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Abstract

This thesis presents a series of protocols for authenticating an individual's membership in a group
without revealing that individual's identity and without restricting how the membership of the group
may be changed. These protocols are built on top of a new primitive: the verifiably common secret
encoding.

This thesis provides a construction for this primitive, the security of which is based on the
existence of public-key cryptosystems capable of securely encoding multiple messages containing the
same plaintext. Because the size of our construct grows linearly with the number of members in the
group, techniques are described for partitioning groups to improve performance.

Client and server software was developed to provide transparent authentication transactions.
This software served to explore practical questions associated with the theoritical framework. It was
designed as a plug in replacement for use by applications using other authentication protocols.
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Chapter 1

Introduction

Authentication systems serve to permit a specific person or groups of people access to a resource

while denying access to all others. Because such systems surround us each day, we often don't notice

them or their salient features. But when you use your house key, walk past a security guard at work,

or log into a computer, you are using an authentication system. Use the wrong key, forget your

badge, or mistype your password and access will be denied.

Sometimes when you perform an authentication transaction it is important that you in particular

are being authenticated. For instance, when withdrawing money from your bank account. But in

other authentication transactions all that is important is that you are a member of some specific

group. Authenticating membership in a group is a common task because privileges, such as the right

to read a document or enter a building, are often assigned to many individuals. While permission

to exercise a privilege requires that members of the group be distinguished from non-members,

members need not be distinguished from one another. Indeed, privacy concerns may dictate that

authentication be conducted anonymously.

For instance, subscription services such as The Wall Street Journal Interactive Edition [34] re-

quire subscribers to identify themselves in order to limit service to those who pay, but many sub-

scribers would prefer to keep their reading habits to themselves. Employee feedback programs, which

require authentication to ensure that employees can report only on their satisfaction with their own

supervisor, also stand to benefit from enhanced privacy. Adding anonymity protects those employees

who return negative feedback from being singled out for retaliation.

Most existing systems that authenticate membership in a group do so by identifying an individual,

then verifying that the individual is a member in the specified group. The requirement that an

individual must identify herself to authenticate her membership can be eliminated by distributing a

single group identity key (a shared secret) to be used by all group members. However, this approach

makes supporting dynamic groups unwieldy: whenever an individual is removed from the group,
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a new group identity key must be distributed to all remaining members. Not until every member

receives this key can authentication be performed anonymously.

This thesis articulates the requirements for a new type of authentication system, one which

authenticates an individual's membership in a group without revealing that individual's identity

and without restricting the frequency with which the membership of the group may be changed. It

further details an implementation that meets the requirements, using a construct called verifiably

common secret encodings'.

Verifiably common secret encodings are a primitive that allow us to cast authentication properties

as properties of a restricted type of public-key crypto system. Using this new primitive, this thesis

builds anonymous authentication systems for dynamic groups in which a trusted party may add and

remove members of the group in a single message to the authenticator. It also shows how group

members may replace their authentication keys if these keys should become compromised. These

protocols ensure that even if a key does become compromised, all previous and future transactions

remain anonymous and unlinkable. This property is called perfect forward anonymity.

In addition to a theoretical framework, I have done an implementation to explore the practical

questions that arise when using verifiably common secret encodings for authentication. This is the

first implementation of the system, and as such serves as a reduction to practice and proof of con-

cept. The implementation provides client and server software to support transparent authentication

transactions designed to be used as a primitive by higher level protocols. After authenticating, the

client and server make available a private, authenticated, bidirectional communication channel for

further communications.

1 The original work on verifiably common secret encodings [30] was done jointly with Stuart Schechter
(stuartOpost.harvard.edu) and Alex Hartemink (aminkOmit.edu). Chapter 2 reflects the joint work.
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Chapter 2

Theoryl

This chapter introduces the verifibly common secret encoding and presents theoritical results using

the new primitive. Section 2.1 introduces some notation and conventions. Section 2.2 presents a set

of requirements for anonymous authentication protocols. Section 2.3 defines a verifiably common

secret encoding and lists the operations supported by this primitive. Section 2.4 uses these encodings

to create an elementary anonymous authentication protocol. Section 2.5 extends this elementary

system to provide key replacement. Section 2.6 gives a trusted third party the ability to add and

remove group members by communicating only with the authenticator. Section 2.7 shows how to

encode, decode, and verify VCS vectors, an implementation of verifiably common secret encodings.

Finally, section 2.8 describes how to scale anonymous authentication for very large groups. This

chapter and the next assume the reader is familiar with basic cryptographic primitives2

2.1 Conventions

Throughout this paper, any individual requesting authentication is refered to as Alice. The au-

thentication process exists to prove to the authenticator, Bob, that Alice is a member of a group,

without revealing Alice's name or any other aspect of her identity. When a trusted third party is

needed, he is called Trent.

All parties are assumed to have a public-key pair used for identification. Public keys are rep-

resented using the letter p and secret (or private) keys using the letter s. For any message m and

key p, let {m}p represent public-key encryption or the opening of a signature. For any message m

and key s, let {m}, represent public-key decryption or signing. Symmetric encryption of message

m with key k is represented as Ek [m]. When necessary, messages to be signed are appended with a

'This chapter was originally published [30] as joint work with Stuart Schecter of Harvard and Alex
Hartemink of MIT.

2Readers not familiar with cryptographic primitives such as public key cryptosystems or certificates are encouraged
to read a general introduction to the subject before proceeding. [31] is an excellent starting point.
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known string to differentiate them from random strings. Messages sent by either Bob or Trent are

also assumed to include a timestamp.

The set P is a set of public keys associated with a group. An individual whose public key is in

P is called a member of P. More precisely, a member of P is an individual possessing a secret key

s corresponding to a public key p E P, such that for the set M of messages that may be encoded

using p, Vm E M, m = {{m},}.. To be authenticated anonymously is to reveal only that one is a

member of P. This definition of anonymity provides privacy only if there are other members of P.

We thus assume that the set P is public knowledge and that one can verify that the public keys in

P are associated with real individuals.

Finally, assume that all communication takes place over an anonymous communication channel [5,

1, 25, 26]. This prevents an individual's anonymity from being compromised by the channel itself.

2.2 Requirements for Anonymous Authentication Protocols

The following three requirements are essential to anonymously authenticate membership in P.

SECURITY: Only members of P can be authenticated.

ANONYMITY: If an individual is authenticated, she reveals only that she is a member of

P. If she is not authenticated, she reveals nothing.

UNLINKABILITY: Separate authentication transactions cannot be shown to have been

made by a single individual.

Note that the above definition of anonymity is the broadest possible, since security requires that

only members of P can be authenticated.

The authenticator may choose to compromise security by authenticating an individual who is

not a member of P. Similarly, an individual may choose to forfeit her anonymity by revealing

her identity. Therefore, it is safe to assume that authenticators act to maintain security and that

individuals act to preserve their own anonymity.

The above requirements do not account for the fact that membership in P is likely to change.

Moreover, people are prone to lose their keys or fail to keep them secret. For a system to be able to

address these concerns, the following requirements are also needed:

KEY REPLACEMENT: A member of P may replace her authentication key with a new

one and need only confer with the authenticator to do so.

DYNAMIC GROUP MEMBERSHIP: A trusted third party may add and remove members of

P and need only confer with the authenticator do so.

To make membership in P dynamic, a third party is trusted to add and remove members. If this

third party is not trustworthy, he can manipulate the set P to reduce anonymity. For instance, if
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he shrinks P so that the group contains only one member, that member's identity will be revealed

during her next authentication transaction.3

2.3 Verifiably Common Secret Encodings

Begin with a set of public keys, P. Recall the definition of member of P to be an individual possessing

a secret key s corresponding to a public key p E P. A verifiably common secret encoding e, of a

value x, has the following properties:

SECRECY: Only members of P can decode e to learn x.

COMMONALITY: Any member of P can decode e and will learn the same value x that

any other member of P would learn by decoding e.

VERIFIABILITY: Any member of P can determine whether commonality holds for a given

value e, regardless of whether e is properly constructed.

This primitive can be manupulated using the following three operations:

e - ENCODE(x,P)

X - DECODE(e, s, P)

is Common - VERIFY(e, s, P)

In the next three sections, these three functions are used to build anonymous authentication proto-

cols. Section 2.7, provides a concrete algorithmic implementation for these functions.

2.4 Anonymous Authentication

This section presents a simple anonymous authentication protocol that satisfies the requirements of

security, anonymity, and unlinkability. It establishes a session key y between Alice and Bob if and

only if Alice is a member of P. The protocol will serve as a foundation for more powerful systems

providing key replacement and dynamic group membership to be described in Sections 2.5 and 2.6.

This protocol requires that Bob be a member of P. If he is not, both Alice and Bob add Pbob to

P for the duration of the authentication transaction.
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(1)

(2) Ey [{ENCODE(X, P)}sbb]

(3) E. [x]
(3)

Figure 2-1: An Elementary Anonymous Authentication Transaction

2.4.1 The Authentication Protocol

Before the authentication transaction in Figure 2-1 commences, Alice randomly selects a session key

y. She then encrypts y with Bob's public key to form message (1). This message, which represents a

request for authentication, may also be augmented to specify the group in which Alice's membership

is to be authenticated.

In response, Bob randomly picks x. He creates a message containing a verifiably common secret

encoding of x, signs it, and then encrypts with the session key y. He sends this to Alice as message (2).

Alice decrypts the message and verifies Bob's signature to reveal a value e. If VERIFY(e, salice, P)

returns true, Alice is assured that e is an encoding that satisfies commonality. Only then does she

use DECODE(e, Salice, P) to learn x. If VERIFY(e, Salice, P) returns false, Alice cannot be assured that

e satisfies commonality and halts the transaction.

In message (3), Alice proves her membership in P by encrypting x with the session key y. Upon

decrypting message (3) to reveal x, Bob concludes that Alice is a member of P. Authenticated,

private communications between Alice and Bob may now begin.

Alice may later wish to prove that it was she who was authenticated in this transaction. Ap-

pendix A shows how Alice may request a receipt for this transaction. With such a receipt in hand,

Alice may, at any point in the future, prove the transaction was hers.

2.4.2 Satisfying the Requirements

Secrecy ensures that only members of P can decode e to learn x. Security is therefore maintained

because an individual is authenticated only when she can prove knowledge of x. By requiring that

Bob be a member of P we prevent Bob from staging a man in the middle attack in which he uses

Alice to decode a verifiably common secret encoding that he would not otherwise be able to decode.

3 In the case that a trusted third party cannot be agreed upon, anonymity can still be protected by imposing rules
governing the ways in which P can be modified. These rules should be designed to prevent any excessive modification
of P that might compromise anonymity. Violations of the rules must be immediately detectable by an individual
when she receives changes to the membership of P during authentication.

11
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Commonality guarantees that any member of P can decode e and will learn the same value x

that any other member would learn by decoding e. If Alice is certain that e exhibits commonality,
it follows that by using x to authenticate her membership, she reveals nothing more than that she

is a member of P.

Verifiability is required so that Alice may prove for herself that the encoding e exhibits com-

monality, even though she did not create this encoding. Thus, by sending message (3) only when

VERIFY( returns true, Alice ensures that her authentication will be both anonymous and unlinkable.

If Bob should be malicious and attempt to construct e in a way that would allow him to discover

Alice's identity from her decoding of e, verification will fail. Alice will halt the transaction before

she decodes e. Since message (2) must be signed by Bob, Alice can use the signed invalid encoding

as proof of Bob's failure to follow the protocol.

The authentication transaction appears the same regardless of which member of P was authen-

ticated. As a result, even an otherwise omniscient adversary cannot learn which member of P was

authenticated by inspecting the transaction. Thus, even if Alice's key is compromised before authen-

tication, the transaction remains anonymous and unlinkable. We call this property perfect forward

anonymity.

2.5 Key Replacement

In the protocol above, Alice uses a single key pair (p, s) to represent both her identity and her

membership in the group. Because she uses the same key pair for both functions, an adversary who

compromises her secret key s can not only authenticate himself as a member of P, but can also pose

as Alice in any other protocol that uses s. Ideally, compromising the key used in the authentication

process should not compromise Alice's identity. By using two key pairs, one to represent her identity

and one for authentication, Alice significantly reduces the potential for damage should she lose her

authentication key. Using two key pairs for the two separate functions also enables Alice to replace

a lost authentication key.

The pair (p, s) continues to identify an individual. Each member of P now generates an authen-

tication key pair (p', s') for each group in which she is a member. Because of the severe consequences

of losing s, it is safe to assume that s is kept well guarded. Because only s' will be needed during

the authentication transaction, only the case where an authentication key s', not an identity key s,
is lost or compromised is considered. When s' is lost or compromised, the individual can disable the

key and obtain a replacement by conferring only with the authenticator.

In order to validate her public authentication key p', each member uses her secret identity key

s to sign a certificate c = {p'}.. This certificate can be opened to reveal the public authentication

key as follows: {c}, = {{p'},}, = p ' .
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To initialize the system, all members of P send their certificates to Bob. Bob collects all the

certificates to form the set C. The set of public authentication keys, P', can then be generated by

opening each certificate in C: P' = {{ci},p : ci E C}.

2.5.1 Modifications to the Authentication Protocol

The only modification to the authentication protocol is to require Bob to add the set of certificates

C to message (2). The augmented message will be labeled (2a):

Alice Bob

Ev [{C, ENCODE(x, P')}b,]
(2a)

From the set of certificates C and public identity keys P, Alice computes P' using the technique

shown above. She then verifies e using VERIFY(e, s'alice, P'). If the encoding exhibits commonality,

Alice learns x from DECODE(e, S 'alice, P ).

2.5.2 The Key Replacement Transaction

If Alice believes her secret authentication key has been compromised, she simply generates a new

authentication key pair, creates a certificate for the new public authentication key, and sends that

certificate to Bob. Bob returns a signed receipt to Alice acknowledging the new certificate. Since

we assume that Bob acts to maintain security, we expect him to use Alice's new certificate and

authentication key.4

2.6 Dynamic Group Membership

This section describes how a trusted third party, Trent, may be given sole responsibility for main-

taining the set of certificates C. To this end, Alice requires that any C used by Bob be signed by

Trent. During the authentication transaction, message (2a) is replaced by message (2b):

Alice Bob

Ey [{{C}Sref, ENCODE(X, P')}Sbo]
(2b) 4

If Alice is to be granted membership in P, she generates an authentication key pair, creates

the certificate calice, and sends it to Trent who updates C and distributes a signed copy to Bob.

4 Even if Bob fails to use the new certificate, Alice can either proceed using her old key (in the case that it was
compromised and not lost) or can use the signed message (2a) as proof of Bob's failure to use the new certificate.
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To remove Alice from P, and thereby prevent her from being authenticated, Trent simply removes

Alice's certificate calice from C and distributes a signed copy to Bob. In both cases, Bob and other

members of P can compute the new P' using P and the new set of certificates C.

2.7 Constructing Verifiably Common Secret Encodings

This section shows how to use public-key cryptography to construct verifiably common secret en-

codings that we call VCS vectors. Assuming that Mi represents the set of messages that can be

encrypted by a public key pi E P, the set of messages that can be encoded as a VCS vector for

group P is M = (lMi.

A VCS vector encodes a value x as follows:

2+- [{},1, {x}p2,---,{}p. ] where n = |P

Encoding, decoding, and verifying VCS vectors can be performed by the following three functions:

_ [{},1, {xjp2, -- -, {x},,] zE M
ENCODE(x, P): e +- D V

DECODE(e', Si, P): X +- {s [i]},

VERIFY(6, si, P): is Common <- 6 = ENCODE(DECODE(e, si, P), P)

When using VCS vectors, secrecy holds only if x is not revealed when encrypted multiple times

with different public keys. This is not true of RSA with small exponents or Rabin [16, 15, 9]. For

this reason, caution must be exercised when selecting a public-key encryption technique.

Commonality holds because any secret key corresponding to a key in P can be used to decode e

to learn x. Decrypting e[i] with si yields the same secret x for all i.

Any member of P can use DECODEO to learn x from e and then re-encode x using ENCODEO

to obtain a valid encoding of x. Because ENCODEO generates a valid encoding, commonality will

hold for this re-encoded vector. If the re-encoded vector equals the original vector e, then e must

also satisfy commonality. Hence, as long as ENCODEO is deterministic,5 any member can verify the

commonality of any encoding e. Consequently, verifiability is satisfied.

That the VERIFY( operation can be expressed as a simple composition of the ENCODEO and

DECODEO operations is a general statement, independent of how a verifiably common secret encoding

is constructed. For this reason, if ENCODEO and DECODE() operations can be devised for which

5 Probabilistic encryption [14, 3] may still be used under the random oracle model. In this case, make the ENCODE()
function deterministic by using its first input parameter, the secret x, to seed the pseudo-random number generator
with O(x).
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commonality holds, verifiability becomes automatic. Thus, the implementation-specific definition of

VERIFY( can be replaced with a general definition:

VERIFY(e, s, P): isCommon +- e = ENCODE(DECODE(e, s, P), P)

2.8 Making Anonymous Authentication Scalable

The number of entries in a VCS vector grows linearly with the number of members of P, as does

the time required to generate, transmit, and verify the entries. This growth could make anonymous

authentication impractical for very large dynamic groups.

This issue can be addressed by authenticating using subsets of P. Individuals will now remain

anonymous and unlinkable only among the members of their subset rather than among all members

of P. Because membership in a subset of P implies membership in P, security is not affected. Two

ways of assigning subsets are: random generation of single-use subsets during each authentication

transaction and the use of a static assignment algorithm.

2.8.1 Single-Use Subsets

During each authentication transaction, Alice selects a subset of P at random. To ensure her

membership, Alice augments the subset to include herself. She sends this subset to Bob when

requesting authentication. Alice and Bob then use this subset in place of P for the remainder of the

protocol.

Alice picks her subset of P at the time she initiates the authentication transaction. If she has

limited long-term storage, she can select the subset by picking keys in P by their indices. She then

requests keys in P from Bob by index at the start of the authentication transaction. To prevent Bob

from sending fraudulent identity keys, Alice maintains a hash tree of the keys or their fingerprints.

Alice must be cautious when using single-use subsets. If external circumstances link two or more

transactions, Alice is anonymous only among the intersection of the subsets used for authentication.

2.8.2 Statically Assigned Subsets

Subsets may also be assigned by a static algorithm such that each member of P is always assigned

to the same subset Pi C P where U Pi = P. These subsets may change only when members are

added or removed from P. As above, Alice uses Pi wherever she previously would have used P.

Even if Trent picks the subsets, he may do so in a way that unwittingly weakens anonymity or

unlinkability. Using a one-way hash function, preferably generated randomly before the membership

is known, ensures that no party can manipulate the assignment of individuals to subsets.
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2.9 Summary

This chapter began by developing simple set of requirements needed to perform anonymous authen-

tication of membership in dynamic groups. We explored a primitive, the verifibly common secret

encoding, that has the necessary properties to meet the requirements. Then, using this primitive

and its associated operations, we developed a full featured protocol that can performs the neces-

sary authentication transaction. Further, we provided a basic theoritical implementation, the VCS

Vector, that implements the methods required by the abstract verifibly common secret encoding.

Finally, because VCS Vectors scale linearly with the size of the group they encode for, we discussed

some strategies to accomodiate large groups by using two different subgroup techniques.
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Chapter 3

Implementation

The verifibly common secret encoding framework is theoretically applicable to many practical au-

thentication problems. Users of the Wall Street Journal Interactive Edition, riders on local mass

transit, or MIT community members accessing a campus building would all benefit from a VCS style

authentication mechanism. The benefits of anonymity and unlinkability are strong motivation for

such a system from an individual's perspective, and the key replacement and dynamic membership

make the system attractive from the authenticatior's perspective also. The question is, are verifibly

common secret encodings as attractive in practice as they are in theory? This chapter presents client

and server software written to implement verifibly common secret encodings and VCS vectors. The

software is an attempt to answer the above question and to explore the problems any implementation

will confront.

Section 3.1 discusses the high-level goals of this implementation and its role in other systems.

Section 3.2 explores the extent of the implementation, including difficulties encountered with the

various tools used. Section 3.3 details the various module implementations. Section 3.4 answers the

questions posed here regarding practicality. This chapter concludes in Section 3.5 with a look into

possible future works based on this implementation.

3.1 Goals

As noted above, the overarching goal of this implementation is to begin to answer the question, is

VCS style authentication practical for real world systems? To answer this question, I identified 3

key sub-goals:

Proof of Concept The VCS framework is firmly grounded in sound theoretical principals, but

the difference between theory and practice is much wider in practice than in theory. This

implementation serves as initial proof of concept or reduction to practice of the ideas presented
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in Chapter 2.

Identify Problem Areas Security products are notoriously difficult to use. The initial implemen-

tation forces the identification of the difficulties any implementation will face. An important

goal was to provide a framework that not only identified the problem areas, but provided

model solutions as well.

Effective API Authentication software is never an end in and of itself. Instead, this type of soft-

ware is built into a browser, smart card or some other system for use whenever authentication

is required. Therefore, an authentication package should allow a variety of client software to

use the authentication code. This meant designing an effective API on both the client and

server side for use in many different environments.

These three goals are necessary, but not sufficient, to determine whether VCS style authentication

is practical for real world systems. This implementation is not designed to show the absolute speed

of VCS in an optimimized design. To perform that evaluation would require many assumptions

about the ultimate client and server hardware, as well as the number and frequency of authentication

transactions. Further, the tools used here have shortcomings that preclude their use in most systems.

Instead, this implementation provides some broad data about the type of hardware necessary, and

the types of systems others should consider good candidates. Also, this implementation was not

designed to be production quality. Some key features are missing, and a more demanding threat

model would likely necessitate changes. See Section 3.5 for a discussion of these changes.

3.2 Design Decisions

3.2.1 Java and the Java Cryptography Extensions

The Java programming language is used for my implementation, a choice which has pros and cons.

On the good side, Java runs on a variety of platforms. I wanted this implementation to be useful in

many environments, and the easiest way to achieve this goal was to use a cross-platform language.

Other laundry-list Java benefits include ease of implementation, 00 design, networking support,
and maintainability.

Aside from the normal benefits of Java, security applications in particular benefit from Java's

library support for cryptography. The Java Cryptography Extension (JCE) is now a standard

extension for the Java 2 platform and provides an implementation independent way to access cryp-

tographic primitives [19, 22]. Using the JCE allows high level abstraction and permits the primitive

cryptographic work to be done by different modules depending on need. Thus if 100% Pure Java is

a goal, you may choose a cryptographic provider that uses only Java in its implementation. If raw
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speed is required, simply plug in a different provider that uses C or assembler. Switching between

the two requires no source code changes'.

The major technical complaint about Java is speed. The garbage collection and runtime array

bounds checking performance penalties are legimite problems in certain applications. However, in

this case the speed issue is mitigated by the ability to use a very fast native implementation for

the core cryptography functions. In addition, Sun's newly announced Java HotSpot Performance

Engine [18] allows server side code to run nearly as fast as C. Section 3.3.2 discusses the speed

impact in relation to the server.

The JCE has its own shortcomings. Most notably, the JCE has no programatic way to create a

certificate. The implications of this are discussed is Section 3.2.3.

3.2.2 RSA Library

The main JCE provider I used for this implementation was the RSA BSAFE Crypto-J library [27],
Version 2.1. This is a commercial library available only inside the US due to export controls. There

were two main reasons for this choice. First, the RSA product is compatible with the Java 2

platform JCE (version 1.2). The Java 2 platform is relatively new and the updated JCE API is

incompatible with previous versions. Crypto-J was the first third-party vendor to support the new

standards. Second, Crypto-J contains public key cryptography primitives, in the form of RSA. Most

other popular JCE providers [19, 20, 11] either support JCE v1.1 or do not contain public key

cryptography primitives, or both. Recently other vendors developed JCE 1.2 products [2, 17, 13],

but their release dates were too late to be included in my implementation. Hopefully in the near

future more providers will support the new JCE API and add RSA primitives when the RSA patent
2

expires

Crypto-J contains both 100% Pure Java and C versions of the core cryptographic functions.

This makes it an ideal candidate for implementations where speed is important. In fact, should

an implementation choose to forgo the JCE framework and use the Crypto-J libraries directly, the

choice between Java and C implementations can be made at runtime. However, this choice ties

the implementation to Crypto-J. Using the JCE provider methods, only the Java version of the

Crypto-J libraries can be accessed.

I attempted an implementation of VCS vectors using the C implementation of Crypto-J. This

might have allowed meaningful performance evaluations of the VCS framework. However, in order

to maintain compatibility with the client and server (implemented in Java), I was forced to store

the RSA keys in a format readable by Java. This caused the C libraries to perform a conversion

1This is only strictly true in cases where the cryptographic providers are statically specified. For dynamically
specified providers, a single line would need to be changed.

2 August 2000.
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between the Java formatted key and the native format every time an RSA key was used. Profiling

results show that the C implementation of RSA was 5-10 times faster than the Java implementation.

However, the conversion between formats was very costly and negated all benefits from using the

native code. If performance is a goal, it is imperative to avoid conversion of keys.

There is currently a major bug in the Crypto-J library that makes its use for VCS authentication

unattractive. Crypto-J uses pointer comparison to determine whether two RSA keys are equal or

not: two RSA public keys with equal modulus and public exponent are only equal if they are stored

in the same memory location. This makes the Java method equals (Object o) essentially useless

for RSA keys. Naturally, this bug impacts performance, since Java uses the equals method for things

like hash table lookup. Crypto-J is therefore not currently a good choice for VCS authentication in

performance critical applications3 .

3.2.3 Key Management

This section looks at how the various key management functions are implemented. The theoretical

framework pushes questions of key management entirely to the implementation, and resolving those

questions is probably one of the hardest problems any implementation will face. One question is how

can an implementation ensure that P is public? This question will be faced by all implementations.

The second major question this implementation faced was how to perform authentications with-

out certificates. As noted above, Java has no programatic way to create certificates. This makes the

authentication key pair mechanism (Section 2.5) impossible to implement. Java can verify standard

certificates created by outside sources and the JDK provides an auxiliary program to create DSA [23]

certificates 4. Still, RSA certificates cannot be created by either the JDK or the Crypto-J library.

Another mechanism is needed to achieve dynamic membership and key replacement.

Making P Public Knowledge

An assumption of the theoretical system presented in Section 2.1 that the set P is public knowledge.

The problem of implementing this requirement is a difficult key management issue. Solutions such as

a web of trust or hierarchical certificates are extremely powerful, but are overkill for the implemen-

tation at hand. This implementation uses a trusted shared repository model. In this model, every

member has access to a single place where all public keys are kept. The repository is trusted in the

sense that if a public key exists in the repository, it is assumed that the key is valid. A repository

model can be implemented as anything from a simple hash table to a full database.

My implementation uses a single shared AFS directory that all clients and the server have read

access to as the repository. The file <principal>.pub is assumed to contain the public key for

3 RSA has been notified of this problem. I expect a bug-fix by the next release.
4 Unfortunately, DSA certificates are useless here since we need the ability to encrypt messages, not just sign them.
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the associated principal. The client and server software are not given modify access to the AFS

directory at runtime, but can freely use any certificate already present. To add a new principal,

an AFS principal with insert access to the directory runs a special program that generates a new

key pair. This design in is line with the idea that identity keys are never lost or compromised

(Section 2.5).

Performing Trent's Job Without Certificates

Trent performs two functions. First, he maintains a list of all current public authentication keys. He

stores these keys as a set of certificates he received from the members of P. Second, he signs the set

of certificates for use during the authentication transaction. Part of this second function is updating

the set of certificates whenever P changes. Since we cannot create certificates, some changes to the

protocol are in order.

Instead of signed certificates, my implementation uses a signed list of all principals currently

in P. That is, in the repository there exists a file (VCS. defaults), that tells both the server

and any clients the current membership of P. This list is signed by Trent. Thus, if the current

repository has user1.pub, user2.pub, user3.pub, and user4.pub, the VCS.def aults file might

contain user1, user2 to indicate that only half of the principals are currently in P. Both the client

and server software check the current list during the authentication transaction. Note that it is

not necessary for any communication between client and server to include the current membership

of P, as is required using certificates. The signed list accommodates dynamic membership, but

fails to provide for key replacement. Trent can easily modify membership by adding and removing

users in the VCS. def aults file. His changes are immediately visible to both client and server, so we

have fulfilled the requirement that at most one message from Trent to the authenticator can occur.

However, key replacement is not satisfied. The only way a key can be replaced in the repository is

for Trent to delete the old key and insert a new key file with the same principal name. However,

there is no authenticated, secure way a member of P can communicate the need to replace their

key if they have lost their old key. There appears to be no way to provide for true key replacement

without certificates. Instead, my implementation forces Trent and the member of P requesting key

replacement to do so outside of the VCS framework.

3.2.4 Extent of Implementation

Without certificates it is impossible to implement the full protocol as described in in Section 2.6.

Instead I use the shared repository described above to dynamically determine the current members

5 An unfortunate name. Current-Membership would be more appropriate. However, the file name can be specified
at runtime, so this is not too much of a concern.
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of P. With this change from certificates to repository, the implementation here models Figure 2-

1. Remember that this version of the protocol meets the security, anonymity, and unlinkability

requirements but (by itself) fails to provide key replacement and dynamic membership. Dynamic

membership is provided for since Trent can modify the VCS. defaults file at will to affect the

current membership. However, as discussed above, key replacement seems to be impossible without

the ability to create certificates.

The current version of the implementation does not provide the receipt mechanism described in

Appendix A.

3.2.5 Threat Model

The threat model for this implementation is for a passive adversary. The adversary is assumed to be

computationally limited and is restricted to passive listening on the communication channel. The

adversary can initiate communications with the authenticator (server), just as any member of P

can. I assume the adversary cannot break the cryptography (RSA and RC4), nor can the attacker

monitor the client and server processes internally as they run.

As noted in Section 2.1, all communication must take place over anonymous channels for anonymity

to be maintained. This implementation does not make use of anonymous channels. Thus an ad-

ditional assumption in the threat model is that the server can neither compromise the client's

anonymity nor link access attempts by examining the routing information from the underlying chan-

nel. This means the client must set up an anonymous channel before beginning the authentication

transaction.

This threat model is appropriate for authentications occurring over the internet where the ad-

versary can listen to packets between client and server at another network node. It would not be

adequate if the adversary was allowed access to either the client or server machines. In those cases

care would need to be taken to avoid leaving keys either in virtual memory or on disk. Java could

not be used in such cases, since it does not allow control over paging6 .

3.3 Module Overviews

This section presents detailed information about the important modules in this implementation.

3.3.1 VCS Vector Implementation

VCS Vectors were introduced in Section 2.7 as the necessary primitive to implement anonymous

authentication transactions in dynamic groups. This section presents changes made to VCS vectors

6Crypto-J includes an obfuscation mode to keep unencrypted keys from being paged to disk, but this feature ties
the implementation to the RSA code.
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necessary to efficiently implement the authentication transaction. Recall that A VCS vector encodes

a value x as follows:

e+- [{x}p 1,{x},p2,-, {x},] where n = |P

The first problem we encounter with the theoretical construct is the decode operation:

DECODE(e, Si, P): x <- {e[i]},

The decode operation assumes the recipient of a VCS vector knows a priori the correct index i. This

may be a reasonable assumption if we were not trying to support dynamic group membership, but

with the ability to revoke members comes some difficulties. The recipient of a VCS vector cannot

be expected to maintain an absolute index relative to an ever changing group.

There are two possible solutions. First, we can impose an ordering on all keys in P and P', then

require that a VCS vector is encoded using that ordering. The ordering might be as complicated

as the natural ordering of the keys based upon their encoded representations, or as simple as the

order in which P or P' is transmitted during the protocol. In either case, the recipient of the VCS

vector will be able to determine the ordering and index into the array of encoded values. A second

solution changes the fundamental representation from an array to a map between key and encoded

secret. The recipient of this encoding merely performs a hashtable lookup on their key to find the

correct encoded value.

Generally speaking, the first solution will be superior to the second. Keys do have a natural

ordering, and the burden associated with maintaining that order on the server is quite small. The

second solution will require that the set P' be transmitted twice in message 2. One time will be

Trent's signed set, and the second will be part of the hashtable. The second solution further requires

additional processing on the client side, since the hashtable must be placed into memory. In general,

the first solution will be superior in most implementations.

Despite this, the second solution is used here. Since we are using the shared repository model,

both the client and server know the current membership of P; there is no particular reason to send

P seperately. However, if we are to remain faithful the the amount of communication bandwidth

required, we should send the set in some form. The current implementation only sends P once, but

does so as part of the hashtable.

But why bother with the hashtable at all? For reasons explained in the next section, two useful

additions to the VCS vector API are:

' - ADD (e, Pbob, X)

' REMOVE (e, Pbob)

23



Add takes a VCS vector, a new public key to encode for, and the secret x and returns a new VCS

vector e. e is equivalent to ENCODE(x, PUpbob). Remove takes a VCS vector, a public key the vector

was encoded for, and returns a new VCS vector e'. This e' is equivalent to ENCODE(X, P\{Pbob}).

The implementation of VCS vector here supports these additional operations, which makes the use

of a hashtable desirable. Rather than use hashtables internally to support add and remove, then

linearize into an array for transmission (and include P seperately) I chose to send the hashtable

between client and server7 .

3.3.2 Server Implementation

The server module corresponds to Bob in Figure 2-1. Its main purpose is to accept connections

from clients and differentiate between authorized users (members of P) and others attempting to

gain access. This module would normally be run by content providers as a gatekeeper to content

such as web pages. When the server authenticates a connection, it returns a private, secure, and

authenticated I/O stream to web server or other content-providing service.

Public Interface

The most important public methods are8 :

Server (String passphrase) This is the constructor for the Server class. This method constructs

a server using typical values for the encryption algorithm, keysize, and TCP/IP parameters.

These values (and others) can all be set after construction using one of the public setter

methods. See the source code for all available options.

static void main(String [ args) The command line version of the server allows detailed de-

bugging of all aspects of the server. When run in this mode, clients are authenticated, but

the private, secure, authenticated I/O stream is discarded after authentication. This mode is

useful for understanding the protocol in a hands-on manner.

void start() The start method tells the server to begin listening for TCP/IP connections from

clients. This method also starts a background thread that populates a cache of VCS vec-

tors for improved performance when clients connect. The start method is not called during

construction by default.

void stop ( The stop method tells the server to stop listening for TCP/IP connections from clients.

All current connections are allowed to complete: no connection is terminated by calling stop.

This method also kills the background cache-populating thread and flushes the cache.

7 The time to linearize the hashtable and the time to reconstruct the hashtable on the client side are about the
same. There is no speed advantage to linearizing.

8Full source code for this and all other classes is in Appendix B.
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Server. Connection getConnection() The getConnection method retrieves an authenticated con-

nection from the server. The Server. Connection returned contains the private, secure, au-

thenticated I/O stream associated for a single client. This method blocks until a client is

authenticated. If more than one connection is ready to be serviced, the oldest outstanding

connection is returned.

addPrincipal (String principal) addPrincipal adds the given principal to P. Connections estab-

lished by clients after this method is called will allow this principal to authenticate. Important

note: the shared repository model requires that the file principal. pub exist in the repository

for this method to succeed.

revokePrincipal (String principal) The inverse of addPrincipal; removes the given principal

from P. Connections established by clients after this method is called will disallow this prin-

cipal to authenticate. This method has no effect if the given principal is not a member of

P.

Life Cycle

Typically, a server goes through the following stages:

1. A server is created.

2. (optional) Any non-default parameters are set with a setter method.

3. The start method is called.

4. Connections are authenticated by the server and handled via calls to getConnection. During

this time users may be added or revoked with calls to addPrincipal or revokePrincipal.

5. The stop method is called.

Optimizations

This server was designed to provide low latency responses both to clients wishing to authenticate

and to higher level code that needs to add or revoke users. From the life cycle above, we expect the

server to spend the majority of its time answering connections and adding and revoking users. To

provide low latency, two different optimizations are needed.

The first optimization is to use a queue of pre-constructed VCS vectors to allow instant responses

to client requests. In the theoretical protocol, Bob, the server, constructs a new VCS vector only after

a client connects. Unfortunately, this leads to high latency from the client's point of view since the

server must do many public key operations to create a VCS vector. Instead, this implementation

uses a seperate thread to populate a cache of VCS vectors for instant use in a connection. This
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optimization allows the expensive public key operations to be performed when load on the server is

low.

Populating the cache in the background is an excellent idea to aid client response time, but

necessitates extending the theoretical VCS vector API with add and remove operations (see previous

section). Performance suffers if we attempt background queueing in conjunction with dynamic

membership without these extensions. In such a case, the cache must be flushed for every add and

remove since the cached vectors will authenticate the old set P. This can lead to performance worse

than not caching at all. We thus optimize addition and revocation by including add and remove in

the VCS vector API.

Other Implementation Notes

Since the server does nothing beyond the bare authentication protocol, it is useful for a wide variety

of applications. It would probably be possible to create an implementation that was more tightly

bound to a particular application (such as web serving) to improve performance and eliminate

complexity. Such a server would be useful in situations where a pre-existing communication channel

was open and needed to be authenticated. This server assumes the connections it establishes are

the start of communication.

The server is optimized for applications where multiple clients will attempt authentication. This

server does a good bit of work at startup to hide latencies during connections. This work is assumed

to be amortized over many connections. Another design should be used if few connections are

expected. Also, because we are designing for many connections, we can achieve near-C like speed

using a compiling Java VM such as Hotspot. These VMs compile often executed code segments

(hotspots) into native code on the fly as execution progresses. Such compilation is claimed to be

performance competitive with statically compiled code. Unfortunately, the Hotspot VM was released

too late to be tested with this implementation.

3.3.3 Client Implementation

The client module corresponds to Alice in Figure 2-1. Its main purpose is to authenticate to the

server on behalf of a user program. This module would normally be run by subscribers or authorized

individuals to gain access to content such as web pages. Unauthorized users can still run this module,

but will be unable to authenticate successfully. After the client is authenticated, it returns a private,

secure, and authenticated I/O stream to the user program.

Public Interface

The most important public methods are:
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Client (String principal, String passphrase) This is the constructor for the Client class.

This method constructs a client using typical values for the server's DNS information and

algorithm parameters. These values (and others) can all be set after construction using one of

the public setter methods. See the source code for all available options.

static void main(String[] args) The command line version of the client allows detailed debug-

ging of all aspects of the client. When run in this mode the client will attempt to authenticate,

then discard the private, secure, authenticated I/O stream immediately after authentication.

This mode is useful for understanding the protocol in a hands-on manner.

void authenticate 0 The authenticate method tells the client to initiate an authentication session

to the server. This method will block either until the client is successfully authenticated or

until the server refuses authentication.

CipherInputStream getCipherInputStream() This method gets the encrypted input channel to

the server, which can be used to receive private, authenticated data from the server after the

authenticate method finished. This method will block until the authentication transaction has

finished.

CipherOutputStream getCipherOutputStream() This method gets the encrypted output channel

to the server, which can be used to send private, authenticated data to the server after the

authenticate method finished. This method will block until the authentication transaction has

finished.

Life Cycle

Typically, a client goes through the following stages:

1. A client is created.

2. (optional) Any non-default parameters are set with a setter method.

3. The authenticate method is called.

4. The private, secure, authenticated I/O streams are used to communicate with the server.

5. The streams are closed and the connection to the server ended.

Other Implementation Notes

Like the server module, the client module does little beyond the bare authentication protocol, which

makes it useful for a wide variety of applications. In the previous section we noted the benefits a

specialized server might have over a generic one. For the client, a generic client is more flexible,
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and specialized versions produced for a specific application (such as web browsing) will offer fewer

benefits than a specialized server.

Unlike the server module, the client module is designed to perform a single authentication trans-

action. This explains the difference in how the client and server return the encrypted communication

channel after authenticating. The server treats the input and output streams as a single connection

and returns both in a single object. The client permits the user to get only the input or output

channel, should they desire.

The client does less work at startup than the server, bit there is a significant one-time penality

associated with the Crypto-J RSA libraries. On the server this cost is amortized over many connec-

tions, but here the startup cost can be a significant portion of the runtime. Because of this. future

implementations need to be aware of the startup cost or to design clients that can perform multiple,

independent authentication transactions.

3.4 Practical Implications

At the start of this chapter we asked the question, are verifibly common secret encodings as attractive

in practice as they are in theory? This section gives some answers to that question using the lessions

learned from the current implementation.

In Section 3.1 we identified three major goals for this implementation: Proof of Concept, Identify

Problem Areas, and develop an Effective API. As to the first, we have seen the ideas developed in

Chapter 2 can be implemented and do work in certain applications. While this implementation is

not an endpoint for development, it does act as an effective guidepost for future implementations.

We have seen some problems that would need to be addressed in future implementations. Among

the more serious concerns is the youth of cryptography libraries from vendors supporting the JCE.

Crypto-J was the first to market with JCE1.2 compliance and public key cryptography, but has

its own drawbacks. It is not yet ready for use in VCS style authentication transactions. The JCE

itself lacks native support for certificates, which is particurally damaging to the key replacement

requirement introduced in Section 2.2.

The final goal, development of an effective API, has been met on both the client and server side.

The inclusion of add and remove methods to the VCS Vector API allows high performance, low

latency server applications. The APIs described in Section 3.3 are generic, clear and simple, and

should provide a starting point for other implementations. As noted above, the client and server

modules developed here could be used for a variety of applications, so the need for another API

might be eliminated.

Looking back to the larger question, what types of systems can perform VCS style authentications

and for what applications? Such systems are most easily differentiated by the hardware the client
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will run on, since we can safely assume server hardware can scale to meet most reasonable loads. It

will be the clients, not the servers, that limit the use of VCS. That said, when VCS authentication

was originally concieved, we saw two major applications: web based access control using PCs and

door/building access using smartcards. Here we add a third client platform, the palmtop computer,
to the discussion.

This implementation was a PC based solution. VCS authentication can be used today on typ-

ical end-user hardware, but only if used in conjunction with subgroups. For group sizes less than

approximately 50, the client software spent almost all of its time doing the initial startup associated

with the RSA code. For groups over 50, informal testing showed a 5 second time increase per 100

users on a SparcStation5 80MHz, which would make subgroups of one or two hundred practical in

many applications. Surprisingly, bandwidth is the most pressing concern. On local ethernet, the

time to transmit the messages between client and server was approximately the same as the time

to do the encryptions. This may be due to conversions taking place in the Java net. io package,
but is still concerning. Users using a modem to access the web attempting VCS authentication will

likely spend more time receiving the encrypted messages than performing encryptions. Still, VCS

authentication could be a viable solution if we assume users will authenticate once per session with

a server.

The palm computing niche is a significant step down from a PC, but still much better than

a smartcard. [12] provides an introduction to the general problem of doing electronic commerce

on these types of devices. Summarizing their relevant results, palm computers can be used to do

electronic commerce in specially tailored environments, but palm computers are not yet capable of

performing demanding public key operations in acceptable times'. Since VCS transactions make

extensive use of public key operations, palm computers are not yet ready for VCS. However, Moore's

Law applies to palm computers too, so they will be powerful enough to perform VCS authentication

in the future.

Smartcard solutions are another story. A typical smartcard today has less than 4K of available

RAM and severely limited processing and bandwidth capabilities. The lack of storage can be worked

around using techniques like hash trees, but these techniques come at the cost of additional band-

width requirements. Smartcards have neither the processing power nor bandwidth necessary to do

VCS authentication, and seem unlikely to be powerful enough for the next 10-15 years. The dream

of walking up to a door with a smartcard and performing an anonmyous authentication transaction

will sadly remain a dream for a good long while.

9 For instance, a single 512 but RSA key generation takes 3.4 minutes on average on a PalmPilot. A 512 bit RSA
signature verify takes 1.4s.
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3.5 Future Work

This implementation leaves plenty of room for future work. This section details some of the directions

other implementations or derivative implementations may want to go.

Add Missing Pieces

Java's lack of a certificate mechanism lead the current implementation to use a modified protocol that

does not fully meet the key replacement requirement. Future implementations should investigate

products and libraries that provide for this important primitive. Alternatively, developing a library

that can create standard X.509 certificates shouldn't prove too difficult a task. Once a certificate

mechanism is in place, the seperation between P and P' should be implemented.

The current implementation does not implement the receipt mechanism described in Appendix A.

Applications that would find this useful will want to provide this functionality.

Integration With Existing Products

The current implementation made no attempt to integrate with existing products such as Apache [33]

or PGP [24]. However, the simple API should allow integration with these and other products.

Apache integration would be the first step towards a web browsing VCS application. An interest-

ing project would be to create a module for Apache that performs the server side VCS authentication

transactions. Part of this project would be to specify in detail the format of the various messages

between client and server. If both these tasks were done, web browsing with VCS authentication

would be much closer to reality.

Integration with PGP might be one way to get certificates into the VCS framework. PGP is

an international standard and widely supported, so it makes sense to use PGP certificates in VCS.

PGP also solves the difficult problem of making P public. PGP keys are easily obtained from public

servers, and the web of trust model employed by PGP addresses the needs of individuals very well.
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Chapter 4

Related Work

The balance between anonymity and security has been a motivating factor in the delevopment of

cryptography for many years. Chaum's paper [6] is usually considered to be a seminal work on the

subject. It that paper, Chaum assumes that institutions collect information about individuals who

use those institutions' systems. He therefore proposes that individuals use different pseudonyms

when conducting transactions with different institutions to prevent those institutions from sharing

information and linking user profiles together. This fails to protect those whose right to use a system

comes from a pre-existing relationship in which their identity is already known. Moreover, Chaum's

approach does not provide unlinkability, leaving open the possibility an individual might reveal her

identity through behaviors that can be profiled.

Syverson et al. [32] introduce a protocol for unlinkable serial transactions using Chaum's notion

of blinding [8]. The protocol is designed for commercial pay-per-use services and relies upon the

possibility that any particular service request may be forcibly audited. An audit requires the indi-

vidual to reveal her identity or risk losing future service. After passing an audit, the individual must

make another request before receiving the service originally requested. If requests are infrequent,

she may have to wait a significant amount of time before making the second request lest the two

requests become linked. This system does not provide adequate anonymity if the timing of any

request indicates its nature, as audits can be made at any time. The system also cannot guarantee

that a revoked individual does not receive service, as that individual may still make a request that

is not audited.

Anonymous identification was first addressed as an application of witness hiding in zero knowl-

edge proof systems [29, 10]. The most efficient such scheme, recently presented by De Santis et

al. [28] in their paper on anonymous group identification, relies on the assumption that factoring

Blum integers is hard1 . While the extension of the protocol into a full system that supports key

'The De Santis et al. work was done independently at the same time as the original work on VCS [30].
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replacement and dynamic groups is not explicitely addressed by the authors, such an extension is

trivial.

For a group of n individuals and an m bit Blum integer, an instance of the De Santis et al. proof

requires communication complexity (2m+n), and rejects a non-member with probability }. Thus, to

authenticate an individual's membership with certainty 1 - () d, (2m + n) -d bits of communication

are required. This would appear to approach a lower bound for such a zero knowledge proof system.

When implementing our current protocol using VCS vectors with k bit encryptions, identification

requires n -m bits of communication. The security of the protocol relies on the existence of a public-

key function that may securely encode the same plaintext in multiple messages with distinct keys. If

the group size n exceeds 2 , then the proof system of De Santis et al. requires less communication.

It is not clear that VCS vectors approach the lower bound for the size of a verifiably common

secret encoding. A better encoding would require a change in cryptographic assumptions, but would

have the potential of improving the efficiency of anonymous authentication protocols beyond that

which is possible using zero knowledge proof systems.

Group signatures schemes [4, 7] give an individual the ability to anonymously sign messages on

behalf of a group. Kilian and Petrank [21] exploit these signatures to create a scheme for identity

escrow. Identity escrow provides anonymous authentication, though an individual's anonymity can

be revoked by a trusted third party. While individuals may be added to the signature groups, no

provision is made for removing members from these groups. Thus, group signatures in their current

form are not a sufficient primitive for anonymously authenticating membership in dynamic groups.
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Chapter 5

Conclusions

Anonymous authentication is an essential ingredient in a new domain of services in the field of

electronic commerce and communication. Real world systems require dynamic group membership

and key replacement.

In this paper we have shown how verifiably common secret encodings may be used to anonymously

authenticate membership in dynamic groups. We have also shown how to replace keys in these

authentication systems. We presented VCS vectors as an example of how verifiably common secret

encodings can be constructed. Because the size of of our construct grows linearly with the size of

the group P, we described how to authenticate membership using subsets of P.

The implementation described here provides client and server software that performs VCS au-

thentication transactions. The software helped answer the question, "are verifibly common secret

encodings as attractive in practice as they are in theory?" We saw that VCS authentication can

be used when the client hardware is as powerful as a typical PC. In addition, the implementation

explored questions about the current state of Java cryptography and produced an API that allows

high-performance implementations.
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Appendix A

Obtaining Proof of Authentication

Alice may obtain a receipt from Bob proving that she was authenticated at time t. To obtain such a

receipt, Alice chooses a random z and uses a one-way hash function h to generate Q +- h ({z}SL)

and R <- h(z). Alice includes Q and R in message (3a):

Alice Bob

Ey [X, Q, R]
(3a)

Bob can issue a receipt when he authenticates Alice. The receipt he sends is:

{ "Q and R reveal whom I authenticated at time t" }Sb.,

If she chooses, Alice can at any later time prove she was authenticated by Bob by revealing the

receipt and the value {z}a.s.c. Anyone can verify the receipt by checking that Q = h({z},s.e) and

R = h ({{z},. }p.,,.).
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Appendix B

Source Code

The following pages contain the full source code for the implementation discussed in Chapter 3.

The most important files are VCS.java, Server.java, Client.java, and VCSVector.java. VCS.java is

the interface which VCSVector.java implements. The other files here include alternative implemen-

tations of the VCS interface (NativeVCS and InsecureVCS), wrapper classes (RSAEnvelope and

BytesWrapper), and a classe that handles RSA key creation (RSAKeyTool).
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B.1 VCS~java

/*0

* VCS.java

*/

package vcs;

import java.io.Serializable;

import java.security.KeyPair;

import java.util.Collection;

**0

* This is the superclass for developing Verifibly Common Secrets

o (VCS). A VCS is the primitive that makes anonymous authentication

* of membership in dynamic groups possible. All VCS implementations

* implement this interface, typically by directly subclassing this

* class.

o <p>The VCS class defines methods to encode, decode, and verify a

o VCS. Typically, a VCS goes throught the following stages:

* <ol>

* <li> VCS is created by a call to <tt>VCS.getlnstance</tt>.

S<li> A secret is <b>encode</b>ed for a set of public keys

* <li> The VCS is transmitted (via Serialization or some other

* echanism) to be decoded.

o <li> <i>(optional)</i> The VCS is <b>verify</b>sd.

* <li> The secret is retreved by <b>decode</b>ing with a private key.

* </ol>

o All general-purpose VCS implementation classes (classes which

a directly or indirectly inherit from VCS) should provide a

S"standard" void constructor which creates an empty VCS, ready to be

* encoded.

* Sauthor Todd C. Parnell, tparnelleai.mit.edu

* Sversion $Id: VCS.java,v 1.7 1999/04/16 23:35:30 tparnell Exp I
*/

public abstract class VCS implements Clonsable, Serializable {

* Get a new VCS object of the specified type. The VCS returned

* will be ready for encoding.

o Sparam className The class name of VCS you wish to create.

*throwe VCSException if the specified class cannot

o be loaded and initilized

*/

public static VCS getInstance(String className)

throws VCSException {

try {f

Class c - Class.forName(clasoName);

return (VCS) c.neowInstance(;

} catch (Exception e) {

throw new VCSException(e.getHessage());

* Encode the VCS for the given secret and public keys. In general,

* encoding a secret in a VCS ensures that the only way to extract

* the secret is to have a private key corresponding to a public key

* in the encoded set. Note that it is entirely possible to encode

* a VCS that the encoder cannot itself decode.

o Sparam secret The secret you wish to encode.

* Sparam keys The public keys used to encode.

* Sthrows VCSException if the secret cannot be encoded with the

* given keys

*/

public abstract void encode(byte[] secret, Collection keys)

throws VCSException;

/**

* Decode the VCS to learn the secret it encodes. This method will

o only work it the supplied private key corresponds to a public key

* used for encoding.

* Sparam pair The Keypair to use for decoding.

* Sparam keys The public keys used to encode.

* Oreturn The secret this VCS encoded.

a *throws VCSException if the VCS cannot be decoded with the

* provided keypair

public abstract byte[] decode(KeyPair pair, Collection keys)

throws VCSException;

/**

* Check the integrity of an encoding. Upon receiving an encoded

* VCS, the recipitant is not certain the encoding is for the group

* of people he thinks it is for, or that the encoding is valid.

* This method verifies both conditions.

* Sparam vcs The VCS to verify.

o Sparam pair The keys used to verify the VCS.

* Sparam keys The public keys used to encode.

o Sthrows VCStxception if keys is not able to determine whether the

* VCS is valid.

o Ireturn true iff the VCS is a valid encoding.

*/

public static boolean verify(VCS vces, KeyPair pair, Collection keys)

throws VCSException {

try {
// create a temp VCS of the same type as vcs

VCS tempVCS - (VCS) vcs.getClassO.newInstance();

// encode using the decoded secret & the keyset
tempVCS.encode(vce.decode(pair, keys), keys);

// compare for equality

return tempVCS.equals(vcs);

catch (Exception e) {

throw new VCSException(s.getMessage());

/**

* Get a new VCS of the default type.

o/

public static VCS getlnstance() {

return new VCSVectorO;
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B.2 Serverjava

* Server.java

package vcs;

import javax.crypto.*;

import javax.crypto.spec.* ;

import java.security.*;

import java.security.cert.*;

import java.security.speco*;

import java.security.interfaces.*;

import java.io.*;

import java.net.*;

import ves.util.*;

import java.util.*;

Globals.DEPAULTVCSCLASS + "\n" +

"\note: ordering between -config and other flags is important";

/**

* Demo program to show server VCS functionality. Extensive command

* line arguments. Rum with -h to see options. Prompts user for

* missing input.

*/

public static void main(String[] args) throws Exception

try {
Security.addProvider(new com.sun.crypto.provider.SunJCE();

Security.addProvider(nw CDM.rsa.jsafe.provider.JsafeJCEO);

Icatch (Exception s) {

System.orr.println("Unable to add crypto providers. Exiting.");

* The server side main program. Servers accept connections from

o Clients and estabilish a secure communication channel. A single

* server listens on a single port and can accept multiple clients.

<p> Typically, a Server goes through the following stages:

Col>

o Cli> The Server is created with a given passphrase.

o <li> <i>(optional)</i> Any non-default parameters are set with a
* setter method.

* <li> The <b>start</b> method is called.

* <ii> Connections are authenticated and handled via calls to

o <b>getConnection</b>.

* <li> The <b>stop</b> method is called.

* </ol>

* Note that the server will disallow further connections if exitating

* connections are not handled by an external controller. To maintain

o availability, any code that creates a Server must call

* <b>getConnection</b> and close the input and output streams

* contained therein.

* Sauthor Todd C. Parnell, tparnelleai.mit.edu

o Oversion $Id: Server.java,v 1.19 1999/04/21 22:39:29 tparnell Exp $

public class Server f

// Class Data & Methods

/** Size, in bytes, of random data in VCSs o/

private static String NONCESIZE - "16";

/** Unique ID counter for connections of

private static int COUNTER - 0;

/** String to tell user how to use the program. of

private static final String usageStr =

"usage: vos.Server [options]\n" +

-h --help : Print this message.\n" +

" -config file : Use file to configure server.\n" +

-v : Operate verbosely.\n" +

-principal name : Use name for authentication. (default: 0 +

Globals.SERVERNAME + ")\n" +

" -noncesize n : Use n byte nonces. (default: " +

Server.NONCESIZE + ")\n" +

-d dir : Use dir to find keys. (default: " +

Globals.PUB.KEYDIR + ")\n" +

-keypass pass : Use pass to unlock private key.\n" +

-port port : Listen on port. (default: " +

Globals.SERVERPORT + ")\n" +

-vesclass class : Use VCS of type class. (default: " +

final Server me - new Servero;

Server.parseArgs(args, me);

Server.getUserInput(me);

me. start();

// deal with closing the streams as they are created

Runnable streamCloser - new Runnable() {

public void run()

while (true) {

Connection c - me.getConnectiono;

try {

c.getCipherlnputStreamO.close(;

c.getCipherfutputStreamO.close();

catch (Exception a) {

} // while

(new Thread(streamCloser)).starto;

// run the control program

BufferedReader br - new BufferedReader(new InputStreamRsader(System.in));

while (true) {

System.out.print("Sslect an option:\n1. Add a user.\n2. Remove a user\n3. Toggle Verbosity.\n4. Exit.\n

String temp - br.readLineO;

if (temp.length() -- 0) continue;

char c temp.charAt();

if (c == 1') {

System.out.print("Name: 0);

String name - br.readLine();

me.addPrincipal(name);

} else if (c -- '2') {

System.out.print("Name: 0);

String name - br.readLino();

me.revokePrincipal(name);

} else if (c -- '3) {

if (me.logStream -- null) me.setLogStrsam(System.out);

else me.setLogStream(null);

else if (c -- 14')

System.exit();

} // while

} main

* Set up server with info from command line.

o Moved to seperate method since it's messy and boring.

a param urge command line arguments

*eparam server the server to st up

private static void parseArgs(String[] arge, Server server)

for (int i - 0; A < arge.length; ++1) {

String option = args[i];

if (option.equals("-port")) {
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try {

server.props.setProperty("SERVERPORT", args[++i]);

catch (Arraylndeoxut~fBoundsException obs) {

Systea.orr.println("Must provide size when specifing keysize. Exiting.");

System.exit(0);

} else if (option.equals("-v"))

server.setLogStream(System.out);

} else if (option.equals("-h") |1 option.equals("--help")) {

System.out.println(Server.usageStr);

System.exit(0);

else if (option.equals("-noncesize")) {

try {

server.props.setProperty("noncesize", args[++iJ);

catch (ArraylndexOut~fBoundsException obe) {

System.err.println("Must provide size when specifing noncesize. Exiting.")

System.exit(0);

private static void getUserInput(Server server) {

while (server.props.getProperty("keypass") - null |1

server.props.getProperty("keypass").equals("")) {

System.out.print("Enter passphrase to unlock private key: ");

try {
BufferedReader br =

new BufferedReader(neow InputStreamRsader(System.in));

server.props.setProperty("keypass", br.readLine());

catch (IDException ios) {

System.err.println("IException reading pasphrase! Exiting.");

System.exit(O);

;//

// Instance fields & methods

//
else if (option.equals("-principal"))

try { /** Where we send our logging output to */

server.props.setProperty("SERVERMAME", args[++i]); private PrintWriter logStream - null;

catch (ArrayIndexoutfBoundException obs) { /** Storage for all the switches */

System.err.println("Must provide name when specifing principal. Exiting.")private Properties props - null;

System.exit(0); /** Manager for all current sessions */

private ConnectionManager manager;

else if (option.equals("-d")) { /** Object to watch for connections from clients */

try { private Listener listener;

server.props.setProperty("PUB.KEYDIR", argeC++i]); /** Thread to create VCSs in background */

catch (ArrayIndexfutfBoundsException obs) { private VCSGenerator vcsGen;

System.err.println("Must provide dir when specifing -d. Exiting."); /** Shared random number generator of

System.exit(O); private SecureRandom sr;

/** ThreadGroup for all subthreads to share */

else if (option.equals("-keypass")) { private ThreadGroup tg - new ThreadGroup("Server Thread Group");

try { /** Collection of all authenticated connections */
server.props.setProperty("keypass", args(++i]); private LinkedList connections e new LinkedListo;

catch (ArrayIndexfutfBoundsException obs) { /** Set of all principals in authorization group */

System.rr.println("Must provide pass when specifing keypass. Exiting."); private HashMap principals - new HashMapo);

System.exit(0);

}else if (option.equals("-config"))

try {

File f - new File(args[++i]);

FileInputStream fis - new FileInputStream(f);

server.props.load(fis);

fis.close(;

catch (ArrayIndexfutfBoundsException obs) {

System.orr.println("Must provide file when specifing config. Exiting.");

System.exit(0);

catch (IOException ioe)

System.orr.println("An error occured while loading config file. Exiting.

System.exit(O);

}else if (option.equals("-vesclass")) {

try {

server.props.setProperty("DEFAULTVCSCLASS", args(++i]);

} catch (ArrayIndeoxoutofBoundException obs) {

System.err.println("Must provide class when specifing -vcsclas. Exiting

System.exit(O);

} else /* error of

System.err.println("Unknown option: '" + option + "'. Exiting.");

System.orr.println(Server.ueageStr);

System.exit(O);

}

} // parseArgs

*Prompts user for passphrase, if not provided on command line.

o Sparam server Server to get passphrase for

of

/00

Construct a new server.

o Sparam passphrase passphrase assocated with this server's private key

public Server(String passphrase) {

this(passphrase, true);

/00

* Private constructor to allow Server.main to get passphrase

* from command line.

of

private ServerO{

this(null, false);

/**

.")p* Constructor that actually does the work.

* Sparam passphrase passphraese associated with this server's private key

o Sparam checkNull if true, complain if passphrase is null

*/

private Server(String passphrase, boolean checkNull)

if (checkNull t (pasephrase -- null))

throw new NullPointerExceptiono;

this.props - new Properties(Globals.DEFAULTPROPERTIES);

if (passphrase !- null) {

this.props.setProperty("keypass", passphrase);

this.props.setProperty("noncesize", Server.NONCESIZE);

// Set up the manager now. It will begin a new thread, then
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// block until a listener wakes it. Don't create the listener

// here, do that in starto.

this.manager - new ConnectionManager();

* Begin listening on the port for connections. Before calling this

* method, be certain to fully configure the Server.

try {

key - RSAXeyTool.stringToPubXey(f);

}catch (Exception e){
this.log(e);

return;

this.principals.put(f, key);

this.vcesGen.addPrincipal(ky);

this.writeDefaultFile();

public synchronized void start() throws IlException, VCSException

this.log("Intilizing keys for authorized users.");

try { /c*

this.principals = Remove principal's ability to authenticate. Further VCSs
RSAeyTool.getAllFromDir(Server.this.props.getProperty("PUBKEY_DIR"), true); * generated by this server will not include include principal's

} catch (Exception e) { * public key. If principal is not an authorized user, this
throw new VCSException(e.getMessage()); * method has no effect.

if (this.listener -- null)

this.listener -

new Listener(Integer.parselnt(this.props.getProperty("SERVER..PORT")));

if (this.vcsGen -- null)

this.vceGen -

new YCSGenerator(this.props.getProperty("DEFAULT_VCS.CLASS"),

Integer.parseInt(this.props.getProperty("noncesize")));

Stop providing service to clients.

public synchronized void stop()

this.listener.stopo;

this.listener - null;

this.vcesGen.pleaseStop(;

this.vcsGen.flush(;

/ee

* Add the provided connection to the list of available connections.

* Called by Server.Connection.run() when authenticated.

private synchronized void addAuthenticatedConnection(Connection c)

thie.connections.addFirst(c);

**e

Get the oldest authenticated connection from the server. This

Method block until a client is available. The callee of this

method is reeponsibls for closing both streams of the connection.

public Connection getConnection()

while (this.connections.size() == 0)

try { Thread.sleep(2000); }
catch (Interruptedtxception e) {}

synchronized (this) {

return (Connection) this.connections.removeLastO;

* Adds principal to the authorization group. Further VCSs

* generated by this server will allow princical to authenticate.

a Note that principal's key must exist in the current key directory.

a It principal is already authorized, this method has no effect.

*param principal the newly authorized user

public synchronized void addPrincipal(String principal) {

RSAPublictey key;

String f - Server.this.props.getProperty("PUB.KEYDIR") + File.separator + princi

Oparam principal the revoked user

public synchronized void revokePrincipal(String principal) {

String f - Server.this.props.gtProperty("PUBKEYDIR") + File.separator + principal + ".pub";
RSAPublictey key - (RSAPublicKey) this.principals.get(i);

this.principals.remove(i);

this.vcesGen.revokePrincipal(key);

thie.eriteDefaultFileO;

/ea

* Write the current set of authorized users to the VCS.defaults

* file.

private void writeDefaultFile() {

try {

File f - new File(Server.this.props.getProperty("PUB.KEY.DIR") + File.separator + "VCS.defaults");

FileOutputStream foe - new PileOutputStream(f);

BufferedWriter b - new BufferedWriter(new OutputStreamWriter(fos));

Iterator it - this.principals.kySet().iteratoro;

while (it.hasNextO) {

String line - (String) it.next();

int start - line.lastIndecxf(File.separator);

int and - line.lastIndex0f(".pub");

be.write(line.substring(start+1, end).toCharArray();

hv.neeLineO;

bw.flusho;

be.close();

}catch (Exceptione) {

this.log(e);

Set the port to listen on.

Oparam port port to listen on

public void setPort(int port) {

if (port < 1)

throw new IllegalArgumentException("port must be greater than 0");

this.prop.setProperty("SERVERPORT", (new Integer(port)).toStringo);

/*e

Sets the directory to look for keys in.

*param dir the directory to look in for keys

public void setKeyDir(String dir) {
this.prope.etProperty("PUBKEYDIR", dir);

pal + ".pub";
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t t

*Sets the type of VCS to encode-,

} catch (Exception a) {

throw new IlException("Unable to load key from disk.");

* 4param vcsClass the class of VCS to encode

public void setVCSClass(String vcsClass) {

this.props.setProperty("DEFULTVCSCLASS", vesClass);

/*0

* Set the current logging stream. Pass null to turn logging off.

Oparam stream the new stream to log to, or null to end logging

*/

public void setLogStream(OutputStream out)

if (out !- null) this.logStream =

new PrintWriter(neow utputStreamWriter(out));

else this.logStream - null;

* Write the specified string to the log

* Oparam a the string to write

private synchronized void log(String s) {
if (logStream != null) {

logStream.println("[" + new Date() + " " + );

logStream.flushO;

Write the specified object to the log

* Iparam o the object to write

private void log(Object o) { this.log(o.toStringO)); I

/**

* Utility class to monitor a port and report back to the

* ConnectionManager with all new Sockets.

private class Listener implements Runnable {

/** Socket we're listening on.

private ServerSocket socket;

/** Flag to indicate we should exit run method. */

private boolean stopped;

/** The worker thread that animates us.

private Thread spirit;

/** Private server key */

RSiPrivatetey privateXey;

/** Source of randomness */

SecureRandom or;

wConstruct a new Listener. Reads and saves all current Server

* configuration parameters.

*param port the port to listen on

a* throws IDException if the socket cannot be bound

public Listener(int port) throws IOException, VCSException

Server.this.log("Reading private key.");

try {

// grab the encrypted private key

this.privateXey - RSAXeyTool.stringToPriKey

Server.this.props.getProperty("PUB.KEY_DIR") + File.separator +

Server.this.props.getProperty("SERVERNiME") + ".pri",

Server.thia.props.getProperty("keypass").toCharArray()

//

//

//

//

//

//

Server.this.log("Initilizing PRNG");

try {
this.sr SecureRandom.getinstance("SHAIPRNG");

/00

* HACK: we should ask the user for input, to get better

* randomness. However, let's use the system clock for demo

* purposes.

*/

this.sr.setSeed((new Long(System.currentTimeMillis())).toStringo).getBytes());

// the "right" way

System.out.println("Enter some keystrokes to seed the random number generator.");

System.out.println("Press return after a line or two of text.");

BufferedReader br -

new BufferedReader(new InputStreamReader(System.in));

String temp - br.readLine();

sr.setSeed(temp.getByteso);

} catch (Exception e) {
throw new VCSException("Error initilizing random number generator");

this.socket - new ServerSocket(port);

// give non-zero timeout, to support interruption

this.eocket.setSoTimeout(600000);

this.spirit - new Thread(Server.this.tg, this, "Listener: " + port);
this.spirit.starto;

* Stop listening on the port.

*/

public void stop()

this.stopped - true;

this.spirit.interrupt();

o Body for the animating thread. Waits for connections, accepts

* them, and passes the socket back to the main program.

*/

public void run()

while ( I this.stopped

try {

Socket client - socket.accepto;

Server.this.manager.addConnection(client);

} catch (InterruptedIException e)

// do nothing

}catch (IDException a) {
Server.this.log();

// while

// run

} // class Listener

* Manages the list of all current sessions.

a/

private class ConnectionManager extends Thread

/** Current list of connections. */

private ArrayList connections;

/**

* Create a ConnectionManager.

*/

public ConnectionManager() {

super(Server. this.tg, "ConnectionManager");

this.connections - new ArrayListO;

this.setDamon(true);
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Server.thie.log("Starting connection manager.");

thi.starto;

fan

a Listener objects call this method when they accept a new

* connection. Here we simply note the new connection and start a

Ssession.

a Sparam e the socket the client is connected to

synchronized void addConnection(Socket a) {

// Create Connection thread to handle it

Connection c - new Connection(s);

connections.add(c);

Server.this.log("(" + c.count + ") "+

"Connected to " + e.getInstAddress().gtHostAddresso) +

: + e.getPort() + " on port " + e.getLocalPorto));

c.start();

a A Connection calls thee method just before it exits.

public synchronized void endConnection() { this.notifyO); }

** a

* Keep the list of connections up to date by removing connections

* that are no longer alive.

public void runO) {

while (true) {

for (int i=0; i < thie.connections.sizeO; ++i) {

Connection c - (Connection) this.connectione.get(i);

if ( !c.iAlive() ) {

this.connections.removefi)

Server.this.log("( + c.count + a) a + "Authentication of +

c.client.geatInetAddresso.gtHostAddrese) +

a:" + c.client.getPort() + " finished.");

try { synchronized (this) { this.waito; }

} catch (InterruptedException in) {

} ff run

} ff class ConnectionManager

Represents a eingle authentication session to one client.

public class Connection implements Runnable {

/** Socket to talk to the client over. */

private Socket client;

/** Animating thread. */

private Thread spirit;

/** Connection number */

private int count - Server.CUNTER++;

/** Indicator for when the run method has exited af

private boolean runDone - false;

/** Secure outgoing stream */

private CipherutputStream cipheriut;

/** Secure incoming stream */

private CipherInputStream cipherin;

fat

Create a new connection. Does not start the new thread.

private Connection(Socket e) {

this.client - s;

thie.spirit -

new Thread(Server.this.tg,

this, NServer.Cwnneatian(" + thiecoant + 1)."

client.getInetAddrese().getHostAddress() +

":" + client.getPorto);

/**

Begin the thread.

*/

private void start()

this.spirit.starto;

}

fa*

a is the Thread alive?

a/

private boolean isAlive()

return this.spirit.ieAlive();

a Run a single instance of the protocol.

public void runo {

try {

// begin by using encrypted objects over an insecure stream

ObjectInputStream in -

new ObjectInputStream(thi.client.getlnputStream());

ObjectiutputStream out =

new ObjectfutputStream(this.client.getOutputStreamo);;

RSAEnvelope envelope - (RSAnvelope) in.readObjecto;

thie.log("Decrypting session key.");

Secrettey sessionKey -

(SecretXey) envelope.open(Server.this.listener.privateKey);

thie.log("Getting a new VCS");

VCSGenerator.Entry entry - Server-this.vcsGen.getEntryO;

VCS vcs e-ntry.vces;

byte[] secret - entry.secret;

this.log("The secret is " + Base4.encode(secret));

// met up the encrypt/decrypt ciphers

Cipher decryptCipher - Cipher.getlnstance(Globals.SYMMEThICALG);

decryptCipher.init(Cipher.DECRYPT.MIDE, sesionfey,

Server.this.listener.er);

Cipher encryptCipher - Cipher.getInstance(Globals.SYMHETRIC.ALG);

encryptCipher.init(Cipher.ENCRYPT_MODE, sessionKey,

Server.this.listener.sr);

/ send the VCS over the private line
out.writeObject(new Sealedbject(vcs, ancryptCipher));

// wait for authentication

thie.log("Waiting for reply...");

String userString -

(String) ((SealedObject)in.readObject()).getbject(sessionKey);

ff the end result!

if (userString.equals(Base64.encode(secret))) {

thi.log("User Successfully Authenticated");

this.log("ERROR -- User Not Authinticated");

ff set up the CipherStreams

thin.cipherIn -

new CipherInputStream(this.client.getInputStreamo, decryptCipher);

this.cipherOut -

new CipheriutputStream(this.client.getOutputStream(), encryptCipher);

ff tell the Server about the new authenticated connection
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Server.this.addAuthenticatedConection(thie);

} catch (Exceptione) {
this.log(s);

} finally {

this.runDone- true;

Server.this.manager.endConnectiono;

} // run

/*0

* Get the encrypted input channel to the authenticated client.

* Will block until the authentication transaction has finished.

<i>Warning: do not attempt to wrap an ObjectInputStream around

* the returned CipherInputStream. There appears to be a bug in the

o 1.2.1 JDK implementation.</i>

o Sthrow VCSException if the client did not successfully

o authenticate

*/

public CipherlnputStream getCipherInputStream()

throws VCSException f

while ( !this.runDons ) (

try { Thread.slsep(5000); }

catch (InterruptedException e) {}

if (this.cipherlIn -- null)

throw new VCSException("Client did not successfully authenticate");

} else return this.cipherIn;

* Get the encrypted output channel to the authenticated client.

* Will block until the authentication transaction has finished.

* <i>Warning: do not attempt to wrap an ObjectlutputStream around

* the returned CipherlutputStream. There appears to be a bug in the

* 1.2.1 JDK implementation.</i>

o Sthrows VCSException if the client did not successfully

* authenticate

public CipherlutputStream getCipherOutputStreamO)

throws VCSException f

while ( !this.runDons ) {

try f Thread.sleep(5000); }
catch (InterruptedException a) {}

if (this.cipherOut -- null) {

throw new VCSException("Client did not successfully authenticate");

else return this.cipherOut;

/** Perform logging */

private void log(Object o) f

Server.this.log("(" + this.count +") "+ );

* Because we're relying on users of the class to close the

* streams, it's beet to try to help them out where we can. This

doesn't eliminate their need, but doesn't hurt.

protected void finalize() throws IDException

if (this.cipherOut = null) cipherlut.closeo);

if (this.cipherIn null) cipherIn.closeo);

/f class Connection

/**0

* This class generates VCSs in a seperate thread, so that we can

*service client requests as quickly as possible.

private class VCSGenerator extends Thread {
/** Flag to tell us to stop */

private boolean stopped;

/** Storage of all the VCSs */

private LinkedList store;

/** Maximum number of VCSe to store */

public int maxStored - 10;

/** Type of VCSs to create */

private String type;

/** Nonce size to encode */

private int size;

/*o

*Conetruct a new VCSlenerator and set it to work.

* Sparam type the fully qualified type of VCS to create

* Sparam size nonce size to encode

*/

public VCSGenerator(String type, int size) throws VCSException {

super(Server.this.tg, "Generator");

// figure out if type is valid

VCS test - VCS.gtInstance(type); // throws exception if invalid

this.type = type;

this.size size;

this.store new LinkedListO;

this.startO;

* Body of thread execution. Creates a bunch of VCSe.

public void run(

while ( ! this.stopped

if (this.store.size() < this.maxStored)

try {
VCS temp - VCS.getlnstance(this.type);

byte[] secret - new byte(this.size];

Server.thie.listener.sr.nextBytes(secret);

temp.sncode(secret, Server.this.principals.valuesO);

o This may be a minor synchronization problem, since a

* flush could have occured after we generated a VCS but

* before we store it. However, in the name of

o performance I have chosen this option.

synchronized (this) {

thie.store.addFirst(new Entry(secret, tamp));

} catch (VCSException e)

Server.this.log();

else

Server.thie.log("VCS cache filled.");

try { synchronized (this) ( thi.waito; }

} catch (InterruptedException is) {

} // run

fee

* Get one of the generated Entries.

*/

public synchronized Entry getEntry()

while (this.store.sizeO) me 0)

// wait a bit

try { Thread.slep(2000); }
catch (InterruptedException ie) {)

)

Entry e - (Entry) thie.store.removeLastO;

thie.notify(; // create some more

return e;
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/** The polite way to stop */

public void pleaseStop()

this.stopped - true;

this.notify();

* Remove a principal to all currently queued VCSs. The new

* principal will be unable to authenticate for all subsequent VCSs.

* Oparam key principal to revoke
/**

*Discard all currently cached VCS entries.

* Creturn the number of entires removed

public synchronized int flush() {

int size - this.store.size();

this.store.clear();

thie.notifyo;

return size;

* Adds a new principal to all currently queued VCSs. The new

* principal will be able to authenticate for all subsequent VCSs.

Oparam key new principal to authorize

*/

public synchronized void addPrincipal(RSAPublicXey key)

try {

Iterator it - this.store.iteratoro;

while (it.hasNexto) {

Entry s - (Entry) it.nexto;

if (e.ves instanceof VCSVeOctor)

((VCSVector)e.ves).addPrincipal(e.secrst, key);

) catch (VCSException e) {
// something's amiss...

Server.this.log(e);

public synchronized void revokePrincipal(RSiPublicKey key) {

try {
Iterator it - this.store.iteratoro;

while (it.hasNexto)

Entry e - (Entry) it.nexto;

if (e.vcs instanceof VCSVector)

((VCSVector).vs).revokePrincipal(e.sscret, key);

} catch (VCSException e) {
Server.this.log(s);

/** Storage for secret, ves pairs */

public class Entry {

public final byte[] secret;

public final VCS vos;

public Entry(byte[] secret, VCS vos) {
this.secret - secret;

this.veg - vCs;

} // VCSGenerator

} // class Server
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B.3 Client.java

o Client.java

package ves;

import java.math.BigInteger;

import java.util.HashSet;

import javax.crypto.*;

import javax.crypto.spec.*;

import java.security.*;

import java.security.cert.*;

import java.security.spec.*;

import java.security.interfaces.*;

import java.io.*;

import java.net.*;

import java.util.*;

import vcs.util.Base64;

public static void main(String[] args) throws VCSException {

try {
Security.addProvider(new com.sun.crypto.provider.SunJCE());

Seocurity.addProvider(nw COM.rsa.jsafe.provider.JsafeJCE());

catch (Exception e) {
System.srr.println("Unable to add crypto providers. Exiting.");

Client client = now Client();

Client.parseArgs(args, client);

Client.getUserInput(client);

client.authenticate();

try (

client.getCipherInputStreamo.close();

client.getCipherOutputStreamO.close();

} catch (IException e) {

/**0

* The client side main program. Clients authenticate to a

* Server and establish a secure communication channel.

* A single client must be created for every connection needed.

o <p> Typically, a Client goes through the following stages:

o <ol>

* <1i> The Client is created for a given principal with a passphrase.

o <li> <i>(optional)<i> Any not-default parameters are set with a

stter method.

<1i> The <b>authenticate</b> method is called.

* <li> The authenticated, encrypted streams are used to communicate

* with the server.
* <li> The streams are closed.

*</ol>

o Cauthor Todd C. Parnell, tparnelltai.mit.edu

o @version $Id: Client.java,v 1.19 1999/04/21 15:34:54 tparnell Exp $
*/

public class Client f

//

// Class Data & Methods

//

/00 String to tell user how to use the program. */

private static final String usageStr =

"usage: vcs.Client (options]\n" +

" -h -- help : Print this message.\n" +

-config file : Use file to configure client.\n" +

-v : Operate verbosely.\n" +

" -principal name : Use name for authentication.\n" +

" -alg alg : Use alg as the symmetric algorithm (default: " +

Globals.SYMMETRICALG + ")\n" +

-keysize n : Use n bit session key (default: " +

Globals.SESSIONKEYSIZE + ")\n" +

-d dir : Use dir to find keys (default: " +

Globals.PUBKEYDIR + ")\n" +

" -keypass pass : Use pass to unlock private key.\n" +

" -srvname name : Server hostname (default: " +

Globals.SERVERNAME + ")\n" +

" -srvport port : Server port (default: " +

Globals.SERVERPORT + ")\n" +

"\nNote: ordering between -config and other flags is important";

/**o

* Demo program to show client VCS functionality. Extensive command

* line arguments. Run with -h to see options. Prompts user for

* missing input.

/**

* Sot up client with info from command line arguments.

* Moved to separate method since it's messy and boring.

o Sparam arge command line arguments

o param client the client to set up

*:/
private static void parseirgs(String(J args, Client client) {

for (int i - 0; i < args.length; ++i) {

String option - args(i];

if (option.equals("-keysize")) {

try {

client.props.setProprty("SESSIONKEYSIZE", args[++i]);

catch (ArrayIndexoutfBoundsException obe) {

System.err.println("Must provide size when specifing keysiz. Exiting.");

System.exit(O);

} else if (option.equals("-principal"))

try {

client.props.setProperty("principal", args[++i]);

} catch (ArrayIndexDutlfBoundsException obs) {

System.err.printn("Must provide name with -principal. Exiting.");

System.exit(O);

}

else if (option.equals("-d")) {

try (

client.props.setProperty("PUBKEYDIR", args[++i]);

catch (Arraylndexout~fBoundsException obe) {

System.orr.println("Must provide dir with -d. Exiting.");

System.exit(O);

} else if (option.equals("-keypass"))

try {

client.props.setProperty("keypass", args+'iJ);

catch (Arraylndexut~fBoundsException obs) {

System.out.printn("Must give passphrass when specifing keypass. Exiting.");

System.exit(O);

} else if (option.equals("-v"))

client.setLogStream(System.out);

else if (option.equals("-h") |1 option.equals("--help")) {

System.out.println(Client.usageStr);

System.exit(O);

}else if (option.equals("-srvport"))

try {

client.props.setProperty("SERVERPORT", args[++i]);

catch (ArraylndexOutDfBoundsException obe) {

System.err.printn("Must provide port when specifing arvport option. Exiting.");

System.exit(0);

} else if (option.equals("-srvname"))
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try {

client.props.setProperty("SERVERNAME", args[++i]); /** Where we send our logging output to */

} catch (ArrayIndexDutffBoundsxxception obs) { private PrintWriter logStream - null;

System.srr.println('Must provide host when specifing srvname option. Exitinfr.''torage for all the switches */

System.exit(O); private Properties props - null;

/** Secure incoming stream */

else if (option.squals("-alg")) { private CipherInputStream cipherIn;

try { /** Secure outgoing stream */

client.props.setProperty("SYMMETRICiALG", args[++i]); private Cipher~utputStream cipherOut;

} catch (ArraylndeoxutOfBoundsException obs) { /** Flag to indicate the authentication is done */

System.err.println("Must provide alg when specifing alg option. Exiting.") private boolean runDone - false;

System.exit(0);

/**

}else if (option.equals("-config")) { * Construct a new client, ready to authenticate to t

try { server.

File f - new File(args(++i]);

FileInputStream fis - new FileInputStream(f); * Oparam principal name to authenticate as (use pri

client.props.load(fis); * Iparam passphrase passphrase associated with prin

fis.close(); 0/

catch (ArrayIndexDutDfBoundsException obe) { public Client(String principal, String passphrase) {

System.rr.println("Must provide file when specifing config. Exiting."); this(principal, passphrase, true);

System.exit(0); }

} catch (IDException ios) {
System.orr.println("An error occured while loading config file. Exiting.");/**

System.exit(O); * Private construtor to allow Client.main to Let on

}else /* error */ {

System.err.println("Unknown option: *' + option + "'. Exiting.");

System.err.println(Client.uageStr);

System.xit(0);

the default

ncipal's public key)

cipal

incipal and

o passphrase after construction.

a,

private Client()

this(null, null, false);

/C*

*Conetruotor theat actually doss the oork.} If parseArgs

* Prompts user for principal k passphrase, if not provided on

* command line.

o Oparam client Client to populate

*/

private static void getUserInput(Client client)

while (client.prope.getProperty("principal") == null |1

client.props.getProperty("principal").equals("")) {
System.out.print("Enter principal: 0);

try {
BufferedReader br

neow BufferedReader(now InputStreamRsader(System.in));

client.props.setProperty("principal", br.readLine());

} catch (I0Exception ioe) {
System.srr.printn("IDException reading passphrase! Exiting.");

Systemexit(0);

while ( client.props.gtProperty("keypass") == null ||

client.props.gtProperty("keypass").equals("")

System.out.print("Enter passphrase to unlock private key: 0);

try {

BufferedReader br =

now BufferedReader(new InputStreamReader(System.in));

client.props.setProperty("keypass", br.readLine());

I catch (IOException ioe) {

System.err.println("IOException reading passphrase! Exiting.");

System.exit(0);

} // getUserInput

// Instance Data & Methods

* Sparam principal name to authenticate as (use principal's public key)

o Sparam passphrase passphrase associated with principal

o param checkNulls if true, complain if principal or passphrase in null

*/

private Client(String principal, String passphrase, boolean checkNulls) {

if (checkNulls At (principal ec null || passphrase -- null))

throw new NullPointerExceptionO;

this.props - neow Properties(Globals.DEFAULT..PROPERTIES);

if (principal != null)

this.props.setProperty("principal", principal);

if (passphrase !- null)

this.props.setProperty("keypass", passphrase);

}//constructor

/00

* Run the VCS authentication protocol.

o*throws VCSException if any problems occur

public void authenticats) throws VCSException {

this.log("Getting keys from disk.");

RSAPublicKey srvPubKey - null;

KeyPair myteys - null;

try {

// grab the encoded server key from disk

srvPubKey =

RSAKeyTool.stringToPubKey(this.props.getProperty("PUBKEYDIR") +

File.separator +

this.prope.gtProperty("SERVERNAME") +

.pub");

// grab my keys

RSAPrivateKey myPriKey

RSAKeyTool.stringToPriKey(this.props.getProperty("PUBKEYDIR") +

File.separator +

this.props.getProperty("lprincipal") +
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".pri", // set up symmetric ciphers

this.prope.getProperty("keypass").toCharArrayO); Cipher decryptCipher - Cipher.getnstance(Globals.SYMMETRIC.ALG);

RSAPublicKsy myPubKey - decryptCipher.init(Cipher.DECRYPT.MODE, sessionKey, er);
RSAKeyTool.stringToPubKey(this.props.getProperty("PUBKEY.DIR") + Cipher encryptCipher - Cipher.getlnstance(Globals.SYMETRICALG);

File.separator + encryptCipher.init(Cipher.ENCRYPTMODE, sessionKey, er);

thie.props.getProperty("principal") +

".pub"); this.log("Waiting for reply...");

myKys - nw KsyPair(myPubXey, myPriKey); SealedObject meg2 - (SealedObject) objIn.readObjecto;

} catch (IException ioe) { this.log("Got vcs, verifying.");

throw new VCSException("Could not load keys from disk. Check path and try again.") #CS vce - (VCS) msg2.get~bject(decryptCipher);

} catch (Exception e) {

// crypto related problem Collection pubKeys =

throw new VCSException("Error loading keys from disk. " + RSAKeyTool.getAllFromDir(this.props.gtProperty("PUB.KEYDIR"),

"Check passphrase and principal."); boolean okay - VCS.verify(vcs, myKeys, eubeve):

this.log("Initilizing PRNG");

SecureRandom er e null;

try {
sr - SecureRandom.getInstance("SHAPRNG");

HACK: we should ask the user for input, to get better

if (!okay) this.log("ERROR: verify failed");

this.log("Decrypting.");

byte[] vesSecret a vcs.decode(myKeys, pubKeys);

this.log("The ves secret is: " +

Base64.encode(vcesSecret));

this.log("Replying to server.");

objOut.writeObject(new Sealed~bject(Base64.encod(vcsSecret),

encryptCipher));

randomness. However, let's use the system clock for demo // set up the CipherStreams

purposes. this.cipherIn - new CipherlnputStream(in, decryptCipher);

this.cipherOut - new CipherOutputStream(out, sncryptCipher);

sr.stSoeed((new Long(System.currentTimeMillie())).toString(.getByts()); } catch (Exception e)
this.log();

// the "right" way } finally {

System.out.println("Enter some keystrokes to seed the random number generator.");this.runDone - true;

System.out.println("Press return after a line or two of text.");

BufferedReader br - } // authenticate

new BufferedReader(new InputStreamfReader(System.in));

String temp - br.readLinsO; /**

sr.setSeed(temp.getBytes()); e Get the encrypted input channel to the server.

} catch (Exception e) { e Will block until the authentication transaction has finishe

throw new VCSxception("Error initilizing random number generator"); * <i>Warning: do not attempt to wrap an ObjectInputStream aro

this.log("Generating session key.");

SecretKey sessiontey - null;

d.

* the returned CipherInputStream. There appears to be a bug in the

* 1.2.1 JDK implementation.</i>

*throws VCSException if the client did not successfully

authenticate

try {

KeyGenerator sessionGen - public CipherlnputStream getCipherlnputStream()

KeyGenerator.getInstance(this.props.getProperty("SYMMETRIC.ALG")); throws VCSException {

sessionGen.init(Integer.parsent(thia.props.getProperty("SESSIONKEY.SIZE")), er); while ( !this.runDone ) {

sessionKey - sessionGen.generateKeyO; try { Thread.sleep(5000); }

catch (Exception e) { catch (InterruptedException s) {)
throw new VCSException("Error creating session key. Verify symmetric algorithm and keyize.");

if (this.cipherIn e= null)

throw new VCSException("Client did not succ

this.log("Encrypting session key."); } else return this.cipherln;

RSAEnvelope megi - null;

try {
magi - new RSAEnvelope(sessionKey, er, srvPubKey);

catch (Exception m) {

throw new VCSException("Error encrypting session key.");

essfully authenticate");

Get the encrypted output channel to the server.

Will block until the authentication transaction has finished.

<i>Warning: do not attempt to wrap an Object~utputStream around

the returned CipherOutputStream. There appears to be a bug in the

1.2.1 JDK implementation.</i>

this.log("Establishing connection to server & sending session key.");

try { * *throws VCStxception if the client did not successfully

// establish the socket connection * authenticate

Socket sock - new Socket(this.props.gtProperty("SERVERNAME"), */

Integer.parseInt(this.props.getProperty("SERVERPORT")));public Cipher~utputStream getCipherOutputStream()

OutputStream out - sock.getOutputStream(); throws VCSException I

InputStream in - sock.getlnputStream(); while ( !this.runDone ) (

ObjectOutputStream objOut new ObjectoutputStream(out); try { Thread.sleep(5000); }

ObjectlnputStream objIn -new ObjectlnputStream(in); catch (InterruptedException a) {}

if (this.cipherOut == null) {

throw now VCS~xception("Client did not successfully authenticate");
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}else return thie.cipherOut;

* Configure server information.

o Sparam host server to connect to

o Sparam port port to connect to

*/

public void eetServer(String host, int port) {
if (host -- null)

throw new IllegalArgumentException("host cannot be null");

if (host.equals(""))

throw new IllegalArgumentException("host cannot be empty");

if (port < 1)

throw new IllegalArgumentException("port must be greater than 0");

this.props.setProperty("SERVERNAME", host);;

this.props.setProperty("SVEERPORT", (new Integer(port)).toStringO);

foe

* Sets the directory to look for keys in.

o Sparam dir the directory to look in for keys

public void setteyDir(String dir) {

this.props.setProperty("PUB.KEY.DIR", dir);

f/**

Set the symmetric algorithm information.

o param alg algorithm to use

* param keysize key size, in bits, to use

public void setAlg(String alg, int keysize)

if (keysize < 1)

throw new IllegalArgumentException("need positive keysize");

this.props.sstProperty("SYMMETRIC-KEY.SIZE",

(new Integer(keysize)).toStringo);

thie.props.setProperty("SYMMETRICALG", alg);

Set the current logging stream. Pass null to turn logging off.

o param stream the new stream to log to, or null to end logging

public void setLogStream(OutputStream out)

if (out !- null) this.logStream =

new PrintWriter(new OutputStreamWriter(out));
else this.logStream - null;

/**

* Write the specified string to the log

o Sparam e the string to write

private synchronized void log(String s)
if (logStream != null) {

logStream.println("[" + new Date() + + ;

logStream.flushO);

o Write the specified object to the log

o Sparam o the object to write

of

private void log(Object o) { thie.log(o.toStringO); }

f*

* Because we're relying on users of the class to close the

* streams, it's best to try to help them out where we can. This

* doesn't eliminate their need, but doesn't hurt.

of

protected void finalize() throws I0Exception f

if (this.cipherOut !- null) cipherfut.close();

if (this.cipherIn '= null) cipherIn.close();
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B.4 VCSVectorjava

/*0

* VCSVector java

package vcs;

import

import

import

import

import

import

import

import

import

import

import

java.util-*;

java.io.*;

javax.crypto.*;

javax.crypto.spec.*;

java.security.*;

java.security.cert.*;

java.security.interfaces.*;

java.security.spec.*;

COM.rsa.jsafe.*;

CSM.rsa.jsafe.provider.*;

java.math.Biglnteger;

/ee

* Vector-based implementation of Verifibly Common Secrets. Linear in

* time and space in the size of the group.

* @author Todd C. Parnell, tparnelllai.mit.edu

* @version $Id: VCSVector.java,v 1.9 1999/04/21 22:39:32 tparnell Exp $

public class VCSVector extends VCS

/** Mapping from RSAPublicKeys to encrypted table entries. */

private HashMap map - new HashMapo;

* Hash of the secret this VCS encodes for. Used to verify update

o (via addPrincipal) are using the same secret.

private ByteeWrapper secretHash;

/**0

* Should only be instantiated via VCS.getInstance. */

protected VCSVctor() {}

/**0

* Encode a VCSVector. Each entry in keys will be used to encrypt

* (using RSA) the secret.

*eparam secret The secret to encode

* Sparam keys The public keys to encode for

* Sthrows VCSException if the VCS cannot be encoded with the

o given keys

public void encode(byte(J secret, Collection keys) throws VCSException {

if ( ! this.secretCheck(secret) ) {

throw new VCSException("secret does not match with previous encoding");

}

try {

Cipher cipher - Cipher.getInstance("RSA");

Iterator it - keys.iteratorO;

while (it.hasNext)o)

RSAPublicKey key - (RSAPublicley) it.nextO;

cipher.init(Cipher.ENCRYPTMODE, key);

byte(] bytes - cipher.doFinal(secret);

thie.map.put(key, new BytesWrapper(bytes));

} catch (Exception e)
throw new VCSxception(s.gstMessage ));

/* t

* idd the given key to the set of authorized keys this VCS encodes

* for. Note that the secret given here must be the same as the

* secret given for all other principals.

o Sparam secret The secret to encode

*param key The principal to encode for

*/

public void addPrincipal(bytes( secret, RSAPublicKey key)

throws VCSException {

if ( ! this.secretChech(secret)

throw new VCSException("secret does not match with previous encoding");

}

try {

Cipher cipher o Cipher.getInstance("RSA");

cipher.init(Cipher.ENCRYPTMODE, key);

byte] bytes - cipher.doFinal(secret);

this.map.put(ky, new BytesWrapper(bytes));

} catch (Exception e) {
throw new VCSException(e.getMsssage());

* Remove a prinicpal from the set of principals encoded for by this

o VCS. Requires the secret originally used to encode for to remove

* the principal.

o*throws VCSException if secret does not match with the secret

* originally encoded for.

*/

public void revokePrincipal(byte[l secret, RSAPublicKey key)

throws VCSException {

if ( ! this.secretCheck(secret) ) {

throw new VCSException("secret does not match with previous encoding");

}

try {

Iterator it - this.map.entrySet().iterator(;

while (it.hasNexto) {

Map.Entry entry - (Map.Entry) it.next();

RSAPublicKey testKey - (RSAPublicKey) entry.getKey(;

if (testKey.get~odulus().equals(key.getModulus()) kh

testKey.getPublicExponentO).equals(key.getPublicExponent()) {

// match!

it.romoveO);

return;

} while

// didn't find that principal

}catch (Exception s) {

throw new VCSException(e.get~essage());

throw new VCSException("Requested to remove a principal not encoded for.");

/e*

*Decode the VCS to learn the secret it encodes. This method will

* only work if the supplied private key corresponds to a public key

* used for encoding.

o Sparam pair The Keypair to use for decoding.

o Sparas keys The public keys used to encode.

* Sreturn The secret this VCS encoded.

o Sthrocs VCSException if the VCS cannot be decoded with the

* provided keypair

*/

public byte(J decode(KeyPair pair, Collection keys) throws VCSException f

RSAPublicKey pubKey - (RSAPublicKey) pair.getPublico);

/* HACK: RSAPublicKey's equal method is broken. We really want to

* do this:
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* BytesWrapper wrapper - (BytesWrapper) this.map.get(pubKy);

* but instead we need to use an iterator and compare modulus

* and exponent.

*/

BytesWrapper wrapper - null;

Set entries - thie.map.entrySetO;

Iterator it = entries.iteratorO;

*but we can't.

/if not the same size, clearly not equal

if (this.map.size) !- o.map.size() {

System.out.println("DEBUG: size not equal");

return false;

while (it.hasNexto) { // find matching pairs. one at a time

Map.Entry entry - (Map.Entry) it.nexto; Set entries - this.map.entrySeto;

RSAPublicKey testKey - (RSAPublicKey) entry.getKsyO; Iterator it = entries.iterator();

if (testlKy.getModulus() .equals(pubKey.getModulus()) t // create a new set so we can remove entries as we go along

testKey.getPublicExponento.equals(pubKey.getPublicExponent())) { Set oEntries - new HashSet(o.map.entrySetO);

// match! OUTER:

wrapper - (BytesWrapper) sntry.getValue(); while (it.hasNexto)

Map.Entry entry - (Map.Entry) it.nexto;

} // while RSAPublicKey testKey - (RSAPublicKey) entry.getteyO;

// END HACK BigInteger modulus - testKey.getModulus();

BigInteger exponent - testKey.getPublicExponento;

if (wrapper -null) Iterator it2 - oEntries.iteratorO;

throw new VCSException("The private key provided was not encoded for by this VCS.")swhile (it2.hasNextO) {

Map.Entry oEntry - (Map.Entry) it2.nextO;

try { RSAPublicKey key - (RSAPublicKey) oEntry.getKyo;

Cipher cipher - Cipher.getInstance("RSA"); if (modulus.equals(key.getModulus()) at
cipher.init(Cipher.DECRYPTMODE, exponent.equals(ksy.getPublicExponento)) {

(RSAPrivateKey) pair.getPrivate()); // match -- remove the current entry and continue

return cipher.doFinal(wrapper.bytes); oEntries.remove(oEntry);

} catch (Exception e) { continue SUTER;

throw new VCSException(e.getMessage());

public String toString() {

return "A VCSVector";

/**0

* Make sure we encode for a single secret. The magic here is that

* we keep a hash of the secret between calls to encode.

o* return true iff secret matches with the secret used to encode

private boolean secretCheck(byte(J secret) throws VCSException {

try {

MessageDigest md - MessageDigest.getlnstance("SHA");

BytesWrapper mdBytes -new BytesWrapper(md.digeet(secret));

if (this.secretHash ! null) {

if ( !thie.secretHash.equals(mdBytes) )

return false;

} else

this.secretHash - mdBytes;
} catch (NoSuchAlgorithmException e) {

throw new VCSException(e.getMessage());

// inner loop

// no match

return false;

} // while

return true;

* Compares the specified Object with this VCSVector for equality.

* Returns true if the given Object is also a VCSVector and both

* have encoded the same secret for the same set of public keys.

* param o object to be compared for equality with this VCSVector

* @return true if the specified object is equal to this VCSVector

public boolean equals(Object o)

if (o instanceof VCSVector)

return this.equals( (VCSector) o

else return false;

/**

*Returns the hash code value for this VCS. The hash code of a

* VCSVector is determined by the secret and the public keys

* encoding the secret.

* return the hash code value for this VCSyector

/**0

o Determines if two VCSVectors are equal. Warning, this is an

o 0(n-2) operation in the size of the set, due to the bug in

* RSALab' equal code. Given a bugfix, it should be at worst 0(n).

private boolean equals(VCSVector o)

/* HACK: we want to do this:

ereturn this.map.equals(o.map);

public int hashCode() {

return this.map.hashCode();
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B.5 RSAEnvelopejava

// first, create the symetric key

KeyGenerator generator -

Keyenerator.getlnstance("DES");

generator.init(random);

SecretKey sKey - generator.generateKeyo;

import java.io.*;

import javax.crypto.*;

import javax.crypto.spec.*;

import java.security.*;

import java.security.cert.*;

import java.eecurity.interfaces.*;

import java.security.spec.*;

import COM.rsa.jsafe.*;

import COM.rsa.jeafe.provider.*;

// encrypt the SecretKey with the RSAPublicKey

Cipher reaCipher - Cipher.getInstance("RSA");

reaCipher.init(Cipher.ENCRYPT.MODE, RSAkey);

this.sessionKey - raCipher.doFinal(sKey.getEncodedo);

// encrypt the data with the SecretKey

Cipher desCipher - Cipher.getInstance("DES");

desCipher.init(Cipher.ENCRYPT.MODE, sKey);
this.encryptedData - new Sealedlbject(data, desCipher);

* Digital envelope for transmitting arbitratry data using RSA.

o Encrypt a one-time symetric key using RSA, then encrypt the data

* using your favorite symetric algorithm.

* *aothor Todd C. Parnell, tparnelleai.mit.edu

* Oversion $Id: RSAEnvelope.java,v 1.3 1999/03/31 20:49:20 tparnell Exp $

public class RSAEnvelope implements Serializable {

/** The encrypted symetric key. */

private byte[] sessionKey;

/** The encrypted data. */

private Sealedfbject encryptedData;

/*e

*Creates a digital envelope. Uee DES as the symetric algorithm.

O Oparam data The data to be put into the envelope.

O Oparam random Source of randomness.

o param key Recipitant's public key

*/

public RSAEnvelope(Serializable data,

SecureRandom random,

RSAPublicKey tSAkey) {

try {

catch (Exception e)
e.printStackTrace();

System.exit(0);

* Returns the data in the envelope.

*/

public Object open(RSAPrivateKey key) throws Exception

// decrypt the SecretKey with the RSAPrivateKey

Cipher reaCipher e Cipher.getlnstance("RSA");

reaCipher.init(Cipher.DECRYPTMODE, key);

byte[] bytes = raCipher.doFinal(this.sessionKey);

SecretKeyFactory ski e SecretKeyFactory.getInstance("DES");

KeySpec spec - new DESKeySpec(bytes);

SecretKey sKey - ski.generateSecret(spec);

// decrypt the data with the SecretKey

Cipher desCipher - Cipher.getnstance("DES");

desCipher.init(Cipher.DECRPT.MODE, sKey);

return this.encryptedData.getlbject(desCipher);
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B.6 NativeVCS.java

* used for encoding.

* NativeVCS.java

package vcs;

import java.util.*;

import java.io.*;

import javax.crypto.*;

import javax.crypto.spec.*;

import java.security.*;

import java.security.cert.*;

import java.security.interfaces.*;

import java.security.spec.*;

import CDM.rsa.jsafe.*;

* Vector-based implementation of Verifibly Common Secrets. Linear in

o time and space in the size of the group. Uses RSA labs native

* libraries for encryption and decryption.

* Sauthor Todd C. Parnell, tparnelllai.mit.edu

*version $Id: NativeVCS.java,v 1.3 1999/04/16 23:35:32 tparnell Exp $

public class NativeVCS extends VCS {

/** Mapping from RSAPublicKeys to encrypted table entries. */

private HashMap map - new Hash~apo;

Should only be instantiated via VCS.getInstance.

*/

protected NativeVCS() {}

* Encode the VCS for the given secret and public keys.

o Sparam secret The secret you wish to encode.

O Sparam keys The public keys used to encode.

*throws VCSException if the secret cannot be encoded with the

* given keys

public void encode(byte[] secret, Collection keys)

throws VCSException (

try {

SecureRandom sr - new SecureRandomo;

JSAFEAsymmetricCipher cipher -

JSAFEAsymmetricCipher.getInstance("RSA", "Native");

Iterator it - keys.iterator(;

while (it.hasNexto) {

RSAPublicKey defaultKey - (RSAPublicKey) it.nexto;

byte[] modulus - defaultey.getModulus().toByteArray(;

byte[] exponent - defaultKey.getPublicxponent(.toByteArrayo;

JSAFEPublicKey key -

JSAFEPublicKey.getInstance("RSA", "Native");

key.setKeyData( "RSAPublicKey", new byte[][] {modulus, exponent) );

cipher.encryptlnit(key, er);

cipher.encryptUpdate(secret, 0, secret.length);

byte[] bytes - cipher.encryptFinal();

this.map.put(key, new ByteeWrapper(bytes));

} catch (Exception a) {

System.out.println(s);

throw new VCSException(s.getMessage());

}

* Decode the VCS to learn the secret it encodes. This method will

* only work if the supplied private key corresponds to a public key

* Sparam pair The Keypair to use for decoding.

* Sparam keys The public keys used to encode.

* Ireturn The secret this VCS encoded.

* @throws VCSException if the VCS cannot be decoded with the

" provided keypair

public byte[] decode(KeyPair pair, Collection keys)

throws VCSException {

JSAFEPublicKey pubKey - null;

try {

RSAPublicKey defaultKey - (RSAPublicKey) pair.getPublico;

byte(] modulus - defaultKey.getModulus(O.toByteArrayo;

byte[] exponent = defaulttey.getPublicExponento.toByteArrayO;

pubKey - JSAFEPublicty.getlnstance("RSA", "Native");

pubtey.setKyData( "RSAPublicKey", new byte[][] {modulus, exponent} );

} catch (Exception e) {
throw new VCSException(e.getMessage());

/* HACK: JSAFEPublicKey's equal method is broken. We really

* want to do this:

* BytesWrapper wrapper - (BytesWrapper) this.map.get(pubKey);

* but instead we need to use an iterator and compare modulus

* and exponent.

BytesWrapper wrapper - null;

byte[][] keyData - pubXey.getKeyData(O;

Set entries - thie.map.entrySet0;

Iterator it - entries.iterator(;

OUTERLOP:

while (it.hasNexto) {

Map.Entry entry - (Map.Entry) it.nexto;

JSAFEPublicKey testtey - (JSAFEPublicKey) entry.getKey(;

byte[][] testKEyData - testKey.getKeyData(;

for (int i - 0; i < keyData.length; ++i) {

for (int j - 0; j < keyData[i)length; ++j)

if (keyData[i][j] !- testKeyData(i][j]) continue OUTERLOOP;

// match!

wrapper - (BytesWrapper) entry.getValue();

// while

If END HACK

if (wrapper - null) System.out.println("DEBUG: wrapper is null");

try (

RSAPrivateKey defaultKey - (RSAPrivateKey) pair.getPrivate;

byte[] modulus - defaultKey.getModulus().toByteArrayo;

byte[] exponent - defaultKey.getPrivatExponent().toByteArray(;

JSAFEPrivateKey key -

JSAFEPrivateKey.getlnstance("RSA", "Native");

key.setKeyData( "RSAPrivatsKey", new byte[] [ )modulus, exponent} );

JSAFEAsymmetricCipher cipher *

JSAFEAsymmetricCipher.getInstance("RSA", "Native");

cipher.decryptInit(key);

cipher.decryptUpdate(wrapper.bytes, 0, wrapper.bytes.length);

return cipher.decryptFinal0;

} catch (Exception e) {
throw neow YCSExcsption(e.getMessage());

54



B.7 InsecureVCS.java

/*

*InsecureVCS.java

package ves;

import java.math.BigInteger;

import java.security.KeyPair;

import java.util.Collection;

* A trivial, insecure VCS implementation. Keeps the secret in

o unencrypted format. Decoding an InsecureVCS does <b>not</b> have

* the requirement that a matching private key be provided.

a <p>This class should be used for <i>testing purposes only.</i> It

* provides no security and does not fulfill the contract of

o <b>deocode</b>.

* Gauthor Todd C. Parnell, tparnelleai.mit.sdu

o eversion $Id: InsecureVCS.java,v 1.6 1999/04/16 23:35:33 tparnell Exp *

public class InsecureVCS extends VCS

/** Brain dead storage of the secret /

private byte[] secret;

o Should only be instantiated via VCS.getlnstance.

protected InsecureVCS() {}

/**0

Encode a InsecureVCS. <i>Nots: no cryptographic operations are

*performed, and the encoding uses is the idenity function.</i>

* param secret The secret to encode

O Sparam keys The public keys to encode for. (Ignored)

public void sncode(byte[] secret, Collection keys) {

this.secret - secret;

/**

* Determine the secret encoded. <i>Note: no cryptographic

* operations are performed, and this method will return the secret

* regardless of the parameters passed to it.</i>

* Oparam pair KeyPair to use for decoding. (Ignored)

o Oparam keys The public keys used to encode. (Ignored)

of

public byte[3 decode(KeyPair pair, Collection keys) {

return this.secret;

}

public boolean equals(Object o) {

if (o instanceof InsecureVCS) return this.equal( (InsecureVCS)o );

return false;

public boolean equals(InsecureVCS ves) {

return (vcs.secret -- this.secret);

}

public int hashCode() {

if (this.secret -- null) return 0;

return (now Biglnteger(this.secret)).hashCode();

public Object clone() {

InsecureVCS ves - new InsecureVCS();

vcs.encode(this.secret, null);

return ves;

public String toString()

return i"An Insecure VCS. Encoded secret: " +

vcs.util.Base64.encode(this.secret);
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B.8 RSAKeyTool.java

* RSAieyTool.java

// ToDo:

// Add command line flags for Iteration and PBEAlg

// Clean up some error handling

package vcs;

import javax.crypto.*;

import javax.crypto.spec.*;

import java.security.*;

import java.security.crt.*;

import java.security.interfaces.*;

import java.security.spec.*;

import java.io.*;

import vcs.util.Bass64;

import COM.rsa.jsafs.*;

import COM.rsa.jsafe.providmr.*;

import java.util.*;

import java.math.Bignteger;

/**0

SRSA Key creation and management utility class.

o Gauthor Todd C. Parnell, tparnlleai.mit.sdu

a*@version $Id: RSA~eyTool.java,v 1.11 1999/04/16 23:37:06 tparnell Exp *

public class RSAeyTool f

//

// Class fields and mathods

//

* Sthrows NoSuchAlgorithmException if RSA cannot be found

* Othrows InvalideySpecException if keyFile doesn't specify a valid RSAPrivateKey

*/

public static RSAPrivateKey stringToPriKey(String keyFile,

charD pass)

throws IOException, NoSuchAlgorithmException, InvalidKeySpecException,

NoSuchPaddingException, InvalidAlgorithmParamsterException,

InvalidKeyException, IllegalllockSizoException,

BadPaddingException {

if (RSAKyTool.ksyFactory -- null)

RSAXeyTool.ksyFactory = KsyFactory.getlnstance("RSA");

File file - now File(keyFile);

FilsInputStream lis - now FileInputStream(file);

byte[] salt - now byte[83;

byte[] fileBytes s now byts[(int)fils.length() - 8];

fis.read(salt);

fis.read(fileBytes);

fis.clossO;

// decrypt to gst PXCS8 encoded private key

KeySpsc ks - now PBEXsySpec(pass);

SscrstKsyFactory skf -

SecrstsyFactory.getnstance(Globals.PBEALG);

SecretKey key - akf.generateSecret(ks);

AlgorithmParameterSpec aps -

now PBEParameterSpec(salt, Globals.PBE.ITERATIONS);

Cipher pbeCipher - Cipher.getlnstance(Globals.PBE.ALG);

pbeCipher.init(Cipher.DECRYPTMODE, key, aps);

byte(] RSAXeyBytes - pbeCipher.doFinal(fileBytes);

// decode to gst a PrivateXey

EncodedKeySpec ncKeySpec =

now PKCS8EncodsdKeySpec(RSA~eyBytes);

return (RSAPrivatesy) RSAieyTool.ksyFactory.generatePrivate(encKeySpec);

private static KeyFactory ksyFactory;

/0*

*Add all public ksys from dir to thn Hashlst.

* Recover RSA public key encoded with this tool in files back into a

* RSAPublicKay.

* Iparam kayFile string file name where the encoded key resides

o Craturn the RSA public key corresponding to the file

o Sthrows IOException if keyPila doesn't exits or cannot be read

o *throws NoSuchAlgorithmException if RSA cannot be found

o *throws InvalidKeySpecException if keyFile doesn't specify a valid RSAPublictay

public static RSAPublictay stringToPubKey(String keyFils)

throws IlException, NoSuchAlgorithmxception, InvalidKeySpecException f

if (RSAXsyTool.keyPactory -- null)

RSAKeyTool.keyFactory - KyFactory.getInstance("RSA");

File file - now File(kayFile);

FilsInputStream fin - now FilelnputStream(file);

byte[] kayBytes = nmw byte[(int)file.length());

fis.read(ksyBytes);

fis.closa();

EncodedlySpec mnctySpec = now X509EncodsdKsySpsc(koyBytss);

return (RSAPublictey)RSAKeyTool.kyFactory.generatePublic(ncteySpec);

o Recover RSA private key encoded with this tool in files back into a

o RSAPrivateKey.

o Sparam keyFila string file name where the sndoded resides

* Oparam pass password to unlock the key

* *raturn the RSA public key corresponding to the file

o Sthrows IoException if keyFile doesn't exits or cannot be read

* Sparam dir directory to retreive keys from

* Ireturn all the public keys the the directory

*/

public static HashMap getAllFromDir(String dir) throws Exception 

return RSAKeyTool.getAllFromDir(dir, false);

/**

* Add public keys from dir to the HashSet. If onlyDefaults is

o false, adds all public keys in directory. If true, only

* principals in <i>VCS.defaults</i> will be added.

* Sparam dir directory to retreive keys from

* Sparam onlyDefaults controls whether to igrons VCS.defaults or not

* Sreturn public keys from the directory

*/

public static HashMap getAllFromLDir(String dir, boolean onlyDefaults)

throws Exception {

// got directory

File dirFils - nw File(dir);

if (dirFile.isFileO)

throw new IDException(dir + " is not a directory");

// tamp storage for files

HashSet files - new HashSetO;

if (onlyDefaults) {

File control - nw File(dir + File.separator + "VCS.defaults");

if (control.exists()) {

BufferedReader br - now BufferedReader(nw InputStreamRsader(now FilenputStream(control)));
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String line;

while ( (line - br.readLineO) null

String temp - dir + File.separator + line + ".pub";

File f - new File(temp);

if ( !f.exists() ) continue;

files.add(temp);

br.close(;

}else /* all files*/{

String[] allFiles - dirFile.listO;

int length - allFiles.length;

for (int i 0; i < length ; ++i){

String temp = dir + File.separator + allPiles[i];

if (temp.regionMatches(temp.lengtho-4, ".pub", 0, 4))

files.add(temp);

// convert String filename into public keys

HashMap keys now HashMapO;

Iterator it = files.iteratorO;

while (it.hasNextO) {

String next - (String) it.nextO;

keys.put(next, RSAKeyTool.stringToPubKey(next));

return keys;

private static final String usageStr =

"usage: ves.RSAKeyTool [options]\n" +

-h -- help Print this messags.\n" +

-v : Operate verbosely.\n" +

-principal name Create a keypair for name.\n" +

-keypass pass : Use pass to lock private key.\n" +

-d dir Use dir for key storage.\n" +

(Default = " +

Globals.PUBKEYDIR + ")\n" +

-keysize size : Set keysize. (Default - " +

Globals.ASSYMETRICKEYSIZE + ")\n" +

-modulus size : Set modulus. (Default - " +

Globals.RSAMODULUSSIZE + ")n";

public static void main(String[] args)

try {

Security.addProvider(nsw com.sun.crypto.provider.SunJCEo);

Security.addProvider(new COM.ra.jsafe.provider.JsafsJCEO);

} catch (Exception s) {

System.out.println("Unable to add crypto providers. Exiting.");

System.exit(0);

RSAKeyTool me - new RSAKeyTool(arg);

//
// Instance fields and methods

//

fO Sperate verbosely? */

private boolean verbose;

/** Password for the private key. of

private String passcd;

/** Principle we're manipulating. */

private String principal;

/** Directory to put keys. */

private String keyDir - Globals.PUBKEY.DIR;

/** A source of randomness */

private SecureRandom random;

/** RSA Key Size, default - 512 of

private int keySize - Globals.ASSYMETRICKEYSIZE;

/** RSA Modulus Size, default - 17 */

private int modulus - Globals.RSA.MODULUSSIZE;

/**

o The Constructor

*/

private RSAKeyTool(String[] args) {

// populate instance fields

this.parseArgs(args);

// ask user about any missing information

this.getUserinput();

// seed the PRNG

this.setupPRNO;

// do it!

this.createO;

}//constructor

/**

o Creates the keypair & save to the given locations.

*/

private void create(){

if (this.verbose) {

System.out.println("Beginning key creation.");

try {

KeyPairGenerator keyGen o KeyPairGenerator.getInstance("RSA");

Biginteger bigint *

new BigInteger( (new Integer(this.modulus)).toString() );

RSAGenParameterSpec spec =

new RSAGenParameterSpec(this. keySize, bigint);

keyGen.initialize(spec, this.random);

if (this.verbose) {

System.out.println("Generating keypair.");

KeyPair pair - keyGen.genKeyPairO;

RSAPublicKey pubtey - (RSAPublicKey) pair.getPublic();

RSAPrivateKey priKey - (RSAPrivateKey) pair.gstPrivate();

if (this.verbose) {

System.out.print("Public key :

System.out.println(Base64.encode(pubKey.getEncodedo));

System.out.print("Private key : ");

System.out.println(Base64.encode(priKey.getEncodedo));

if (this.verbose) {

System.out.println("Writing keypair to files.");

//the public key is easy, since it doesn't need to be protected

File~utputStream foe -

new FileOutputStream(this.keyDir +

"/"~ +

this.principal +

".pub");

fos.write(pubKey.gtEncodedo);

fos.cloe();

// the private key will be protected with a passphrase

// first, create some ealt...

byte[] salt o new byte[8);

MessageDigest md - MessageDigest.getnstance("MD5");

md.update(this.passod.getBytes());

md.update(priKey.gstEncodedO);

System.arraycopy(md.digestO, 0, salt, 0, 8);

// set up the encryption

KeySpec k - now PlEteySpec(this.paswd.toCharArrayO);

SecretKeyFactory ekf -

SecretKeyFactory.getInstance(Globals.PBE_ALG);

SecretKey pheKey - skf.generateSecret(ks);
AlgorithmParameterSpec ape =

now PBEParameterSpec(salt, Globals.PBE_ITERATIONS);

Cipher pheCipher - Cipher.getInstance(Globals.PBE_ALG);

// do the encryption
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pheCipher.init(Cipher.ENCRYPTMODE, pheKey, ape);

// write to file

los- new FilsOutputStrsam(thie.keyDir +

"/, +

this.principal +

H.pri");

fos.writeasalt);

fos.write(pbeCipher.doFinal(priKey.gstEncodedo));

fos.closO;

} catch (Exception s) {

System.err.println("Error. Aborting.");

e.printStackTrace();

System.exit(O);

} // create

o Populate instance fields with info from command line arguments.

* Moved to seperate method since it's messy and boring.

private void parseArge(String) arge)

for (int i - 0; i < args.length; ++i) {

String option - args(i];

if (option.squals("-v")) {
this.verbose - true;

else if (option.equals("-h") 11 option.equals("--help"))

System.out.println(RSAKeyTool.usageStr);

System.exit(0);

else if (option.equals("-principal"))

try {

this.principal - args[++i];

catch (ArrayIndexoutffBoundsException obe)

System.srr.println("Must provide name with -prinicpal option. Exiting.");

System.exit(0);

else if (option.equals("-d"))

try {
this.kyDir = args[++i];

catch (ArrayIndexoutDfBoundsException obe)

System.rr.println("Must provide dir with -d option. Exiting.");

System.exit(0);

} else if (option.equals("-keypass"))

try (

this.passowd - args[++i];

} catch (ArrayIndexoutfBoundsException obe) {

System.orr.println("Must provide file with -keypass option. Exiting.");

System.exit(0);

}else if (option.equals("-keysize"))

try {

this.keySize -

Integer.value0f(args[++i]).intValue();

} catch (ArrayIndexDutDfBoundException obe)

System.rr.println("Must provide number with -keysize option. Exiting.");

System.exit(0);

} catch (NumberFormatException nfe) {

System.rr.println("Couldn't parse keysize. Exiting.");

System.exit(0);

} else if (option.equals("-modulus")) {

try 4

this.modulus -

Integer.value0f(args[++i]).intValueO;

catch (ArrayIndexout~fBoundsException obs) {

System.srr.println("Must provide number with -modulus option. Exiting.");

System.exit(0);

catch (NumberFormatException nfe) {

System.srr.println("Couldn't parse modulus. Exiting.");

System.exit(0);

} else /* error */ {

System.orr.println("Unknoon option: '" + option + "' Exiting.");

System.orr.println(RSAteyTool.usageStr);

Systemexit(0);

} // parseArgs

/**

* Prompts user for any data not currently in fields.

*/

private void getUserInput() {

while (this.principal - null || this.principal.equals( ""))
System.out.print("Enter principle to operate on:

try {

BufferedReader br =

new BufferedReader(ne InputStreamReader(System.in));

this.principal - br.readLineO;

} catch (I0Exception i0o) {

System.rr.println("IException! Exiting.");

System.exit(0);

// try/catch

} while

while (this.passod - null 1| this.passwd.equals("")) {

System.out.print("Enter passphrase to lock private key: ");

try {

BufferedReader br =

new BufferedReader(new InputStreamReader(System.in));

this.passwd - br.readLine();

} catch (IDException ioe) {

System.srr.println("IDException! Exiting.");

System.exit(0);

// try/catch

// while

} // getUserInput

private void setupPRNG(){

if (this.verbose) {

System.out.println("Initilizing random number generator");

try {

this.random - SecureRandom.getlnstance("SHAiPRNG", "JsafeJCE");

System.out.println("Enter some keystrokes to seed the random number generator.");

System.out.println("Press return after a line or two of text.");

BufferedReader br =

new BufferedReader(new InputStreamReader(System.in));

String temp - br.readLine();

this.random.setSed(temp.gtBytes());

catch (IDException ioe)
ioe.printStackTrace();

System.exit(0);

catch (NoSuchAlgorithmException alg) {

alg.printStackTrace();

System-exit(0);

catch (NoSuchProviderException prov) {

prov.printStackTrace();

System.exit(0);

} // setupPRNG
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Be9 BytesWrapperjava

* Extract the bytes from the wrapper.
a ByteeWrapper.java

package ves;

import java.io.Serializable;

import java.math.Biglnteger;

* Greturn the wrapped bytes

of

public byte[] getBytes()

return this.bytes;

* Wrapper object to for byte arrays.

* Cauthor Todd C. Parnell, tparnelllai.mit.edu

*version $Id: BytesWrapper.java,v 1.1 1999/04/11 17:44:10 tparnell Exp $

public class BytesWrapper implements Serializable

/** What we're wrapping. */

public final byte[] bytes;

/** Support for fast hashing */

private transient int hash;

* Construct a new wrapper for the given bytes.

* Sparam bytes the bytes to wrap

public BytesWrapper(byte[] bytes) {

this.bytes e bytes;

public boolean equals(Dbject o) {

if (o instanceof BytesWrapper)

BytesWrapper by - (BytesWrapper) o;

int mylength = this.bytes.length;

if (mylength ! bv.bytes.length) return false;

for (int i=0; iceylength; ++i) {

if (this.bytes~i] !a bv.bytes~i) return false;

}

return true;

else return false;

public int hashCode()

// Q&D way to get a hash. Cache the value.

if (this.hash !e 0) return this.hash;

this.hash - (new java.math.BigInteger(this.bytes)).hashCode();

return this.hash;
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B.10 Globalsjava

now java.util.Properties();

package vces;

Holds some globals.

* author Todd C. Parnell, tparnelllai.mit.edu

o* version $Id: Globals.java,v 1.9 1999/04/16 23:36:15 tparnell Exp $
*/

public class Globals

/** Session key size, in bits. Default is 16. */

public static final int SESSIONKEYSIZE = 128;

/** Asymetric key size. Default is 512. */

public static final int ASSYMETRIC.KEYSIZE - 512;

/** RSA modulus size. Default is 17. */

public static final int RSAMODULUSSIZE = 17;

/** Default public key directory. */

public static final String PUBKEYDIR - "/mit/tparnell/thesis/keys/";

/** Default server to authenticate to. o/

public static final String SERVERNAME "fop.mit.edu";

/** Default server port. */

public static final int SERVERPORT - 4321;

/** Phassphrase Based Encryption alg. */

public static final String PBEALG - "PBEWithMD5AndDES";

/** PBE Iteration Count */

public static final int PBEITERATIONS - 20;

/** Default Symmetric Algorithm */

public static final String SYMMETRIC.ALG - "RC4";

/** Default VCS class. */

public static final String DEFAULTVCSCLASS -
"
vce.VCSVector";

/** Default properties file */

public static final java.util.Properties DEFAULTPROPERTIES =

static f

try {
DEFAULTPROPERTIES.estProperty(

"SESSIONKEYSIZE",

(new Integer(SESSIONKEYSIZE)).toStringo);

DEFAULTPROPERTIES.netProperty(

"ASSYMETRIC.KEYSIZE",

(new Integer(ASSYMETRICKEYSIZE)).toStringo);

DEFAULT.PROPERTIES.setProperty(

"RSA.MODULUSSIZE",

(new Integer(RSA.MODULUSSIZE)).toString());

DEFAULT.PROPERTIES.setProperty("PUB.KEY.DIR",

PUB.KEYDIR);

DEFAULTPROPERTIES.setProperty("SERVERNAME", SERVERNAME);

DEFAULTPROPERTIES.setProperty(

"SERVERPORT",

(new Integer(SERVERPORT)).toStringo);

DEFAULTPROPERTIES.setProperty("PBEALG" , PBEALG);

DEFAULTPRPERTIES.setProperty(

"PBEITERATIONS",

(new Integer(PBEITERATIONS)).toStringo));

DEFAULTPROPERTIES.setProperty("SYMMETRICALG", SYMMETRICALG);

DEFAULT.PRDPERTIES.setProperty("DEFAULTVCSCLASS", DEFAULTVCS_CLASS);

} catch (Exception e) {

// do nothing

/** Prevent instantiation. */

private Globals() {}
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B.11 VCSException.java

/*

VCS~xception.java * Oauthor Todd C. Parnell, tparnell6ai.mit.edu

*/ * Iversion $Id: VCSException.java,v 1.1 1999/04/06 20:32:04 tparnell Exp $
*/

package vcs; public class VCSException extends Exception

public VCSException() {}
/** public VCS~xception(String a) { super(s);

Generic exception thrown by classes in package vce.
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