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ABSTRACT

Shell structures have been used in construction for many years to span over large columnless
spaces. New forms and variations on old ones have become popular in construction. The
structural action of shells facilitates the efficient use of materials. The wide variety of shapes
available results in aesthetically pleasing structures that enclose flexible space.

There are many approaches to the analysis and design of shell structures. The laws
governing the behavior of general shell structures are given by the mathematically intensive
general shell theory. The theory is valid for any shell under any loading condition, but
requires the use of highly advanced mathematics to arrive at a solution. The membrane
theory neglects the bending stresses in shells and simplifies the process of analysis
considerably. But the membrane theory is only valid under special conditions.

This thesis aims to 1) provide the reader with an introduction to various methods of shell
analysis, and 2) to examine the effects of certain parameters upon the occurrence of bending
in shell structures. The use of the approximate method and computer based finite element
analysis are explained in detail. The parametric analysis is intended to provide some insight
as to the influence of certain geometrical properties on the stress systems of shell structures.

THESIS SUPERVISOR: JEROME J. CONNOR
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CHAPTER 1

INTRODUCTION TO SHELL STRUCTURES

1.1 Introduction

The purpose of this thesis is to study the effects of boundary conditions on the stress

distribution in shell structures and to provide a summary of analysis methods. In order to

accomplish this objective, this paper will 1) discuss the general properties of shell

structures, 2) introduce methods of analysis, 3) analyze a few simple problems to

determine the relationship between certain variables and the stress distribution in shells.

Before the behavior of shell structures can be thoroughly investigated, a few key terms

must be defined. The remainder of Chapter 1 introduces the definition of a shell, the

geometric notation generally used to describe shells, and the force systems present in

shells.

There are several approaches to the analysis of shells, all of which use the general theory

of shells as a basis. Assuming small deflections and linear elastic behavior, the complete
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mathematical formulation governing the behavior of shells can be obtained by solving the

equilibrium and force-displacement relationships. The derivation of the general

equations is summarized and a discussion of the practical issues involving the use of the

general theory is included in Chapter 2.

Membrane Theory is often used to analyze shell structures. Membrane Theory neglects

certain terms and therefore greatly simplifies the complex mathematics that inhibit the

use of the complete mathematical formulation based on the general shell theory. The

assumptions made, however, render the membrane solution to be valid only under

specific conditions. A description of the simplifications of the Membrane Theory and a

discussion of the limitations are included in Chapter 3.

The approximate method provides a solution technique that can be applied to general

shell problems without solving the complete formulation. In this approach, the solution to

the complete mathematical formulation is split into two parts: the primary solution and

the edge zone solution. The primary system solution is given by the Membrane Theory,

but it will generally not be compatible with all boundary conditions. The edge zone

solution is then determined to ensure compatibility. The details of this approach are fully

explained in a Chapter 4.

Shell structures are ideal candidates for computer-based finite element analysis. A

variety of finite element programs are available to the practicing engineer. Although the

details may vary, the general approach is similar for all programs. This method first

entails the creation of a computer model. The program then provides a solution and the

results must be interpreted. A variety of topics ranging from modeling strategies to the

convergence of the solution are introduced in Chapter 5.

The approximate method of analysis is illustrated by a case study in Chapter 6. The

spherical shell under symmetrical loading is the subject of the case study. The geometry

of the spherical shell allows for many simplifications that permit a clearer illustration of
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the stress distribution. A similar example is analyzed using the finite element program

ADINA. The model conceptualization and generation are described, and the finite

element based solutions are compared to those obtained with the approximate analytical

formulation.

A parametric analysis provides the reader with some insight into factors that influence

the bending stress distribution in the shell. The size of the edge zone defines the

influence of boundary conditions upon the shell system. Several geometric properties are

varied and the consequent effect on the size of the edge zone is discussed.

1.2 Definition of a Shell

The typical modem structure consists of an arrangement of beams and columns. The

loads in such a structure are collected by the flooring or roof system and distributed into

the beams. These beams then transmit the vertical load from the point of entry to the

ends of the beam. At this point the load is transferred into the columns. The load is then

transmitted along the column length to the foundation system, where it is distributed into

the ground surface. In the analysis of the beams and columns, these elements are treated

as lines with a certain cross section. The stresses acting on the cross section can then be

calculated based upon a number of simplifying assumptions. These structural elements

fall into the category of the linear, or one-dimensional, members. At the other end of the

spectrum is the three dimensional elastic continua. Without any geometric limitations, no

simplifying assumptions can be reasonably made (Flugge, 1973).

In between these two extremes lies the class of structures known as two-dimensional

surface structures. Surface structures are, like linear members, capable of transmitting

loads from one point to another. Whereas the load path in a linear member is along the

line, the load path in a surface structure is along the surface. Included in this class of

surface structures are plates and shells. Both are defined as having one dimension,

namely the thickness, significantly smaller than the other two. The definition of a plate
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requires that its entire surface lie in a plane. On the other hand, a shell is defined as a

curved surface structure (Pfluger, 1961).

1.3 Geometry of Shells

The shape and dimensions of a shell must be

defined mathematically in order to establish the ha/f shell thickne'ss Extrados

system of equations governing its behavior. In

general, a shell structure is composed of solid

material formed to a specific shape. This shape Middle-
surface

can be defined by the middle surface, which
Intrds

bisects the thickness of the shell at every point.

The shell thickness is defined as the distance
Figure 1-1 The shell middle surface

perpendicular to the middle surface between the

outer surfaces of the shell. The direction that is perpendicular to the middle surface is

referred to as the shell normal.

Shell structures can be of many shapes and forms. The middle surfaces can be defined

analytically as a shell of revolution or a shell of translation. In addition, some shells are

of forms that cannot be described analytically. Considering only one class of shell

structures, however, can best provide an introduction to the behavior and analysis of shell

structures. The shells of rotation are well suited for this purpose, as they minimize the

complexity in geometry and notation and may therefore provide the reader with a clear

insight to the behavior of shells.

A surface of revolution is created by the rotation of a curve about an axis lying in the

same plane. The curve is referred to as the meridian. The axis is referred to as the shell

axis. Parallels are the lines created by bisecting the middle surface of the shell with a

plane that is perpendicular to the shell axis. The most common example of a shell of

rotation is the dome.



Shell axis

Figure 1-2 Surface of revolution

The location of any point on the dome can be given by the intersection of a meridian and

a parallel as shown in the Figure1-2. The meridian is identified by the angle 0 of its plane

from some designated datum plane. The parallel is identified by the angle $ that the shell

normal makes with the shell axis.

1.4 Force Systems in Shells of Rotation

Before the complete mathematical formulation is given, the basic force system present in

shell structures is examined. This can be best accomplished by means of a comparison.

Consider an arch and a dome as shown in Figure 1-3. A uniform load on the arch

produces virtually no moment as long as the support does not constrain the normal

displacement. If the loading is not uniformly distributed, however, then a bending

moment is present. The dome carries the uniform loading much the same as the arch

does. The forces in the dome that correspond to the forces in the arch are called the

meridional forces.

12



Arch

It

Surface load

Edge load

Dome MA arch moment

MD -dome moment

Figure 1-3 Dome vs. Arch

Also present in the dome are forces that act along the parallel direction. These forces are

called hoop forces. As Figure 1-3 shows, these forces have no vertical component and

therefore cannot directly resist the vertical loading.

The effect of the presence of these hoop forces is seen when observing a dome under

partial load. Whereas the arch develops a bending moment, the dome carries the load

without the occurrence of a bending moment. The hoop forces physically restrain each

arch section of the dome from bending. It is from the existence of these hoop forces that

shell structures derive their remarkable properties.

If a horizontal loading is instead applied at the base of the arch, an equal and opposite

force at the other base must be present. The only means of transferring the load is up and

over the apex and down to the opposite support. A bending moment therefore develops

throughout the entire arch. The dome, on the other hand, subjected to a similar horizontal

force, can handle this loading in a much different way. As the moment increases from

the edge, the hoop forces again restrict the bending and quickly dampen out the moment.

13



Whereas the edge conditions effect the entire system in the arch, only a region is effected

in the dome. This exhibits another phenomena of shell structures: the concept of an edge

zone.

Many factors determine the size of the edge zone for a particular shell. This thesis aims

to investigate the relationship between certain parameters and the occurrence of an edge

zone. The parameters to be considered are the type of edge effect, the angle of opening,

the shell thickness, and loading. Before the effects of these parameters on shell behavior

can be investigated, however, the derivation of the general equations governing shell

behavior and the various analysis methods to be used must be discussed.
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CHAPTER 2

GENERAL SHELL THEORY

2.1 Introduction to General Shell Theory

The equations of equilibrium and the stress-strain law provide the basis for any method of

analysis. For the analysis of shell structures, the general equations must be set up for the

equilibrium of a differential element of the shell and also for the compatibility of the

strains of adjacent elements. Before the system of equations governing shell behavior

can be formulated, however, certain terms must be defined and the assumptions must be

stated.
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2.2 Definitions and Assumptions

N

Mx N

Fu 2-1 The di a s

y IF

ay_ +dyyl"

Figure 2-1 The differential shell element

a~ x

x

dx

-ryx + -d

The system of forces and moments that act upon the differential shell element can be

described as stress resultants and stress couples acting per unit length of the shell middle

surface. These forces are defined below and are shown as they act upon the element in

Figure 2-1.

N,= Jax1 iz
h ry

NX, = f 1X I- z
h y}

h ry

h rx

NY = J-r, 1 - jz
h x

Q, = fr,, 1 z
h x
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M, = f Y z 1- z z M, = f oI-,1 z dz
h ry h rx

M,= - T,z 1- dZ z MY= ryxz 1-Z dz (2-1)
h ry h rx

Because the shell thickness z is generally much smaller that the terms rx and r, the terms

involving z/rx and z/r, can be neglected when either added to or subtracted from unity.

And since rxy= yx

Nx= Nyx

M = - MYX (a)

It is assumed in the formulation that the deflections under loading are small so that the

changes in shell geometry do not change the state of equilibrium. It is also assumed that

the shell material behaves as a linear elastic material. This establishes a direct linear

relationship between stress and strain in the shell. Two assumptions used in elementary

beam theory are also applied here: 1) that plane sections remain plane after bending, and

2) deformations due to shear are neglected.

Now that the key terms have been defined and the assumptions have been stated, the

general theory of shells can be formulated in the following five steps (Billington, 1965):

1) Determine the equilibrium equations for a shell element (five equations with

eight unknowns).

2) Establish the strain - displacement relationships (six equations with three

unknowns).

3) Establish the stress - strain relationships by assuming material properties

(three equations with six unknowns) and then deriving force - strain equations

(six equations with three unknowns).

4) Transform the force - strain relationships into force - displacement equations

(six equations with six unknowns).

17



5) Obtain the complete formulation by combining the force - displacement

equations with the equilibrium equations (11 equations with 11 unknowns).

2.3 Equilibrium

N xy.

N1+- dax M xy

N +daMV + da,

N~" +4 dacQ+ a

M y+ da

N, + dad M

Figure 2-2 Stress resultants and couples

Figure 2.2 shows the differential shell element and the stress resultants. The equilibrium

of the shell element is established with the six conditions:

I X = 0 I2M,= 0

I Y = 0 I M, = 0

I Z = 0 Mz = 0 (2-2)

Because of (a) in (2-1), X M, = 0 is dropped, and (2-2) reduces to five equations and 8

unknowns. The complete formulation of the equilibrium equations has been derived

(Billington, 1965) and is given as:

__ _a _a __ aa a~a~
X(N,a,)-N, +N,, a + Na-Q X _Q _ '+paxa,=0

aa, da 3a, aa, ry r,

j Ba x a a a a aa-(Na-N N + N, N + N,ay )- QX - Q, + p~axa, = 0
aY a X aa aa, rAY ry

daa a\aa aa aa
-(Q a, (Qa,)+ N, Y+N +N +N +p axa,

a, aaY r r r r,
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-) (Max)+MX - '+ (Ma,)+Qyaxa,=0
Bay( aa, Y a a, aa,

-- a M a, + M ,a L + M, aa (M,a, )+ Qxaxa, = 0
a ( M a ) M aa , _a -a , a 0 (2-3)

where ax and ay represent the radii of curvature for the shell in each respective direction.

2.4 Strain - Displacement Relationships

w
x

W+k da,
" ±

xe

xV:

(a)

Figure 2-3 Shell element after deformation

Figure 2-3 shows the differential shell element after deformation. The displacements are

given as the components u,v, and w that corrrespond to the directions xy, and z

respectively. The extensional strains at the middle surface are then defined as the strain

in each direction, Exo and Eyo, and angular shear strain yxyo, and are given as:

1 au v a w
ex = -- +±

,0 ax aa, axa, da, r,

1 av u aa, w

ay aa, axa, aa, r,

19



1 av 1 au u Da v Da, 2w (2-4)

ax ax a, Da, axa, Da, axa, aax r

The element also expereinces a strain due to bending. These strains are defined as the

changes in curvature and are given as:

_X I a, $, aa,
axDax aay Dx

a, aa, axa, aa,

a, aa, a, a, axa, aa, axa, aaX

where the rotatations are: (2-5)

u aw v

r, axaax r,

v a + u

r, aaa, r,

2.5 Stress - Strain Relationships

The strain relationships formulated above provide expressions for the strain at the middle

surface of the shell. In order to derive the stress - strain relationships, expressions for the

strain through the thickness of the shell must first be given. Since the element coordinate

system is defined such that the z direction coincides with the shell normal, any point

along the shell thickness is given by the z-coordinate. The strain at any point z in the

shell is then:

E,= EO - Z,

E -z,

X 'O - 2z~xy (2-6)
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It now becomes necessary to define certain material properties so that the relationships

between strain and stress may be derived. As stated earlier, the formulation of general

shell theory is based upon the assumption that the material is linearly elastic, isotropic,

and homogeneous. The material properties that define a linear elastic isotropic material

are Young's modulus E and Poisson's ratio v. The stresses in the shell can then be

related to the strains as:

E
U- = 11_2 e )

E

1r,, = ry (2-7)

Substituting (2-6) into (2-7) and then the result into (2-1) obtains the stress resultants and

stress couples:

N, = K(Eso +vEyo )

N, = K(E yo +vex,,)

N = Gh n0

Mx - -Dig, +vy2,

M, = -D&, +±vc)

M, =-M ,, = D(1- Oz, (2-8)

where

K = E
1- 2

G =E
2(1+ v)

El?
D = ' (2-9)

12(1- v 2

K is called the extensional rigidity, G the shear modulus, and D the bending rigidity tor

the shell.
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2.6 Force - Displacement Equations

The expressions in (2-4) and (2-5) for the extensional and bending strains as functions of

the displacements can be substituted into (2-8) to get the force - displacement

relationships:

1 au v a w 1 av u Da, w
N = K -- + _ + --- v- +__

a, aa, axa, aa, r, a, Ba, axa, da r,

1 av u aY w 1 au v Oa W
NY = K -- + _+v - + _

a, Ba, axa, 3aa ry adax aa, aa, r,

NXv=N =GhI av au u Da v Oa, 2w
a, Ba, a, aa, axa, Ba, axa, Baa rX

(2-10)

MX = -D rOx + O a +V --- +
ax a, axa, aa, ay a, axa, aaX

1# i Da 1 apx # aaxMX = -D - + +V __+
a, aa, axay aaX ax ac axay a,

MY = Myx D(1-v i i$, 1 # aa, x, aaY
2 a, aa, ax ax axay a, axay ax

2.7 Practical Issues

The six equations of (2-10) and the five equations of (2-3) provide a system of 11

equations with 11 unknowns: five stress resultants, three stress couples, and three

displacements. The stresses and displacements of any shell can be obtained by reducing

the system of equations in (2-3) and (2-10) to one equation with one unknown. This

general theory is seldom used in practice however. The reduced equation is a linear

eighth-order partial differential equation and is extraordinarily difficult to solve. As a

result, most methods of analyses attempt to simplify the mathematics.
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CHAPTER 3

THE MEMBRANE THEORY

3.1 Simplifications of the Membrane Theory

The equations of equilibrium for the shell element generally contain ten unknowns - the

stress resultants and stress couples - and six equations. The system is therefore statically

indeterminate. As a result, deformation must be considered in order to obtain a solution.

The Membrane Theory avoids the complexities involved with solving the statically

indeterminate system by reducing the number of unknowns from ten to four. This results

in a statically determinate system that can be solved directly. The Membrane Theory

accomplishes this by neglecting all normal shears, bending moments, and twisting

moments in the shell. This simplification of the system is based on the tendency of the

shell to resist loading by means of hoop and meridional forces as introduced in Chapter

1.4.

The equations of equilibrium given by (2-3) then reduce to:

23



(N'a,)- N' + N' + - (N' ax)+ pxaxay 0

~3 Ba a 3a
aa X Yaa ,ay ay

a (N'a)- N' a + N' ' + - (N',a, )+ paa, = 0
Bay aa, aa, aa,

N' N' N' N'
+ + + +p± =0 (3-1)

r, rX, ry ry

The prime marks indicate that the stress resultants act only in the plane of the shell and

are only approximations of the actual stress resultants that would be obtained from the

solution of (2-3) and (2-10). The solution can then be found for a specified geometry and

loading by solving (3-1).

3.2 Limitations

The validity of the results obtained by the Membrane Theory depend upon a number of

conditions. First, the boundary conditions must be compatible with the conditions of

equilibrium. Second, the application of the loading must be compatible with the

conditions of equilibrium. These conditions are well revealed through a simple static

analysis of a few examples (Pfluger, 1961).

N

Eage
element

a) Incompatible b) Compatible

Figure 3-1 Compatibility of boundary conditions with the Membrane Theory
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Figure 3-1 shows the shell edge with two different boundary conditions. The system

depicted in (a) is free to translate horizontally. There is therefore a component of the

reaction that acts normal to the shell surface at the edge. Yet the Membrane Theory

neglects all forces that act out of plane, so the element is out of equilibrium. The

boundary condition displayed in (b) supplies a reaction that acts only in the plane of the

shell. Therefore, the support is compatible with both the Membrane Theory and the

conditions of equilibrium.

a) Incompatible b) Compatible

Figure 3-2 Compatibility of point loads with membrane forces

Figure 3-2 shows a shell under a concentrated load at the apex. The system in (a) cannot

resist the load without bending because the meridional forces of the infinitesimally small

element at the apex have no vertical components. If, however, the size of the element

taken were to be larger, a vertical reaction could be generated due to the curvature of the

shell. This implies that the loading should be distributed smoothly over the shell surface

for the Membrane Theory to be applicable. The membrane forces in the element at the

apex in (b) have a a vertical component and may therefore be compatible with a point

loading.

Now consider the case of a shallow shell subjected to a smoothly distributed load. As the

radius of curvature of the shell approaches infinity, the shell becomes a plate. Under

Membrane Theory, this shell possesses no internal force systems capable of contributing



to the vertical equilibrium. Clearly, either normal shear or bending must occur in order

for the plate to carry the loading. Thus the Membrane Theory is not applicable to plates.

As the previously discussed examples have shown, the Membrane Theory is not suitable

for all shell analyses. While the assumptions of the Membrane Theory clearly simplify

the mathematics involved in the solution of shell problems, they do not fully explain the

behavior of shells. Under certain circumstances the Membrane Theory may provide the

complete solution to a shell problem. Under different circumstances, however, serious

incompatibilities may occur and a more rigorous analysis method must be employed.
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CHAPTER 4

THE APPROXIMA TE METHOD

4.1 Analysis Method

The complete mathematical formulation given in Chapter 2 theoretically provides an

approach to the solution of general shell problems. In practice, however, the complex

mathematics involved with this approach restricts its use. The Membrane Theory, on the

other hand, greatly simplifies the solution process, but in doing so, it restricts its

applicability to only a select few problems. Typically, the shell problems encountered by

the practicing engineer do not fall under the category of shells that can be solved

completely by the Membrane Theory. At the same time, the typical practicing engineer

does not have the capability to solve the complex system given by the general theory. A

method of analysis is needed that is both applicable to general shell problems and

simplifies the mathematics involved in the solution. One such method is the so-called

"approximate method" (Flugge, 1973).

27



The solution to the complete formulation would consist of two parts: the homogeneous

solution and the particular solution. The particular solution includes all terms involving

the loading and can for many shells be reasonably approximated by the Membrane

Theory. The homogeneous solution then contains the relations that ensure the

compatibility of the boundary conditions with the conditions of equilibrium. So, the

approximate method of shell analysis generally consists of the following steps(Billington,

1965):

1) The particular solution is found by assuming that the load is resisted entirely

by membrane forces.

2) The resulting forces and displacements at the boundary conditions will

generally not be compatible with the solution obtained for the particular

solution.

3) Therefore, additional forces and displacements must be introduced to the

boundaries such that the total solution is compatible with the actual boundary

conditions. These additional forces and displacements are called the edge

effects.

4) The magnitude of the edge effects are calculated such to remove the errors of

the particular solution at the boundaries.

The computation of the displacements due to the edge effects is based upon the fact that

the resulting bending stresses decrease rapidly with increasing distance from the edge.

As a result, the edge effects are only approximations and thus the method is called the

"approximate method."

4.2 Beam Analogy

The general procedure employed in the approximate method to analyze shell systems is

called superposition. This method is frequently used to analyze indeterminate structures.

The following example illustrates the basic concepts of this method.
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A,
L

A B r 1

a) b)

VB

P2 MB 3

A A3

c) d)

Figure 4-1 Beam analogy - approximate method

Consider a bending beam that is subjected to a distributed triangular load. Both ends are

fixed as shown in Figure 4-la). The reactions at each end consist of a force and a moment

and the structure is therefore statically indeterminate. The problem can be solved in the

following way:

1) Consider the system to be composed of the three determinate systems as

shown in Figure 4-1.

2) Neglecting the fixity at B as shown in Figure 4-tb), first calculate the

deflection and rotation at B due to the applied triangular loading. These

values are found to be:

A l = # 1 E = (4-1)
15EI 12EI

3) Next consider the cantilever beam without the triangular loading as shown in

Figures 4-1c) and d). Determine the displacements at B due to a normal load

VB and end moment MB. The calculated response is given by:

V& VL
A VB 2 B 2

3EI 2EI
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A3 MBL #3 _ B
2EI EI

4) The boundary conditions of the system require that the displacement and the

rotation at B both are zero. The values of the end actions at B can now be

found by solving the compatibility equations of the system for the variables

VB and MB. The compatibility equations are given by:

Al +A2+A3 =0 WL VB 3  MB 2

15EI 3EI 2EI

SwL2 VBL 2  MBL -0 (4-3)
12EI 2EI EI

And solving (4-3) for VB and MB:

3w wL (44)
10 15

The negative sign on MB indicates that the moment is applied in the opposite direction as

previously shown in Figure 4-id). It is important to note that superposition provides the

exact solution to the beam example. The displacements due to the end actions are exactly

those given by Bernoulli beam theory.
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CHAPTER 5

COMPUTER BASED FINITE ELEMENT METHOD

5.1 Procedure

The analysis of complex structures is essentially carried out in the three following steps:

1) selection of a mathematical model, 2) solution of the model, and 3) the interpretation

of the results. Computer based finite element programs are frequently used for the

creation and solution of the model. It is often necessary to use a finite element program

to analyze complex systems in a cost-effective manner. The recent advances in the

computer industry have made the computer based finite element programs not only

viable, but also easy to use. There are several programs available to the practicing

engineer, but the general approach is roughly the same:

1) A model must be conceptualized that accurately represents the physical

characteristics of the structure and the applied loading.

2) The model must then be created and solved in the finite element program.

3) The results must be interpreted.
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The conceptualization of the representative model is required in both computer-based and

conventional analyses. The engineer models a physical structure as an assemblage of

elements with certain properties. Assumptions are made that simplify the mathematical

model to a point where it can be solved. An example of this process in conventional

analysis is the idealization of a beam. In reality, a beam is a three-dimensional object, yet

in classical Bernoulli beam theory, certain assumptions are made that allow the beam to

be modeled as a line with specified cross-sectional properties. The same procedure must

also be followed before a complex structure may be analyzed using a finite element

program. The accuracy of the solution is limited by the selection of the model. If a model

is created that does not accurately represent the physical structure, the solution obtained

does not accurately depict the behavior of the actual structure, but only of the model.
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The creation of the model in the program generally begins with the definition of the

geometry. Either a two- or three-dimensional coordinate system may be used, depending

upon the conceptualization of the model. If, for example, a building is to be modeled as a

three-dimensional wire-frame, then points are specified as nodes and lines are drawn to

connect the nodes. For complex structures, however, the geometry is often imported

from a CAD system.

Once the geometry of the model has been defined, it must be "meshed" with elements.

The element types are chosen based upon a number of considerations and are then

applied to the model. Element types range from three-dimensional solid elements to one-

dimensional truss elements. Material properties must be specified and assigned to each

element.

The loading and boundary conditions must also be applied to the model. Loading is

normally specified as some combination of concentrated point loads, distributed line

loads, or spatially distributed pressures. The boundary conditions are modeled by

restricting the appropriate degrees of freedom at certain nodal points.

Once the model generation is complete, it can be solved. The computer programs employ

a numerical procedure to arrive at a solution and an output file is generated. The

numerical procedure is commonly known as the finite element method. The details of the

numerical procedure have been presented (Bathe, 1996). Any further discussion of the

theory behind the finite element method is beyond the scope of this thesis.

The solution output must then be interpreted. Most finite element programs display the

results in some graphical form. If the solution does not make physical sense, it is then

necessary to refine the model. Once an acceptable output has been obtained, the analysis

is complete.
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CHAPTER 6

CA SE STUDY - SPHERICA L SHEL L BY

APPROXIMA TE METHOD

6.1 Approximate Method - General Procedure

The approximate method of shell analysis can be best illustrated by a case study. This

method provides the analyst with a solution that is both applicable to most shell problems

and mathematically feasible. As stated earlier, the approximate method consists of the

following steps:

1) The particular solution is first obtained by the Membrane Theory.

2) The errors of the membrane solution at the boundaries are calculated.

3) The effects due to unit edge loads at the boundaries are approximated.

4) The magnitudes of the edge effects are determined to ensure compatibility at

the boundaries.

This case study focuses on a spherical shell with a fixed base due its simplicity in

geometry. Before the approximate method can be applied to this problem, however, the

applicable equations must be specialized for the case of the spherical shell.
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6.2 Membrane Theory for Spherical Shells

The spherical shell is a surface of revolution with a constant radius of curvature a over

the entire surface. It now becomes convenient to define the differential spherical shell

element in polar coordinates as shown in Figure 6-1.

Axis of rotation

x<dO

N' N N

N

N

00(

, =6a , = roN r, =a ro =asn# N , =N

* a.

a, =# a, = ao r, = a N' =a sn N'= N'

Therefore, the equations in (3-1) simplify to:
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N' r, ar 3(N',ro )aNl - + N00 + + poroa = 0

3a o 00 , o aN

-NOr N1 o + aO a + poroa = 0
Nr 0 +_ N'JN

N +p =0 
(6-1)

a

If the loading is also symmetrical about the shell axis, then no terms vary with 0 and the

Membrane Theory reduces to:

d (N' ro ) , dro
d5- N9 +pjroa =0do p d#

N' + N + (6-2)0 0+pz =0(62
a

The solution to (6-2) is then of the form:

,' R
N' = -____

21zro sin #

N' = - p, (6-3)
S2ma sin 2 # sin

where R is the total vertical load above the cirle defined by the parallel circle # and is

given by:

R = f(,O sin #+ pz cos# X2rr )d# (a)

The Membrane Theory solution for the stresses of any spherical shell under axisymmetric

loading can be found by first calculating R by (a) and then the stresses by (6-3).

The displacements from the Membrane Theory for spherical shells under axisymmetric

loading can be found by first finding the extensional strains and then calculating the

displacements. For the purposes of this thesis, only the displacements at the edges are
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needed. These are given as the horizontal translation ASH and the rotation AO and are

derived from the strain equations in (2-4) as:

AH= asino #(N' - vN')
Eh0

Cot ' 1 v) d AH
0 Eh 0a d sin p

(6-4)

6.3 Effect of Edge Forces on Spherical Shells

As previously stated, the approximate method consists of splitting the solution of the

general theory solution into two parts: the membrane solution for the surface loading and

the bending solution for edge effects. The general equations for the forces and

displacements in spherical domes loaded by uniform edge forces have been approximated

derived and are presented in Table 6-1 (Billington, 1965). The coordinate system and

notation used in these equations is shown in Figure 6-2.

Table 6-1 Stresses and disnlacements resultin2 from ediee effects

H +- Me

No - cot(a-)sinae sin -KH - cot(a-ye- sin(AV)Ma

N - 2Zasin e qf sin AK -v - 2 2 e' sin  (A - f -a

4 a

MA e sin( )H .si e - sin)T ) + AqJM -

A 4)

AH 2aA sin 2 aH 2A sin 2 a M
Eh Eh "

Aa 2A2 sin a H 4ASMa
Eh Eah
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ct

Figure 6-2 Notation used in equations of Table 6-1

The exponential decay term e-xvf in the equations of Table 7.1 can be physically explained

as the damping in the system. The rate at which the edge effects are damped out in the

system is dependent upon the damping parameter X. The magnitude of X is determined

by the geometry and material properties of the of the shell as:

2L2
A4= 3 (1 - v2 a )

h
(6-5)

6.4 Problem Definition

A spherical shell on a fixed base is subjected to a uniform gravity load over the entire

dome surface. The dimensions of the shell, material properties, and loading are as

follows: h
a= 100 ft

h = 4 in.

a= 30 0

r= asina=50 ft

v = .167

q = 100 psf

- radius of curvature

- shell thickness

- angle of opening

- radius of parallel at base

- Poisson's ratio

- uniformly distributed load

Figure 6-3 Case study
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6.5 Membrane Solution

The membrane stress resultants shown in Table 6-2 are calculated using (6-3) where:

p, = qsin #

PZ = qcos#

R = sin#+ p, cos ,2rr )d#

=2ra2qf (sin#0#

2ra2q(1-cos#)

Therefore, the stress resultants at any angle yf are given by:

N = aq
1 + cos(a - V)

1 -
1+ cos~a - )

cos(a -q )

where: ip = a -#

Table 6-1 Membrane Theory solution for stress resultants and

couples (Units: kips/ft and ft-kips/ft)

V (deg) W (rad) N'$ N'0 M$
0 0.000 -5.359 -3.301 0.00
1 0.017 -5.334 -3.412 0.00
2 0.035 -5.311 -3.519 0.00
5 0.087 -5.246 -3.817 0.00

10 0.175 -5.155 -4.241 0.00
20 0.349 -5.038 -4.810 0.00
30 0.524 -5.000 -5.000 0.00

6.6 Edge Zone Solution

The membrane solution is incompatible with the boundary conditions in the actual

problem. The errors at the boundaries consist of the dome-edge translation and rotation.

These values are obtained from (6-4) and are given as:
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A = a<2q 1+v -cosa sina = -3600 q
HEh sl+cosa E

A 0 = aq (2 )+ vsin a = 32 5q
Eh E

Determining the edge forces and moments that are required to satisfy the equations of

compatibility can eliminate the errors of the membrane solution. The general procedure

is to first calculate the displacement and rotation of the edge due to unit edge forces, and

then to determine the size of the correction forces by solving the equations of

compatibility. The displacements and rotations due to unit edge forces are given by the

equations in Table 6-1 as:

AH (H =1)= D 3400
E

AH (Ma= 1)= D 2 =D 2 1 - 1540
E

1390
A,(Ma=1)= D 22 =

E

The magnitude of the edge forces H and M, can now be found by solving the equations

of compatibility. The fixed base boundary condition requires that the dome edge neither

rotates nor translates. Thus, the equations of compatibility are:

A H=0=HD +M D +A
H11 a 12 HO

Aa=0=HD2 +MaD22 + Aa

the solution of which leads to:

H = 235 lb/ft

Ma = -280 ft-lb/ft

The influence of these edge forces is restricted to an area of the shell called the edge

zone. The equations in Table 6-1 can again be used to calculate the effect of the edge

forces at any point in the shell. The results of these calculations are shown in Table 6-3.
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Table 6-3 Effect of edge forces on stress resultants and couples (Units: ft-kips and

ft-kips/ft)

N$ NO M$
w (deg) H M H M H M

0 0.866 0.000 22.636 10.248 0.000 1.000
1 0.327 -0.212 14.074 3.715 0.573 0.881
2 -0.003 -0.274 7.229 -0.031 0.712 0.642
5 -0.195 -0.124 -1.236 -1.866 0.282 0.073

10 0.001 0.017 -0.301 0.007 -0.031 -0.027
20 -0.001 -0.001 0.000 -0.004 0.001 0.000
30 0.000 0.000 0.000 0.000 0.000 0.000

6.7 Complete Solution

The values for the stress resultants and stress couples can now be found throughout the

entire shell by adding the edge zone solution to the membrane solution. These results are

tabulated in Table 6.4.

Table 6-4 Complete Solution by Approximate Method

(Units: ft-kips and ft-kips/ft)

w (deg) N'$ N'o M$
0 -5.156 -0.893 -0.282
1 -5.198 -1.166 -0.114
2 -5.234 -1.819 -0.014
5 -5.257 -3.581 0.045
10 -5.160 -4.314 0.000
20 -5.038 -4.809 0.000
30 -5.000 -5.000 0.000
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Meridional Forces - N'
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Figure 6-4 Meridional stress distribution by Membrane Theory and approximate method

Figure 6-5 Hoop stress distribution for Membrane Theory and approximate method
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Bending Moments - M'
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Figure 6-6 Bending moment distribution by Membrane Theory and approximate method

Figure 8-2, Figure 8-3, and Figure 8-4 display the stress resultants in the shell as obtained

by both the Membrane Theory, and the approximate method. Notice how the two

solutions are only different for the area of the shell near the edge. The edge effects are

damped out rapidly. The area effected by the edge forces is known as the edge zone. The

influence of several parameters upon the size of the edge zone is discussed in Chapter 8.
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CHAPTER 7

CASE STUDY: COMPUTER BASED
FINITE ELEMENT ANA L YSIS

7.1 Computer Based Finite Element Analysis

The objective of this chapter is to illustrate use of the finite element program ADINA for

the analysis of shell structures. An ADINA analysis typically begins with the definition

of the actual problem to be solved. A model must be created that accurately represents

the problem. Next, the model must be solved. Finally, the solution to the model must be

interpreted. If the results are not satisfactory, the model must be refined. In ADINA, the

convergence of the solution generally depends upon the type of elements used, the mesh

density, and the number of nodes per element.
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7.2 Problem Definition and Model Conceptualization

Figure 7-1 Three-dimensional physical problem

The problem to be analyzed is a spherical concrete dome with a rigidly supported edge.

A uniform gravity load of 90 pounds per square foot is distributed over the entire shell

surface. The radius of curvature of the shell mid-surface is 94.5 feet. The radius of the

circle that defines the edge is 44.25 feet. The rise of the dome is roughly 11 feet. The

shell thickness is only 4 inches.

A complex three-dimensional problem is difficult to construct and costly to solve. The

symmetry of both the structure and the loading allows for a great simplification. The

three-dimensional problem can be accurately represented by a two-dimensional

axisymmetric analysis.

axis of rototion

Figure 7-2 Two-dimensional axisymmetric problem

The simplified axisymmetric problem is depicted in Figure 7-2. Boundary conditions

shown represent the rigid support at the edge and the conditions of symmetry at the apex.
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In other words, the apex is free to translate in the z-direction, but it is fixed in both the y-

translation and x-rotation.

7.3 Model Generation and Solution

The selection of elements is very important in attaining an accurate solution to the

simplified problem. The best element for this problem is the ADINA axisymmetric shell

element. This element is a two-dimensional isobeam element that accounts for the

axisymmetric hoop strain and stress that occurs in the model. There are 2-, 3-, and 4-

node isobeam elements. Isobeam elements are more effective than axisymmetric 2-D

solid elements for this problem, because the 2-D solid elements often lock in shear when

used to model a thin shell (ADINA R&D Inc, 1998).

Geometry and boundary conditions are defined in ADINA as specified above. The

master degrees of freedom in the system are restricted to z-translation, y-translation, and

x-rotation. Concrete can be modeled in the analysis as a linearly elastic isotropic material

with an elastic modulus of 1000 ksi and a Poisson's ratio of .1667. The shell thickness is

specified as 4 inches. The loading is applied as the z-component of a 90 psf pressure

along the line of elements.

The elements are defined in ADINA as axisymmetric isobeam elements and are set to

calculate the stress and strain response of the structure. The mesh to be used is specified

by dividing the line into elements. The line can then be meshed with 2-, 3-, or 4-node

elements. The initial mesh to be analyzed consists of ten 2-node elements. More refined

meshes are also generated by increasing the number of nodes per element and by

increasing the mesh density. Datafiles are created and a solution is obtained for each of

the meshes.
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7.4 Interpretation of Results

The solution for each mesh can then be examined in ADINA-PLOT. The deformed

shape of the shell can be compared to the original shell geometry. Stress distribution in

the shell, however, is the objective of this project. Stresses at various points can be

displayed by ADINA in a list. An analytical solution to this problem has been obtained

to use as a basis for comparison. The analytic solution has been obtained by an

approximate method as explained in Chapter 6.

The complete approximate solution is then composed of the following three stress

resultants: 1) hoop stress - N, 2) meridional stress - No, and 3) bending moment - MO.

In ADINA, the stresses corresponding to

the hoop and meridional stresses are

stress-TT and stress-RR, respectively.

These stresses are calculated along the

elements at various integration points.

The quantity and location of integration

points in each isobeam element vary

depending upon the number of nodes. No

Bending moments are not explicitly

shown in the output of ADINA for the Figure 7-3 Stress resultants and couples

isobeam elements, but can be estimated

based on the distribution of stress-RR through the thickness of the shell. This meridional

stress distribution is given by the stress at the integration points of the isobeam element.

The 2-, 3-, and 4-node elements all use Gauss 2-point integration along the s-direction.

Integration along the r-direction is taken at 1 point for the 2-node element, 2 points for

the 3-node element, and 3 points for the 4-node element. Figure 7-4 displays the location

of the integration points for the isobeam elements.
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3-Node 4-Node

Figure 7-4 Gauss Integration points for the isobeam elements

Since the stresses are given at each of the integration points, the finite element solution

can be compared to the solution obtained by the approximate method only after

converting the stresses RR and TT into stress resultants and bending moments as given

by the approximate method solution. The stress resultants and bending moments for each

solution are shown in the graphs on the following pages. The effect of the mesh density

and number of nodes per element on convergence of the finite element solution is also

discussed for each resultant.
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7.5 Bending Moment

The moment distribution in the finite element solution is very close to the approximate

method solution regardless of the number of nodes per element and mesh density. The

moment is a maximum of roughly -0.2 ft-kips/ft at the boundary edge, when Vw= 00. It is

completely damped out by y= 100.

Figure 7-5 Moment diagrams for ten and twenty element meshes
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7.6 Meridional Stress

The meridional stress resultants of both the ten and twenty element meshes generally

follow the same trend as the approximate method solution. Values for the FEM solutions

are slightly lower though. The behavior of the 2-node elements varies near the apex of

the dome. This is due to the singularity of the model at the apex and the linear

distribution of stresses in the 2-node elements. The singularity occurs because the area

upon which the stress acts approaches zero at the axis of symmetry. The 3- and 4-node

elements can more effectively deal with the singularity at the apex due to their higher

order stress distributions along the r-direction.

Meridional Stress Resultants - Ten Elements
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Figure 7-6 Meridional stress distribution for ten and twenty element meshes
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7.7 Hoop Stress

The hoop stress solution is roughly equivalent for the different meshes used and the

approximate method. The general trend in the hoop stress distribution is to increase

radically from the edge and then level off at a peak value of around 4 kips/ft near the

apex of the dome.

Hoop Stress Resultants - Ten Elements
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Figure 7-7 Hoop stress distribution for ten and twenty element meshes

CL

z

z

51

30.0

30.0



CHAPTER 8

PARAMETERS AFFECTING THE SIZE
OF THE EDGE ZONE

8.1 The Edge Zone Solution

The edge zone can be defined as the area in a shell in which bending is present. The size

of the edge zone is dependent upon numerous parameters. The bending moment in a

spherical shell is a function of the shell geometry, Poisson's ratio, and the edge forces at

the boundary conditions. The edge forces, however, are dependent upon the loading and

geometry of the shell. As the previous examples have shown, the bending moment is

damped out as the distance from the edge increases. It is the purpose of this chapter to

illustrate the effect of certain geometric parameters on the size of the edge zone.

The edge zone solution is generally a result of boundary conditions. Under the

Membrane Theory, the entire shell is assumed to be free from bending. If the shell

boundary conditions are compatible with the membrane solution, then there is no bending

in the shell at any point, and the edge zone is non-existent. If on the other hand, the
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boundary conditions are not compatible with the membrane solution, then there is an

additional edge zone solution that includes bending. The equation for the bending in a

shell is given from Table 6-1 as:

M, = sin ae-' sin 2 H + /eY' sin 97 + Ma (8-1)

where:

A4 = 3(1-v2a

8.2 Effect of Curvature on the Edge Zone

Considering the problem analyzed in Chapter 8, the effect of changing the shell geometry

upon the edge zone is examined below. The equation for the bending moment is given in

Table (8-1). The damping coefficient A determines the distance from the edge at which

the edge effects are effectively diminished. The values of H and Ma determine the initial

magnitude of the oscillating moment. By changing A, the designer can define the region

of the shell that will experience bending.

The effect of the curvature on the distribution of bending in the shell can be examined by

changing the angle of opening. The span of the dome is held constant at r, = 50 ft. The

radius of curvature a of the dome can then be varied by changing the opening angle a.

When ais small, the dome is very shallow. When ais 900, the shell is an exact

hemisphere.

For each value of a, the horizontal force H and the moment Ma at the edge must first be

calculated. The bending moment can then be found at any parallel defined by the angle Vw

by calculating (8-1). The point at which the bending moment is effectively damped out

marks the border of the edge zone. The angle gVfranges from zero at the edge to a at the
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apex of the dome. Since a changes in each case, it is convenient to obtain the bending

moment at different values of qf/a, which are expressed as percentages.

The bending moment distributions in shells of various opening angles are plotted in

Figure 8-1 and Figure 8-2. The effect of the angle of the shell on the size of the edge

zone is clear: as the angle decreases and thus the shell becomes shallower, a larger

percentage of the dome experiences bending moments. If the angle of the shell were to

be infinitesimally small, then the shell would be a flat circular plate, and bending would

be experienced throughout the entire surface.

Bending in Fixed Base Spherical Shells
for Opening Angles from 5 to 30 degrees

% of distance from Edge to Apex
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1
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Figure 8-1 Influence of curvature upon edge zone size for shallow shells
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Figure 8-2 Influence of curvature upon edge zone size for deeper shells

A change in the sign of the moment occurs somewhere between a= 450 and a= 60'.

This is in the general area of the shell in which the hoop stress approaches zero. Above

this point, the hoop stress is compressive, and below this point, the hoop stress is tensile.

At this point the errors due to the membrane theory are relatively small, and only small

edge forces are required to ensure compatibility. As a result, the edge zone solution has a

small effect on the overall system. Yet the small effect is nonetheless distributed over a

larger area of the shell than that of the larger edge moment in the 600 shell. This

illustrates that the size of the edge zone is independent of the magnitude of the edge

forces. Only the magnitude of the oscillating moment distribution is dependent upon the

magnitude of the edge forces.
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8.3 Effect of Shell Thickness on the Edge Zone

Now consider the effect of the shell thickness on the edge zone. The span is again held

constant at r, = 50 ft. The shell angle is also held constant at 300. The shell thickness h

can now be varied from 2 inches to 2 feet. The results are plotted in Figure 9-3.

Bending in Fixed Base Spherical Shells
for Varying Shell Thickness
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Figure 8-3 Influence of shell thickness upon edge zone size

The plots in Figure 9-3 show that the edge zone size increases with increasing shell

thickness. The bending rigidity of the shell is directly related to the shell thickness. As

the thickness increases, the bending rigidity of the shell increases. If the shell is very
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thin, its bending stiffness is small, and the loading will be resisted mostly by membrane

forces. As the thickness of the shell is increased, the bending rigidity increases and more

of the shell will begin to resist the loading through bending action as well as membrane

action.
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