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ABSTRACT

The electrical breakdown strength of insulating materials is the limiting factor for
greater efficiencies in AC, DC and pulse power apparatus and systems. To improve
high voltage designs and prevent failures it is necessary to understand the physics of
charge injection and transport and electrical breakdown phenomena. Kerr electro-
optic measurements utilize the applied electric field induced anisotropy in refractive
index. The anisotropy affects light propagation through the dielectric so that light
intensity measurements provide information on electric field distributions which cannot
be calculated from knowledge of the geometry alone due to unknown space charge
distributions. Most past Kerr electro-optic measurements have been limited to cases
where the electric field direction and magnitude are constants along the light path
allowing simple relationships between measured light intensity and electric field.

This thesis analyzes the more general case when the applied electric field magnitude
and direction vary along the light path. An approximate slow spatial variation form of
Maxwell equations is obtained as the governing equations of light propagation in Kerr
media and extensively analyzed. It is shown that from each light intensity measure-
ment it is possible to obtain three characteristic parameters when the medium is highly
birefringent and the electrode geometry has no symmetry, and two characteristic pa-
rameters when the medium is weakly birefringent and/or the geometry is axisymmetric.
The characteristic parameters are related to the applied electric field for which new
generalized Kerr electro-optic measurement techniques were developed. Three classes
of algorithms for the inverse problem of reconstructing electric field distributions from
Kerr electro-optic data are investigated. We developed a finite element method based
reconstruction algorithm which is applicable to arbitrary three-dimensional geometries
when the medium is weakly birefringent. For axisymmetric media the onion peeling
algorithm of radially discretized concentric circular regions is developed and success-
fully applied to reconstruct the applied electric field. Finally, algebraic reconstruction
techniques which have been developed in Japan in a research parallel to this one are
studied and compared to our algorithms.

Thesis Supervisor: Markus Zahn
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Space Charge Effects In Insulating Dielectrics

In high voltage apparatus, electric field phenomena within insulating dielectrics are

governed by the electroquasistatic form of Maxwell's equations

V x $(i) 0 (1.1)

es i $() = p(i') (1.2)

where E is the electric field, p is the volume charge density, cs is the low frequency

dielectric permittivity and r' is the position vector. Due to (1.1) the electric field is

said to be irrotational and can be represented as the negative gradient of the electric

scalar potential 4

$ = -V#(r) (1.3)

Equations (1.1)-(1.3) show that the electric potential is governed by Poisson's equation

r -- (1.4)

Equations (1.1) and (1.2) follow from Maxwell equations (see Section 2.2) when the

dielectric is isotropic and homogeneous. If the electric field is constant in time (1.1) is

an exact relation. Even when the electric field is time dependent (1.1) remains valid in

the electroquasistatic limit in which the electromagnetic wave propagation time within

the apparatus is much faster than the time constants of electric field variation [1].
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This work is relevant to both transient and steady state phenomena and when the
charge density is time dependent but with time constants for charge injection and
transport long enough to make the electroquasistatic limit valid. The time dependence
in (1.4) is often not explicitly shown. It should be understood that at each instant in
time (1.4) is valid with the instantaneous p.

The current density J is the other important field quantity for the description of
electric field phenomena in insulating dielectrics and related to the charge density by
the charge conservation law

#- _J ( ) + =) -0 ( 1 .5 )at

In many engineering applications charge transport phenomena is adequately modeled
by Ohm's law

J= UE (1.6)

If a is spatially uniform, substituting (1.2) and (1.6) in (1.5) yields a first order differ-
ential equation in time

ap(', t) a+ -p(r , t) - 0 (1.7)
at 68

whose solution is

p(r, t) = p(?, 0) exp -t/T (1.8)

Here r = e,/u is the charge dielectric relaxation time constant. Equation (1.8) shows
that in the absence of charge generation mechanisms any initial volume charge distri-
bution relaxes to zero.

However real dielectrics in a high voltage environment often do not obey Ohm's
law so that drift, diffusion and convective currents can result in non-zero space charge
distributions. Various mechanisms introduce volume charge into insulating dielectrics.
One very important mechanism is charge injection from high voltage stressed electrodes
where the injected charge can be negative or positive depending on the polarity of the
charge injecting electrode. For liquid dielectrics the entrainment by fluid motion of
the mobile part of the electrical double layer that forms between dissimilar materials
is another mechanism. Still another mechanism is the dissocation of molecules, ionic
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contaminants or additives within the dielectrics. Charge generation mechanisms are

opposed by relaxation and recombination.

By definition, an ideal insulating dielectric cannot sustain a steady conduction

current [2]. There are no perfect insulators, however for most engineering insulating

dielectrics o- is very small so that effects of conduction currents that cause heating and

energy dissipation are tolerable for a wide range of electric field magnitudes. How-

ever there does exist a maximum electric field magnitude called the electric breakdown

strength to which an insulating dielectric can withstand. Once the electric field mag-

nitude exceeds the breakdown strength, dielectrics lose their insulating characteristics

and a large amount of current begins to flow causing excessive heating, burn-out and

eventual failure of the apparatus.

The electrical breakdown strength of insulating materials is the limiting factor in

AC and DC power generation and transmission and for larger energies in pulsed power

applications such as lasers, inertial confinement fusion, charged particle beam devices

and directed energy devices [3]. Space and efficiency concerns requires the maximum

electric field magnitude in high voltage apparatus to be as high as possible while

safety and reliability limits the maximum electric field magnitude to be lower than

the electrical breakdown strength of insulating dielectrics at all times. Thus optimum

designs require accurate knowledge of the electric field distribution.

If the space charge distribution is known at all times then (1.4) can be solved by

traditional numerical methods. The solution can then be used in engineering designs

to assure that the electric field magnitude does not exceed safe limits. Unfortunately,

the physical laws that govern space charge injection and transport are not fully known.

The parameters in models are very sensitive to such factors as temperature, additives,

contaminants and electrode materials. Furthermore the parameters change over time

as the properties of aged dielectrics in high voltage apparatus differ from those of new

dielectrics. Thus in the absence of experimental data, p in (1.4) can not be modeled

adequately.

In the absence of knowledge of the space charge distribution, engineering designs

often take the insulating materials to be uncharged so that the electric field distribution

can be found by solving Laplace's equation for which p is identically zero. Such designs

can not predict where the electric field magnitude may exceed safe maximums in the

presence of space charge. Indeed some catastrophic failures in high voltage apparatus

are attributed to unexpected buildup of volume and surface charge. Even when space

charge effects do not cause breakdown, they affect the performance of high voltage
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equipment by distorting the electric field.

Consequently, to improve designs and prevent failures it is of great interest to
understand or at least empirically model the physics of charge injection and transport
and electrical breakdown phenomena in various dielectrics and to study the effects
of different dielectric and electrode materials, and contaminants and additives. This
challenge requires accurate determination of space charge and electric field distributions
in experiments. Kerr electro-optic measurements provide a convenient noninvasive
methodology for this purpose.

1.2 Kerr Electro-Optic Measurements

1.2.1 The Kerr Electro-Optic Effect

In general, dielectrics are isotropic due to random orientation of the molecules. When
the dielectric medium is stressed by a high electric field, the field direction becomes
preferred for molecular dipoles and the dielectric medium becomes birefringent so that
incident linearly or circularly polarized light propagating through the medium becomes
elliptically polarized. This applied electric field induced birefringence is known as the
Kerr effect.

The fundamental relation of this thesis relates the birefringence to the magnitude
of the applied electric field in dielectrics which exhibit the Kerr effect [3,4]

An = nile - ni, = ABE 2  (1.9)

Here n10 and ni0 are the refractive indices for light polarized in the direction of the
applied field and in the direction perpendicular to the field respectively; A is the free
space wavelength of the light; B is the Kerr constant; and E is the magnitude of the
applied electric field.

In the dielectric literature (1.9) is often replaced by

An n1 - n -~ ABES (1.10)

where ET is the magnitude of ET, the component of the applied electric field transverse
to the light propagation direction; and n and ni are respectively the refractive indices
for light polarized in the direction of ET and in the direction perpendicular to ET and
the light propagation direction. Equation (1.10) is an approximate form of (1.9) which
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$ UP AND DOWN ON OPTICAL TABLE

Figure 1.1: A basic Kerr electro-optic measurement set-up. The main chamber is filled

with a liquid dielectric and houses an electrode system (here parallel plate electrodes)

whose electric field and space charge distributions are under investigation. An advanced

set-up also includes filtration, vacuum and temperature control systems to control and

monitor the dielectric state.

is valid when the birefringence is small

An <1 (1.11)

Derivation of (1.10) from (1.9) is provided in Chapter 2. The transverse component

ET and the directions associated with the subscripts 1lo, 1o, || and I are also detailed

in Chapter 2 (see Figure 2.1).

1.2.2 Principles Of The Measurements

A typical Kerr electro-optic measurement set-up is shown in Figure 1.1 for parallel plate

electrodes. The electric field is applied through the high voltage amplifier. Neglecting

electrode end effects the applied electric field is spatially uniform and perpendicular to

the propagation direction of light within the electrode length of 1. Since the applied
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electric field is perpendicular to the light propagation direction ET = E and (1.9) and
(1.10) are identical. Upon entering the electrode region the light electric field decom-
poses into components in the direction of the applied electric field and perpendicular
to it. As implied by (1.9) these two components travel with slightly different speed
and at the end of the electrode region an optical phase shift is introduced

=D -7An ds = 27rBE 21 (1.12)

where s is the position coordinate along the light path. Thus if 4b is measured, the
electric field magnitude follows as

2- (1.13)
V' 7rBl

The low intensity light has virtually no effect on the applied electric field distribution
hence the method is noninvasive. Optical measurements offer near-perfect electrical
isolation between the measured field and the measuring instrumentation, avoids in-
terference errors and makes extensive shielding and insulation requirements unneces-
sary [5].

The optical elements (polarizers and quarter wave plates) are used to measure the
phase shift introduced by the stressed dielectric and constitute what is known as an
optical polariscope system. For the particular system in Figure 1.1, when the polarizer
transmission and quarterwave plate slow axes are 450 to each other the output intensity
I is given as

I 1 +sin D sin2( o-0a) (1.14)
Io 2

Here W is the direction of the applied electric field and 0a is the direction of the analyzer
transmission axis both with respect to some fixed reference direction perpendicular to
the light propagation direction. Io is the light intensity just after the filtering polarizer
which is introduced to control the light intensity so that the photo-detector is not
saturated. It is clear from (1.14) that output light intensity measurements can be used
to measure both the magnitude and the direction of the electric field by rotating the
analyzer (thus changing 0a).
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1.2.3 Kerr Media

In this thesis we define Kerr media to be electrically stressed transparent dielectrics

which obey (1.9). The classification of a Kerr medium (homogeneous vs. inhomoge-

neous for example) will refer to the permittivity and/or refractive index tensor of the

medium. The effect is generally strongest in polar dielectric liquids.

The method is limited to transparent dielectrics. However most liquid dielectrics, in

particular the most common high voltage insulant transformer oil, are in this category

making the method very attractive. Liquid dielectrics which were investigated in the

past using the Kerr electro-optic effect include transformer oil [6-11], highly purified

water and water/ethylene glycol mixtures [12-14], and nitrobenzene [15-17]. The effect

can also be used for gases (SF6 ) [3] and solids (polymethylmethacrylate) [18,19].

1.2.4 Measurement Techniques

There are two general measurement schemes as shown in Figure 1.2. Earlier measure-

ments typically used the two dimensional scheme in which the laser beam is expanded

using an optical beam expander to cover the entire area of interest and the output

light beam is photographed. Depending on the polariscope system the output inten-

sity expressions differ but invariably contain sine and/or cosine terms that depend on

<D and the electric field direction as in (1.14). As the one or two dimensional electric

field magnitude and/or direction change in the plane perpendicular to the light path,

a fringe pattern of light maxima and minima result.

In Figure 1.3 we illustrate 5 such computed patterns for different charge injection

processes. This is a rounded edge parallel plate electrode with gap of 1 cm and length

1 of 10 cm (into the page). The medium is nitrobenzene for which B = 3 x 10-12 m/V 2

and the applied voltage V is 30 kV. The polariscope system is a crossed polarizer

circular polariscope for which the output intensity is

-= sin - (1.15)
I0 2

and does not depend on the direction of the electric field. A crossed polarizer circular

polariscope is obtained by having the transmission axes of the two polarizers perpendic-

ular and adding a second quarter wave plate to the system shown in Figure 1.1 between

the medium and the analyzer with slow axis at 450 to the analyzer transmission axis

and perpendicular (90') to the first quarter wave plate slow axis.
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(a) Two Dimensional Measuring Scheme
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PHOTO-DETECTOR

(b) Point Measuring Scheme

Figure 1.2: Kerr electro-optic measurement schemes. On the top the beam is expanded
and covers the entire area of interest. On the bottom each measurement yields data
on a single point. Two dimensional data is gathered by mechanically moving the laser.

The calculated patterns shown are for no charge injection (Laplacian field), positive

charge injection, negative charge injection, bipolar homocharge injection, and bipolar
heterocharge injection. For positive and negative charge injection we assume the charge

density to be spatially uniform (p = eV/d 2) within the electrodes and for bipolar
charge injections we assume that the charge densities are symmetrically linear (Ppeak =
eV/d 2). Here d = 1 cm is the gap distance. Although (1.15) is not a one to one
function the values of 4 can still be determined. Far from the electrodes where the
electric field goes to zero, '1 is also zero and each light maximum corresponds to some
odd integer times 7r for ID and each minimum corresponds to an even integer times 7r

for D such that

= n7r n=1,2, -- (1.16)

and n can be determined by counting the number of prior maxima and minima between
the outer dark region.

In the two dimensional scheme using the fringe patterns, it is possible to measure P
accurately. Based on the fringe patterns both qualitative and quantitative conclusions
are possible. For example if there are more closely spaced fringes near an electrode as
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Figure 1.3: Calculated crossed polarizer circular polariscope intensity patterns using
parallel plate electrodes with gap d = 1 cm for various charge injection processes. The
dielectric medium is nitrobenzene (B ~ 3 x 10-12m/V 2 ), the applied voltage V is 30
kV and the electrode length 1 is 10 cm.
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(a) Quarter Of The Gap Filled (b) Half Of The Gap Filled

(c) Three Quarters Of The Gap Filled (d) Whole Gap Filled

Figure 1.4: Illustration of time evolution of injected positive charge from the positive
electrode with negligible recombination and/or relaxation.

in the 2nd and 3rd figures in Figure 1.3 then it may be concluded that the electric field

is strongest at the electrode with polarity opposite to that of the positive or negative

unipolar charge injection and that the charge is injected from the electrode where

the field is weakest. This technique has the added advantage that the time evolution

of charge can be recorded by high speed photography, up to 5000 frames per second

in reference [3]. In Figure 1.4 we illustrate computational snapshots of propagating

positive charge injection as the charge fills a quarter, a half, three fourths and all of

the gap. The geometry and material parameters are identical to those in Figure 1.3.
Photographic data however is useful only when the Kerr constant B is high enough

so that optical fringe patterns are available. If the Kerr constant is small so that <b never

exceeds 7r/2, it is not possible to observe fringes. For this reason earlier measurements

were limited to high Kerr constant materials such as nitrobenzene and water (with

meter long electrodes) for which B ~ 3 x 10-12 m/V 2 and B ~ 3.0 x 10- 4 m/V2

respectively.
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The second scheme for Kerr electro-optic measurements uses an unexpanded laser

beam. For good spatial resolution it is advantageous to use a beam with as small a

radius as possible. After light propagates through the medium the output intensity is

measured by a photo-detector. The most common insulant transformer oil has a Kerr

constant on the order of 10-15 m/V 2 . For reasonable applied voltages and electrode

gaps and lengths the phase shift is less than 0.1 radians, making it difficult to measure

such small dc signals from the photo-detector.

The sensitivity of Kerr electro-optic measurements is increased by the use of an

ac modulation method where an ac quasistatic electric field is superposed onto a dc

field [8,9, 20-22]. For parallel plate electrodes the total electric field is then given as

E = Edc + Eac cos wt (1.17)

Substituting (1.17) in (1.12) yields

E2 E -
<D = 27rBl [Ee + Ec + Ec cos 2wt + 2EdcEac cos wt (1.18)

I' 2 2

Thus the optical phase shift has dc, fundamental frequency and double frequency com-

ponents. When the electrode system illustrated in Figure 1.1 is used and the analyzer

angle is set at r/4 radians to the electric field direction the output intensity reduces to

If ~ 4 (1.19)
Io 2

since <D is small. Substituting (1.18) in (1.19) yields dc, fundamental frequency and

double frequency components for the intensity. The dc component is essentially equal

to 10/2

1 E2- 0
I&c = O - + 7rBlEec + r B1l - (1.20)

12 2 _ 2

since B is so small that the electric field dependent terms are much less than 1/2. The

ratios of the fundamental and double frequency components to Idc are then given as

= 47rBlEdcEac (1.21)
Idc

12W = wrB1E c (1.22)
Idc
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Both Iw/Ic and I2w/Idc can be measured very accurately using a lock-in amplifier
which can then be used to find Edc and Eac.

Ac modulation increases the sensitivity of the Kerr electro-optic measurements
dramatically and it becomes possible to conduct research on small Kerr constant media
and in particular transformer oil using Kerr electro-optic measurements. One other
advantage of the method is that the ac field is not affected by space charge since
typical charge mobilities are small enough that the space charge cannot follow the
ac field for sufficiently high frequencies (typically frequencies on the order of 100 Hz
suffice). Thus Eac can be found analytically or numerically from solutions to Laplace's
equation and I2w may be used to calibrate the measurements for increased accuracy in
measuring Edc.

1.2.5 Nonuniform Electric Field Distributions

On the ground planes of electrode systems such as point/plane electrodes (Appendix A)
and sphere/plane electrodes (Appendix B), the electric field direction is constant but
the magnitude E(x, y) varies as a function of position where we choose the xy-plane
to coincide with the ground plane. For a light path on the ground plane the applied
electric field direction is perpendicular to the path and using (1.9) the optical phase
shift <1 can be expressed asJ/Sout 2] Sout

<D(p, ) = -An ds = 27rB E2 (x, y)ds (1.23)
Sin A sin

fS out

= 2r Bn E 2 (p cos -- s sin 0, p sin 0 + s cos O)ds (1.24)

Here p and 0 describe the light path in the xy-plane; p is the distance between the
origin and the path, and 0 is the angle between the normal to the path and the x-axis

(see Figure 9.1). sin and sout are the entrance and the exit points of the light ray into
the inter-electrode region.

Equation (1.23) shows that a single optical phase shift measurement does not pro-
vide much information on the spatial distribution of electric field magnitude. The next
question is if it is possible to approximately determine E(x, y) from a set of optical
phase shift measurements and the answer is affirmative. In fact reconstruction of a
planar function from its line integrals is of interest in a variety of scientific disciplines
and is known as tomography. For scalar functions many well established methods exist
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and we describe some of them in Chapter 7 and Chapter 9. Thus for special cases

where electric field magnitude varies but the direction is constant along the light path

Kerr electro-optic measurements can still be used to measure the electric field.

However when both the magnitude and the direction of the electric field vary along

the light path optically measuring the electric field distribution is not straight forward.

Since the electric field direction is not constant along the light path it is not possible to

integrate (1.9) to find the optical phase shift. Thus it is necessary to develop the theory

that relates the Kerr electro-optic measurements to the applied electric field. If this

is achieved then the next step is the development of algorithms which can reconstruct

the electric field distribution from a set of Kerr electro-optic intensity measurements.

These constitute the objectives of this thesis.

1.3 Objectives Of The Thesis

This work is part of a continuing effort to measure electric field distributions using

the Kerr electro-optic effect [6,12-15,19,23-27]. The past experimental work has been

limited to cases where the electric field magnitude and direction have been constant

along the light path such as two long concentric or parallel cylinders [3,12,15] or parallel

plate electrodes [3,13].

In those cases using high Kerr constant dielectrics the electric field magnitude and

direction is directly available from intensity measurements as demonstrated in (1.14).

However, to study charge injection and breakdown phenomena very high electric fields

are necessary (~ 1.0 V/m) with long electrode lengths and for these geometries large

electric field magnitudes can be obtained only with very high voltages (typically more

than 100 kV). Furthermore, in these geometries the breakdown and charge injection

processes occur randomly in space often due to small unavoidable imperfections on

otherwise smooth electrodes. The randomness of this surface makes it impossible to

localize the charge injection and breakdown and the problem is complicated because

the electric field direction also changes along the light path. To create large electric

fields for charge injection at known location and at reasonable voltages a point electrode

is often used in high voltage research where again the electric field direction changes

along the light path. The ultimate goal of this research is to use the Kerr electro-

optic measurement for typical arrangements in high voltage apparatus for which the

geometries are mostly three dimensional. Hence it is of interest here to extend Kerr

electro-optic measurements to cases where the applied electric field direction changes
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along the light path.

The primary objective of this thesis is the mathematical modeling of the inverse
formulation of using Kerr electro-optic measurements of light intensity along many
light paths to determine the arbitrary three dimensional electric field direction and
magnitude everywhere between electrodes. The inverse problem of measuring nonuni-
form electric field distributions in space from the Kerr electro-optical measurements
will be referred to as Kerr electro-optic tomography. In this thesis we attempt to ex-
tend, improve and apply methods of medical tomography and photoelasticity to Kerr
electro-optic tomography. Kerr electro-optic measurements are nonlinearly related to
the vector components of the applied electric field. Examples of vector tomography and
nonlinear tomography are rare in the literature and this work is expected to provide a
case study for other disciplines as well.

1.4 Outline Of The Thesis

The thesis begins with the introduction chapter which gives a background of Kerr
electro-optic measurements and states the scope of the thesis. The remainder of the
thesis is divided into two main parts.

In Part I we develop the forward theory of Kerr electro-optic measurements. The
development begins in Chapter 2 with macroscopic and molecular descriptions of the
Kerr electro-optic effect and the derivation of a reduced form of Maxwell equations
which govern light propagation in electrically stressed dielectrics which exhibit the
Kerr effect. Chapter 3 introduces the matricant which describes the evolution of the
polarization while light is propagating through the anisotropic dielectric. In Chapter 4
the matricant theory leads to the definition of characteristic parameters which are
proven to be the only independent measurables in a Kerr electro-optic measurement.
This chapter also develops the relations between the electric field distribution and the
characteristic parameters. Part I is concluded with Chapter 5 which describes how
various optical polariscope systems can be used to measure the characteristic param-
eters and compares optical intensity patterns of two dimensional and axisymmetric
geometries.

Part II is devoted to the inverse problem of reconstructing the electric field and
space charge from the Kerr electro-optic light intensity measurements. We use syn-
thetic Kerr electro-optic data based on the theory in Part I. When possible we use
synthetic data that is indicative of the actual data which are being taken for the ex-
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perimental thesis work on Kerr electro-optic measurements which has been continuing

parallel to this one at MIT [28]. The onion peeling method is the first reconstruc-

tion algorithm in Part II and described in Chapter 6. Chapter 7 is devoted to the

adaptation of algebraic reconstruction techniques (ART) of scalar tomography to Kerr

electro-optic measurements. Chapter 8 develops a finite element method based re-

construction algorithm. We conclude Part II with a review of transform methods of

scalar and vector tomography and a discussion of how they might be extended to Kerr

electro-optic measurements in future research. The thesis finishes with conclusions

and the suggestions for future research, and the appendices. Figure 1.5 summarizes

the content of the thesis.

Onion
Peeling 4

Method

Algebraic
Reconstruction

Techniques

Electric ft Ligh Kerr
Field c Propagation Electro-Optic

Distribution in Kerr Media Data

Space Charge Finite Element Based
Density Kerr Electro-Optic Reconstruction

Distribution Algorithm

Figure 1.5: The summary of the content of the thesis. In Part I light propagation in
Kerr media is developed and Kerr electro-optic measurements are related to applied
electric field distributions in dielectrics. Part II introduces three algorithms which
reconstruct applied electric field or space charge density distributions from Kerr electro-
optic data.
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The Forward Problem
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Chapter 2

Light Propagation In Kerr Media

2.1 Introduction

In Chapter 1 we discussed electric field phenomena in insulating dielectrics and in-

troduce the principles of Kerr electro-optic measurements. Kerr media are defined

to be transparent insulating dielectrics which become birefringent in the presence of

an applied electric field and for which this birefringence depends quadratically on the

applied electric field magnitude.

Maxwell's equations are the basis for both quasistatic electric field phenomena and

light propagation in insulating dielectrics. This otherwise distinctly treated phenom-

ena are coupled in Kerr electro-optic measurements through the electric constitutive

laws of electric field induced anisotropy in the refractive indices. This chapter begins

with a statement of Maxwell's equations and the dielectric constitutive laws. The Kerr

electro-optic effect is detailed both from macroscopic and microscopic view points. It is

shown that for light propagation, Kerr media can be treated as a uniaxial crystal. Light

propagation in homogeneous uniaxial media is reviewed and generalized to inhomoge-

neous media. The final results of this chapter are approximated forms of Maxwell's

equations which are easier to analyze and constitute the governing equations for light

propagation in inhomogeneous Kerr media in this work.
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2.2 Maxwell's Equations

2.2.1 Basics

As most phenomena involving electromagnetism, Maxwell's equations are the very basis
of this work. There are numerous introductory books on the subject [29-31]. Here we
merely state them for reference and to underline approximations used in this work.

Maxwell equations are usually expressed as

Sx S(, t) = a-t) (2. 1 a)

-- -. 8 (i t )V x 'H(r-, t) = at '+ f(F, t) (2. 1b)

# (,t) =p(F t) (2.1 c)

V - $(F, t) = 0 (2.1d)

where 8, D, R and B are respectively electric field, electric displacement field, magnetic
field and magnetic flux density; r' and t denote the position vector and time. We use
calligraphic letters to maintain generality since 8, 7, R and B may refer to quasistatic
field quantities of high voltage environments which we denote by F, D, H and B, to
optical field quantities which we denote by C, d) h and b, or to the sum of quasistatic and
optical field quantities as they are both present in Kerr electro-optic measurements.
No such distinction is necessary for the electric current J and the charge density p
since they are the sources of quasistatic fields only and identically vanish for optical
fields as there are no light sources within Kerr media. Note that J and p are related
by the charge conservation law (1.5) which follow from (2.1b) and (2.1c).

Equation (2.1) relates electromagnetic field quantities. Material interactions with
electromagnetic fields are described by the constitutive laws which interrelate 8, 29, K
and B. This work is limited to nonmagnetic materials for which H and B are related
by

$(F, t) = poK(r, t) (2.2)

where y-o = 47r x 10-7 henries/meter is the magnetic permeability of free space. The
second and most important constitutive law used in this work relates the displacement
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and electric fields

D(T, t) = cof(r-, t) + P(?, t) (2.3)

where P is called the polarization density and Eo ~ 1/367r x 10-9 Farad/meter is the free

space permittivity. P describes the effects of microscopic (and sometimes macroscopic)
dipoles that form in the material as a response to 5 [30].

Materials for which P is in the same direction as . are called electrically isotropic

and for which the components of P are linearly dependent on the components of E are

called linear. For isotropic linear materials

P cox(W)s (2.4)

where x is the suspectibility and w is the frequency of the electric field. Here we

assume that the electric field has a single frequency component or that the frequency

dependence of x is negligible within the bandwidth of E. Otherwise (2.4) must be

expressed as a sum of the individual frequency components of E. Substituting (2.4)

into (2.3) yields

D(r, t) = (w)(', t) (2.5)

where e(w) = o[1 + x(w)] is the dielectric permittivity.

For quasistatic fields Kerr media are linear, isotropic and the frequency depen-

dence of e is negligible for relevant frequencies. We denote this low frequency value of

dielectric permittivity by E, where s stands for static. Thus

D(f, t) = es Z(, t) (2.6)

where D and E denote quasistatic displacement and electric fields respectively.

When there is no applied quasistatic field Kerr media are linear and isotropic for

optical fields as well. The frequency bandwidth of the light used in Kerr electro-optic

measurements is small and the frequency dependence of E can be neglected

d(?, t) = 6e r(, t) (2.7)

Here d and i denote optical displacement and electric fields respectively. In the rest of
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this work c refers to optical isotropic permittivity.

In the presence of an applied quasistatic field optical isotropy is no longer valid
since a strong quasistatic field introduces a preferred direction and the Kerr medium
becomes anisotropic. Much of the rest of this chapter describes this anisotropy and its
effect on light propagation.

2.2.2 Nonlinear Electric Constitutive Law

Materials which are not isotropic are called anisotropic and which are not linear are
called nonlinear. Equation (2.4) is generalized to anisotropic but linear materials by
allowing the suspectibility to become a second rank tensor

P=cox(W)- (2.8)

where w is the frequency of the electric field. Here we assume that 8 has a single
frequency component or the bandwidth around w is negligible. Otherwise (2.8) must be
written as a sum for individual frequency components. For linear anisotropic materials
the permittivity generalizes to the permittivity tensor c = co I + where I is the
second rank identity tensor.

In electromagnetism, nonlinearities are often handled by expressing P as a Taylor
series expansion in 8

=o(W) - + eo (W) : + + eo ():SS +... (2.9)

where

o~i 62p Pia
60 [i = e=6 [02 OEjSk e=6 . ijkl 3 ! 8E jOkoSl e=6

(2.10)

and i, j, k, 1 = 1, 2, 3 refer to the components in a Cartesian reference frame. Equa-
tion (2.9) uses the dyad notation where S8 is a second order tensor with components

[s 417 SiE (2.11)

and 888 and 8888 are similarly defined third and fourth rank tensors with compo-
nents [8881 = EiSj3k and SE = Ei EjkEj. The symbols : and : in (2.9)
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respectively denote sums on two and three indices. Inclusion of Taylor series' coeffi-

cients 2! and 3! in the susceptibilities in (2.10) rather than in (2.9) is customary and

terms beyond those shown in (2.9) are rarely used in practice [32].

In the expansion of (2.9) it is assumed that the polarization density vanishes when

. = 0. This is true for most dielectrics and in particular Kerr media. For large electric

field magnitudes the polarization density may approximately become independent of

the electric field. For this nonlinear saturation phenomena a Taylor series expansion

around the saturation electric field is more appropriate than (2.9). For fields and

materials relevant to this thesis saturation related nonlinearities are not important

even for breakdown electric fields. Thus saturation related phenomena is not in the

scope of this thesis.

When media exhibit symmetries, certain components of suspectibility tensors vanish

and others turn out to be identical. As an example, for isotropic materials suspectibility

tensors reduce to constants. Another example is media with inversion symmetry for

which reversing the sign S also reverses the sign of P. For such media i and any higher

order suspectibility tensor multiplying even powers of electric field components in (2.9)

vanish. Inversion symmetry is important in this work as it explains why the Kerr

electro-optic birefringence depends on the second power of the electric field magnitude

(Section 2.5) as opposed to Pockels effect birefringence in asymmetric crystals which

depends on the first power of the electric field.

2.3 Isotropic Light Propagation

2.3.1 Linear Media

In the absence of the applied electric field, Kerr media are isotropic and linear. This

section discusses light propagation in linear isotropic media and underlines various

approximations used in this work. We use lower case letters ', d h and b to denote

the field quantities of light and = n2 o to denote the optical permittivity constant

in non-magnetic media where n is the isotropic refractive index. There are no light

sources within Kerr media and thus for light propagation the space charge density and

current density vanish.

In uniform linear isotropic source-free media, taking the curl of (2.1a) and using
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(2.1b) with the identity

x V x (, t) VV - (-I t) _ 2e(r, 7t) (2.12)

Maxwell's equations (2.1) and the constitutive laws (2.2) and (2.7) yield

-- a2-2 ( jt)
2 (,t) = pLo eC 82 (2.13a)at2

Here (2.13a) is the wave equation and (2.13) governs the wave solutions of Maxwell's
equations or electromagnetic waves and in particular light in a uniform linear isotropic
medium.

The sinusoidal steady state solutions to Maxwell's equations are called monochro-
matic waves. The sinusoidal steady state solutions are most conveniently expressed by
the time dependence exp(iwt) and time independent complex amplitudes ', d h and b
which are related to the real time fields by

e(F, t) = 91C {(?)et} d(i-, t) = Ne {d(()e (2.14)

h(r', t) = 91e {E()eiwt b(F, t) = 91e {b(r)eiw (2.15)

where i = V/T, 9e denotes the real part of the complex argument, and W is the radian
frequency.

Most electromagnetic wave phenomena is investigated in terms of monochromatic
waves. The analysis can then be extended to arbitrary time domain phenomena uti-
lizing Fourier analysis [31]. The frequency bandwidth of the laser light used in Kerr
electro-optic measurements is so narrow that no such analysis is needed in this work.

We proceed assuming solutions of the form

= exp(-ik- (2.16)

in (2.13). Here k is the position independent wavevector and the conditions for (2.16)
to be a solution to (2.13) are found by substitution

k2 W2  (2.17)

k - = 0 (2.18)
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The solutions of the form given in (2.16) are known as transverse plane waves. They

describe waves traveling in the direction of k and whose wave fronts are uniform in

the plane perpendicular to k. The propagation direction k and its magnitude k are

respectively called the wavevector and wavenumber. Equation (2.17) relates the mag-

nitude of the wavevector to the frequency, magnetic permeability and permittivity and

is known as the dispersion relation. Equation (2.18) shows that the plane wave electric

field vector can only have components in the direction transverse to the propagation

direction in isotropic media.

Plane waves are widely used to understand the characteristics of light propagation.

However no light source and in particular lasers do not output plane waves as that

would require an infinite aperture width. In fact lasers output a Gaussian beam whose

wave front is nonuniform in the directions perpendicular to k.

Once there is a nonuniformity in the initial wave front, this nonuniformity changes

as light propagates. In particular, propagation of Gaussian beams in isotropic media is

well understood and leads to the result that the beam expands as it propagates. This

diffraction effect is negligible for small propagation distances much less than ira2 /A

where a is the radius of the optical beam and A is the optical wavelength [30]. Then

the beam can be treated as a plane wave. For a 0.5 mm radius light beam of wavelength

600 nm ra2/A is around 1 meter.

For two dimensional Kerr electro-optic measurements the beam radius is typically

expanded to ~ 10 mm and the light path is on the order of 10 cm and thus diffraction

effects can be safely neglected for the typical light wavelength of 600 nm. For point

measurements the initial light beam radius is on the order of 1 mm and for typical

propagation distances on the order of 10 cm the beam expands less than 1.1 times of

its original size. In this work this slight diffraction effect is neglected in the development

and light propagation equations are developed exclusively with plane waves.

2.3.2 Absorption And Complex Permittivity

The constitutive law of (2.5) with real suspectibilities implies that the optical electric

field and the optical polarization density are in phase. This means that any change

in the electric field instantaneously changes the polarization density. The molecular

origins of polarization are briefly reviewed in Section 2.5. We here note that not all

underlying processes of polarization can follow the optical frequencies and the response

of the medium can not be approximated to be instantaneous. In fact some processes
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are so slow that they can be neglected for optical frequencies. For others however,
inverse relaxation time constants are on the order of optical frequencies. For sinusoidal
steady state solutions this causes phase differences between the electric field and the
polarization density which results in complex permittivity.

If the permittivity is complex (2.17) shows that the wave vector is also complex. It
then follows from (2.16) that the light attenuates as it propagates. For light propagation
equations developed in this chapter this absorption is neglected completely, as the
transparency of the Kerr medium implies that the absorption is small. Secondly, the
polarization dependence of absorption is not expected to be significant for Kerr media.
This implies that absorption can be modeled for birefringence measurements by a
common multiplier to the polarization components and this does not effect the theory
developed in this work.

2.3.3 Nonlinear Optics

In the nonlinear constitutive law of (2.9) the susceptibilities are functions of the fre-
quency for optical electric fields. Furthermore when S is composed of multiple fre-
quency components, due to the nonlinear terms in (2.9) the polarization density con-
tains additional frequency components that are not present in the electric field. As an
illustration consider an optically nonlinear medium without inversion symmetry and
an electric field with two frequency components

9(t) = Ne {e1 exp(iwit) + '2 exp(iw2 t)}
1

=- {1 exp[iwit] + el* exp[-iwit) + 2 exp[iw 2 t] + e2 exp[-i 2 t]} (2.19)

where we did not show any position dependence as it is not relevant to this discussion.
Each term in (2.9) consists of multiple frequency components which can be expressed
as

P(t) =co9{e {(wi) -1 exp[iwit] + =(W 2 ) 2 exp[iw2 t] + -2(0) [il* + 2

1( 1 - '1= 1=
+ =(2w1) : e121 exp[i2wit] + -(2w 2 ) :22 exp[i2w2t]

+ (w1 + w2) : ile2 exp[i(wi + W2 )t] + =(w 1 - w2 ) : exp[ifw1 - w2)t]
1 1=

+ = (3wi): ie121 exp[i3wit] + - =(3w2 ): 2 2.2 exp[i3w2t]4 X4 ee22
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+ 3(wi) #3eiele* + 6 22 exp[iwit] + (2) 3-222 + Seie21exp[i 2t]
3 =3
+ (2wi + U)2) 1 1 2 expj(21i + w2)] + - (2w 2 + Wi e2 e2  ' exp[i(2w2 + wi)t]

3e 32
+ - (2wi - 02 ) :iie exp[i(20 1 - w2 )t] + -R(2w2 - wi) 7e2 2 2 exp[i(2w2 - wi)t]

4 X4

+ --- (2.20)

Equation (2.20) shows that beside the fundamental frequencies wi and W2 , the polar-

ization density has frequency components at 2wi, 2w 2 , L 1 - w2, L 1 + w2 , etc.

Particularly relevant to this work is when there is a single frequency component of

the electric field o = wi= w2 . Using e1 =' and 2  6 (2.20) reduces to

P(t) = co9te X=(w) - eexp[iwt] + - =(w) e exp[iwt] + - (0) : ee*
4 X2

+ =(2w) : eeexp[i2wt] + - (3w):essexp[i3wt] + - (2.21)2 X4 }
The first term is the usual linear polarization and the second term leads to the optical

Kerr effect which is described in the next paragraph. The third term in (2.21) is a dc

field. Optical creation of a dc field is called rectification. The exp(i2wt) term causes

the so called second harmonic generation. The exp(i3wt) term has little practical

significance.

When the media is isotropic, changing the sign of C must cause a change of sign in

P (inversion symmetry) and thus the dc and double frequency terms are not present.

Neglecting the triple frequency term and noting that suspectibility tensors reduce to

constants due to isotropy, the polarization density has only the fundamental frequency

term which reduces to

P = [X (w) + x(3 )() Il 2 (2.22)

where for isotropic media (w) = X(3)()I and =(w) = x(w)I. Thus the effective

suspectibility is dependent on the intensity of the light. This effect is known as the

optical Kerr effect. It causes self-focusing which inhibits the expansion of light beams.

Although we do not use any results due to nonlinear optics in this work, this section

is included because it underlines the difference between the Kerr electro-optic effect
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and optical Kerr effect. Equation (2.22) shows that the intensity of the light in Kerr
electro-optic measurements must be chosen small enough or the effects due to the
optical Kerr effect must be considered. This is also true for other nonlinear optical
effects such as double harmonic generation. Finally the derivation of (2.20) clarifies
the description of electro-optic effects which are similarly explained in Section 2.5.

2.4 Light-Frame, E-Frame and ET-frame

Here we introduce three reference frames which are necessary to simplify the description
of the Kerr electro-optic effect and the derivation of the governing equations of light
propagation in Kerr media which constitute the remainder of this chapter.

2.4.1 Light-Frame

The light-frame is fixed to the propagation direction of light which we denote with the
unit vector s. We choose s to be the third coordinate direction of the light-frame. The

other two directions transverse to the propagation direction are necessary to form a
right handed coordinate frame and are denoted by rn as the first coordinate direction
and P as the second coordinate direction. When light propagates parallel to the optical
table, rIn (or #) is often chosen to be the direction perpendicular to the optical table.
The respective coordinates are m, p and s and the respective components of a vector
v are denoted by vm, vP and v.

The light frame is fundamental and often serves as the fixed frame for light prop-
agation phenomena both in general and in the Kerr electro-optic literature. In this
work however a distinction is necessary as in Part II we discuss the reconstruction of
the applied electric field from intensity measurements obtained from light propagating
in different directions.

2.4.2 E-Frame

The E-frame is fixed to the direction of the applied electric field and is useful for
the optical constitutive law for Kerr media as the permittivity tensor is diagonal in
this frame (Section 2.5.2). We choose the direction of the applied electric field to be
the third coordinate direction of the E-frame which is denoted by i110. The other two
directions necessary to form a right handed coordinate frame are denoted by jj} and

0
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Zg. To simplify future development i11 is chosen to be the unit vector perpendicular to

the electric field in the plane formed by the electric field and the propagation direction

of the light. The E-frame is only used in Sections 2.5 and 2.6 and we use the subscripts

0 for _L and || for E-frame to reserve the subscript free versions for the ET-frame

of Section 2.4.3 which is more fundamental in this work. The E-frame is illustrated

in Figure 2.1 in terms of the light-frame. We use v1 2, v 1 and v,, to identify the

components of a vector V' in the E-frame.

V = VIZl + o ± Vig + V1o (2.23)

2.4.3 ET-Frame

The component of the applied electric field transverse to the propagation direction of

light is denoted by $T as shown in Figure 2.1. In this work $T is more fundamental

than the applied electric field F itself. It is shown in Section 2.6.1 that the electric

field induced birefringence effects to a very good approximation depend only on ET.

Thus the ET-frame which is fixed to FT is particularly useful. The direction of FT

in the mp-plane is denoted by i|| and constitutes the first coordinate direction of the

ET-frame. The third coordinate direction of the ET-frame is the light propagation

direction s. The second coordinate direction in the mp-plane is found from il and s to
complete the right handed coordinate frame and denoted by i1 . These components of

a vector ' in the ET-frame are denoted by vl, v_ and v,.

The angle between il and rn is denoted by V. For spatially varying applied electric

fields V changes with s as light propagates thus the ET-frame rotates with respect to

the light-frame. For this reason, in the literature frames similar to the ET-frame are

sometimes called rotating frames.

The theory of Kerr electro-optic measurements can be built using either the ET-

frame or light-frame alone. However certain relationships are easier to derive in one

frame than the other and using both frames allows sanity checks which often prove

to be useful in the development of this work. Throughout this thesis we use both the

light-frame and the ET-frame extensively.
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Figure 2.1: The illustrations of the unit vectors of the E-frame and ET-frame in terms
of the light-frame. ET is the transverse component of the applied electric field E with
respect to the light propagation direction s; < is the angle between the transverse field
ET and the m-axis and @ is the angle between the electric field E and the propagation
direction of the light along the s axis.

2.5 The Kerr Electro-Optic Effect

2.5.1 Electro-Optic Effects

Electro-optic effects refer to cases where an externally applied quasistatic electric field

modifies the optical susceptibility tensor of a transparent medium changing the char-

acteristics of the light. Macroscopic description of electro-optic effects can be based

on the nonlinear constitutive law in (2.20). The real total electric field S is composed

of the quasistatic field E and the real part of the complex light electric field ' which

respectively replace 21 and 2 in (2.19)

S(t) (t) + -eexp(iwt) + e exp(-iwt) (2.24)
2 2

Resulting multiple frequency polarization density P can be found by substituting wi

0 and w2 = w in (2.20). P has quasistatic components, components at the fundamental

frequency w and higher order components in integer multiples of W.

For most applications of the electro-optic effect, including this work, the light elec-

tric field is small and introduces only a small perturbation on top of the quasistatic

field. The linear quasistatic constitutive law remains the same. As the light electric

field is small, nonlinear phenomena of second or higher order in the optical electric
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field such as the optical Kerr effect and second harmonic generation are negligible.

The (complex) optical polarization density then contains fundamental frequency terms

which are linear in the optical electric field

p COX (w) - + 2eo (w) : E + 3EoX(w) :$ --- (2.25)
Pockels' Effect Kerr Effect

Equation (2.25) describes electro-optic effects where the optical polarization density de-

pends on the quasistatic electric field. The terms linear and quadratic in the quasistatic

electric field are respectively called Pockels' and Kerr electro-optic effects. Terms higher

than quadratic in the quasistatic field have no practical significance.

When present Pockels' effect is often much stronger than the Kerr effect. For

media that exhibit inversion symmetry however, the Pockels' effect vanishes as the

reversal of sign in the total electric field must cause a reversal of sign in the total

polarization density component. Thus the Pockels' effect is mostly important in solids

that have an asymmetric crystal structure. The Pockels' effect is typically utilized

in light modulators [30]. For gases, liquids and isotropic solids the Kerr effect is the

predominant electro-optic effect.

2.5.2 Macroscopic Description Of The Kerr Effect

Kerr media are isotropic in the absence of the applied electric field. Thus = in (2.25)

reduces to an optical susceptibility constant X. The Pockels' effect term identically

vanishes due to inversion symmetry. As Kerr media are isotropic in the absence of

electric field, the applied electric field direction constitutes the only preferred direction

and the perpendicular directions are degenerate. Thus it is intuitively clear that most

components of I in (2.25) should be identical and (2.25) assumes a simple form for

Kerr media. This form is most easily realized in the E-frame.

We begin with the component form of (2.25) in the E-frame

1- [= 1 2 _1 (.6
pi = EoXei + 3eo zZ EkElej i, j, k, 1 = , , (2.26)

j,k,l . k 3

Since E = EL= 0 and |E1 l is equal to E the magnitude of E, equation (2.26)

reduces to

Pi= o~i 3 0
2  C, j~ _Le i 1~ _L 2 (2.27)

A Eo ei + 36o X 101 0 11
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An optical field along the applied electric field must not yield an optical polarization
density component in the plane perpendicular to the electric field direction since all
directions in this plane are degenerate. Furthermore any rotation around the electric
field must leave X unmodified. It follows that the only nonzero components of x are

X11 'o i' X11 I.I land X 0  where we used the superscript (3) to differentiate
the components of = from the optical susceptibility constant x. Furthermore again,
due to degeneracy in the plane perpendicular to the electric field X' 211_ = X -
Thus for Kerr media (2.25) reduces to

p Eox m - e (2.28)

where =m is a second rank tensor which is diagonal in the E-frame

x + 3x(3 ) E 2  0 0

[km] = 0 X + 3x() E2 0 (2.29)

0 0 x + 3X (3) E 2

The permittivity tensor corresponding to (2.29) is also diagonal in the E-frame with
components Ec and Eq. It follows from = co I+ im and (2.29) that

AE -- ie - co = 2ABVE/ocE 2  (2.30)

where 2ABi-= 4eo(x 1 - x ). Clearly without any physical arguments
and/or experiments it is not possible to predict the magnitude of B. However within
the framework of optics the nonlinearities and the anisotropic effects of the applied
electric field are expected to be small

lio - E ___ E 0 «1 (2.31)

Using (2.31), (2.30) can be expressed in terms of the refractive index

1 Ae [(ce 21
An =ns+ - nio- I (2.32)

~ A BE 2  (2.33)

which is identical to (1.9).
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2.5.3 The Microscopic Description and The Kerr Constant

We consider (1.9) (or (2.33)) to be a macroscopic relationship which follows from the

nonlinear electric constitutive law as described in Section 2.5.2 and build the theory

of Kerr electro-optic measurements solely upon it. Although the microscopic origins of

the Kerr effect are not explicitly used in the rest of the thesis, here we provide a brief

discussion to give a physical background and to underline some microscopic results

which are important to the Kerr electro-optic measurement theory.

Internal Electric Field

The microscopic description of the Kerr electro-optic effect is a part of the electric

polarization theory of dielectrics. This description requires modeling the influences

of the applied electric field on individual molecules and molecular interactions in the

presence of the applied electric field. Much of the modeling complexity in electric

polarization theory is due to molecular interactions and is often handled by using the

so called internal electric field which is defined as the total electric field at the position

of the particle minus the field due to the particle itself [33]. The influences on individual

molecules are then described in terms of the internal field and various models are used

to express the internal electric field in terms of the applied electric field.

The earliest model for the internal electric field uses the electric field inside a spher-

ical cavity in a otherwise homogeneous medium under the influence of a constant ap-

plied electric field. This field can be found by solving Laplace's equation for the scalar

electric potential with electric field boundary conditions [2,33]

E, = +2Eo E (2.34)
3eo

where we use E1 to denote the internal electric. Equation (2.34) is called the Lorentz

equation. Although (2.34) is written for the quasistatic electric field we assume it is

valid for optical fields as well if the radius of the spherical cavity is much less than a

wavelength. More advanced treatment of the internal field is beyond the scope of this

thesis.

The Dipole Moment

Central to the electric polarization theory is the dipole moment 7 of a molecule which is

a measure of the relative displacement of positive and negative charges. For an atomic
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model of a point charge nucleus surrounded by an electron cloud the dipole moment
of a molecule is

1= q(F+ - -)r+ (2.35)

where q is the sum of positive (or equal amount of negative) charges of the nuclei
of individual atoms in the molecule and r'+ and T'_ are the centers of charge of the
nuclei and the electron cloud respectively. The dipole moment generalizes to other
atomic models and in particular can be defined in terms of wave functions in quantum
mechanics.

Most nonsymmetric molecules have permanent dipole moments. The molecules
with relatively high permanent dipole moment magnitudes are said to be polar. We
denote the permanent dipole moment by p-'

Polarization Components

When an electric field is applied to a dielectric medium it affects the relative positions
of negative and positive charges through the Coulomb force and polarizes the molecule;
the dipole moments of individual molecules are modified. The quasistatic and optical
macroscopic polarization densities P and p have the dimensions of dipole moment
per unit volume and are measures of these changes averaged over all molecules in a
macroscopic volume.

There are three fundamental mechanisms that an applied electric can polarize a
molecule

1. Electronic Polarization

2. Atomic Polarization

3. Orientation Polarization

Electronic polarization is due to the shift in electrons' relative positions to the
positive charges. The displacements of the atoms of a molecule relative to each other
give rise to the atomic polarization. The internal electric field strength is typically much
smaller than the intermolecular fields and the dipole moment change of an individual
molecule under the influence of the field can be linearized to yield

pi, = d - $1 (2.36)
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0 = e (2.37)

where 7i, and jij, are the quasistatic and optical induced dipole moments, d and /

are quasistatic and optical polarizabilities and Er and e', are quasistatic and optical

internal electric fields.

In the absence of the applied electric field each molecule is randomly oriented and

each direction for permanent dipole moments are equally likely. On the macroscopic

scale the total dipole moment averages out leaving zero net polarization density. When

an applied electric field is present there is an aligning torque on the dipoles which

is opposed by the thermal agitation. A statistical average yields a net orientation

polarization.

The relaxation time constants of the polarization effects are not the same. The

electronic polarization is the fastest and can be assumed instantaneous for optical and

quasistatic fields. The atomic polarization is relatively slower and its inverse relax-

ation time constant can be on the order of the optical frequencies causing absorption.

Compared to electronic and atomic polarization, orientation polarization is sluggish

and does not effect optical polarization.

Statistical Average Of Dipole Moments

In the presence of an external field, the potential energy of molecules vary with the

orientation due to permanent and induced dipoles. The orientation of a molecule is best

described in terms of a coordinate system fixed to the molecule and the Euler angles

0m = (0m, Vm, m) which describe the orientation of the molecular system as shown in

Figure 2.2. The molecular system is typically chosen such that the quasistatic and/or

optical polarizabilities are diagonal. The orientation potential energy w is typically

much smaller than the thermal energy so that the relative number of particles pointing

between a direction Om and Om + dOm is given by the Boltzmann distribution law

dN(Gm) _1

dN(_m_ = - exp [-w (0m) / kT] sin 0, dO, d p, d@,,, (2.38)
N Z

where Z is the normalization factor

/ 2-r 2,7r 7r

exp [-w(Gm)/kT] sin 0, dO, d9o, d@,V, (2.39)
ksh0 (n 0 .=0

k is the Boltzman constant and T is the absolute temperature.
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Figure 2.2: The Euler angles that describe the position of a molecule with respect to
the fixed cartesian frame [34]. Here the molecule is represented by an ellipsoid.

Under the influence of a quasistatic applied electric field the total dipole moment
of an individual molecule is the sum of the permanent and induced dipole moments

AS =AP 1 = - $1 +=.E(2.40)

and the orientation potential energy of such a molecule is given as

w = -/i, -E$ - -1 -d -$1 (2.41)
2

Here the first term is due to the torque on the permanent dipole moment by the
applied field and the second term is similar to the well-known spring potential energy
and follows from (2.36). Clearly (2.41) depends on the molecular orientation with
respect to the applied electric field. The statistical average of dipole moments follows
from (2.38)

1 2 f 2ir
<7rs >= 7 1(0m) exp [-w(0m)/ kT] sin0, dO, dpm do/m (2.42)

m0 pm= 0m=0

where ' and w are respectively given in (2.40) and (2.41) and the average is taken
over all possible molecular orientations.

For isotropic materials stressed by an applied electric field the only preferred direc-
tion is that of the applied electric field. Thus the statistical average of any component
of the dipole moment perpendicular to the applied electric field is zero. Even with this
simplification analytical evaluation of (2.42) is in general not possible. However since
w(6m) < kT the exponential terms in the numerator and denominator (Z) of (2.42)
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can be Taylor series expanded in E for which the linear term can be found as

p2-

< s>= E, ( 2.43)[T 3kT j

Here T is the average quasistatic polarizability and (2.43) relates the statistical av-

erage of the dipole moments to the quasistatic (internal) electric field and molecular

parameters.

For optical fields orientation of molecules cannot follow the optical electric field

frequency and the permanent dipole moments do not contribute to the polarization.

Thus the permanent dipole term in (2.43) drops out yielding

</to >= e3 1 (2.44)

where 3 is the average optical polarizability, jo is the optical dipole moment and we

used lower case er to differentiate the optical internal electric field from that of the

quasistatic field E1 .

Permittivity In Terms Of Dipole Moments

Using the Lorentz internal field in (2.34) and (2.43) we obtain

(ES - 6o)E = P N < ft >= N ,+ E1  (2.45)

= e N E + Z (2.46)
3co 3kT

which reduces to

E - [o N (2.47)
c,+ 2EO 3eo 3kT_

Here N is the particle density. Equation (2.47) is the well known Clausius-Mossotti

equation and expresses the dielectric constant es in terms of molecular quantities.

The Clausius-Mossotti equation can also be used for optical fields by neglecting the

permanent dipole term

E-6 _O Nf3 (2.48)
+2EO 3EO

57



Statistical Average Of Dipole Moments For Kerr Media

We assume that in the presence of the quasistatic field and the weak intensity optical
field, the orientational potential energy of the molecule is completely determined by the
quasistatic electric field. Then the quasistatic component of the statistical average of
the dipole moments remains the same leaving (2.43) unchanged. For optical frequency
components the medium becomes anisotropic and the average dipole moment depends
on the direction of the optical field. If the optical field is in the same direction as the
quasistatic applied electric field then the average dipole moment is given as

<e>, > C= j-r E f(O) - exp [-w(0m)/ kT] sin 0, dOm dpm dom
m= (p m=0 0m=0

(2.49)

where yl11 is the component of the optical permanent dipole along the applied electric
field and E is the unit vector along the applied electric field. Equation (2.49) can again
be Taylor expanded in Er with the first and second terms yielding

<I >= + E eI (2.50)

where

b1 b2km = + ((2.51)
kT (kT) 2

with

b1 = (#1 - /32)(al - a2) + (/32 - #3)((a2 - a3) + ( 3 - 31) (a3 - 0i) (2.52a)

(#1 -_ 2)(/p 1 - A2) + (/2 -_ 3)/ -/t ) + ( 3 1 -#1i)Q4 -/L1) (2.52b)

Here #i and ai are optical and static polarizability components in the molecular frame
for which the polarizability tensor is diagonal and p, are the components of the per-
manent dipole moment in the same frame. Equation (2.50) shows how the statistical
average of the optical dipole moment along the applied quasistatic electric field changes
from its isotropic value in (2.44). The physical significance of (2.52) is discussed in a
simplified form in the following sections.

The average dipole moment < pi0 > when the optical electric field is perpendicular
to the quasistatic field can also be found by approximately evaluating an integral similar
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to (2.49) with E replaced by a unit vector perpendicular to the applied electric field.

However due to its direct relevance to macroscopic theory we here note a theorem

which relates < pj± > and < pi > to the isotropic dipole moment average given in

(2.44)

< p10 > +2 < ptq >= 30e, (2.53)

Equation (2.53) follows only from geometrical arguments [35]. Substituting (2.50) in

(2.53) yields

< p1 > = [- km E e (2.54)
90_

Permittivity Components For Kerr Media

The Clausius-Mossotti equation for optical fields in (2.48) follows from (2.44) with a

derivation similar to that of quasistatic fields in (2.45)-(2.46). By similar arguments

with < po > replaced by < pI > in (2.50) and </10 > in (2.54) we obtain

e1 - CO N - km l - O N km 2* 0 -- + ± E E = (2.55)
6 + 2EO 3Eo 45 E + 2EO 3o 45

60 -N[El - E2 (2.56)
6, + 2Eo 30 90 ' + 2eo 360 90

where we used (2.48). The differences between the permittivity components E11 and

Ei_, and isotropic permittivity 6 are small so that

- -(____ E + 2o)2 N km 2
o +0 O - E, (2.57)

EO E 3EO 3eo 45

-+o -( 2eo E (2.58)
0 6 360 360 90

and we neglect the second order terms. Using (2.34), (2.57) and (2.58) yields

AE =-1 - 0 = (E + 2EO)2 N km (es + 2eo) 2 E2 (2.59)
36o 3EO 30 96O
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Equation (2.59) is identical to the macroscopic conclusion of (2.30). Also note that
(2.57) and (2.58) yield

El" = E + 2 (2.60a)3

E1O = E - (2.60b)3

Equation (2.60) yields

El + 2eL0 = 36 (2.61)

which is a direct consequence of (2.53). Equation (2.61) is important for macroscopic
theory as it shows the difference between the isotropic permittivity and the permittivity
components after the application of the quasistatic electric field.

The Kerr Constant

The Kerr constant can be identified from (2.59) and (2.30) as

B = N(E + 2eo)2 km (E, + 2EO)2 (2.62)
18nAe3 30 9e (

Equation (2.62) is equivalent to the formula given in [36] for dilute gases. Accurate
formulas for liquid dielectrics require a more advanced treatment of internal electric
field and intermolecular interactions but are otherwise identical to (2.62) [36].

Physical implications of (2.62) are best understood on a molecule which is symmet-
ric with respect to the first molecular axis and for which optical and static polarizabil-
ities are equal (a 2 = a3= 2 =33 and ai #1). Then (2.52) reduces to

b1 = 2(ai - a2 )2 (2.63)

b2 = (ai - a 2 )[(y2 1 -A 2 ) + (, - p )] = 2(a 1 - a 2)pU'(1 - 3sin2 X) (2.64)

where X is the angle between the molecular symmetry axis and the permanent dipole.
We define

Aa = ai - a 2 (2.65)
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So that (2.62) reduces to

N( + 2eo)2 Aa [ p2 3 2. (s +±2eo)2
B = Aa + (1 -- sin2 X) (2.66)

9ne k 30kT T 2 9e

This equation is identical to those given in [2,3] when corrections due to the Lorentz

field are omitted.

Equation (2.66) shows that materials with symmetric molecules (Aa = 0) exhibit

no Kerr effect. This is not strictly true as in a more advanced treatment of the Kerr

effect hyperpolarizibilities (higher rank tensors that are used to model nonlinearities

in (2.36) and (2.37) analogous to higher rank suspectibilities in (2.9)) also contribute

but are negligible for our purposes. Typically Aa is small so that the effect is most

important in polar liquids (p 2 > kTAa). For some molecules like alcohols X is around

r/2 and B may be negative. For most materials X - 0 so that the Kerr constant is

positive.

The values of Kerr constants range from order of 10 '5 m/V 2 for typically non-polar

dielectrics to order of 10-1 2m/V 2 for strongly birefringent polar materials relevant to

this work. Even for nitrobenzene which has the largest known Kerr constant among

liquid dielectrics (a 3 x 10- 12 m/V 2 ), An is around 0.002 even at near breakdown

electric fields (~ 300kV/cm) thus

An < 1 (2.67)

which experimentally verifies (2.31).

2.6 Light Propagation In Homogeneous Kerr

Media

2.6.1 Light Propagation In Homogeneous Uniaxial Media

In Sections 2.5.2 and 2.5.3 we showed that the optical permittivity tensor is diagonal

in the E-frame

[E, 0 ei,. 0 (2.68)

-0 0 Ce1_
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Here we use [ ]E to denote the matrix form of a second rank tensor in the E-frame and
c,. and E1 are related by

El - e1 = 2EonABE 2  (2.69)

Ei + 2eL = 3e (2.70)

where E is the isotropic permittivity constant in the absence of the electric field. The
coordinate system for which the permittivity tensor is diagonal is often known as the
principal system.

The permittivity tensor in (2.68) shows that the first two coordinate axes are de-
generate. Such media are said to be uniaxial and the axis which exhibits the anisotropy
is called the optic axis. Thus the characteristics of light propagation in Kerr media are
identical to electromagnetic wave propagation in uniaxial media with the optic axis
in the applied electric field direction. Electromagnetic (plane) wave propagation in
homogeneous uniaxial media is well understood [30,31]. Here we present a derivation
similar to that in Haus [30].

For uniaxial media the permittivity tensor is not a scalar and Maxwell's equations
for monochromatic waves do not reduce to (2.13) but to

V x V x (r) = w2pod(?) (2.71)

V -d(r) = 0 (2.72)

We begin with the assumed plane-wave solution

O(F) = C'exp(-ik - r) = C'exp(-iks) (2.73)

where s is the coordinate along the light propagation direction as described in Sec-
tion 2.4.1 and we use k as a generic wavenumber to be determined in terms of permit-
tivity components and the frequency. We use the underline to distinguish k from the
isotropic wavenumber in (2.17). Substituting (2.73) into the left hand side of (2.71)
and evaluating the curls in the light frame yields

V x V x (r) = k 2 (emrfn + e,$) exp(-iks) = k 2 Texp(-iks) (2.74)

where 'r is the transverse component of e with respect to the light propagation direc-
tion and can be identified in the middle equation of (2.74). Substituting (2.74) into
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(2.71) results in

k2g- _ [tow2 d - 2 - pow2 = - = 0 (2.75)

Equation (2.75) shows that d8 , the component of the displacement vector along the

light propagation direction is zero. This also follows by substituting (2.73) into Gauss's

equation (2.72). Equation (2.75) is an eigenvalue problem for the wavenumber and it

is most easily solved in the ET-frame.

The permittivity tensor components in the ET-frame follows from the components

in the E-frame by a rotation transformation of (2.68) aroundi 12 as shown in Figure 2.1
0

[] =T T2(V)) ME Tf()(2.76)

El, sin2 @ + 1 cos2  0 (e 1 - e)cos @ sin 'b

= 0 E)so 0 (2.77)

(e11' - E) cos 0 sin 4' 0 Ell. cos2 + _,. sin 2 0_

Here T 2 is the rotation transformation matrix around the second coordinate direction

cos@0 0 -sin@0

T 2 (9) = 0 1 0 (2.78)

sin @ 0 cos 4_

Since d, is zero, e, can be found in terms of el1 using (2.77) and the s component

of (2.75)

es -R, e (2.79)

where

(e - qE) cos 4 sin '
R5I = II, _20(2.80)

6e cos 2 4' + c,. sin2

The transverse equations in (2.75) can be written in matrix form for the components

of the light electric field in the ET frame ell and e1 . Using (2.77) and (2.79) we obtain

k2- oW2 Ell2 0 Li = 0 (2.81)
0 k2 _ -o 2,1- _e_
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where

Ei = d1. (2.82)

= E sin2  + C(E - Eo)2 cos 2 0 sin 2

*" + cos 2 ? + Es 2o (2.83)
E-i " (2.83)1

Equation (2.81) identifies the characteristic values of k and the associated polar-
izations and thus describes the light propagation characteristic of waves in uniaxial
media.

For nonzero electric field magnitude the wave number can have two values

k_ = g 1pOei (2.84)

k1 = wV/poe|| (2.85)

The wave associated with k1 is called the ordinary wave and polarized in the i direc-
tion

er= z (2.86)

and the wave associated with kll is called the extraordinary wave and its polarization
direction has both s and il| components whose interrelation is found using (2.79)

eex _ ill + Rs|s (2.87)
\eeX| 1i + R 2

Equations (2.84) to (2.87) characterize wave propagation in uniaxial media in which
polarized light separates into its ordinary and extraordinary components. Each compo-
nent travels with different velocity causing a phase shift and change in the polarization
of the light.

2.6.2 Kerr Media Specific Approximations

For Kerr media with the applied electric field direction and magnitude constant in
the plane perpendicular to the light propagation direction, Section 2.6.1 completely
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describes the birefringence. For this case V) = r/2 and the light electric field has no

component along the light propagation direction (Rs1 = 0 in (2.80)) and kii in (2.85)

reduces to ocpoe which results in the phase difference described in (1.12) using

(2.31) and (2.69). When light propagates along the direction of the applied electric

field (0 = 0, 7r) k1 = kil and there is no birefringence. For other values of V), kll is

a complicated function of 4. This poses little difficulty for geometries with constant

direction and magnitude applied electric field such as tilted parallel plate electrodes

with the direction of light propagation at a non-perpendicular angle to the applied

electric field. However to extend the analysis to inhomogeneous applied electric fields

approximations based on (2.31) are necessary.

First notice from (2.80) that

e gi1- Lie-- = |Rs cs < Eli ± 1 si4 < 1 (2.88)
ell e||cos20 + ELosin 2

where we used (2.31). Thus to a very good approximation e, is zero and the extraor-

dinary wave is polarized along the transverse component of the electric field. Since

with this approximation both es and d, vanish, the electric field and the displacement

field are two dimensional vectors in the plane perpendicular to the light propagation

and the constitutive law reduces to a two dimensional matrix equation with a 2 x 2

dielectric matrix which is diagonal in the ET-frame

l] [El 0] [ l ](2.89)

Furthermore El can be written as

Cos2 + - = + Ae sin 2 4' + O(Ae2 ) (2.90)

where Ae is defined in (2.30). Neglecting the second order term due to (2.31) and using

(2.82), (2.90) reduces to

ell - ~ 2EOnABE2 (2.91)

where E = E sin @ is the magnitude of the transverse electric field. Equation (2.91)

and the corresponding equation in terms of the refractive index components is generally
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the accepted form of the Kerr effect in the dielectric literature. It directly follows from

(2.31) that

Ell , , 6 < 1 (2.92)
60 C0 60

2.7 Inhomogeneous Kerr Media

2.7.1 Assumptions

When the direction and the magnitude of the electric field changes along the light path
Kerr media are equivalent to inhomogeneous uniaxial media. A rigorous formulation
of wave propagation in uniaxial inhomogeneous media is rather complicated and is
not tractable without simplifying assumptions. For typical applied electric field distri-
butions in high voltage environments spatial variations of the electric field are much
longer than the light wavelength so that we can write

VE2 (r)| A< E2 () (2.93)

Equation (2.93) can be used for various approximations.

First we assume that light propagates in a straight line. This assumption is not
true for a general inhomogeneous media whether it is isotropic or anisotropic. For the
isotropic case it can be shown that when spatial variations in the refractive index are
small the light propagation curve is essentially a line. Using (2.93) we will use this
result for Kerr media without any attempt of further mathematical justification. Our
Kerr electro-optic measurements show that there is no detectable bending in the light
propagation direction giving an experimental justification to this assumption.

The homogeneous light propagation theory described in section 2.6 assumed light
is a plane wave where transverse variations in the light wave-front are neglected

a a
am - ~ 0 (2.94)

as discussed in Section 2.3. For inhomogeneous media the problem is more complicated
as there are also transverse variations in the medium. Fortunately when (2.94) is
assumed to be true for the wave front, it can be shown that [37, 38] for small variations
similar to (2.93) the transverse variations in the medium are negligible leaving (2.94)
also valid for inhomogeneous media.
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2.7.2 Constitutive Relations

Due to (2.94), light propagation in inhomogeneous Kerr media can be described in

terms of one dimensional variations along the light path. Thus the constitutive law in

(2.89) becomes

[d1l(s)
d1 (s) I _ [el(s) 0 e(s)

0 E1(S) ej(s)I
(2.95)

Equation (2.95) expresses the approximate constitutive law

equivalent in the light-frame is

dm(s)

dr(s)

in the ET-frame. Its

Emm (s)
Emp(S)

(2.96)

The permittivity tensor and electric field components in the light-frame and the ET-

frame are related by the usual rotation transformations

em(s) [cos y(s)

er(s) -sin y(s)

- sin p(s) e|i (s)
cos O(s) [ei (s)J

_ cos p(s) - sin V(s) Ell (s)

sin o(s) cos V(s) 0

Here W(s) is the direction of tranverse electric field

Figure 2.1. Equation (2.98) can be used to obtain

Emm(S)

Epp(s)

Emp(S)

0 cos o(s) sin o(s)

EL(s) - sin o(s) cos W (s)

(2.98)

in the mp-plane as indicated in

= Eli(s)cos 2 (s) + QL(s)sin 2 5P(s)

= e6j(s)cos 2 (s) + Ell(s)sin 2 O(s)

= [El(s) - E1(s)] cos o(s)sinW(s)

(2.99a)

(2.99b)

(2.99c)

Both (2.91) and (2.92) generalize to their inhomogeneous forms

Ell(s) - eci(s) = 2eonABET(s) (2.100)
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and

Emm(S) Emp(S)
Emp(S) Epp(S)

(2.97)

EMP(s) em (S)
EPP(S)_ _er(S) _



Eli(s) - e (s) El (s) - C E - C(s) < 1 (2.101)
E0 E0 60

Substituting (2.100) in (2.99) gives the expressions for the Kerr effect in the light-frame

Emm(s) - Epp(s) = 2EonAB [Em(s) - E2(s)] (2.102a)

Emp(s) 2 0 nABEm(s)E,(s) (2.102b)

where Em(s) = ET(s) cos p(s) and E,(s) = ET(s) sin V(s) are the respective compo-
nents of the applied transverse electric field. We finally note that using (2.99) the weak
anisotropy conditions of (2.101) can be expressed in the light-frame as

emm(S) - E, (S)| f6r(s) - El )EMp(s) - El Emp(S)| I< 1 (2.103)
60 60 60 60

2.7.3 Governing Light Propagation Equations

In Kerr media with an inhomogeneous applied electric field the anisotropy is weak. For
this case it is possible to obtain a reduced set of Maxwell's equations which are simple
and easy to analyze. The derivation here is similar to Aben's [39].

Second Order Form

We begin with (2.71) in the light-frame which reduces to

d2em(s) +

ds 2  + 0w2[Emm(s)em(s) + 6mp(s)e,(s)] 0 (2.104a)

d2e (s)+
ds2  + Low 2 [EP,(s)e(s) + Emp(s)em(s)] = 0 (2.104b)

using (2.94) and the constitutive law in (2.96). In this work we also use the ET-frame.

Using (2.99) and (2.97) in (2.104) the ET-frame light components obey

d2e + (d(S(s) \2 dV(s) de1 (s) d2 ,(s)
ds2 + pw el (s) - ( ds ell(s) -2 ds ds ds2 ei(s) = 0

(2.105a)
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d2e (S) (dE(s) d(s) del (s)+ d2 o(s)
ds2 + po (2 d e 1(s) + 2 ds ds ds2 e11(s) =0

(2.105b)

Reduced First Order Form

Using (2.103) we can assume solutions of the form

ej (s) = as(s) exp(-iks) j m,p (2.106)

in (2.104). Here k = w qio is the isotropic wave number and aj(s) is a slowly varying

amplitude function of s due to the weak birefringence where

da s) < Ikaj (s)| j = m,p (2.107)

which modulates the isotropic solution. Substituting (2.106) in (2.104) and neglecting

the second order terms by virtue of (2.107) yields approximate first order equations

dam(s) -

ds +[Emm(s) - e]am(s) - iyEmp(s)ap((s) (2.108a)

dap (S) k k
-i-[Epp(s) - E]ap(s) - i m(s)am(s) (2.108b)

Equation (2.108) is first order as opposed to second order in (2.104) because with

k positive, assumptions (2.106) and (2.107) eliminate the waves traveling in the -s

direction. Here we neglect any reflections so that for waves traveling in the +s direction

k is positive. It is clear from (2.106) that the rotation transformations in (2.97) are

also valid for a3 (s). By using (2.99) and (2.97), (e3 (s) are replaced as(s)) (2.108) can

also be expressed in the ET-frame as

dail (s) .kdpsd s - e(s)- E]al(s)+ ds a (s) (2.109a)
ds 2E ~ 1~ ds

da-L (s) kdpsd1 s i[(s) -E]a-(s) ds all(s) (2.109b)

Equation (2.108) may be further simplified by the transformations

as(s) = by (s) exp (-i#i(s)) j =m, p (2.110)
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where

#(S) = emm(s') + Epp(s') - 2e] ds' = k [ [6 1(s') + e1 (s') - 2e] ds' (2.111)4E J0 m\ 4E J

Substituting (2.110) and (2.111) into (2.108) yields

dbm(s) k .k (. a
ds [Emm(s) - epp(s)]bm(S) - i-Emp(s)b (s) (2.112a)

dbp(s) k k
dEs ,(s) - Emm(s)] bp(s) - emp (s) (2.112b)d4c2Em(b()

Note that (2.110) eliminates common phase terms in am and a, to obtain a version of

(2.108) in (2.112) independent of E.

It follows from (2.97), (2.106) and (2.110) that (2.112) can be expressed in the
ET-frame as

bin(s) = bil (s) cos o(s) - bi(s) sin p(s) (2.113a)

b,(s) = bi(s) cos o(s) + b (s) sin p(s) (2.113b)

Substituting (2.99) and (2.113) in (2.112) yields

dbl (s) _.kdps
ds [El(s) E(s)] bli(s) + ds b(s) (2.114a)ds ~4E 6 I 5  ds

db [E-L (s) - E||(s)]b-(s) - ds(s)bii(S) (2.114b)
ds 4c1 SJ 1 s ds'

Here again the common phase terms in a|| and aI are eliminated.

Finally, respectively substituting (2.102) in (2.112) and (2.100) in (2.114) results in

dbm(s) iB[E(s) - Ej(s)]bm(s) - 2i7rBEm(s)Ep(s)bp(s) (2.115a)
ds rB[m -E

dbp(s) = -tgrB[E (s) - Em(s)]b,(s) - 2i7rBEm(s)Ep(s)bm(s) (2.115b)
ds

and

db (s) = -7BEd(s)bil(s) + dp(s)b(s) (2.116a)

ds = irBE(s)b1 (s) - d bli(s) (2.116b)
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as the approximate governing equations of light propagation in Kerr media. Note that

the coefficients in (2.115) and (2.116) involve only the components of the applied electric

field rather than permittivity matrix elements. From (2.106), (2.110) and (2.111) bj(s)

are related to the light elctric field components ej(s) by a phase factor

bj (s) = ej (s) exp (ifs [emm(S') + Epp(S') + 2E] ds' ) j = m, p, ||,

Matrix Form

In the remainder of this work we often use the matrix forms of (2.115) and (2.116)

which are

db(s)
ds

db'(s)
ds

= A(s)b(s)

= A'(s)b'(s)

(2.118)

(2.119)

respectively, where

El(s) - E2(s)
2Em (s)E,(s)

2Em (s) E,(s)

-[E (s) - E2(s)] I (2.120)

(2.121)

(2.122)

(2.123)

A(s) and A'(s) are called the system matrices of (2.118) and (2.119) respectively. We

also note from (2.113) that

b'(s) = S [<p(s)]b(s) (2.124)

where S is the rotation matrix

S(O) [ cos 0 sin 0

-sin 0 cos 0I (2.125)
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(2.117)

A() = -iwB [
A'(s) = gr)(s) 1

ds igrBE s

b(s) = bm(s)

V'(s) - b,(s)

bL (s)



Real Matrix Form

Occasionally it becomes convenient to separate the real and imaginary parts of (2.118)
or (2.119). We let

b(s) u(s) + iv(s)

b'(s) u'(s) + iv'(s)

(2.126)

(2.127)

where u(s) [U 1 v(s) " ) - (S) 1 U F (S) , and v'(s) = IF .() The real
[r p(S) of ( 8vp(s) c 'the b [u b(mr for s(8)1

form of (2.118) can then be written in block matrix form as

d
ds [u(s)

v(s)

W(s) u(s)

0 v(s) I (2.128)

W(s) = iA(s) = 7rB [Em(s) - E2(s)
2Em(s)Ep(s)

2Em(s)E,(s)

- [E (s) - E,(s)]

Similarly (2.119) becomes

d u'(s)
ds v'(s)

where

I Q'(s)
-W'(s)

W'(s) = T
0

W'(s)

Q'(s) I[
0

-rBE T (s)

u'(s)
v'(s) I
I

0 d d(s)

Q'(s) =~~s d
ds7

(2.130)

(2.131)

(2.132)

2.7.4 The Kerr Parameters

The governing equations in the light-frame (2.118) and in the ET-frame (2.119) re-
spectively depend on El(s) - E2(s), 2Em(s)Ep(s) and 7rBET(s), d"(). Here theseds

functions of the applied electric field are referred to as the Kerr parameters.
The Kerr parameters depend on both the applied electric field distribution and the

light propagation direction. Thus given a fixed spatial position, the Kerr parameters
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take on different values for different light propagation directions for the same applied

field distribution. This observation is be particularly important in Part II.

The ET-frame Kerr parameters 7rBET(s) and dl() can expressed in terms of the

light-frame components of the applied electric field as

ET(s) =E((s) + E(s) (2.133a)

dp(s) _ 1 (,) Em(s) dE(s) - E d(s) (2.133b)
ds E Ts) ds ds_

where (2.133b) follows from the s-derivative of the identity

_Er(s)

tan W(s) - E() (2.134)
Em (s)

The Kerr Parameters In Axisymmetric Kerr Media When m = z

When the applied electric field distribution is axisymmetric and the light propagation

direction is on a plane that is perpendicular to the axisymmetry axis z, we can define

the light frame so that fi= 2. Then

r 2  2 + P2 (2.135)

For light propagating along s, p is constant and thus taking the derivative of (2.135)

we obtain

d- = d (2.136)
ds r dr

ds= r dr (2.137)
-rp

2

The Kerr parameters in (2.133) can then be expressed as

ET2(s) = Ez2(s) + PEr2(s) (2.138a)
r2

dp(s) _ 1 ps E(r dE,(r) _ Ez(r)Er(r) - Er(dEz (2.138b)
ds ET(r) r2 L dr rr .
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Chapter 3

The Matricant

3.1 Introduction

The solutions to (2.118) and (2.119) at any point along the light path can be expressed

in terms of initial conditions and 2 x 2 complex matrices called matricants of the re-

spective systems. This chapter presents the matricant theory. We show existence and

uniqueness and develop the properties that are important in Kerr electro-optic mea-

surements. We show that the matricants reduce to the well know matrix exponential

for special cases of the system matrices A(s) and A'(s) and analytically evaluate those

cases. We finally discuss numerical evaluation of the matricant for arbitrary electric

field distributions.

3.2 Solutions To The Governing Equations

Equation (2.118) is a linear ordinary differential equation with space varying coeffi-

cients. A solution to (2.118) refers to the evaluation of b(s) given an initial point so

with initial condition b(so), and the transverse electric field distribution ET(s) between

so and s. This problem is well known and b(s) uniquely exists for given so and b(so)

provided that each entry of A(s) obeys the Lipschitz condition

Ajj(s') - Aij(so)| < L Is' - sol (3.1)

for some constant L which is valid for all s' between so and s [40]. The Lipschitz

condition is intermediate between continuous and continuously differentiable [41] and

holds for physical electric field distributions relevant to this work. Hence for any initial
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condition b(so), b(s) uniquely exists.

3.3 The Definition Of The Matricant

Clearly for a fixed initial condition the solution b(s) can be expressed in the form

b(s) = f2(s, so)b(so) (3.2)

where f(s, so) is a 2 x 2 complex matrix. The question of interest is the existence of
a matrix Q(s, so) such that (3.2) is valid for any initial condition at so. The answer is
affirmative as shown in the next section.

The 2 x 2 complex matrix Q(s, so) is known as the matricant of (2.118). Apparently
the name 'matricant' is not universally used for Q(s, so). The matrix is known as
the 'state transition matrix' in control theory and also called 'matrizant' by some
authors [42]. The presentation in this chapter heavily borrows from the books by
Gantmacher [43] and Pease [41] and we follow their naming conventions as well.

All the results in this chapter are presented in terms of the matricant of (2.118)
Q(s, so). However all the results are also true for the matricant of (2.119) or for the
matricants of any other similar systems. We denote the matricant of (2.119) by n'(s, so)

b'(s) = Q'(s, so)b'(so) (3.3)

Note from (2.124) that both matricants are related as

Q(s, so) = S [-o(s)] 7Q'(s, so) S [p(so)] (3.4)

f'(s, so) = S [p(s)] Q(s, so)S [--o(so)] (3.5)

where we note that from the definition of S in (2.125) that

S-1[] = S[-0] (3.6)
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3.4 The Peano Expansion and Existence

Integrating (2.118) yields

b(s) = b(so) + j A(s')b(s')ds' (3.7)

Equation (3.7) can be self-substituted on the right hand side to get

b(s) = b(so) + j A(s') b(so) + j A (s")b(s")ds"j ds' (3.8)

Repeatedly substituting (3.7) into (3.8) and comparing with (3.2) suggests the so called

Peano expansion of the matricant [41, 43]

f(s, so) = I + j A(s')ds' + j A(s') f A(s")ds"ds'+ - - - (3.9)

where I is the identity matrix. The infinite sum in (3.9) is convergent [41] and can be

term by term differentiated to

dQ(s, so)ds s = A(s)Q(s, so) (3.10)

Multiplying (3.10) with arbitrary b(so) and comparing with (2.118) and (3.2) proves

the existence of the matricant.

Equation (3.9) is in general impractical to be employed to evaluate the matricant

[41]. However it is useful to demonstrate certain properties. Equation (3.10) relates

the matricant directly to the system matrix through a differential equation.

3.5 General Matricant Properties

We introduced the matricant without using any specific property of the system matrices

of (2.118) or (2.119) except the Lipschitz condition. Here we list general properties

which follow directly from the existence.

Property 1 (Initial Condition). At s = so the matricant reduces to the identity

matrix.

92(so, so) = I (3.11)

77



Proof. (3.11) directly follows from (3.2). Alternatively when s = so all the integrals
on the right hand side of (3.9) vanish and (3.9) yields (3.11).

Property 2 (The Jacobi Identity).

+ A22(s')] ds')

O

(3.12)

Proof. The determinant of Q(s, so) is

|92(s, so)I = Qu(s, so) 22 (s, so) - Q12 (s, so) 21 (s, so) (3.13)

Taking the derivative of (3.13) with respect to s and substituting (3.10) for the deriva-

tives of R,, straight forward algebra yields

d|If(s,so)I Q (s, so) [Al(s) + A 2 2 (s)]
ds (3.14)

The solution to (3.14) is given by (3.12) since |Q(so, so)| = 1 from (3.11).

Property 3 (Nonsingularity). The matricant is nonsingular.

Proof. It directly follows from (3.12) that |Q(s, so)I may never be 0.

Property 4. For two different initial points so and s'

O(s, so) - Q(s, s' )C (3.15)

where C is a constant matrix.

Proof. Since the matricant is nonsingular we can write

dG(s,so) d ((s, s')[(
ds

d(s, s')
ds [Q(s,

s )] O(s,

ds

so) ) 
(3.16)

s')] 1&f(s, so) + f2(s,
-1 Q(s,so))Q [ (s , s')]

s'0)
as

d([Q (s, s')] 1Q(s, so))=A(s)f2(s, so) + f2(s, s') 0
0 ds

where we used (3.10) (with so replaced with s') to obtain (3.18) from (3.17).

(3.17)

(3.18)

Again
using (3.10) notice that the first term on the right hand side of (3.18) equals the left

78

|(s, so)| exp [A,,(s')



hand side. Thus

which implies (3.15).

Equation (3.15) states that the matricants of a system for different initial values may

only differ by the product of a constant matrix.

Property 5 (Transitivity). For any three points s, so and s'

(3.20)

Proof. Evaluating (3.15) at s = s' and (3.11) yields

C = £(s', so) (3.21)

El

Property 6 (Inverse).

(3.22)

Proof. Equation (3.22) follows from evaluating (3.20) at s = so, (3.11) and nonsingu-

larity of the matricant. L

Property 7 (Uniqueness). Matricant is unique.

Proof. Assume that L(s, so) is a matricant of (2.118) different from n(s, so). Then

with f(s, s') replaced by F(s, so) in equations (3.16) to (3.18), (3.19) remains valid to

yield

Q(s, so) = L(s, so)C (3.23)

where C is another constant matrix different than (3.21). Evaluating (3.23) at s = so

together with (3.11) shows that

C = I (3.24)

Thus the matricant is unique.
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Property 8 (Multiplicative Derivative).

A(s) = ds [Q (s, so)] (3.25)
ds

Proof. Equation (3.25) directly follows from (3.10) by postmultiplying both sides with
the inverse of the matricant. E

Equation (3.25) gives A(s) in terms of f(s, so) and is useful to express the entries of
the system matrix in terms of the matricant entries.

The following identity will be useful in the next chapter.

Property 9.

(s, -S) = A(s)Q(s, -s) + f(s, -s)A(-s) (3.26)
ds

Proof. It follows from (3.20) that Q(-s, so)G(so, -s) = I. Thus

0 d [f2(-s, so)Q(so, -s)] _ df2(-s, so) d(so, -s) (
ds ds s -s) + O(-s, s ds (3.27)

= -A(-s) + f2(-s, so) d(so, -s) (3.28)
ds

where we used (3.10) and (3.20). Equations (3.22) and (3.28) yield

d2(so, -s) = (so, -s)A(-s) (3.29)
ds

For any so, Q (s, so)Q(so, -s) = Q(-s, s) and

d(s, -s) d (s, so) ± (sso)d(so, -s) (330)
ds ds ds

= A(s)Q(s, -s) + f2(s, so) d2(so, -s) (3.31)
ds

Equation (3.26) follows by substituting (3.29) in (3.31) and using (3.20). E

3.6 Kerr Media Specific Properties

There are two very important properties of the matricant which are specific to Kerr
media.
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Property 10 (Unitarity). The matricant for Kerr media is unitary

[n (s, so)] tQ(s, so) = (s, so) [Q (s, so)] = I (3.32)

Proof. Notice from (2.120) that

A(s) - -At(s) (3.33)

where t denotes complex conjugate transpose. It then follows from (2.118) and (2.120)

that

S b (s) dbt(s) b(s) + bt (s)db(s)

ds ds ds

bt(s) [At(s) + A(s)] b(s)
= 0 (3.34)

Since bt(s)b(s) does not change with s it should be equal to its initial value at s = so.

Thus

bt (so) b(so) = bf (s) b(s) = bf (so) [Q(s, so) ]ItQ(s, so) b(so) (3.35)

Equation (3.32) follows since (3.35) is true for any choice b(so). 0

Since the electric field vector is related to b(s) by a common phase factor in (2.117)

[b(s)]tb(s) = [e(s)]te(s) and (3.34) states that the intensity does not change as light

propagates through Kerr media. This is expected since we assumed that the Kerr

media is lossless. Matrices for which (3.32) is true are called unitary [44].

Property 11 directly follows from the Jacobi identity of (3.14) and (2.120).

Property 11 (Unimodularity). The matricant for Kerr media is unimodular

-(s, so)| = 1 (3.36)

3.7 The Matricants Of Related Systems

This section develops the relationships between the matricants of systems with related

system matrices. The system in Section 3.7.2 is used for media with symmetric field

distributions in Section 3.8.2. The other two related systems are not used in this thesis
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but are included here due to our expectation that in future work they can be used
to model secondary effects in Kerr electro-optic measurements such as temperature
gradients and electrohydrodynamic motion.

3.7.1 Perturbation To The System Matrix

Consider that A(s) is perturbed so that the system matrix becomes

Ap(s) = A(s) + AE(s) (3.37)

The differential equation for the new system is given as

ds = [A(s) + A(s)] ,(s, so) (3.38)

We let

Op (s, so) = s, so) Qe(s, SO) (3.39)

and then

d E(s, so) d [f2(so, s),Z(s, so)] (3.40)
ds ds

dQ2,(s, so) + d(so, s) (s5 s) (3.41)
ds ds

= f(so, s) [A(s) + A(s)1 £y (s, so) - Q(so, s)A(s)f2y(s, so) (3.42)

= O(so, s)A,(s) A,(s, so) (3.43)

Thus

d2E(s, so) A -1

ds ={[Q(s, so)] A1sGs o)D s o (3.44)

where the bracketed term represents another system matrix. Equation (3.44) can be
used to find the effects of the perturbation matrix on the matricant.

3.7.2 Complex Conjugation (*) Of The System Matrix

We now investigate the matricant of the system whose system matrix is given by
[A(s)] *. This matrix results for light waves traveling in the -s direction, changing A(s)
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and A'(s) in (2.120) and (2.121) to their complex conjugates (cc). Let the matricant

of this system be Qcc(s, so). Then from (3.9)

Qcc(s, so) = I j [A(s')] *ds' +
Jso0

As')] *

s0
[A(s")]*ds"ds'+ -- -

= I+J A(s')ds' + j A(s') A(s")ds"ds'+ - - -
so I *

(3.45)

Hence if the system matrix is replaced by its complex-conjugate the matricant of the

new system is also replaced by its complex-conjugate.

This property can also be shown beginning with the differential equation of the new

system

dbcc(s) = [A(s)]*bc(s)
ds [() bcS

Taking the complex conjugate of (3.46) yields

db*(sdc(s) = A(s)b* (s)
ds c

(3.46)

(3.47)

from which it follows that

(3.48)

or

(3.49)

which shows that

(3.50)Qcc (s, so) = [Q (s, so)]*

3.7.3 Addition Of A Source Term

We now consider the solutions to the system with a source term

db(s) = A(s)b(s) + d(s)
ds
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b* (s) = Q(s, so)b*c(so)

bcc(s) = [,Q(s, so)] *bcc(so)



Assume a solution of the form

b(s) = Q(s, so)x(s) (3.52)

where U(s, so) remains the homogeneous solution to (3.52) with d(s) = 0. Substituting
(3.52) in (3.51) together with (3.10) yields

Q(s, so) ds = d(s)

from which it follows that

x(s) = x(so) +

(3.53)

(3.54)

Substituting (3.54) into (3.52) gives the solution to (3.51)

b(s) = f(s, so)x(so) + f2(s, so)

= 2(s, so)b(so) + O2(s,

(3.55a)

(3.55b)

sd(s so)] 'd(s)ds'
30

s')d(s')ds'

where we used (3.11) and (3.20). Note that the first term on the right is the homoge-
neous solution and the second term is the particular solution. O(s, s') which is used to
find the effects of the source term is sometimes called the Cauchy matrix [41].

3.8 Matricant For Special Case Systems

3.8.1 Matricant As A Matrix Exponential

For the special case when A(s) is constant

A(s) = A (3.56)

(3.9) reduces to

O(so, s) = I + A ds' + A 2 ] ds"ds'+ - - -
S 0 S0 S

= exp [(s - so)A]
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where

A2  
3 A3

exp [(s - so)A] = I+ (s - so)A + (s - so) + (s - so)' A + - - - (3.58)

is the well known matrix exponential.

For constant A(s) the matrix exponential can also be directly shown to be the

solution to (3.10) by taking the derivative of both sides of (3.58)

dexp[(s-so)A]= A + (s - so)A2 + (S so)2 -- + (3.59a)
ds 2!

= A exp [(s - so)A] (3.59b)

In analogy to the scalar case it is natural to expect that for a general A(s) the

matricant is given as

Q (so, s) exp [V(s, so)] (3.60)

where

V(s, so) = s A(s')ds' (3.61)

However taking the derivative of exp [V(s, so)] shows

dexp[V(s,SO)]= A(s) + - [V(s, so)A(s) + A(s)V(s, so)]
ds 2!

+ I [V2 (s, so)A(s) + V(s, so)A(s)V(s, so) + A(s)V 2 (S, So)] ...

(3.62)

and it is recognized from (3.62) that the exponential of V(s, so) satisfies (3.10) only if

it commutes with A(s)

V(s, so)A(s) = A(s)V(s, so) (3.63)

and (3.63) is not true for a general system matrix.

Equation (3.63) does suggest special cases for which (3.60) is a solution. One such

case for example is when A(s) or A'(s) is diagonal. Some other cases are considered in

Section 3.10. The most general case for (3.60) to be a solution to (3.10) may be found
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in [41]. If some details, mainly due to repeated eigenvalues, are set aside, it is required
for i': A(s')ds' and A(s) to have the same set of s independent eigenvectors.

3.8.2 Matricant Of Symmetric Kerr Media

We call a Kerr medium symmetric if the transverse component of the applied electric
field distribution has a plane of symmetry that is perpendicular to the propagation
direction of light. Without loss of generality let this plane be s = 0. Then by (3.20)
with s' = 0 and so = -s

Q(s, -s) = f(s, 0)n(0, -s) (3.64)

Since the medium is symmetric, the matricant Q(0, -s) for light that travels from -s
to 0 in the +s direction is equivalent to the matricant O(0, s) for light that travels
from s to 0 in the -s direction.

For light propagation in the -s direction the derivation of (2.118) can be repeated
beginning with a exp(iks) dependence in (2.106). The result is (2.112) and (2.114)
with k replaced by -k. Then A(s) in (2.118) and (2.120) is replaced by [A(s)]*

db(s)
dbs [A(s)]*b(s) (3.65)

where

b(s) = b(s) exp + J [Emm(s') + 6,(s') + 2E] ds') (3.66)

However since Kerr electro-optic measurements are intensity based, the phases of the
components of b(s) are irrelevant and a distinction between b and b is not necessary.

Consistent with Section 3.7.2 we denote the matricant for light propagation in the
-s direction by 2cc (s, so). It follows from (3.22), (3.32) and (3.45) that for two points
si and S2 in Kerr media

fOcc(Si1, 82) = [Q (S2, i)] T(3.67)

Using (3.67) for symmetric media we obtain for si = 0 and S2 = s

Q(0, -s) = Occ(0, s) = [p(s, 0 )]T (3.68)
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Substituting (3.68) in (3.64) yields

O(s, sl , 0 Os ) (3.69)

It follows that for symmetric media, the matricant between two points that are sym-

metric with respect to the plane of symmetry is symmetric. Important examples of

symmetric media are media with axisymmetric electric field distributions and media

with constant magnitude and direction electric field distributions (which are also axi-

symmetric).

3.9 A General Form For The Matricant

The relationships between the entries of a 2 x 2 unitary matrix can be obtained from

(3.32) as

|Q,(s, SO) 2 + |Q12 (s, so)|2 1 (3.70a)

|Q2 1 (S, so)|2 + IQ22 (s, so)|2 = 1 (3.70b)

IQ,, (Sso)| 2 + |Q21(S, so)| 2 = 1 (3.70c)

and

Q11(s, so)Q* 1(s, SO) + Q*2(s, so)Q22 (s, o = 0 (3.71)

Any other relationship can be expressed in terms of (3.70) and (3.71). From (3.70) it

is clear that the magnitudes of the entries can be identified by a single parameter less

than one. Equation (3.71) supplies a relationship between the arguments of Qij(s, so),
thus at most three parameters are needed to express the arguments of Qij(s, so). A

general form with four parameters that satisfies (3.70) and (3.71) can be deduced by

inspection as

o [ exp [i (s, so)] cos 0(s, so) exp [i((s, so)] sin 0(s, so)

-exp[-i((s, so)] sin 9(s, so) exp[-i(s, so)] cosO(s, so)J
(3.72)
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By direct substitution it is easily shown that (3.72) satisfies (3.32). Here O(s, so) is the
parameter that identifies the magnitudes of the entries hence

7F
0 O O(s, so) (3.73)

It follows from the Jacobi identity (3.36) that the determinant of Q(s, so) must be
unity and q(s, so) = 0 in (3.72). Thus f2(s, so) reduces to

Q(s'so) = [ exp [i6(s, so)] cos O(s, so) exp [i((s, so)] sin O(s, so) (374)
-exp[-i((s, so)] sin6(z,zo) exp[-i (s,so)] cosO(s, so)

Equation (3.74) states that the matricant for Kerr media can be expressed in terms of
three parameters (6, 0, ().

The reason that q(s, so) = 0 is because of the exact form of the transformation
in (2.117) relating bj(s) and ej(s). If the Kerr electro-optic measurement theory is
developed using the electric field e instead of b then for the matricant relating input
and output electric fields using (2.117) we obtain

i(s, so) = 8 [Emm(s') + Ep(s') + 2c] ds' (3.75)

Beginning with (2.70) it is possible to relate T directly to the applied electric field
and the isotropic permittivity. Thus if measured, 7 can be useful. However 77 is
not available from intensity based Kerr electro-optic measurements and some other
measurement methodology must be developed.

3.10 Analytical Evaluation

Despite the simple forms of (2.118) and (2.119), general analytical evaluation of their
matricants is difficult. In this section we consider some simple electric field distributions
for which analytical evaluations are possible. Section 3.10.1 finds the matricant when
the direction of the (transverse) electric field is constant along the light path which
most past Kerr effect analysis and measurements have been limited to. The other
special cases are particularly useful for testing numerical algorithms to be used for
the usual electric field distributions that do not allow closed form solutions and thus
require numerical evaluation of (2.118) and (2.119). All these cases are in fact matrix
exponentials and can be found as such although we find them by straight-forward
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integration.

3.10.1 Constant ET(s) Direction

Such electric field distributions are typically the cases for parallel plane, coaxial cylinder

and parallel cylinder electrodes; on the ground plane of an electrode system such as

point/plane electrodes; or certain planes of symmetric electrode systems such as the

center plane of sphere/sphere electrodes or along the axis of point/plane electrodes.

If the direction p of the (transverse) electric field is constant along the light path

then ( = 0 and (2.119), (2.121) and (2.123) yieldds

dbl (s) -i7rBET(s) 0 bli(s) (3.76)db ds (3.71
d(s) 0 irBET2(s) b±(s)

which can be easily be integrated to give

b'(s) = G[-y(s, so)]b'(so) (3.77)

where

G [() e ' 0 (3.78)
0 eiO

and

7Y(s, so) = irBET(s')ds' (3.79)

with -y(s, so) being half the phase shift between the electric field components e|l (s) and

eI(s) polarized parallel and perpendicular to ET. The matrices Q'(s, so) and O(s, so)

follow as

Q'(s, SO) = G [- (s, SO)] (3.80)

f(s, so) = S (-p) G [Y(s, so)] S (yO) (3.81)
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3.10.2 Constant ET(s) Direction and Magnitude

When the magnitude of the electric field is also constant along the light path (3.79)
reduces to

-y(s, so) = (s - so)7rBET (3.82)

This case is frequently used in the coming chapters since the most straight for-
ward discretizations of nonuniform electric field distributions are made of regions with
electric fields that are constant in magnitude and direction. We use Qc to denote the
matricant for such a region. Thus (3.81) and (3.82) yield

PC = S(-V)G (7rBETl) S (V) (3.83)

where 1 = sout - sin and Sin and sout are the s-coordinates of the entrance and the
emergence points of the light ray to and from the field stressed regions.

With 1 giving the electrode length, (3.83) is also the matricant solution of one
dimensional electrode geometries like parallel plate electrodes. The solution for two
dimensional geometries like two long concentric or parallel cylinders are also given by
(3.83) provided that the light propagation direction is in the direction along the long
symmetry axis. Thus for one or two dimensional geometries we have

ET- (3.84)

that allows determination of ET from y. As discussed in chapter 1 this is the basis of
the earlier Kerr electro-optic measurements.

Also notice that

QT = ST (V)GT (7rBEl)ST (-V) = S(-v)G(7rBETl)S(V) (3.85)

= Qc (3.86)

Thus PC is symmetric. Equations (3.32) and (3.86) also yield the inverse of PC as

[Qc] = S (-p) G (-rBETl) S (p) (3.87)
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3.10.3 Constant dE(s)/E2(s)

We first write (2.119) in the form

d =(s) r BET2(s)N' b'(s) (3.88)
ds

where N' is the constant matrix

N' [ i R' (3.89)
- R' i

dcp(s)

R' = 2 (3.90)
7rBE Ts

Equation (3.88) can be solved by diagonalizing N' (see for example [44] for diagonal-

ization, eigenvectors, and eigenvalues). The eigenvalues are tiS' where

S' = v''l + R'2 (3.91)

and the eigenvector matrix VN' is found as

R' R'

T2s'(S'+1) V2S'(S'-1) (3.92)
VN' - i(+S') i(1-S')

2S'(s'+1) 12S'(S'-1) _

We define

c'(s) - V ,b'(s) (3.93)

where V1, - [VT]

Substituting (3.93) into (3.88) we get the differential equation for c'(s)

de'(s)_
ds wrBE2(s)N' c'(s) (3.94)ds '

where N' = VI,N'VN' _ S,] is the diagonalized matrix. Equation (3.94) is

easily solved to yield

c'(s) = G [-q'(s, so)]c'(so) (3.95)
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where G(0) is defined in (3.78) and

r/(s, so) = S' j BET(s')ds' (3.96)

Using (3.3), (3.93) and (3.95) Q'(s, so) = VN'G[-'(s, SO)] Vt, and can be obtained
by direct multiplication as

&f'(s, so) = [cos r'(s, so) - i sin 7'(s, so)

- - sin r7'(s, SO)

1 sin r7'(s, so)

cos r/(s, so) + i sin r'(s, so)

If both El(s) and d are constants then 7(s, so) reduces to

Note that if 2 = 0 then (3.98) reduces to (3.82).

3.10.4 Constant [Em(s)Ep(s)/ [E2(s) - E (s)])

We first write (2.118) in the form

db(s)
ds = -rB[Em2(s) - E2(s)]N b(s)

where N is the constant matrix

1

R

R

-1 I
R = 2Em(s)Ep(s)

E2 (s) - E2(s)

Equation (3.99) can be solved similar to (3.88). The eigenvalues of N are ±S where

S = v1+ R 2 (3.102)

and the eigenvector matrix VN is

VN
v '25 S [ S -- 1 Sl+1

(3.103)
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We define

c(s) = Vkb(s) (3.104)

and substitute (3.93) in (3.99) to get the differential equation for c(s)

dc(s)_
ds -i7rB [Em(s) - E(s)]Ndc(s) (3.105)ds

Here Nd = VtNVN = s]. Equation (3.105) is easily solved to yield

c(s) = G [T(s, so)]c(so) (3.106)

where G(6) is defined in (3.78) and

I(s, SO) = S 7rB[E,(s) - E,(s)] ds' (3.107)

Using (3.3), (3.93) and (3.106), Q(s, SO) = VNG[r/(s, so)]Vt and is found by direct

multiplication as

COST r(s, ISO) - i - sinq r(s, SO) -- il sin 77(S, so)
fs(s, so) = S (3.108)

ij sin r(s (s, so) - + i sin(s, so)

3.10.5 Concentric Spherical Electrodes

The electric field distribution of concentric spherical electrodes in space provides an ex-

cellent debugging tool during the software development for the forward theory of Kerr

electro-optic measurements. For any line in space the matricant is available analyti-

cally. This geometry may also be practical as conducting film coated transparent glass

can be used as spherical electrodes making Kerr electro-optic measurements possible.

The potential and electric field distribution of concentric spherical electrodes are

spherically symmetric. We assume the inner electrode of radius R is at potential V and

the outer electrode of radius Rout is grounded. Then the potential is found by matching

the boundary conditions for the spherically symmetric 1/r Laplacian solution

#(r)=V 1 -1(R )(!) = V(R R) (3.109)
Rout r Rout r Rout
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where ? = V (I - R is defined to make the coming Kerr electro-optic measure-

ment expressions less cumbersome. Here the origin of the fixed xyz-frame is chosen to

coincide with the centers of the spheres.

Notice that due to the spherical symmetry, light rays at the same distance to the

inner spherical electrode (or origin) yield the same Kerr electro-optic measurement. As

an illustration, in Figure 3.1 (left) we show three light rays at the same distance to the

inner electrode which would result in the same Kerr electro-optic measurement.

To derive the analytical expressions for the Kerr electro-optic measurements we

choose the light frame so that r^ points from the light ray's closest point to the inner

spherical electrode to the origin as illustrated in Figure 3.1 (right). We let d be the

distance of the light ray to the origin (d = 2R for the illustration in Figure 3.1-right).

When the mps coordinate system is fixed to a light ray it is an ordinary cartesian

frame. In particular we have

r = Vm 2 + p 2 + s 2  (3.110)

and the applied electric field components in space are found by taking the negative

gradient of (3.109) after substituting (3.110)

.~(~p~) -- -[&#(r)~ &#(r) _#(r)

E(m, p, s) -V#(r)- m + + S (3.111)

VI? [mrIn + pf + ss] (3.112)
(m

2 + p2 + s 2 )3 /2

2R 2R

R R

-R-

-2R -2R
2R 2R

RR R 2R
0 02  R

R R R
y -2R -2R x y -2R -2R x

Figure 3.1: (left) Three light rays that would result in the same Kerr electro-optic
measurement. (right) The light frame chosen for the particular line.
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Along the light ray m = d and p = 0, thus (3.112) reduces to

$(m, p, s) m=dp=O
VRd

(d2 + S2 )3 / 2

VRs
(d2 + s 2 )3 /2

Since E, is along the light path it does not effect the Kerr electro-optic measure-

ments. Thus p(s) is constant and equal to 0 and the matricant between two points so

and si follows from (3.80) as

2(si, so) = G [Y(si, so)] (3.114)

-y(si, so) = 7rB E (s) ds = 7rBV 2 R 2d2

"Osso f 
( ds

]so (d2 + S2)3

22 [1 s 3 s 3
= rB R 4 (d2 + s2)2 arctan

L4(2 ±s) 2 8d 2 d2 ±+S2 8d3
.S s=so

(3.115)

(3.116)

Since p(s) = 0 throughout the ray, it follows from (3.81) that the matricants in the

light frame and ET-frame are identical.

S'(s, SO) = [2(s, so) (3.117)

If so and si are chosen to be the points where the light ray enters and leaves the inter-

electrode region, simulating the case when the spherical electrodes are transparent, we

have

so =- R ut - d2  (3.118)

si= R t - d2(319

and (3.116) reduces to

= Bg 2 R 2 R2 _ d2
2 Ru

3 VR 2 - d2

4d2 Rut

3 R2 - d2
- arctan out

4d3 d J
when Rout > d > R and

-y =BV2 R 2 I ARour- d2

2 R4ut

3 VR - d2

out
+4d2 R2u

3
4d 3

VR 2 un - d2

arctan 
o d
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/R 2 -d 2  3 vR 2 -d 2  3 -R 2 -d 21
R 4  4d2 R 2  4d3arctan d (3.121)

when R > d. For d > Rout the retardation -y is zero as the electric field in this region
is zero.

Also note that for an isolated sphere such that Root --+ oo, V = V and (3.120)
reduces to

37r2 BV 2 R 2

8d3  (3.122)

3.11 Numerical Evaluation Of The Matricant

Equations (2.118) and (2.119) are ordinary differential equations and for a given ET(s)
distribution, many well established methods exist for their numerical solution. We
use the well known fourth order Runge-Kutta method with a straightforward adaptive
stepsize control. The method is well documented in the literature and will not be
repeated here [45,46]. Here we mention a few issues.

3.11.1 Evaluation of the Matricant Elements

To find the elements of O(s, so) from a numerical integration of (2.118) notice from
(3.2) that

b(so) = = [ -> f.1(s, so) = b(s) (3.123)
0

where ei = [01] and f.1 denotes the first column of Q. Thus integrating (2.128) with

the initial conditions u(so) = e1 and v(so) = 0 gives the first column of the matricant.
Since the second column is completely determined by the first column (see (3.74)), the
matricant is totally determined. Similarly by using the identity

b'(s) = ei --=> R'(s, so) = b'(s) (3.124)

together with (2.127) and (2.130), '(s, so) can be determined.
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3.11.2 Modified Real Form Of The Governing Equations

A direct application of the initial conditions described in (3.123) and (3.124) to (2.128)

and (2.130) can be numerically problematic since at start the change in the first rows of

u(s) and u'(s) can be very small compared to 1. To avoid this difficulty and introduce

the adaptive criterion in Section 3.11.3 we define

Ud(S) = u(s) - ei

Ud'(s) = u'(s) - ei

(3.125)

(3.126)

where Ud(S) Ud(S) with d(s) = um(s) - 1 and Ud'(S) = (S)

ull(s) - 1 and ei is defined in (3.123). Substituting (3.125) into (2.128)

with u' (s)

yields

d ud(s) B

ds v(s)

0

-W(s)

W(s)

0 ILUd(S)

v(s) I 0

W.I(s)

The extra source term introduced in (3.127) causes no difficulty for numerical in-

tegration while avoiding the numerical problem. With vanishing initial conditions

Ud(SO) = v(sO) = 0, numerical integration of (3.127) yields the first column of Q

f:1(, so) =i + Ud(S) + iv(s)

Similarly substituting (3.126) into (2.130) yields

d u'(s)] Q'(s)
ds V'(s) -W' (S)

W'(s)

Q'(s)

Ud'(s)] + [
(3.128)

Q(s)
-W' 1 (s)J

(3.129)

and numerical integration of (3.129) yields the first colum of Q'

QLi (s, SO) = ei + Ud'(S) + iv'(s) (3.130)

3.11.3 Adaptive Stepsize Criterion

Since the intensity of the light does not change while propagating through Kerr media,

using (3.123) and (3.124) we obtain

Iu(s)12 + Iv(s)12 (()+ 1)2 + u2(s) + v2(s) + v2(s) 1 (3.131)
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which implies that

ud(s) + u (s) + vM(s) + v(s) = -2Ud (3.132)

Hence any numerical error in up, vm or v, also effects Ud. Motivated by this observation,
as the adaptive error criterion we use the error in Ud.

In our numerical computations we typically begin with a very small step size h with

respect to the geometry dimensions and at each step we calculate the solution at 2h

with both two steps of h and one step of 2h. Then we consider the inequality

e(ud) = Ud 2h - Udh < 0.001 (3.133)
Udh

where Ud 2h and Udh are the results for the step size of 2h and h respectively. If (3.133)

is true then we double the step size as the accuracy is unnecessarily high. If e(zd) is
between 0.005 and 0.001 no action is taken. Otherwise the step is halved. An identical

adaptive scheme is used for (2.130) with u' replacing Ud in (3.133). The numbers 0.005

and 0.001 can be decreased for higher accuracy.
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Chapter 4

The Characteristic Parameters

4.1 Introduction

Chapter 3 established that the matricant for Kerr media can be described in terms of

three parameters. It is plausible to continue the development with the parameters used

in (3.74). However for reasons that will become clear in Chapter 5 it is much more

convenient to use the so called characteristic parameters. This chapter introduces the

characteristic parameters and continues the development of the forward Kerr electro-

optic measurement theory in terms of these parameters.

4.2 A New General Form For The Matricant

4.2.1 Existence

Equation (3.74) is a general form of a unitary matrix with unit determinant and follows

directly from (3.70) and (3.71). A less obvious general form is a combination of two

rotators and a retarder

Q(s, so) = S [-af (s, so)] G [(s, so)] S [ao(s, so)] (4.1)

Here S and G are the rotator and retarder matrices that are respectively given in

(2.125) and (3.78). The explicit form of (4.1) can be found by direct multiplication of

matrices on the right hand side
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Cos a- (s, so)

- sin a_ (s, so)

sin a_ (s, so)

cos a_ (s, so)_

+ i sin y(s, so)
cos a+(s, so)

sin a+(s, so)

- sin a+(s, so)
cosa+(s, so)

a+(s, SO) = ao(s, so) + af (S, so)

a_ (s, so) = ao(s, so) - af (S, so)

(4.3)

(4.4)

To prove the assertion that it is possible to express Q(s, so) as in (4.1), we compare

(3.74) and (4.2) to obtain

tan a_ (s, so) =

tan a+(s, so) =

tan-y(s, so) =

tan 0( so ) cos ((s, SO)
cos ((s, so)

tan 0(s, s) sin ((s, s)
sin ((s, so)

tan(s s)cos a+(s, so)
Cos a_ (s, so)

With the possible exception of indeterminate forms such as cos ((s, so) = cos ((s, so) =

0, for any 0(s, so), ((s, so) and ((s, so), equation (4.5) yields a solution for a -(s, so),
a+ (s, so) and y(s, so). For each indeterminate form in (4.5), it can be individually

checked that solutions for a_ (s, so), a+(s, so) and -y(s, so) exist (also see section 4.2.2).

From a_(s, so) and a+(s, so) we can determine ao(s, so) and af(s, so)

S a+(s, so) + a_ (s, SO)
2

a+±(s, so) - a_ (s, SO)
af(sso) =2

(4.6)

(4.7)

Thus (4.5) proves that the matricant can be expressed as in (4.1).
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4.2.2 Relations To The Rectangular Form

Typically the numerical integrations (see Section 3.11) to find the matricant yields a

rectangular form which we express as

p(s, so) - iq(s, so)

-r(s, so) - it(s, so)

r(s, so) -

p(s, so) +

it(s, so)

iq(s, so)_
(4.8)

where we explicitly separate the real and imaginary parts

(3.74)

p(s, so) = cos ((s, so) cos 9(s, so)

r(s, so) = cos ((s, so) sin 0(s, so)

of each matrix element in

(4.9a)

(4.9b)

Here p(s, so), q(s, so), r(s, so) and t(s, so) are real and because the determinant of

Q(s, so) is one

p2 (s, so) + q2 (s, so) + r2 (s, so) + t2(s, so) - 1 (4.10)

Equations (4.8) and (4.10) directly follow from (3.74). A comparison between (4.2)

and (4.8) yields

{ arctan 2 [r(s, so), p(s, so)]

7sgn [r(s, so)]

arctan 2 [t(s, so), q(s, so)]
+(s, so) =

7sgn [t(s, so)]

t 2(s, So) + q2(S, SO)
y(s, so) = arctan (S )

r2(s, so) + p2(S, SO)

p(s, so) #0

p(s, so) 0

q(s, so) #0

q(s, so) 0

where we adopt the C/C++ math library convention that arctan 2 (y, x) returns the

arctangent of y/x in the right quadrant between -7r to 7r (signs of y and x respectively

match to those of sin [arctan 2(y, x)] and cos [arctan 2 (y, x)]) and arctan(x) returns the

arctangent of x between -- r/2 to -r/2. sgn denotes the sign function defined as +1 for

positive argument and -1 for a negative argument.

Equation (4.11) addresses every possible indeterminate form except p(s, So)

r(s, so) = 0 and q(s, so) = t(s, so) = 0. These cases respectively imply -y(s, so) = 7r/2
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and y(s, so) = 0 and any respective value of a_(s, so) and a+(s, so) will work. This

discussion and (4.11) also address all possible indeterminate forms in (4.5).

4.2.3 ET-Frame

Since the properties of Q(s, so) that lead to (4.1) are also true for '(s, so), it can also
be expressed in a similar form. We introduce two additional parameters 0o(s, so) and
3f (s, so) and express f'(s, so) as

Q'(s, so) = S [-3f (s, so)] G [-y(s, so)] S [,3o(s, so)] (4.12)

The equality of -y(s, so) in (4.1) and in (4.12) follows from (3.4). From (3.4), (4.1) and
(4.12) we conclude that

ao (s, so) = /o(s, so) + y(so) (4.13)

af (S, so) = Of (s, so) + (s) (4.14)

The explicit form of Q'(s, so) is identical to the form in (4.2)

[ cos #_ (s, so) sin _(s, so)
£O'(s, so) = cosy7(s, so) __n3s o/~,s)

sin 0_ (s, so) cos #(s, so)

+ i sin y(s, so) -os#+(s,so) -sin+(s, so)J (4.15)
-sin #+ (s, so) cos 0+ (s, so)

where

3 (s, so) = 3o(s, so) - of (s, so) (4.16)

0+(s, so) = i3 (s, so) + #f (s, SO) (4.17)

4.2.4 Symmetric Kerr Media

The transpose of the matricant Q (s, so) in (4.1) is found by the transpose rule of matrix
products where each matrix is transposed and the product order is reversed

GT (s, SO) = ST [ao(s, so)] GT [_y(s, so)] ST [-af (s, So)]
= S[-ao(s, so)]G [y(s, so)]S[af (s, so)] (4.18)
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Here G = GT since it is diagonal and ST(0) = S(-O) which is clear from the definition

of the rotation matrix S in (2.125).

As discussed in Section 3.8.2 the matricant between the symmetry points of symmet-

ric Kerr media is symmetric. Then for so -s the matricant in (4.1) and its transpose

in (4.18) are equal implying that for symmetric media ao(s, -s) and af(s, -s) (s = 0

is the symmetry plane) are equal and reduce to a single parameter which we denote by

as(s)

as(s) = ao(s, -s) = af (s, -s) (4.19)

Thus, for symmetric media (4.3) and (4.4) reduce

a±(s, -s) = 2as(s)

ai_(s, -s) = 0

(4.20)

(4.21)

To stress that the symmetry is valid only when so = -s we also define

7ys(s) = y(s, -s) (4.22)

Thus the matricant for symmetric Kerr media is described by two parameters 'ys(s)

and as(s).

Using (4.20), (4.21) and (4.22) equations (4.2) and (4.11) respectively reduce to

cos y,(s) - i sin y,(s) cos 2a,(s)

-i sin 7,(s) sin 2as(s)

-i sin -y,(s) sin 2a,(s)

cos y8(s) + i sin y,(s) cos 2a,(s)_
(4.23)

1 arctan2 [t(s, -s), q(s, -s)]
as-(s) =

{sgn [ts, -s))

t2(3 _s + 2(S, -S)
73s(s) = arctan 2(S:)+q

p 2(s, -s)

q(s, -s) -# 0

q(s, -s) = 0

Notice that r(s, -s) = 0.

Since for symmetric media <o(s) = ((-s), it follows from (4.13) and (4.14) that
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Q'(s, -s) in (4.12) is also symmetric for symmetric media. We introduce the parameter

0-(s)

0'(s) = 0(s, -s) = Of (s, -s) (4.25)

where

as(s) = #3(s) + p(s) (4.26)

4.2.5 Kerr Media With Constant Direction E-Field

If the direction of the (transverse) applied electric field p(s) is constant a comparison

between (3.81) and (4.1) shows that

ao(s, so) = af (s, sO) = 0 (4.27)

4.3 Definition Of The Characteristic Parameters

4.3.1 General Kerr Medium

The coordinates s and so are any two points inside the Kerr media. To find the total

action of the Kerr media we let so = sin and s = sout where sin and sout are the entrance

and emergence points of the light beam in and out of the Kerr media. In the following
when the parameters ao, af and 7 are used without argument, the arguments s and

so are respectively understood to be Sin and sout.

ao = ao(sout, sin) (4.28a)

af = af (Sout, sin) (4.28b)

7 = 7(sout, Sin) (4.28c)

The parameters ao, af and -y are well known in photoelasticity and are called the
characteristic parameters [39]. The parameters ao and af are called the primary and
secondary characteristic angles respectively, while y is called the characteristic phase
retardation. Since the first and last matrices in (4.1) are rotators, ao and af are the
angles between the m-axis of the light frame and the so called characteristic directions.

Consider incident normalized light vector b(sin) = bo [ cs n' ] linearly polarized along
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the first characteristic direction. Then the output light vector is found by multiplication

with the matricant in (4.1)

b(sout) = Q(sout, sin)b(sin) = exp(i'y)bo COS f(4.29)
sin af

where we used S(ao) [sin"] =[ Equation (4.29) shows that incident light linearly

polarized parallel to the primary characteristic direction ao leaves the Kerr medium

linearly polarized parallel to the secondary characteristic direction af. It can also

be similarly shown that incident light linearly polarized perpendicular to the primary

characteristic direction ao leaves the Kerr medium linearly polarized perpendicular to

the secondary characteristic direction af.

The characteristic parameters are important because they are measurable by various

polariscope systems. Once they are measured they can be used to recover the electric

field distribution.

4.3.2 Symmetric Kerr Medium

For a symmetric Kerr medium with sot = -sin the characteristic parameters are

as = as(sout) as (-sin) (4.30a)

IN = 7s(sout) Ys(-Sin) (4.30b)

4.3.3 Kerr Media With Constant Direction E-Field

If the applied electric field direction is constant it follows from (3.81) that

af = ao = <p (4.31)

y = 7(sin, sout) (4.32)

This case will be particularly important in Part II where we often discretize the

applied electric distribution in a step-wise constant manner. We define

'Yc = 'Y(sin, sout) = gBE 21 (4.33)

as the characteristic retardation of a Kerr medium with constant direction electric

field with path length of length I = 1sout - s. We will denote the characteristic
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angles directly with <p.

4.4 Governing Differential Equations

The characteristic parameters completely describe the action of a Kerr medium on

light propagation. However previous sections offer little insight into the actual relations

between the applied non-uniform electric field and the characteristic parameters. The

following sections establish these relations by deriving the differential equations for

-y(s, so), ao(s, so) and aYf(s, so) in terms of the applied electric field.

4.4.1 General Form

To relate the characteristic parameters directly to the applied electric field we use

(3.10) in the ET-frame

d'(s, so)
' = A'(s)Q'(s, so) (4.34)ds

The explicit form of Q'(s, so) and A'(s) are respectively given in (4.15) and (2.121).

The first row of (4.34) yields

S' = A'1(s)Q/ 1 (s, so) + A/2(s)'1(s, so) (4.35)
d2 s, 1SO2)S '2 S Ods

ds A'1 (s)Q12(s, SO) + A'2(s)Q22(s, so) (4.36)

It is clear from (4.15) that the second row in (4.34) gives the complex conjugates for

Q/ and Q12 and thus does not provide any independent information from (4.35) and
(4.36).

The left hand sides of (4.35) and (4.36) follows from the derivative of (4.15)

dQ' 1  d. d '_ . d d#+-sin y coss s cos y cos#+--+
ds ds ds ds ds

(4.37)
dQ' dy+ do_- .d ..

=2 -sin -y sin#_ + cos -y cos_ - cos -y sm#+- - i smn -y cos#0+do
ds ds ds ds ds

(4.38)

where we did not show the functional dependences on s and so. The right hand sides
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of (4.35) and (4.36) directly follow by substituting the respective elements in (4.15)

and (2.121)

A' 1Q/' + A' 2Q'21 = -iirBE -{cos y cos - i sin -y cos #+}

+ +A/{-cosysin_ - i

A'u'1 2 + A' 2Q22 =-irBE4 {cosysin3 - iosin y sin #+}
ds

+ ds- {cos-ycos#_L + isinycos#}

(4.39)

(4.40)

Substituting (4.37) to (4.40) in (4.35) and (4.36) and expressing the result in matrix

form we obtain

- sin y cos 0_

- cos -y cos #+
- sin - sini_

- cos -y sin #+±

- cos -y sin #
0

cos -y cos

0

sin -y

- sin'

0 di 1
sin I
0

7 cos O±J L#+

- sin -y cos

- cos -y cos

- sin -y sin /+±

- cos y sin/3

- cos -y sin

- sin -y sin /3+

cos -y cos #

sin y cos/3+ _

In order to simplify (4.41) so that simple differential equations result for 7Y, #_ and #
we premultiply both sides of (4.41) with the matrix

[cos/L co

sin/_

0 si

s#+ sin #_ sin 1+
0 - cosf 0

0+ 0 -cos +

which results in

d-y(s, so) = irBET(s) cos [0+(s - so) - #_ (s, so)]
ds

cos Y(s, so) do_ (s, so) = 7rBET(s) sin y(s, so) sin [,_ (s, so) - #+(s, so)]
ds

+ cos -Y(s, so) ds
ds

(4.42a)

(4.42b)
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sin -(s, so) d1+(s, so) = grBE(s) cos y(s, so) sin [- (s, so) - 0+3(s, so)]
ds

d o( s)
- sin y(s, so) ds

(4.42c)

Equation (4.42) can be rearranged using (4.16), (4.17), (4.13) and (4.14) to get

d-y(s, so) _ BE2(s) cos [2.p(s) - 2a (s, so)]
ds BE

dco(s, so) _ rBE(s) csc 2y(s, so) sin [2y3(s) - 2ac (s, so)]
ds 7E

da (s, so) cos2-y(s, so)dao(s, so)

ds ds

(4.43a)

(4.43b)

(4.43c)

Equation (4.43) can be integrated from sin to sout to yield the characteristic param-

eters directly. The initial conditions can be found by considering an infinitesimal layer

for which the electric field direction and magnitude may be assumed constant

'Y(so, so) = 0

af (so, so) = P(so)

ao(so, so) = W(so)

(4.44a)

(4.44b)

(4.44c)

Note that at s = so (4.43b) has an indefinite form but can be evaluated using the
L'Hopital rule, so that (4.43a) and (4.43c) give

dao(s, so)

ds S=80

1 dcp(s)
2 ds S=80

(4.45)

We now write (4.43a) and (4.43b) in matrix form as

d-y(s, so)
dsd( s)

sin 2-y(s, so)
ds

I cos 2a (s, so)

- sin 2af (s, so)

sin 2af (s, so)

cos 2af (s, so)_

which may be easily inverted to yield

7rBET(s) cos 2p(s) = cos 2af (s, so) d-y(s, so)
ds

- sin 27y(s, so) sin 2af (s, so) dao(s, so)
ds

(4.47)
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~[ 7rBE, T(s)

7rBEj (s)

cos 2o(s)

sin 2W(s)

(4.46)



irBEj(s) sin 2W(s) = sin 2af (s, so) dY(s, so) + sin 2 'y(s, so) cos 2af (s, so) dao s, so)

(4.48)

Unfortunately, it appears from (4.47) and (4.48) that it is not possible to express the

characteristic parameters directly in terms of the applied electric field for the general

case.

4.4.2 Symmetric Kerr Media

We now derive the differential equations for the characteristic parameters in symmetric

media. The starting equation is (3.26) in the ET-frame

dQ'(s, -s) = A'(s)Q'(
ds

s, -s) + Q'(s, -s)A'(-s) (4.49)

The explicit form of O'(s, -s) is identical in form to (4.23) with 0, replacing a,

cos Ys (s) - i sin y,(s) cos 20,(s)

-i sin Ys(s) sin 203(s)

-i sin -Y (s) sin 23, (s)

cos -y(s) + i sin y,(s) cos 2,3(s)_
(4.50)

and A'(s) is given in (2.121). Only two entries in (4.49) are independent.

elemental relations in (4.23) and (2.121) the first row of (4.49) yields

dQ~'(s, -=s) 2A'n(s) Q'(s, -s) + A' 2(s)Q' 2(s, -s)ds
dG' 2(s, -s) = A' 2(s) [Q'22 (s, -s) - Q' 1(s, -s)]

Using

(4.51a)

(4.51b)

Substituting the appropriate elements of (2.121) and (4.50) in (4.51) results in

- cos yS(s)

(4.52)

(4.53)

- cos Y.(s) sin 20,(s) d' - 2 sin -y(s) cos 20,(s) d = (s) 2 sin y,(s) cos 2#s(s) ds
ds ds(4

(4.54)
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Q (s, -s) =

- sin y,(s) d-y(s) = -2sin y,(s) cos 20s(s) rBET(s)

dy8 (s) df3 (s)
cos 20, + 2 sin y,(s) sin 2#,

ds ds
dpo(s)

-2 cos YS(s)7rBE(s) - 2 sin y, (s) sin 20s (s) ds



It is possible to obtain (4.52) from (4.53) and (4.54). Equations (4.53) and (4.54)
can be rearranged using (4.26) to get

d-y, (s)
ds

S27rBE2(s) cos [2W(s) - 2a, (s)] (4.55a)

(4.55b)
da,(s) - 'BET2(s)cot'y,(s)sin[2 W(s) - 2a,(s)
ds

as the governing differential equations in symmetric Kerr media.

Kerr media the initial conditions are

Similar to general

-Y, (0) = 0

as(0) = p(0)

(4.56)

(4.57)

and at s = 0 (4.55b) must be evaluated using the L'Hopital rule

da, (s)
ds s =O

1 dW(s)
2 ds

(4.58)
8=0

Equation (4.55) can be written in matrix form as

d-y(s) 1
ds I (

2 tan y(s) ds L
-cos 2a,(s)

- sin 2a,(s)

sin 2a,(s)

cos 2a, (s) [27rBET2(s) cos 2s(s)

27rBET2(s) sin 2W(s)

Inverting (4.59) yields

dy5(s) dad(s)27rBEj(s) cos 2p(s) = cos 2a,(s) - 2 tan -,(s) sin 2a,(s)
ds ds

dy (s)sin 2a8(s) ci
dia8 (s)+ 2 tan y(s) cos 2a,(s) ds

ds

(4.60a)

(4.60b)

Again it appears from (4.60) that it is not possible to express the characteristic pa-

rameters directly in terms of the applied electric field.
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4.4.3 Reduced Form For Weak Kerr Media

We define a Kerr medium to be weak when either the Kerr constant, the applied electric

field, or the path length is small enough such that

7rB i/nBfSout
Sin

ET(s)ds < 1 (4.61)

It then follows from (4.43a) and (4.44a) that -y(s, so) stays small and

(4.62a)

(4.62b)

sin y(s, so) 1 Y(s, so)

Cos -Y( s, so) r-1 I

Using (4.62) we conclude from (4.43c) and (4.44) that ao(s, so) and af (s, so) degenerate

into a single parameter which we denote by a(s, so)

(4.63)

Thus weak Kerr media are described by only two parameters even if the medium is not

symmetric. Furthermore substituting (4.62) and (4.63) in (4.47) and (4.48) yields

7rBEj(s) cos 2p(s) ~ cos 2a(s, so) d'-y(s, so) 2-y(s, so) sin 2a(s, so) da(s, so)
d

d [y(s, so) cos 2a(s, so)]_
ds

ds

sin 2a(s, so) so) + 2ci(s, s cos 2a (s, so) da(s, so)
ds + '~, cs2~~,S) ds

d[y(s, so) sin 2a(s, so)]

ds

Integrating (4.64) and (4.65) from SO = Sin to s sout yields

rB Js
J sino

'nrB JSu
Sin

El(s) cos 2 o(s) ds -y cos 2a

El(s) sin 2p(s) ds ~y sin 2a

It is clear from Figure 2.1 that

E2(s) cos 2p(s) = Ej(s) cos2 p(s) - E2(s) sin 2 p(s) = E2(s)

(4.64)

(4.65)

(4.66a)

(4.66b)

(4.67a)-E(s)
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7rBET2(s) sin 2 p(s) ~ 1



El(s) sin 2 p(s) = 2ET(s) sin ((s)ET(s) cos p(s) = 2Em(s)E,(s) (4

Substituting (4.67) in (4.66) results in

Sout1

rB] E2(s) - E2(s)] ds y cos 2a (4.68a)
Sout

Sin 2Em(s)Ep(s)ds -y sin2a (4.68b)

Equation (4.68) directly relates the characteristic parameters to the applied electric

field distribution.

4.4.4 Reduced Form For Weak Axisymmetric Kerr Media

When m= z

For axisymmetric Kerr media, when the direction of light propagation along the s-axis

is perpendicular to the axisymmetric axis z, we can choose the axes so that n = 2.

Then (4.68) can be written only in terms of the radial and axial components of the

applied electric field. First note that

ds = (4.69)
-r2 _p

2

E, = E, (4.70)
r

For axisymmetric applied electric fields, E,(s) and E,(s) are even functions of s so that

'7cos 2a = 27rBj E2(r) - E(r)] r dr (4.71a)

7 sin 2a = 27rB -E2(r)Er (4.71b)

Equation (4.71) has the added advantage over (4.68) that the components of the electric

field inside the integrals does not depend on the light propagation direction. Equa-

tion (4.71) is closely related to the Abel transform of scalar funtions. This relation is

further investigated in Section 9.2.
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4.4.5 Layered Media Approach

Equation (4.66) may alternatively be derived by considering a layered medium. First

note that if the transverse electric field direction and magnitude are constant within a

layer between sin and sout then the matricant will be denoted by Oc(sin, sout) and given

from (4.23) with 7c = 7s(sout) 7rBET2l and ao(sSOUt) = W as

(St, i Sin) cos yc - i sin ycos 2 o

-i sin yc sin 2 o

-i sin 7c sin 2y9

cos -c + i sin 7c cos 2j

where E is the magnitude of the transverse electric field, 1 = |sout - si- is the length

of the path, and W is the direction of the transverse field as shown in Figure 2.1.

Now assume that there are n layers between sin and sout, the m'th layer is between

sm-1 and sm, and Sam and (ET)m are the values of the direction and the magnitude of

the transverse electric field in the m'th layer respectively (Fig. 4.1). We define

7rB (ET)m (4.73)

where 1m is the length of the m'th layer. Assuming n is sufficiently large so that 1i is

sufficiently small we have

6m < 1 (4.74)

Then for the i'th layer from (4.72) we have

I -m cos 2m
nc(sm, sm-1) ~ .

-zom sin 2om

-z6m sin 2Spm

1 + i6m cos 2pm
(4.75)

For two consecutive layers using (4.75) we obtain to first order in 6 m

1I iom+1 cos 2 om+1
?c(Sm+i) Sm)A(zm)Zmi) [1 -zom+1 sin 2Yom+1

1 -
x

1 - iom+1 cos 2 (pm+1 - i 6m cos 2pm

-i6m+ sin 2 (pm+1 - i msin 2 p m

-im+1 sin 2 pom+1

1 + i6m+1 cos 2 pm+1 J

io6m cos 2 Pm -i6m sin 2Spm

iom sin 2 p m 1 + i6m cos 2 pm

-i6m+1 sin 2 Pm+1 - i5m sin 2 WPm

1+ i6m+1 cos 2 'pm+1 + i6m cos 2(pm
(4.76)
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Figure 4.1: The layered medium used for the derivation of integral relations between
the electric field and the characteristic parameters.

where we neglected the terms of second order in 6's. Repeating the above

for all n layers we obtain

I I1 - i Em- n m cos 2Wm, -j En =16.m sin 2(Pm
Ol c(sm, sm-1) = n

m=n -i Em=1 6 m sin 2Wm 1 + i E 6m= 6m cos 2pm

1- irB En 1 (EI)m 1m cos 2m -i7rB En- 1 (EI)m 1m sin 2m

-i7rB EM-1 (ET)m im sin 2 Pm 1 + iirB E" (ET) im cos 2 Pm_

procedure

(4.77)

(4.78)

Inherent to this procedure is the assumption that

n

rBZ (EI)l2m < 1
m=1

(4.79)

within each layer.

In the limit that the thickness of each layer approaches 0 (1m -+ 0) and number of

layers approaches infinity (n -+ o) (4.78) reduces to

S ) _ [i- i f:s wrBE 2s) cos 2W(s)ds
sout Sin -i fSOUt irBE2(s) sin 2 W(s)ds

-i f:2:u irBET(s) sin 2(s)ds
1 + i f r rBE2(s) cos 2p(s)ds

(4.80)

Comparing equations (4.80) and (4.2) ('y < 1) yields (4.63), (4.66a) and (4.66b). Also

the limiting case of (4.79) is identical to (4.61).
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Chapter 5

Measurement Of The

Characteristic Parameters

5.1 Introduction

In this chapter we introduce various optical polariscope systems which can be used

to determine characteristic parameters. We discuss only the so called direct methods

as they do not involve measuring the azimuth and/or the ellipticity of the light el-

lipse [47]. These optical polariscope systems employ polarizers, quarter wave plates

and half wave plates placed before and/or after the Kerr medium. Jones calculus can

be employed to find input-output intensity relations [48]. These relations are in terms

of the characteristic parameters and the orientation of the optical elements. Measure-

ments of the output intensity together with the orientations enable the determination

of the characteristic parameters.

When y is not small direct measurements are adequate to determine the character-

istic parameters. If 7 is small however measurements are difficult and it is necessary

to use the AC modulation method which is studied in section 5.5.

5.2 The Jones Calculus

5.2.1 Description

The Jones calculus can be conveniently used for the propagation of polarized light

through polarizers and birefringent elements. In Jones calculus, optical elements are
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represented by two by two complex 'Jones' matrices. The light, which is assumed to
be propagating along the +s-direction, has its electric field in the plane transverse to

s and is represented by a two dimensional complex vector whose entries are the m and

p components. The propagation of light through an optical system is then equivalent

to multiplication of the light electric field vector with a series of Jones matrices.

Table 5.1 gives the explicit forms of three basic Jones matrices which are used to

express all the other Jones matrices used in this work. A polarizer linearly polarizes the

light along its transmission axis which is assumed to be in the m-direction in Table 5.1.
A retarder introduces a phase difference between light components polarized along its

fast and slow axes. In Table 5.1 the slow axis of the retarder is assumed to be in

the m-direction. A rotator is not really a physical element but is used to represent

arbitrarily oriented polarizers and retarders. Since Kerr media is essentially equivalent

to two rotators and a retarder, it fits nicely to the Jones formalism.

We are interested only in the final intensity of light and the common phase factors

that the light vector components may have (for example the phase factor introduced

by propagation) is irrelevant. For that matter a distinction between the electric field

of the light vector e and the normalized electric field vector of Kerr media b of (2.117)
is not necessary. This also implies that the matrices in Table 5.1 are not unique and

any Jones matrix obtained by multiplying these matrices with a constant phase factor

exp iO is equally valid.

Polarizer (in m) Retarder (in m) Rotator

1 0 = exp iO 0 cos 0 sin 0
U 0 0 G(O) 0 expi S() sin0 Cos0

Table 5.1: Basic Jones matrices. The Jones matrices of all the optical elements used in
this work can be expressed in terms of these three. In this table the transmission axis
of the polarizer and the slow axis of the retarder are assumed to be in the m-direction.
Jones matrices of arbitrarily oriented polarizers and retarders can be obtained using
these and rotators (see Table 5.2). The arguments of the rotator and the retarder are
respectively the counterclockwise angle from m to the rotator's first axis and half the
phase shift (retardation) that the retarder introduces between polarized light electric
field components.
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5.2.2 Jones Matrices Of Optical Elements And Kerr Medium

All the polariscope systems used in this work employ two basic optical elements, namely

perfect polarizers and retardation plates. A retardation plate is respectively named a

quarter wave plate and half wave plate when it introduces 1 and 7r phasedifferences

between light components polarized along its fast and slow axes.

In Table 5.2 we give the Jones matrices of the basic optical elements and Kerr

medium. Polarizer and retardation plates are the generalizations of the ones in Ta-

ble 5.1 with arbitrarily oriented transmission and slow axes. Quarter and half wave

plates are special case retardation plates with respective retardations of r/2 and w. The

Jones matrix for Kerr media is the matricant between sij and so0 t, where sin and Sout

are the entrance and the emergence points of light in and out of the Kerr media. In this

chapter we use Um to denote the Jones matrix of Kerr media, instead of Q(sin, So0 t)
of Chapter 4, to stress the functional dependence of Um on the three characteristic

parameters: the primary characteristic angle, ao, the secondary characteristic angle,
af, and the characteristic phase retardation, '}. The first form of the Jones matrix

for Kerr medium is a restatement of (4.1). The second form also directly follows from

(4.1) and demonstrates that Kerr media is optically equivalent to a retardation plate

followed by a rotator with the angle ao - af.

Optical Element Jones Matrix

Polarizer Up(O) = S(-8)UPS(6)
Retardation Plate Ur ((, 0) = S(-0)G( )S(0)

Quarter Wave Plate Uq(0) = Ur(2, 0) = S(-0)G(4)S(0)
Half Wave Plate Uh(O)= Ur(7, 0) = S(-8)G(2)S(6)
Kerr Medium Um (ao, af, y) = S(-af)G(y)S(ao) = S(ao - aj)Ur(27, ao)

Table 5.2: Jones matrices of the optical elements used in this work. The arguments of
the retardation plate are respectively the phase difference that the retardation plate
introduces between it fast and slow axes and the counterclockwise angle from m to its
slow axes. The arguments of the polarizer, the wave plates and the Kerr medium are
respectively the counterclockwise angle from m to the transmission axis, the counter-
clockwise angle from m to the slow axis, and the characteristic parameters.
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5.3 Polariscope Systems

A polariscope system consists of optical elements placed before and/or after the Kerr

medium. In Figure 5.1 we show typical polariscope systems that can be used to mea-

sure the characteristic parameters. The names "linear polariscope" and "circular po-

lariscope" are frequently used in the literature while the other names are here defined

in this work for easy reference as there are no apparent names given in the literature.

For all the polariscope systems the first element is a polarizer with transmission

axis at angle O,. If the optical electric field at the output of the laser just before the

first polarizer is el, then the electric field on the other side of the polarizer e, is then

e, = Up(Op)ei = eo CosOp (5.1)
LsinOp J

where eo is the light electric field magnitude just after the polarizer. The light intensity

Io just after the polarizer is then proportional to the square of the light electric field

magnitude

Io c |ep|2 2 (5.2)

The relationship between the output light intensity of the laser and Io depends if

the laser light is polarized, partially polarized or unpolarized and if any other optical

elements such as filtering polarizers exist inbetween the laser and the first polarizer of

the polariscope system.

The light intensity If at the output of the optical system after the last polarizer

which is called the analyzer, is then

If _ ef 2 eftef (53)
1o le012 - e0 2

where ef is the final light electric field polarization given by

ef = Usysei (5.4)

Here UyY is the Jones matrix of the overall polariscope system which can be expressed

in terms of the individual optical elements by matrix multiplications. For example for
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(c) Post Semi-Circular

(d) Pre Semi-Circular (e) Post Half Linear (f) Pre Half Linear

Figure 5.1: Polariscope systems used in the determination of the characteristic param-
eters

the circular polariscope

Usys = Up(0a)Uq(0q2 )Um(ao, af, y)Uq(Oq,)Up(0p) (5.5)

where Op, 6, 64, and 62 are respectively the angular positions of the polarizer, analyzer

and first and second quarter wave plates. Usys for the other systems are similar to (5.5)

with appropriate optical element matrices removed.

Once Uy, is specified If /Io is found from

If lef 2' eitUysUsysei(
2 - (5.6)

I0 leol leol

Equation (5.6) is evaluated first by substituting (5.1) and then performing a series of

matrix vector multiplications. The result is in terms of the positions of the optical

elements. Table 5.3 summarizes these relations for the polariscopes in Figure 5.1. We

respectively use Op, Oa, Oh, and 0 q to denote the counter-clockwise angular positions

from a zero angle reference of the polarizer transmission axis, analyzer transmission

axis, half wave plate slow axis and quarter wave plate slow axis.
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5.4 Measurement Techniques

5.4.1 Linear Polariscope

Crossed And Aligned Linear Polarizers

The complex expressions in Table 5.3 can be simplified by imposing relations between

the positions of the optical elements. For the linear polariscopes two frequently used

cases are aligned polarizers (AP), , = 0,, and crossed polarizers (CP), 0a = 6, + i.

For aligned and crossed polarizers, the linear polariscope intensity relations respectively

reduce to

i= cos2 y cos 2 (ao - af) + sin2 Cycos 2 (ao + af - 20p) (AP) (5.7)
'0

if = cos2 ysin2 (ao - af) + sin 2 ysin 2(ao + af - 20p) (CP) (5.8)
'0

Measurement Of af and ao

A linear polariscope may be used to find the bisector of the angle between the primary

and secondary characteristic directions [39], which can then be used to find the char-

acteristic parameters. Let the polarizer and the analyzer be crossed. Then it is clear

from (5.8) that the minimum intensity occurs when

O, a= +f + k- (CP) (5.9)2 2

where k is a positive or negative integer. Hence the orientation of the polarizer deter-

mines the bisector of the angle between primary and secondary characteristic directions

when the measured intensity is minimum. Once the bisector is determined then the

analyzer and polarizer may be rotated in the opposite directions to each other by the

same amount 0, so that Oa - Op =! - 20' and 0a + Op = ao + af. It follows from the

linear polariscope intensity relation in Table 5.3 that

= cos 2 -ysin 2 (ao - af - 20') (5.10)

as the second term on the right is zero. Hence when the light becomes completely

extinguished, the orientation of the analyzer and/or the polarizer determine a_ =
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Linear If /Io cos 2 -ycos2(oO - af + Oa - O,) + sin 2 y cos 2(o + af - Op - 6a)

If /I= (1/2) + (1/2) sin 2y sin(2Oa - 20q) sin(2ao - 20p)

Post Semi +(1/2) cos(29a - 20q)Icos2 ycos(20p - 2ao - 20 q + 2af )
Circular + sin2 -Ycos(20, - 2ao + 2 9q - 2af )

If /Io = (1/2) + (1/2) sin 27 sin(20, - 20 q) sin(2af - 20a)

Pre Semi +(1/2) cos(20 - 20q)Icos2 -ycos(2ao - 2 6q + 26a - 2af)
Circular +sin2 - cos( 2ao - 20q - 20a + 2af )

Pre Half If /Io = cos2 y cos 2 (ao - af + , + 6 - 20h)
Linear + sin2 -ycos2 (ao + af + 0, - 6 - 20h)

Post Half If /Io = cos 2 y cos 2 (af - ao + O, + - 20h)
Linear + sin 2 -y cos 2 (ao + af - Op + Oa - 26 h)

If /Io = (1/2) - (1/2) cos 2-y sin(20, - 2Oq1) sin(20a - 2Oq2)
+(1/2) sin 2-y sin(2Op - 2Oq1) cos(20a - 26q2) sin(2af - 20q2)

+(1/2) sin 2-y cos(20, - 2Oq1) sin(20a - 20 q2) sin(2ao - 26q1)
Circular +(1/2) cos(2p - 20 q1) cos(26a - 20 q2)

x cos(2ao - 2Oq1) cos(2af - 2Oq2)

+(1/2) cos 2-y cos(26, - 2Oq1) cos(20a - 2q2)
x sin(2ao - 2Oq1) sin(2af - 20 q2)

Table 5.3: Input/output intensity relations for the polariscopes in Figure 5.1.

o - af

6' - a o + k r 

2 2
(5.11)

From a_ = ao - af in (5.11) and a+ = ao + af in (5.9), ao and af follow.

Rotating the analyzer and polarizer with equal speed in the opposite direction may

be experimentally difficult. This procedure may be avoided by introducing a half-wave

plate between the first polarizer and the medium [39]. When the half wave plates' slow

axis is set to coincide with the bisector of the characteristic directions Oh = (ao +af )/ 2

and polarizer and analyzer are crossed 0a = O, + 7r/2, the intensity relation for the

prehalf linear polariscope in Table 5.3 reduces to

(5.12)= cos 2 y sin 2(2af - 20p)
'0
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Clearly If = 0 when

kpr
6, = af + -- (5.13)

2

Hence when the intensity goes to zero, the polarizer coincides with the secondary

characteristic direction. With af found, knowing ao - af determines ao.

Symmetric Kerr Media

If the media is symmetric, (a. = ao = af), (5.7) and (5.8) respectively reduce to

particularly simple forms

=f - sin2 y sin 2 (2a, - 26,) (AP) (5.14)

= sin 2 7 sin2 (2as - 26,) (CP) (5.15)
10

from which a, may be determined directly. In particular, a, is determined by the

polarizer angle if the polarizers are crossed and the intensity is minimum, or when the

polarizers are aligned and intensity is a maximum

O, = a. + (5.16)
2

where k is any integer.

Kerr Media With Constant Direction Electric Field

For constant direction electric field (a, = p) along the light path, similar to the

symmetric media case, (5.7) and (5.8) respectively reduce to

= 1 - sin2 y sin 2 (2p - 26,) (AP) (5.17)

f sin2 y sin 2 (2o - 20p) (CP) (5.18)

Equations (5.17) and (5.18) agree with the usual Kerr light intensity relations [3].
For constant direction electric field distributions linear polariscope systems are sim-

plest to build and avoid the use of quarter or half wave plates which are typically less

ideal than polarizers. There are field direction dependent light extrema known as iso-

clinic lines when o = 6, + k7r/2, and field magnitude dependent extrema when y = 2
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(n = 1, 2, 3, - --) which can be used to find -y and <p from optical fringe patterns of light

maxima and minima.

5.4.2 Semicircular Polariscopes

Measurement Of af-Presemicircular Polariscope

When the polarizer angle is set to make an angle of { with the slow axis of the quarter4

wave plate, 9q =0 - E, the presemicircular polariscope intensity relation in Table 5.3

reduces to

If 1 sin 2 y sin(2af - 20,)- = -+ (5.19)
lo 2 2

For sin 2-y > 0 light intensity maxima occur when

7
Oa = af - - + k7r (5.20)4

and minima occur when

Oa = af + + k7r (5.21)4

Equations (5.20) and (5.21) can be used to find af.

Measurement Of ao-Postsemicircular Polariscope

When the analyzer angle is set to make an angle of Z with the slow axis of the quarter4

wave plate, 0q = Oa - 2, the postsemicircular polariscope intensity relation in Table 5.3

reduces to

If 1 sin 2y sin(2ao - 20p) (5.22)
lo 2 2

For sin 2- > 0 light intensity maxima occur when

7
6= ao - - + kr (5.23)

4

and minima occur when

7
OP = ao + - + k7r (5.24)
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Equations (5.23) and (5.24) can be used to find ao.

Both this system and the previous one have the added advantage that for small y

the intensity relation depends only linearly on y, while that of (5.7) and (5.8) depend

on Y2.

Measurement Of y

The presemicircular polariscope is also used to measure -y. The method is known as

the Reversed Tamry method [49]. In this method the analyzer is set to ' radians to4

af found in (5.20) and the quarter wave plate is set to z radians to ao. The intensity4

relation then reduces to

= cos2(y + op ao + -) (5.25)

Then when the intensity is maximum the polarizer angle yields y

O = ao - - Y + k7r (5.26)

5.4.3 Circular Polariscope

The complex circular polariscope intensity relation in Table 5.3 is greatly simplified

when the polarizer and analyzer angles are set to make an angle of j with the slow4

axis of the quarter wave plates before and after the medium respectively. The result is

= sin2 y (5.27)
'0

The polarizer and analyzer angles can be arbitrary, but for best operation to minimize

non-ideal effects of the quarter wave plates, the polarizer and analyzer angles should

be either aligned or crossed.

With a similar arrangement with the analyzer angle set to make an angle of - with

the slow axis of the quarter wave plate after the medium the light intensity becomes

= Cos 2 y (5.28)
Io

With these two complementary configurations the circular polariscope is very useful

to find the characteristic phase retardation if absolute intensity measurements or optical

fringe patterns are available.
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Assuming the secondary characteristic direction af is known, the circular polar-

iscope can also be used to measure 7 with the orientation of the analyzer. In this

arrangement, known as the Tardy method [49], the angle between the polarizer and

the first quarter wave plate is set to }1 and the angle between the second quarter wave4

plate and the secondary characteristic direction is set to -E. The intensity relation

follows from Table 5.3

If1 1-i= - - - cos(2-y - 20, + 2af) (5.29)
Io 2 2

When the intensity is an extremum, the analyzer angle measures 7

k-jr
Oa=7+af +k 7

5.5 AC Modulation Method

For most materials of interest the Kerr constant and consequently the characteristic

phase retardation -y are very small. Directly measuring such a small phase retardation

with desired accuracy is difficult. The AC modulation method can be used to increase

the sensitivity of Kerr effect measurements [8,9, 20-22].

In this method an ac voltage with known radian frequency is superposed on a dc

voltage. Then the (transverse) electric field in the Kerr media has a dc and an ac

component (Figure 5.2). If there is no space charge the ac and dc components are in

the same direction. In the presence of space charge, however, the direction of the dc

component may be different than the ac component which is not affected by the space

charge if the frequency is high enough [6]. Since B is small, primary and secondary

characteristic directions are the same (a = a = ao) and the characteristic parameters

are related to the applied electric field by (4.66). To measure ac and dc components

of the electric field, the semicircular polariscope system described in Section 5.4.2 is

used. The output-input intensity ratio is given by (5.19) and for small -y (-y < z)

approximately reduces to

If _ 1 + 2y sin(2a - 20a)
-0 ~10 (5.30)

To f2

To find the measured intensity in terms of the ac and dc components of the electric
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p

,ET

m

Figure 5.2: When an ac voltage is superposed on a dc voltage, the electric field in Kerr
media has dc and ac components. If there is no space charge both components have the
same direction (q = (). If there is space charge the direction generally differs (q -f ().
Often, the frequency of the ac field is chosen high enough so that the ac component of
the electric field is not affected by the space charge.

field, we first note from Figure 5.2 that

ET(s) cos p(s) ETC (s) cosr (s) + ETc (s) cos wt cos ((s)

ET(s) sin so(s) = ETC (s) sin 7(s) + ETc (s) cos wt sin ((s)

(5.31)

(5.32)

ET, ETdC, and ET., are amplitudes and without loss of generality are taken to be posi-

tive. Substituting (5.31) and (5.32) into (4.66) and substituting the results into (5.30)
results in dc, fundamental frequency and double frequency harmonic light intensity

components

If = Idc + I cos wt + I2, cos 2wt (5.33)

where

Idc = (1/2) + irB
Ed (s) sin[2(s) - 20,] + Ej (s) sin [2((s) - 20a] ds

(5.34)

-W 27rB out
10 = sinS

12w= rB out

Jofsis

ETd (s)ET., (s) sin[q(s) + ((s) - 20,] ds

Ej (S) sin [2((s) - 20,] ds
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Note that 1 and I2, in (5.33) are the peak amplitudes of the fundamental frequency

and double frequency harmonics respectively.

Since B is very small, it follows from (5.34) that

Idc 2 (5.37)

so that (5.36) and (5.36) approximately reduce to

Iw/Idc ~ 4irB EC (s)ET.c(s) sin [r (s) + ((s) - 20,] ds (5.38)

I2/Idc ~ 7rB E,(s) sin[2((s) - 26] ds (5.39)

Both Iw/Idc and 12w/Idc may be accurately measured by a lock-in amplifier tuned

respectively to frequencies w and 2w. 12w/Ic may be used to find the characteristic

parameters, yac and oac, that correspond to the space-charge free electric field distri-

bution whose transverse component's magnitude and direction are given by ETa and

( respectively. Expanding (5.39) and using (4.66a) and (4.66b), we obtain

I2w/ldc = 7c sin(2aac - 20a) (5.40)

'Yac cos 2aac =B E (s) cos 2((s) ds (5.41)

p2

yac sin 2aac 7rB E (s) sin 2((s) ds (5.42)

Using (5.40), light intensity measurements determine yac and cac. If the period T = 2

is much shorter than the transport time for ions to migrate significant distances over

the course of a sinusoidal angle, the ac charge density is essentially zero and ETac (s)

and ((s) can be described by solutions to Laplace's equation.

On the other hand Iw/Idc may be used to find the characteristic parameters, Yhy

and ahy, of a hybrid electric field distribution whose transverse component's magnitude

and direction are given as

Ehy(s) = 2 ETdc (s)ET.c(s) (5.43)

(Phy(s) - 7(s)+(S) (5.44)
2
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respectively. Now expanding (5.38) and again using (4.66a) and (4.66b), we obtain

yhy cos 2aBy = 7rB

yhy sin 2 ahy = 7rB J
Ey (s) cos 2^phy(s) ds

E y (s) sin 2Ayh(s) ds

Using (5.45), light intensity measurements determine 7sy and ahy.

Using trigonometric identities, (5.41), (5.42), (5.46) and (5.47) can also be expressed

in terms of the light frame components of the applied ac and dc electric fields

^Yac cos 2 aac = rB

yac sin 2 aac = 7rB fcut

E2,,(s) - E2(s)] ds

2Em.(S)Ec(s) ds

Tyhy cos 2 ahy = 47rB

Thy sin 2ahy = 47rB

SO ut
sin

SSout
Sin

Emc(s)Emde (s)ds - 47rB

Ep,(s)Emd (s)ds + 47rB

Sou
Sin
Ssout

sin

t

EPac (s)EPd,, (s)ds

Emc (s)EPd,(s)ds

Of particular interest is the case when the applied electric field is axisymmetric and

the light propagation direction is perpendicular the axisymmetry axis z. Then rn can

be chosen to equal to 2 and (5.48) and (5.49) can be expressed as

and

-Thy cos 2ahy = 87rB prout

[E22- r) E r" (r)] 2 2
r2 Vr- -p2

2prdr
-Ez.(r)Erac(r) r p2
r Vr2 _-2

Ez.(r)EZd,(r) 
r dr

)T 2 _ 2

' -8 j p2 r dr
- 87r B T-2 Er.( r Err%

1, r2--M d V/r2 _-p2
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Iw/Idc = Yhysin(2ahy (s) - 20,) (5.45)

(5.46)

(5.47)

and

(5.48a)

(5.48b)

(5.49a)

(5.49b)

rrout
7ac cos 2 aac =27rB / u

rout

yac sin 2 aac= 27rB 10

(5.50a)

(5.50b)

(5.51a)



frout p r dr
'hy sinr2h=87B ~Era(r)Ezc(r) 2p

B rout Pr rdr (5.51b)
+87rB -Ezac(r)Erdc(r)

,P r Vr _ 2

5.6 Effects Of Gaussian Beam For Point

Measurement Scheme

The ongoing experimental Kerr electro-optic work at MIT is focused on the point/plane

electrode geometry in transformer oil. This section estimates the effects of finite beam

size and gaussian beam expansion on an infinite extent point/plane electrode geometry

whose geometric parameters are chosen similar to those used in our experiments. In

the absence of space charge the electric field distribution from point/plane electrodes

of infinite extent can be found analytically (Appendix A) which then can be used to

find the characteristic parameters by numerical integration of (2.118) or (2.119) as

discussed in Section 3.11.

Gaussian beam propagation in isotropic media is well understood [30]. According

to theory the light electric field has a gaussian amplitude distribution in the plane

perpendicular to the propagation direction

m 2 + p2
eTI oc exp ( m 2  (5.52)

where eT is the transverse component of the light electric field, m and p are the tran-

verse coordinates of the light frame whose third coordinate s is aligned with the light

propagation direction as described in Section 2.4.1, and w is the radius of the beam

which expands according to

w2s = 2o (1+ 42(5.53)

as it propagates. Here wo is the initial beam size of the gaussian beam at s = 0 and k is

the wave number. Here we do not go into details on gaussian beam propagation whose

fundamentals can only be thoroughly understood by studying the phase factors that

are absent in the amplitude distribution of (5.52) [30]. Equations (5.52) and (5.53)

are adequate for our purpose of modelling the effects of finite beam size and slight

diffraction on Kerr electro-optic measurements.
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Figure 5.3: The light propagation theory developed in Chapter 2 neglects the variation
of the applied electric field within the finite beam. Here we discretize the gaussian
light beam into infinitesimal light beams each of which propagates as described in
Chapter 2. A gaussian weighted average of the intensity measurements from each
infinitesimal light beam is then used to model the effects of the finite beam size on
the Kerr electro-optic measurements. The slight diffraction effects are also modelled
by assuming that the propagation directions of each infinitesimal light beam is slightly
different from s~ forming an expanded beam at the output.

In our typical Kerr experimental set up light propagates around 50 cm in air before

entering the test cell that houses the high voltage stressed dielectric liquid. Thus

(5.53) shows that a 632 nm wavelength laser beam of initial radius 0.5 mm expands

approximately to 0.55 mm before entering the Kerr medium. Within the Kerr medium

the light propagates typically around 25 cm so that the final beam size at the exit of

the Kerr medium is expected to be at most 0.60 mm. Here we assume that the Kerr

medium has a refractive index of unity. For larger refractive indices the wavenumber

k is larger so that the diffractive effects as described in (5.53) are further weakened.

To estimate the effects of the gaussian beam on Kerr electrooptic measurements

we discretize input and output gaussian beams as shown in Figure 5.3. Each point in

the input beam is associated with a point on the output beam. Between associated

points it is assumed the theory in Chapter 2 is valid and the matricant is calculated.

A gaussian weighted average of these matricants are taken to find the estimate of the

effective characteristic parameters.

The geometry chosen is a point/plane electrode configuration with tip/plane dis-

tance of 5 mm and point radius of curvature of 0.5 mm with an applied voltage of 15

kV in transformer oil. The results are shown in Figure 5.4.

In the top figures we show the characteristic retardation ~y and characteristic angle
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a on light path lines that are parallel to the axisymmetry axis z at a radial distance p.

Here the solid lines show the results without gaussian averaging and dots illustrate the

effects of gaussian averaging. The finite size of the beam has essentially no significant

effect on the measurements unless part of the beam is blocked by the point electrode.

Qualitatively the electric field magnitude and direction variation over the light beam

is small enough so that they can be linearized. Then over the beam area the effects of

symmetrical points on the gaussian beam cancel each other leaving the average to be

very close to results at the center of the beam. When there is blocking however, this

symmetry is destroyed resulting in a change in the characteristic parameters.

The middle and bottom figures show the characteristic parameters on lines perpen-

dicular to the axisymmetry axis z. The middle figures are for positions when the needle

electrode does not block the beam. Again the averaged and direct results are very close

except for the characteristic angle at z = 0 where part of the beam is blocked by the

ground plane. For the bottom figures the effects of blocking by the point electrode is

again observed.

5.7 Measurements From Optical Fringe Patterns

5.7.1 Two Dimensional Electric Fields

Much of the earlier work on the Kerr electro-optic effect use optical fringe patterns

for measurements of two dimensional electric fields [3, 12-15, 23]. The advantages of

this method have already been discussed in Chapter 1. This section presents calcu-

lated optical patterns for the two dimensional analog (an infinite blade/plane) of the

point/plane electrode geometry illustrated in Figure C.1 and reviews a few details of

the measurements. For the simulations the length of the two dimensional blade of ra-

dius of curvature 0.5 mm is taken to be 5 mm, the applied voltage is 40 kV across a 2.5

mm gap and the medium is nitrobenzene (B ~ 3 x 10-12 m/V 2 ). In Section 5.7.2 the

calculated optical patterns for this two dimensional blade/plane electrode geometry are

contrasted to calculated optical patterns for the analog axisymmetric geometry with

point/plane electrodes.

To obtain Kerr electro-optic fringe patterns, typically linear and circular polar-

iscopes are employed. For linear polariscopes (LP) the polarizer and analyzer are

either set to be aligned or crossed so that the input/output intensity relationships sim-

plify to those given in (5.17) and (5.18). Similarly for circular polariscopes (CP) the
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Figure 5.4: A comparison between ideal space charge free Kerr electro-optic data (solid
lines) and calculated data (symbols including dots) obtained by averaging over a gaus-
sian beam of 0.55 mm radius for infinite extent point/plane electrodes with 5 mm gap
and 0.5 mm point radius of curvature in transformer oil (B ~-- 3 x 10-15 m/V2) stressed
by 15 kV.
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angle between the polarizer and the input quarter wave plate and the angle between the

analyzer and the output quarter wave plate are set to be ±r/4 resulting in the simple

relations of (5.27) and (5.28). Note that the two polarizer angles can be arbitrarily set

in relation to each other. In this section we focus on the linear polariscope with crossed

polarizers and circular polariscope with aligned polarizers when the quarter wave plate

slow axes are also aligned and are at angle 7r/4 with respect to the polarizers transmis-

sion axes. For these cases the input/output intensity relations are respectively given

in (5.18) and (5.27) and repeated here for easy reference

= sin2 yc sin2 (2W - 20p) (LP) (5.54)

= sin 27c (CP) (5.55)
'0

Here Cp is the direction of the two dimensional electric field and Op is the position of the

polarizer transmission axis both with respect to some fixed direction. The parameter

- = 7rBE 2l is half of the optical phase shift in (1.12). Here we assume that the light
propagation direction is along the infinite axis of the two dimensional geometry.

In Figure 5.5 we present the calculated optical patterns for the circular polariscope

and two optical patterns for the crossed linear polariscope with polarizer angles at 7r/4

and 7r/2 with respect to the vertical axis of the blade electrode. The right most plots

expand the region near the blade tip where there are many fringes because of the high

electric field near the tip.

For the circular polariscope the fringe patterns are governed by (5.55) and are

independent of the direction of the electric field p. The condition for light minima

follows from (5.55) as

YC = 7rBE 2 1 n7r n = 0, 1, 2, -.. (5.56)

These field magnitude dependent lines are called isochromatic lines [3]. For each mini-

mum, n can be found by counting the number of previous minima between the positions

where the electric field goes to zero which, for this geometry, are at the lower right and

lower left corners.

For the linear polariscope, in addition to the same isochromatic lines as for the

circular polariscope there exist superposed field direction dependent minima known

as isoclinic lines whenever the applied electric field direction p is either parallel or

perpendicular to the light polarization Op. The condition for these minima follows
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from (5.54) as

n7r
0, = n = 2, -1, 0,1, 2,) .-- (5.57)

Note that in Figure 5.5, all three cases have the same isochromatic lines as given
by (5.56). While the circular polariscope has no isoclinic lines, the isoclinic lines in
Figure 5.5 (a) and (b) differ because of the different light polarization directions ,.

5.7.2 Axisymmetric Electric Fields

For axisymmetric electric field distributions, when the light propagation direction is
perpendicular to the axisymmetry axis the input/output intensity relations in (5.54)

and (5.55) are respectively replaced by

= sin2 -y sin 2 (2as - 20p) (5.58)
'0

= sin2 7s (5.59)
10

where as and y, are the characteristic parameters for a symmetric medium which are

described in Section 4.2.4. Equations (5.58) and (5.59) show that the same experimen-

tal setups used for measurements of the magnitude and the direction of two dimensional

electric fields can in principle be used for measurements of a, and -Ys. Furthermore,
it is natural to expect the existence of analogs of isoclinic and isochromatic lines of

Section 5.7.1.

In Figure 5.6 we show the calculated optical fringe patterns for the point/plane

electrode geometry of Figure C.1 which has a point plane gap of 2.5 mm. Similar to

Figure 5.5 there are light maxima and minima dependent only on -Y, for the circular

polariscope. For the linear polariscope a, dependent minima are introduced. There
are however visible differences. One immediate observation is that at light minima

of the circular polariscope the light intensity does not become completely extinct.
Furthermore, for the linear polariscope when O, = -r/4 the intensity pattern near the
tip is essentially unmodified and there are no real analogs of isoclinic lines except the
ones that extend from the lower right and left corners towards the needle. Even these
lines do not extend right to the needle.

To understand these differences for linear and circular polariscopes, in Figure 5.7
and Figure 5.8 we plot as and -y, along z = 2.1 mm, z = 2.2 mm, z = 2.3 mm, z = 2.4
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(a) Circular Polariscope

(b) Crossed Linear Polarizers (Op = 7r/4)

(c) Crossed Linear Polarizers (Op = 7r/2)

Figure 5.5: Calculated circular and linear polariscope light intensity patterns for a two
dimensional electric field distribution from a blade/plane electrode geometry with gap
of 2.5 mm, blade radius of curvature of 0.5 mm, and depth of 5 mm in nitrobenzene
(B ~ 3 x 10-12 m/V 2 ) stressed by 40 kV.
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mm, and z = 2.5 mm. The dotted lines on the y, plots correspond to -y, = 7r and

7, = 7r/2 and the dotted lines on the a, plots correspond to a, = n7r/4 where n is an
integer.

Figure 5.7 and Figure 5.8 show that there are striking differences between a. and

7, and their two dimensional counterparts W and -yc. The characteristic angle -y never

reaches n7r with the possible exception of the axisymmetry axis p = 0. Therefore,
the isochromatic light minima lines in Figure 5.6 can never have zero intensity except

at p = 0. Characteristic angle a. is not totally independent of 7, but is affected by
the minima and maxima of y. In fact near the maxima and minima of '-Y, a. sharply

increases with increasing p and the slope of this sharp change decreases at points further

away from the needle. For example, in the z = 2.1 mm plot the slope at around p = 0.5
mm is so large that the curve is essentially vertical within the scale chosen, while at

p = 2.2 mm the slope is less.

To explain these phenomena we go back to the governing differential equations for

a. and -y, derived in Section 4.4.2 and repeated here for convenience

dys (s) 27rBE2(S) cos[2W(s) - 2a,(s)] (5.60)
ds 

das (s) BE2(s) cot -y,(s) sin [2p(s) - 2a,(s)] (5.61)
dsTS

Recall that a. = as(sout) and -y. = -ys(sout) where sout is the exit point of the light

from the medium. Although Figure 5.7 shows the p dependence of 7, and a8, (5.60)

and (5.61) can still be used to qualitatively interpret the results by assuming that the

electric field distribution along the light path are approximately equal for close p and

the variations of a. and 7, with respect to p are due to the change in the path length

within the medium (change of sout). In fact any change in the electric field can also be

lumped into a change in sont for qualitative interpretation.

Near p = 10 mm sout ~ 0, and -y, is around 0 and a, = W = r/2 where the angles

are measured with respect to the symmetry axis z. The singularity in (5.61) can be

avoided using the L'Hopital rule yielding

da8 (s) 1 dW(s) (5.62)
ds SO 2 ds s=O

Thus as the electric field increases with decreasing p towards the point electrode, -y.
and a. also increase in accordance with (5.60), (5.61) and (5.62). There are no notable
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(a) Circular Polariscope

(b) Crossed Linear Polarizers (Op = 7r/4)

(c) Crossed Linear Polarizers (O, = 7r/2)

Figure 5.6: Calculated circular and linear polariscope light intensity
axisymmetric finite point/plane electrode geometry of Figure C.1.
nitrobenzene, the applied volage is 40 kV, tip-plane distance is 2.5
plane electrode radius of curvature is 0.5 mm.

patterns for the
The medium is
mm, and point
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characteristics until -y, crosses . At this juncture, which is around p = 3.8 mm, a,
reaches a maximum as predicted by the sign change of cot y, in (5.61). The picture

gets complicated when -y, nears 7r. Then cot 7, nears infinity and the rate of change in

a, increases as predicted by (5.61). The value of a, falls sharply to change the sign of

cos[2p(s) - 2a,(s)] in (5.60). When this happens, y, reaches a maximum and begins

to decrease. This also decreases the rate of change in a, until 7, nears 0. The cycle of

occurrence of minima and maxima of -ys and sharp decrease in a, repeats until p = 0.

p (mm)

Figure 5.7:
mm.

2 4 6 8 10 ~0 2 4 6 8 10
p (mm) p (mm)

The characteristic parameters a, and -y, along z = 2.1 mm and z = 2.2
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Figure 5.8: The characteristic parameters as and 'ys along z =2.3 mm, z =2.4 mm,
and z = 2.5 mm.
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Part II

The Inverse Problem
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Chapter 6

The Onion Peeling Method

6.1 Introduction

The most straight-forward discretization of axisymmetric geometries is to use planar

layers perpendicular to the axisymmetry axis and further discretizing the planes with

annular rings as shown in Figure 6.1 for a point/plane electrode geometry. An approx-

imate electric field distribution with unknown parameters can then be constructed in

terms of this discretization. The inverse problem of reconstructing the applied elec-

tric field from Kerr electro-optic measurements then reduces to determination of these

unknown parameters.

Postulating an electric field distribution with stepwise constant radial and axial

components in each ring is the most obvious choice for approximation. This introduces

two unknowns for each ring. Assuming the electric field vanishes outside the discretiza-

tion region, if we assign a Kerr electro-optic measurement for each ring from which we

can determine two characteristic parameters, we can obtain a mathematically square

system where the number of independent equations equal the number of unknowns.

The original onion peeling algorithm proposed by Aben [50] solves this square sytem

to obtain the unknown electric field components. The algorithm is so called because it

recovers the electric field layer by layer from outside to inside. This chapter describes

and improves the method, and applies it to a point/plane electrode geometry.
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Figure 6.1: Discretization of space with planar layers and annular rings for axisym-
metric geometries shown on a point/plane electrode geometry.

6.2 Spatial Discretization

6.2.1 A Two Layer Artificial Kerr Medium

For the sake of simplicity we describe the onion peeling algorithm on the two layer

artificial Kerr medium shown in Figure 6.2. Generalization to arbitrary axisymmet-

ric geometries is straight-forward and presented in section 6.2.2. Our concise matrix

approach is a simpler description of the algorithm than Aben's [50].

In Figure 6.2, outside the two rings the electric field vanishes. Within each ring the

electric field magnitude E and the angle between the z-axis and the electric field @ are

assumed to be constant. Magnitude E and angle @ completely specify the axisymmetric

electric field components E, and E,

E = Ecoso (6.1)

E, = Esin # (6.2)

The transverse component of the electric field is in the zp-plane so only Ez and E,
effect Kerr electro-optic measurements. The z-component E2 is expressed in terms of
E and @ in (6.1). The angle 6 in Figure 6.2 is defined so that E, can be expressed in
terms of E and 4 as

Ep = E, cos 0 = E sin 0 cos 0 (6.3)
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Figure 6.2: The discretized two ring artificial cylindrical geometry used for illustration
of the onion peeling method. In both rings the magnitude of the electric field E1 and
E2 and angles #1 and 02 are taken to be constant. In the outer region the electric field
vanishes.

It follows from (6.1) and (6.3) that

tan p - = tan 0 cos 0 (6.4)
Ez

where W is the direction of the transverse electric field in the zp-plane as shown in

Figure 6.2.

The magnitude and angle of the electric field in ring 1 and ring 2 are denoted by

Ei, $1, E2 and 42 respectively with 1 and 2 referring to the inner and outer layers

respectively. These unknowns are to be found from the experimental data of ai, -Y1,
a 2 and y2, the characteristic parameters obtained from the two light rays shown in

Figure 6.2. The light rays are s directed and parallel to the zs-plane with light ray 2

passing through the midpoint of the outer layer (022) and light ray 1 passing through

both layers and the midpoint of the inner layer (oil).

The method recovers the electric field magnitude and angle from the characteristic

parameters by comparing the experimental matricants to the approximate matricants

that are obtained in terms of the constant electric field magnitude and angle within
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each of the ring layers. For the two light rays in Figure 6.2 the experimental matricants
are

Pei = S(-ai)G(y1)S(ai) (6.5)

-e2 = S(-a 2)G(7 2 )S(a 2) (6.6)

respectively.

The magnitude and the angle of the approximate transverse electric field distribu-
tions along the second ray are respectively denoted by ET2 (s) and W2 (s) to differentiate
it from those along the first ray ET, (s) and W, (s). To determine the approximate matri-
cant for the second ray first notice that although E2 and ' 2 are assumed to be constant

along the path within ring 2, ET2 (s) and W2(s) are still functions of s. To avoid steps
that would require numerical integration in the algorithm we further approximate the
electric field distribution so that ET2 (s) and p2 (s) are constant on the path within a
ring and approximately equal to their values at the middle point (022). Then between
points a22 and d22 shown in Figure 6.2

ET2 (s)1-522<s~822 EFT2 (22) ET2 2  (6.7)

~ (22) = 22 (6.8)

where s22 is the s-coordinate of the point a22 and we use the double subscripts in ET2 2

and W22 to indicate the ray and the ring numbers respectively.

Now that ET2 (s) and W2(s) are approximated to be constants the approximate

matricant for the second ray follows from (3.83)

n2 c 22= S(-W 22)Gxyc22)S(W22) (6.9)

where Qc, is the matricant between the points a22 and d22 defined in Fig. 6.2 to be the

exit and entrance points of the light into the non-zero field region with light path length

122 = 2s 22 and 'YC22 = 7rBE 22 122 is the corresponding characteristic phase retardation.

The zero-field region does not effect the approximate matricant.

On the point 022 the axisymmetry of the field requires that E, is zero hence

ET22  E2  (6.10)

W22 =02 (6.11)
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consequently (6.9) reduces to

Qa2 = S(- 2G(rBE2

Comparing f22 to Ge2 in (6.6) yields E2 and b2 in terms of a 2 and Y2

E2 = 2
7B122

02 = a2

(6.13)

(6.14)

With E 2 and 0 2 recovered the next step is to recover Ei and 41 using E2 , 0 2, ai

and -y1. Notice that there are three regions through which the first ray passes. To

obtain the approximate matricant for the first ray, ET (s) and W (s) are approximated

by their values at the respective middle points of the paths inside the regions (512, Oil

and 012). Then between the points a11 and iin

ET1 (s) 1 ET, (01)
-8i1s) _ 1 1(oil) = ETu

(6.15)

(6.16)

where su1 is the s-coordinate of the point a11 .

has E, zero on oil hence

ET11 Ei

uPii =1

Again, the condition of axisymmetry

(6.17)

(6.18)

Thus

(6.19)

(6.20)

fOca = S(- ou)G(-ycl)S( ou) = S(- ol)G(irBA-1il)S(lu)

= S(-@i)G(7rBE2l 11 )S($1)

Again with the midpoint approximation, between the points a11 and a 12

ET 1 (s) 111<S<s1 2 ~ ET(012 ) ET1 2  
(6.21)

r () a 8 ar rsp1 t<h so rd1iat(012) o12 (6.22)

where sul and S12 are respectively the s-coordinates of the points a11 and a12 . With
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012 defined in Figure 6.2, ET1 2 and (P12 can be found in terms of E2 and 02 using (6.1)
and (6.3)

E j=E, 1 ( 2 ) E2(012 ) + E2(o12 ) (6.23)

= E2(cos2 02 + sin24 2cos20 12 ) (6.24)

tan _12 Ep(0 12) _ E 2 sin 42 cos 012 (6.25)
E2(0 12 ) E 2 cos 0 2

- tan 42 COS 012 (6.26)

Note that (6.26) is just a restatement of (6.4) for a particular 0. The matricant between
all and a12 can be written in terms of ET12 and 012

2c2 = S(-p 1 2 )G(7c12 )S(p12) = S(-1 2)G(7rBET1 l2 )S(W 1 2 ) (6.27)

The approximate matricant Qc1 between -di, and d12 can be written in terms of

c12 using the properties of symmetric media in (3.67)

Oc = = fe (6.28)

where the second equality follows from (3.86) which states that fc12 is symmetric.

Using (6.28) the approximate matricant for the first ray follows as

Qa1 = n~cl IA1 = O c c1c (6.29)

or explicitly in terms of rotator and retarder matrices

fai = S(-1 2)G(7c12)S('P12)S(-@i)G(7rBEl 1 )S(@i)S(- 1 2 )G yc1 )S( 1 2 ) (6.30)

Comparing fAai and f21 in (6.5) results in

S(-@i)G(7rBEl1u)S(@i) = S(-(P12)G(--ye12 )S((P1 2)S(-ai)G(-y1 )S(ai)

S(-w12)G(-Yc)W)S(u)12) (6.31)

where we used (3.87). We define Arhs, to be the result of the matrix multiplication on
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the right hand side of (6.31). Then

Arhs =[Prhs - iqrhs

-- itrhs

-trhs

Prhs + iqrhs

where Prhs, qrhs, and trhs are found by explicit multiplications

Prhs = cos y cos 27c12 - sin y1 sin Yc1 2 cos 2(al - W12)

grhs [cos y1 sin 27Yc12 + sin y1 cos cos 2(a1 - W12 )I cos 2 W12

- sin 'y1 sin 2(a, - p12) sin 2W12

trhs = [cos y sin 2 7C12 ± sin 71 cos 2 Yc12 cos 2(ai - P12)] sin 2W12

+ sin 7y1 sin 2(ai - 012) cos 2W12

The left hand side of (6.31) which we denote by Aih can also be found

multiplications

by explicit

Alhs= [ cos ycii - i sin ycI cos 2@

-i sin -ye1 sin 2@b

-i sin yc,, sin 2)

cos YCe - i sin -yc, cos 2 bJ

where -yc11 = 7rBE2l1 1 . Comparing (6.34) to (6.32) yields E1 and b1

Ei,=arccos Prhs (6.35)F1 = 7rB1 11  (.5

1 = arctan(trhs/qrhs) (6.36)

This concludes the recovery of Ei, E2 , 0 1 , 02 from ai, 'Y1, a 2 and y2.

6.2.2 For Arbitrary Axisymmetric Kerr Media

The method is easily generalized to arbitrary axisymmetric electric field distributions.

The distribution is first discretized into slices parallel to the ps-plane at constant values

of z and each slice is radially discretized into the n rings shown in Figure 6.3. There are

2n unknowns (Ei, #/, i = 1, 2,- - - n) and 2n measured values (al, -y, i = 1, 2,... n) for

each slice. Like the two layer example geometry the method begins with the outermost

layer. In the i'th step E and @ of all the (i + 1 to n) outer layers are known and Ej
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(a) n-Layer Discretization

p

(b) ps Coordinates of Important Points

Figure 6.3: The discretization of a general axisymmetric electric field distribution for
the onion peeling method.

and Oj are found from

X eCl3J (6.37)

(6.38)
i+1

-j=n

where ]j denotes product and Oc is symmetric and unitary. Equation (6.38) explicitly
is

S(-Wi(i+1))G(-ci(i+l))S(Pi(i+1))S(-Wi(i+2))G(-yc( 2))S(Wi(i+2))

S(-Win)G(--yes,)S(<pin)S(-azi)G(-yi)S(ai)S (-Win) G(--Yci.)S (Win)
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S (- Oi(n-1)) G(-c eS~p~-) (W~+)G-c SW~+) (6.39)

Here Oc follows from (3.87) as

Q-c = *,= S-ij)G(--rBEj li)S ( Pj) (6.40)

where

ET = E (cos2 9k + sin 2@ycos2Osg) (6.41)

pig = arctan(tan @j cos %ij) (6.42)

and Oij and lij are shown in Figure 6.3 and can be expressed in terms of the coordinates

as

s 1 - Si(j-1) ' < (6.43)
2sii i=j

cos Oij = (6.44)

p + [0.5(sij + s(j-i))]

We can express pi and sij in terms of the discretization layer thickness Ar

p = (i - 0.5)Ar (6.45)

si ( j2 - (i - 0.5)2) Ar (6.46)

Notice that the layer thickness Ar is equal to the distance between consecutive mea-

surements Ap = pi+1 - pi-

We note that the onion peeling method can recover the direction of the electric

field up to a multiple of 7r. Thus the sign of the components of the electric field can

not be determined from the algorithm alone. This is the direct result of the quadratic

dependence of the Kerr effect on the applied electric field magnitude. This however is

not a serious problem since the sign of the electric field components is often determined

by the physics of the problem.
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6.3 Application Of The Algorithm

In this section we apply the onion peeling algorithm to synthetic data for the finite
point/plane electrode geometry described in Appendix C when the medium is nitroben-

zene. The space charge distribution chosen is described in Figure C.4 with o = 0.12
C/m 3 . Measurement sampling rate Ap and discretization layer thickness Ar are chosen
to be 0.0001 mm.

Figure 6.4 shows the data at three values of z = 1 mm, z = 2 mm and z = 2.5
mm. Plots show the general characteristics of -, and a. discussed in Section 5.7.2. In
particular a. decreases rapidly near the maxima and minima of 'Ys.

Figure 6.5 compares the reconstructed electric field distributions at z = 1 mm,
z = 2 mm and z = 2.5 mm using the onion peeling method from data shown in
Figure 6.4 to theoretical finite element method calculated field distributions. We only
show the region between r = 0 mm and r = 4 mm. In the region between r = 4 mm
and r = 10 mm the algorithm reconstructs the electric field almost perfectly for all

three z values. Between r = 0 mm and r = 4 mm at z = 1 mm there is practically no
difference between the numerical electric field and reconstructed electric field. At z = 2
mm there are slight differences although the overall match is good while at z = 2.5 the

reconstructed electric field, especially the r component, is in serious disagreement with

the numerical electric field. A close look at Figure 6.4 and Figure 6.5 reveals that the

point that the disagreements begin corresponds to the steep decrease in a, at around

p = 1 mm.

4 3.5

.... ........ 2 .5 -

C C2
CU

1.5

... .. ....... z = 1, 2,2.5 mm
1 Ap = 0.1 mm 0.5 -

0 2 4 6 8 10 0 2 4 6 8 10
p (mm) p (mm)

Figure 6.4: Calculated characteristic parameter data for the system described in Ap-
pendix C.
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5- z = 1, 2,2.5 mm

-2-

Ar = 0.1 mm -2.5-

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4
r (mm) r (mm)

Figure 6.5: Reconstructed electric field components from the characteristic parameter
data in Figure 6.4 (dotted lines) compared to theoretical space charge free electric fields
calculated from the finite element method (solid lines).

In Figure 6.6 we show reconstructions at z = 2.5 mm for different sampling rates.

When the sampling rate is increased the reconstructed electric field progressively ap-

proaches the theoretical electric field. We conclude that for highly birefringent media

the onion peeling method performs well when the data sampling rate is high enough

to characterize the steep decreases in a, that occur around the maxima and minima

of -ys. When the electric field magnitude distribution is small enough or the medium

is weakly birefringent so that the steep decreases in as do not exist, the onion peeling

method almost perfectly recovers the electric field for perfect artificial data.

Note that a 1 pLm sampling rate is not realistic since it is too close to the wavelength

of typical laser light used in Kerr electro-optic measurements (A ~ 600 nm). However

also notice that the point r = 0 and z = 2.5 mm is the point where the electric field

changes most rapidly and has the highest magnitude. For planes below or above this

extreme case the onion peeling method will work with much higher sampling rates as

exemplified for the z = 2 and z = 1 mm planes in Figure 6.5.

6.4 Reformulation For Weak Kerr Media

6.4.1 Description

The onion peeling method can be reformulated for weak Kerr media for which (4.68)

is valid. In this formulation the assumption that for a particular ray the transverse
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Figure 6.6: Reconstructed electric field components for different spatial sampling rates
at z = 2.5 mm. For a 1 pm sampling rate the onion peeling algorithm almost perfectly
recovers the theoretical electric field.

component of the electric field is constant within each layer is unnecessary. Also the

matrix multiplications are avoided.

We begin by expressing (4.68) in index form for each measurement in Figure 6.3.

7i cos 2ai = -rB E (s) - E2(s) ds (6.47a)

-y sin 2ai = 7rB 2Ez(s)E,(s) ds (6.47b)

where Li denotes the path of the ith light ray. We define sij to be the s coordinate of

the point where the ith ray emerges from the jth layer in the positive s-axis as shown

in Figure 6.3. The exact right hand side of (6.47) is then approximated in terms of the

discretization as

i+1

-yj cos 2ai ~ 7trB [E2 - E , cos 2 0(S) ds
j=N --5ij ' i

+7B E 2 - E 2 cos 2 6(s) ds (6.48a)

N J
+ 7rB E -E E 2cos2 0 (S) ds

j=i+1 Si(j-1) rI
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i+1 _S, __

yi sin 2ai - 7rB E
j=N -

2E Erj cos 0(s) ds

+ 7rB 2E,, E, cos 0(s) ds

N 

..j+ irB Ef
j=i+1 Sioj-1)

2E, Er, cos 0(s) ds

In (6.48) E, and E are constants and the integrals involving cos 0(s) = p/Vp 2 + s2

(see Figure 6.2) can be evaluated analytically

2 ( 2 ds SICos2 0(s) ds -1P2 + S2 = parctan-P (6.49a)

Jcos 0(s) ds J p ds

jp2 -+S
2

pij Aarctan A

2pi arctan S"

p
2p, ln

2p2 2 +Vij ii

2pi In i

= p n [p2 +s2 + s]

- arctan Si(j-1)
+i

+ + sij

I
i<j

i<j

i< jWig 2 2pi 2n

Usi g ( .50p a + S( -w

Using (6.50) and (6.43), (6.48) is compactly written as

-y cos 2ai ~ irB {liEz,

N

- Uzi Er+2 E
j=i+1

( N

Ssin 2a 2 -. rB jVii E, Er, ± j [Vii +
3- +1

Equation (6.51) can now be used to reformulate the onion peeling method for weak
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(6.50c)
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(6.51a)

(6.51b)



Kerr media. As in the previous section the method begins with the outermost ring and
reconstructs each of the inner rings recursively. At the ith step all the discrete electric
field values outside the ith ring are known and (6.51) yields

i Ei - NU Er Ai (6.52a)

Vi Ez, Er, =3 (6.52b)

where

7i~ cos 2cxi N 2 ~ .2l
A = 7B s 2a -2 ljEj - UijjErj (6.53)

j=i+1
N

yj sin 2aj -
B = zrB 1 [Vi + Wij] E2, Erj (6.54)

j=i+1

Assuming E, is non-zero, (6.52) can be solved to yield

li-VE E - Av 2 E. - Uj3i2 = 0 (6.55)

The positive solution of the quadratic algebraic equation in (6.55) yields E . Thus

A V,2+ VAV,,4 + AljjI22 L3i2 2
)1Ezi=± (AZ±Aj~nn~ 2  (6.56)

2ig

The sign uncertainity in (6.56)is resolved by physical considerations. Once E2, is found

Er, can be found from (6.52).

6.4.2 Application Of The Algorithm

Other numerical experiments similar to those in Section 6.3 using the finite point/plane

geometry of Appendix C with the weakly birefringent transformer oil as the dielectric

show that the algorithm described almost perfectly recovers the electric field from

perfect data without significant differences between the theory and reconstructions

from perfect data due to finite spatial sampling rate. Figure 6.10 in Section 6.6 shows
some representative reconstructions from perfect data in Figure 6.9. The impact of
noise is also illustrated in these figures and discussed in Section 6.6.
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6.5 Missing Outer Ring Data

The case study geometry of the previous two sections, which was the finite point/plane

electrode geometry of Appendix C, differs from typical Kerr electro-optic experimental

set-ups by being confined to a region 10 mm in radius. We use this geometry to keep

the numerical analysis simple. In current experiments this radius is typically an order

of magnitude higher. However, as discussed in Appendix C the 10 mm radial extent

case study geometry adequately represents the electric field distributions of large radial

extent point/plane geometries as the 10 mm radial extent is large enough so that the

right-hand ground wall does not appreciably effect the electric field near the needle

and the space charge near the needle does not appreciably effect the electric field

near the wall. For the experimental setup used at MIT at the time of this work, the

test chamber illustrated in Figure 1.1 acted as the surrounding electrode with 25 cm

radius. If the full data set in the whole 25 cm region was available, the characteristics

of the onion peeling method reconstructed electric fields would remain the same with

the case studies of the previous two sections. However measurements could only be

taken in the region up to r = 12 mm due to the small window size which is the most

interesting region near the point electrode tip. For such data sets, performance of the

direct application of the onion peeling method is degraded due to the assumption that

outside the solution region the electric field vanishes.

To illustrate these effects we use an infinite extent point/plane electrode geometry

(see Appendix A) with tip plane distance of 5 mm, needle radius of curvature of 0.55

mm and an applied voltage of 20 kV. General characteristics of the measurements at

constant values of z are illustrated in Figure 6.7 for different values of z. It is clear

from the plots that the electric field magnitude is not negligible outside the data range

of 12 mm as -y, and a, have significant values near p = 12 mm.

To show the effects of the assumption that the electric field vanishes outside the

reconstruction region of the onion peeling method we use the measurements at z = 3

mm with a sampling rate of /p = 0.5 mm. The direct application of the weak medium

onion peeling algorithm results in plus markers in Figure 6.8 which also provides the

plots for the analytical solution of the electric field components. The other two markers

are the results of improved algorithms discussed in Section 6.5.1 and Section 6.5.2.

The results show that the impact of the assumption that the electric field vanishes

outside r = 12 mm is important. Although the difference between the analytical and

reconstructed electric field components progressively come closer towards r = 0 mm

157



5-0. 15
C

-0.2

-0.25

-0.3-

-0.35-

0 2 4 6 8 10 12 '0 2 4 6 8 10 12
p (mm) p (mm)

Figure 6.7: Artificial Kerr electro-optic measurements for infinite point/plane elec-
trodes with tip-plane distance of 5 mm and point radius of curvature of 0.55 mm. The
medium is transformer oil with applied voltage of 20 kV.

there still remains a noticable difference between z components. The figure also shows

that the reconstructed electric field is not reliable for r ; 6 mm.

One immediate solution to the problem is to use space charge free solutions that are

available analytically and numerically. For point/plane geometries the space charge is

typically confined around the needle tip axis. As illustrated in Appendix C the solutions

converge to those of the space charge free case for large r. If the region for which no

measurement is available is distant enough one can use the space charge free solutions

to obtain artificial measurements. The onion peeling method can then be directly

applied to the full data set which now consists of actual data in the measurement zone

and artificial data outside the measurement zone.

Use of space charge free solutions requires software for numerically finding the elec-

tric field distribution for the geometry and using it for numerical integrations necessary

to find matricants. Automation of such a procedure is difficult with commercial soft-

ware and for that reason we developed our custom software for this work. Still, methods

that decrease the impact of the end effects without using space charge free solutions

might be helpful if the modelling of the geometry under investigation proves difficult

or if the space charge effects outside the measurement zone are not negligible. In the

next two sections we propose two ways to decrease these end ring effects.
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Figure 6.8: Onion peeling method for various reconstruction methods of electric field
components from z = 3 mm data in Figure 6.7. The analytical electric field components
are also shown for comparison purposes.

6.5.1 Larger Outer Ring

It is clear from direct application of the onion peeling method in Figure 6.8 that the

electric field magnitude on the outer ring is much larger than the analytical. This is

the direct result of the assumption that the electric field vanishes outside. In effect

with this assumption the electric field distribution of the outside region is modelled by

a single thin ring.

To improve the modelling of the outside region one immediate method is to use an

outer layer with thickness larger than the discretization thickness. With such a layer

the onion peeling algorithm remains the same except (6.46) is replaced by

sq = ( 5)2) A (6.57)
(2-(i - 0.5) r

where ( is the normalized radius of the outer ring which is much larger than the

discretization elements n.

It is clear that a larger outer ring decreases the magnitude of the reconstructed

electric field at the outmost layer. The thickness of the layer however is still arbitrary

and to be determined by some criterion. In this work we increase the thickness until the

electric field magnitude monotonically decreases for the last three layers. The results

of the algorithm with these modifications are shown in Figure 6.8 with square markers.
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The improvements in the reconstruction results are remarkable.

6.5.2 Far Field Approximations

In the previous section we used a larger outer ring with constant electric field compo-
nents. In this section we propose an infinite outermost ring with a simple postulated
electric field distribution for large r. The geometry dictates the kind of postulates to
be made. In Appendix D we provide a few simple charge singularities which can be
used to model the large r electric field distributions.

For the infinite point/plane electrode case study of this section, we use the electric

field distribution of a semi-infinite line charge above a ground plane which is described
in Section D.3. In the large r limit of the distributions of (D.6), there are two parame-
ters to be matched; the line charge density and z position. We find these parameters by
comparing the characteristic parameters of the outer measurement to those resulting
from (D.12). Thus the last ring determines the unknown parameters in the postulated

electric field and for the inner rings the postulated electric field distribution serves to

find the effects of the outer region in which previously the electric field distribution is

assumed to vanish.

The results of the algorithm with these modifications are shown in Figure 6.8 with

dot markers. Again there are significant improvements over the direct application of

the onion peeling algorithm.

6.6 Impact Of Error

In this section we evaluate the performance of the onion peeling algorithm for imperfect

measurements in transformer oil. The case geometry is identical to that of Section 6.3
except the medium is transformer oil instead of nitrobenzene. We use measurements

at z = 2.

The errors introduced to -}, and a, are respectively denoted by A-y, and Aa, and

are given by the following formulas

AYs = 0.1 x [random() - 0.5] x yo (6.58a)

Aa, = 0.1 x [random( - 0.5] x a, (6.58b)

where random( denotes a random function generator which generates random numbers
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between 0 and 1. In this work we use standard C/C++ routine rand( which, for a

given seed, generates deterministic number sequences which emulate random numbers.

Figure 6.9 (left) shows the characteristic parameters o and -, with and without the

error described in (6.58). Figure 6.10 shows the reconstructed electric field components

both from perfect data and from error introduced data. The electric field components

reconstructed from perfect data match almost perfectly with the numerical electric field

components available from the finite element method. The match in the presence of

noise however is not very good. The results show that the five percent error introduced

according to (6.58) results in errors as large as twenty percent near r = 0.

p (mm)

106 8 10 0 2 4
p (mm) p (mm)

Figure 6.9: Kerr electro-optic synthetic data for the finite point/plane electrode ge-
ometry of Appendix C in transformer oil for perfect and error introduced data (left)
and smoothed error introduced data (right). For 7Y, data smoothing is done by using a
perfect discrete low pass filter and for a, data smoothing is done by using interpolating
functions (exponential and fourth order polynomial).
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To decrease the impact of the error we smooth the data as shown in Figure 6.9
(right). Smoothing can be done by various techniques. In Figure 6.9 we smooth

7, data by using a perfect discrete low pass filter and we smooth as data by using
interpolating functions. The functions employed are an exponential for the first nine
data points and fourth order polynomials for the rest. The results of reconstruction
using the smoothed data are shown in Figure 6.10 (right). The results are remarkably
better and illustrate that the onion peeling methods can be reliably used to reconstruct
the electric field in the presence of noise if sophisticated smoothing techniques are used.
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r (mm)

U

-2

-4

-6

-8

-12

-14
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x10
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Figure 6.10: The effects of noise on the onion peeling method reconstructed electric
field for reconstructed error introduced data (left) and reconstructed smoothed data
(right).
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Chapter 7

Algebraic Reconstruction

Techniques For Kerr Electro-Optic

Measurements

7.1 Introduction

Algebraic reconstruction techniques (ART hereafter) [51] have been used for scalar

tomography for over two decades. The basic idea of ART is to discretize the plane, guess

an initial solution for the quantity to be reconstructed in term of the discretization,
and iteratively improve the solution by minimizing the difference between the predicted

measurements based on the current solution and the actual measurements.

For most applications that utilize scalar tomography the performance of ART algo-

rithms is typically worse than those that depend on transform methods (see Chapter 9).

Yet, there is still continued interest in ART because of the poor performance of the

transform methods for highly under-determined systems while ART is applicable to

essentially any problem with ease of incorporation of a priori information. In this

chapter we review the literature that apply ART to Kerr electro-optic measurements.

7.2 ART for Constant Direction Kerr Media

ART algorithms were applied to Kerr electro-optic measurements first by Hertz [52

and later by Ihori et al. [53] for cases when the applied electric field direction was

constant along the light path. They respectively used a nonuniform prism/plane elec-
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trodes and sphere/plane electrodes and reconstructed the electric field magnitude on
the ground plane. For these cases the electric field is completely specified by its mag-
nitude. The inverse problem is then equivalent to that of scalar tomography where
a function is reconstructed from its line integrals which are available experimentally.

For Kerr electro-optic measurements the square of the magnitude of the applied elec-
tric field E 2 (x, y) and the characteristic phase retardation Y respectively constitute the
function and the line integrals. Assuming a set of measurements on the plane for which
k serves as the index variable we have

7k = 7rB E 2 [x(s), y(s)] ds (7.1)

where Lk identifies the path of the kth ray from which the measurement is taken. Here

we assume that the electric field is perpendicular to the propagation direction of the

light ray.

In this section we present well known ART algorithms of scalar tomography that

can reconstruct E2 (x, y) from -yb. To simplify the expressions we define

f(x, y) = rBE 2 (x, y) (7.2)

so that (7.1) reduces to

k f [x(s), y(s)] ds (7.3)

7.2.1 General Setup

The first step for ART is to postulate an approximate electric field distribution by a

linear combination of predetermined basis functions bs(x, y)

N

f(x, Iy) ~-.11 fn bn(X, Y) (7.4)
n=1

Here f, are the unknown constants to be determined during the reconstruction and N

is the number of basis functions.

The basis functions are typically specified in terms of a discretization of the plane.

The most common discretization uses uniform squares as shown in Figure 7.1. The most

common basis functions based on this discretization are known as the pixel functions
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y

I I I I I I-

Figure 7.1: Discretization of plane with
uniform squares which is the most com-
mon discretization for ART algorithms.

Figure 7.2: An example measurement
set for ART algorithms. Typically ac-
tual reconstructions use more views.

and are defined as

b,(x, y)
0

(x,y) E Cn

(x, y) 0 Cn

(7.5)

where Cn denotes the nth individual square discretization element. The electric field is

assumed to vanish outside the discretized region.

In Figure 7.2 we show a typical set of rays from which the measurements are taken.

Sets of rays in the same direction are called views. Figure 7.2 shows four views each

consisting of seven lines. In a real application more views are often used.

ART algorithms are iterative methods. The solution process begins with an initial

guess and updates the solution until some type of convergence (or divergence) criterion

is satisfied. Each iteration itself consists of iterative steps over measurements. To

identify these updates we let fn be a function of two indices fn(i, k) where i denotes

the iteration and k serves as an index over the measurements.

In the absence of any a priori information the initial guess that the iterations

begin with is typically a constant function whose value is an average based on the

measurements. For Kerr electro-optic measurements the most straight forward average
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value is

IK
fn(1, 1) = _ (7.6)

k'=1

Here K is the number of measurements and 1k is the length of the path of the kth ray
inside the non-zero field region.

At each sequential step over the measurements, the measurement is predicted by
the underlying forward theory based on the current solution fn(i, k). We denote this
prediction by 7,. It follows from (7.3) and (7.4) that

N

-ya (i, k) = fn (i, k)dn(k) (7.7)
n=1

where

dn (k) = bn [X (s), y (s) ] ds (7.8)

If bn(x, y) are the pixel functions, (7.5) and (7.8) yield

dn(k) = Ink Cn n Lk # 0  (7.9)
0 Cnn Lk = 0

where Ink is the path length of the kth ray inside the Cn. Most dn(k) are zero since each

ray intersects only a few Cn. For ones that intersect, Ink can be found from geometry.

Each step over the measurements updates the values of fn(i, k) by minimizing the

difference between the predicted measurements ya(i, k) and the actual measurements

yk. The two original algorithms, which are respectively known as the additive and

multiplicative ART (AART and MART here after), differ in this minimization process.
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7.2.2 AART - Additive ART

In AART the difference between the predicted measurement and the actual measure-

ment is added to fn(i, k) by a weight factor

fn(i, k + 1) = fn(i, k) + d(k) 2 k - Ya(i, k)] (7.10)[N 1 dn (k)J

Notice that if Cn n Lk = 0 then dn(k) = 0 and thus if Cn does not intersect with the

path of the kth ray then fn is not updated in the kth step. Notice from (7.7) that

prediction based on fn(i, k + 1) is equal to -yk minimizing the difference between the

prediction and measurements.

Once k ranges over every measurement the resulting fn(i, K + 1) constitutes the

initial solution of the next iteration

fn(i + 1, 1) = fn(i, K + 1) (7.11)

Iterations continue until a convergence criterion is satisfied.

7.2.3 MART - Multiplicative ART

In MART each update step in (7.10) is replaced by

fn(i, k + 1) fn(i, k)-(' /IN(i, k) Cn Lk 0 (7.12)
0 Cn n Lk =0

where each fn(i, k) that effects the kth measurement is scaled.

7.2.4 Applications

In Figure 7.3 we show the AART and MART reconstructed electric field magnitude on

the ground plane of sphere/plane electrodes described in Appendix B from computa-

tional Kerr electro-optic measurements after 10 iterations. The geometry parameters

are similar to those used by Ihori et al. [53].

The discrete appearance of the reconstructed electric field magnitude is typical of

ART algorithms and in principle can be avoided by smoothing the reconstructed electric

field. Here we did not employ any convergence criterion. If computational time is not
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Figure 7.3: ART reconstruction from synthetic data of the electric field magnitude
distribution in nitrobenzene on the ground plane of a sphere/plane electrode geometry
with sphere to plane distance D = 16.5 mm, sphere radius R = 10 mm and V = 4
kV. The synthetic data are from six views like those in Figure 7.2 but 30* apart, each
consisting of 41 lines.
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at a premium a large number of iterations can be performed and the iteration that

minimizes the forward prediction and the actual measurements can be chosen. Note

that a larger number of iterations does not necessarily mean better solutions as the

reconstructed electric fields tend to diverge if too many iterations are used.

7.3 ART for General Kerr Media

A series of papers by Arii et al. extended the Kerr electro-optic measurement technique

to arbitrary nonuniform electric field distributions using ART [54-56]. Their final algo-

rithm was used for reconstruction of the electric field distribution between sphere/plane

and sphere/sphere electrodes on planes other than where the electric field direction is

constant [57]. Their research has been continuing parallel to this work.

In the algorithm, similar to the scalar ART, the electric field is approximated by a

linear combination of pixel functions bs(x, y)

N

E(x, y) ~ Ebn(x, y) (7.13)
n=1

The predicted measurements based on this approximation can be computed by forward

Kerr electro-optic theory. Ihori et al. use a layered approach which adds up to the

discretization of (4.68) and is limited to weak Kerr media. Substituting (7.13) in (4.68)

yield

N

Ya(i, k) cos 2aa(i, k) = 7B E [Em (i, k) - E 2(i, k) dn(k) (7.14)
n=1-

'Ya(i, k) sin 2aa(i, k) = TB 1 [2Emn (i, k)En (i, k)] dn(k) (7.15)

These predicted measurements are to be compared to the actual measurements.

Ihori at al. propose that the magnitude of the electric field is to be updated similar

to the MART step in (7.12) using the ratio of -Yk to 'Ya(i, k)

En(n, k + 1/2) = (i, k)E0 (7.16a)
En(i, k) Cn n Lk 0
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where we use 1/2 to indicate that this is an intermediate step. Once the magnitude is
updated using (7.16a) the angle of the transverse electric field components are updated
using

Em(i, k + 1) = Cos E C n Lk #0 (7.16b)
Em,(i, k + 1/2) C n Lk= 0

En(i, k + 1) = sin E E (i, k + 1/2) + Ej,(i, k + 1/2) Cn n Lk:# 0 (7.16c)

E,,(i k + 1/2) Cn n Lk 0

where

k = arctan + a - a(i, k)] (7.17)
Emn(i, k + 1/ 2 )

An implementation of the method for the mid plane of sphere/plane electrodes of
Appendix B for which the electric field direction is not constant is shown in Figure

7.4. This reconstruction used Ihori et al.'s geometric parameters and computational

measurements.

For axisymmetric Kerr media ART has no apparent advantage over the onion peel-

ing method. For arbitrary weak Kerr media we believe that the finite element based

algorithm we developed in Chapter 8 is superior and more applicable. The only area

that ART seem to be useful is arbitrary three dimensional Kerr media which are highly
birefringent. Then the algorithm described in this chapter is not directly applicable

because there are three characteristic parameters. The modification of (7.16) is neces-

sary and this is not trivial and involves guesswork as much as anything else. Thus we

do not further investigate improvements on ART algorithms.
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Figure 7.4: ART reconstruction from synthetic data of the electric field components
in nitrobenzene in the mid-plane of a sphere/plane electrode geometry with sphere to
plane distance D = 13.5 mm, sphere radius R = 3.5 mm and V = 10 kV. The synthetic

data are from six views 30* apart each consisting of 21 lines.
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Chapter 8

Finite Element Based Kerr

Electro-Optic Reconstruction

Algorithm (FEBKER)

8.1 Introduction

In this chapter we introduce a new algorithm which is built on the finite element

method for Poisson's equation and named the finite element based Kerr electro-optic

reconstruction algorithm (FEBKER hereafter). The algorithm uses the basics of the

finite element method (FEM) to relate the potential and space charge density distri-

butions of an electrode system in a matrix equation. A second matrix equation is

obtained by expressing the Kerr electro-optic measurements in terms of the potential

distribution. The resulting two matrix equations are then solved as a least squares

problem to yield the space charge distribution.

FEBKER is applicable to weak Kerr media when the ac modulation method is

used to increase the sensitivity of Kerr electro-optic measurements. The algorithm can

be used for arbitrary three dimensional electrode systems. However in this work we

limit the implementation and application of the algorithm to axisymmetric problems

and in particular to the point/plane electrode geometry. This limitation is primarily

due to implementation complexity in discretization of three-dimensional geometries.

FEBKER can use single parameter Kerr electro-optic measurements and thus makes it

easier to investigate transient charge injection and transport phenomena by avoiding

time consuming rotation of optical elements during experiments.
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8.2 Discretization and Interpolating Polynomials

8.2.1 Triangular Discretization

Unlike the onion peeling method of Chapter 6 for which one dimensional radial dis-

cretizations are used, FEBKER requires two dimensional discretizations of the rz-

plane for axisymmetric geometries. Two dimensional discretizations often use triangles

and/or quadrilaterals as the discretizing elements. In this work we only use triangles.

In Figure 8.1 we show a simple point/plane like geometry and a triangular discretization

which we use for descriptive purposes in this chapter.
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(a) Triangle Numbering (b) Point Numbering

Figure 8.1: The discretized axisymmetric point/plane like geometry (axisymmetry axis
is the left hand edge) which is used for illustrative purposes in this chapter. The
discretizing elements are triangles numbered from 0 to 20 in no particular order, typical
for automatically generated meshes. For each triangle there correspond six nodes.
Within each triangle the electric potential is approximated by its point values on the
nodes and known interpolating functions. The overall potential distribution can then
be described by a finite number of parameters: the point values on the nodes.
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The purpose of the discretization is to approximate the local continuous field quan-

tities electric potential, electric field and space charge density by a finite number of

parameters. The simplest approach to approximate any particular quantity is to as-

sume that it is step-wise constant within each triangle. In this work this approach is

used for space charge density. As will be described in Section 8.3, to find numerical

solutions to Poisson's equation, the finite element method postulates and minimizes an

integrated error criterion. The criterion used in this work depends on the gradient of

the potential which excludes step-wise constant potentials as a basis within triangles.

Instead, first and second order polynomials are commonly used; second order polyno-

mials are often preferred to make the electric field continuous from triangle to triangle.

In this work we employ second order polynomials to discretize the electric potential

distribution. The electric field components are then found by taking the gradient of

the potential resulting in first order polynomials.

8.2.2 Triangular Coordinates

Interpolating polynomials within a triangle are best expressed with the so called tri-

angular coordinates, which are first order polynomials that are associated with the

vertices of the individual triangles. In fact, there are three triangular coordinates, one

for each vertex. They take the value one on the vertex they are associated with and

0 on the other vertices. We denote the triangular coordinates by (i, where i = 1, 2, 3.

By definition [58]

(i(r, z) = Air + Bz + Ci (8.1)

and

(Q(fvj , Ev) =(8.2)

0 i #j

Here (fv, z 3 ) is the coordinate of the jth vertex of the triangle. In this chapter we

use tildes to differentiate triangle specific local description of quantities from global

descriptions. For example the coordinates of the upper-right point in Figure 8.1 might

be denoted by (rs, z8 ) in the global description and by (fi, zi) where 1 < i < 3 in the

description local to the fifth triangle.
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Equations (8.1) and (8.2) yield three matrix equations

to zu 11

f iv zj 1 B 0 (8.3)

iVk zk 1 0

where (i, j, k) are the even permutations of (1, 2, 3). The solution to (8.3) gives

zAZV - z (8.4a)
~ r -r
= rVk rVj (8.4b)

0 V "k U (8.4c)

where A is the determinant of the matrix in (8.3)

f1)  Vi 1

A= 1 (8.5)

TVk ZVk 1

Since triangular coordinates are linear functions that take values 1 and 0 on the

vertices we have

0 < < 1 i = 1,2,3 (8.6)

and by substituting (8.4) into (8.1) it can be directly shown that

( 1 (r, z) + ( (r, z) + (3(r, z) 1 (8.7)

for any point (r, z) inside the triangle.

8.2.3 First Order Interpolating Polynomials

The triangular coordinates can be directly used as the interpolating polynomials for

values on the vertices of the triangles. Consider an electric potential distribution that
has values &J, q$&2 and & 13 on the vertices. Then the first order polynomial over the

triangle which interpolates these values can be expressed in terms of the triangular
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coordinates using (8.2)

/(r, z) = q$ 1 i(r, z) + 01o2( 2 (r, z) + 5,(3 (r, z) (8.8)

We define the column vectors C(r, z) and ov

((r, z) = ((r, z) (2 (r, z) (3 (r, z) (8.9)

0V [ v2 &v3] (8.10)

so that (8.8) can be written in the convenient matrix form as

#(r, z) = (r, z) v (8.11)

8.2.4 Second Order Interpolating Polynomials

A second order polynomial has 6 coefficients for r, r2, z Z2, rz and 1. Thus it can be

used to interpolate six nodal values in a triangle. Beside the vertices three additional

nodes are often chosen to be the middle points of the edges as illustrated in Figure 8.1.

Once the nodes are specified as such the second order polynomial in terms of the values

on the nodes can be written in terms of the triangular coordinates as

0(r, z) = O, (i (r, z) [2 1i(r, z) - 1] + 4&m3 i(r, Z)(2 (r, Z)

OV2 ( 2 (r, z) [2 2(r, z) - 1] + 4mi 2 (r, z) 3(r, z)

OV3 G(r, z) [2 3(r, z) - 1] + 4&m123(r, z) i(r, z) (8.12)

Here 0,1, OV2 and qov are the values on the vertices and 0mi, Om2 and 0m, are re-

spectively the values at the mid points of the edges opposite to the 1st, 2nd, and 3rd

vertex. Using (8.2) it can be directly checked that (i , Iz) /v.= & At each of the

middle point of the edges, the triangular coordinate associated with the node opposite

to the edge is zero and the other two triangular coordinates take the value 0.5. Using

these values it can be directly checked that 4i(mj, zmj) = cm,. Thus (8.12) defines the

second order polynomial that interpolates &v, &o 2 , &a, mi, 2 and 5 3 .

We define column vectors i)(r, z) and 4

ij(r, z) = [ i(r, z) [2 i(r, z) - 1] 4(i(r, z)(2(r, z) (2(r, z) [2 2(r, z) - 1]
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T
4( 2 (r, z)( 3 (r, z) (3(r, z) [2( 3(r, z) - 1] 4( 3 (r, z)(j(r, z) (8.13)

and

&= [2vi &ms1 & 3 m2  (8.14)

so that (8.12) can be expressed in matrix form as

q(r, z) = i T (r, z)e (8.15)

In this work, within each triangle the potential takes the form (8.15). The matrix form

in (8.15) is particularly useful as it separates the spatial dependence from the nodal

values that are being interpolated. Once the potential is expressed in (8.15) the electric

field is found by taking the gradient. Using the chain rule we have

1:~r z) =i i2q (8.16a)

Bh~r z) 5 (8.16b)
(9z E z a 8

where we used (8.1) to evaluate the r and z derivatives of 6. The derivatives of i) with

respect to i directly follows from (8.13) and can be expressed in terms of ( in (8.9)

with the help of (8.7)

19i)T T3 0 0 0 0 0

i 1 = ((r, z) (2(r, z) (3 (r, z) -1 4 0 0 0 0 (8.17a)

1 0 0 0 0 4J

0 4 -1 0 0 0

a ( G2 = (r, z) (2(r, z) (3 (r, z) 0 0 3 0 0 0 (8.17b)

0 0 -1 4 0 01

AT [0 0 0 0 -1 4

9(3 -= G = [(I(r, z) (2(r, Z) (r, z) 0 0 0 4 -1 0 (8.17c)

L 0 0 0 3 01

Gi are independent of the parameters of the mesh triangles and are known as the
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universal matrices [58]. Substituting (8.17) in (8.16) we obtain

BijT (r, z)
ar

Oi T (r, z)
az

T (r, z)b f)

T (r, Z)bzr

3

br = AiGi

3
Z= i

The electric field components follow from (8.15) and (8.18)

-r(r, z) =00(r, z)
Or

-k,(, Z) O,Z)

T (r, Z)br4

CT(r, z)Dz,

In the following sections we also need the squares of electric field components which

directly follow from (8.20)

[ , (r, z)] 2

[52(r, z)] 2

=I00(r, z)
Or

Oq(r, z)
Oz

I
I

2

2

Dr C(r, z) (r, Z)br4)

4T b2TC(r, z)T (r, z)bfz4

(8.21a)

(8.21b)

The forms in (8.21) are chosen to isolate

middle, C(r, z) T(r, z).

the spatial dependencies as a matrix in the

8.3 The Finite Element Method

8.3.1 Basics

The finite element method (FEM) is one of the most widely used numerical methods

for solution of the Poisson equation. There are many excellent books on the subject.
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In particular [58] is a very easy to read book and was frequently consulted for this

work. For a more detailed treatment we refer the reader to the book by Hughes [59].
Here we give a brief discussion.

The two basic steps of the FEM are the postulation of a trial electric potential

solution in terms of undetermined parameters and determination of these parameters by

some error criterion. Typically the solution region is discretized into smaller elements,
such as triangles in Figure 8.1, and within each element the trial potential solutions are

specified locally using interpolating functions. In this work these local trial solutions are

second order polynomials as discussed in Section 8.2.4. The undetermined parameters

are values of these polynomials on the vertices and the edge midpoints of the triangles.

Note that on the element edges the second order trial solutions of neighboring triangles

conform, enforcing continuity on both the trial solution and the gradient of the trial

solution throughout the geometry.

Once the trial potential functions are postulated, the unknown parameters are to

be found such that the resulting solution is as close to the actual solution of Poisson's

equation as possible. Various error functionals are in use to measure the closeness of a

numerical solution. In this work we use the simple energy functional for a Poissonian

system which is given as

J [#7 |V 1(r)|2 - p(r-)(r) dV (8.22)
V

The minimum energy principle states that the solution of the Poisson's equation mini-

mizes the energy functional (8.22). Thus if the unknown parameters for an approximate

solution is chosen such that they minimize (8.22) then the resulting solution is as close

to the actual solution as possible in the total energy sense. Of course if the actual

solution is not a second order polynomial the numerical solution will be only as good

as second order polynomials can represent. Fortunately, the Taylor series expansions

of arbitrary functions demonstrate that if the discretization is fine enough a second

order polynomial can adequately approximate any function.

Now that the trial local functions and the error criterion have been specified, it

remains is to express the energy functional in terms of the local trial functions and to

minimize the resulting expression with respect to the unknown parameters, i.e. the

nodal values of the potential. We begin by expressing the energy functional in terms

of the local interpolating polynomials.
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8.3.2 The Energy Functional

The formulation here is limited to axisymmetric problems and thus we begin by reduc-

ing the volume integral in (8.22) to an area integral over the rz-plane. Using cylindrical

coordinates

= 27r I EI V#(r, 2 -p(r, )( r, ) dr dzdO (8.23)
A

(// r 1 EI (r Z)2-(,z)1 (r z)-d z(.4
22 1

- 27rr E 0(r, z) - p(r, z)#(r, z) dr dz (8.25)

A

where A is the area of the two dimensional projection of the solution region in the

rz-plane.

Since the solution region is discretized into triangles and #(r, z) and p(r, z) are

locally approximated within each triangle, (8.25) reduces to a sum over the triangles

[n $(r,Z)1 1 r [____

L[ = 27r e C Or z) 2 E z pe(r, z) e (r, z) dr dz
e=1

(8.26)

Here e ranges over all the triangles of the discretization and Ae is the area of the eth

triangle. Within each triangle the space charge density is assumed to be constant.

Thus using (8.15) for the potential

pe(r, z)e(r, z) = &e ii (r, Z)pe (8.27)

The squares of r and z derivatives of e(r, z) are given in (8.21) and within each triangle

r can be exactly expressed in terms of the triangle coordinates since it is a first order

polynomial

r C e (r, z) ive (8.28)

where ive is the column vector of the r coordinates of the vertices of the triangular

elements.
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We define

MezJJ

AN

A e

(8.29)

(8.30)

so that the energy functional in (8.26) can now be compactly written using (8.21),
(8.27), (8.29), and (8.30)

L[4] = e NeOc - peTe4e

where

(8.31)

P, z27FE (f)T Me fZe ze

te 27rNe

Considering (8.29), we have

M=JJ

Ae
'2

+brIenebre) (8.32)

(8.33)

( T(r, z) ive) Ce(r, z) j(r, z) dr dz

] (r, z) e(r, z) j(r, z) dr dz

=1 Z Ae

Ae (i) 1 + f (eM2+fve)M3 )

(8.34)

(8.35)

(8.36)

where we used superscript (e) notation to avoid triple subscripts. Here f(') denote the

r-coordinate of the ith vertex in eth element. Using (8.9) we identify

ff e dr dz
A,

ff 1l C2e dr dz
Ae

iii(2 (3e dr dz
-Ae

ff e(2e dr dz
Ae

ff (1e{2 drdz
Ae

ff (1,(2e(3e dr dz
Ae

ff Q1e(se dr dz
Ae

ff (1e( 2e'(3 e dr dz
Ae

ff (lX e dr dz
Ae

and M 2 and M3 are similarly identified. These integrals can be explicitly evaluated [58]
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AeM1 (8.37)

(r, ) ) Z) (r, z((r, z) dr dz

(T(r, z )TFe f (r, z) dr dz



yielding

/~ ~ ~2 ni! n2! n3! Z.
f(nln2 n3dr dz -

J~eS (ni + n 2 + n3 + 2)!
Ae

6 2 21

2 2 1

2 1 2_

2

1

2

(8.38)

where ni are nonnegative integers and A is the triangle area. Using (8.38) we obtain

M i = 1
M2=

2 2 1

2 6 2

_1 2 2_

M3=

1 2

2 2

2 6

(8.39)

where M 1 , M 2 and M 3 are universal matrices independent of the triangular elements.

Notice that Mi and correspondingly M, and Pe are symmetric.

Ne can be determined similarly as

N =J

i J e (r, z) ie (r, z) dr dz

A=

A, ( (e)Nj + ±()N + )N 3 )

where (8.13) is used to get

AeN1 JJ
Ae

(21, - 1) 4(1e,2. 4ie f2e(2 2e - 1)

and N 2 and N 3 follow. Then, from (8.38)

cke (r, Z)ie (r, z) [e (r, z) - 1] dr dz =

Ae

A.,
Z 1 15

Ae
12

A 4( e (r, z) (r, z)(j, (r,

183

(8.40)

(8.41)

(8.42)

4~2 dr dz (8.43)

30 k - i
k 7 i (8.44)

(8.45)
k # i # j

otherwise

(T(r, z) rie) fi(r, z) dr dz

4(1,(2e(2, (i 3e,(2(3e - 1)



so that explicit forms of N 1, N 2 and N 3 are

Ni = [2 5 -1 4 -1 5] (8.46a)

N2 = -1 5 2 5 -1 4] (8.46b)

N3z4 [-1 4 -1 5 2 5] (8.46c)

8.3.3 Global Equations

Equation (8.31) is expressed in terms of local matrices, potential, and space charge
density. This local representation is essential for evaluation of integrals which resulted
in universal matrices in (8.39) and (8.46). However the energy minimization principle
applies to the whole sum and the minimization has to be done globally.

To proceed we express the potential distribution by a column vector P whose
rows contain the nodal values. For each triangle element e and for each entry of
5e there corresponds an entry in 4. Similarly the local space charge density values are

grouped into a column vector p. Each entry of p is an elemental (piecewise-constant)
charge density pe. The summation form of the energy functional in (8.31) can then be
expressed globally as a matrix equation

1
L[#] = Tp - DT Tp (8.47)

2

where matrices P and T are assembled from the local matrices Pe and 'i in accordance
with the sum in (8.31). It follows from the symmetry of Pe that P is symmetric.

On the electrodes the potential is known and equal to the applied voltages. Bound-
aries on which the potential is known are called the Dirichlet boundaries and the
corresponding boundary condition is called a Dirichlet boundary condition. Dirichlet
boundary conditions can directly be imposed on D by requiring the values on the nodes
that reside on the electrodes to be that of the applied voltages. To this end we partition
(D into two parts

(8.48)

Here Du and 4d are themselves column vectors (d (d stands for Dirichlet) that con-
strains the values that correspond to the nodes on the electrodes and 4u contains the
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others (u stands for unknown). Thus the finite element problem of solving Poisson's

equation reduces to finding 4bu.

Substituting (8.48) in (8.47) yields

F1 1=[#] = TPuuDu + 1 TP + -MPu'u + -Paa(a
2 2 2 2 (8.49)

- 4TTup - 4Tdp

1 1
uuu + 4KPuAdt + 2dPddd - udup - aTdp (8.50)

where we also partitioned P and T in terms of the elements corresponding to 4u and

Pd and used the fact that Pud = pu which follows from the symmetry of P.

Now we are ready to minimize the energy with respect to the elements of Pu.

Taking the derivative of (8.50) with respect to the ith entry of 4D and equating the

result to zero yields

0L[#] 1 1
O [Puu4Iu]j + 2 [4iPuu]. ± [Pud4 d]d - [Tup]i (8.51)

= [P + [Pud4'd] - [Tup= 0 (8.52)

Here [ ), denotes the ith element of the column or row vector inside and we used the

fact that Puu is symmetric. When i ranges over all the elements of 1 u (8.52) results

in a square matrix equation

Puu u = Tap - Pud4 d (8.53)

Equation (8.53) is the final equation of the finite element method. In the usual

finite element problem p is known and (8.53) yields (%. Puu is a sparse, symmetric and

positive-definite matrix and solution of the matrix equation for 4u poses no difficulty.

However, in our work p is also an unknown which is desired to be determined from

Kerr electro-optic measurements.
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8.4 Kerr Electro-Optic Measurement Expressions

In the AC modulation method used for sensitive Kerr electro-optic measurements the
potential is composed of DC and AC parts

= ac -+ 4ac cos wt (8.54)

The ac potential is not affected by the space charge and thus the unknown entries
directly follow from (8.53) with p = 0

Uac = -PuiPUacc (8.55)

Equation (8.53) however cannot be used for the dc potential since p is not known

and in fact is the quantity to be determined in Kerr electro-optic measurements. To

incorporate Kerr electro-optic data to (8.53) it is necessary to express the Kerr electro-

optic measurements in terms of the dc potential distribution.

Consider a set of Kerr electro-optic measurements indexed by i. The measured

characteristic parameters are related to the electric field from (5.48) and (5.49) as

(i) cos 2a = irB [Et (s) - E,(s)] ds (8.56a)

73 sin 2a(3 - rB "1Outi2Ema.(s)Epa (s) ds

W cos 2c4i) = 47rB

hy hy

(i)
outiI

Ln

Emc(s)Emc (s) ds - 47rB f PEp,(S)EdC (s) ds

Ep,(s)Emdc(s) ds + 47rB Ema(s)Epdc(s) ds

Here we limit the formulation to the case when all measurements are taken from

light rays that are perpendicular to the axisymmetry axis z. Then ^n can be chosen to

be equal to i so that (5.50) and (5.51) are valid

W2 cos 2aot p2  2 r dr
kC = rB = 2 E zi) - L E( z)

Cac a, 2 Tai
(8.58a)
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(8.56b)

(8.57a)

(8.57b)



7cos 2a out
k() hy 2 hy 2 fkC y 47rB -= 21

W sin 20 out
Shy 47rB =2,

E~ac( ~*r drEz.(r, zi) AEr.(r, zi) r -p
r V r2 _ i

(8.58b)

p2 r dr[Ec(r, ziL) Ez(r, zi) -- Z Era(rzi)Erd.(ra , z rd

(8.58c)

p- r dr
r [Erac(r, z) EZdc(r, zi) + Eza.(r, zi)ErdC (r, zi)] r -

(8.58d)

where (pi, zi) is the position of the ith measurement as described in Figure 8.2 and

kc , ka, kChy, and kh, are defined to simplify coming expressions with the subscripts

c and s to respectively represent cosine and sine terms. Equation (8.58) is a set of

line integrals on the rz-plane over line segments with constant z coordinates. The

triangular mesh partitions the line segments so that they are composed of smaller line

segments each belonging to a single triangle element.

±

Figure 8.2: A Kerr electro-optic measurement path (left) is projected onto the rz-plane
(middle) and partitioned into smaller paths each of which belongs to a single element.
The line integrals that define the characteristic parameters can then be expressed as a
sum over the elemental paths and evaluated in terms of the nodal values of the poten-
tial. In this work all measurements are taken from light rays that are perpendicular
to the axisymmetry axis z so that the first point of the projected path completely
describes the measurement. In this chapter this point is referred to as the position of
the measurement. The right-hand figure illustrates the measurement position for the
projected path in the middle figure.
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Each integral in (8.58) can be expressed as the sum of integrals on elemental line
segments

k0) 2Z [azze (pi, zi) - 5rr,(pi, Zi)]
e

Sac -z ( Pi, zi)

k) = 2Z [hzze(Pi, zi)

kh = 2[hrz (i, zi)

(8.59a)

(8.59b)

(8.59c)

(8.59d)

- hrre (pi, zi)]

+ hzr, (Pi, zi)1

where

azze(Pi, zi)

roe

hrre(pi, 
zi) = i

pre

arze (pi, zi) =

zz(pi, zi) = :O

~: 

e

hzre (pi, zi) = j:e

hrze (pi, zi) =e

t'oe

E2 (r, zi) r dr

p Szac (r, z$ ) dr
Vr _i

p 5,c(r, zi)Erac(r, z ) dr

Ezac (r, Zi) EzdC(r, zi)r dr

r Vr 2- _ yp

p Era,(r, Zi)Ezd,(r, z ) dr

r 2 _ i

and foe and fie denotes the points that the light ray enters and exits the eth triangular

discretization element.

Each integral in (8.60) is within a triangular element on which the electric field

components are polynomials in terms of the nodal values of the potential. Using the

polynomial expressions in (8.20) and (8.21), we write (8.60) as

az (pi, zi) = 4 1c ]bz Zez zj)bZ Yace

5rre(pi, z a) = re Inrre (Pi, Zi)bre Sac,

(8.61a)

(8.61b)
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(8.60a)

(8.60b)

(8.60c)

(8.60d)

(8.60e)

(8.60f)

(8.60g)



T ace re nrze(pi, zi)Uze ace

ce zeITlzz (pi, z -Oz -ae

ac re e (pi, zi

ace re r ze (Pi, zi)Uze adce

ace re inrze (Pi Zi)U4re dce

Ier
4(r, Zi) (r, z.) 7,dr

e Tr T:: p2

de(r,
ZT p? dr
Z4e (r, zi) r r2 - 2

~ ~T pdrN
e,(r, Zi)(e (r, zi) p -

Here (8.61) expresses each integral in (8.60) in terms of the nodal values of the potential

on the triangle.

To evaluate (8.62) analytically we note that each line integral is on a constant z

line segment and for constant zi, (j in (8.1) is a first order polynomial in r

s=j r + [B zi + C3] (8.63)

Thus the elements of Ce(r, zi)(j ('r, zi) in (8.62) are second order polynomials in r. To

simplify the evaluated forms of (8.62) we define three matrices XOe, Xie and X2e by

Ce(r, zi) (r, zi) Xo (Zi) + Xie (Zi)r + X 2er2 (8.64)

whose elements follow from (8.63) as

(Xe ( zi )] = [Cn + Bnzi] [Cj + Bjz ]

[(XX.(zi )] = An [Cj + Bj zi|+ Aj [Cn + Bnz i]

[XO] J= A AJ

(8.65)

(8.66)

(8.67)
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drze (Pi, zi) =

hzze (pi, zi) =

hrre (Pi, Zi) =

hzre (Pi, zi) =

hrze (pi, zi) =

where

(8.61c)

(8.61d)

(8.61e)

(8.61f)

(8.61g)

f1n ze (pi, zi) =

1~nrre (Pi, Zi) =

I~rze (Pi, zi) =

(8.62a)

(8.62b)

(8.62c)
J r ei; 0 el



Substituting (8.64) in (8.62) identifies the integrals to be evaluated as

s(ie, foe)

I2(fie, foe)

Io(fie, fo)

-Tr (fie, foe)

f~le

JTOe

r 3 dr

/ e 
r 

2 dr

T e 

r dr

r2 -2

eie

0Lel

(r2 _p2)3 +p+ r2 -2p

[3 r2-+=~nr r2Fo2]
r2 - pn + Ir

7 r+ 2 - P1

-2 foc

rOe

dr -±21e

,/--- = In [r + /r2 _ p 2
r 2 -p . . . Foe

dr [-arcsec-LJ rie

r - e p 0

(8.68a)

(8.68b)

(8.68c)

(8.68d)

(8.68e)

Using (8.64) and (8.68), (8.62) reduces to

dizze (Pi, zi) = I1(f1, 1foe)XO (Zi) +1 2(fie, foe)xi (Zi) +13(1I fOe)X 2 e

1~nrze (Pi, zi) = PiO(fieI fOe )XOe(Zi) + pjliTie foe )Xie (Zi) + piT2(Vl1, )foe )X 2 ,

iirre(Pi, z,) = pfIr(fie,ifoe)Xo (z,) +pijo(ie, _oe)XieT(z) + p T1(ie, Toe)X 2 e

(8.69a)

(8.69b)

(8.69c)

Computations of the right hand side in (8.69) cause no difficulty except for the case

pA = fOe = 0 for which the L'Hopital rule must be used as

pi ln fo, + -epij PiO

pi arcsec =0
A Foe=Pi=O

= 0 (8.70)

(8.71)

Also note that when foe # 0, pi = 0 arcsec(foe/pi) = 7r/2 is finite and thus

p arcsec o
o fTOeO,Pi=O

(8.72)

Using (8.61), (8.59) reduces to

kCa = 2 M aC ic ce ace

k = 2 Z eMc ace
Sa ae6 ~ e c

(8.73a)

(8.73b)
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k) =2Z ce1 4ace (8.73c)
ace

kh) = 2 acesM2ai dce (8.73d)
e

where

nC 1= b 1 zze (p, z)Oze - Olei'nrre (Pi, Zi)Dre (8.74)

ne b' nrze (Pi, z )br + b 1~zre (Pi, zi)Dze (8.75)

Equation (8.73) relates the ith Kerr electro-optic measurement to the nodal values

of electric potential. Similar to the development of the finite element energy functional,
the sum in (8.73) is now expressed as a global matrix equation

-) = (acM )4ac (8.76a)

k() = (p M )<bac (8.76b)
Sac ac S

k) =DT M( )@dc (8.76c)
Chy ac C

k (T M)<bdc (8.76d)

where the matrices Mc') and M(') are assembled from Mc' and M(s) in (8.74) and

(8.75) in correspondence to the sums in (8.73).

Equation (8.76) is an expression for a single measurement. For a set of measure-

ments (8.76) becomes

kc. tacMcbac (8.77a)

kSac = bacMsbac (8.77b)

kc, = arMc bc (8.77c)

ks, = cMS(DT c (8.77d)

where the vectors kcc kSac, kchy, ks, respectively contain k), k) k) , k and the

matrices Mc and MS contain McP and M(). For example, in its explicit form (8.77d)
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is

k*) MM
kShy= "" =- arMs c

k (8.78)

where n is the number of measurements.

Since ac is available from the finite element method, (8.77a) and (8.77b) do not
provide any new information. They can however be used for statistical purposes on

the experimental error. Equations (8.77c) and (8.77d) can be combined into a single
matrix equation

kc [T Mc
k -_" ac Gac (8.79)

ks, (DTeMs[hy J a J
which relate the measurements k to the dc potential. Since the potential values on the

Dirichlet boundaries are already known we write (8.79) in the form

M4budc = k - MdddC (8.80)

Here M and Md are the partitioned parts of the matrix in (8.79) with respect to the

nodal potential values on Dirichlet boundaries and unknown potential values

ac c
[M Md = (8.81)

acs

Equation (8.80) is the final result of this section. It relates the unknown dc po-
tential values to the Kerr electro-optic measurements and the dc Dirichlet values. In
principle it can be used as a basis for a family of reconstruction algorithms which recon-

struct the potential distribution from Kerr electro-optic measurements. The potential
distribution can then be used to calculate the electric field and space charge density.
However with such an approach, any reconstruction error in reconstructed potential is
greatly magnified in the electric field and space charge density values because of the
differentiation and equation (8.53), which in essence is the discretized form of Poisson's
equation that relates the electric potential and space charge density, is not utilized.
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8.5 FEBKER

The equation that FEBKER relies on follows from (8.53) and (8.80)

MP--Tp - k - [MP uPud - Md] Pdd. = 0 (8.82)

Equation (8.82) is the fundamental result of this chapter. It relates the unknown

space charge distribution p to the measurements k and the applied dc voltage MaC.
In principle with enough measurements it is an overdetermined or a square matrix

equation and can be solved as a least squares problem for which a number of established

methods exist [60].

However solving (8.82) directly for p has two potential problems. First MP-T

is a full matrix for which solution of the least squares problem is computationally

expensive. The size of the least squares problem is determined by the size of p and

for a typical finite element mesh with thousands of elements the computational time

requirement is generally unacceptable. The second problem stems from the fact that

the finite element method, as formulated in this work, minimizes an integrated error

criterion. For individual triangular elements there may be great discrepancies between

the specified charge density and the charge density found by taking the divergence

of the numerical electric field solution. For (8.82) this translates into a considerable

number of erroneous elements in p. Of course one can always refine the mesh to improve

p, however this increases both the size of the problem and the number of measurements

to make (8.82) an overdetermined or a square matrix equation.

8.5.1 p-Mesh Method

In this work we address the problems stated in the previous paragraph by specifying

the space charge density p in terms of a less detailed mesh with fewer number of

unknowns. In the following, such a mesh is referred to as p-mesh and the resulting

methodology is referred to as p-mesh method. Figure 8.3 (b) illustrates a p-mesh on

the example geometry. Here p-mesh consists of uniform squares imposed on top of the

triangular FEM mesh shown in (a). Recall that each unknown entry in p corresponds

to a triangle in the FEM mesh. If we group triangles in p-mesh squares and assume the

space charge density is step-wise constant over p-mesh (as opposed to over individual

triangles) then for the particular case of Figure 8.3 (b) the number of the unknowns is

approximately halved since each square contains two triangles.
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Figure 8.3: The size of the least squares problem in (8.82) is determined by the size
of p which is equal to the number of triangles in the FEM mesh. Each entry of p
corresponds to an unknown value of space charge density in a triangle. In the p-mesh
approach p is expressed in terms of a new set of unknowns which are specified on a
less detailed mesh such as those shown in (b), (c) and (d).

For a realistic mesh (see Figure 8.5) each square can contain many more triangles

reducing the number of unknowns more dramatically. Gathering a group of triangles

in a p-mesh square on which the space charge density value is assumed to be constant

is in essence averaging unknown space charge density values of individual triangles into

a single space charge density value. Thus, the p-mesh method also averages out the

error in the space charge values.

It is important to note that specifying a p-mesh to reduce the number of unknowns

in p is not equivalent to formulating the FEM equation (8.53) in terms of the p-mesh.

One extreme situation which clarifies the distinction is the case when the space charge

density is constant throughout the geometry. Then the choice of p-mesh does not affect

the quality of reconstructed elements of p from (8.82) since for perfect solution the

values of the elements should be identical. However if p-mesh is also used to formulate

(8.53) then the accuracy of Puu, Pud, T, M, and Md will decrease degrading the

quality of reconstructed p from (8.82).

Clearly the spatial resolution of the reconstructed space charge density does depend

on the detail of the p-mesh. For example in Figure 8.3 (c) we show another p-mesh

based on the example geometry. Obviously a reconstruction based on this p-mesh will

have less spatial resolution than a reconstruction based on the p-mesh in (b). Note that

the computational load to find the solution with less spatial resolution is also less. Thus

the detail of p-mesh is a trade-off between the spatial resolution and computational
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load. The number of measurements also figure in the decision for the choice of p-

mesh because if the p-mesh is too detailed (8.82) becomes an underdetermined matrix

equation. Figure 8.3 (c) also shows the typical situation where the elements of the

FEM mesh does not necessarily lie inside of a single element in p-mesh. In this work

we decide the p-mesh element that an individual triangle belongs to by the position of

the triangle centroid; each triangle is assumed to belong to the square that contains

its centroid. Also we only use uniform square p-meshes.

In a p-mesh it is not necessary to assume that space charge density is step-wise

constant; one can use other assumed solution types. One immediate improvement over

the step-wise constant approach is to use local solutions that are linear in r and z

and interpolate values on the vertices of squares. For a square with edge length 1 and

lower-left vertex coordinate (K 1 , ) such a solution can be expressed by inspection

p~, )= o 1-r - f z - r - z z

Or+ p) & + p2 1 (.83

where pvi, pv2 , Pv3 , and Pv, are respectively the space charge density values on lower-left

vertex, lower-right vertex, upper-right vertex and upper-left vertex. Each entry of p can

then be found in terms of piv, by evaluating (8.83) on the centroid of the corresponding

triangle for the square that the triangle belongs to. Note that for the example p-

mesh in Figure 8.3 (b) this does not decrease the number of unknowns. However

this is an extreme case where each square contains only two triangles. When each

square contains many triangles the number of unknowns again decrease dramatically.

Also notice that although for each square there are now 4 unknowns some of these

unknowns are shared with the neighbor squares. For a typical mesh the number of

unknowns defined by the step-wise constant approach approximately doubles for the

locally linear approach. This increase in the unknowns is justified by the superiority

that the local linear functions can represent arbitrary space charge distributions. In

this work we use both the step-wise approach and the local linear approach.

We did not use any physical arguments to reduce the number of unknowns. The

p-mesh method is valid for any electrode geometry. The physical expectations that

the electrode geometry imposes on the space charge density can be used to reduce the

number of unknowns further. For point/plane electrode geometry, which constitutes

the case study in this work, space charge injection is expected to be mostly from the
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needle. In fact the wide use of point/plane electrode geometry in high voltage research
is due to the localization of space charge injection. Far from the needle axis the space
charge density is expected to vanish. Thus one can assume from the outset that the
elements of p that corresponds to outer triangles are zero. We illustrate the approach
in Figure 8.3 (d). Here p-mesh consists of just two squares under the needle. On the
outer triangles the space charge density values are assumed to be zero. Notice that the
number of unknowns reduced from 21 in Figure 8.3 (a) to 2 for(d) when we use the
step-wise constant approach and to 6 when we use the locally linear approach.

The p-mesh method can be mathematically described by a matrix equation that
relates p to a new unknown vector which we denote by L

p = Ue (8.84)

Here U is a rectangular matrix. If U's row number is larger than its column number
then the size of the least squares problem reduces. Note that for step-wise constant
p-method each row of U is either all zeros (for triangles outside the p-mesh that are
assumed to have zero space charge density) or contains a single nonzero element which is
1. For locally linear each non-zero row now has 4 non-zero elements whose magnitudes
are dictated by (8.83).

8.5.2 Measurement Positions and One Parameter

Measurements

In (8.82) the size of the measurement vector k is two times the number of measurements

since each measurement can yield two independent parameters. Since the number of
equations is determined by the size of k and the number of unknowns is determined
by the size of Lo in (8.84), the number of measurements required to make (8.82) square
or overdetermined is at least half the size of L.

In Figure 8.4 we consider a p-mesh of six squares on the example geometry. Assum-

ing the space charge density is step-wise constant over p-mesh, g is six dimensional;
there are six unknowns. In (a) there are six measurement positions resulting in twelve
characteristic parameters; k is twelve dimensional. Thus for the set-up in (a) (8.82) is
a 12 x 6 overdetermined matrix equation. In (b) there are three measurement positions
resulting in six characteristic parameters. Then for the set-up in (b) (8.82) is a 6 x 6
square matrix equation.

196



(a) (b) (c) (d)

Figure 8.4: Different measurement combinations which are used for illustrative pur-
poses.

Recall from Section 5.5 and in particular from (5.45) that two parameter Kerr

electro-optic measurements requires rotating the analyzer during experiments. Ro-

tating the analyzer is slow making it impractical to investigate time transient charge

injection and transport using Kerr electro-optic measurements. As discussed in the

previous paragraph for the set-up in Figure 8.4 (a) (8.82) is a 12 x 6 overdetermined

matrix equation. This suggests that if we use one parameter measurements that does

not require analyzer rotation we can still obtain a 6 x 6 square system which can still

be solved to determine L.

To incorporate single parameter measurements into the formulation in (8.82), we

first normalize (5.45) to define a normalized intensity measurement k,

k w = I IB/Idc = B sin(2ah - 20a) (8.85)47rB 47rB

Then it follows from (8.58) that for the ith measurement

k-() = - sin 20ak + cos 20ak (8.86)T s fr aShy

Thus for any fixed analyzer angle, the set of k,',) follows from (8.79) (also see (8.78))
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k

kw
=Vk (8.87)

where n is the number of measurements and V is the n x 2n matrix given by

V = - sin 20J1 cos 26J] (8.88)

with I denoting the identity matrix. Then for any particular analyzer angle the one
parameter measurement least squares problem is obtained by multiplying (8.82) with

V.

Finally we note that beside the number of measurements, the positions of the

measurements are also important for the quality of the solutions of (8.82). Consider

Figure 8.4 (c) where there are five two parameter measurements for which (8.82) is

an overdetermined system. The only difference between (a) and (c) is that for (c)

the measurement right under the needle is not used. This has considerable practical

significance since it shows that it might be possible to use FEBKER even when there

are missing measurements around the needle tip due to blockage and/or extreme noise.

However since there are no measurements directly related to this region the recon-

structed space charge value for this region can be in great error. This problem can

be solved by adding a measurement position as illustrated in Figure 8.4 (d) which is

relatively far from the needle but in the region just under the needle.

8.5.3 Summary

With the improvements discussed in (8.5.1) and (8.5.2), (8.82) is modified to

VMP-TUg - Vk - V [MP-Pud - Md] dd. = 0 (8.89)

Here V is the identity matrix for two parameter measurements and given in (8.88)
for one parameter measurements. Similarly U is the identity matrix if the p-mesh
method is not being used and assumes various other forms when the p-mesh method
with step-wise constant approach or locally linear approach is used.
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8.6 Application Of FEBKER

In this section, as a case study we apply FEBKER to the finite point/plane electrode

geometry in Appendix C. It is assumed that the peak applied ac and dc voltages are

the same at 40 kV and the space charge distribution is given as in Figure C.4 with

po = 0.12 C/m 3 . Note that the space charge density is non zero only within a 1 mm

radius of the axisymmetry axis. The medium is transformer oil.

In Figure 8.5 we show the p-mesh that is used to decrease the number of unknown

space charge density values as discussed in Section 8.5. We assume that the space

charge density is zero outside a 1.25 mm radius of the axisymmetry axis. The value

1.25 mm is chosen as opposed to the actual value of 1 mm to simulate the fact that

in an actual measurement the exact radius is not known but can be estimated using

the convergence of fundamental and double harmonic light intensity measurements

with the ac modulation method. Note that p-mesh method decreases the number of

unknowns from ~5500 to ~60 for the step-wise constant approach and -150 for the

locally linear approach.

We use uniformly spaced measurements with distance of 0.1 mm both in the p and

z directions. Only measurements within the 1.5 mm radius of the axisymmetry axis

are used. In this section we only use perfect synthetic data which is obtained from

numerical integrations of (8.57) using the finite element solutions of the electric field

for the specified charge density. Section 8.7 investigates the impact of error on the

reconstructions. The least squares problem in (8.89) is solved using both the method

of normal equations and QR factorization. The difference between these two methods

were negligible.

Figure 8.5: The p-mesh used for the case study in this section.
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Figure 8.6 shows the reconstruction results when the step-wise constant approach
is used. For the upper left reconstruction two parameter measurements are used while
for the upper right reconstruction single parameter measurements with 0a = <r/2 are

used. The reconstruction results show that FEBKER reconstructs the space charge
density accurately for both cases. The bottom left and bottom right reconstructions

are based on one parameter measurements which are not closer than 0.3 mm and 0.5
mm to the needle tip respectively. These results suggests that FEBKER is applicable

even when measurements at certain locations are not available. However when there

are not enough measurements results at certain positions become undependable.
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Figure 8.6: Charge density reconstructions using FEBKER with the step-wise constant
approach. The upper left reconstruction is based on two parameter measurements, the
upper right reconstruction is based on one parameter measurements (Oa = 7r/2), the
lower left reconstruction does not use measurements that are less than 0.3 mm distance
to the needle tip and the lower right reconstruction does not use measurements that
are less than 0.5 mm distance to the needle tip.
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Figure 8.7 shows the reconstruction results when the locally linear approach is used.

The upper left reconstruction is based on two parameter measurements while the upper

right reconstruction is based on single parameter measurements with 0 = 7r/2. The

results are more accurate than those in Figure 8.6 as expected since the locally linear

approach perfectly models the space charge distribution shown in Figure C.4. Similar

to those in Figure 8.6, the bottom reconstructions do not use measurements around

the needle tip. Note that for the locally linear approach the range of measurements

that can be left out without any major impact on the reconstructions (1.3 mm) is much

larger than the similar range for the step-wise constant approach (0.5 mm).
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r = 0.125 mm r = 0.125 mm
4.5- 4.5

4- 4-

3.5 -- 3.5 -
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Figure 8.7: Charge density reconstructions using FEBKER with the locally linear
approach. The upper left reconstruction is based on two parameter measurements, the
upper right reconstruction is based on one parameter measurements (Oa = wr/2), the
lower left reconstruction does not use measurements that are less than 1 mm distance
to the needle tip and the lower right reconstruction does not use measurements that
are less than 1.3 mm distance to the needle tip.
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8.7 Impact Of Error And Regularization

Reconstructions from line integrals are in general ill-posed. Even small amount of

noise can have large effect in the performance of FEBKER. The top reconstructions

in Figure 8.8 illustrate the difference between using perfect synthetic data and 5%
random noise added synthetic data, both based on one parameter measurements. The
results are typical of ill-posed problems; in the presence of noise a direct application

of FEBKER results in completely unintelligible results. In this section we use regular-
ization to decrease the impact of the noise.

) 10

Or
E
> 2.

3.5

N 3

>2.5

121

1.5

1.5 2 2.5 3 3.5 ~0 0.5 1 1.5 2
z (mm) z (mm)

3.5

Figure 8.8: Charge density reconstructions using FEBKER using the locally linear
approach. All reconstructions are based on one parameter measurements. The upper
left and upper right reconstructions are respectively from perfect synthetic data and
synthetic data with 5% random noise. The bottom reconstructions use the same data
but regularization is incorporated to the reconstruction algorithm.
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By regularization we mean using an extra information about the space charge dis-

tribution. Here as the extra information we assume that the space charge density

distribution is smooth (differentiable). Then one can put a penalty on the variations

between neighbor reconstructed values; for reconstructions using the locally linear ap-

proach neighbor values are the elements of p that corresponds neighbor vertices in

the p-mesh shown in Figure 8.5. To illustrate regularization mathematically we write

(8.89) in the form

Ag - b = 0 (8.90)

where

A-= VMP-'TU (8.91)

b Vk + V [MPU--1 Pud - Md] 4ddc (8.92)

The least squares problem in (8.90) is the minimization of the functional

A(g) = J|Ae - b| 2  (8.93)

where || || denotes the two norm of a vector. Instead of (8.93), the regularized least

squares problem minimizes a related functional.

L(g) = A(g) + AL3(g) (8.94)

where A is a nonnegative constant and B(g) is measure for variations between neighbor

elements of L. B(g) is typically expressed in terms of a matrix B

) = ||B| 2  (8.95)

When L(g) is minimized to find o instead of A(g), the added penalty on the variations

suppresses the impact of noise.

Clearly the success of the regularization is dependent on the choice of B and A.

We will not go into detail on how to choose the matrix B and the constant A. In fact

this is still an active research topic and is very much dependent on the application.

Here we choose B such that minimization of B(g) is equivalent to minimization of the
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average difference between the neighbor elements of o and A is given as

Trace(A T A)
Trace(B T B)

as suggested in [45].

Bottom reconstructions in Figure 8.8 we show the effects of regularization. The

left reconstruction is based on synthetic data without any added noise. Notice that

regularization causes significant distortion at r = 0.125 mm. This distortion is due

to our assumed form of space charge density in Figure C.4 which is not differentiable

at r = 0. Regularization smoothes out the space charge density at r = 0 causing

lower than expected values. The right reconstruction shows the reconstruction when

5% random noise is added to the synthetic data. Remarkably the impact of noise is

not very significant which proves that with regularization FEBKER can be used in the

presence of noise.

In (8.8) the distortion caused by regularization at r = 0.125 mm Figure C.4 is only

due to the assumed form of space charge density which is rather unphysical since it

is not differentiable at the axisymmetry axis. Note that this piece-wise linear form

is chosen for its simplicity. A comparably simple space charge density distribution

which is differentiable at r = 0 is given in Figure 8.10. The difference between this

distribution and the one in Figure 8.10 is the r dependence between 0 and 1 mm.

0.8 11

(0.20 0.9-
0.7- 0.160.

E0.6 PO= 0.12 C/m --
0.08 0.7- 1-r2/ 2

0.5- 0.04 _0
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Figure 8.9: Case study space charge density distributions for the geometry shown in
Figure C.1. The two dimensional charge density p(r, z) can be found by multiplying
the z dependence on the left and the r dependence on the right. The relative dielectric
constant of the medium is E.
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In Figure 8.10 we show the reconstruction results when the space charge distribution

in Figure 8.9 (with po = 0.12 C/m 3 ) is used instead of the one in Figure C.4. As

expected the distortion caused by the regularization is considerably less and the impact

noise does not diminish the applicability of FEBKER.

z (mm) z (mm)

4-

3

21

3.51.5 2 2.5 3 3.5 '0 0.5 1 1.5 Il
z (mm) z (mm)

Figure 8.10: Charge density reconstructions using FEBKER using the locally linear
approach. All reconstructions are based on one parameter measurements. The upper
left and upper right reconstructions are from perfect synthetic data with and without
regularization. The bottom regularized reconstructions are from noisy data with 5%
and 10% random noise respectively.
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Chapter 9

Transform Methods

9.1 Introduction

The reconstruction methods introduced in Chapters 6 to 8 discretize the electric field

and/or space charge density distributions in terms of unknown coefficients which are

then found by minimizing the difference between the measurements and forward theory

based predictions based on the discretized electric field. In scalar tomography similar

methods are often called algebraic.

A second family of methods in scalar tomography are called transform methods

and are based on mathematical forward and inverse transform relations between the

measurables and the quantities to be reconstructed. Especially in medical tomography

the transform methods are often preferred over algebraic techniques due to their better

performance.

For planes where the electric field direction is constant along the light path, trans-

form methods of scalar tomography can be directly applied to Kerr electro-optic mea-

surements. However generalization of the methods to Kerr media for which the electric

field direction changes along the light path is not straight-forward due to the complex

dependence of the characteristic parameters on the electric field components. In this

chapter we briefly discuss transform methods and the main difficulties faced for their

application to Kerr electro-optic measurements.

207



9.2 Axisymmetric Problem And Abel Transform

When the electric field direction is constant and perpendicular along the light path the

characteristic phase retardation -y is related to the electric field magnitude by

-y =7rB E2(s) ds (9.1)

where we used subscript c to indicate constant direction. If in addition the electric

field magnitude is axisymmetric (9.1) can be reduced to

2irB j E2(r) rdr (9.2)
jP Vr 2 _- p2

where p is the position of the measurement on the radial axis. For example (9.2) can

be used to relate the characteristic phase retardation to the electric field magnitude in

Kerr electro-optic measurements on the ground planes of point/plane or sphere/plane

electrode geometries.

For varying p, (9.2) is one form of the well known Abel integral equations which

arise frequently in different disciplines of science and engineering [61]. Its relevance to

Kerr electro-optic measurements was first recognized by Zahn [4]. The solution of (9.2)

is

-1 d 7,ppd -1 dye(p) dp
E2 (r) = - =j~ ~ -4~I dp p (9.3)E r) 72Br dr ,. /p 2 -_ r2 72B ,r dp jp 2 -_ r2(93

where we used the condition that the electric field magnitude is zero at p = 00.

Equation (9.3) is an explicit formula that gives E2 in terms of -y,. Finding E 2 from

experimental 7c is still not a trivial task due to the singularity of the integral at p = r

and for evaluating the derivative of ye with respect to p. Nevertheless with additional

mathematical machinery (9.3) can be used to reconstruct E2.

Inverse transforms similar to (9.3) provide the basis of transform methods. These

methods are profoundly different than methods similar to those in Chapters 6 to 8 in

that the problem reduces to evaluating an inverse transform similar to (9.3). This may

or may not be the better choice depending on the complexity and error characteristics

of the inverse transform.

For general highly birefringent Kerr media, integral transforms that relate the char-

acteristic parameters to the applied electric field do not exist. Thus there is not even
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a starting point to develop an inverse transform. For axisymmetric weak Kerr media

the situation is more optimistic as the forward transforms do exist as discussed in

Section 4.4.4

kc -y cos 2a = 27rB E2(r) rdr - 2,rB l E(r)p2 dr (9.4)
ip Vr2 _ P 2 P r gr2 _P2

k8  -y sin 2a = 27rB Er) Er(r)pdr (9.5)
JP r2 - p 2

In analogy to (9.3) the inverse transform of (9.5) yields

Ez(r) Er) -1dj k,(p)dp (9.6)
7r2B dr ,r N/p2 

- r2

We define

'Ez (r) r dr
kc = 27B fp V___p2,(9.7)

kc =27rB j E2(r)pdr (9.8)

Again in analogy to (9.3) we get

E z (r) 1 d kcz (p) p dp
zk) 72Br drJ p2 - r2(9.9a)

E 2( -r_ d ke, (p) dp
E (r)z - kc(~p(9.9b)

r 72B dr ,p p2 r2 (.b

Equation (9.6) shows that it is possible to use transform methods to recover the

product of E, and Er. Unfortunately it appears from (9.9) that to use the transform

methods for kc is not possible as it requires individual access to parts k, and kc,
Thus at this time we are unable to use transform methods to reconstruct the electric

fields. Transforms in (9.4) and (9.5) and inverse transforms in (9.6) and (9.9) have

been well studied in the math literature [62,63] and it might be possible to use various

properties to combine (9.9) into a single equation. Even if that is achieved however

further numerical analysis is necessary to use the inverse transforms to reconstruct the

electric field from characteristic parameters as inverse transforms similar to the inverse

Abel transform are highly ill-posed. This challenge requires more extensive research

which we leave to future work.
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For the axisymmetric problem we finally note that if ac modulation is being used,
as already stated in (5.50) and (5.51), (9.4) and (9.5) are replaced by

kchy -yhy cos y = 8i-B f Eza (r) EZd, (r) r dr _ 87B Er.(r) Erd,(r) p 2 dr

p y/r2_ p2 Ip r fr 2 __ 2

(9.10)
f| Ez.c(r) Erd, p dr fEac(r) Ezdpdr

kshy - yy sin 2ahy = 87rB] r) p + 87rB 2c (9.11)
Ip V/r2 _-p2 fp V/r2 _p2

Again an inverse transform for (9.10) is not readily available since individual terms lead

to different inverse transforms. The inverse transform for (9.11) however does exist

Ec(r)Erd(r) + E (r)Ez(r) = - kShy(P)dP (9.12)
472B dr Jr /p2 --r2

Equation (9.12) might be useful to supply additional information for the algorithm

Febker developed in Chapter 8. This possibility is also left to future research.

9.3 General Problem And Radon Transform

The Abel transform can be used to reconstruct axisymmetric electric field distributions

in planes for which the direction of the transverse electric field is constant. When the

field is not axisymmetric but the direction of the electric field along the light path is

constant the Abel transform generalizes to the Radon transform.

The Radon transform [64] of a scalar function in a plane is the line integral of the

function along lines in the plane. Thus (9.1) shows that -yc is the Radon transform of

7BE 2.Here (9.1) must be considered for each line on the plane each giving a value for

7c. To make this dependence clear we define f = 7rBE 2 and f = yc. f is the generally

accepted notation for the Radon transfom of f and is most simply expressed as

f(p,) = f = f (p cos0 - s sin0,psin0+ s cosO)ds (9.13)

Here p and 6 describe the line in the xy-plane as shown in Figure 9.1.

A direct inversion for the transform does exist and can be written as

f(x Y) = 'I .fO Of(pO) dp dO (9.14)
27r2 0 _ x cos 0 + y sin 0 - p op
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Figure 9.1: (left) Parameters p and 0
the line and the origin and 0 is the

Y

are used to define a line. p is the distance between
angle between the normal to the line and the x-

axis. (right) ps-coordinate system used to express the line integrals that describe the
measurements. z coordinate is out of the page.

This formula however is rarely used in reconstruction primarily because of the numerical

problems associated with the partial derivative with respect to p.

A family of algorithms rely on the so called projection slice theorem

(m, 0) = f(m cos 0, m sin 0) (9.15)

Here O(m, 0) is the one dimensional Fourier transform of f

(9.16)
.J C,00 p )e6j"

and f is the two dimensional Fourier transform of f.

f(kx, ky) = R 2 f J J-oof (x, y)e-j(kx+ky)dx dy

Equation (9.15) reduces the problem of inversion into problems of finding forward and

inverse Fourier transforms.

Most algorithms in scalar tomography use what is known as backprojection. The
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V(m, 6) = Rif =



backprojection of f(p, 0), denoted here as g(x, y) can be written as

g(x, y) Bf= f(x cos # + y sin #, #)d# (9.18)

The important identity regarding the backprojection for practical algorithms is [65]

1
BRf = f**- (9.19)

r

where ** denotes the two dimensional convolution and r = fx 2 + y2

1 [+oo [O f(x', y')dx'dy' (9.20)
r _o Jo r(x - X')2 +(y - y')2

Equation (9.19) and the Fourier space equivalent

F2B'3If (- 2f)(7 2-) (9.21)
r

are the starting point of the very popular filtered backprojection and other most effi-

cient algorithms in scalar field tomography [64]. Here the Fourier transform is under-

stood in distribution (generalized function) sense.

It is important to stress that neither (9.15) nor (9.19) is the end of the scalar

tomographic problem. The problems of discretization of these equations, uniqueness

and existence of the solutions of the resulting equations, efficiency, ill-conditionness

and convergence properties are serious problems to be solved and addressed by scalar

field tomography.

Since for highly birefringent media there do not exist direct integral relations be-

tween the electric field and the characteristic parameters there is no starting point and

the chance of developing a transform pair for characteristic parameters and the applied

electric field is slim. For weak Kerr media we have

7(p, 6) cosca(p,) _6) 0[0

BCo - 10 E(xy)ds - E 2(x, y)ds (9.22)7rB _-00J00

-y(p, 0) sin a (p, 0) oB 02Ez(xy)Ep(xy)ds (9.23)

in the coordinate frame introduced in Figure 9.1. There are two main difficulties with
these transforms. The first is that the argument of the integrals on the right hand side
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are also functions of p. Such transformations are called generalized Radon transforms.

Although there exists some attempts for inversion of such transforms [66], the results

are complicated and the applications are rare. In fact the inverse may not exist [67].

The second problem with this transformation is that they are not linear in terms of the

components of the electric field. Most theory on the inversion problems are for linear

operators.

The linearization of these equations are implicitly achieved by the ac modulation

method for which (9.22) and (9.23) reduce to

7hy (p, 0) cOs 2ahy(p, 0) = E (x, y)EzY(x, y)ds - j E,(x, y)E,(x, y)ds
47wB -0cf-0

(9.24)

Yhy(p, 0) sin 2ahy(p, 0) 0E
47rB _ J 00 EZa(X, y)EPdc(X y)ds + Epa(X, y)Ezdc (X, y)ds

(9.25)

Under the assumption that the ac electric field is known (9.24) and (9.25) are linear

in the dc electric field components and seem to be more manageable. In fact recent

advances in tomography [68-73] show that the irrotationality of Edc can be used to

reconstruct the electric potential # by the formula

1 f / 1
#(x, y) 2 p k(p, 0) dp d0 (9.26)

27r2 c x cos 0 + y sin 0-p

when k are measurements of the form

k(p, 0) = Epdc(x, y) ds (9.27)

Although (9.27) is not exactly the same with the terms in (9.24) and (9.25) the sim-

ilarities are obvious especially since the ac components of the electric field can be

considered known weighting functions and finding an inverse transform for individual

terms seem to be achievable. However even when such transforms are found we face

the same problem we did for the axisymmetric problem, namely combining the in-

dividual transforms into one since only Yhy cOS Chy and TYhy sin ehy are available from

experiments and not the individual terms on the right hand side of (9.24) and (9.25).

Solution of these problems are involved and requires a new line of research which we

leave for future work.
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Chapter 10

Conclusions And Future Research

10.1 Conclusions

There were two related purposes of this thesis; the mathematical modeling of the

forward problem of relating Kerr electro-optic intensity measurements to the applied

electric field when the applied electric field magnitude and direction change along the

light path; and the mathematical modeling of the inverse problem of reconstructing

arbitrary three dimensional applied electric field distributions from sets of Kerr electro-

optic light intensity measurements.

The solution to the forward problem is now complete and has already been tested

by laboratory measurements in transformer oil. To our knowledge, in the dielectric

literature there is no development of the governing equations of light propagation in

the form we developed in this work although the equations themselves seem to be well

known in other disciplines, most notably photoelasticity. The governing equations are

thoroughly investigated. Case studies that allow analytical evaluation are studied. We

developed software that is capable of producing synthetic data based on the governing

equations.

We adapted the characteristic parameter theory of photoelasticity to the Kerr

electro-optic measurements. It is shown that for arbitrary Kerr media each intensity

measurement can at most yield three independent characteristic parameters. The num-

ber of independent characteristic parameters reduces to two for axisymmetric and/or

weakly birefringent media. We related the characteristic parameters to the applied elec-

tric field through differential equations and in the case of weakly birefringent media

through simple integral relations.
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The input/output intensity relations for various polariscope systems are developed

in terms of the characteristic parameters. The ac modulation method is generalized

to arbitrary three dimensional electric field distributions. We studied the effects of

the finite beam size on the Kerr electro-optic measurements. A detailed study on the

calculated fringe patterns of highly birefringent axisymmetric Kerr media emphasized

the differences between the use of Kerr electro-optic fringe patterns in the case of two

dimensional electric fields and analogous axisymmetric electric fields.

We investigated three classes of algorithms for the inverse problem of reconstructing

electric field distributions from Kerr electro-optic data. The onion peeling algorithm

which is applicable to only axisymmetric electric field distributions is applied to the

point/plane electrode geometry. The simulated reconstructions were successful when

the data sampling rate was high enough. The algorithm is applied to simulations

of both highly birefringent media and weakly birefringent media. A variant of the

algorithm is also developed for weakly birefringent media using the integral relations

between the characteristic parameters.

Algebraic reconstruction techniques have been developed in Japan in research sim-

ilar to this one. The present algorithms are limited to weakly birefringent media, weak

electric fields, or short path lengths such that the optical phase difference is much

less than 7r. We provided an introduction to these algorithms and applied them to

sphere/plane and sphere/sphere electrodes. The results show that these algorithms

have no advantage over the onion peeling method for axisymmetric electric field distri-

butions, while for weakly birefringent media we believe that the finite element based

reconstruction algorithm that we developed is far superior since it reconstructs the

space charge directly, avoiding the numerically troublesome evaluation of the diver-

gence of the electric field and incorporates the continuity and irrotationality of the

electric field into the solution process.

The finite element based Kerr electro-optic reconstruction algorithm (FEBKER) is

developed for weakly birefringent media when the ac modulation method is used to

measure the characteristic parameters. The algorithm reconstructs the space charge

directly, avoiding taking the divergence of the electric field to obtain the charge density

from Gauss's law. Although the algorithm is only formulated and applied to axisym-

metric geometries, its extension to arbitrary three dimensional geometries is straight

forward and only complicated due to the complexity of discretization of three dimen-

sional geometries. It can reconstruct the space charge density using a single parameter

measurement from each light intensity measurement so that rotating the optical el-
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ements during measurements becomes unnecessary. This is important since rotating
optical elements are slow, making it impossible to use Kerr electro-optic measurements

for transient charge injection and transport phenomena.

When the electric field direction along the light path is constant, even though field

magnitude may change along light path, there are direct transform relationships to

recover electric field magnitude as a function of position along light path from light

intensity measurements. We showed that extension of these transforms to the case when
the electric field direction changes along the light path is not trivial and development

of transform methods for Kerr electro-optic intensity measurements requires a new line
of research.

10.2 Suggestions For Future Research

The most important follow-up to this thesis is the detailed investigation of the impact

of error on the onion peeling and FEBKER algorithms. Although simple smoothing

techniques seem to work with the onion peeling algorithm, more research is needed

to analyze the effects of noise on the quality of the reconstructed electric fields. For

FEBKER various regularization techniques have to be investigated incorporating sta-

tistical analysis into the solution process. The groupings of the triangles in square

regions can be replaced by postulating a global space charge density function with

unknown coefficients which can then be found by FEBKER. When this analysis is
complete we believe that FEBKER can be used on real world data to investigate the

physics of charge injection and transport.

The only remaining open inverse problem from the theoretical point of view is

reconstructing the arbitrary three dimensional electric field distributions when the

medium is highly birefringent. It appears that the algebraic reconstruction technique

can be extended to this case although the exact algorithm needs to be developed after

an extensive set of numerical experiments.

When the thesis began, we thought that an extension to the Radon transform,
typically used with scalar tomography for medical applications, nondestructive testing

and seismology, may be possible for Kerr effect reconstructions of applied electric field
magnitude and direction from optical intensity measurements along many light paths.
The Radon transform and its axisymmetric version, the Abel transform, can be used
when the direction of the transverse applied electric field is constant along the light
path. This is typically true along a ground plane. However, when the direction of the
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applied electric field varies along the light path, we found that the vector nature of

the Kerr effect dependence on the electric field results in integral relationships where

the function to be integrated depends on the light path. This makes it impossible to

extend the Radon transform based inverse methods which are widely used in scalar

tomography. Although there are some attempts to generalize the Radon transform in

the literature to allow such cases, the results to date are still restricted and we cannot

put the Kerr effect relations in the form required. Extensive research is necessary

to find some generalization of the Radon transform which can be used for Kerr effect

relations. Such generalizations may not exist as there are results in the literature which

claim for certain classes of problems that when the integrand in the forward transform

depends on the integral path, the inverse transform does not exist. Even if future work

allows such relationships the mathematical complexity requires extensive research to

develop practical algorithms competitive with FEBKER.

It is possible to reconstruct the product of the axial and radial components of the

axisymmetric electric fields from Kerr electro-optic measurements using an Abel like

inverse transform as discussed in Section 9.2. Further research is needed to investigate

how this might be used to increase the quality of the reconstructions using FEBKER

and the onion peeling algorithms.

For highly birefringent axisymmetric media the complex behavior of Kerr electro-

optic data detailed in Section 5.7.2 make otherwise applicable smoothing techniques

unusable. Other interpolation techniques have to be developed probably using pre-

determined functions which are capable of representing the complex but predictable

behavior of Kerr electro-optic data.

Other than these immediate theoretical interests the direction of further research is

dependent on the quality of Kerr electro-optic data. It appears that development of a

two dimensional measurement system is necessary either using a photo-detector array

or a sensitive camera system. When such a system is developed the error characteristic

of the measurements is expected to dictate further refinement of the algorithms devel-

oped in this work. In particular, statistical analysis needs to be incorporated into the

algorithms such that the quality of the reconstructed space charge density distributions

can be quantified. Temperature gradients and electrohydrodynamic motion are other

disturbance factors expected to have some effect on the measurements. Based on the

severity of the effects, it may become necessary either to model these effects in the

forward problem or predict and account for the effects in the inverse problem using

statistical analysis.
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Appendix A

Point/Plane Electrodes Geometry

A.1 Introduction

In this appendix we derive the analytical potential and electric field expressions for the
point/plane electrode geometry when the point electrode is a hyperboloid of revolution
and both the point and ground electrodes are of infinite extent. Laplace's equation is
solved in the prolate spheroidal coordinate system and the solutions are expressed in
a cartesian coordinate frame.

A.2 The Prolate Spheroidal Coordinate System

The prolate spheroidal coordinate system can be defined in terms of the cartesian
coordinate system as [74,75] 1

z = a sin ( cosh r (A.1a)

x = a cos ( sinhq cos # (A.1b)

y = a cos(sinhi sin # (A.1c)

Here ( q and # are the prolate spherical coordinates and a is a positive constant. The
angle # is the familiar azimuthal angle of cylindrical coordinates. The point/plane
electrode geometry is axisymmetric. Hence instead of working with x and y, it is
more convenient to work with the cylindrical coordinate r, the radial distance to the

'Equation (A.1) is not identical to the corresponding equation that defines prolate spheroidal
coordinates in [74]. One can arrive at that definition with the replacement ( -+ -
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axisymmetry axis (z-axis)

r = (A.2)

= a cos ( sinh q (A.3)

It follows from (A.1a) and (A.3) that the surfaces of constant ( are hyperboloids of

revolution

z2 r2 a2
z r = a2  (A.4)

sin2( cos2

and a is the focal point of the hyperboloids. The surfaces of constant 7 are prolate

spheroids whose equations also follow from (A.1a) and (A.3)

z r = a 2  
(A.5)

cosh 2 j sinh 2q

Of interest are the asymptotic curves to the hyperboloids for large z and r. From

(A.4) we get

z=trtan( (x>aandr>a) (A.6)

A.3 Solution To Laplace's Equation

To solve Laplace's equation for a point/plane electrode geometry we let the ground

plane to be ( =0 (z = 0) and the point electrode to be (= (. If the applied voltage is

Vo then the boundary conditions for Laplace's equations are

(, K , p) _ = Vo (A.7a)

(( 6, = 0 (A.7b)

Since boundary conditions involve neither # nor q, Laplace's equation simplifies to [74]

d2  ) _ tan ( - 0 (A.8)
d(2 d(
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whose general solution is

<()=A In tan (+7 + B (A.9)

where A and B are arbitrary constants to be found from the boundary conditions of

(A.7). Substituting (A.9) into (A.7) yields the analytical expression for the potential

<D(() Cln [tan + (A.10)

where

C =0 (A. 11)
ln [tan (I + })]

A.4 Tip-Plane Distance And The Radius Of

Curvature

The point/plane electrode geometry is often specified by the distance between the tip

of the point electrode and the ground plane d and the radius of the curvature of the

point electrode Rc. The distance d may be found directly from (A.1a) as

d z _ O

= asin(o (A.12)

while equations (A.1a), (A.3) and (A.12) give the radius of curvature [76] of the point

electrode as

3[ (O ) 2 (TJ~]
R = oz D2 r Or a 2z

(=Co, rl=0

a3cos 3 g0
a cos (o cot (o

a2 sin (o cos(o
1 - sin 2 (9a-

sin (o
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= a - d (A.13)
d

Equations (A. 12) and (A. 13) give a and (0 in terms of d and R,

(o = arcsin - (A.15)a

Equation (A.15) together with the identity

7nan ±1 1 1 +sin( 7
-n tan( + In 0 < (< (A.16)

2 4 2 1 - sin( - 2

and equation (A.11) may be used to find C in terms of a and d as

~2Vo
C = (A.17)

In ad

It follows from equation (A.4) that the equation of the point electrode may be

written in terms of d and Rc as

- = 1 (A. 18)

which for large r reduces to

z d r (A.19)

Typically the needle is very sharp and (o only slightly differs from 7r/2. That is

e 7 - (o (A.20)
2

where e < 1. In terms of c, (A.11) may be written as

C = 0 (A. 21)
ln [cot (2)]

For a sharp needle it is possible to obtain approximate simpler expressions. In
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particular, the radius of curvature is given as

Rc ae 2

Since Rc < d, (A.14) yields

d Rc
2

and it directly follows from (A.21) and (A.22) that

(A.22)

(A.23)

C ~ ~ (A.24)
InI In2 /a/Rc

A.5 The Electric Field

The electric field is related to the potential by

E(f) = -V(F) (A.25)

Since the field is axisymmetric, it can only be in terms of the axial and radial compo-
nents

O'(r, z) _

E~(r~z) (r,__ z)

E,(r, z) - (r, z)
Or

&@(() 0(
0( Oz (A.26)

(A.27)0(~ Or

follows from (A.10) as

O~)
O'~.

C 1+tan2 (j+})
tan(i+ ) 2

C sin( + c) Cos(+{

2 cos (( + 2) sin ( + }
C

sin (( + 2)
C

cos (()

)

(A.28)
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the partial derivatives of (A.1a) and (A.3) with respect to z and r and

and -- yield
or

1( 1 (cos( cosh~ "

Oz a \ cosh 2r/ - sin2(
0( 1 ( sin(sinhr/
9r a cosh2 7/ - sin 2 (

(A.29)

(A.30)

Equations (A.26), (A.28) and (A.29) yield

Ez = ( cosh r7
a cosh 2r/ - sin 2 (

(A.31)

In particular, evaluating (A.31) at r/ = 0 yields the electric field on the z-axis (0 < z <

d)

C 1

a cos2(
(A.32)

Of interest are the values on the tip (( = (0, r/ = 0) and the ground plane (( = 0, r/ = 0)

E C 1 C
Ez(( r C 0 a cos2(o R sin (o

C
Ez((, 7)|1 o,o = a

For a sharp point electrode (A.33) reduces to

Ca
dRc

(A.33)

(A.34)

C
Ez((, r/)|= 0_ _O ~-c (A.35)

Equation (A.35) is an important identity since it determines the maximum electric

field strength in a point/plane geometry with a sharp needle electrode.

Equations (A.27), (A.28) and (A.30) yield

E,( C
a (cos (

sin ( sinh r

(cosh 2r; - sin2 ()

(A.36)

Notice that E,((,, ) vanishes both on the ground plane (( = 0) and on the z-axis

(7 = 0)
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A.6 Field Quantities In Cartesian Coordinates

Prolate spherical coordinates ( and r/ can be found in terms of z and r by solving (A.4)

and (A.5) and noting that z = 0 implies ( = 0 and r = 0 implies r/ = 0. The results

are

(z 2 + r 2 ± a2 ) - /(z2 + r 2 + a2) 2 - 4a2 z 2

2a2

(Z2 + r2 + a2) + (z2 + r 2 + a2) 2 - 4a 2r 2

2a2

(a2 - z2 _ r 2 ) + (z2 + r2 + a2) 2 - 4a2z 2

2a2

(z 2 + r 2 - a2 ) + ,/(z2 + r 2 + a2) 2 - 4a2z 2

2a2

Equations (A.37) and (A.38) yield

cosh 2r7 - sin 2 ( =
(z2 + r 2 + a2) 2 - 4a 2 z 2

a
2 (A.41)

while (A.37) and (A.40) yield

1

sin (sinhr =
z

2 - r 2 - a2 + V(z2 + r 2 + a2) 2 - 4a2z2
(A.42)

Also from (A.42)

tanhr/tan( =
z 2 - r 2 - a2 + (z2 + r2+ a2)2 - 4a2z2

-z2 + r2+ a2 + (z2 + r2+ a2)2 - 4a 2z 2J
It follows from (A.10) and (A.16) that

S Cn I+sin(
2 1 -sin(
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cosh 2r =

cos 2

sinh27

(A.37)

(A.38)

(A.39)

(A.40)

2a2

1

(A.43)

(A.44)



Substituting (A.37) in (A.44) yields the potential distribution in cartesian coordinates

C a + z2 +r2 + a2 - (z2 + r2 + a2)2 - 4a2z2

<D(r, z) = - Iln [ )~] (A.45)
2 da - z2F r2 + a2 z 2+a) az

Equations (A.31), (A.38) and (A.41) yield

C z2 + r 2 + a2 + f(z2 +r 2 + a2) 2 - 4a2z2 2

E,(r, z) = + 2 + 2)2 2 2 (A.46)
r- (z2 2+a) 4a z2

while (A.36), (A.39), (A.41), and (A.42) yield

Ca z2 - r2 - a2 + (z2 + r 2 + a2) - 4a2 z 2 2

Er(r, z) = +r a

(z2 + r2 + a2) 2 - 4a2z 2 _ a2 - z2 - r 2 + V(z 2 + r 2 + a2) 2 - 4a2z 2

(A.47)

Cartesian electric field components E., and Ey can be found from Er simply by

multiplying by x/r and y/r factors respectively. This form however has a 0/0 factor at

r = 0 which may be problematic in computer simulations. This factor may be avoided

by multiplying both the denominator and numerator of (A.47) by

a2 - r2 - z 2 + /(z2 + r 2 + a2) 2 - 4a 2z 2  (A.48)

This yields a r in the numerator which cancels the denominator of the factors x/r and

y/r. The results are

Ex2(x, y, z) V'Cax
a 2 - z2 _ r 2 + z2 + r 2 + a2) 2 - 4a 2z2

z2 + r2 + a2 - (z2+ r2+ a2) 2 - 4a2z21 2

(z2 + r2 + a2)2 _ 4d2z2

and
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Ey(x, y, z) =
v/ZCay

a2 - z2 - r 2 + y"(z2 + r 2 + a2) 2 - 4a 2z 2

z2 + r2 + a2 - (z2 + r2 + a2)2 - 4a2z2
1I2

(z 2 + r 2 + a2) 2 - 4a 2 z 2

On the ground plane (z = 0) Er(x, y, z) vanishes and Ez(x, y, z) is given as

C
Ez (x, y, z) 2 z=

/~a2 + r2

while on the axisymmetry axis (r = 0) Ez(x, y, z) is given as

- CaEz (x, y, z)Q = 2 -a z2aA -

A.7 Far Field Electric Field Components For

(A.50)

(A.51)

(A.52)

r > a, z

It is of interest to find far field approximate expressions when r > a, z. The approxi-

mation to (A.46) is straight forward and simply found by substituting a = z = 0

C

r
(A.53)

To find the approximation to (A.47) we first note that by neglecting the terms that

are second order in z 2/r 2 and a2/r 2 we find

/) 2 +r2 +a2
V(z2 + r2+ a2)2 - 4a2z2 r +a

which can be substituted in (A.47) to yield

Er (r, z) = Cz
r
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(A.54)

(A.55)
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Appendix B

Geometries With Sphere Electrodes

B.1 Introduction

In this appendix we find the potential and electric field distributions for a sphere/plane

electrode geometry and a sphere/sphere electrode geometry. Both geometries are ax-

isymmetric. The distributions are found using the method of images for which a

detailed description can be found in [29,77].

B.2 Charge Near a Grounded Sphere

We begin by finding the potential distribution when a charge q is placed in the vicinity

of a grounded sphere electrode (Figure B.1). To find the distribution, the sphere

electrode is replaced by an image charge qj. Due to the symmetry qj must be placed

on the line that connects q and the center of the sphere electrode. We let bi be the

distance between qj and the center. The potential distribution (outside the sphere) is

<a () I [ q + Ij (B.1)
47reo d(a,() di(a,()

where a, (, d and di are shown in Figure B.1. Distances d(a, () and di(a, () follow from

the law of cosines

d(a, ) va 2 + D 2 - 2Da cos (B.2a)

di(a,()= a2 + b? - 2bia cos (B.2b)
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< D >

Figure B.1: Point charge q near a grounded sphere electrode. In the method of images
the grounded sphere is replaced by an image charge qi at a distance bi from the center.
The values for qi and bi are found such that the boundary condition (vanishing potential
at a = R) is satisfied.

Here R is the radius of the sphere electrode and D is the distance between q and the

center of the spherical electrode.

To find qi and bi in terms of D, R and q we let a = R. Since <b(R,() 0, (B.1)

and (B.2) yield

q2 (R 2 + b 2) - 2q 2 b R cos( q2 (R 2 + D 2 ) - 2q2DR cos( (B.3)

Since (B.3) is valid for all (, it yields two equations one of which can be used to

eliminate qj and obtain a quadratic equation for bi. One solution of this quadratic

equation is bi = D and eliminated since the image charge must be inside the sphere

for the method of images to be valid. The other one is the desired solution

bi = - (B.4)
D

It follows from (B.4) and (B.3) that

q R = -q (B.5)

B.3 Image Charges for Sphere/Plane Electrodes

The sphere/plane electrode geometry is shown in Figure B.2. The sphere electrode is

at potential V. We begin by replacing the electrodes with an image charge q, at the
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Figure B.2: Sphere/plane electrode geometry. Boundary conditions can be satisfied
only by an infinite number of image charges. Image charge q,1 raises the potential
on the sphere electrode to V while image charges qg1 , qg2 -.- are placed to keep the
plane at ground potential and qv2 , qv -, are placed to keep the potential of the sphere
electrode at V.

center of the sphere electrode where

qv, = 4,reoRV (B.6)

With q,, at the sphere center, the boundary condition on the sphere electrode at

a = R of potential V is satisfied. Here a is the distance of a point to the sphere

center. To satisfy the boundary condition on the ground plane we place an image

charge qgl = -q,, symmetrically with respect to the plane. These two charges now

satisfy the zero potential boundary condition on the ground plane but the condition

on the sphere electrode is now disturbed. To restore the boundary condition on the

sphere electrode we place another image charge qv2 inside the sphere electrode so that

for a system with qg1 and q 2 the additional potential on the sphere electrode vanishes.

The value and the placement of such a charge are found in Section B.2. Using (B.4)

and (B.5) and qg, = -qv, we obtain

qv2= qv1 R (B.7a)

R27
bV2 = R (B.7b)

2D
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where we recognize the distance from qg, to the sphere center is 2D. With three charges

the boundary condition on the sphere electrode is satisfied but now the boundary

condition on the ground electrode is disturbed. To restore the condition we again

place a charge qg2 = -qv2 symmetrically with respect to the plane. Continuing in this

fashion we place an infinite number of charge pairs with

qV= 2D - R (B.8a)

b 2 = (B.8b)
2D - bv-

q9, = -v, (B.8c)

bgn =bv (B.8d)

and qv, in (B.6) and bv, = 0 are the start-up values for the recursive relations in (B.8).

It is possible to find qVn and bv, explicitly as functions of n by obtaining difference

equations from the recursive formulas of (B.8). Both obtaining and solving these

equations are straightforward but cumbersome. The results are

q = [=A] (B.9a)

bv =2D-R -An+j - An (B.9b)
V[ 11 1 A

where

D D 2
A= - 1 (B.9c)

RR

Figure B.3 shows that for physical values of D/R > 1, A is always less than 1. From

(B.9a) we conclude that the decay of q.n can be slow only if A is near 1. Figure B.3

shows that even for large A (~ 0.9 for R/D = 0.9), q.n are essentially 0 for n > 10.

The values that bvn converge to follows from (B.9b) as

bV00 = D - - (B.10)
A
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Figure B.3: Convergence of b, and q, for R/D values of 0.25, 0.5, 0.75 and 0.9 and
the dependence of A on D/R.

B.4 Image Charges for Sphere/Sphere Electrodes

The image charges for sphere/sphere electrodes (Figure B.4), where one of the spheres

is grounded and the other is at voltage V, can be found in a similar fashion to

sphere/plane electrodes. We first place an image charge qvj in the center of sphere

1 to satisfy the boundary condition that the sphere potential is V. Then qg,, qg2,' ''

are placed inside the grounded sphere electrode to restore the boundary condition that

the potential is at ground while q, 2 , q,,, -- are placed to restore the boundary condi-

tion on sphere 1 that the potential is V. Using (B.4) and (B.5) we obtain the recursive

relations

R1
qvn= -qgn- 2D - b (B.11a)

R2
bvn = (B.11b)

- 2D - b g_

q~n V~n R2 B1cqg = -qV" 2D - b(B.1c)

R2
byn = 2 (B.11d)

2D - bvn

where the initial values are

qv, = 47rEOR 1V (B.12)

bv, = 0 (B.13)

Equation (B.11) can again be used to obtain difference equations for which the
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V

Figure BA: Sphere/sphere electrode geometry. Boundary conditions can be satisfied
only by an infinite number of image charges in each sphere. Image charge q, raises
the potential on sphere 1 to V. All charges inside the second sphere are placed to keep
the left sphere at ground potential while the charges inside the right sphere are placed
to keep the surface potential at V.

solutions are

q 1 _ qv, 12 2n (B.14a)
" qv 02 02n

RR2 211 R2
b =2D #/2n+2 2 2D - - (B. 14b)

q - - - 2 21 2n (B.14c)
qg i 2D I~~

bg, =2D - 2  _ 2n+2 _ 2n - (B.14d)

where

R 2  R1

2D +20 2 D (B.15)

#3 =, - y 2 _ 1) 1/2 (B. 16)

D ]2 [R 1  R 21
jR2=R2J(B.17)Iv'R1 R2. 2 R2 R1

A straightforward calculation shows that for R1 ~ R 2 we have # ~ A and ( ~ 1/A

hence convergence properties of qvn, qgn, bvn and bgn are similar to qVn and bvn of the

sphere/plane electrodes. For either R1 or R 2 much smaller than the other we have

# ~ 0 and the decrease of q., and qgn is very fast. In fact for R 1 = 0 or R2 = 0, q.n

and qgn are all zero except qvl and qg1 which is expected since this case is identical to
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a point charge near a grounded sphere.

If both of the sphere electrodes are at non-zero potential, say V for the first sphere

and V2 for the second sphere, then two sets of image charges need to be introduced.

The first set is identical to the image charges of sphere/sphere electrodes with one

electrode grounded and the other is at potential V1. The second set is identical to the

image charges of sphere/sphere electrodes with one electrode grounded and the other

is at potential V2. These two sets constitute the image charges of the sphere/sphere

electrodes when one electrode is at V and the other is at V2. Also these image charges

reduce to those of sphere/plane electrodes when V1 = V, V2 = -V and R1 = R 2 = R

(which also implies # = A). Another way to get from sphere/sphere electrodes to

sphere/plane electrodes is to let R2 go to infinity such that

2D - R 2 = D' (B.18)

where D' is a finite number. If V = V and V2 = 0 then the solutions for the

sphere/sphere electrodes reduce to those of sphere/plane electrodes with sphere/plane

distance of D'.

B.5 Potential Distributions

In the previous sections the equivalent image charge distribution of sphere/plane elec-

trodes and sphere/sphere electrodes are found. The resulting potential distributions

assume the form

00 00

<D(r, z) = 4""OqV + Z" z) (B.19)
n147reod, (r,7z) _= 47reod gn(r, Z)

where with the aid of Figure B.5

do V(r, z) = /r 2 + (cvn - z) 2  (B.20a)

dgn(rz) = r2 + (cgn + z) 2  (B.20b)

with

c, = D - bvn (B.21a)

cgn= D - bn (B.21b)
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Figure B.5: The coordinate system used for the sphere/plane and sphere/sphere elec-
trodes where r and z are the cylindrical coordinates of point P. Recall that the
geometry is axisymmetric around the z-axis line joining image charges.

B.5.1 Sphere/Plane Electrode Geometry

It follows from (B.6), (B.8c), (B.9a) and (B.19) that the potential distribution for

sphere/plane electrodes is given as

<b(r, z) = VR[q - )
n= d,(r, z) d,,, (r, z)_

(B.22)

Also notice that for sphere/plane electrodes ben= bq, and thus c,, = c,.

B.5.2 Sphere/Sphere Electrode Geometry

Using (B.12), (B.14a), (B.14c) and (B.19) the potential distribution of sphere/sphere

electrodes is given as

<D(r, z) = VRI [

E d(r, z)
+ g"

dgn (r, )_

B.6 Electric Field Distributions

The electric field distribution for a sphere/plane electrode geometry and sphere/sphere

electrode geometry can be found by respectively taking the gradient of the potential

distributions in (B.22) and (B.23)

E(r, z) = -V1b(r, z) (B.24)
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The resulting components of the electric field are presented in the next two sections.

Recall that for both cases the electric field is axisymmetric along the axis joining all

image charges.

B.6.1 Sphere/Plane Electrodes Geometry

E,(r, z) = VRrZ q. 1 - 3 (r
n 1 V r,z) dgI(r, z)_

(cv" + z)

d3 (r, z) _

(B.25)

(B.26)

B.6.2 Sphere/Sphere Electrodes Geometry

E,(r, z) = VRir

E,(r, z) =

00 r -

d3 4 + qg"
dn (r, z) d3(,z

-VR (c[, - z) d " 4v)

d, (r, z)
(cg. + Z) d " ( I

dn (r, Z)_
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(B.28)

Ez(r, z) = -VR 1: 4v (cv" - z)

d3 (r, Z)
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Appendix C

Finite Point/Plane Electrode

Geometry

C.1 Introduction

In this appendix we introduce the finite point/plane electrode geometry that is used as

a case study for the forward and inverse theory of Kerr electro-optic measurements in

the thesis. Various electric field component plots are presented for different locations

and piecewise linear space charge density distributions with varying magnitudes to il-

lustrate the general characteristics of electric field distributions of point/plane electrode

geometries.

C.2 The Geometry

The finite point/plane electrode geometry is illustrated in Figure C.1. The needle has

5.4 mm diameter with a tip-plane distance of 2.5 mm and tip radius curvature of 0.5

mm. The tip is a z-translated (-2.5 mm) hyperboloid of revolution whose equation is

given in (A.18) with d = 5 mm and Rc = 0.5 mm. A cylindrical ground electrode of

10 mm in radius bounds the geometry on the sides and the bottom. The dotted line

on the top represents an artificial Neuman boundary consistent with the geometry as

the upper part of the needle and the surrounding ground form a concentric cylindrical

geometry whose electric field distribution is radial.

The radius of the surrounding ground is chosen so that the left and right boundaries

are sufficiently larger than the tip-plane distance and thus do not appreciably effect
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Figure C.1: The finite point/plane electrode geometry used as a case study throughout
the thesis.

the electric field between the tip and the plane but small enough so that an excessive

number of finite element mesh triangles are not necessary in numerical analysis. A large

number of discretizing triangles can then be allocated for the region between the tip and

the plane for higher accuracy of finite element solutions and for reasonably continuous

optical patterns in Chapter 5. In actual experiments the radius of the surrounding

ground (often the chamber itself in Figure 1.1) is often much larger in radius. However,
the electric field distributions of such cases do not show any notable characteristic

differences from the electric field distribution of the geometry of Figure C.1 except a

slower rate of decay for electric field components. Figure C.2 illustrates this fact by
comparing the Laplacian (space charge free) electric field componenents of the finite

point/plate electrode geometry to those of the infinite extent point/plane electrode

geometry with the same radius of curvature Rc = 0.5 mm and the tip-plane distance
d = 2.5 mm. The plots are for z = 2 mm and the applied voltage is 40 kV.

One important reason for the extensive use of a point/plane electrode geometry
in high voltage research is to localize the charge injection physics near the tip. For
the geometry in Figure C.1 which has smaller radial extent and the space charge
distributions considered in Section C.3, the plots in Section C.4 show that the electric
field components for r > 5 mm are essentially equal to the Laplacian (space charge
free) electric field distribution when space charge density is non-zero only within a 1
mm radius around the needle tip axis; the radial extent is large enough so that for
large r the electric field distribution reduces to the Laplacian one. Thus the geometry
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Figure C.2: A comparison between the electric field components at z = 2mm of the
finite point/plane electrode geometry of Figure C.1 and infinite point/plane electrode
geometry with the same tip-plane distance, tip radius of curvature and applied voltage.

in Figure C.1 is adequate to understand the general characteristics of the electric field

distributions of similar geometries with larger plane electrodes and/or large radial

extent. The geometry is certainly practical and can be realized by a conductively

coated glass as the surrounding ground.

The tip-plane distance is chosen such that the region between the needle and the

plane can be discretized with a very fine mesh without exceeding our computing storage

capacity yet the geometry can still be considered reasonable for small beam diameter

(w < 1 mm) measurements (Section 1.2.4). The 0.5 mm radius of curvature is indicative

of those used at MIT for Kerr electro-optic measurements at the time of this work [28].

It is relatively larger than typical values used in dielectric research and chosen such

to smooth the very divergent electric field distributions of smaller radius of curvature

needles. This facilitates the development and numerical experiments for the inverse

methods. For all plots presented in this chapter the applied voltage is assumed to be

40 kV, a typical value for high voltage research.

The finite element mesh used for the geometry is shown in Figure C.3. We refine

the mesh around the needle extensively to minimize the numerical errors from the finite

element solutions especially for specified space charge distributions of Figure C.4. Our

finite element code approximates the space charge distribution to be triangle wise

constant and the average triangle edge length is chosen to be around 0.05 mm between

r = 0 mm and r = 1 mm to approximate the space charge density shown in Figure C.4

243



Figure C.3: Views of the mesh used for finite element solutions for the geometry shown
in Figure C.1.

adequately. There are around 5500 (second order) triangles in the discretization.

On average, the solution of the problem takes about 10 minutes on a 200 MHz

Pentium machine with 64 MB RAM after C++ code is compiled using Visual C++

without any optimization options turned on. The limiting factor was memory as we

stopped refining the geometry after the running of the program began to use swap

space.

C.3 The Space Charge Distributions

The form of space charge density considered for theoretical case studies is shown in Fig-

ure C.4. For constant z the space charge density linearly decreases from its maximum

value at r = 0 mm to 0 at r = 1 mm. For constant r the space charge density linearly

increases from its value at ground to a maximum at the needle tip height at z = 2.5

mm and then decreases linearly at a slower rate until reaching the needle electrode.

A family of distributions are defined by the parameter ,o = p(O, 0)/e, where E, is the

relative dielectric constant of the medium. Then the space charge distributions are

Erpo [1 - r/A][1+ 3z/d] r < A, z < d

p(r, z) = Erpo[1 - r/A] [5 - z/d] r < A, z > d, (C.1)

0 r > A or (r, z) inside needle

where d = 2.5 mm is the tip-plane distance and A = 1 mm is the radial extent of

the space charge distribution. The six values yio considered are 0 (Laplacian), 0.04,
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z (mm) r/A

Figure C.4: Case study space charge density distributions for the geometry shown in
Figure C.1. The two dimensional charge density p(r, z) can be found by multiplying
the z dependence on the left and the r dependence on the right. The relative dielectric
constant of the medium is er.

0.08, 0.12, 0.16 and 0.20 all in C/m 3 . This type of space charge density is physically

reasonable for phenomena where charge is injected from the needle.

C.4 Electric Field Components

In this section we provide a set of plots of electric field components of the finite

point/plane electrode geometry in Figure C.1. The plots use r, z and/or the space

charge density distributions in Figure C.4 as parameters.

In Figure C.5 we show the axial component of the electric field on the axisymmetry

axis (r = 0) and the ground plane (z = 0) as the radial component is zero. The plot

for r = 0 demonstrates the shielding effect of the charge injected from the needle as

the electric field at the needle tip decreases with increasing charge density. For the

maximum value of po considered (0.20), Ez(0, 2.5 mm) approaches the space charge

limited condition of 0. Larger values of pio are not considered as they would cause a

negative field on the tip inconsistent with positive charge injection. When the electric

field magnitude is lowered near the needle, it is increased near the ground plane to keep

the average applied field constant at 40 kV / 2.5 mm = 1.6 x 10' V/m. Also note that

the change of the axial electric field component near the needle is much larger than the

change near ground as expected from the imposed space charge density distributions

in (C.1).
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The plot for z = 0 demonstrates that near the ground plane the space charge den-
sity appreciably changes the electric field magnitude only for r < 5 mm. For larger

r values the effects of the charge density diminishes and the electric field distribution

becomes identical to that of the space charge free case. This demonstrates that al-

though the radial extent of the geometry in Figure C.1 is small when compared to

typical point/plane electrode systems it is large enough so that for large r the electric

field distributions are independent of the space charge distributions localized near the
needle-tip axis. In Figure C.6 we show the electric field components as a function of

r with the space charge density distributions in Figure C.4 as the parameter. The

plots are provided for three z values of 1 mm, 2.25 mm and 2.5 mm. Only the region

between r = 0 mm and r = 4 mm is considered as for larger r the curves in each plot

are essentially identical. Notice that for z = 1 mm the magnitude of E, increases with

,0 as opposed to z = 2.25 mm and z = 2.5 mm where the magnitude of E, decreases

with p0 consistent with the r = 0 plot in Figure C.5. Plots for z values above the

needle tip (z > 2.5 mm) do not provide any additional valuable insight and are not

included. The noisy behaviour near r = 0 in the z = 2.5 mm plots are probably due to
the discretization in (C.3) as the z = 2.5 mm line goes on edges of the triangles rather

than going through them. Finally in Figure C.7 we show the electric field components

as a function of r with z as the parameter. The plots are provided for three ,o values

of 0.2 C/m 3, 0.12 C/m 3 and 0.04 C/m 3 . Again only the region between r = 0 mm and

r = 4 mm is considered as for larger r the curves in each plot are essentially identical.

Notice that the order of E, curves on z is different for each p0.

0 0 - 8- .5X 0

Increasing P ~ direction

-2-/0.5 -
~0.00 C/m3

-3- 0.04 C/m 3

d 0.08 C/m3

2 .4 - Po- 0.12 C/m 3 -1.

-52 -r - -2 - Increasing P0 direction

0 0.5 1 1.5 2 2.5 o2 4 6 8 10
z (mm) r (mm)

Figure C.5: Axial electric field component at r = 0 and at z = 0 for the geometry
shown in Figure C.1 with the space charge density distributions shown in Figure C.4.
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Figure C.6: Electric field component plots above the ground plane for different non-
zero z (1, 2.25 and 2.5 mm) with po values of 0, 0.04, 0.08, 0.12, 0.16 and 0.20 C/m 3

as the parameter. The arrows indicate the direction of increasing po.
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Appendix D

Electrostatic Systems With Charge

Singularities

D.1 Introduction

In this appendix we provide the electric field distributions of some electrostatic systems

with point and/or line charges. These are useful to model the physical distributions

and can be used to decrease the end effects of the onion peeling method as described

in Section 6.5.2. They also provide case studies for which weak medium characteristic

parameters a and -y can be found analytically.

D.2 Semi-Infinite Uniform Line Charge

We first consider the electric field distribution of a semi-infinite uniform line charge A

that extends from the origin to infinity along z-axis. The geometry is axisymmetric

and at the position (r, z) infinitesimal electric field components due to the infinitesimal

charge at z', A dz', are

A sin 0 dz' A r dz'
'r 47rE (z - z') 2 + r 2  47rc [(z - z') 2 + r2]3/2

A cos 0 dz' A (z - z') dz'
' 47re (z - z') 2 + r2  47re [(z - z') 2 + r2]3/2

where 0 is the angle with the z-axis and the line joining positions of the infinitesimal

charge at z' and the observation point at z, and E is the permittivity of the medium.
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Integrating (D.1) along the line charge yields the electric field distribution

E,(r, z) =/ A r dz' A 1 (z-z') 00

E ) 47E [(z - z') 2 + r2 3/2 47rco r [(z - z') 2 + r2] /2

= 1 [ + z+ I](D.2a)
47reo r .V/z2 +,r2

Ez(r, z) =/ A (z - z') dz' A 1

(z 47E [(z - z') 2 + r2] 3/2 47reo [(z - z') 2 + r2] 1/2 0
A 1
A z 1 (D .2b)47eo /z2 +r r2

D.3 Semi-Infinite Uniform Line Charge Above A

Ground Plane

Let the distance between the tip of the line charge and the ground plane to be d.
Without loss of generality we assume that the ground plane is the xy-plane. The

ground plane can then be replaced by an image line charge of density -A which extends

from -d to minus infinity. The electric field distribution of the line charge above the

ground plane follows from (D.2) by translation in z

E,(r, z) = A 1 + z d (D.3a)
47rE r L (z - d)2 + r 2

A 1
Ez(r, z) = (zA-1d) 2 + r 2  (D.3b)

47rc V(z - d2+r

The electric field for the image line charge similarly follows by an inversion and a
translation

E,(r, z) = A F1  z+d (D.4a)
47r (z + d) 2 + r2

Ez(r, z) = -A12+ (D.4b)47rE Q(z + d)2 +r 2

Superposing the electric field distributions of the line charge and its image yields

A 1 z-d z+d 1
E, (r, z) = AI z d + z+d(D.5a)47e r y (z - d)2 ± r 2 V(z + d) 2 +r 2
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Ez4(r, z)=
47rE

1 1 1
/(z +d)2±+r2 /(z -d)2±+r2J

(D.5b)

In the large r limit so that r > |zl, Idl, (D.5) reduces to

A 2z
47rE r2

A 2
Ez(r, z)

47r6 r

(D.6a)

(D.6b)

D.4 Dipole At Origin

Let two point charges with equal strength but opposite signs be located at +d and
-d on the z-axis. The potential distribution is found by superposing the potential
distributions of the individual charges

#(,r, z) -Q
47e (d-z)2 + r 2  / (d +z) 2 + r2

The electric field components follow from (D.7) as

(D.7)

Ez(r, z) = d z47 [(d - z)2 + r2]3 / 2

E,(r, z) Qr 1 1
47re [(d - z) 2 + r2] 3 / 2

d~z
+12

[(d +z)2 + r2]

[(d + z)2 + r2]3/2

In large r limit r >jz|, |d|, the potential and the electric field components respec-
tively reduce to

(r z) Q 2dz
47 r3 (D.9)

and

Ez(r, z) Q 2d
47re r3

Q 6dz
47re r

(D. 10a)

(D. 10b)
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D.5 Analytical Characteristic Parameters

Both geometries in Section D.3 and Section D.4 are axisymmetric. Their large r limit

electric field solutions allow determination of characteristic paramaters analytically for

light propagation directions perpendicular to the axisymmetry axis.

For a line charge above a ground plane we have

1 2 2z2P2
EZ (s) - E (sP 2 r6 (D.11a)

r
2 E. s)Ep s) 2A2 Zp (D.llb)

where A = A/27re is a normalized line charge density used to simplify expressions.

Using (D.11) the characteristic parameters can be found by evaluating the integrals

Ycos a = rB [E (s) - E2(s)] ds (D.12a)

ysin a = rB] 2E,(s)E,(s) ds (D. 12b)

Note that r 2 = p2 + s2 and s-integrals of reciprocal powers of r are [78]

I ds 1 s
/ - arctan -

(D.13)
p2 +s2  p p

ds 1_s + (2n -3 ds(D. 14)
(p2 + s2)n 2(n - 1)p2 (p2 + s2)n- f (p2 + s2)n-i

For a dipole on the origin analytical characteristic parameters also follow from

(D.12) with

E (s) -Ej(s) = 9 2 z2 P2  (D.15a)

2Ez(s)E2(S) = 6Q 2zp (D.15b)

where Q = Q/47re is a normalized charge. One can also superpose electric field distri-

butions in Section D.3 and Section D.4 to find the analytical characteristic parameters

for a line and point charge combination above a ground plane. For this case (D.12)
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must be used with

E,2(s) - E2( =
2 + 2QA

r2

2QA
47

Q2 - z 2 p22

+6

2 + 4QA+

4zpQA
r6

3Q21

3zpQ 2

78
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1
r72

z2p2 ~ 2z A 2 2
r6

6QA
+2

A2

r2

-

zpA2

r4

6z 2p2 QA
r 8

+ 9Q2
r

9z 2p2 2

10

(D.16a)

(D. 16b)

(D.16c)

(D.16d)

Q2
+H4

2E2(s)Ep(s) =
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