that accurately represent its content [8]. It is therefore based upon

the theory that a coherent summarization can be constructed by selecting sentences

or phrases from the document that are representative of the document as a whole.

For instance, if one were to combine the topic sentence of each paragraph into one

block of text, this text would probably be a good summary of the main ideas in the

16

document.

Finding the sentences which best represent a document is not always possible. In

fact, there is no guarantee that such a collection of sentences exists. The alternative

ways of generating a summary, however, were either too complex or too limiting for

our use.

3.3 User Input Modifications

The optimal document processor would need no human aid to do its job. However,

given the state of Artificial Intelligence at this time, the AutoExtractor output must

be modified before it is fed to the START NLP.

3.3.1 Ensuring Sentences are Parseable by START

Although the complexity of the document assimilation has been greatly simplified

by submitting annotations in place of the full document, it is still complicated by

the fact that START cannot parse sentences that are overly complex in structure or

content. Sentences that have several clauses, for instance, are often rejected. Also,

the START program has a limited, if relatively large, lexicon. This means that if

the sentence contains words that are not in the lexicon, the sentence often cannot be

parsed or assimilated properly. Given the technical nature of most of the summaries

my program will produce, chances are extremely high that at least some portion will

be unprocessable by START because of either complex sentence structure or the usage

of unknown vocabulary.

Therefore, the Autoextractor output must be altered to match the level of sim-

plicity that the NLP requires. There are two possible ways to do this. One could

either modify the code so that any sentences that are not parseable by the NLP are

not selected to be in the document summary. Alternatively, one could generate the

best possible summary, then modify the sentences to conform to the NLP's require-

ments. Ideally, the second option is more attractive because one would not be forced

to discard the best summarizing sentences simply because they are too complex for

17

START to parse. Automatically altering the format and perhaps even the content of

a sentence, however, was too complex a task to be tacked in the scope of this thesis.

For this reason, the task of editing the sentences for START compatibility is at this

time performed by a human operator.

3.3.2 The Optimal START Input

It was mentioned above that one must be careful that the sentences provided as input

to the START system are not so complex in structure or vocabulary that START is

not able to parse them. In addition, the sentences provided as annotation for larger

documents must contain just the right amount and type of information to get the best

results. Using certain types of input will result in greater accuracy and success in

processing. In order to retrieve information about an item that has been entered into

the START database, one must ask a question that matches that item of information.

For example, if one might enter the following annotation into the START system:

Bally Entertainment Corp. is seeking federal antitrust clearance to acquire

a major stake in gambling rival Circus Circus Enterprises Inc.

To access this information, the user would have to enter a query about the objects

created when the statement above was entered. One possible query would be:

What corporations are seeking federal antitrust clearance?

Another possible query:

What sort of relationship does Bally Entertainment Corp. have with

Circus Circus Enterprises Inc.?

If the statement given above were part of the annotation for a larger document

dealing with the business dealings of the Bally Entertainment Corp. with the Cir-

cus Circus Enterprises Inc., this would be a moderately good summarizing sentence.

One of the queries given above would have a good chance of triggering the original

statement and causing the entire document to be retrieved.

18

If the original document dealt instead with the subject of the Circus Circus En-

terprises business dealings in general, however, this sentence would still trigger on

both of the above queries, and START would respond to the query with a primarily

irrelevant document. For this reason, it is important to prevent sentences that are

too specific from being chosen for the summary.

In the same manner, it is also important not to choose sentences that are too

general. In this case, a query that asks specifically about the data in the document

might not trigger that document because the summary is so general that the two

sentences would not match.

It is a delicate process to decide how much information to provide about a docu-

ment. One must look at the problem not from the standpoint of a summarizer, but

from the standpoint of a person that might wish to access this information. What

queries would a person interested in that document be likely to ask? What sort of

statements would trigger with those queries? Those statements are not necessarily of

the same form as the sentences one would choose as the best summarizing sentences

in the document.

3.3.3 Types of User Modifications

Because the AutoExtractor is not accurate enough to select only sentences that meet

the above criteria, some extra modification is needed. At present, this modification

is provided by the human user. After a document has been summarized, it is the

responsibility of the user to choose those sentences from that summary that contain

the right information and ensure that they are simple enough that the START system

could process them. This usually entails:

" Eliminating extraneous clauses or sentences that add complexity or unnecessary

vocabulary

" Selecting the sentences in the summary that specifically mention the main points

in the document

19

* Eliminating the sentences or clauses that provide extraneous data about the

document

While this creates undesirable overhead for the human operator, it is significantly

preferable to the alternative of reading the document, finding the summarizing sen-

tences, and then editing them for compatibility with the START system.

3.3.4 Automatic Sentence Modification

It is quite possible that the role of the human operator could be completely elimitated

from the function of this system with only a slight decrease in accuracy of sentence

selection. A new piece of code could be written to evaluate the sentences chosen

by the AutoExtractor and alter them as necessary to conform to the START input

requirements.

For instance, if a sentence contains a clause that mentions information that is not

relevant to the main topic of the document, this clause can be removed automatically.

A sentence may contain several clauses that cause the sentence to be very complex,

but are not necessary to retain the main point of the sentence. Consider the following

sentence:

There was significant growth in manufacturing activity during the month,

overtaking previous record levels, and prices were forced up as suppliers

failed to meet the increase in demand.

The phrase "overtaking previous record levels" causes extra complexity, but can

be removed without destroying the key content of the sentence.

The same technique could be applied to sentences that are too complex for START

to parse. These sentences could be simplified by removing clauses or separating the

original sentence into multiple sentences.

The problem of the limited lexicon is more simple to overcome. While START is

capable of processing sentences without outside aid, it also can utilize user-supplied

"hints". For instance, if the sentence contains a proper noun that is not contained in

20

the lexicon, START must simply be informed that the word is a noun, to be able to

process the sentence. This type of information can easily be supplied automatically

through any of a number of sentence parsers.

It is difficult to know with any certainty whether it would be possible to create a

piece of code to seamlessly link the AutoExtractor to the START NLP. More research

needs to be done to determine exactly how the output of the AutoExtractor relates

to the optimal input to START, and what sorts of alterations typically need to be

done. If these alterations form predictable patterns, it may be possible to create a

program to perform the alterations automatically and eliminate the role of the human

operator completely.

21

Chapter 4

Sentence Extractor Design

As this report progresses, the individual components of the AutoExtractor will be

examined in more detail. Its basic technical function, however, is as follows:

1. The document type of the input must be established. This information can

either be provided by the user or automatically detected in the Document Type

Recognizer. See section 5.1.1 for more information.

2. The reformatter must take the raw input of the text and alter it so that it

conforms with the format that the rest of the AutoExtractor is programmed to

recognize. It uses the knowledge of the document type to do this. See section

5.3 for more information.

3. The Parser breaks down the document into a tree of structure objects that

hold all necessary information about the document. See section 5.2 for more

information.

4. The Characteristic Evaluator creates a sentence characteristic object for each

sentence, which holds all the characteristics needed to compute the goodness of

a sentence for extraction.

5. The Calculator uses the appropriate document template in conjunction with

the sentence characteristic values to calculate a overall rating for each sentence.

See section 4.3.1 for more information.

22

USER

0 0

I IDC

I I RE(

I tentati
doe t3

I doc

I I t p

doe t3

CALCULI

I #sentences-

DOCUMENT

> mandatory

-------- > optional

sentences

Figure 4-1: AutoExtractor Design

23

6. The top n sentences are returned as the output of the AutoExtractor, where n

is determined by the user.

While all aspects of the technical implementation of the AutoExtractor will not be

explained in detail in this chapter, there are several design decisions and techniques

that will be discussed in this chapter. Some non-central design decisions are also

discussed in chapter 5, "Design Issues".

Some sample input documents with their AutoExtractor generated summaries are

included in Appendix C.

4.1 Design Principles

None of the popular summarization methods mentioned in the background section

appear to contain all the qualities that are necessary to create a robust, adaptable way

to process textual information. Therefore, the AutoExtractor is a hybrid of sevaeral

techniques that combines to form an algorithm that is both accurate and adaptable.

Alone or together, no method can guarantee that an accurate, coherent summary will

be generated. By combining techniques, however, the flaws in one implementation

can be compensated for by another. This results in an overall greater probability that

an acceptable summary will be generated.

The following sections will describe how several different summarizing techniques

are combined in the AutoExtractor.

4.1.1 Using Natural Language Processing

As was mentioned earlier in this paper, it is effectively impossible at this time to create

a natural language processing system that can interpret and understand language as

well as a human. However, systems have been developed that can process certain

types of input. The START NLP, mentioned above, is one such system.

Therefore, while the technique of natural language processing is not currently

utilized in the AutoExtractor to any appreciable extent, the project as a whole is ex-

24

tremely dependent on START to process the output of the AutoExtractor and record

the facts represented there. The AutoExtractor does not have to process the text at

all or make any judgements about its content. In addition, the primary weakness of

natural language processing, namely, the extreme difficulty of processing complicated

text, is overcome by using the other summarizing techniques in the AutoExtractor.

The task of the other summarizing techniques is now reduced to changing the

content of a document into a format that can be understood by the NLP. While this

is significantly easier than analyzing the document from scratch, it is still a formidable

task.

4.1.2 Using Word Occurrence Statistics

Word occurrence is one of the primary methods used in the AutoExtractor. While

its utility is greatly affected by the type of document being processed, in certain

situations there is simply no other technique that is useful.

Studies have shown that this technique is not a particularly accurate method of

extracting information from structured, predictable documents like technical reports

or newspaper articles. For other types of input, like informal emails or speeches, its

use can be vital. When a document has little structure, the best way to decide which

sentences are key is to trigger off the words in the sentence. For this reason, word

occurrence is an extremely valuable technique when dealing with such varied and

unpredictable input.

4.1.3 Using Statistical Methods

There are several other statistical methods that are used in the AutoExtractor in con-

junction with the word occurrence techniques. Specifically, it analyzes the location

and format of each sentence and calculates a fitness number based upon its charac-

teristics. This is a very powerful technique that has proven to be successful in other

experiments [12]. While not as specialized as information retrieval techniques, sta-

tistical methods are much more useful when the document type is known. With the

25

help of document templates to cater to the statistical information of each document

type, statistical methods provide some useful information for almost any input.

4.1.4 Using Information Extraction

The technique of information extraction is so specific to a certain type of document

that it is almost useless when the input is very diverse [12]. However, some related

methods can be very useful.

One example of information extraction in the AutoExtractor is the use of section

and paragraph headings. The program looks for specific words and phrases in the

headings to indicate that the following paragraphs are likely to contain good sum-

marizing sentences. This is related to information extraction techniques in that the

program triggers off key words and phrases to find the information it desires.

In addition, the AutoExtractor searches the text to detect words or phrases that

might indicate the presence of a good summarizing sentence. Without understanding

anything of the context or meaning, it gives a sentence that contains certain phrases

higher probability of being selected. This also is a common technique in information

extraction.

While information extraction is not as useful when the input is very diverse, it can

be helpful when used in conjunction with other techniques by providing statistical

clues that otherwise would be lost.

4.2 Analyzing Sentence Characteristics

There are many factors that may indicate that a sentence should be chosen as a

summarizing sentence for a document. When a person tries to find key sentences

for a document, but he does not have time to read it and generate his own, he will

probably use this sentence extraction method. He will scan the document, looking in

the most likely locations first. He will look for sentences that have a certain format

and structure, and that contain words or phrases that seem relevant to the rest of the

document. These words or phrases may seem important because they are mentioned

26

often throughout the paper or in the section headings. These are all techniques that

the AutoExtractor uses. It is incapable of reading and understanding the text, but it

is able to mimic the other techniques a human might use.

4.2.1 Word Occurrence Statistics

Analyzing word occurrence is the technique used to determine if a sentence contains

words that are important in the document as a whole. In this way, it determines that

one sentence is more likely to be a good representation of the document content than

another. It is discussed in more detail in the previous chapter.

As each word in the document is read, it is analyzed to see if it is a significant

word- that is, not a proposition, conjunction, etc. If it is significant, it is added to

a list that keeps track of what significant words the document contains. It is also

added to a similar list for the specific sentence it is in. These lists are saved in the

form of a vector. Each location in the vector represents a certain word, and the value

of that location is how many times that word appears in the document or sentence.

When the document is completely parsed, the sentence vectors are then scaled and

compared against the document vector. If a sentence vector is very similar to the

document vector, it theoretically contains a good representative selection of words

from the document.

In the AutoExtractor, the method of choosing keywords is quite simple. A perma-

nent list of non-keywords is constructed, and as long as the word is not in the list, it is

assumed to be a keyword. The non-keyword list consists of prepositions, determiners,

and other words that are usually irrelevant to the content of the sentence. Using this

technique, many unimportant words are included in the word vector, but at least

very few significant words are excluded. In addition, this method takes a negligible

amount of time and is trivial to implement.

27

4.2.2 Other Statistical Methods

In addition to word occurrence, several other types of statistical methods are ex-

tensively used in the AutoExtractor. For each sentence, certain characteristics are

recorded that may have an impact on the likelihood that the sentence is a key sen-

tence.

Sentence Location

When a human is pressed for time and wishes to quickly find the main points of a

document, he will skim certain locations first. For instance, he may read the para-

graph labeled "introduction" or "conclusion". He is very unlikely to pick a random

paragraph in the middle of the text and expect it to give him good insight into the

content of the document as a whole. This is because the good summarizing sentences

are usually located in certain places in the text.

The AutoExtractor utilizes this fact by taking note of the sentences that occur

in these special areas. The locational characteristics that the AutoExtractor records

are:

" sentence location in the paragraph

" paragraph location in the section

" section location in document

" the paragraph or section heading

The first, second, or last sentence in the paragraph is often the topic sentence of the

paragraph. Therefore, it is important to record the sentence location in the paragraph.

It is often also necessary to remember information about the paragraph and section

in which the sentence appears. First or last paragraphs often are summaries of the

section they appear in, and so are more likely to contain key sentences. Sections at the

beginning or end of a document are also often more likely to contain key sentences.

In addition to the location of the paragraph or section, it might also be important

to analyze the titles or headings under which the sentence appears. For instance, one

28

is clearly more likely to find a key sentence under a section entitled "Abstract". For

this reason, the AutoExtractor has a list of phrases that it searches for in each title

or heading. If one of these "title-phrases" are found, all sentences under that title

may be given an advantage.

Sentence Characteristics

The characteristics of the sentence itself can also be important when trying to find

a likely key sentence. The sentence structure characteristics that the AutoExtractor

records are:

" length of sentence

" occurrence of key words or phrases in sentence

The length of the sentence, for instance, can be useful information if one wishes

prevent the AutoExtractor from choosing abnormally short sentences as key sentences.

Also, one can decide to give an advantage to medium or longer sentences, which may

be more likely to be good key sentences than short ones.

The AutoExtractor also records which sentences contain "keyphrases". A keyphrase

is any phrase that might occur more frequently in good summarizing sentences. For

instance, if a sentence includes the phrase "this report shows", this may indicate that

it is a good sentence to include in the summary. When a sentence contains a keyword,

this is recorded for later use in calculating sentence fitness.

4.3 Evaluate Sentence Keyness

Once all relevant information about the sentences of the document has been gathered,

the program must then decide which sentences should be chosen. This is accomplished

by calculating a total score for each sentence based upon the characteristics it has

and the document type.

29

4.3.1 Calculations

The AutoExtractor was designed to use a very straightforward and intuitive method of

calculating sentence scores. This is so that it is simple and easy to make modifications.

All the sentences in the document have certain recorded characteristics. For ex-

ample, each sentence has a length, position, keyphrase content, etc. Each of these

characteristic has a weight which represents how much impact that characteristic will

have on the probability that the sentence is good to include in the summary. For

instance, the length of a sentence may be much less important than the location

of the sentence in its paragraph. Therefore, the weight of the length characteristic

would be much lower than the weight of the paragraph location characteristic. Char-

acteristic weights must be greater than or equal to zero. There is no upper limit the

characteristic weights, and they do not have to sum to any total.

There are many possible values for each sentence characteristic. For example, the

sentence length characteristic can have the values very short, short, medium, or long.

Each of these values is assigned a score. For instance, if very short sentences are

very unlikely to be good key sentences, it will have a score of zero. A short sentence

might be a little more likely, so it will be given a score of .3. Medium and long

sentences might be equally likely to be key sentences, so they are given a score of 1.

Characteristic scores must be equal to or greater than zero, and equal to or less than

1. They do not have to sum to any value. The best the value(s) for a characteristic

should be assigned the score of 1. The worst should be assigned a zero. If this is

not the case, the program will still work, but the characteristic will effectively not be

given the weight that was intended.

Calculating a sentence's score from its characteristic values is trivial. First, one

must multiply each characteristic weight by the score of its value. The sentence score

is computed by adding these numbers together.

Assume that ce, refers to sentence characteristic n. w(c,) then refers to the weight

of characteristic n. v(cs) represents the value assigned to characteristic n, and s(v(c,))

represents the score of the value assigned to characteristic n. Then the figure below

30

represents the method of calculating a sentence score:

W w(ci)s8(V (ci)) (4.1)

There are several advantages to this rather simplistic method of computing sen-

tence fitness. First, it is trivial to add or remove sentence characteristics to the

equation. No modifications need to be made to the existing characteristic weights or

value scores. The addition or removal of a characteristic only increases or decreases

the total possible sentence fitness. Since the comparative fitness between sentences is

the only significant factor, changing the total possible fitness score is irrelevant. One

can also add or remove characteristic values without altering any other characteristic.

If, for instance, one wanted to make a distinction between "long" sentence length and

"cvery long" sentence length, one need only add the "very long" sentence length and

assign it a score. One might also need to alter the scores of the other values in the

characteristic.

In addition to being easy to alter or extend, this method of sentence scoring is

also very intuitive. The importance of a document characteristic is simply determined

by its numerical weight. To compare its importance with the importance of another

characteristic, one need only compare the two weights. If one weight is twice as large

as the other, that characteristic is twice as significant.

4.3.2 Document templates

The characteristic weights and slot values mentioned above must be assigned numbers

such that the AutoExtractor is most likely to choose good summarizing sentences.

Because of the wide variety of input and output types, however, document templates

are used to cater to the statistical peculiarities of each input and output combination.

See appendix E for an example of document templates.

31

Templates for Document Types

In order to process varied input data, the AutoExtractor was created with the ability

to use "templates", which make it possible to utilize the statistical data of that

document type to its fullest extent.

Most document summarization projects have a limited type of input material.

The AutoExtractor, however, was designed to summarize any type of input. This

could include but is not limited to:

" technical reports

" documentation

" newspaper articles

" discussions

" verbal presentations

" informal discourse

The list of possibilities is long and varied, and each one of these document types

is quite unique. They use different vocabulary and sentence structure, in addition to

having a different document structure and formatting. The information content is in

different locations and in varying concentrations. It would be extremely difficult to

generalize over this entire set of documents. In fact, it may very well be impossible.

For example, one might examine a newspaper article versus a verbal presentation.

In a newspaper article, the most important information is concentrated heavily in

the beginning of the article. The first paragraph almost always contains all the

vital information in the article. In response, one might increase the weight of the

"paragraph location" characteristic and give the "first paragraph" value a score of 1.

This means that the fact that a sentence is in the first paragraph would have a large

positive effect on the overall sentence fitness score.

32

However, a verbal presentation does not have the same structure as a newspaper

article. A speaker will often start the presentation with a long, roundabout introduc-

tion, and will often not address the central issue until well into the speech. For this

type of document, the weight of the "paragraph location" characteristic might not

be very high, since a speaker may come to the point at almost any time during the

speech. Also, the "first paragraph" score of the "paragraph location" characteristic

will probably not be 1, since a paragraph in the middle of the speech is more likely

to contain a good summarizing sentence than the first one.

The example given above is only one of many difficulties that arise when one

attempts to generalize over different types of documents. In order to have any sort of

success using statistical extraction methods, different types of documents must use

different statistical data. For this reason, the AutoExtractor was designed to analyze

different types of documents using their own statistical data. Each document type

has a "template" that contains all the characteristics that that is significant for that

document type, and all the value scores for those characteristics. It is a simple matter

to add a new type of document to the system; one must only create a new template

file.

Templates for Summary Types

In addition to using templates to cater to the statistical information about a specific

document type, templates can be used to create summaries that are customized to

the needs of the user.

In the introduction to this paper, it was mentioned that there are many possible

applications for a document summary. The optimal summary for one application is

not necessarily the best summary for a different application. For instance, if one

needed a summary to determine whether the complete document was relevant, the

optimal summary would contain all the main subjects discussed. If one needed a sum-

mary of the results of the experiment discussed in the paper, however, the optimal

summary would contain the basic facts of the experiment performed and the results.

Therefore, two "good" summaries of the same document can have very different con-

33

tent based upon the type of summary needed.

The fact that there are so many different uses for a summary makes the job

of the summarizer even more complex. To create a summary specific to a certain

use, one must create a template that weights heavily those characteristics needed in

the extracted sentences. In this way, the AutoExtractor can be modified to extract

different types of sentences.

Although the summarizer was designed specifically to manufacture the type of

document that is well suited as input to the START natural language processing

system, the template system makes it simple to expand its capabilities to other uses.

34

Chapter 5

Design Issues

There were several interesting and challenging aspects of this project that were not

necessarily central to the issues of document extraction. These are discussed below.

5.1 Determining Document Type

In order to use the correct template, the AutoExtractor must know what type of

document it is evaluating. There are two ways to accomplish this: either the user can

explicitly tell the system the type of document, or the AutoExtractor can look at the

characteristics of the document and make a guess.

5.1.1 Automatically Determining Document Type

There are many document characteristics that can indicate that a document is of a

certain type. For instance, certain types of documents may have specific headers or

signatures. If there is a finite number of document formats that will be used as input

to the AutoExtractor, one can be sure that certain characteristics, like the content

of the header, will be present in order to categorize the input into these preset types.

This method is both fast and accurate.

If the system is not guaranteed to receive input in a certain format, however,

it must resort to other, more subjective methods. In this case, some or all of the

35

following indicators must be used:

" content of headings and subheadings

" formatting

- number and size of paragraphs and section

- presence of lists and/or figures

" document length

" writing style

- type of vocabulary

- sentence length

- sentence structure

One may in fact be able to categorize an input based solely on the format or tone

of the document. For instance, if the document has section and paragraph head-

ings, and if some of these headings contain the keywords "abstract", "introduction"

or "conclusion", this could indicate that the document is a formal report. On the

other hand, if the document has a less rigid structure and contains simple, informal

vocabulary and punctuation, it might be an informal email or speech transcript. This

method of document categorization is more computationally intensive and might not

always be accurate. However, any attempt at categorization is preferable to ran-

domly choosing a template that may have no statistical relevance to the document in

question.

5.1.2 Direct User Type Input

The simplest and most accurate method of categorization, of course, is to explicitly

tell the system the type of the input it is receiving. This requires that the inputs are

already categorized or that a human operator is available to categorize the documents

as they are entered. If this is not practical, the more subjective methods mentioned

above must be relied upon.

36

5.1.3 Necessary User Modifications

At present, the portion of code that controls document recognition is incomplete.

This is because there is no information available at this time regarding the types of

the documents that will be used as input. In fact, this section of code will need to

be adjusted for each different environment in which the system is used. Currently,

the code analyzes the document and records information that might be useful for

categorization, such as the header, section titles, word frequencies, keyword usage,

etc. To recognize a certain type of document, one need only check if it contains

certain distinguishing characteristic(s) and return the appropriate document type.

If the user, however, does not have the time or knowledge to alter the code in this

fashion, it is always possible to simply choose a default categorization (resulting in

some loss of accuracy) or categorize the inputs by hand.

5.2 Parsing Issues

Parsing the input documents, though not part of the experimental aspect of this

project, was nevertheless quite challenging. There are several products available that

can automatically parse a document, but I chose to write my own parser instead.

This is because I wanted to have the flexibility of parsing exactly where and what

was needed specifically for the AutoExtractor product.

For example, the parser for the AutoExtractor must be able to detect paragraph

and section breaks in documents that do not contain tags to indicate these locations.

The parser also must be able to record which sentences are in each paragraph and

section.

Perhaps most importantly, however, one can never be sure what document char-

acteristic might become an important piece of information for extraction. Using a

commercial or pre-written parser would create a risk of being unable to modify the

parser to record the information needed. Since I wrote my own parser, however,

gathering new data about a document is as simple as modifying a few lines of code.

The information that the AutoExtractor parser records at this time is listed below:

37

* document heading

" section breaks

" paragraph breaks

" section titles

" paragraph titles

" fragment sentences

" total number of sentences

" total word content for the document

" sentence text

5.2.1 Possible Parser Modifications

There are, however, several aspects of a document that may be useful in the detection

of good summarizing sentences that are not currently detected by the document

parser.

One significant example of this is the comma. If the parser were able to recognize

commas in the text, it could gather valuable information about the structure and

complexity of a sentence. In some situations, this information could be vital in

detecting or eliminating sentences of a certain structure.

Another piece of information that the AutoExtractor parser does not record is

recursive section breaks. Currently, the parser can only distinguish two levels of

structure in a document: the section and the paragraph. Therefore any subsections,

subsubsections, etc. are simply interpreted as paragraphs. This limits the AutoEx-

tractor's ability to gain information from the substructure of the document.

There is an almost infinite amount of information that the parser could glean

from a document. As the AutoExtractor continues to be developed and honed for

accuracy, the truly significant aspects of the document will be pinpointed. At that

time, the parser can be modified to collect exactly the amount of data needed.

38

5.3 Compensating for Different Formats

In addition to causing problems with statistical variation, the wide diversity of in-

put types also causes basic formatting difficulties. Each of the different input types

has its own way of delimitating sections, paragraph breaks, headings, tables, etc.

For instance, an HTML document appears quite different from a Word document

or an informal email, even though all these documents can contain the same basic

structures.

It would be extremely difficult to train the parser to recognize all the different

formats that it may receive as input. Therefore, the AutoExtractor first runs the

document through a reformatter to alter the input document so that its structure is

of the format that the parser has been trained to recognize. The basic characteristics

of the standard parser format are as follows:

" Fragments at the beginning of the document are headings

" Sections are separated by two or more returns

" Paragraphs are separated by one return

e Titles are fragments separated by returns

" No carriage returns at the end of lines

For example, if an informal email was used as input, it would probably be in a

raw text format with carriage returns at the end of each line and large header at the

beginning of the file. When entered into the reformatter, the email header would be

removed and the carriage returns at the end of each line would be removed.

If an HTML document were entered as input, the formatter would examine the

tags and reformat the document accordingly. Where a new section begins, it would

separate the text with two returns. New paragraph tags would cause the text to be

separated with one return. The title would be placed on a line separated by returns.

Any HTML code or tags would be removed.

39

The reformatter is a portion of code that is impossible to write before the input

document types are known. Documents vary widely in their format, and it is simply

not possible to anticipate the changes a new input type would require. Therefore, once

a new input type is known, the reformatter must be augmented to handle this new

type. Its task is greatly simplified by the fact that the document type is determined

by the document type recognizer. See section 5.1 for more information on document

type recognition.

40

Chapter 6

Testing

Testing the performance of this system is not a simple task. There many interrelated

variables factoring into the calculation of the best possible summarizing sentences.

In addition, determining the success of a summarization is a very arbitrary and time

consuming procedure.

6.1 Comparison Techniques

To test the AutoExtractor, its performance was compared against that of a human

summarizer. This was accomplished by running a set of texts through the AutoEx-

tractor and then having these same texts manually summarized. The human sum-

marizers were instructed to choose the top log2 (log2n - 2) - 1 sentences that best

summarized the text, where n is the number of sentences in the document. They were

also instructed to choose the next log2n - 2 best summarizing sentences in the text.

See appendix A for the specific instructions given.

To generate the document type templates for each different input type, one fourth

of the test set was used. The template values were set so that they would maximize

the performance on this segment of the testing set. The remainder of the testing set

was then used to evaluate the actual performance.

41

6.2 Calculations

The summaries were scored using the following procedure:

Every sentence is a assigned a rank. If the AutoExtractor selects a sentence, the

rank of that sentence is the order in which that sentence was selected. For example,

the sentence that received the highest score from the AutoExtractor has rank one, the

second best rank 2, and so on. Sentences that are not selected by the AutoExtractor

are assigned rank 0. The rank of a sentence x is denoted r(x).

Assume the total set of sentences that the human underlines is u. The total

set of sentences that the human circles is c. Therefore, the set ur > 0 is the set of

underlined sentences that have rank greater than zero; that is, the sentences that are

both selected by the AutoExtractor and underlined by the human.

|cl denotes the number of sentences in the set c. Jul is the number of sentences in

the set u. These numbers are determined as described above by the total number of

sentences in the document.

The total score for a document summary is calculated using the following equation:

1 2(|cl + Jul) - r(ui) + 1 1 2(|cl + Jul) - r(ci) + 1 (6.1)
Jlir(U)>0} 2(1c| + ul)) c {i:r(cj)>O} 2(|cl + Jul))

The rationale behind this method of scoring is as follows: The left half of the

equation represents the score for the sentences that were underlined. The right half

represents the sentences circled. The circled sentences represent the best summariz-

ing sentences in the document. The underlined sentences indicate a larger volume

of good summarizing sentences. These two subtotals are intended to be equally sig-

nificant in the total score, indicating that choosing the best summarizing sentence is

approximately as important as choosing several good sentences.

The higher the rank of an underlined or circled sentence, the larger the benefit to

the summary score. Therefore, a sentence of rank cr is assigned the value:

2(Icj+lul)-r(u)+1
2(IcI+IuI)

42

This distributes the values of the ranked sentences from .5 to 1. The sentences

with rank zero are assigned a value of zero.

The values of all underlined sentences are summed together and divided by the

total number of underlined sentences. The same procedure is followed with the circled

sentences. Then the two resulting numbers are added to create the final summary

score.

6.3 Test Input

Several different types of documents were chosen as test input:

* 20 reports

* 20 documentation papers

e 20 transcribed speeches

* 20 newspaper articles

These four categories by no means represent the total array of possible input

document types. They do, however, well illustrate the variety of input possible.

The reports consist of papers ranging from quite technical to moderately informal.

All contain a title and are divided into sections and paragraphs. They were not

intended to be related in any specific way; each report addresses different subject

matter. They vary in length from one page to several chapters. The reports were

found at the URLs listed in appendix D.

The documentation papers each describe the technical aspects of a system. Many

of these papers are subsections of a larger body of documentation. The subjects of

the documentation papers are quite varied. Some of the papers are taken from the

same larger body of documentation. Otherwise, the content is unrelated. They are

from one to several pages in length. The documentation documents were found at

the URLs listed in appendix D.

43

The transcribed speeches are all from the same source; namely, presidential ad-

dresses to the public between the dates of March 15, 1997 and March 27, 1999. The

format of the speeches are very similar, but the content varies in accordance with the

current issues of the nation. Each speech is one to two pages in length.

Finally, all 20 newspaper articles are taken from the New York Times. The articles

are from one to several pages in length. Their content is varied and unrelated.

6.4 Results

6.4.1 General Observations

The results of the testing were generally positive. Thirty-seven out of sixty document

summaries, or 62%, contained a circled sentence; that is, a sentence that the human

chose as the best summarizing sentence of the document. Only fourteen out of sixty

summaries, or 23%, did not contain any of the sentences that the human selected.

See appendix F for the machine and human results, as well as the actual scores of

each summary.

As I personally looked through the results, I felt that most of the summaries did

contain enough information to generally describe the topic of the document. However,

it also became clear that many of the sentences selected are completely inappropriate

as summarizing sentences. It is not difficult for a human to recognize which of these

sentences are good and which are irrelevant. Perhaps there is a way to automate this

process, so that less inappropriate sentences are included in the future.

6.4.2 Contrasting Input Types

The performance of the AutoExtractor varied widely across the four document types

used as input. Figure 6-1 shows the average summary score and the summary stan-

dard deviation for each document type.

Figure 6-2 shows, for each document type, the percentage of AutoExtractor sum-

maries which contained a circled sentence and the percentage of documents in which

44

.87 average summary score

.8

71 summary standard dev

.6

.51

.42 .45 .44
.42

.4 .39 .38

.2

0

Figure 6-1: Summary Scores and Standard Deviation

45

I

D0 circled sentence included

H 80 8
no sentence overlap

60

60
0 47

EH 40
Z 40
U

.27 27

220

20O 6.7

00

Figure 6-2: Percentages for Input Types

there was no overlap between the AutoExtractor summary and the sentences chosen

by the human.

Newspaper Articles

The newspaper article was the second best summarized document type, with an av-

erage summary score of .706. This number is probably due to the fact that most

summarizing sentences in an article are primarily located in the first two paragraphs.

This is a simple trend for the AutoExtractor to identify and take advantage of. Iden-

tifying a summarizing sentence that is located in the body of the article, however,

was more rare.

46

Documentation Documents

The high scores of the documentation summaries were quite surprising. The average

documentation score was .873, which was significantly higher than the speech or

report average. This can be attributed primarily to the fact that the AutoExtractor

often chose a circled sentence from the document. This, in turn, is probably a result

of the fact that a documentation document almost always gives a good summarizing

sentence in the very beginning of the document, followed by very few in the rest of

the document. Therefore, it is easy for the AutoExtractor to identify the primary

summarizing sentence.

Reports

The results of the report scoring were rather disappointing with an average of .453.

This was significantly lower than both the article and documentation scores. I fear

that the performance may have been better if the parser was more accurate. I sus-

pect that the paragraph and sections breaks and headers were not always properly

identified. In addition, the low scores may have been caused by the fact that the re-

ports had more internal variation than the other document types. The reports varied

widely in content and tone, from short informal discussions to long, technical reports.

Speeches

The speeches received the lowest average score with a .383. I suspect that this was

due to the lack of structure in a verbal presentation. The human summarizers did

not consistently choose sentences from any one section of the document. The sen-

tences chosen did not contain any unique structural elements that would distinguish

them from the rest of the document. This is probably the result of too many good

summarizing sentences. In a short address, the president felt the need to use many

catch phrases and sweeping statements. For this reason, the speech documents were

liberally sprinkled with good summarizing sentences. This makes it very difficult for

the human and AutoExtractor to agree on only a few best sentences.

47

6.4.3 Further Testing

There is a great deal of additional testing that would provide further insight into

the accuracy of the AutoExtractor. Unfortunately, the lack of time and resources

prevented me from performing these tests.

Comparing with Other Extractors

The data gained through the tests above is somewhat unilluminating, since the per-

formance of the AutoExtractor was analyzed in isolation. To gain information about

the AutoExtractor in comparison with other extractors, one could run the same input

used above through the other extractors. These results could then be scored with the

same process, and the performance of the two extractors could be compared directly.

Analyzing Scoring Accuracy

The results of these tests are somewhat suspect because there is no measurement

of their consistency. There are several reasons that these scores may prove to be

inconsistent. The sentences selected by the human are usually not the only sentences

that can create an accurate document summary. Each person has a different opinion

of what constitutes a good summary, and a summary that receives a good score

when graded by one user might receive a bad score when graded by another [9]. In

addition, some documents might contain so many good summarizing sentences that

there is not a very large overlap in sentence selection. (I suspect this to be the case

with the speech documents.) Alternatively, some documents may not contain enough

summarizing sentences, so that the AutoExtractor and human are forced to pick

almost randomly. (This I suspect to be the case with the documentation documents.)

One way to discover the amount of precision in the testing results is to have each

document analyzed by several humans. If there is a significant amount of overlap, then

the testing results are valid. If the humans consistently choose different sentences,

then it would be clear that the summary scoring somewhat arbitrary, and should not

be taken too seriously.

48

Analyzing the Document Templates

Different document templates were created and used for the four different test input

types, but no analysis was made of their success or failure as extraction tools. To

acquire information about this subject, one might run the same documents through

the extractor using different templates. For example, the same inputs can be analyzed

using one general template, and then analyzed using the template that fits their

document type. If performance significantly improves, this would indicate that the

templates are a positive addition to the AutoExtractor.

49

Chapter 7

Conclusions

I began the task of creating the AutoExtractor as a straightforward path to a well

defined goal. As the project comes to a close, however, it has become clear to me

that the AutoExtractor is still in a stage of infancy. The list of augmentation, testing,

and analysis that remains to be done grows longer and longer even as I attempt to

implement it.

Luckily, the goal of this project was not to create the perfect summarizer. En-

gineers much greater than myself have tried this and failed. Rather, my goal was

to create a working summarizer that functioned well enough for its purpose, while

continuing to broaden my own knowledge and experience in the field of Artificial

Intelligence. I feel that I have accomplished this goal.

7.1 Principles Discovered

In the course of my work with the AutoExtractor, I have grown in my knowledge of

artificial intelligence. The following sections will discuss some of the principles that I

have discovered or realized anew.

50

7.1.1 Variety Causes Complexity

One of the more frustrating principles that I discovered is that the tasks that are the

most intuitive to a human are often the most difficult to implement.

For example, one of the first pieces of code I attempted to write was a document

parser. I had decided to write one myself so that it would be very flexible and conform

to my exact specifications. I was impatient to finish this subgoal, and continue on to

what I considered to be the "meat" of the project. I was surprised to discover that

I had begun a formidable task. Since there are no limits to the input types to the

extractor, there is also no limit in the variety of formats that the parser must be able

to recognize. I found it very difficult to accurately separate the text into sections and

paragraphs and correctly differentiate headings and titles from headers, footers, and

lists. Parsing the documents, which is an almost effortless task for a human, became

one of the most challenging aspects of the project.

As this little task grew to monumentous proportions, I realized that there are

some things that a computer just is not suited to do. Specifically, it is very difficult

to perform a task with a great deal of variation and noise. This is a principle that

continued to come back and haunt me throughout the project.

7.1.2 The Importance of Knowledge

At the outset, I viewed this project as a simple piece of code that would be complete

once written. I have since learned that the code itself is merely a structure upon

which the real AutoExtractor must be built.

The power of the extractor is not in the mechanics of the code that was written,

but in the information that is gained through running and testing the code. Humans

utilize a bed of information about documents and syntax that is vast in comparison

to what is encapsulated in, for instance, an AutoExtractor document template. To

create a truly versatile and accurate extractor, the knowledge that a human has must

somehow be collected and stored quickly and accessibly [8].

In the case of the AutoExtractor, a great deal of knowledge could be gained

51

through more extensive testing and/or the implementation of an automatic learning

algorithm.

7.2 Future Work

Through my studies and through the helpful suggestions of others, it has become

apparent to me that there are many ways that the AutoExtractor could be augmented.

Although it is not completely clear that these augmentations would have a positive

effect on the system as a whole, they are at least worthy of experimentation.

7.2.1 Improving Upon Word Occurrence Statistics

One of the techniques used in the AutoExtractor to determine whether a sentence

should be extracted is the similarity in word occurrence statistics between the sentence

and the document (see section 4.2.1.) This technique is widely utilized both in the

task of extracting and for many other tasks. Therefore, there are many permutations

and additions to this technique that may improve upon the current accuracy of the

AutoExtractor. A few of these improvements are listed below.

Matching Summary and Document Statistics

The test used to determine whether a sentence should be extracted is the similarity in

word occurrence between the sentence and the document as a whole. In other words,

this technique attempts to make each individual sentence in the summary similar in

word content to the document. There is another, more complex way of extracting

sentences using occurrence statistics. Instead of matching each individual sentence

with the document, this other technique attempts to match the overall summary

statistics with that of the document.

The implementation of this technique is straightforward. The first sentence is

extracted as usual. The second sentence, however, is not simply compared to the

document word occurrence statistics. Instead, the second sentence is selected by how

well its word occurrence, when combined with the first sentence, matches with the

52

total document statistics. The third sentence is selected by how well its word occur-

rence, when combined with the first two sentences, matches that of the document.

This process continues until the total number of sentences to be extracted have been

chosen.

The advantage of this this technique is that the summary created is more likely to

contain a wide variety of important topics than if the sentences were all chosen based

upon the most prevalent items in the text. For example, the majority of the document

might deal with one topic, but a significant portion might focus on a a different issue.

If the sentences chosen are always required to match with the document as a whole,

they will always be related to the most common topic in the document. They might

be very repetitive, and they may not touch upon other minor, yet significant, topics in

the document. When sentences are compared as an addition to the existing summary

instead of independently, however, a topic that has thus far been unrepresented in the

summary may be included to satisfy that portion of the document's word occurrence

statistics.

The primary reason that this technique has not been implemented in the AutoEx-

tractor is that I suspect the effect of the word occurrence aspect of the extractor is

too insignifcant to cause the problems mentioned above. I have found, in the process

of developing the AutoExtractor, that the word occurrence statistics have a relatively

small influence on the selection of a sentence for extraction. Therefore, the slight

difference in word occurrence similarity between a major topic and a minor topic in

the document would not have a significant impact on the total score for that sentence.

While I could not imagine why using this improved word occurrence technique

would have a negative impact on the performance of the system, it would require

added complexity and computation. The accuracy of the document summary must

increase significantly to justify the additional work.

Word Weighting

One of the more difficult aspects of word occurrence statistics is selecting which words

are more significant that others. The key words in the document must be given high

53

importance, and other random words that are unrelated to the topic should have a low

impact on the decision making process. Some systems use extensive semantic analysis

to determine the important noun phrases used in each sentence [1]. Then those

words are given a higher weight in the word array. This technique, however, is very

computationally intensive, and usually does not result in significant improvements in

accuracy [4].

In addition to putting more emphasis on individual words, it is also common to

weight certain sections of the document that are likely to contain significant infor-

mation. For instance, the first few paragraphs of a newspaper article almost always

contain all vital information in the article. Therefore, the words in that portion of

the article can be given a larger weight during the word occurrence calculations.

Finally, a related but different technique involves doing analysis on the entire body

of documents in addition to the document in question. Words that occur frequently

in the body of documents are given less significance while words that are unique to

the present document are weighted heavily. This is a way of determining which words

in the document are vital specifically to the document.

Taking Roots to Categorize Words

Another common way to make word occurrence techniques more accurate is to use a

program to take the root of any word that is not already in root form. Therefore, the

the program will acknowledge that two words that do not look exactly the same are

nevertheless referring to the same concept: for instance, both "routing" and "router"

would be reduced to the same root word, "rout". This technique does occasionally

have undesirable effects, however. For instance, some words may appear to be in a

reducible form to the program, but are not actually reducible. For instance, the last

name "Carter" would be reduced to the root word "cart" [11]. For simplicity's sake,

no root words are taken in this implementation. It would be possible to add this

feature in the future to see if it would have a significant impact on performance.

54

7.2.2 Adding Additional Sentence Structure Factors

There are several aspects of sentence structure that the AutoExtractor does not pro-

cess at this time. Some of these, however, might be very important in determining

whether a sentence should be extracted. For example, a sentence that contains several

clauses may be more likely to be a good summarizing sentence in some situations.

While the parser does not detect information like commas or the word "and", these

would be simple modifications that may greatly increase the ability of the extractor

with certain input types.

7.2.3 Adding Negative Keywords and Phrases

One important aspect of the AutoExtractor is the detection of key words or phrases

that may indicate the presence of a good summarizing sentence. In the same respect,

it may be just as helpful to search for negative words or phrases that indicate that

a sentence is not a good sentence to extract. In fact, some studies show that the

negative keyphrase method can eliminate as much as 90 percent of the sentences of

the document [2].

This would also be a simple augmentation to add to the AutoExtractor. It would

require the addition of a new sentence characteristic that is assigned a higher value

the fewer negative key phrases the sentence contains.

7.2.4 Altering Templates Through Automatic Learning Al-

gorithms

At present, the AutoExtractor templates are created by hand. The user must use his

or her best judgement to assign characteristic weights and value scores to conform

to a certain type of desired input and output. While a user can assign these values

with an often surprising amount of success, it is effectively impossible for a person to

guess the exact combination of numbers that would produce the best possible output

for that document type.

For this reason, altering the templates using an automatic learning algorithm

55

would be a very helpful addition to the AutoExtractor. Instead of assigning the tem-

plate numbers, the program would be given training documents until it automatically

converged on the best number combination.

In order to use learning algorithms, however, there must be a standard against

which to compare the program output. If there is no way to determine how "good"

a summary is, there is no feedback mechanism that the program can use to improve

its performance. Unfortunately, determining the goodness of a summary is not a

trivial task. There are many possible combinations of sentences that can form a

good summary, and there are many different types of summaries. Evaluating the

goodness of a summary is an extremely subjective task. This task must be performed

automatically, however, in order for the learning algorithm to receive the volume of

training data it needs.

An Automatic Learning Implementation

A related project, which used a technique very similar to the one discussed above,

generated its feedback by analyzing technical reports that already contained abstracts.

If the summarizer returned a sentence that was similar enough to a sentence in the

abstract, that sentence was said to be a good choice.

Automatic Evaluation Disadvantages

There are a few disadvantages to this procedure. First, the correlation between the

contents of the author-created abstract and the quality of extracted sentences is not

concrete. Simply because a sentence is not included in the abstract does not mean

that it is not a good summarizing sentence. An already difficult learning process

would then be further complicated by the false evaluation of extraction results.

Secondly, the comparison of the abstract and an extracted sentence is a somewhat

complex. It is possible to simply look for a sentence in the abstract that is identical

to the extracted sentence, but sentences in the abstract are seldom exactly identical

to sentences in the document. They are frequently either combinations or segments

of the original sentences. In order to evaluate the extracted sentence with any degree

56

of accuracy, the comparison method must be capable of recognizing sentences that

are only a part or partially contained in an abstract sentence. This is a delicate task

which is somewhat subjective.

Finally, in order for this technique to be possible, there must be a testing set

available with an abstract (or the equivalent) for each document. This would clearly

not always be the case. For instance, in the testing set that was described in the

previous chapter, there would have been no way to find a testing set for the article,

documentation, or transcribed speech documents.

As inconvenient and limiting as the this automatic way of determining the quality

of an extracted sentence may be, it is still preferable to the alternative. Instead, a

human operator would have to hand-evaluate the fitness of the extracted sentences. A

prohibitively large amount of manual labor would be necessary to process the volume

of test documents needed to train the system.

57

Appendix A

Testing Instructions

Instructions:

You have been given four documents. Your job is to choose sentences out of

these documents that you think are good summarizing sentences. This means

that they would be good to include in an abstract about that document. You

cannot choose parts of a sentence; you must choose the entire sentence.

Please do not choose any titles or headings. Use your best judgement.

There are two numbers written on the top of each document with a slash

between them: x/y. Look at the number on the left (x). CIRCLE that many

sentences that you think are the BEST summarizing sentences in the document.

Now look at the number on right (y). UNDERLINE that many more sentences that

are also good summarizing sentences (but not as good as the circled ones).

When you are finished, you should have x sentences circled and y sentences

underlined. (Do not underline sentences that you have already circled.)

NOTE: Some of the documents are rather long; you do NOT have to read and

understand the entire document! Feel free to skim things that you are

pretty sure don't contain any significant sentences. Reading and marking

a long paper should take no longer than 5-10 minutes.

Please return these to me by FRIDAY MAY 14th. You can either slip them

under the door of my office (NE43-832), send them to me through

interdepartmental mail (Irene Wilson, Ashdown #402A), or give them to

58

me directly.

Thank you thank you thank you!

59

Appendix B

Code

B.1 Summ.lisp

Irene Wilson

AI lab
Knowledge-Based Collaboration Project

created: 7-22-98 IW
altered: 2-4-99 IW

Summ.lisp

This file contains all the master calls for the document summarization;

all functions are accessed (directly or indirectly) from this file.

(setq VERBOSE 'nil)

(setq VERBOSE-RES t)

(setq COUNT t)

; ; This is the main function that runs the auto-summarization program.
(defun auto-sum (file-name &key numb-sents percent-sents user-doc-type)

(let*

((percent-sentences (or percent-sents 5))

;; read in file (found in parse.lisp)
(file (read-file file-name))

capture all information of the file into a bunch of objects
found in parse.lisp

(doc-structure (parse-string file))

create a list containing the characteristics of each sentence, consed

with the characteristics of the document

(doc-and-sent-chars (get-doc-and-sent-chars doc-structure))

;; classify the document type based on the document characteristics

(doc-type (or (intern (string-upcase user-doc-type))

(get-doc-type (car doc-and-sent-chars))))

60

using the formula for the document type, calculate the fitness of

each sentence as a topic sentence

(sentence-ratings (make-sentence-rankings (cdr doc-and-sent-chars)

(get-template doc-type))))

return the n percent best topic sentences from the document

(get-best-sentences sentence-ratings

doc-and-sent-chars

percent-sentences

numb-sents)))

;;This function will analyze the characteristics of the document to determine

the document type. At the moment, we will just assume it is a report.

(defun get-doc-type (doc-characteristics)

'doc)

;;returns a vector of the best rated sentences with their ratings

(defun get-best-sentences (sentence-ratings

doc-and-sent-chars

percent-sentences

numb-sents)

sort by highest rating

(let ((sorted-stats (sort

(rank-vector sentence-ratings)

*'(lambda (senti sent2) (> (sent-rating (cdr senti))

(sent-rating (cdr sent2))))))

(best-sentences (make-array 0 :adjustable t :fill-pointer t))

(number-sentences

(if numb-sents
numb-sents

(* percent-sentences (/ (num-sentences (car doc-and-sent-chars))

100)))))
(when COUNT

(let ((num-sent (num-sentences (car doc-and-sent-chars))))

(format t "~A~A~A::~A::~A~A" #\Return #\Return num-sent

(- (log (- (log num-sent 2) 2) 2) 1)

(- (log num-sent 2) 2)

#\Return)))

assemble vector of best sentences + ratings
(loop for x from 0 to (- number-sentences 1)

do (let* ((text (sentence-text (pointer-to-sent

(aref (cdr doc-and-sent-chars)

(car (svref sorted-stats x))))))

(sent-rating-info (cdr (svref sorted-stats x)))

(rating (sent-rating sent-rating-info)))

(vector-push-extend (cons text rating) best-sentences 10)

(when VERBOSE-RES

(format t "A~A" *\Return *\Return)

(format t "A: ~A" (+ x 1) text)

(loop for y from 0 to (- (length (chars-used sent-rating-info)) 1)

do (let ((char-assgn-info

(aref (chars-used sent-rating-info) y))

(char-val-info

(aref (val-of-chars-used sent-rating-info) y)))

(format t "~A ~A: ~A ==> ~A x ~A = ~A"
*\Return

(car char-assgn-info)

(cadr char-assgn-info)

(car char-val-info)

(cadr char-val-info)

(caddr char-val-info)))))))

best-sentences))

61

appends an index to each sentence-rating so we don't lose the original

order after sorting

(defun rank-vector (vector)

(let ((rank -1))
(flet ((rank-element (element)

(setq rank (+ rank 1))

(cons rank element)))
(map 'vector *'rank-element vector))))

B.2 Parse.lisp

Irene Wilson

AI lab

Knowledge-Based Collaboration Project

created: 7-23-98 IW
altered: 2-11-99 IW

Parse.lisp

This file contains a library of functions that will take a file

and parse its contents into several objects that contain all

interesting information about that document

(setq kill-returns 'nil)

(setq indents 'nil)

This function takes a file name and returns a string of text that

represents the contents of the file. Also, if the format of the file needs

to be changed, it changes it to an acceptible format.

(defun read-file (filename)

(let ((prev-line-punc 'nil)

(file (concatenate 'string "Grant-HD1:Users:merri:testing:documentation:formatted:" filename)))
(labels ((reformat-with-returns (line string-stream)

(cond ((not (position-if *'not-space line))

(write-line "" string-stream)
(if prev-line-punc

(write-line '" string-stream)))

((and prev-line-punc (tab-p line))

(write-line "" string-stream)
(write-string (concatenate 'string line " ') string-stream))

(t

(write-string (concatenate 'string line " ') string-stream)

(if (and (not indents) (< (length line) 55))

(write-line "" string-stream)))))

(ends-with-punct (line)

(let ((ending-char (position-if-not #'whitespace-p line :from-end t)))

(if (and ending-char (find (aref line ending-char) '(#\. #\? *\!)
(setq prev-line-punc t)

(setq prev-line-punc 'nil)))))

(with-open-file (file-stream file)
(with-output-to-string (string-stream)

(loop for line = (read-line file-stream nil nil)
while line

do (progn (cond (kill-returns

62

(reformat-with-returns line string-stream))

(t

(write-line line string-stream)))

(ends-with-punct line))))))))

(defun tab-p (line)

(or (eq (aref line 0) #\Tab)

(and (eq (aref line 0) #\Space) (eq (aref line 1) #\Space))))

;;This function takes a string and parses it into a full document
object, including sections, titles, paragraphs, and sentences.
It's not particularly intelligent.

(defun parse-string (text)
(let (;; the big overall object that represents the entire document

holds all other objects as memebers of arrays

(my-document (make-document))
;; This is the index into the text string where the current word begins
(word-start 0)
;; This is the index where the current word ends

(word-end 0)
;; This is the index where the next item ends

(stop-loc 0)
;; This is the index where the next item begins

(next-item (or (my-position-if #'(lambda (x) (not (eq x *\Return))) text)
(- (length text) 1)))

This is the index where the current sentence begins

(sentence-start 0))

(labels ((parse-loop ()
(loop

;; while we haven't reached the end of our text string:

while next-item

;; look at the next item in the text string and decide what it is.

do (case (next-chunk)

(word (parse-word))

(sentence (end-sentence))

(sect-title (add-sect-title))

(par-title (add-par-title))

(paragraph (finish-paragraph))

(section (finish-section))

(nothing (continue-parse))

(fragment (fragment-sentence))

(done (return))

(otherwise (format t "nextchunk returned illegal value") (break))))

(clean-up my-document))

(next-chunk ()
Here I am checking to see if the next item in the text is a return.

If so, this can represent a new paragraph, a new section, a title,

or an error.

(cond

((eq (aref text next-item) #\Return)

;; check to see if the return was in the middle of a sentence or not.

(cond

((beginning-of-sentence-p my-document)

;; One return is a new paragraph; more than one a new section.

(setq stop-loc (my-position-if #'not-space text

:start (+ next-item 1)

:out-of-bounds-check 't))

if text is finished, return

(if (not stop-loc)
'done

(if (eq (aref text stop-loc) #\Return)
'section

paragraph)))

63

If a return is found in the middle of a sentence, this could

either represent a title or a sentence fragement.

(t (if (good-sect-title-loc-p my-document)
'sect-title

(if (good-par-title-loc-p my-document)
'par-title

'fragment)))))
Next item is not a return; let's see what it is! stop-loc holds

the next character of interest in the string.

(t (setq stop-loc
(position-if #'(lambda (x) (find x '(*\Space #\. #\? #\! *\Return)))

text

:start next-item))

(cond
(stop-loc

(let ((stopper (aref text stop-loc)))

;; analyze next significant charcter

(case stopper

(#\Space 'word)

a period indicates the end of the sentence unless it's a

decimal... abbreviations will screw up parser.

(#\. (if (end-of-sent-period-p)
'sentence

'nothing))

((#\? #\!) 'sentence)

(#\Return (if (good-sect-title-loc-p my-document)
'sect-title

(if (good-par-title-loc-p my-document)
'par-title
'fragment)))

(otherwise (format t "bad stopper")))))

we have reached the end of the document without finishing the last

sentence.

(t

(setq stop-loc (length text))

'fragment)))))

When each of these situations has been detected, move around the

necessary text pointers and call the appropriate method of document

object.

(parse-word ()
(setq word-end stop-loc)

(setq next-item (position-if #'not-space text :start stop-loc))

(add-word my-document (get-word))

(setq word-start next-item))

(end-sentence ()
(setq word-end stop-loc)

(setq next-item

(my-position-if #'(lambda (x) (not (find x '(#\Space #\. #\? #\!))))
text

:start (+ stop-loc 1)

:out-of-bounds-check 't))

(add-word my-document (get-word))

(end-sent-doc my-document (subseq text sentence-start next-item))

(setq word-start next-item)

(setq sentence-start next-item))

(finish-paragraph 0
(setq next-item stop-loc)

(setq word-start next-item)

(setq sentence-start next-item)

(end-par-doc my-document))

(finish-section 0
(setq next-item (position-if #'(lambda (x) (not (find x '(#\Space #\Return))))

text

64

:start stop-loc))

(setq word-start next-item)

(setq sentence-start next-item)

(end-sect-doc my-document))

(fragment-sentence ()
;; Pick up the last word of the fragment sentence (if needed)
(cond

((< next-item stop-loc)

(setq word-end stop-loc)

(add-word my-document (get-word))

(setq next-item (my-position-if #'not-space text

:start (+ stop-loc 1)

:out-of-bounds-check 't)))

(t
(setq next-item (my-position-if #'not-space text

:start (+ next-item 1)
:out-of-bounds-check 't))))

(fragment-sent-doc my-document (subseq text sentence-start next-item))

(setq word-start next-item)

(setq sentence-start next-item))

(continue-parse 0
(setq next-item (+ next-item 1)))

(add-par-title ()
(add-title 'par))

(add-sect-title ()
(add-title 'sect))

(add-title (unit)
;; clean up last word of title if necessary

(when (< next-item stop-loc)

(setq word-end stop-loc)

(add-word my-document (get-word))

(setq next-item stop-loc))

(setq next-item

(my-position-if #'(lambda (x) (not (find x '(#\Space #\Return))))

text
:start (+ next-item 1)

:out-of-bounds-check 't))
(if (eq unit 'sect)

(add-sect-title-doc my-document (subseq text sentence-start next-item))

(add-par-title-doc my-document (subseq text sentence-start next-item)))

(setq word-start next-item)

(setq sentence-start next-item))

(end-of-sent-period-p ()
(not (or (digit-char-p (aref text (+ stop-loc 1)))

(abbreviation-p

(subseq text

(or (+ 1 (position-if #'(lambda (x) (find x '(#\Return
#\Space

#\. *\Tab)))

text

:end stop-loc

:from-end t))
0)

stop-oc)))))

(abbreviation-p (str)

(find str '("Mr" "Ms" "Mrs" "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L"
"M" "N" "O" "P' "Q" "R" "S" "T" "U" "V' "W" "X" "Y" "Z" "Inc"
"St" "Ltd" "Corp" "Kan" "Mo" "1" "2" "3" "4" "5" "6" "7" "8" "9"
"0") :test #'equal))

(get-word 0

65

(string-trim '(#\, #\: #\" #\; *\- #\) *\()
(subseq text word-start word-end))))

(parse-loop)

my-document)))

B.3 Objects.lisp

;; Irene Wilson

;; AI lab

Knowledge-Based Collaboration Project

created: 7-27-98 IW

altered: 11-18-98 IW
1-4-99 IW

;;Objects.lisp

This file contains all the object definitions and member functions

of the automatic document summarization project. All of the significant

data about the document is stored in these objects. Later, these objects

will be analyzed to see which sentence objects are the most likely topic

sentences.

A document object contains all interesting information about a body of text.

(defclass document ()
(;; This vector stores all of the significant words in the document

(hash-strings

:accessor hash-strings

:initform (make-array 0 :adjustable t :fill-pointer t :element-type 'string))

This vector stores how many times the word in that location of the

hash-strings vector appears in the document

(word-vector

:accessor word-vector

:initform (make-array 0 :adjustable t :fill-pointer t :element-type 'integer))

;; This hashtable takes in a word and returns its location in the word-vector.

(keyword-hash

:accessor keyword-hash

:initform (make-hash-table :size 300 :rehash-size 100 :test 'equalp))

;; ??? The title of the document

(heading
:accessor heading

:initform (make-array 0 :adjustable t :fill-pointer t :element-type 'sentence))

;; This is a list of all the keyphrases that will be searched for in the document

(keyphrase-list :accessor keyphrase-list :initform (get-phrases "keyphrases"))

;; This is a list of keyphrases that have been found in the document.

(keyphrase-status :accessor keyphrase-status)

;; This is an array that points to all the sections in the document

(sections :accessor sections :initform (make-sect-array))

;; contains total number of sentences and fragments

(num-of-sentences :accessor num-of-sentences :initform 0)

;; contians total number of words

(num-of-words :accessor num-of-words :initform 0)))

This is a section object; represents a section of the document

(defclass section ()
((;; This is a pointer to all of the paragraph objects in the section

66

paragraphs

:accessor paragraphs

:initform (make-par-array))

;; if the section has a title, it will be stored here

(title :accessor title :initform 'nil)))

This is a paragraph object; represents a paragraph in the document

(defclass paragraph ()

((;; this is a pointer to all of the sentnece objects in the section

sentences

:accessor sentences

:initform (make-sent-array))

(title :accessor title :initform 'nil)))

This is a sentence object; represents a sentence in the document

(defclass sentence C)
(;; this string holds the exact text of the sentence.

(sentence-text :accessor sentence-text)

;; this is the the number of the sentence in the document

(sentence-num :accessor sentence-num)

;; this is true if this is a fragment sentence; false otherwise

(fragment :accessor fragment-p :initform 'nil)

this vector has a location for each significant word in the sentence;

the value of a location is the number of times that word appears

(word-vector :accessor word-vector)

;; this contains the number and type of keyphrases in the sentence

(keyphrases :accessor keyphrases)

;; this value is the total number of words in the sentence

(num-of-words :accessor num-of-words :initform 0)))

This function creates and initializes a document object

(defun make-document ()

(let ((doc (make-instance 'document)))

;; initializes the first sentence in the document

(initialize-sent doc (get-curr-sent doc))

creates a location in the keyphrase-status vector for every element

in the keyphrase-list vector. This is so we can store how many

times each keyphrase appears.

(setf (keyphrase-status doc) (make-array (length (keyphrase-list doc))

:initial-element 0

:element-type 'integer))

doc))

This function creates and initializes a section array; called when document

first created

(defun make-sect-array ()

(let ((sect-array (make-array 0

:adjustable t

:fill-pointer t

:element-type 'section)))

(vector-push-extend (make-instance 'section) sect-array 5)

sect-array))

This function creates and initializes a paragraph array; called when a section

is created

(defun make-par-array ()

(let ((par-array (make-array 0

:adjustable t

:fill-pointer t
:element-type 'paragraph)))

(vector-push-extend (make-instance 'paragraph) par-array 5)

par-array))

This function creates and initializes a sentence array; called when a paragraph
is created.

(defun make-sent-array ()

(let ((sent-array (make-array 0

:adjustable t

:fill-pointer t

67

:element-type 'sentence)))

(vector-push-extend (make-instance 'sentence) sent-array 8)
sent-array))

This function initializes a sentence object; sets the size of the keyphrases

and word-vector object based upon the current document info.

(defmethod initialize-sent ((doc document) sent)

(setf (keyphrases sent) (make-array (length (keyphrase-list doc))

:element-type 'integer

:initial-element 0))

(setf (word-vector sent)

(make-array (length (word-vector doc))

:adjustable t

:fill-pointer t

:element-type 'integer

:initial-element 0))

sent)

These are for easy reference to all the current parts of the document

(defmethod get-curr-sent ((doc document))

(let ((curr-par (get-curr-par doc)))

(aref (sentences curr-par) (- (num-of-sentences curr-par) 1))))

(defmethod get-curr-par ((doc document))

(let ((curr-sect (get-curr-sect doc)))

(get-curr-par curr-sect)))

(defmethod get-curr-par ((sect section))

(aref (paragraphs sect) (- (num-of-paragraphs sect) 1)))

(defmethod get-curr-sect ((doc document))

(aref (sections doc) (- (num-of-sections doc) 1)))

(defmethod get-curr-sent ((sect section))

(get-curr-sent (aref (paragraphs sect) (- (num-of-paragraphs sect) 1))))

(defmethod get-curr-sent ((par paragraph))

(aref (sentences par) (- (num-of-sentences par) 1)))

(defmethod get-curr-sent ((par paragraph))

(aref (sentences par) (- (num-of-sentences par) 1)))

These are for adding to the current document structure

(defmethod add-word ((doc document) word)

(setf (num-of-words doc) (+ (num-of-words doc) 1))

(add-word-sent (get-curr-sent doc) doc word))

(defmethod end-sent-doc ((doc document) sentence-text)

(let ((curr-sent (get-curr-sent doc)))

(setf (sentence-text curr-sent) sentence-text)

(set-vector (keyphrase-status doc) 0)

(setf (num-of-sentences doc) (+ (num-of-sentences doc) 1))

(setf (sentence-num curr-sent) (num-of-sentences doc))

(end-sent-par (get-curr-par doc) doc sentence-text)))

(defmethod end-par-doc ((doc document))

(end-par-sect (get-curr-sect doc) doc))

(defmethod end-sect-doc ((doc document))

;; pop off the new, unused paragraph from the old section

(vector-pop (sentences (get-curr-par doc)))

(vector-push-extend (make-instance 'section) (sections doc) 10)
(initialize-sent doc (get-curr-sent doc))

(print "ended a section"))

(defmethod fragment-sent-doc ((doc document) sentence-text)

(let ((curr-sent (get-curr-sent doc)))

(setf (fragment-p curr-sent) 't)

68

(print "(fragment)")
(end-sent-doc doc sentence-text)))

;; add a title to the next section in the document

(defmethod add-sect-title-doc ((doc document) sentence-text)

;; get the next sentence object in the document

(let ((sent (get-curr-sent doc)))

(setf (sentence-text sent) sentence-text)

if there is only 1 section in the document so far, this "title" will

be saved as part of a "document heading" chunk.

(if (eq (num-of-sections doc) 1)

(vector-push-extend sent (heading doc) 5)

(add-sect-title (get-curr-sect doc) doc))

(when VERBOSE
(print "added a section title")

(format t "~A~X" sentence-text))
(abort-sent (get-curr-par doc) doc)))

add a title to the next paragraph in the document

(defmethod add-par-title-doc ((doc document) sentence-text)

;; get the next sentence object in the document

(setf (sentence-text (get-curr-sent doc)) sentence-text)

(add-par-title (get-curr-par doc) doc)

(when VERBOSE

(print "added a paragraph title")

(format t "~A~\%" sentence-text))
(abort-sent (get-curr-par doc) doc))

(defmethod add-sect-title ((sect section) (doc document))

(setf (title sect) (get-curr-sent sect)))

(defmethod add-par-title ((par paragraph) (doc document))
(setf (title par) (get-curr-sent par)))

(defmethod end-par-sect ((sect section) (doc document))

;; pop off the new, unused sentence from the old paragraph
(vector-pop (sentences (get-curr-par sect)))

;; add on the new paragraph

(vector-push-extend (make-instance 'paragraph) (paragraphs sect) 10)

(initialize-sent doc (get-curr-sent sect))

(print "ended a paragraph"))

(defmethod end-sent-par ((par paragraph) doc sentence-text)
(start-sent par doc)

(when VERBOSE

(print "ended a sentence")

(format t "~A~\%" sentence-text)))

(defmethod start-sent

(vector-push-extend

((par paragraph) (doc document))

(initialize-sent doc (make-instance 'sentence))

(sentences par)

20))

(defmethod add-word-sent ((sent sentence) doc word)

(update-keyphrases doc sent word)

(setf (num-of-words sent) (+ 1 (num-of-words sent)))

(add-word-stats doc sent word))

(format t "~A~X" word))

(defmethod abort-sent ((par paragraph) (doc document))
(vector-pop (sentences par))

(start-sent par doc))

;;looks at newly added word to see if it brings us closer to identifying

a keyphrase

(defmethod update-keyphrases ((doc document) (sent sentence) wrd)

;; for each keyphrase

69

(loop for x from 0 to (- (length (keyphrase-list doc)) 1)
do (let (;; this is the actual phrase

(phrase (aref (keyphrase-list doc) x))

;; gets the number of words in the phrase already identified
(stat (aref (keyphrase-status doc) x)))

if the next word in the document equals the next word in the

phrase

(if (equalp wrd (aref phrase stat))

;; check to see if you have completed the phrase
(cond ((eq stat (- (length phrase) 1))

(setf (aref (keyphrases sent) x)

(+ (aref (keyphrases sent) x) 1))

(setf (aref (keyphrase-status doc) x) 0))
(t (setf (aref (keyphrase-status doc) x) (+ 1 stat))))

phrase was not found. reset its status

(setf (aref (keyphrase-status doc) x) 0)))))

if new word is a "keyword", record its use in the document and sentence

keyword statistics vectors

(defmethod add-word-stats ((doc document) (sent sentence) wrd)

(when (keyword-p wrd)

(let ((hash-val (gethash wrd (keyword-hash doc))))

;; if the word has not previously been found in the document

(cond ((eq hash-val NIL)

;; add word to keyword vector

(setf (gethash wrd (keyword-hash doc)) (hash-size doc))

;; add word to both document and sentence keyword vectors

(vector-push-extend 1 (word-vector sent) 10)

(vector-push-extend 1 (word-vector doc) 10)

(vector-push-extend wrd (hash-strings doc)))

;; else keyword is already in document; just increment the occurances

(t

(setf (aref (word-vector sent) hash-val)

(+ 1 (aref (word-vector sent) hash-val)))

(setf (aref (word-vector doc) hash-val)

(+ 1 (aref (word-vector doc) hash-val))))))))

check to see if we are currently beginning a new sentence

(defmethod beginning-of-sentence-p ((doc document))

(if (eq (num-of-words (get-curr-sent doc)) 0) 't nil))

check to see if this is a possible section title location

(defmethod good-sect-title-loc-p ((doc document))

we are at a good title location if there is no title already, and we are

not in the middle of a section or a paragraph

(if (and (not (title (get-curr-sect doc)))

(eq (length (paragraphs (get-curr-sect doc))) 1)
(eq (length (sentences (get-curr-par doc))) 1))

nil))

check to see if this is a possible paragraph title location

(defmethod good-par-title-loc-p ((doc document))

we are at a good title location if there is no title already, and we are

not in the middle of a paragraph

(if (and (not (title (get-curr-par doc)))

(not (eq (length (paragraphs (get-curr-sect doc))) 1))

(eq (length (sentences (get-curr-par doc))) 1))
't

nil))

clean up document structure

(defmethod clean-up ((doc document))

get rid of all extra sections, paragraphs, and sentences on the end of the

document structure.

(vector-pop (sentences (get-curr-par doc)))

70

(when (eq (length (sentences (get-curr-par doc))) 0)

(vector-pop (paragraphs (get-curr-sect doc)))

(when (eq (length (paragraphs (get-curr-sect doc))) 0)

(vector-pop (sections doc)))))

count number of unique keywords in the document

(defmethod hash-size ((doc document))

(hash-table-count (keyword-hash doc)))

some simple utilities

(defmethod num-of-sentences ((par paragraph))

(length (sentences par)))

(defmethod num-of-paragraphs ((sect section))

(length (paragraphs sect)))

(defmethod num-of-sections ((doc document))
(length (sections doc)))

These are for printing the document structure.

(defmethod print-doc ((doc document))

(print "doc")

(map 'vector *'print-sect (sections doc)))

(defmethod print-sect ((sect section))

(print " sect")

(map 'vector #'print-par (paragraphs sect)))

(defmethod print-par ((par paragraph))

(print " par")
(map 'vector *'print-sent (sentences par)))

(defmethod print-sent ((sent sentence))

(print " sent"))

B.4 Char.lisp

Irene Wilson

AI lab

Knowledge-Based Collaboration Project

created: 8-10-98 IW
altered: 8-11-98 IW

1-13-99 IW

Char.lisp

This file contains code that analyzes a document object to calculate

and store all valuable information in document and sentence statistic

objects.

(defclass document-stat 0
((document-structure :accessor document-structure)
(ave-sent-doc-similarity :accessor ave-sent-doc-similarity :initform 0)
(doc-sent-similarity-stand-dev

:accessor doc-sent-similarity-stand-dev

:initform 0)

71

(ave-word-length :accessor ave-word-length)
(ave-sent-length :accessor ave-sent-length)
(number-of-titles :accessor number-of-titles)
(num-compound-sents :accessor num-compound-sents)
(num-sentences :accessor num-sentences)
(title-content :accessor title-content)))

(defclass section-stat()

((section-loc :accessor section-loc)))

(defclass paragraph-stat()

((paragraph-loc :accessor paragraph-loc)))

(defclass sentence-stat C)

((sent-char-list :accessor sent-char-list :initform (make-charact-list))
(sent-cont-list :accessor sent-cont-list :initform (make-contain-list))
(pointer-to-sent :accessor pointer-to-sent)
(title-content :accessor title-content)))

creates and returns a characteristics object that contains all important
info about the document

(defun get-doc-and-sent-chars (doc-structure)

(let ((doc-stat (make-instance 'document-stat))
;; contains a "characeristic object" for each sentence in the document
(sent-chars-array (make-array (num-of-sentences doc-structure)

:element-type 'sentence-stat))

this is a place to save information about the sentences that are

not needed in the final analysis

(scratchpad (make-array (num-of-sentences doc-structure)))
;; load all the key-title-phrases to search for the titles
(key-title-phrases (get-phrases "title-phrases"))

(chars-array-size 0)

;; this is for the title-contents info

(curr-sect-index 0))

(labels

;; assimilate all info and objects in this section of the document
((analyze-section (document index curr-sent-info)

(let ((section (aref (sections document) index)))

;; save this for later use in title-contents

(setq curr-sect-index index)

add all section information into curr-sent-info (this info will

be copied into all sent-char objects in this section)

(add-sect-info document index curr-sent-info)

;; analyze each paragraph in the section
(loop for y from 0 to (- (length (paragraphs section)) 1)

do (analyze-paragraph section y (copy-of curr-sent-info)))))

assimilate all info and objects in this paragraph of the document

(analyze-paragraph (section index curr-sent-info)

(let ((paragraph (aref (paragraphs section) index)))

;; add all paragraph info into curr-sent-info

(add-par-info section index curr-sent-info)

;; analyze all sentences in the paragraph
(loop for z from 0 to (- (length (sentences paragraph)) 1)

do (analyze-sentence paragraph z (copy-of curr-sent-info)))))

assimilate all info in this sentence into curr-sent-info

(analyze-sentence (paragraph index curr-sent-info)

(add-sent-info paragraph index curr-sent-info))

gets all info that can be gotten directly from the document
(add-doc-info (doc)

(setf (ave-sent-length doc-stat) (/ (num-of-words doc)
(num-of-sentences doc)))

(setf (num-sentences doc-stat) (num-of-sentences doc))
;; make empty array for specials titles found during sentence analysis

72

(setf (title-content doc-stat) (make-array (length (sections doc))
:initial-element 'nil)))

gets all info that can be gotten directly from the section and adds

to curr-sent

(add-sect-info (doc sect-number curr-sent-info)

(let* ((curr-sect (aref (sections doc) sect-number))
(key-title-phrase (find-keytitle (title curr-sect))))

(case sect-number

(0 (set-sent-char curr-sent-info 'section-loc 'first))

(1 (set-sent-char curr-sent-info 'section-loc 'second))

((length (sections doc))

(set-sent-char curr-sent-info 'section-loc 'last))

(otherwise (set-sent-char curr-sent-info 'section-loc 'body)))

(set-sent-char curr-sent-info 'title-content key-title-phrase)
(when key-title-phrase

(setf (aref (title-content doc-stat) sect-number)

key-title-phrase))))

gets all info that can be gotten directly from the paragraph and adds
to curr-sent

(add-par-info (section par-number curr-sent-info)
(let ((curr-par (aref (paragraphs section) par-number)))

(case par-number

(0 (set-sent-char curr-sent-info 'paragraph-loc 'first))

(1 (set-sent-char curr-sent-info 'paragraph-loc 'second))

((length (paragraphs section))

(set-sent-char curr-sent-info 'paragraph-loc 'last))

(otherwise (set-sent-char curr-sent-info 'paragraph-loc 'body)))

(if (not 0)
(let ((key-title-phrase (find-keytitle (title curr-par))))

(when key-title-phrase

(set-sent-char curr-sent-info 'title-content key-title-phrase)

(setf (aref (title-content doc-stat) curr-sect-index)

key-title-phrase))))))

gets all info from the sentence and adds it to curr-sent

(add-sent-info (paragraph sent-number curr-sent-info)
;; get sentence location in paragraph
(let ((sentence (aref (sentences paragraph) sent-number)))

(case sent-number

(0 (set-sent-char curr-sent-info 'sentence-loc 'first))

(1 (set-sent-char curr-sent-info 'sentence-loc 'second))

((length (sentences paragraph))

(set-sent-char curr-sent-info 'sentence-loc 'last))

(otherwise (set-sent-char curr-sent-info 'sentence-loc 'body)))

save a pointer into the sentence object (eek!)

(setf (pointer-to-sent curr-sent-info) sentence)

;; get (comparative) length of sentence

(cond ((> (num-of-words sentence) (ave-sent-length doc-stat))
(set-sent-char curr-sent-info 'sentence-length 'long))

((< (num-of-words sentence) 7)

(set-sent-char curr-sent-info 'sentence-length 'very-short))

(t

(set-sent-char curr-sent-info 'sentence-length 'short)))

save the doc-sentence keyword similarity in the scratchpad

(setf (aref scratchpad chars-array-size)
(dot-product (word-vector doc-structure)

(word-vector sentence)))

add the current similarity to the total document similarity

(to later calculate average)

(setf (ave-sent-doc-similarity doc-stat)
(+ (ave-sent-doc-similarity doc-stat)

(aref scratchpad chars-array-size)))

add presence of keyphrases

(let ((sent-keyphrases (make-array 0 :adjustable t :fill-pointer t)))

(loop

73

for poss-phrase from 0 to (- (length (keyphrases sentence)) 1)

do (when (not (= (aref (keyphrases sentence) poss-phrase) 0))

(let ((phrase-symbols

(map 'list

#'(lambda (x) (intern (string-upcase x)))
(aref (keyphrase-list doc-structure)

poss-phrase))))
(vector-push-extend phrase-symbols sent-keyphrases 2))))

(set-sent-cont curr-sent-info 'keyphrase-content sent-keyphrases))
add the current sent-info to the array!

(setf (aref sent-chars-array chars-array-size) curr-sent-info)
(setf chars-array-size (+ chars-array-size 1))))

(find-keytitle (title)

(if title

(find-phrase title key-title-phrases)
'nil))

looks to see if there are any key-title-phrases in the title

(find-phrase (sent phrases)
(let ((found-phrases (make-array 0 :adjustable t :fill-pointer t))

(parsed-sent (parse-line (sentence-text sent)))

(found-one 'nil))

(loop

for wrd from 0 to (- (length parsed-sent) 1)
do (loop

for phrase-index from 0 to (- (length phrases) 1)
do (if (eq (aref parsed-sent wrd)

(aref (aref phrases phrase-index) 0))
(let ((curr-phrase (aref phrases phrase-index)))

(unless (< (+ wrd (length curr-phrase))

(length parsed-sent))

(loop

for phrase-wrd from 0 to (length curr-phrase)
while (eq (aref parsed-sent (+ wrd phrase-wrd))

(aref curr-phrase phrase-wrd))
finally

(setq found-one t)
(let ((phrase-symbols

(map 'list #'(lambda (x)

(intern (string-upcase x)))

curr-phrase)))

(vector-push-extend phrase-symbols

found-phrases

2))))))))
(if found-one

found-phrases
'nil)))

finish up calculations

(do-other-calculations 0
;; calculate average similarity of sentences to document
(setf (ave-sent-doc-similarity doc-stat)

(/ (ave-sent-doc-similarity doc-stat) (length scratchpad)))
calculate std. dev. of similarity of sentences to document

(loop for x from 0 to (- (length scratchpad) 1)
do (setf (doc-sent-similarity-stand-dev doc-stat)

(+ (doc-sent-similarity-stand-dev doc-stat)
(expt (- (aref scratchpad x)

(ave-sent-doc-similarity doc-stat))
2))))

(setf (doc-sent-similarity-stand-dev doc-stat)
(if (> (length scratchpad) 1)

(/ (doc-sent-similarity-stand-dev doc-stat)
(- (length scratchpad) 1))

74

0))
get comparative assessment of similarity of sentences with doc.

(loop for x from 0 to (- (length scratchpad) 1)

do (set-sent-char (aref sent-chars-array x)

'sent-doc-similarity

(get-similarity (aref scratchpad x))

(aref scratchpad x))))

get comparative assessment of the similarity by using the ave and

std. dev.

(get-similarity (doc-sent-sim)

(let ((difference (- doc-sent-sim (ave-sent-doc-similarity doc-stat))))

(if (> difference 0)

(if (> difference (doc-sent-similarity-stand-dev doc-stat))

(if (> difference (* 2 (doc-sent-similarity-stand-dev doc-stat)))
'3-dev-above

'2-dev-above)

'1-dev-above)

(if (> (- difference) (doc-sent-similarity-stand-dev doc-stat))

'2-dev-below

'1-dev-below)))))

begin function

add all information directly accessible from the document object

(add-doc-info doc-structure)

calculate all information possible from analyzing the parts of the

document

(loop for x from 0 to (- (length (sections doc-structure)) 1)

do (analyze-section doc-structure

x
(make-instance 'sentence-stat)))

more calculations... need a second pass to assimilate

(do-other-calculations)

;; return document characteristics and sentence characteristics array

(cons doc-stat sent-chars-array))))

sets a sentence characteristic to a certain value

(defmethod set-sent-char ((sent-stat sentence-stat) charact value

&optional data)

(set-sent-item (sent-char-list sent-stat) charact value data))

sets a sentence slot to a certain value(s)

(defmethod set-sent-cont ((sent-stat sentence-stat) charact value

&optional data)

(set-sent-item (sent-cont-list sent-stat) charact value data))

sets a sentence item to a value- used by characteristics and containers

(defun set-sent-item (char-array charact value &optional data)

(loop for x from 0 to (- (length char-array) 1)

do (let ((char (aref char-array x)))

(when (eq charact (car char))

(setf (aref char-array x) (list (car char) value data))

(return)))

finally (break "sentence characteristic ~A not found in sentence data"

charact)))

create the list of important items the sentence contains; fields can

;;have multiple values. save in sent-stat object

(defun make-contain-list ()

(let ((sent-contain-array (make-array 0 :adjustable t :fill-pointer t)))

(add-charact 'keyphrase-content sent-contain-array)

(add-charact 'structure-content sent-contain-array)

sent-contain-array))

create the list of characteristics needed for each sentence- save in

sent-stat object

(defun make-charact-list ()

75

(let ((sent-charact-array (make-array 0 :adjustable t :fill-pointer t)))

(add-charact 'section-loc sent-charact-array)

(add-charact 'paragraph-loc sent-charact-array)

(add-charact 'sentence-loc sent-charact-array)

(add-charact 'key-title sent-charact-array)

(add-charact 'sent-doc-similarity sent-charact-array)

(add-charact 'title-content sent-charact-array)

(add-charact 'sentence-length sent-charact-array)

sent-charact-array))

returns a sentence characteristic
(defmethod get-charact ((sent-stat sentence-stat) charact)

(let ((char-array (sent-char-list sent-stat))
(value 'nil))

(loop for x from 0 to (- (length char-array) 1)

do (when (eq (car (aref char-array x)) charact)

(setq value (cdr (aref char-array x)))

(return))

finally (break "characteristic ~A not found in sentence-stat object"

charact))

value))

helper with make-charact-list; adds another characteristic to the list

(defun add-charact (symbol array)

(vector-push-extend (cons symbol 'nil) array 15))

make a copy of a sent-stat object

(defmethod copy-of ((sent-stat sentence-stat))
(let ((copy (make-instance 'sentence-stat)))
(loop for x from 0 to (- (length (sent-char-list sent-stat)) 1)

do (setf (aref (sent-char-list copy) x)
(aref (sent-char-list sent-stat) x)))

copy))

B.5 Template.lisp

Irene Wilson

;; AI lab

Knowledge-Based Collaboration Project
created: ? IW
altered: 1-4-99 IW

Template.lisp

This file contains the code that reads in a "template" file and
processes it into a doc-template object. A different template is

made for different types of documents. The template stores a list of

sentence characteristics that are important to determine which

sentence is the topic sentence for that particular type of document.

It also stores how much weight should be given to each sentence

characteristic. For each characteristic, there are several possible

values, each of which receives a value which represents the probability

that the sentence is a topic sentence given the value is true.

class that contains all info for a doc type
(defclass doc-template ()

((charact-array :accessor charact-array

76

:initform (make-array 0 :adjustable t :fill-pointer t))))

;; class that contains all the info for one characteristic of the doc type

(defclass characteristic ()
((name :accessor name :initform 'nil)

(weight :accessor weight :initform 0)
the slots are the different values for the characteristics and what weight
they each have

(slots :accessor slots :initform (make-array 0 :adjustable t :fill-pointer t))))

returns a template object that contains all the info needed to process a
document of that type

(defun get-template (doc-type)

(let ((my-template (make-instance 'doc-template)))
;; read in the template file of that type
(with-open-file (template-stream (concatenate 'string

"Grant-HD1:Users:merri:input:"
(string-downcase doc-type)

"-template"))
(loop for line = (get-line template-stream)

while line

;; lines with # in front are slots; without are char. categories
do (if (eq (aref line 0) #*)

;; check to make sure a characteristic comes before a slot
(if (> (length (charact-array my-template)) 0)

(add-slot my-template line)

(break "template format incorrect"))

(setf my-template (add-char my-template line)))))

my-template))

add another characteristic to the template

returns the new template
(defmethod add-char ((template doc-template) line)

(let ((word-array (parse-line line)))

(when (< (length word-array) 2) (break t "template format incorrect"))
;; make new characteristic
(let ((curr-charact (make-instance 'characteristic))

(val))

(setf (name curr-charact) (intern (string-upcase (aref word-array 0))))

;; set the weight of the new characteristic
(unless (setq val (parse-float (aref word-array 1)))

(break "template format incorrect: A" (aref word-array 1)))
(setf (weight curr-charact) val)

(setf (slots curr-charact) (make-array 0 :adjustable t :fill-pointer t))

(vector-push-extend curr-charact (charact-array template)))
template))

add another slot value to the current characteristic
(defmethod add-slot ((template doc-template) line)

;; get rid of the #s in the beginning of the line
(let ((start-info (position-if (lambda (x) (not (eq #\# x))) line)))

(unless start-info (break "template format incorrect: blank line"))
(let ((word-array (parse-line (subseq line start-info))))

;; check that there are at least two words in the line
(when (< (length word-array) 2)

(break t "template format incorrect: not enough arguments"))
(let (;; get the current characteristic to which this slot belongs

(curr-charact (aref (charact-array template)
(- (length (charact-array template)) 1)))

get the value of the rating of this slot

(val (parse-float (aref word-array (- (length word-array) 1)))))
(unless val (break "template format incorrect: ~A" (aref word-array 1)))

add slot value + all the words in the line to the template
characteristic array location

(let ((word-list 'nil))

(loop for x from (- (length word-array) 2) downto 0
do (setq word-list

(cons (intern (string-upcase (aref word-array x)))

77

word-list)))

(vector-push-extend (cons val word-list) (slots curr-charact)))))))

get the next line from a stream that is not all whitespace and does not

have a semicolon as the first non-whitespace character

(defun get-line (stream)

(let ((first-item)

(next-line 'nil))

(loop for line = (read-line stream nil nil)
while line

do (when (and (setq first-item (position-if *'not-space line))

(not (eq (aref line first-item) #\;)))

(setq next-line line)

(return)))

next-line))

B.6 Rank.lisp

Irene Wilson

AI lab

Knowledge-Based Collaboration Project

created: ? IW
altered: 1-20-99 IW

Rank.lisp

This file contains the code that ranks the sentences of the document.

It uses the template information to calculate the impact of the data

stored in the sent-statistics array

This object is used to keep track of the rating of a sentence. An array

of these objects are created to represent the rating of all the sentences

in the document

(defclass sent-rating-info 0
(;; this is the overall rating of the sentence

(sent-rating :accessor sent-rating :initform 0)

an array of the sentence characteristics used to calculate the

rating

(chars-used :accessor chars-used

:initform (make-array 0 :adjustable t :fill-pointer t))

an array of the values for each of the sentence characteristics in

chars-used; these numbers summed give the sent-rating

(val-of-chars-used :accessor val-of-chars-used
:initform (make-array 0 :adjustable t :fill-pointer t))))

calculates the "goodness" of all the sentences using the outline in the
template. returns an array of ratings for each sentence. The higher, the more

likely that sentence is a good summarizing sentence
(defun make-sentence-rankings (sent-statistics template)

(let ((sentence-ratings

(make-array (length sent-statistics) :element-type 'sent-rating-info))

(all-characters (charact-array template)))

(labels (;; adds the characteristic "character" to the sentence rating of
every sentence

(add-in-character (character char-index mult-val)

(loop

for y from 0 to (- (length sent-statistics) 1)

78

do (let ((sent-stat (aref sent-statistics y)))

(if mult-val

(let ((sent-cont-info

(aref (sent-cont-list sent-stat) char-index)))
(calc-slot-value character sent-cont-info y))

(let* ((sent-char-info

(aref (sent-char-list sent-stat) char-index))

(item-val (get-item-val character
(cadr sent-char-info))))

(when (eq item-val -1)

(format t "WARNING: sentence characteristic slot

not found: ~A:~A" (name character)

(cadr sent-char-info))
(setq item-val 0))

(add-in-slot-value character

sent-char-info

item-val

add the "item-val" multiplied by the characteristic weight

to the sentence-rating indicated by "index". Also record the

characteristic, slot assignment, and intermediate values.

(add-in-slot-value (character sent-char-info item-val index)

(let ((prev-rating-info (aref sentence-ratings index)))
(setf (sent-rating prev-rating-info)

(+ (sent-rating prev-rating-info)

(* item-val (weight character))))

(vector-push-extend sent-char-info

(chars-used prev-rating-info)

10)

(vector-push-extend (list item-val

(weight character)

(* item-val (weight character)))
(val-of-chars-used prev-rating-info)

10)))

this function is used by characteristic slots that can have
multiple values. All the values of the slots are combined into

one overall value and added to the appropriate sentence's rating
(calc-slot-value (character sent-char-info index)

(let ((item-list (cadr sent-char-info))
(inverse-accum 1))

(loop

for item-index from 0 to (- (length item-list) 1)
do (let ((item-val

(get-phrase-val character

(aref item-list item-index))))
(unless (eq item-val -1)

(setq inverse-accum (* inverse-accum (- 1 item-val)))

(format t "VALUE: ~A ~A" (- 1 inverse-accum) *\Return))))

(add-in-slot-value character

sent-char-info

(- 1 inverse-accum)

index)))

this looks up the value of a slot assignemnt "item"

to the characteristic "character"
(get-item-val (character item)

(loop

for curr-slot across (slots character)

when (equal (cadr curr-slot) item)

do (return (car curr-slot))

finally (return 0)))

this looks up the value of a slot assignemnt "phrase"
to the characteristic "character"

79

(get-phrase-val (character phrase)

(loop

for curr-slot across (slots character)

when (equal (cdr curr-slot) phrase)

do (return (car curr-slot))

finally (return -1))))

initialize sentence ratings

(loop

for x from 0 to (- (length sentence-ratings) 1)

do (setf (aref sentence-ratings x) (make-instance 'sent-rating-info)))

go through each characteristic in the report template and accumulate

a fitness total for each sentence in the sent-characteristics array

(loop

for x from 0 to (- (length all-characters) 1)
;; find each template characteristic in sentence stats

do (let* ((character (aref all-characters x))

(char-index

(get-info-index (name character)

(sent-char-list (aref sent-statistics 0)))))

(if char-index

(add-in-character character char-index 'nil)

(let ((cont-index
(get-info-index (name character)

(sent-cont-list (aref sent-statistics 0)))))

(unless cont-index (break "sentence characteristic not found: A"

(name character)))

(add-in-character character cont-index 't)))))

sentence-ratings)))

;;find the index of the characteristic "key" in the array of characteristics in

sent-stat

(defun get-info-index (key char-array)

(let ((index 'nil))

(loop for x from 0 to (- (length char-array) 1)

do (when (eq key (car (aref char-array x)))

(setq index x)

(return)))

index))

B.7 Lib.lisp

;;Irene Wilson

;; AI lab

Knowledge-Based Collaboration Project

created: ? IW
altered: 1-4-99 IW

;;Lib.lisp

sets all members of vector to value

80

(defun set-vector (vector value)

(loop for x from 0 to (- (length vector) 1)

do (setf (aref vector x) value)))

This function returns a vector that contains all the key phrases that

might indicate that a sentence is a topic sentence. Each phrase is

represented by an array of strings.

(defun get-phrases (filename)

(let ((phrase-array (make-array 0

:adjustable t
:fill-pointer t

:element-type 'string)))

(with-open-file (phrase-stream (concatenate 'string

"Grant-HD1:Users:merri:input:"

filename)

:direction :input)

(loop for phrase = (read-line phrase-stream nil nil)
while phrase

do (let ((curr-phrase-array (parse-line phrase)))

(when (> (length curr-phrase-array) 0)
(vector-push-extend (parse-line phrase) phrase-array 20))))

phrase-array)))

;;takes a line of text and returns an array of strings; one string for each

word. No whitespace is preserved.

(defun parse-line (line)

(let ((end 0))

(loop with word-array = (make-array 0

:adjustable t

:fill-pointer t

:element-type 'string)

for st = (position-if *'not-space line :start end)

while st

do (setq end (or (position #\Space line :start st) (length line)))

(vector-push-extend (subseq line st end) word-array 5)

finally (return word-array))))

(defun not-space (x)

(not (eq x #\Space)))

(defun whitespace-p (x)

(find x '(#\Space #\Tab)))

;;Parses a string into a float number.

(defun parse-float (str)

(let ((num 0)

(decimal (position *\. str)))

(cond

(decimal

(setq num (parse-integer

(concatenate 'string

(subseq str 0 decimal)

(subseq str (+ 1 decimal)))
:junk-allowed 't))

(setq num (/ num (expt 10 (- (- (length str) decimal) 1)))))

(t (parse-integer str :junk-allowed 't)))))

This function takes a file name as input and creates a stream to that file.

(The file should be in my working directory.)

(defun get-stream (file-name)

(open (make-pathname :directory "Grant-HD1:Users:merri:input" :name file-name)

:direction

:input))

81

These words are ignored when the word statistics of a portion of text is

computed.

(defparameter *non-keywords*
(a" "an" "and" "as" "at" "be" "but" "by" "for" "in" "is" "if" "it" "not"

"of" "on" "or" "that" "the" "this" "to" "with"))

Returns true if wrd is a keyword, else false

(defun keyword-p (wrd)

(not (find wrd *non-keywords* :test 'equalp)))

Just like position-if with an extra optional input to check that the start location

is in bounds. If both out-of-bounds input is true, and if either there is no start

or the start is out of bounds, returns nil.

(defun my-position-if (predicate proseq &key key from-end start end out-of-bounds-check)

(if (and out-of-bounds-check (not start))

'nil

(if (and start (> start (length proseq)))

'nil

(position-if predicate

proseq

:key (or key 'identity)

:from-end (or from-end 'nil)

:start (or start 0)

:end (or end 'nil)))))

Takes the dot product of two vectors. The vectors do NOT have to be of the

same length; if one vector is shorter that the other, the rest of the short

vector is effectively padded with zeros.

(defun dot-product (long-vect short-vect)
(let ((sum 0)

(total-long 0)
(total-short 0))

(loop for x from 0 to (- (length short-vect) 1)

do (let ((vall (aref long-vect x))

(val2 (aref short-vect x)))

(setq sum (+ sum (* vall val2)))

(setq total-long (+ total-long (* vali vall)))

(setq total-short (+ total-short (* val2 val2)))))

(loop for x from (length short-vect) to (- (length long-vect) 1)

do (setq total-long (+ total-long

(* (aref long-vect x) (aref long-vect x)))))

(if (> total-short 0)

(/ sum (* (sqrt total-long) (sqrt total-short)))

0)))

82

Appendix C

Sample Output

C.1 Sample Article Output

CHICAGO -- United Airlines and parent UAL Corp. took a vital step toward

completing a proposed employee buyout by issuing $1.15 billion in bonds and

preferred stock, but the offerings raised less than the $1.5 billion Wall

Street had expected.

While the amount fell below estimates, it still represents a crucial step in

UAL's bid to persuade shareholders to approve the buyout plan at the company's

annual meeting July 12. UAL recently renegotiated the terms of the buyout
agreement, offering to give shareholders the proceeds from the offering rather

than the securities themselves.

"It's a positive move," said Ray Neidl, an analyst with Furman Selz Inc.

"Without it, stockholders would have had less incentive to vote for the deal."

With interest rates rising, investors in UAL stock had grown increasingly

fearful that the securities they would have gotten would trade for less than

they hoped. UAL's stock plummeted this year from its pre-deal high of around

$155, although it has rebounded somewhat recently. In New York Stock Exchange

composite trading yesterday, UAL's stock closed at $127 a share, down 25 cents.

Yesterday's offering priced $410.4 million of cumulative preferred stock at

$25 each, and priced a split-rated debt offering valued at an additional $741.2

million. The proceeds will be used to make payments of $84.81 a share to

current UAL shareholders for the 55% of the company that employees are
proposing to buy-a price that is on the low end of what analysts were

expecting. In addition, holders will receive one-half of a new share of UAL

common.

Some analysts questioned United's ability to back up the bonds, especially

since summer airline traffic normally brings lower yields. Dean Sparkman, an

airline consultant in Roslyn, Va., said, "The deal's a go. But it's taking on

the classic smell of a leveraged buyout. And as a guide, LBO's have not

historically been successful in the airline business."

83

Moreover, UAL said yesterday it would use $300 million of cash reserves to

compensate for the shortfall off proceeds from the offerings.

However, according to the company's prospectus for the transaction, cash

churned out by UAL will increase $550 million a year on average between now and

1999. "Because of the cash savings, they are going to be able to strengthen the

balance sheet in pretty short order," said Mr. Neidl. United currently has more

than $1 billion in cash and another $1 billion in short-term investments.

United sold $370.2 million of 10-year notes at par to yield 10.67%. United's

$371 million offering of 20-year debentures was priced at par to yield 11.21%.

The company launched a $765 million preferred stock offering at a 12%

dividend yield last week, but cut the size of the offering yesterday by $355

million at pricing and increased the dividend to 12.25%. The 16.4 million

shares were priced at $25 each, according to the lead manager, Merrill Lynch &

Co.

? (auto-sum "art8" :numb-sents 3)

1: CHICAGO -- United Airlines and parent UAL Corp. took a vital step

toward completing a proposed employee buyout by issuing $1.15 billion

in bonds and preferred stock, but the offerings raised less than the

$1.5 billion Wall Street had expected.

SECTION-LOC: FIRST > 1 x 40 = 40
PARAGRAPH-LOC: FIRST > 1 x 50 = 50

SENTENCE-LOC: FIRST > 1 x 40 = 40

SENTENCE-LENGTH: LONG ==> 1 x 100 = 100

SENT-DOC-SIMILARITY: 3-DEV-ABOVE > 1 x 25 = 25

2: UAL recently renegotiated the terms of the buyout agreement,

offering to give shareholders the proceeds from the offering rather

than the securities themselves.

SECTION-LOC: FIRST ==> 1 x 40 = 40
PARAGRAPH-LOC: SECOND ==> 7/10 x 50 = 35
SENTENCE-LOC: SECOND > 1/2 x 40 = 20
SENTENCE-LENGTH: LONG > 1 x 100 = 100
SENT-DOC-SIMILARITY: 3-DEV-ABOVE ==> 1 x 25 = 25

3: While the amount fell below estimates, it still represents a

crucial step in UAL's bid to persuade shareholders to approve the

buyout plan at the company's annual meeting July 12.

SECTION-LOC: FIRST ==> 1 x 40 = 40
PARAGRAPH-LOC: SECOND ==> 7/10 x 50 = 35
SENTENCE-LOC: FIRST ==> 1 x 40 = 40
SENTENCE-LENGTH: LONG ==> 1 x 100 = 100

SENT-DOC-SIMILARITY: 2-DEV-BELOW > 0 x 25 = 0

84

C.2 Sample Documentation Output

Environment for running local transports

Local transports handle deliveries to files and pipes. (The 'autoreply'

transport can be thought of as similar to a pipe.) Whenever a local transport is

run, Exim forks a subprocess for it. Before running the transport code, it sets

a specific uid and gid by calling 'setuido' and 'setgido'. It also sets a

current file directory; for some transports a home directory setting is also

relevant.

The values used for the uid, gid, and the directories may come from several

different places. In many cases the director that handles the address associates

settings with that address. However, values may also be given in the transport's

own configuration, and these override anything that comes with the address. The

sections below contain a summary of the possible sources of the values, and how

they interact with each other.

Uids and gids

All local transports have the options 'group' and 'user'. If 'group' is set, it

overrides any group that may be set in the address, even if 'user' is not set.

This makes it possible, for example, to run local mail delivery under the uid of

the recipient, but in a special group. For example:

group-delivery:

driver = appendfile file = /var/spool/mail/${local-part}
group = mail

If 'user' is set, its value overrides what is set in the address. If 'user' is

non-numeric and 'group' is not set, the gid associated with the user is used. If

'user' is numeric, then 'group' must be set.

The 'pipe' transport contains the special option 'pipe.ascreator'. If this is

set and 'user' is not set, the uid of the process that called Exim to receive

the message is used, and if 'group' is not set, the corresponding original gid

is also used.

When the uid is taken from the transport's configuration, the 'initgroupso'

function is called for the groups associated with that uid if the 'initgroups'

option is set for the transport; 'pipe' is the only transport that has such an

option.

When the uid is not specified by the transport, but is associated with the

address by a director or router, the option for calling 'initgroups(' is taken

from the director or router configuration. All directors and routers have

85

'group', 'user', and 'initgroups' options, which are used as follows:

For the 'aliasfile' director they specify the uid and gid for local deliveries

generated directly -- that is, deliveries to pipes or files. They have no effect

on generated addresses that are processed independently.

The 'forwardfile' director's 'checklocaluser' option causes a password file

lookup for the local part of an address. The uid and gid obtained from this

lookup are used for any directly generated local deliveries, but they can be

overridden by the 'group' and 'user' options of the director. As for

'aliasfile', these values are not used for generated addresses that are

processed independently.

The 'localuser' director looks up local parts in the password file, and sets the

uid and gid from that file for local deliveries, but these values can be

overridden by the director's options.

For the 'smartuser' director and all the routers, the 'group', 'user', and

'initgroups' options are used only if the driver sets up a delivery to a local

transport.

Current and home directories

The 'pipe' transport has a 'homedirectory' option. If this is set, it overrides

any home directory set by the director for the address. The value of the home

directory is set in the environment variable HOME while running the pipe. It

need not be set, in which case HOME is not defined.

The 'appendfile' transport does not have a 'homedirectory' option. The only use

for a home directory in this transport is if the expansion variable '$home' is

used in one of its options, in which case the value set by the director is used.

The 'appendfile' and 'pipe' transports have a 'currentdirectory' option. If

this is set, it overrides any current directory set by the director for the

address. If neither the director nor the transport sets a current directory,
then Exim uses the value of the home directory, if set. Otherwise it sets the

current directory to '/' before running a local transport.

The 'aliasfile', 'forwardfile', and 'localuser' directors all have

'currentdirectory' and 'homedirectory' options, which are associated with any

addresses they explicitly direct to a local transport.

For 'forwardfile', if 'homedirectory' is not set and there is a

'filedirectory' value, that is used instead. If it too is not set, but
'checklocaluser' is set, the user's home directory is used. For 'localuser',

if 'homedirectory' is not set, the home directory is taken from the password

file entry that this director looks up. There are no defaults for

'current-directory' in the directors, because it defaults to the value of

'homedirectory' if it is not set at transport time.

86

The 'smartuser' director and all the routers have no means of setting up home

and current directory strings; consequently any local transport that they use

must specify them for itself if they are required.

Expansion variables derived from the address

Normally a local delivery is handling a single address, and in that case the

variables such as '$domain' and '$local-part' are set during local deliveries.

However, in some circumstances more than one address may be handled at once (for

example, while writing batch SMTP for onward transmission by some other means).

In this case, the variables associated with the local part are never set,

'$domain' is set only if all the addresses have the same domain, and

'$original-domain' is never set.

? (auto-sum "doc8" :numb-sents 4)

1: Local transports handle deliveries to files and pipes.

SECTION-LOC: FIRST ==> 1 x 15 15

SENTENCE-LOC: FIRST => 1 x 20 = 20

SENTENCE-LENGTH: SHORT ==> 1 x 30 30

SENT-DOC-SIMILARITY: 2-DEV-BELOW ==> 0 x 10 = 0

2: The values used for the uid, gid, and the directories may come from

several different places.

SECTION-LOC: SECOND > 4/5 x 15 = 12
SENTENCE-LOC: FIRST > 1 x 20 = 20
SENTENCE-LENGTH: SHORT ==> 1 x 30 = 30

SENT-DOC-SIMILARITY: 2-DEV-BELOW ==> 0 x 10 = 0

3: The 'smartuser' director and all the routers have no means of

setting up home and current directory strings; consequently any local

transport that they use must specify them for itself if they are

required.

SECTION-LOC: BODY ==> 0 x 15 = 0
SENTENCE-LOC: FIRST ==> 1 x 20 = 20
SENTENCE-LENGTH: LONG ==> 1 x 30 = 30
SENT-DOC-SIMILARITY: 3-DEV-ABOVE ==> 1 x 10 = 10

4: Normally a local delivery is handling a single address, and in that

case the variables such as '$domain' and '$local-part' are set during

local deliveries.
SECTION-LOC: BODY ==> 0 x 15 = 0
SENTENCE-LOC: FIRST ==> 1 x 20 = 20
SENTENCE-LENGTH: LONG ==> 1 x 30 = 30
SENT-DOC-SIMILARITY: 3-DEV-ABOVE ==> 1 x 10 = 10

87

C.3 Sample Report Output

December, 1994

Designing NewsMaker:

Ethnographic Methods Applied

in Elementary School

Michele Evard, Noah Breslow

MIT Media Lab

20 Ames Street, E15-320

Cambridge, MA 02139, USA

Tel: 1-617-253-0330

E-mail: mevard@media.mit.edu

L. Mark Kortekaas

NBC Desktop News

30 Rockefeller Plaza

New York, New York 10112, USA

Tel: 1-212-664-5292

E-mail: markk@media.mit.edu

Copyright 1994 by the Massachusetts Institute of Technology. All rights

reserved.

ABSTRACT

This paper presents the participatory design process for an on-line

communications environment which we created for children's use in school. Rather

than conducting controlled lab experiments, we introduced our initial

implementation of the system to children for use in their school projects. We

applied ethnographic techniques, including observations, informal discussions,

and interviews, to obtain the children's input on further design decisions. From

these experiences we obtained a clear picture of how students in a natural

setting would use the software.

KEYWORDS: Ethnography, educational applications, participatory design,

communication, news.

INTRODUCTION

The application of participatory design methods to the creation of new

environments for children is complicated by several factors, including the

typical roles adults play in a child's life. The children must first be

convinced that a designer is not trying to instruct or test them; even once

trust is established, they may be unable to imagine the system being designed or

the uses to which they may put it. In this paper we describe how we brought the

initial implementation of a software system into a school for the children's

use, and then, using ethnographic methods, engaged the children in the design

88

process.

We feel that this approach is particularly relevant to designs done by adults

for children. Even some environments which are meant to engage children as

active learners [5] have not been designed with children's aid. Focus groups

have been used, but because the children sometimes have a difficult time

imagining how they might use a planned system, their success has been limited.

We hope that this paper will provide designers with concrete methods for

involving children in design.

NEWSMAKER

NewsMaker was originally designed to be a production tool which would allow

children to create personal newspapers. Children would be able to create their

own articles, edit in-house as well as external news articles, and select

articles to assemble into a printed paper using automatic layout [3].

A few additions to the original design were made to provide an in-house Usenet-

style infrastructure. We did not include all of the functionality which we would

want, preferring to allow the children to participate fully in that part of the

design. Both aspects of the design were informed by prior discussions with

children about their use of news [2].

ETHNOGRAPHIC METHODS APPLIED

We introduced NewsMaker to students in two fourth-grade and four fifth-grade

classes in a Boston inner-city public elementary school. We emphasized to each

group that the design was not complete, and that while they were doing their

projects, we would like their input on how the system worked--or did not work.

We followed two of the classes each time they used the system, and observed the

others occasionally. The students with whom Evard worked were involved daily in

the design and implementation of educational video games; they used NewsMaker at

will to ask and respond to questions about game design during the entire four-

month process [1]. Kortekaas assisted a class which used NewsMaker twice a week

for seven weeks to create individual newspapers. Our role during these sessions

was to help the children with their projects.

Observations

Some of the problems the children encountered occurred during the first sessions

of use. For example, we noticed that the children had difficulties with mouse

manipulation and therefore provided keyboard alternatives to double-clicking.

While this type of problem could have been identified in an experimental

situation, children encountered other types of difficulties during normal use

over time. For example, when a large number of articles had accumulated in one

group, children tried to use the keyword search as an author search to find

articles which they knew had been written by certain classmates. This

misunderstanding would not have occurred in an experimental setting as the

children would not have been using large groups of articles by people they knew.

Discussions During Use

89

When one of us would see a student having difficulties or would be called over

to assist a student, we would talk with the child about what he or she was

attempting to do. This often illuminated their understanding of the system. For

example, one girl called Evard over to ask why delete was not working. She had

posted a response which she decided sounded rude, and wanted to delete it. To do

so, she replied to her own post, cut out her comment, and reposted. She tried

this several times before requesting help; through discussion with her it became

apparent that she thought replies replaced the original message. Another girl

said that she didn't like to use the reply command because if the previous

students had not signed their names to their messages, it appeared as if she had

written their part or tried to take credit for it. We believe that these types

of issues would not have come to our attention during other types of usability

studies.

Requests

On several occasions a student would initiate a conversation with one of the

observers and request a change or addition to NewsMaker. The first request was

for a reply command that would include the original message. The most common
request was for a new group; one of these was a request for weather forecasts

from an external source, but most of them were for new groups to which the

children could contribute. The groups included rap music, puzzles, school news,
Logo programming, ecology, Japan, video games, and book reviews. Students also

requested changes to the interface, such as making a child's name visible on the

same screen as his or her article, and to have particular hot keys for tasks

which they did frequently.

Formal Interviews

We conducted individual interviews with students. While the students would

freely discuss their opinions of what they and others used NewsMaker for, they

seemed to find it difficult to point out particular design issues. Several of

the children articulated problems which they had had during use, but these had

generally been observed prior to the interview.

TIMING OF CHANGES

We made some modifications during these four months, but chose to do most of the

changes after the school year ended to avoid disturbing the children's projects.

The potential for disruption was made clear to us when we renamed one of the

system's menu titles. Even though several of the children had requested this

change to a more commonly used term, when it was implemented many of the

children were confused. Such disruption could perhaps be avoided by discussing

each change with all of the groups of children, but it was felt that this would

distract students from their required activities. The changes are now being

tested by children and have met with positive reactions.

IMPLICATIONS

In addition to advising us on software design, the children created activities,
chose discussion topics, and set guidelines about the appropriateness of certain

types of messages. Future work will focus on these areas. Additional

modifications to the environment will be made if and when required by the

90

students.

This work has demonstrated that nine- and ten-year-old children can contribute

constructively to the design of environments for their use. Our use of

ethnographic methods during natural use facilitated their participation. It is

our hope that other designers will be able to use these or similar methods to

allow children to aid in the design of systems meant for their use.

ACKNOWLEDGMENTS

The children of Project Headlight who participated in our work are responsible

for its success; any problems are certainly due to the authors and not the

children. We would also like to thank the teachers as well as our advisors and

other members of the Media Lab who have been helpful in this work. This research

was supported by the News In The Future Consortium and the MIT Media Lab.

REFERENCES

1. Evard, M. Articulation of Design Issues: Learning Through Exchanging

Questions and Answers. In Y. Kafai and M. Resnick (Eds.), Constructionism in

Practice: Rethinking the Roles of Technology in Learning. MIT Media Laboratory,

Cambridge, MA, 1994.

2. Evard, M. What Is "News"?: Children's Conceptions and Uses of News. Annual

Meeting of the American Educational Research Association (April 1994, New

Orleans, LA).

3. Kortekaas, L. M. News and Education: Creation of "The Classroom Chronicle."

Master's thesis, MIT Media Laboratory, Cambridge, MA, 1994.

4. Monk, A., B. Nardi, N. Gilbert, M. Mantei & J. McCarthy. Mixing oil and

water? Ethnography versus Experimental psychology in then study of computer-

mediated communication. Proceedings of CHI'93, 3-6, ACM New York, 1993.

5. Papert, S. The Children's Machine. Basic Books, New York, 1993.

? (auto-sum "rep8" :numb-sents 4)

1: This paper presents the participatory design process for an on-line

communications environment which we created for children's use in

school.

SECTION-LOC: SECOND ==> 3/5 x 20 = 12

SENTENCE-LOC: FIRST ==> 1 x 4 = 4

SENT-DOC-SIMILARITY: 3-DEV-ABOVE > 1 x 10 = 10
KEYPHRASE-CONTENT: #(==> 0 x 30 = 0

TITLE-CONTENT: NIL ==> 0 x 30 = 0

SENTENCE-LENGTH: LONG ==> 1 x 30 = 30

2: Copyright 1994 by the Massachusetts Institute of Technology.

91

SECTION-LOC: FIRST ==> 1 x 20 = 20

SENTENCE-LOC: FIRST ==> 1 x 4 = 4
SENT-DOC-SIMILARITY: 2-DEV-BELOW ==> 0 x 10 = 0
KEYPHRASE-CONTENT: # ==> 0 x 30 = 0

TITLE-CONTENT: NIL > 0 x 30 = 0
SENTENCE-LENGTH: SHORT ==> 1 x 30 = 30

3: From these experiences we obtained a clear picture of how students

in a natural setting would use the software.

SECTION-LOC: SECOND > 3/5 x 20 12

SENTENCE-LOC: BODY > 0 x 4 = 0
SENT-DOC-SIMILARITY: 3-DEV-ABOVE > 1 x 10 = 10
KEYPHRASE-CONTENT: # ==> 0 x 30 = 0

TITLE-CONTENT: NIL > 0 x 30 = 0
SENTENCE-LENGTH: LONG ==> 1 x 30 = 30

4: Rather than conducting controlled lab experiments, we introduced

our initial implementation of the system to children for use in their

school projects.

SECTION-LOC: SECOND ==> 3/5 x 20 = 12
SENTENCE-LOC: SECOND > 0 x 4 = 0
SENT-DOC-SIMILARITY: 3-DEV-ABOVE ==> 1 x 10 = 10
KEYPHRASE-CONTENT: #0 ==> 0 x 30 = 0

TITLE-CONTENT: NIL ==> 0 x 30 = 0
SENTENCE-LENGTH: LONG ==> 1 x 30 = 30

C.4 Sample Speech Output

THE WHITE HOUSE

Office of the Press Secretary

(Highfill, Arkansas)

For Immediate Release November 7, 1998

REMARKS BY THE PRESIDENT

IN RADIO ADDRESS TO THE NATION

The Oval Office

THE PRESIDENT: Good morning. This week the American people sent a

clear message to Washington that we must put politics aside and take

real action on the real challenges facing are nation: saving Social

Security for the 21st century, passing a patients' bill of rights,

strengthening our schools by finishing the job of hiring 100,000

92

teachers and passing my plan to build or modernize 5,000 schools across

our country.

Over the past six years, we have taken real action to address another

important challenge: making our communities safe for our families.

For too long it seemed that rising crime was a frightening fact of life

in America. In too many communities children could not play on the

street or walk to school in safety, older Americans locked themselves

in their homes with fear, and gangs armed with illegal guns boldly

roamed our streets and schools.

I took office determined to change this, committed to a comprehensive

anti-crime strategy based on more community policing, tougher

penalties, and better prevention. Today our strategy is showing

remarkable results. We're ahead of schedule and under budget in

meeting our goal of putting 100,000 police on the street. And all

across America, crime rates have fallen to a 25-year low, respect for

the law is on the rise, families are beginning to feel safe in their

communities again.

Keeping guns out of the hands of criminals has been at the center of

our strategy, and an essential part of our success. Since I signed the

Brady Law, after a big debate in Congress which was led in the House of

Representatives by now Senator-elect Charles Schumer of New York,

background checks have put a stop to nearly a quarter of a million

handgun purchases by fugitives or felons. Law enforcement officers

from around the country have told us that fewer guns on the street have

made a huge difference in the lives of families they serve.

At the end of this month, we will make the Brady Law even stronger.

For the first time ever, we will require background checks for the

purchase of any firearm, whether purchased from a licensed gun deal or

a pawn shop. But under this new Insta-Check system, as it's called,

we'll be able to run nearly twice as many background checks, and most

of them in just a matter of minutes.

We've spent five years working with state and local law enforcement to

put this system in place, but when it comes to our families' safety, we

must take another important step. Every year, an untold number of

firearms are bought and sold at an estimated 5,000 gun shows around our

country. I come from a state where these shows are very popular. I

have visited and enjoyed them over the years. They're often the first

place parents teach their children how to handle firearms safely. I

know most gun dealers and owners are dedicated to promoting safe and

legal gun use.

But at too many gun shows, a different, dangerous trend is emerging.

Because the law permits some firearms to be sold without background

checks, some of these gun shows have become illegal arms bazaars for

criminals and gun traffickers looking to buy and sell guns on a

cash-and-carry, no-questions-asked basis.

On Tuesday, the people of Florida voted overwhelmingly to put a stop

to these tainted transactions and make it harder for criminals to buy

93

firearms. Under the new Florida law, communities now can take action

to require background checks for the public sale of all guns. I

believe this should be the law of the land: No background check, no

gun, no exceptions.

Therefore, I am directing Secretary Rubin and Attorney General Reno to

report back to me in 60 days with a plan to close the loophole in the

law and prohibit any gun sale without a background check. We didn't

fight as hard as we did to pass the Brady Law only to let a handful

of unscrupulous gun dealers disrespect the law, undermine our progress,

put the safety of our families at risk. With this action, we are one

step closer to shutting them down.

I look forward to working together with members of both parties in the

new Congress to meet this challenge and all our challenges to build a

safer and stronger America for the 21st century.

Thanks for listening.

END

? (auto-sum "sp8" :numb-sents 3)

1: This week the American people sent a clear message to Washington

that we must put politics aside and take real action on the real

challenges facing are nation: saving Social Security for the 21st

century, passing a patients' bill of rights, strengthening our schools

by finishing the job of hiring 100,000 teachers and passing my plan to

build or modernize 5,000 schools across our country.

SECTION-LOC: FIRST ==> 1 x 5 = 5
SENTENCE-LOC: SECOND ==> 1 x 15 15

SENT-DOC-SIMILARITY: 3-DEV-ABOVE ==> 1 x 10 = 10
SENTENCE-LENGTH: LONG > 1 x 30 30

KEYPHRASE-CONTENT: #() > 0 x 25 = 0

2: Because the law permits some firearms to be sold without background

checks, some of these gun shows have become illegal arms bazaars for

criminals and gun traffickers looking to buy and sell guns on a

cash-and-carry, no-questions-asked basis.

SECTION-LOC: BODY ==> 0 x 5 = 0

SENTENCE-LOC: SECOND ==> 1 x 15 = 15

SENT-DOC-SIMILARITY: 3-DEV-ABOVE ==> 1 x 10 = 10
SENTENCE-LENGTH: LONG ==> 1 x 30 = 30

KEYPHRASE-CONTENT: #(=> 0 x 25 = 0

3: Therefore, I am directing Secretary Rubin and Attorney General Reno

to report back to me in 60 days with a plan to close the loophole in

the law and prohibit any gun sale without a background check.

SECTION-LOC: BODY > 0 x 5 = 0

SENTENCE-LOC: FIRST ==> 1 x 15 = 15
SENT-DOC-SIMILARITY: 3-DEV-ABOVE ==> 1 x 10 = 10
SENTENCE-LENGTH: LONG ==> 1 x 30 = 30

KEYPHRASE-CONTENT: #((THEREFORE)) ==> 0 x 25 = 0

94

Appendix D

Test Document Sources

D.1 Documentation Sources

alpha-bits.ai.mit.edu/projects/iiip/doc/cl-http/home-page.html

markl.tech.ftech.net/Exim/exim-html-2.10/doc/html/spec.html

ariel.usc .edu/manuals/matlab52/techdoc/basics/gettingtoc .html

zowie.metnet.navy.mil/~mundyj/METCASTClient-WebHelp/WHStart.htm

www.left-coast.com/docs/java/langspec-1.0/index.html

tahiti . salesforce . com/docs/oracle8/SERVER803/INDEX. HTM
tahiti.salesforce.com/docs/C/STL-doc/

www.comp.utas.edu.au/documentation/python/tut/

D.2 Report Sources

www.ccrl.nj.nec.com/html/publication/index.html,

elib.stanford.edu, el.www.media.mit.edu/groups/el/elpapers.html

95

Appendix E

Templates Used in Testing

E.1 Article Template

here is the template for a newspaper-type document.

explanation: each line that does not begin with a pound sign

represents a sentence characteristic. After each pound sign,
there is a possible value for that characteristic. Each possible

;; value is assigned a number. The higher the number is, the more

likely it is that a sentence with that characteristic value is

a topic sentence.

section-loc 40 ;; important

#first 1

#second 0

#last .2

#body 0

paragraph-loc
first 1
second .7
last 0

body .3

sentence-loc
first 1
second .5

50 ;; v.important

40

96

last .1
body 0

sentence-length 100

very-short 0

short 1

long 1

sent-doc-similarity 25

1-dev-above .5

2-dev-above .8

3-dev-above 1

1-dev-below .2

2-dev-below 0

E.2 Documentation Template

here is the template for a documentation-type document.

explanation: each line that does not begin with a pound sign

represents a sentence characteristic. After each pound sign,

there is a possible value for that characteristic. Each possible

;; value is assigned a number. The higher the number is, the more

likely it is that a sentence with that characteristic value is

a topic sentence.

section-loc 15 ;; important

#first 1

#second .8

#last .2

#body 0

sentence-loc 20

first 1

second .3

last .2

body 0

sentence-length 30

very-short 0

97

short 1

long 1

sent-doc-similarity 10

1-dev-above .5

2-dev-above .8

3-dev-above 1

1-dev-below .2
2-dev-below 0

E.3 Report Template

;; here is the template for a report-type document.

explanation: each line that does not begin with a pound sign

represents a sentence characteristic. After each pound sign,
;; there is a possible value for that characteristic. Each possible
;; value is assigned a number. The higher the number is, the more

likely it is that a sentence with that characteristic value is

a topic sentence.

section-loc 20 ;;v. important
first 1

second .6
last .8

body 0

sentence-loc 4

first 1
second 0
last 0

body 0

sent-doc-similarity 10
1-dev-above .5
2-dev-above .8

3-dev-above 1
1-dev-below .2
2-dev-below 0

98

keyphrase-content 30

this paper 1

will show .4

have shown .4

in summary .5

in conclusion .5

introduce .2

introduced .2

describe .2

described .2

presented .2

propose .2

proposed .2

title-content 30

abstract 1

introduction 1

conclusion .4

conclusions .4

sentence-length 30

very-short 0

short 1

long 1

E.4 Speech Template

;; here is the template for a speech-type document.

explanation: each line that does not begin with a pound sign

represents a sentence characteristic. After each pound sign,

;; there is a possible value for that characteristic. Each possible

;; value is assigned a number. The higher the number is, the more

likely it is that a sentence with that characteristic value is

a topic sentence.

section-loc 5

#first 1

99

#second 0

#last .8

#body 0

sentence-loc 15

first 1

second 1

last .8

body 0

sent-doc-similarity 10

1-dev-above .5

2-dev-above .8

3-dev-above 1

1-dev-below .2

2-dev-below 0

sentence-length 30

very-short 0

short .7

long 1

keyphrase-content 25

Today .4
like to talk 1

like to speak 1

want to talk 1

want to speak 1

that's why .4

I urge .7

announce .7

100

Appendix F

Summary Analysis Results

The following data represents the scoring of the test documents.

The first column is the number of the document.

The second column contains two numbers separated by a slash. This represents

the number of sentences that the human testers circled and underlined, respectively.

The third column represents the overlap between the human chosen sentences and

the sentences extracted by the AutoExtractor. An o represents a circled sentence, a

- represents an underlined sentence, and a x represents a sentence that was neither

circled nor underlined. The leftmost symbol represents human's evaluation of the first

sentence the AutoExtractor selected, the next position represents the next sentence

automatically selected, etc. For example, the code "x-o" would indicate that the first

sentence of the three the AutoExtractor selected was neither circled or underlined.

The second was underlined, and the third was circled.

The last column represents the score of the summary, calculated according to the

formula given in section 4.3.1.

Documents:

1 1/4 oxxxx 1
2 1/4 oxxxx 1
3 1/4 oxxxx 1
4 1/3 xoxx .875

101

5 1/3 o-xx 1.29
6 1/3 oxxx 1
7 1/4 xoxxx .9

8 1/4 o-xxx 1.23

9 1/4 o-xxx 1.23

10 1/4 oxxx- 1.15

11 1/4 xxxx- .15
12 1/3 xxx- .208

13 1/4 o-xxx 1.225

14 1/3 xxxx 0

15 1/2 xox .833

Reports:

1 2/5 oxxxx-x .629

2 1/3 oxxx 1

3 2/5 xxxxxxx 0

4 2/5 xxoxxo- .864

5 0/3 xx- .222

6 1/3 xoxx .875
7 1/4 xxxxx 0

8 2/4 -xxxx- .396
9 1/4 oxxxx 1

10 2/4 xxxoxx .375

11 2/4 xxxxxx 0

12 1/4 xxxxx 0

13 1/4 xoxxx .9

14 1/4 xx-xx .2

15 2/5 x-xx-x .329

Articles:

1 1/2 oxx 1

2 1/3 -xxx .333

3 1/2 oxx 1

4 1/2 oxx 1

5 1/3 xxxx 0

6 1/3 xxxx 0

7 1/3 xxxx 0

8 1/2 o-x 1.42

9 1/3 oxx- 1.21

10 1/3 xxox .75

11 1/2 o-x 1.42
12 1/2 oxx 1

13 1/3 x-xx .292

102

14 0/3 -xx .333

15 1/2 xox .833

Speeches

1 1/2 -xo 1.17
2 1/3 oxxx 1

3 1/2 xxx 0

4 1/2 xxx 0

5 1/2 xx- .333

6 1/2 xx- .333

7 1/2 xxx 0

8 1/2 xxx 0

9 0/3 xx- .333

10 1/3 xx-x .25

11 1/3 xxxx 0

12 1/2 xx- .333

13 1/2 oxx 1

14 1/2 xxx 0

15 1/2 oxx 1

103

Bibliography

[1] Salton G., Mitra M., Buckley C., and Singha A. Automatic analysis, theme

generation, and summarization of machine readable texts. Science, 264, 1994.

[2] Rush J.E. Automatic abstracting and indexing. ii. production of abstracts by

application of contextual inference and sytntactic coherence criteria. Journal of

the American Socienty for Information Science, 22(4), 1971.

[3] Tait J.I. Generating summaries using a script based language analyser. In Steels

L. and Campbell J.A., editors, Progress in artificial intelligence. Ellis Horwood,

Chichester, 1985.

[41 Hasida K., Ishizaki S., and Isahara H. A connectionist approach to the gener-

ation of abstracts. In G. Kempen, editor, Natural Language Generation: New

Results in Artificial Intelligence, Psychology and Lunguistics. Martinus Nijhoff,

Dordrecht, the Netherlands, 1987.

[5] McKeown K.R. and D.R. Radev. Generating summaries of multiple news articles.

In Proceedings of the eighteenth Annual International ACM SIGIR Conference

on Research and Development in IR, 1995.

[6] Alterman R. and Bookman L. Some computational experiments in summariza-

tion. Discourse Processes, 13, 1990.

[7] Fung R. Applying bayesian networds to information retrieval. Comms of the

ACM, 38, 1995.

104

[8] Mitkov R., Le Roux D., and Descles J.P. Knowledge-based automatic abstract-

ing: Experiments in the sublanguage of elementary geometry. In C. Martin-Vide,

editor, Current Issues in Mathematical Linguistics. North-Holland, The Nether-

lands, 1994.

[9] Resnick A. Rath G.J. and Savage R. The formation of abstracts by the selec-

tion of sentences: Part 1: sentence selection by man and machines. American

Documentation, 12(2), 1961.

[10] Gerard Salton. Historical note: the past thirty years in information retrieval.

Technical Report TR-87(827):16, Cornell University, April 1987.

[11] Gerard Salton. Term weighting approaches in automatic text retrieval. Technical

Report TR-87(881):21, Cornell University, November 1987.

[12] Simone Teufel and Marc Moens. Sentence extraction as a classification task.

http://www.cogsci.ed.ac.uk/simone/ac197/teufel-moens97.html, 1997.

105

