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Abstract

The W2 (Linear Quadratic Gaussian) and .. ) design methodologies are used to control a
multi-input multi-output twin lift helicopter system (TLHS), consisting of two helicopters
jointly carrying a payload. The control objectives include the rejection of specified external
disturbances, and stability robustness to an unmodeled time delay. To achieve these ob-
jectives, the TLHS is incorporated into a generalized plant imposing frequency dependent
weighting functions on selected control, disturbance, and output variables. Four different
generalized plants are designed, two for 712 and two for W-..o) controller synthesis. Analysis
of the resulting controllers reveals that both the W2 and WN, design methodologies, when
used with frequency weightings, can meet the desired design specifications. Differences
and performance trade offs amongst the controllers are shown to correlate intuitively with
variations in the weighting functions and other parameters used in defining the generalized
plant. In addition, the ability in W4, design, but not W2 design, to directly shape singular
values, makes this former approach generally more efficient in producing the desired results.
Suggestions for future work include applying and/or extending the methodologies in this
thesis to design controllers for other multivariable linear systems.
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Chapter 1

Introduction

1.1 Motivation

From fighting fires, to providing video surveillance of disaster areas, to transporting

heavy cargo, the helicopter has become vital to achieving tasks in a wide variety of fields.

As a means of transporting heavy cargo, in particular, the helicopter has seen use in tasks

ranging from construction projects to military expeditions to natural disaster clean-ups.

The increasing number and variety of such projects has led to a need for helicopters with

increased power capable of transporting heavier cargo. The high costs associated with

developing and producing such helicopters, however, have led engineers to search for a

more economical alternative. This alternative is provided by the twin lift helicopter system

(TLHS), in which two helicopters work together to transport a payload heavier than either

could transport singly.

1.2 Previous Research

In the 1960's, recognizing the large expenditures required to produce helicopters with

increased load capacities, the Department of Defense began investigating the possibility

of joint helicopter lifting missions [1]. Advances in this area came in the late 1960's and

early 1970's, when Sikorsky Aircraft demonstrated that twin lift operations using a spreader

bar were feasible for short distances at low speeds. This demonstration involved a 20-ton

twin lift configuration in which the command pilot, in the "master" helicopter, controls his

helicopter while the "slave" helicopter is controlled automatically.
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Some of the most recent research on twin lift helicopter dynamics was done in the 1980's

by H. C. Curtiss (Princeton University) and F. W. Warburton (Sikorsky Aircraft) [1]. To-

gether they developed a linear seven degree of freedom hover model for the longitudinal

dynamics of a TLHS to study how changing parameters in the twin lift configuration affects

the modes of motion and control response characteristics. This work was followed by that

of Armando A. Rodriguez (MIT) who, for his Master's thesis, used this linearized model

to develop a multi-input multi-output automatic flight control system (AFCS) for a TLHS

consisting of two Sikorsky UH-60A Blackhawks [2]. After thoroughly analyzing the dy-

namics of the linearized model, Rodriguez used the Linear Quadratic Gaussian with Loop

Transfer Recovery (LQG/LTR) methodology with integral control to develop an AFCS for

two different TLHS configurations, one with equal and one with unequal helicopter tether

lengths. In his designs, he demonstrated the trade off between desired performance and sta-

bility robustness to model uncertainty, and also showed that unequal tethered flight offers

little advantage over equal tethered flight.

1.3 Contributions of Research

The research in this thesis applies the W2, or Linear Quadratic Gaussian (LQG), and

W . design methodologies to design automatic flight control systems for the TLHS model

developed by Curtiss and Warburton. These two multivariable approaches to control design

optimally minimize particular closed loop transfer function matrix norms [4], [5]. Within

a generalized plant framework, frequency weightings on selected disturbance, control, and

output variables are constructed to achieve specific objectives for performance and stability

robustness. Final controller designs are analyzed in both the time and frequency domains,

and performance trade offs interpreted in terms of variations in both the generalized plant

and the synthesis method used. The results illustrate how the 12 and Wi, design method-

ologies, used with frequency weightings, can provide an intuitive and efficient means within

the multivariable setting for targeting and hence achieving specific requirements on closed

loop system behavior.

1.4 Outline of Thesis

The remainder of the thesis is organized as follows:

16



Chapter 2 describes the model of the TLHS developed by Curtiss and Warburton. After

the relevant variables, controls, and modeling parameters are introduced, the model is

presented in state space form, linearized about hovering equilibrium.

Chapter 3 explores the open loop behavior of the TLHS model. The various motions of

the TLHS are described in relation to the control commands and to the model structure. The

natural modes of the TLHS are discussed and corresponding modal responses illustrated.

Chapter 4 explains the theory of R2 and R-1 design. The framework of the generalized

plant is introduced, and the -2 and No transfer function matrix norms are defined and

interpreted. Synthesis methods for the two types of controllers are then presented, and

characteristics of each discussed. The chapter concludes with a discussion of how appro-

priately chosen design weights incorporated into the generalized plant can lead to the more

effective meeting of specific performance and stability robustness criteria. The discussion

illustrates and motivates in particular depth the use of design weights in R". design, where

the singular values of various transfer functions can be shaped directly.

Chapter 5 presents the actual 'H2 and Wo, generalized plant designs for the TLHS

controllers. To motivate these designs, assumed external disturbances to the TLHS are

described, and specifications given for the rejection of these disturbances. A specification is

also given to ensure stability robustness to an unmodeled time delay of up to 0.05 s. After

establishing the design specifications, four generalized plants, two for H2 and two for No

synthesis, are described. The selection of design parameters and frequency weighting func-

tions for these plants is explained with respect to the performance and stability robustness

objectives.

Chapter 6 presents the resulting closed loop system behavior for each of the controller

designs. The systems are analyzed in both the time and frequency domains, with their

performance measured against the specifications put forward in chapter 5. Differences and

performance trade offs amongst the controllers are interpreted in terms of variations in both

the generalized plant parameters and synthesis method used. In the chapter's conclusion,

the -2 and 7H4, design methodologies are each evaluated on their respective efficiency in

achieving the desired performance objectives.

Chapter 7 summarizes the thesis and gives suggestions for future applications and/or

extensions of the 712 and 7R.. controller design methodologies.
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Chapter 2

Model of a Twin Lift Helicopter

System

2.1 Model Configuration

The twin lift helicopter configuration to be studied is shown in Figure 2-1 [1]. This

configuration is referred to as the longitudinal configuration because the longitudinal axes

of the helicopters are parallel to the spreader bar.1 In studying this configuration, it is

assumed that the twin lift longitudinal dynamics decouple from the lateral motion. Each

helicopter is modeled as a UH-60A Blackhawk, and the AFCS is designed to completely

control both helicopters. The helicopter tethers are of equal length and are attached below

the helicopters' centers of gravity (c. g.). The payload is suspended a fixed distance below

the spreader bar by two equal length load cables. In modeling, the spreader bar is assumed

rigid, while the tethers and load cables are assumed to always be in tension.

2.2 TLHS Variables and Controls

Because the TLHS longitudinal model developed by Curtiss and Warburton has seven

degrees of freedom, the TLHS dynamics described by this model may be fully described by

any seven independent variables. One possible choice for these variables is

(1) xm : horizontal coordinate of master helicopter c. g. with respect to hover point,

'With a few simple variable substitutions, the same model can also be used to describe the case where
the helicopter centerlines are perpendicular to the spreader bar.
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spreader bar
tether

cable

payload

Figure 2-1: TLHS Longitudinal Configuration

(2) x: horizontal coordinate of slave helicopter c. g. with respect to hover point,

(3) zm : vertical coordinate of master helicopter c. g. with respect to hover point,

(4) z, : vertical coordinate of slave helicopter c. g. with respect to hover point,

(5) 0m: pitch angle of master helicopter,

(6) 0, : pitch angle of slave helicopter,

(7) XL - Ex: load deviation from center,

where Ex represents the average of the master and slave horizontal coordinate. These seven

degrees of freedom correspond to the helicopters' horizontal motion (2), vertical motion (2),

pitching motion (2), and to the horizontal motion of the load (1). Figure 2-2 [2] illustrates

a visualization of these motions.

The longitudinal motion of the TLHS is governed by four independent helicopter con-

trols. For control of vertical motion, each helicopter is equipped with a collective pitch

control. This control affects lift by causing an increase in the angle with which the main

rotor blades cut through the air [2]. The horizontal and pitching motions of each helicopter

are controlled by a cyclic pitch control. This control operates by changing the point in the

main rotor cycle at which maximum blade pitch occurs. The collective and cyclic controls

are denoted:

(1) Ecm : master collective control,

(2) GE, : slave collective control,

(3) Blcm : master cyclic control,

(4) B : slave cyclic control.

20
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r ;N XL

Figure 2-2: Visualization of TLHS Motions

In actuality, the collective and cyclic controls do exhibit coupling. For modeling purposes,

however, this coupling is assumed to be small and hence is neglected.

2.3 TLHS Parameters and Derivatives

Table 2.1 lists the nominal values of the parameters needed to characterize the TLHS

configuration. These parameters include geometric measurements as well as masses associ-

ated with the helicopters and load-bar assembly. The numerical values listed are identical

to those used by Curtiss and Warburton and by Rodriguez. In addition to the parame-

ters in Table 2.1, the linear model includes two sets of constants referred to respectively

as control derivatives and aerodynamic derivatives. Control derivatives relate the action of

the helicopters' collective and cyclic controls to the TLHS motion. Similarly, aerodynamic

derivatives relate the aerodynamic forces and moments on the helicopters to the TLHS mo-

tion. Aerodynamic forces and moments acting on the spreader bar assembly and load are

assumed negligible in comparison to those acting on the helicopters [2]. Table 2.2 lists the

nominal values of the control and aerodynamic derivatives near hover. As was true of the

TLHS parameter values, the derivative values are identical to those used by Curtiss and

Warburton and by Rodriguez.
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TLHS Parameters Symbols Nominal Values
helicopter mass MH 434.78 slugs
helicopter moment of inertia about pitch axis Iy 434.78 slug - ft2

distance from helicopter c. g. to helicopter- h 3.6 ft
tether attachment point
helicopter tether lengths H 13.25 ft
spreader bar length L 69 ft
spreader bar mass MB 20 slugs
distance of load below spreader bar c. g. Z 34.5 ft
mass of load ML 372.67 slugs

Table 2.1: TLHS Nominal Parameter Values

TLHS Control Derivatives Symbols Nominal Values

horizontal acceleration per radian of cyclic XBlc 27.4 -s

vertical acceleration per radian of collective Zec 340.9 r-

angular acceleration per radian of cyclic MBc -47.24 rad

TLHS Aerodynamic Derivatives Symbols Nominal Values

characterization of horizontal drag forces due Xu -0.06 ft's 2

to horizontal motion
characterization of vertical drag forces due to Z. -0.346 ft"
vertical motion

characterization of pitching moments due to Mu 0.041 rad-s 2

forward motion

characterization of rotational damping due to Mq -3.1 rad-s 2

rad-s=-
pitching motion

Table 2.2: Nominal Values of TLHS Control and Aerodynamic Derivatives
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2.4 Development of Linear Model

The linear seven degree of freedom model used throughout this thesis originates from

seven second order nonlinear ordinary differential equations written in terms of the aero-

dynamic forces and moments acting on the helicopters. These equations can be developed

using the Lagrangian method [2]. The equations are then linearized about a hovering equi-

librium with the tethers vertical and spreader bar horizontal as shown in Figure 2-1. To

obtain this linearization, it is necessary to determine the equilibrium values of all motion

variables, forces, and moments. Denoting these values with the subscript "o", we have

Xmo = =iso 0, (2.1)

imo = i= 0, (2.2)

9mo = so =0, 2 (2.3)

XLo - EXO = 0. (2.4)

Each motion variable, force, and moment is then written as the sum of an equilibrium

component and an incremental component, as in xm = xmo + 6 xm. Neglecting products of

the incremental components produces seven linear ordinary differential equations written in

terms of the incremental variables. For notational convenience, the 6's on the incremental

motion variables are dropped.

The seven linear differential equations developed thus far still include incremental aero-

dynamic forces and moments. These forces and moments are eliminated from the equations

by writing each in terms of aerodynamic derivatives multiplied by incremental motion vari-

ables and control derivatives multiplied by incremental control variables. These substitu-

tions then complete the development of the linearized model. It should be emphasized that

the control variables appearing in this linear model represent deviations from the controls

necessary to produce hovering equilibrium. Hence in writing Ecm = ecmo + 6 Ecm, where

Ecmo is the equilibrium component of the master collective, it is 60cm which appears in the

final model. Throughout the thesis, the incremental collectives and cyclics are assumed to

2 Condition (2.3) follows from an assumption that the helicopter main rotor shafts pass through their
c. g.'s when at hover [2].
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satisfy

16c, < 10 and I6BicI < 150. (2.5)

As with the motion variables, the 6's on the control variables shall be suppressed.

The linear model developed above may be written in a more convenient form by intro-

ducing alternative sets of TLHS motion and control variables. The seven new independent

variables needed to describe the TLHS motion are defined as

(1) Ex = x.+x: average horizontal helicopter coordinate,

(2) Ez zm+'z" average vertical helicopter coordinate,

(3) E6 = 6m+6 : average helicopter pitch angle,

(4) Ax x,,m - x,: horizontal separation between helicopters,

(5) Az zm - z,: vertical separation between helicopters,

(6) AO 0,6 - 0,: differential pitch angle,

(7) XL' XL - Ex - (h + H) E6 - Az : generalized load coordinate.

Similarly, the four new controls are defined as

(1) EEc = ecm+ee" : average collective control,

(2) EBle Be"mBBc": average cyclic control,

(3) A9e Edc,,, - Oc,: differential collective control,

(4) ABc Bicm - Bic, : differential cyclic control.

Using these new variables has the advantage that the seven degree of freedom model de-

couples into three simpler subsystems. These subsystems are referred to respectively as

the average vertical motion (AVM) plant, the symmetric motion (SM) plant, and the anti-

symmetric motion (ASM) plant. Elaborating upon the reasons for these names shall be

postponed until chapter 3. The degrees of freedom and controls associated with each sub-

Plant Degrees of Freedom Controls
AVM Ez Ec

SM Ax, AO ABIc
ASM EX, E6, Az, XL' EBIe, AEc

Table 2.3: Three Subsystems of TLHS Linear Model

system are listed in Table 2.3. Note that the newly introduced average and difference vari-

ables still represent incremental quantities, that is, perturbations from their equilibrium
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counterparts.

For design purposes, it is most convenient to have a model in state space form. The

seven degree of freedom linear model describing the TLHS longitudinal dynamics near hover

can be transformed into a twelfth order state space model with three decoupled subsystems

of orders one, four, and seven. This model is written:

4, A~ + Bi,; , E 212, x E P U , (2.6)

where

X [ Ei| AXz AO Ai A|| E6 Az XL' E-ZX E# A' iL] (2-7)

UP EO 11c| ABic || A19c EB1c, (2.8)
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6L

E

IB

T

D

- ML±MB

_Mh
ly

- 1

-W1

2
WA

F

+/z+ (h+
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The symbol || is used to partition the state and control vectors in (2.7) and (2.8) into the

three decoupled subsystems. The superscript "I" outside of the brackets in these equations

denotes the vector transpose. Using the parameter and derivative values listed in Tables 2.1

and 2.2, and changing units from radians to degrees, the matrices A, and B, are given

numerically by

3g = 32.2 f is the acceleration due to gravity.
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-0.2384 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1.000 0 0 0 0 0 0 0 0

0 0 0 0 1.000 0 0 0 0 0 0 0

0 -1.097 -0.8847 -0.0600 0 0 0 0 0 0 0 0

0 -17.27 -5.078 2.349 -3.100 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1.000 0 0
oo A = , 00(2.11)

0 0 0 0 0 0 0 0 0 0 1.000 0

0 0 0 0 0 0 0 0 0 0 0 1.000

0 0 0 0 0 -0.5620 0 1.097 -. 0600 0 0 0

0 0 0 0 0 0 0 17.27 2.349 -3.100 0 0

0 0 0 0 0 0.4679 -0.3885 2.023 0 0 -0.3361 0

0 0 0 0 0 -0.2220 0.1844 -9.565 -0.6308 0.9117 0.1595 0



4.099 0 0 0

0 0 0 0

0 0 0 0

0 0.4782 0 0

0 -47.24 0 0

0 0 0 0
B, =(2.12)

0 0 0 0

0 0 0 0

0 0 0 0.4782

0 0 0 -47.24

0 0 5.779 0

0 0 -2.743 13.41

All AFCS designs in this thesis are developed for the above state space model.
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Chapter 3

Open Loop Analysis of TLHS

Model

3.1 The Three Subsystems

The state space model presented in chapter 2 decouples into three subsystems, referred

to respectively as the AVM plant, the SM plant, and the ASM plant. The AVM plant is of

first order and describes the motion of the average vertical velocity of the helicopters (Ei).

This motion is controlled by the average collective command (Eec). The SM plant is of

fourth order and involves the Ax and AO degrees of freedom. Hence this plant describes

that motion of the helicopters which is symmetric about the equilibrium configuration.

This motion is controlled by the differential cyclic command (ABIc). The ASM plant is of

seventh order and involves the Ex, EO, Az, and XL' degrees of freedom. Hence this plant

describes the TLHS motion which is not symmetric about the equilibrium configuration.

This motion is controlled by the differential collective (A(c) and average cyclic (EBIc)

commands. Figures 3-1 and 3-2 [2] illustrate the TLHS motion associated with the SM and

ASM plants respectively.

3.2 Natural Modes

The natural modes of the TLHS linear system are found by solving the homogeneous

system (no commands issued)

'(t) = Ap-(t); -(0) = E R12. (3.1)

31



Figure 3-1: Visualization of TLHS Symmetric Motion

Figure 3-2: Visualization of TLHS Anti-Symmetric Motion
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Identifying each mode by Ai, i = 1, 2, ... , 12, and assuming A, is diagonalizable, the

solution of (3.1) is given by

12

A(t) = eApizo = ( ei',5 ('zi O), (3.2)
i=1

where the superscript "/" denotes the complex conjugate transpose, and di and wi are

respectively the right and left eigenvectors of A, associated with the eigenvalue Ai. Because

-# -# 1 if i= j
wi i = , (3.3)

0 if i j

it follows that

zo = 6i ==> s(t) = e'Vi. (3.4)

In the case of complex modes Ai, i+1 = a i3w, with associated eigenvectors a'i+1 = t jb,

where a, b E R12, it can be shown that

zo = k1, + k2b; k1, k2 E ==>

=(t) k, + kg e [cos (wt - arctan() - bsin (wt - arctan .

The natural modes and corresponding eigenvectors of the TLHS linear model are listed

in Table 3.1. A plot of these modes, shown in Figure 3-3, reveals that the SM and ASM

plants are both unstable in the open loop. Figures 3-4 through 3-6 illustrate several of the

TLHS modal responses. In Figure 3-4, equation (3.1) is solved with izo = if1. As predicted

by (3.4), El decays exponentially with a time constant (r) of 4.25 s, while all the other

states remain identically equal to zero. Figure 3-5 shows the solution of (3.1) with so = V2.

Again, as predicted by (3.4), the states of the SM system grow exponentially (A2 > 0)

with r = 1.32 s. Also predicted by (3.4), the response remains pointed in the direction

of 62, and thus the states of the AVM and ASM systems remain identically equal to zero.

To illustrate a TLHS response associated with complex conjugate eigenvalues, Figure 3-6

shows the solution of (3.1) with sto = Re [io] + Im [610]. As predicted by (3.5), the seven

states of the AVM system respond as damped sinusoids with r = 1.88 s and an oscillation

frequency of 2.62 rad/s. A more in depth discussion of the TLHS natural modes can be

found in [2].
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Plant AVM SM ASM

i 1 2 3, 4 5 6, 7 8, 9 10, 11 12

Eigenvalues (As) -0.2384 0.7561 -0.8121 j2.2226 -2.2919 0.0402 ±jO. 4 7 8 5 -0.1976±jO.7364 -0. 5 3 13±j 2 .6 2 4 3 -2.1187

1. 0. 0. 0. 0. 0. 0. 0.
0. -0.3658 0.0078 T 30.0 7 09 -0.0564 0. 0. 0. 0.
0. 0.7088 0.3071 T 30. 2 2 8 3  0.3959 0. 0. 0. 0.
0. -0.2766 0.1512 i 30.0749 0.1292 0. 0. 0. 0.
0. 0.5360 0.2580 i jO.8680 -0.9074 0. 0. 0. 0.
0. 0. 0. 0. -0.2167 T jO.2855 -0.0400 ± 30.3966 0.3000 T 30.0219 -0.4158

Eigenvectors (Vi) 0. 0. 0. 0. -0.7465 ±30.0850 -0.0932 T 30. 6 2 1 6  0.0148 T jO. 0 3 0 6  -0.0124
0. 0. 0. 0. -0.0227 T 30.0002 0.0042 T 30.0341 -0.1450 ± jO.0879 0.0706
0. 0. 0. 0. 0.3615 F jO.1267 -0.3482 i jO.0282 0.0619 i jO.1138 -0.1512
0. 0. 0. 0. 0.1279 jO.1152 -0.2841 TjO. 1 0 7 9  -0.1019 i jO.7899 0.8809
0. 0. 0. 0. -0.0707 T 30. 3 5 3 8  0.4762 ± jO.0542 0.0725 ± jO.0551 0.0263
0. 0. 0. 0. -0.0008 T 30.0109 0.0243 ± 30.00 9 8 -0.1536 TjO.4272 -0.1297

Table 3.1: Eigenvalues and Eigenvectors of TLHS Linear Model
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Figure 3-3: Natural Modes of Linearized TLHS Model
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Natural Response of ASM Plant
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Figure 3-6: Natural Response of ASM Plant: sjo = Re [ii10] + Im [61o]

3.3 Selection of Outputs

The outputs of the TLHS are those states or linear combinations of states which will be

measured and used as inputs to the AFCS. It will be assumed as well that weighted versions

of only these outputs (i. e. no other linear combinations of states) can be included among

the performance variables to be penalized in the designs' cost functionals. Therefore, the

best selection of outputs will include those quantities most important to regulate. With only
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four independent controls, however, selections of greater than four outputs will necessitate

performance trade offs among these outputs. Factors governing output selection, as well

as the specific choices of outputs used for controller design, will be discussed further in

chapter 5.
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Chapter 4

7-2 (LQG) and W7,oo Design

Methodology

4.1 The Generalized Plant

Before describing the methodologies used to control the TLHS, it is necessary to intro-

duce the framework under which the designs are developed. Throughout this thesis, the

TLHS is incorporated into a generalized plant P with exogenous inputs w and performance

w z

Figure 4-1: Block Diagram of Generalized Plant

variables z, as shown in Figure 4-1 [4], [5]. The inputs to the controller K are noisy sensor

measurements y, and the controller generated plant inputs are denoted by u. In general, w,

z, y, and u are vectors. To simplify notation, however, the overhead arrow will be suppressed

through the remainder of the thesis. In addition to the nominal model of the TLHS, the
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generalized plant incorporates design weights on selected disturbance, control, and output

variables. These weightings reflect the performance and stability robustness desired from

the control system. The goal of W2 and 74, syntheses within this framework is to minimize

the "size" of the closed loop transfer function Tzw(s). The norms used to measure the size

of this transfer function matrix are what differentiate the two methodologies.

4.2 System Norms

4.2.1 Introduction

A norm of a transfer function matrix G(s) is a non-negative real number which quantifies

the size of G(s) over all complex numbers s. In this discussion, G(s) is assumed to be a

stable, linear, time-invariant system with the state space representation

xi (t) = Ax(t)+Bw(t),

y(t) = Cx(t),

where x(t), w(t), and y(t) may be scalar or vector quantities. It follows that G(s) may be

written as

G(s) = C (sI - A)-' B. (4.2)

4.2.2 7W2 Norms

The 72 norm of a stable transfer function matrix G(s), denoted ||G112 , is defined as

1 00 \ 1 w r 2

||G12 = trace[G(3w)'(3w)]dw)i = f o[G( ]do (4.3)
0i=1

where oi denotes the i-th singular value, G'(3w) is the complex conjugate transpose of

G(jw), and r is the rank of G(3w) [4], [5]. Hence minimizing the 7W2 norm is equivalent to

minimizing the area under the sum of the squared singular values of G(jw), with this sum

plotted versus w.

In the stochastic setting, the 7W2 norm has an especially useful interpretation. If w(t)

is zero mean, unit intensity white noise, then y(t) (in steady state) is also a zero mean
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stochastic process, and

1

||G|| 2 = (E [y'(t)y(t)])2 = (trace [cov [y(t); y(t)]])2 . (4.4)

In equation (4.4), "E" denotes the expected value and "cov" denotes the covariance matrix.

Hence the squared W 2 norm equals the sum of the steady state variances of the components

of y(t), given a unit intensity white noise input. In the case of a scalar output, ||G|12 equals

the steady state Root Mean Squared (RMS) value of y(t).

The above interpretation allows the W 2 norm to be computed in a straightforward

manner [4]. From stochastic systems theory, it is known that if the system G(s) is driven

by zero mean, unit intensity white noise, then (in steady state)

cov [y(t); y(t)] = C E2XC 1, (4.5)

where Ex is the state covariance matrix (in steady state) and is found by solving the

Lyapunov equation

AFEx + ExA' + BB' = 0. (4.6)

Hence |G112 is calculated using equations (4.5) and (4.6) together with (4.4). This method of

computing ||G|12 is clearly far simpler than a computation done directly from the definition

in (4.3).

4.2.3 7, Norms

The W,,, norm of a stable transfer function matrix G(s), denoted |IG||,, is defined as

|IG||, = sup a-m,[G(jw)]. (4.7)

Hence minimizing the lo norm is equivalent to minimizing the peak of the maximum

singular value of G(j), when plotted versus w. The Wc, norm may be interpreted as

representing the largest possible amplification by G(s) of a unit sinusoid input. It is also a

measure of the maximum energy amplification by G(s) of finite energy (42) inputs [6].

Computation of the W,,o norm can be done using an iterative procedure which relies on

the following theorem [5].
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Theorem 4.1 For the transfer function G(s) = C (sI - A)-' B with A stable and Y > 0,

|IGIo < y if and only if the Hamiltonian matrix

A zBB'
H = B (4.8)

-C'C -A'

has no eigenvalues on the jw-axis.

By Theorem 4.1, ||G|| 0 = ymi, where ymin is the infimum over all -y such that (4.8) has no

eigenvalues on the jw-axis. This infimum can be computed within a desired tolerance with

a bisection search over 7.

Because the W. norm measures the maximum energy amplification of L2 signals, it is

(unlike the W 2 norm) a true induced norm. As a consequence, the W. norm satisfies the

following two properties [4].

Property 4.1

|IGIoo < -y = |G2,.||oo < y V i, j (4.9)

where Gi,j denotes a submatrix of the stable, linear, time-invariant transfer function ma-

trix G.

Property 4.2 (Submultiplicative Property) Given two stable, linear, time-invariant

transfer function matrices G1 and G2,

||G 1G2 ||oo ; ||G 1 ||00||G 2 ||oo. (4.10)

During Wo synthesis, Property 4.1 enables frequency weightings to directly shape the max-

imum singular values (as functions of w) of transfer functions between various TLHS inputs

and outputs. Hence the W. design can be explicitly targeted to meet specific performance

and stability robustness bounds.

4.3 72 and WHQ, Controllers

W2 and WO syntheses produce controllers K which minimize respectively the closed loop

transfer function matrix norms |ITzW112 and ||Tzello of the generalized plant introduced in
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section 4.1. The procedures for constructing 712 and R... controllers are relatively simple

once the generalized plant P has been defined.

4.3.1 Assumptions on the Generalized Plant

The generalized plant P is assumed to have the state space realization

A B1 B2

P C1 D1 , D 12

C2 D 2 1 D 2 2

(4.11)

which is shorthand for

(t ) = Ax(t) + Bjw(t) + B 2U(t),

z(t) = Cix(t) + D11w(t) + D12U(t),

y(t)

(4.12)

= C2 x(t) + D21w(t) + D22 u(t).

The following assumptions are then made on P.

Assumptions on P

(A.1) D11 - 0.1

(A.2) [A B 2] is stabilizable and [A C2] is detectable.

(A.3) [A B1] is stabilizable and [A C1] is detectable.

(A.4) V =

(A.5) R =

B 1 [

D 21 1

Cj [C1D1 2]
D12

[
Rxx

R',

Vxx

V2Xy

~" I> 0 with Vyy > 0.
Vy y

RxU > 0 with Ruu > 0.
Ruu

'This assumption may be removed for 7o synthesis [5].
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4.3.2 ?W2 Synthesis

Given the generalized plant P defined by (4.11) and satisfying (A.1)-(A.5), the unique,

stabilizing, optimal controller which minimizes the 712 norm of Tzw(s) is

A+B 2F2 + L 2 C2 + L 2 D 22 F2 -L2

0
(4.13)

F 2

where

F2 = -R- (Ru + B'X 2) , (4.14)

and X 2 and Y2 are the unique, positive, semi-definite solutions to the Riccati equations

o = X 2 Ar + AX 2 + Rxx - RxuR JR'U - X 2B2 R- BX 2 ,

AeY 2 + Y2A' + Vxx - VxyV VV;'V Y2 C'Vy-1 C2 Y2 ,

(4.15)

(4.16)

where

Ar = A - B2R-R' and Ae = A - VxyVy-yC2.

4.3.3 7,,, Synthesis

Given the generalized plant P defined by (4.11) and satisfying (A.1)-(A.5), a stabilizing

controller which satisfies |ITze||oo < y is

K A + (Bi + LoD 21) Wo + B 2Fx + ZooLooC 2 + ZooLoD 22 Fx -Zwoo

Foo 0
(4.18)

where

Foo = -R-1 (R'u + B'Xoc, Woo= 2 BXoo,woo 2

Loo =-(YooC +Vxy) Vyyi , Zoo = I - YooXo ,

and X. and Y. are the solutions to the Riccati equations

0o= XooAr+ A,'Xoo + Rxx - RxuR;R', - ( B 2 RRB2'- BB) xo,

0AeYoo + YooA' + Vxx - VxyV;YVx'y - Yoo C2 yC2 - 2 CIC1 Yoo,7
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(4.21)

(4.22)



that satisfy the following conditions.

(C. 1) XM > 0.

(C.2) The Hamiltonian matrix for (4.21),

Ar -B 2R;pB' + QB 1 B 1
uu , (4.23)

-Rxx + RxuR;)R' -A'

has no Jw-axis eigenvalues, or equivalently, A + B 1 Wo + B 2 Fc is stable.

(C.3) Yo > 0.

(C.4) The Hamiltonian matrix for (4.22),

A' -C j C2+ C1C1
[ C21 + ~jy1vC2 + I (4.24)

L- Vxx + VXY Vly' - Ae

has no jw-axis eigenvalues, or equivalently, A + LoC 2 + FYoC/C1 is stable.

(C.5) p[YOXO] < Y2, where p[-] is the spectral radius.

The optimal 71t, controller results from constructing K' with -y equal to ymin, that is, to

the infimum over all -y such that (C.1)-(C.5) hold. In practice, Ymin is only found to within

some desired tolerance, using for instance, a bisection search over -y. Consequently, the

resulting design is not truly 7to optimal.

4.3.4 Controller Characteristics

The W2 and W,, controllers are both model based compensators whose order equals that

of the generalized plant P. Block diagrams of these controllers are shown in Figures 4-2

and 4-3 [5]. Both diagrams show that the controls u result from multiplying a control gain

matrix (F2 or Fo) with controller generated plant state estimates. The term model based

compensator arises because the plant states are estimated using the noisy measurements y

together with feedback from a model of the plant.

In the 712 design, the control gain matrix F2 is exactly the same as the gain matrix in

the corresponding full state feedback Linear Quadratic Regulator (LQR) design. Similarly,

the filter gain matrix L 2 exactly matches the Kalman filter gain from estimating the plant
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Figure 4-2: Block Diagram of K 2

states based on noisy measurements y. Consequently, the R2 controller exhibits a separation

property, with the closed loop poles of Tzw(s) equaling the union of the regulator poles,

eig[A - B 2F2], and estimator poles, eig[A - L 2C2].

In contrast to the R2 controller, the N, design produces a gain and filter gain matrix

that are linked. This coupling of the gain matrix F, and filter gain matrix ZL, is

apparent in their respective expressions (4.19) and (4.20), as well as in condition (C.5).

The coupling results because the solution for the N, controller corresponds to finding a

global minimum over all saddle points of the optimization problem

inf sup j [z'(t)z(t) - '2w'(t)w(t)}dt (4.25)

with w(t) E L2. Thus, as is evident in Figure 4-3, the RO controller must estimate the

plant states in the presence of a worst case disturbance estimate tb(t).

While solving for the W,,, controller corresponds to finding a minimum -y for which (4.25)

has a saddle point, larger values of y also produce stabilizing controllers. In the limit as

-y -+ oo, the 7iN controller reduces to the R2 controller. Therefore, using intermediate

values of -y allows one to achieve a trade off between 72 and RO performance.
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Figure 4-3: Block Diagram of Koo

4.4 Design Weights

As mentioned previously, the TLHS will be incorporated into a generalized plant P

which includes design weights on selected disturbance, control, and output variables. Using

these design weights, output and control variables can be penalized differently at different

frequencies, enabling a designer to take into account his knowledge of both the system's

dynamics and anticipated external disturbances.

The physical plant can be augmented with design weights in any number of ways, pro-

vided the resulting generalized plant satisfies assumptions (A.1)-(A.5). Figure 4-4 [5] shows

one possible augmentation, where the W are weighting matrices and can be functions of
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Figure 4-4: Design Weight Augmentation of Physical Plant

frequency. In this configuration, the external disturbances to the physical plant are assumed

to consist of a process noise d and sensor noise v. The process noise passes through the

plant's dynamics by way of the input matrix L, whereas the sensor noise is an additive

disturbance at the plant output. The physical plant outputs yp, defined by y, = Cpx,, are

the quantities which are measured and fed into the controller. Weighted versions of these

outputs constitute the performance variables zi.

In selecting design weights for the augmented structure of Figure 4-4, care must be

taken to ensure that the generalized plant satisfies assumptions (A.1)-(A.5). Typically

when the weighting functions Wi depend on frequency, they are chosen to be of the form

Wi(s) = wi(s)Di, where wi(s) is a scalar transfer function, and Di a constant matrix, often

equal to the identity. To ensure that assumptions (A.1)-(A.5) are satisfied, the transfer

functions wi(s) should be chosen to be proper, stable, and minimum phase. In addition,

to satisfy Vyy > 0 in (A.4), W 2 (oo) must have full row rank. Similarly, W 4 (oo) must have

full column rank to satisfy R,, > 0 in (A.5). These requirements on W 2 and W 4 ensure

that each component of the controls u appears explicitly in z, and that each sensor noise v

contains some direct feedthrough of the exogenous inputs w.

When selecting design weights, a couple of additional principles (beyond those for meet-

ing the controller synthesis assumptions) should be kept in mind [5], [7]. First, frequency

weights should conform to the nature of the physical plant's dynamics. That is to say, one
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cannot manipulate frequency weights to meet unrealistic performance criteria. Control en-

ergy will have to be large over frequency ranges where the plant outputs are desired small.

Similarly, one cannot expect small outputs over frequency ranges where small control energy

is desired. A second principle for choosing weighting functions is to keep them as simple

as possible. Using weights that are either too detailed or redundant is undesirable because

the order of the W2 or 74o compensator equals that of the generalized plant.

4.4.1 Weights in 72 Design

Design weights for 112 synthesis should be chosen assuming that w is a zero mean, unit

intensity white noise input. The N2 controller will then minimize the sum of the variances of

the performance variables z. With this assumption on w, the weightings W 1 and W 2 should

shape wi and w2 so that the spectral content of d and v reflects the expected spectral

content of the actual process and sensor noises affecting the physical plant [5]. W3 and

W 4 are then chosen according to the frequency ranges over which the plant outputs and

controls are desired to be small. For example, at frequencies high enough for unmodeled

plant dynamics to become significant, the control energy should be penalized heavily at

the expense of output performance. By contrast, at lower frequencies where the spectral

content of the process noise is greatest, the plant outputs should be more heavily penalized

with the penalty on the controls decreased. Recall that when choosing each W based upon

the above considerations, any redundant frequency weightings should be eliminated.

4.4.2 Weights in 7?. Design

4.4.2.1 Loop Shaping

While considerations similar to those in 112 design can be used to select the design weights

in 7iN design, the properties of the 7lN norm allow a designer to use design weights for

direct loop shaping. With the augmentation shown in Figure 4-4, and denoting the controller

K(s), the closed loop transfer function from w to z is given by

T F.S W3 S(s)GI(s)W1 -W 3 C(s)W 2  1
T2m(s) = , 1 - 1 (4.26)
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where

S(s) = (I - G2 (s)K(s))- 1 , C(s) = - (I - G2 (s)K(s))-1 G2(s)K(s), (4.27)

Gi(s) = C (sI - Ap)- 1 L, G2 (s) = C, (sI - Ap)- 1 B,. (4.28)

The sensitivity function S(s) multiplied by G, (s) is the transfer function from d to yp,

whereas the complementary sensitivity function C(s) is the transfer function from -v to

yp. Assume that a designer desires these transfer functions to satisfy the requirements

1
omn[(30G1(3)] ) V w, (4.29)

1 V*
omx[C(3w)] < V W , (4.30)

where pn(w) and em(w) are positive scalar functions of frequency. In 7,,, design, these

requirements can be met by selecting W 1 = wi(s)I, W 2 = w2(s)I, and W 3 = I, with

|w1(3w)| pn(w) and |w2(3w)| em(w). With this selection, if ||Tzello < 7, Property 4.1

implies that

Omax[S(3w)G1( 3w)] < V w, (4.31)

Omax[C(JOw)] < I V w. (4.32)

Specifications (4.29) and (4.30) are then met by adjusting W 4 until y < 1. In some cases,

it might also be necessary to relax p, (w) and em (w) for a satisfactory compensator with

7 < 1 to exist.

4.4.2.2 The Small Gain Theorem

The ability to directly shape amax[C(3w)} using design weights has importance beyond

that of enabling improving sensor noise rejection. Specifically, the shape of -mna[C(3)] is

intimately connected with a design's stability robustness. This connection is established by

the Small Gain Theorem.

Multiplicative Representation of Uncertainty

Figure 4-5 shows how uncertainty may be modeled as a multiplicative perturbation
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Figure 4-5: Uncertainty Represented as Multiplicative Perturbation at the Plant Output

at the plant output. In this representation, An(s) is an arbitrary, real-rational, proper,

stable transfer function matrix satisfying |A,||I < 1, and W(s) is a real-rational, proper,

stable transfer function matrix used to represent the assumed accuracy of the nominal plant

model as a function of frequency [6]. K(s) is a model based compensator, either 7W2 or 7t,

designed for the generalized plant in Figure 4-4. The compensator is therefore guaranteed

to stabilize the nominal plant G2 (s).

The multiplicative representation of uncertainty shown in Figure 4-5 defines a set of

transfer function matrices, Q2, to which the actual plant, G2a(S), is assumed to belong [8].

The definition of this set is

G2 = 15 2 (S) I 52(s) = (I + A.(s)W.(s)) G2 (s), IAullo < 1}. (4.33)

Note that although A.(s) is bounded in norm, its phase and direction are arbitrary. Con-

sequently, this representation of uncertainty is called unstructured. Such unstructured un-

certainty can be used to account for (often high frequency) unmodeled dynamics in the

nominal plant. In using the model of (4.33), the selection of an appropriate transfer func-

tion matrix Wu(s) is the primary design step, as it is this matrix which determines the

magnitude bound on the set G2.
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Small Gain Theorem

Once a suitable transfer function matrix W (s) has been selected, the schematic in

$u Vu

TS ,
w I z

Figure 4-6: Uncertainty Model for Application of Small Gain Theorem

Figure 4-5 may be remapped into the configuration shown in Figure 4-6. In this figure,

T(s) M(s) TW(s)

Tz$ (s) Tzw(s)

M(s), the transfer function from #. to V), equals -W.(s)C(s), and is stable by assumption.

The perturbed transfer function from w to z is a linear fractional transformation on Tr(s)

by A. (s), denoted F [Tr(s), A,, (s)] [9]. The subscript "u" on Fu indicates that the upper

loop of Tar(s) is closed by Au (s). For stability robustness, Fu[Tr(s), Au (s)] must be stable

for all allowable Au(s). A necessary and sufficient condition for this stability robustness is

given by the Small Gain Theorem.

Theorem 4.2 (Small Gain Theorem) Given the set of real-rational, proper, stable

transfer function matrices Au {A (s) I ||AuI|| 0 < 1}, Fu[Tar(s),Au(s)] = Tzw(s)+

Tz$,(s)Au(s) (I - M(s)Au(s))- 1 Topw(s) is stable for each Au(s) in Au if and only if

|IMk0| < 1.

Hence for stability robustness with the perturbation set A., I|WuC|,o must be less than

or equal to 1. To achieve this using direct loop shaping, one simply chooses em(w) in

equation (4.30) to be greater than or equal to -max[Wu(jw)] for all w.
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4.5 Summary

This chapter explains the theory of 712 and W-,, design. The generalized plant framework

is introduced, within which the goal of R2 and -1.. control is to minimize the "size" of the

plant with feedback from the controller. The norms which measure this plant's size, and

which differentiate the two methodologies, are defined and interpreted. After stating the

necessary assumptions on the generalized plant, synthesis methods for the two types of

controllers are presented, and characteristics of each discussed. The chapter concludes with

a discussion of how design weights incorporated into the generalized plant can be used to

target specific performance and stability robustness requirements for the closed loop system.

Within 1-1o design, in particular, the ability of design weights to directly shape the singular

values of various transfer functions is illustrated.
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Chapter 5

RN2 and 7Woo Design Descriptions

5.1 Introduction

As discussed in chapter 4, the R 2 and 7",No design methodologies require that the TLHS

be incorporated into the generalized plant shown in Figure 4-1. Throughout the thesis, this

generalized plant is assumed to have the structure shown in Figure 4-4. This model includes

design weights reflecting desired performance requirements which incorporate knowledge of

anticipated external disturbances. By penalizing the control energy over frequencies where

unmodeled plant dynamics are expected significant, these weights can also be used to achieve

stability robustness. In ?o design, such stability robustness to unmodeled plant dynamics

can be achieved in an efficient manner using direct loop shaping.

The above considerations for the generalized plant require answering a number of ques-

tions before its design can begin. In particular, (1) how shall the anticipated external

disturbances on the TLHS be modeled? (2) which variables of the TLHS should be reg-

ulated, and with what specific performance requirements? and (3) what is the nature of

the unmodeled dynamics in the nominal plant? The answers to these questions define the

TLHS controller specifications. With these specifications established, appropriate design

weights are chosen which satisfy assumptions (A.1)-(A.5), and then the corresponding R2

and 1iN controllers are generated via the methods described in chapter 4. For each con-

troller generated, an assessment of its performance versus the design specifications must

be made. If some specifications are not met, the design weights are adjusted and a new

controller generated. Thus, designing a satisfactory controller is very much an iterative

procedure. In addition, the specifications themselves are subject to modification during
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this process, as repeated iterations can reveal that no choice of design weights is able to

meet the specifications initially put forward.

5.2 Design Specifications

The design specifications consist of constraints on TLHS variables and controls in the

presence of specified external disturbances, as well as of a stability robustness requirement to

unmodeled dynamics. As mentioned above, establishing the stringency of the specifications

is a part of an iterative design procedure.

5.2.1 External Disturbances

The external disturbances to the TLHS are assumed to consist of a process noise d,(t)

and sensor noise d,(t). Consistent with the generalized plant structure in Figure 4-4, the

process noise passes through the TLHS dynamics by way of an input matrix Ld, whereas the

sensor noise is an additive disturbance at the TLHS output. Each of these disturbances is

modeled as the output of a shaping filter driven by zero mean, unit intensity white Gaussian

noise.

The process noise d,(t) is assumed to consist of two independent horizontal wind distur-

bances, dpm (t) and dp, (t), with dpm (t) directly affecting the master helicopter and d, (t) the

slave helicopter [10]. Each disturbance dpm(t) and d,(t) is the output of a first order sys-

tem driven by the zero mean, unit intensity white Gaussian noise (m (t) or (t) respectively.

Defining d,(t) and ((t) by

[dpm(t)1
d, (t) dp ,t (5.1)

d,,(t)

((t) 3 ,(5.2)

the system generating the wind disturbances may then be written as

[-0.3 0
d, (t) = d,(t) + 11(t). (5.3)

0 -0.3

The wind disturbances affect the TLHS through the state equations for the helicopters'
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pitch rates and horizontal velocities [4]. In particular, if the state equations are written for

the variables im(t), i,(t), Om(t), and O,(t), the coefficients multiplying (m(t) are the same

as those multiplying im(t), and analogously, the coefficients multiplying (,(t) are the same

as those multiplying i., (t). Because the TLHS state space model derived in chapter 2 is in

terms of average and difference state variables, some manipulation is required to compute

the correct Ld. The resulting numerical matrix is given by

Ld =

0

0

0

-0.0600

2.3491

0

0

0

-0.0300

1.1746

0

0

0

0

0

0.0600

-2.3491

0

0

0

0.0300

1.1746

0

0

(5.4)

The sensor noise d,(t) consists of independent measurement noises at the TLHS output.

The power spectral density (PSD) of each measurement noise is assumed to peak at around

27 rad/s, the first harmonic frequency of the helicopters' main rotors [2]. In addition, each

noise has a pure white component, the intensity of which is proportional to the variance

of the respective measured output (assuming perfect sensors). Hence, denoting the RMS

of each output ypi(t) by ri, the corresponding measurement noise dai(t) is modeled as the

output of the second order shaping filter riN(s)/100, where

272 +
s2 + 2.7s + 272

(5.5)

In other words, d8i(t) is the output of the system riN(s)/100 driven by zero mean, unit

intensity white Gaussian noise.

Figure 5-1 shows the squared magnitude of N(jw) versus frequency. The fact that each
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Figure 5-1: Unscaled PSD of Measurement Noises

noise di(t) retains a pure white component is reflected in the fact that jN(jw)12 1 1

(rather than zero) as w -+ oo. By design, the square root of the intensity of each pure white

component equals 1% of the respective measured output's RMS.

5.2.2 Regulation of TLHS Variables

In establishing controller performance criteria, six variables of the TLHS are considered

essential to regulate. These are

(1) Ax: horizontal separation between helicopters,

(2) XL - Ex : load deviation from center,

(3) 6m: pitch angle of master helicopter,

(4) 0,: pitch angle of slave helicopter,

(5) Az: vertical separation between helicopters,

(6) Ei: average horizontal velocity of helicopters.

Regulating Ax is necessary to ensure that the helicopters remain a safe distance apart,

whereas regulating XL - Ex allows for control of the load motion. Both of these variables

are usually commanded to zero [2]. Maintaining small pitch angles 0m and 0, as well as a

small vertical separation Az is necessary to ensure that the linearization of the TLHS model
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put forth in chapter 2 remains valid. In other words, the TLHS is still operating within

a linear region about hovering equilibrium. Lastly, regulation of the average horizontal

velocity Ez allows for position guidance of the TLHS.

With this set of regulated variables specified, a means is needed to test each controller's

performance with respect to these variables. Such tests include evaluations in the time as

well as the frequency domain. In the time domain, the response of the closed loop TLHS

and controller system is examined within both a deterministic and stochastic setting.

5.2.2.1 Time Domain

Deterministic time domain simulations are used to assess the system's transient response

to an initial offset (from zero) of some of the regulated variables. The following two initial

conditions are chosen:

(IC.1) AX = 1 ft, A9 = -1.359*,

(IC.2) XL - EX = 1 ft, Az = 2 ft.

All of the other variables not listed explicitly in (IC.1) and (IC.2) are set equal to zero.

Note that (IC.1) results from applying a steady state differential cyclic of -0.2194*, whereas

(IC.2) results from applying a steady state differential collective of 0.13450 together with

a steady state average cyclic of 00 [2]. Hence, these two initial conditions test the closed

loop response of the SM and ASM plant respectively. Because the 12 and 7-lo controllers

are designed assuming a process noise of horizontal wind disturbances, which do not affect

the AVM plant (L = Ld in Figure 4-4), the response of the AVM plant will be unaffected

by control. Thus the transient response of Ei remains an exponential decay with the time

constant T = 4.25 s, as shown in Figure 3-4.

The stochastic simulations involve applying process and sensor noise to the zero state

closed loop system and then observing the response of the TLHS variables. The process

noise is generated via (5.3) and the sensor noise via the appropriately scaled filter in (5.5).

The scaling factors ri used to generate the measurement noises are determined from an

initial simulation in which sensor noise is omitted.

In both the deterministic and stochastic simulations, the following magnitude constraints

on the TLHS variables are considered desirable:

(S.1) |Ax| < 6 ft,
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(S.2) IXL - EXI < 6 ft,

(S.3) 16m|, |6st 100,

(S.4) |Azi < 10 ft,

(S.5) |EzI 15 ft/s.

Of these specifications, (S.1)-(S.3) are considered mandatory for all acceptable designs,

whereas trade offs are allowed between satisfying (S.4) and (S.5). The speed with which the

TLHS variables are driven to zero in the transient simulations will also be compared and

contrasted among the different controllers, with quicker responses being more desirable.

5.2.2.2 Frequency Domain

The frequency domain specifications reflect the desire to minimize the effect of the process

and sensor noise on the regulated variables. Recall from equation (5.3), that the process

noise d,(t) is modeled as the output of a low pass filter driven by white noise. Denoting the

transfer function from d,(t) to y(t) by Ty,,(s), and converting all magnitudes to decibels,

the frequency domain specifications for process noise rejection are

(S.6) omax[TAx,dp(3)] -20 dB for w < 0.3 rad/s,

(S.7) amax[T,,_x,dp(3)] < -20 dB for w < 0.3 rad/s,

(S.8) -max[T,dP(3w)], omax[To.,dp(3w)] < -10 dB for w < 0.3 rad/s,

(S.9) omax[TAz,d,(3w)] -10 dB for w < 0.3 rad/s,

(S.10) amax[Ti,d,(3w)] -5 dB for w < 0.3 rad/s.

Similar to the time domain specifications, (S.6)-(S.8) are considered mandatory for all

acceptable designs, whereas (S.9) and (S.10) are only desirable and hence trade offs between

the two are permitted.

From the earlier discussion in section 5.2.1, and also from Figure 5-1, the PSD of the

sensor noise d,(t) is assumed to peak at around 27 rad/s, the first harmonic frequency

of the helicopters' main rotors. Hence for sensor noise rejection, the frequency domain

specification is

(S.11) amax[C(3w)] -20 dB for w 0 27 rad/s,
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where the complementary sensitivity function C(s), defined in (4.27)-(4.28), is the closed

loop transfer function from -d,(t) to the TLHS outputs y,(t). Specification (S.11) is con-

sidered mandatory for all acceptable designs.

5.2.3 Regulation of TLHS Controls

Recall that the longitudinal motion of the TLHS is governed by the four independent

helicopter controls

(1) Ecm : master collective control,

(2) Ec,, slave collective control,

(3) Blcm : master cyclic control,

(4) Bic, slave cyclic control.

All of the control variables must be regulated to ensure that the TLHS model linearization

of chapter 2 remains valid. Control variable responses are evaluated in the time as well as

the frequency domain, closely following those tests used for the TLHS regulated variables.

Time domain simulations are performed in both a deterministic and stochastic setting.

5.2.3.1 Time Domain

The deterministic time domain simulations examine the control variables' transient re-

sponses to those same initial conditions, (IC.1) and (IC.2), used in evaluating the TLHS

regulated variables. Again, these two initial conditions test the closed loop response of the

SM and ASM plant respectively. As described earlier, the AVM plant will remain unaf-

fected by control. As a consequence, the response of the average collective control (EEc)

will always be identically equal to zero, or in other words, Ecm will always exactly equal

-Ecs. The stochastic simulations used to evaluate control variable responses are also iden-

tical to those used in testing the TLHS regulated variables. In both the deterministic and

stochastic simulations, the control variables must satisfy the magnitude restraints

(S.12) |Ecm|, |Ecs| < 100,

(S.13) IBicmI, IBics| < 150.

Specifications (S.12) and (S.13) are considered mandatory for all acceptable designs. Each

of these specifications is also consistent with assumption (2.5) made during the TLHS model

linearization.
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5.2.3.2 Frequency Domain

The frequency domain specifications reflect the desire to minimize the effect of the process

noise on the control variables. Hence following the same reasoning used in establishing

specifications for the TLHS variables, the frequency domain specifications for the control

variables are

(S.14) umax[Tecm,d(30)], Omax[Tec.,d,(3w)] < -10 dB for w < 0.3 rad/s,

(S.15) amax[TBAcm,d,(3W)], amax[TB,,,,d,(jw)] < -6 dB for W < 0.3 rad/s.

Specifications (S.14) and (S.15) are considered mandatory for all acceptable designs.

5.2.4 Unmodeled Dynamics

The unmodeled dynamics of the TLHS are assumed to consist of a time delay of up to

0.05 s. Hence, the actual TLHS plant is assumed to belong to the set g2, which is defined

as

g2 {5 2 (s) I N2 (s) = G2(s)e", 0 < r < 0.05}, (5.6)

where G2 (s) is the nominal TLHS transfer function matrix defined in (4.28). To apply the

Small Gain Theorem, the unmodeled time delay is represented as a multiplicative pertur-

bation at the nominal plant output. Hence, g2 is rewritten in the form

2 52 (S) 1 52 (s) = (I+ A,(s)W.(s)) G2 (s), IIAu lo <1} , (5.7)

for some real-rational, proper, stable transfer function matrix W,(s) still to be determined.

In order for the set in (5.7) to include that defined in (5.6), it must be true that for all r,

0 < r < 0.05, there exists a proper, stable transfer function matrix As(s), ||Au|[o < 1,

such that

G2 (s)e T " = (I+ A,(s) W.(s)) G2 (s). (5.8)

Assuming that G2(s) is non-singular along the jw-axis and allowing Wa(s) to assume the

form w,(s)I, with w(s) a scalar transfer function, (5.8) then implies that

le~""7 - 1| 15 |wu(3w)|I V w, 0 < r < 0.05 ==>(5.9)
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max le-3w - 11 |w(3w)| V w.
0 <r < 0.05

A simple, proper, stable transfer function w(s) satisfying (5.10) is given by [5]

Wu (S) = 0.21s
0.05s + 4

(5.10)

(5.11)

Figure 5-2 shows |w, (jw) I and le-JwT - 11 plotted together (in decibels) for r = 0.05, which
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Figure 5-2: Magnitude of wu(3w) and Time Delay Uncertainty

is the worst case value.

The scalar transfer function wu(s) defined in (5.11), when multiplied by the identity

matrix, defines via (5.7) the uncertainty set to which the actual TLHS plant belongs, and

over which every controller must achieve stability. The necessary and sufficient condition

for this stability robustness is given by the Small Gain Theorem. From this theorem,

the stability of the closed loop system over the entire set g2 is guaranteed if and only if

|IM||oo 5 1, where M(s) = -Wu(s)C(s). For the transfer function matrix Wu(s) = w"(s)I,

this is equivalent to the condition

IWU(3W)|max[C(3W)] 1 V W.- (5.12)

Hence, the final design specification, intended to achieve stability robustness to a time delay
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of up to 0.05 s, requires that the complementary sensitivity transfer function matrix C(s)

satisfy

(S.16) -max[C(w)] V W,

where wu (s) is as defined in (5.11). Specification (S. 16) is considered mandatory for all

acceptable designs.

5.3 Design Descriptions

A controller design is completely specified by how the generalized plant in (4.11) and (4.12)

is defined. This is done by specifying the matrices C and L, together with the weighting

matrices Wi, for the generalized plant structure in Figure 4-4. In both the W 2 and W".

case, two designs are ultimately arrived at which satisfy the previously put forward design

specifications. In all of the designs, the matrix L in Figure 4-4 is set equal to the matrix

Ld in (5.4). All final controllers result only after a long series of design iterations.

5.3.1 Output Matrix

The output matrix C, determines which linear combinations of the TLHS states are

penalized in the controller designs' cost functionals. It is weighted versions of these outputs

that the controller tries to minimize. As discussed in chapter 3, while it may be desirable to

penalize all of those TLHS variables in need of regulation, doing so necessitates performance

trade offs amongst them. Additionally, increasing the number of outputs increases the order

of the controller when the weighting matrices depend on frequency.

Among the six variables specified in section 5.2.2 as essential to regulate, various com-

binations of them are tested repeatedly as outputs to determine which groupings produce

controllers best satisfying the design specifications. During these trials, it becomes appar-

ent that all acceptable designs must include among their outputs the horizontal separation

between the helicopters (Ax), the load deviation from center (XL - Ex), and some combi-

nation of the master and slave pitch angles (0m, 9,). Denoting the final two W2 designs as

A 2 and B2 , and the final two ?-,No designs as C, and 'D , the outputs chosen are listed in
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Designs
A 2, Co
B2 , Do

Table 5.1: TLHS

Outputs
Ax, XL - EX, E6

Ax7 XL - EX, 26 ,Xi

Outputs for Controller Designs

Table 5.1. For designs A2 and C,, this gives the output matrix C as

0

C,= 0

0

1 0

0 0

0 0

0

0

0

0

0

0

0

0.2941

1

0

0.5

0

0

1

0

0

0

0

0

0

0

0

0

0

For designs B 2 and Do, the output matrix C simply

porate E.. Hence for these designs,

Cp=

0

0

0

0

1 0

0 0

0 0

0 0

0

0

0

0

0

0

0

0

0

0.2941

1

0

0

0.5

0

0

contains one additional row to incor-

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

(5.14)

5.3.2 Weighting Matrices

The weighting matrices W of the augmented plant structure are chosen taking into

account the anticipated external disturbances to the plant along with the design specifica-

tions for both performance and stability robustness. Some of these matrices are functions

of frequency, but for simplicity, redundant weighting functions are avoided. The weighting

functions are also chosen to ensure that assumptions (A.1)-(A.5) from section 4.3.1 are met.

5.3.2.1 W2 Designs

Recall that for N2 synthesis, the weightings W1 and W2 reflect the expected spectral

content of the process noise d and sensor noise v in Figure 4-4. The expected external

disturbances d,(t) and d,(t) to the TLHS are each described in section 5.2.1. Specifically,

from equation (5.3), the process noise d,(t) is the output of the shaping filter L(s)I, where

__11

L(s) = 1.
s +0.3'

(5.15)
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Similarly, each sensor noise d8 i(t) is the output of a scaled version of the shaping filter

N(s), as defined in (5.5). Hence in the initial design stages, W1 is set equal to wi(s)I and

W 2 to w2(s)I, with wi(s) = L(s) and w 2 (s) = N(s). The final frequency weightings then

evolve during a series of design iterations aimed at meeting the design specifications. The

weighting functions ultimately chosen are listed in Table 5.2.

Table 5.2: Weighting Functions wi(s) and w2(s) for R2 Controller Designs

The weighting matrices W3 and W 4 are selected according to the frequency ranges over

which the plant outputs and controls are desired to be small. However, the frequency

dependent nature of the specifications for process noise rejection below 0.3 rad/s and sensor

noise rejection around 27 rad/s has already been incorporated into the weightings W1 and

W 2 . Hence, the matrices W 3 and W 4 are chosen to meet the specifications' magnitude

requirements, as well as to satisfy requirement (S.16) for stability robustness.

The weighting matrix W3 is selected as a square diagonal matrix, independent of fre-

quency, with each diagonal element W corresponding to the penalty placed on the i-th

TLHS output. During the design iterations, the elements of W 3 are adjusted in order to

meet the design specifications. The weighting matrix W 4 is designed to achieve stability

robustness to the time delay of up to 0.05 s. Hence this matrix is frequency dependent, with

omax[W4(jw)] largest over frequencies where the time delay dynamics are most significant.

Choosing W4 to have the form w4 (s)D 4 , with W4(s) a scalar transfer function and D 4 a

constant square matrix, the weighting function w4 (s) should resemble the function w, (s),

defined in (5.11), used to capture the unmodeled dynamics of the time delay. In fact, the

function w 4 (s) ultimately selected for each 712 design is nearly identical to w, (s), with only

the slight modification of a low frequency zero added to W4(s) to make this function min-

imum phase. The matrix D4 is then chosen by first writing it as the product of two more

meaningful matrices, S and R. The matrix R is used to transform the set of average and

difference control variables back into the set of individual helicopter controls. Defining R
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as

1

1

0

0

0

0

1

1i

1

2

0

0

0

0

1

1

gives the result

EEc Ecm

Ru = R = .
Aec Bicm

LE Bjc -i LBies

S is then chosen to be a constant diagonal matrix, enabling each

independently penalize a single master or slave helicopter control.

(5.16)

(5.17)

diagonal element to

Table 5.3 gives the

Design w4(s) S D4 = SR

[ 2.1646 0 0 0 1 [ 2.1646 0 1.0823 0
0.21(s+0.001) 103. 0 2.1646 0 0 103. 2.1646 0 -1.0823 0

2 0.05s+4 0 0 1.3321 0 0 0.6660 0 1.3321
L 0 0 0 1.3321 _ _ 0 -0.6660 0 1.3321

~ 2.1646 0 0 0 1 2.1646 0 1.0823 0
0.21(s+0.1) 03. 0 2.1646 0 0 103. 2.1646 0 -1.0823 0

2 0.05s+4 0 0 1.1545 0 0 0.5772 0 1.1545
_ 0 0 0 1.1545 . 0 -0.5772 0 1.1545

Table 5.3: Components of Weighting Function W4 for N 2 Controller Designs

weighting function w 4 (s) and the matrices S and D 4 for each of the final N 2 designs. The

resulting weighting function W 4 , together with the weighting matrix W 3 , are then listed in

Table 5.4.

5.3.2.2 N Designs

For N synthesis, the weighting matrices are designed to meet some of the frequency

domain design specifications using direct loop shaping. Loop shaping, however, rarely

produces the desired controller on the first try. First, the direct shaping of transfer functions

requires producing an N controller with the parameter y less than or equal to 1. However,

if the specifications to be met by loop shaping are too stringent or do not comply with
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Design W3 W4 = w4(s)D 4

r11)10 0 2.1646 0 1.0823 0

A 2  15 0 0.25 0.21(s+0.001) -103. 2.1646 0 -1.0823 0

0 0 3.3333 0.05s+4 0 0.6660 0 1.3321
.. 0 -0.6660 0 1.3321 _

~ 6.6667 0 0 0 [2.1646 0 1.0823 0 1

B3 104- 0 4 0 0 0.21(s+0.1) 3 2.1646 0 -1.0823 0
20 0 2.5 0 0.05s+4 0 0.5772 0 1.1545

. 0 0 0 2 _ 0 -0.5772 0 1.1545]

Table 5.4: Weighting Functions W 3 and W 4 for 712 Controller Designs

the plant's dynamics, this parameter will be too large. Second, even if the requirement

-y < 1 is achieved, those specifications not explicitly targeted with the loop shaping may

not be satisfied. Hence, selecting a satisfactory set of weighting matrices involves numerous

design iterations in which both the weighting functions and the performance criteria are

subject to change. Furthermore, while the sections below describe the selection of each

weighting matrix separately, these selections are actually highly interdependent and occur

simultaneously throughout the design process.

The matrix W1 is used to meet frequency domain specifications on those TLHS variables

which are included among the TLHS outputs. The transfer function from the process noise

to these outputs equals S(s)GI(s), where the matrices in this product are as defined in

section 4.4.2.1 on loop shaping. The weighting function W1 is selected to have the form

wi (s)I, while W 3 is chosen as a constant diagonal matrix with diagonal elements W 3i. To

then shape the transfer function S(s)Gi(s) to meet specifications (S.6), (S.7), and (S.10),

one first rewrites these specifications in the form

1
Umax[Txi,d, (JW)} < 1 V W, (5.18)

W3i Pn (W)

where xi is the i-th TLHS output, and pn(w) is defined by

7
Pn(W) = . (5.19)

Figure 5-3 shows the function 1/pn(w) versus frequency. The plot reveals that if W 3 1 and

W32 are each greater than or equal to 1, then both (S.6) and (S.7) are guaranteed to be
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Function 1/p(o)) for Representing Output Specifications

-20
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c (rad/s)

Figure 5-3: Function Used to Represent Frequency Domain Output Specifications

satisfied by choosing |wi(jw)| > pn(W). Similarly, for design D,, where E.i is the fourth

TLHS output, specification (S.10) is guaranteed to be satisfied by choosing |wi(3w)|

pn(w), as long as W34 > 0.1778. Hence for both '... designs, subject to the above conditions

on W 3 , w 1 (s) is selected as the function 7/(s + 0.6), such that 1wi(wJ)| exactly equals pn(W)

for all frequencies.

The weighting matrix W2 is used to meet the frequency domain specifications for sensor

noise rejection, (S.11), and for stability robustness to the time delay of up to 0.05 s, (S.16).

Both of these specifications are on the complementary sensitivity function C(s), as defined

in section 4.4.2.1. Similar to the weighting matrix W 1, the matrix W 2 is chosen to have the

form w2(s)I, with w 2 (s) a scalar transfer function. The matrix W 3 , however, is assumed

to equal the identity. To then shape C(s), specifications (S.11) and (S.16) are first each

rewritten in the form

omax[C(j)] <em1w V C, (5.20)
emi(P)

with i = 1 for (S.11) and i = 2 for (S.16). Specification (S.16) is easily written in the

form of (5.20) simply by letting em2 (w) = |wu(jw)|, where wa(s), defined in (5.11), is the

transfer function used to capture the unmodeled dynamics of the time delay. Then (5.20)

exactly matches the original statement of (S.16). Specification (S.11) is written in the form
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of (5.20) by defining emi (w) as

|(3W) 2 + 2 .73w + 2.2721emi(W) 1(3W)2 + 2.73w + 2721
(5.21)

This function precisely equals IN(3w) , where N(s) is the sensor noise shaping filter defined

in (5.5).

Ultimately, it is desirable to combine the two specifications (S.11) and (S.16) into a

single specification with the form

(5.22)Umax[C(JOW)] < V .
em(w)

A natural starting point is to let em(w) = emi (w)em2(W), where the functions in this prod-

uct are as defined above. With em(w) so specified, Figure 5-4 illustrates how the specifi-

40

-S
0
7:

20

10

0

-10

-20

Functions for Representing Specifications on C(s)

10' 100 101 102 103

m (rad/s)

Figure 5-4: Functions Used to Represent Frequency Domain Specifications on C(s)

cation (5.22) attempts to combine into one the two separate specifications for sensor noise

rejection and stability robustness. The plot reveals that by choosing |W2(Jw)I em (w),

(S.16) is guaranteed to be satisfied, and (S.11) is guaranteed to be satisfied for all frequen-

cies except those in the approximate range from 30 to 100 rad/s. Hence in the initial design
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stages, W2 (s) is set equal to the product w 2 1 (s)w22 (s), where

W21l(8) = s2 + 2.7s + 2.272 (5.23)
s2 + 2.7s + 272

and

W22 (S) 0.21(s + 0.1) (5.24)
0.05s +4

In other words, w21(s) = N(s), and w22(s) is nearly identical to wa(s), with only the slight

modification of a low frequency zero added to w2 2(S) to make this function minimum phase.

Since this selection gives |w21(3w)| = eml(w) and |w22(0)| 2 em2(w) for all frequencies, it

follows that

|W2(3W)| em1 (w)em2(w) = em(w) V W. (5.25)

The final frequency weighting function w2(s) evolves during a series of design iterations

aimed at meeting both (S.11) and (S.16) over all frequencies. In each of the final designs,

w22(s) remains unchanged from that in (5.24), whereas w21 (s) is relaxed in an effort to

reduce the overshoot at frequencies around 40 rad/s. In design C', a scaling factor is also

introduced. The weighting function w2 (s) ultimately chosen for each design is listed in

Table 5.5.

Table 5.5: Weighting Function w 2 (s) for 'H, Controller Designs

The weighting functions W3 and W4 are both selected as constant matrices and are

used primarily for fine tuning the responses of individual TLHS variables and controls. As

mentioned previously, W3 is a constant diagonal matrix such that each diagonal element

W3 corresponds to the penalty placed on the i-th TLHS output. In order to conform

with assumptions made when selecting wi(s) and w 2 (s) for loop shaping, the matrix W 3

is initially set equal to the identity. However, as the iterations involving all four weighting

functions proceed, the elements W3 i are adjusted to focus control on those outputs in need

of greater regulation, and in so doing achieve an appropriate penalty balance for the meeting
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of all of the design specifications. In both hO designs, the final values of W31 and W 32

are equal to or just slightly greater than 1, hence agreeing closely with the assumptions

made on W3 during loop shaping. W33, the penalty on EO, is chosen based upon empirical

evaluations of controller performance, and the values chosen for each of the two designs

differ significantly. In particular, EO incurs a larger penalty in design C,, in which there

are only three outputs, than in design D,, in which a fourth output EZ.i is also penalized.

In design D, the fourth penalty W34 is chosen as 0.1667, very near the value of 0.1778

shown earlier to guarantee the meeting of specification (S.10). Analogous to the weighting

function W3, the matrix W 4 is used to appropriately balance individual control penalties

in order to meet all of the design specifications. In addition, because no assumptions are

made on W 4 during loop shaping, the varying of this matrix is instrumental in producing

a controller such that the parameter y is less than or equal to 1. Similar to the W2 design

procedure, the matrix W 4 in the W, case is chosen by first writing it as the product of two

more meaningful matrices, S and R. The matrix R, defined in (5.16), transforms the set of

average and difference control variables back into the set of individual helicopter controls,

whereas S, a constant diagonal matrix, is used to independently penalize each of these

individual controls. The matrices W3, S, and W4 ultimately chosen for each -o design are

listed in Table 5.6.

5.4 Summary

This chapter describes the generalized plant designs for W2 and 71.. controller synthesis.

To motivate these designs, performance and stability robustness specifications are estab-

lished. The performance specifications are based upon assumed process and sensor noises

for which the spectral contents and means of entering the TLHS dynamics are known. The

stability robustness specification assumes the presence of an unmodeled time delay of up

to 0.05 s. Based upon the established specifications, four generalized plants, two for 712

and two for 7t synthesis, are designed. The selection of design parameters and weight-

ing functions for these plants is explained with respect to achieving the performance and

stability robustness objectives, with the strategy for choosing the weighting functions also

depending on the intended method of synthesis.
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Table 5.6: Weighting Matrices W 3 , S, and W 4 for 7-(. Controller Designs

Design W3 S W4 = SR

r 1 0 0 F 4.8412 0 0 0 F 4.8412 0 2.4206 0 1
c 0 1.0526 0 10-2. 0 4.8412 0 0 10-2. 4.8412 0 -2.4206 0

0 0 1.25 0 0 3.2275 0 0 1.6137 0 3.2275
L0 0 0 3.2275 L 0 -1.6137 0 3.2275

i 0 0 0 ~ 2.2361 0 0 0 1 [2.2361 0 1.1180 0
0 1 0 0 10-2. 0 2.2361 0 0 10-2. 2.2361 0 -1.1180 0
0 0 0.3333 0 0 0 0.6389 0 0 0.3194 0 0.6389
0 0 0 0.1667 0 0 0 0.6389 0 -0.3194 0 0.6389 J
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Chapter 6

W2 and Wo Design Results

6.1 Introduction

For the generalized plant designs in chapter 5, W2 and W,,,, controllers are synthesized

via the methods described in sections 4.3.2 and 4.3.3. In particular, 712 controllers are

produced for designs A2 and B2, and W,,, controllers for designs C, and D For the sake

of comparison, 7H1, synthesis is also applied to designs A 2 and B2, and 712 synthesis to

designs Co and D,. These latter controllers, whose method of synthesis does not match

that intended during the design phase, are denoted as A,), B,, C2 , and D 2 -

For each controller synthesized, the resulting closed loop twin lift helicopter system is

evaluated and analyzed, with its performance measured against the specifications put for-

ward in chapter 5. Results for the designs A 2 , B2, A,, and B,, are presented first, with

those for designs C,,, 'D, C2 , and D2 presented subsequently and in an analogous fashion.

These results include controller complexity, time domain simulations, and frequency domain

plots of transfer function singular values. As described in sections 5.2.2.1 and 5.2.3.1, the

time domain simulations show both the zero input response to initial conditions (IC.1) and

(IC.2), and the zero state response to stochastic inputs d,(t) and d,(t). Singular values are

plotted for the wind-to--variable transfer functions Ty,d,(s), as well as for the complemen-

tary sensitivity function C(s). Following the results presented for each set of designs, the

controllers within each set are compared and contrasted. Differences and performance trade

offs are interpreted in terms of variations in the output matrix, weighting functions, and

synthesis method used. In the chapter's conclusion, the 712 and W,), design methodologies

are each evaluated on their respective efficiency in achieving desired performance objectives.
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6.2 '72 Designs

Recall that for designs A2 and B2, the selected outputs are Ax, XL - Ex, and EO, with

design B2 including the additional output Ei. The weighting functions for these designs

are listed in Tables 5.2 and 5.4. The order and size (matrix dimension) of these weighting

functions determine the order of the generalized plant, and hence of the corresponding W2

or W... compensator. Thus for designs A2 and Ao, the controllers are of order 24, whereas

for designs B2 and Boo, the compensator order is 26.

6.2.1 Time Domain

6.2.1.1 Transient Response

Figures 6-1 to 6-9 show the transient response of the TLHS regulated variables and

controls to the two initial conditions (IC.1) and (IC.2) given in section 5.2.2.1. Recall that

(IC.1) affects only the SM plant, and hence only Ax, AO, and ABc show non-zero responses.

Similarly, (IC.2) affects only the ASM plant, inducing responses in the variables XL - X,

E0, Az, Eih, EBic, and AOc.

(IC.1)

Figures 6-1 to 6-3 show the TLHS response to (IC.1). For the variable Ax, the responses

among the four designs do not differ greatly. In each, Ax settles into equilibrium in around

4 seconds. The response in design A2 achieves only a slight improvement in magnitude over

that in design B2 . Each Wo, design produces a slightly quicker response in Ax than the

corresponding 712 design, but at the cost of a larger initial undershoot. In all of the designs,

the response of Ax easily meets specification (S.1).

In all of the designs, the pitch angle response to (IC.1) shows several oscillations before

settling into equilibrium in around 3 seconds. In designs A2 and B2, the responses of 0m

(-6,) are similar in magnitude, with the response in A2 being slightly faster. In both of

these W2 designs, 0m (-6,) achieves a peak magnitude of about 8.5'. The Wo designs

produce pitch angle responses that are larger in magnitude than their corresponding W2

designs, with design Boo also showing a decrease in response frequency. In all of the designs,

the pitch angle response meets specification (S.3). In design Ao, however, the pitch angle

peak magnitude equals the upper limit of this specification.
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Figure 6-1: Transient Response of Ax to Initial Condition Ax = 1 ft, AO = -1.359*
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Zero Input Response of Bcm, -Blcs to Initial Condition Ax= 1 ft, AO = -1.359*
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Figure 6-3: Transient Response of Bicm, -Bi, to Initial Condition Ax = 1ft, AO = -1.359*
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Zero Input Response of 0 m, 0 to Initial Condition xL - Ex = 1 ft, Az= 2 ft
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Figure 6-5: Transient Response of 0m, 0, to Initial Condition XL - EX = 1 ft, Az = 2 ft
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Figure 6-6: Transient Response of Az to Initial Condition XL - Ex = 1 ft, Az = 2 ft
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Figure 6-7: Transient Response of Ei to Initial Condition XL - EI= 1 ft, Az = 2 ft
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Zero Input Response of Bem, Bcs to Initial Condition xL - Ex= 1 ft, Az = 2 ft
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Figure 6-9: Transient Response of Bicm, B, to Initial Condition XL - EX = 1 ft, Az = 2 ft

The nature of the cyclic control response to (IC.1) closely resembles that of the pitch

angle response, with two significant differences. First, design A 2 produces a noticeably

larger cyclic response than design B2 , in contrast to the pitch angles which exhibit equal

magnitude responses in the two designs. Second, the cyclic response in design Bo, is only

slightly greater in magnitude than that in design B2 . By contrast, the pitch angles in these

two designs exhibit a more prominent magnitude difference. All other features of the cyclic

response are similar to those of the pitch angles. In all of the designs, the response of Bem

(-Bc.) meets specification (S.13).

(IC.2)

Figures 6-4 to 6-9 show the TLHS response to (IC.2). The response of the load deviation

from center in designs A 2 and B 2 is very similar. In each, XL - EX settles into equilibrium in

about 16 seconds after exhibiting some low frequency oscillation. The response of XL - EX

in design B, closely follows that in B2 , but with a slightly larger oscillation amplitude in

the first few seconds. Design A, achieves the best response of XL - Ex. In this design,

XL - EX shows a very small initial undershoot before settling into equilibrium in about 8
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seconds. In all of the designs, the response of XL - EX meets specification (S.2).

The pitch angle response to (IC.2) is similar in nature to that of the load deviation

from center. The responses in designs A 2 and B2 closely resemble each other, with that

in design A2 usually being slightly smaller in magnitude. In each of these W2 designs,

the pitch angle settles into equilibrium in around 14 seconds. The pitch angle response

in design Boo resembles that in B2, but with a larger oscillation amplitude. As with the

response of XL - EX, the best response of 0m (0) is produced by design A(o. In this design,

0m (0) shows some initial high frequency but low magnitude oscillations before settling

into equilibrium in around 8 seconds. In all of the designs, the pitch angle response never

exceeds a magnitude of 0.70, and hence specification (S.3) is easily satisfied.

In all of the designs, the response of Az to (IC.2) shows several large amplitude os-

cillations before settling into equilibrium. The responses in the two W2 designs have a

similar shape, with that in design B2 exhibiting a slightly larger oscillation frequency and

magnitude. In design Bo, the response of Az follows those in the W2 designs, but with

a larger oscillation amplitude and a slightly increased oscillation frequency. In all three of

the designs A2, B2, and Boo, Az settles into equilibrium in about 12 seconds. In design

AOO, Az oscillates with a decreased amplitude and frequency relative to the other designs,

settling into equilibrium in about 8 seconds. In all of the designs, the response of Az meets

specification (S.4).

As with Az, the response of Ei shows several oscillations before reaching equilibrium.

The responses in designs A 2 and B2 have a similar shape, with that in design A 2 showing

a larger overshoot and that in design B2 a larger undershoot of equilibrium. In each of

these W2 designs, the response of Ei reaches equilibrium in around 16 seconds. Design

Boo produces a response similar to that in design B2, but with a slightly larger oscillation

amplitude and frequency. As with the other regulated variables, EIb settles fastest in design

Aoo, attaining equilibrium in about 10 seconds. In all of the designs, the magnitude of Ei

never exceeds 0.7 ft/s, and hence specification (S.5) is easily satisfied.

The collective control response to (IC.2) is characterized by several smooth oscillations

of gradually decreasing amplitude. In designs A 2 and B2, the oscillations of cm (- 0 ,c)

are of approximately the same size, with those in design B2 exhibiting a slightly higher

frequency. The response of 0cm (-Ec,) in design Ao is very close to that in design A2,

whereas the collective response in design Bo is close in frequency to that in design B2, but
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much larger in amplitude. In all of the designs, the collective control settles into equilibrium

in around 3 to 4 seconds, and never exceeds the bounds of specification (S.12).

Like the collective control, the cyclic control responds to (IC.2) with a series of oscil-

lations that gradually decrease in amplitude. These oscillations, however, differ markedly

from those of the collective control. In particular, in designs A 2 and Aoo, the cyclic oscil-

lations exhibit a very high frequency together with a rapid decay in magnitude, attaining

equilibrium within about 2 seconds. The responses of Bm (Bie,) in designs B2 and Boo are

both of about the same frequency as those of the respective collective controls, but are of

a much smaller magnitude, never exceeding 10. By far the largest cyclic response, with a

peak magnitude exceeding 10*, is produced by design Aoo. In this design and the others,

however, Blcm (Be,) remains within the bounds of specification (S.13).

6.2.1.2 Stochastic Response

For each of the controller designs, the closed loop response is observed to the stochastic

inputs d,(t) and d,(t), generated as described in section 5.2.1 of chapter 5. The process

noise d,(t) is kept the same for all of the simulations, and is shown in Figure 6-10. The

sensor noise d8 (t) is scaled based upon an initial simulation in which only d,(t) is included

as an input. Before scaling, however, each sensor noise input d8 i(t), for equal i, is the same

in all of the simulations. Figure 6-11 shows these sensor noises as generated for design B 2 .

In addition to stochastic plots of the TLHS variables and controls, steady state RMS

values are generated for these outputs. These values are calculated from the state covariance

matrix, computed as described in section 4.2.2 of chapter 4. Table 6.1 lists the RMS values

Variables/ Design

Controls A 2  B2  Aoo Boo
AX 1.2157 1.2731 1.0880 0.9670

XL - EX 1.6136 1.5678 1.6751 0.9422

9m, Os 1.1982 2.9063 0.9292 3.6756
Az 2.2271 2.9759 2.2151 5.9278
Ez_ _ 18.555 2.5491 19.849 0.8445

acm, Ocs 1.8840 1.9934 0.7650 4.4397
Bicm, Bies 1.9339 1.5178 1.9582 1.5261

E_ 0.6836 2.7159 0.2628 3.5875

Table 6.1: RMS Values of Variables and Controls with Input d,(t)
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Variables/ Design
Controls A 2  B2  A. BO

Ax 1.2166 1.2741 1.0889 0.9679
XL - EX 1.6138 1.5687 1.6753 0.9479

6m, 6, 1.5478 3.0598 1.3802 3.8247
Az 2.2350 3.0083 2.2220 6.0669
E i 18.555 2.5503 19.849 0.8626

ecm, Oc, 1.9300 2.3953 0.8701 6.2551
Bicm, Bc, 2.6266 2.2317 3.9978 2.4430

E6 0.6844 2.7169 0.2664 3.5901

Table 6.2: RMS Values of Variables and Controls with Inputs d,(t) and d,(t)

when only the process noise d,(t) is included as an input. It is from this table that the

scaling factors ri for each sensor noise dj (t) are taken. Table 6.2 then lists the RMS values

when the input includes both process and sensor noise.

-1 time (s)

0 10 20 30 40 50 60 70
time (s)

Figure 6-10: Process Noise d, for Stochastic Simulations
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Measurement Noises dmi for Design B2 (y-axis labels give output measured)
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Figure 6-11: Sensor Noise d, for Design B2

Figures 6-12 to 6-20 show the stochastic response of the TLHS to the inputs d,(t) and

d, (t). For the variable Ax, the responses in all of the designs are similarly in shape, differing

noticeably only in magnitude. In this respect, Ax appears slightly smaller in design A2 than

in design B2 . This magnitude reduction is consistent with the RMS values calculated for

these two designs, of 1.22 and 1.27 respectively. The magnitude of Ax in each 7,,, design is

smaller than in the 'W2 designs, with the greatest magnitude reduction occurring in design

B,. This result is again consistent with the RMS values calculated for designs A, and

B,, of 1.09 and 0.97 respectively. In all of the designs, the stochastic response does not

exceed the magnitude of 6 ft, and hence specification (S.1) is satisfied.
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Response of Ax to Process Noise dp and Sensor Noise d,

-41 1 _L_ I I
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Figure 6-12: Stochastic Response of Ax to Process Noise d, and Sensor Noise d.
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Figure 6-13: Stochastic Response of XL - Ex to Process Noise dp and Sensor Noise d,
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Response of 0m to Process Noise dp and Sensor Noise d,
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Figure 6-14: Stochastic Response of 6 m to Process Noise d, and Sensor Noise d,
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Response of 0, to Process Noise dp and Sensor Noise d,
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Figure 6-15: Stochastic Response of 0, to Process Noise d, and Sensor Noise d,
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Response of Az to Process Noise dp and Sensor Noise d,

time (s)
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Figure 6-16: Stochastic Response of Az to Process Noise d, and Sensor Noise d,
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Response of .c to Process Noise dp and Sensor Noise d,
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Figure 6-17: Stochastic Response of Ei to Process Noise d, and Sensor Noise d,
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Response of 0cm, -Ecs to Process Noise dp and Sensor Noise d,
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Figure 6-18: Stochastic Response of Ecm, -Ec, to Process Noise d, and Sensor Noise d,
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Response of Bicm to Process Noise dp and Sensor Noise d,
9I I I I I 1 1

3 ......................................... DesignA 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- - Design A,,

-6. 1
0 5 10 15 20 25 30 35 40

time (s)

-4 ........ .... ..... ............... ....... DsinB

--- Design B

-8 I II I I
0 5 10 15 20 25 30 35 40

time (s)

Figure 6-19: Stochastic Response of Bcm to Process Noise d, and Sensor Noise d,



Response of Bics to Process Noise dp and Sensor Noise d,
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Figure 6-20: Stochastic Response of Bc,, to Process Noise d, and Sensor Noise d,



The load deviation from center exhibits nearly identical responses in designs A 2 and B2,

with that in design B2 showing a slightly greater magnitude reduction. The RMS values for

designs A 2 and B 2 are also very close, at 1.61 and 1.57 respectively. Compared to Ax, the

responses of XL - Ex in the ?I,, designs differ significantly from those in the R2 designs.

In design Aoo, this difference is primarily one of magnitude. While XL - Ex in design A,,

follows an oscillatory shape similar to that in design A 2 , the two responses often oscillate

at different amplitudes, with design A,, usually, but not always, producing the larger

response. The RMS value for design Ao, at 1.67, is only slightly larger than that for design

A2. Among the four designs, the most noticeably different response of XL - Ex is produced

by design Boo. In this design, XL - EZx generally exhibits the same pattern of oscillations

seen in the other designs, but with less extreme deviations from equilibrium. These smaller

deviations are reflected in the RMS value calculated for this design, of only 0.95. In addition,

the waveform in design Boo, intermittently exhibits small amplitude oscillations of a higher

frequency than those present in the other responses. In all of the designs, the stochastic

response of XL - Ex never exceeds the bounds of specification (S.2).

The responses of the pitch angles in designs A 2 and B2 show large differences both in

shape and in magnitude. With respect to magnitude, the pitch angles in design A 2 remain

within a range of t5', whereas in design B2, 0m and 0, reach a magnitude as large as 8'.

Consistent with these observed magnitude differences, the pitch angle RMS values for these

two designs are 1.55 and 3.06 respectively. In terms of overall shape, the responses in design

A 2 consist of uniformly high frequency oscillations, whereas in design B2, these same high

frequency oscillations are present, but are superimposed with an additional lower frequency,

smaller amplitude waveform. To capture this lower frequency component of the response,

the simulations for design B2 are shown over a longer time interval than in design A 2 . The

pitch angle responses in designs Ao and B... closely resemble those in the corresponding W2

designs, with design A.. producing slightly more, and design Boo. modestly less, magnitude

reduction. The RMS values for these 7oo designs are 1.38 and 3.82 respectively. In designs

A 2 , Aoo, and B2, the pitch angle responses meet specification (S.3). In design Boo0, however,

0m and 0, both exceed the magnitude of 10', and hence specification (S.3) is violated.

For the variable Az, all of the designs produce responses which are similar in shape

but differ in magnitude. The responses in designs A 2 and B2 show a modest magnitude

difference, with the peaks in design B2 generally exceeding those in design A 2 . The RMS
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values for designs A 2 and B 2 are 2.24 and 3.01 respectively. The response of Az in design Aoo

closely follows that in design A2, but with a slightly smaller magnitude and corresponding

RMS. The response of Az in design Boo shows high frequency oscillations similar to those

in the other designs, but greater in amplitude, and superimposed with an additional lower

frequency waveform. Consequently, the RMS value for Az in this design, at 6.07, is the

largest among all of the values calculated. In designs A 2, Aoo, and B2, the response of Az

never exceeds a magnitude of 8 ft, and hence specification (S.4) is satisfied. In design Bo,

however, the magnitude of Az, which peaks at 17 ft, repeatedly exceeds the 10 ft magnitude

constraint of this specification.

The stochastic response of Ei in designs A 2 and B2 is characterized by small amplitude

high frequency oscillations superimposed with larger amplitude lower frequency oscillations.

In design B2, a superposition of two different frequency waveforms is evident. While these

same waveforms can be seen in design A 2, their appearance is greatly diminished by their

superposition with a much larger amplitude and lower frequency oscillation. As a result

of this larger amplitude contribution to the response, the magnitude of Ei in design A 2

greatly exceeds that in design B 2. In fact, while Ei in design B2 stays within +6 ft/s, this

variable in design A 2 peaks at over 40 ft/s. This magnitude contrast is reflected as well in

the RMS values for these two designs, of 18.6 and 2.55 respectively. The response of Ei in

design Ao is nearly identical to that in design A 2, but with a slightly larger magnitude and

corresponding RMS. In design Boo, the response of Ei consists of uniformly high frequency

oscillations of very small amplitude. The RMS for this design, of only 0.86, is by far the

smallest of all the values calculated. In designs B2 and Boo, the response of Ei easily meets

specification (S.5). In designs A 2 and Ao, however, the 15 ft/s magnitude constraint of

this specification is severely and repeatedly eclipsed.

The collective control responses in the four designs follow a similar shape but differ in

magnitude. In each, Ecm (-e,) exhibits high frequency oscillations that vary periodically

in amplitude. The magnitude of the response in design A 2 is smaller than that in design

B2, with corresponding RMS values of 1.93 and 2.40 respectively. The collective response in

design A,, is similar in shape to that in design A 2, but shows a greatly reduced magnitude,

with a corresponding RMS of only 0.87. The response in design Ao also exhibits some small

oscillations of a higher frequency than those seen in the other designs. Design Boo produces

by far the largest collective response, with a peak magnitude of 190, and corresponding
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RMS of 6.26. In designs A2, Ao, and B2, the response of Ocm (-Ecs) never exceeds a

magnitude of 70, and hence specification (S.12) is satisfied. In design Boo, however, Ecm

(-0c,) repeatedly violates the 10* magnitude constraint of this specification.

The cyclic control responses in the four designs are all very similar, both in shape and

in magnitude. In each, Bicm and Bic, exhibit very high frequency oscillations superimposed

with lower frequency, smaller amplitude oscillations. The responses in design A 2 are slightly

larger than those in design B2. These two R2 designs have RMS values of 2.63 and 2.23

respectively. The 9oo designs produce cyclic responses slightly larger in magnitude than

those in the corresponding R2 designs. The RMS values for designs A,, and Boo are

4.00 and 2.44 respectively. In all of the designs, the responses of Bicm and Bie, satisfy

specification (S.13).

6.2.2 Frequency Domain

Figures 6-21 to 6-28 show the maximum singular value plots for each of the controller

designs. The first set of plots are for the transfer functions from the wind disturbances,

d,(t), to each of the TLHS regulated variables and controls. These plots also show the

frequency domain specifications for process noise rejection put forward in sections 5.2.2.2

and 5.2.3.2 of chapter 5. The last plot, in Figure 6-28, is for the complementary sensitivity

function C(s). The two specifications relating to this transfer function are (S.11), for sensor

noise rejection, and (S.16), for stability robustness to a time delay. Hence Figure 6-28 also

includes markers of the coordinates relevant to specification (S.11), together with a plot of

the bounding function in specification (S.16).

6.2.2.1 Wind Disturbance 'Transfer Functions

Figures 6-21 to 6-27 show the maximum singular values for the transfer functions from

d,(t) to each of the regulated variables and controls. The maximum singular values for

TA.,d, (3w) have the same shape in all of the designs, but differ in magnitude. At frequencies

below 0.3 rad/s, where the process noise energy is greatest, the shape of omax[TA-,d (3W)]

is relatively flat, with gains below the specification value of -20 dB. The responses then

peak at around 2 rad/s before rolling off. At frequencies below this rolling off, design Boo

shows the greatest magnitude reduction, followed in order by design Ao, A 2, and lastly B2.

Note that this ordering matches exactly that produced by comparing the RMS values for
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Ax among the four designs. Umax[TAx,d, (3w)] in all of the designs meets specification (S.6)

for process noise rejection.

The responses of cmax[TL -xdp (jw)] in designs A 2 and B2 are nearly identical, with

that in design B2 having a slightly larger gain over frequencies below 0.3 rad/s, and that in

design A 2 having a slightly larger gain for frequencies above 0.3 rad/s. The gains of these

responses over the lower frequency range are approximately constant, and stay below the

specification value of -20 dB. The responses then peak at between 2 and 3 rad/s before

rolling off. The responses of Umax[TXL _x,dp (W)] in designs A, and B, have smaller gains

over the lower frequency range than the W2 designs, with design Bo showing by far the

greatest magnitude reduction. The two No responses then converge with the W2 responses

as they peak and roll off. Consistent with the singular value plots, the RMS values for

XL - EZx in designs A 2 and B2 are nearly identical, with design B, producing by far the

smallest RMS. Design A,, however, produces an RMS slightly larger than those in the

-2 designs, likely because at frequencies between 0.3 and 2 rad/s, the gain in design A,

is actually significantly larger than the gains in the W2 designs. All of the designs meet

specification (S.7) for process noise rejection.
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Figure 6-21: Maximum Singular Value of Transfer Function from d, to Ax
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Figure 6-28: Maximum Singular Value of Complementary Sensitivity Function

The singular values for Tom,d, (3w) (To,,d,(3w)) in designs A 2 and B2 show a large mag-

nitude difference at frequencies below 0.3 rad/s, with relatively constant gains around -27

and -12.5 dB respectively. The responses then converge at around 2 rad/s before peaking at

near 3 rad/s and rolling off. Designs A, and B, show the same large magnitude difference

over the lower frequency range as the W2 designs. Below 0.3 rad/s, the gain in design A, is

nearly -30 dB, whereas that in design B, is just slightly larger than that in design B 2 . The

two ?ilOO responses then converge with the W2 responses, as they peak at around 3 rad/s and

roll off. As with Ax, ordering the designs according to the magnitude of Umax[Tom,dp,(W)]

(amax [T, ,d,(3w)]) corresponds exactly to the ordering produced by comparing the pitch an-

gle RMS values. In all of the designs, the response of Umax[Tm,d,(3w)] (amax[Ts,,,(3w)])

meets specification (S.8).

The responses of -max[TAz,d,(W)] in designs A 2 and B2 remain relatively flat over fre-

quencies below 0.2 and 0.01 rad/s respectively, at which points each begins slowly sloping
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downwards until around 1 rad/s. In the flat regions of the responses, the gains in designs

A2 and B2 are very close, at around -15 and -14 dB respectively. As the responses begin

increasing at around 1 rad/s, they eventually converge, peaking once at between 2 and

3 rad/s, and again at around 4 rad/s, before rolling off. In design A , omn[TAz,d,(w)]

remains relatively constant at around -11 dB until the frequency of 0.01 rad/s, at which

point the response begins decreasing sharply, eventually reaching a negative gain of nearly

-40 dB. At around 0.9 rad/s, this response then begins to increase, peaking twice at around

the same frequencies of the 7R2 response peaks, but with a smaller magnitude. The response

of omax[TAz,d,(3)] in design B, remains relatively flat around -8 dB until around 1 rad/s.

This response then slopes slightly downward before peaking twice at around the same two

frequencies as in the other designs, but with a larger gain. Consistent with the singular

value magnitudes in Figure 6-24, the RMS value for Az in design A 2 is smaller than that

in design B2 , with design B, producing by far the largest RMS. Design A,,, however,

produces the smallest RMS, just slightly smaller than that in design A 2 . This small RMS is

likely due to the sharply negative gain in design A,, at frequencies around 0.9 rad/s. In de-

signs A 2 , Ao,, and B2 , the response of umax[TAz,d,(3W)] meets specification (S.9). In design

BO, however, Omax[Tz,d(3w)] consistently shows a gain larger than the -10 dB constraint

of this specification.

The singular values for Tri,,(3w) show significant magnitude differences between the

A and B designs over the lower frequencies. For frequencies below 0.3 rad/s, the response

in design B2 has a relatively constant gain of around -13 dB. In design A 2 , however, the

magnitude of -ma[Tri,,d,(3w)] is as large as 14 dB up until 0.01 rad/s, and does not fall

below the specification value of -5 dB until 0.2 rad/s. Design Bo shows by far the greatest

magnitude reduction over the lower frequencies, with a negative gain of around -35 dB up

until around 0.1 rad/s. The response of ormax[Tr,.,d,(3w)] in design Ao0 closely follows that

in design A 2 until around 3 rad/s, but with a slightly larger gain. All of the responses

converge to peak at around 3 rad/s, before each peaks a second time and then rolls off.

The relative gains in Figure 6-25 over the lower frequencies correspond exactly with the

RMS values calculated for Ei. While designs B 2 and B00 both meet specification (S.10) for

process noise rejection, the large gains in designs A 2 and AO violate this specification.

In all of the designs, the singular values for Teem,d,(w) (Te,,d, (3w)) each show relatively

constant gains of around -28 dB over frequencies below 1 rad/s. The largest magnitude
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differences are seen as the singular values peak over the frequency range from 3 to 10 rad/s.

It is these magnitude differences that best reflect the relative RMS values calculated for

6cm (Ecs). Note that in all of the designs, Umax[TEcm,d,(J)] (Omax[TE,,d,(Jw)]) shows a

downward peak at around 27 rad/s, the frequency where sensor noise energy is greatest.

Umax[Tecm,dp(JW)] (umax[Tec.,dP(Jw)]) in all of the designs easily meets specification (S.14).

The responses of omax[TBicm,d,(3w)] (Umax [B c,,d,(JW) in designs A 2 and B2 differ sig-

nificantly in magnitude at frequencies below 0.01 rad/s, with relatively constant gains of

around -9 and -20 dB respectively. The response in design A2 then decreases to -20 dB,

converging with that in design B2 at around 0.2 rad/s. After peaking at between 2 and

3 rad/s, the two responses then roll off, exhibiting several peaks and dips in the process.

The response in design A, has a similar shape to that in design A 2, but shows a slightly

larger gain over frequencies below 1 rad/s, a smaller gain over frequencies between 1 and

6 rad/s, and a much larger gain at frequencies above 6 rad/s. Similarly, the response of

Umax[TBICm,dp (3)] (O-max[TB,,,,dp(jw)]) in design B. closely follows that in design B 2, but

shows a slightly smaller gain over all frequencies except those in the range from 2 to 11 rad/s.

Consistent with the relative singular value gains over frequencies under 0.2 rad/s, the RMS

values for Blcm (Blcm) in designs B2 and B, are smaller than those in designs A 2 and A,.

While the RMS in design B, is slightly larger than that in design B2, the RMS in design

A, is much larger than that in design A2 . This large difference in RMS values between

designs A 2 and A, disappears, however, when the sensor noise is omitted as an input.

As with the collective control, omax[TBjcm,dp(3J] (Omax[TBics,dp(JW)] in all of the designs

shows a downward peak at around 27 rad/s, with the peak in design A, being substantially

less pronounced than in the other designs. All of the designs meet specification (S.15) for

process noise rejection.

6.2.2.2 Complementary Sensitivity Function

Figure 6-28 shows the maximum singular values of C(yw) for all four designs, together

with the bounding function 1/|ws(jw)| in specification (S.16). The coordinates 27 rad/s

and -20 dB are also marked for assessing the meeting of specification (S.11). In all of the

designs, the response of umax[C(Ow)] shows a downward peak at 27 rad/s followed by an

upward peak at around 40 rad/s. In designs A 2 , B2 , and Bo, the downward peaks fall

beneath -20 dB, and hence specification (S.11) for sensor noise rejection is met. In design
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AM, however, the magnitude of -ma.,[C(3w)] at 27 rad/s dips no lower than -7 dB, and

hence the sensor noise rejection requirement is not satisfied. Similar to the situation with

specification (S.11), specification (S.16) for stability robustness is met by only the three

designs A2 , B2, and Bo. Among these, the response in design BO comes very close to the

bounding function at frequencies between 2 and 7 rad/s, whereas that in design A 2 actually

peaks to touch the bounding function at around 40 rad/s. Design A,, which does not meet

specification (S.16), shows a peak at 40 rad/s similar to that seen in design A2, but with a

magnitude reaching over 14 dB. In this design, om,[C(3w)] violates the bounding function

in specification (S.16) over frequencies from 30 to 100 rad/s.

6.2.3 Conclusions

Both of the 72 controller designs, A 2 and B2, meet all of the specifications considered

mandatory for acceptable design performance. The nature of the responses in each design,

however, differ considerably. The two designs also vary in the extent to which they each

meet (or do not meet) the specifications, both those mandatory and those desirable. These

differences are often explainable in terms of variations in the output matrix and weighting

functions used to construct the respective generalized plants.

In general, design A 2 achieves superior performance in the regulated variables Ax,
9 m (0,), and Az, while design B2 achieves superior performance in the regulated variable

Ei. These performance differences are most pronounced in the stochastic simulations and

wind-to-variable singular value plots. In design A 2, Ei violates specification (S.5) in the

stochastic simulation, as well as specification (S.10) in the plot of umn,[Tri,d,(3w)]. This

reduced performance of Ek results from the omission of this variable as an output. Design

A 2 having only the three outputs Ax, XL - Ex, and E6, however, allows for more focused

control on each of these variables' responses, hence explaining the improved performance

seen in the variables Ax and 0m (0,). While XL - EX is also among the outputs in design

A2 , the performance of this variable in this design is comparable to that in design B2. This

result can be explained by comparing the penalties on XL - Ex in the weighting matrices

W3. Table 5.4 shows that in design A2, the penalty on XL - EX is 2.5 .10
4 , whereas in

design B2, this penalty is much larger at 4 .10 4 . The cyclic and collective controls in designs

A2 and B2 show small to modest magnitude differences, with design A2 having a larger

cyclic, and design B2 a larger collective. As seen in Figure 6-28, while both designs meet

104



specification (S.16) for stability robustness, Umax[C(w)] in design A2 peaks much higher

than in design B2 at around 40 rad/s, actually touching the bounding function in this

specification. The large peak in design A2 can be explained in part by the selection of

the weighting functions w2(s). Table 5.2 shows that the linear term of this function in

design A 2 is smaller than that in design B2. Hence 1/1w 2 (yw)| in the former design both

dips lower (at 27 rad/s) and peaks higher (at around 40 rad/s) than that same function in

the latter. The selection of a larger peaking function in design A 2 was necessary to ensure

that omax[C(jw)] achieve the sensor noise rejection requirement. Figure 6-28 shows that

both designs do indeed meet specification (S.11) for sensor noise rejection. The success of

meeting this specification is also seen by comparing the RMS values in Tables 6.1 and 6.2.

In each design, the difference between output RMS values with the sensor noise input and

without it, is negligible.

Each W,, design differs significantly from its corresponding W2 design, but these differ-

ences are difficult to predict, and do not exhibit consistent characteristics in the two cases.

In design A,, the TLHS generally responds with a larger cyclic but smaller collective than

in A 2. In the deterministic time domain simulations to (IC.2), a much larger cyclic response

in design A, produces more magnitude reduction and significantly shorter settling times

than those seen in the corresponding W2 design. In the stochastic simulations, in which the

collective response in design A, is significantly smaller than that in design A 2, design A,

achieves greater magnitude reduction in the variables Ax, 0m (0,), and Az, but slightly

less magnitude reduction in XL - Ex and Ei. Hence, as with design A 2 , Ei in design

A, violates the time domain specification (S.5) as well as the frequency domain specifica-

tion (S.10). As seen in Figure 6-28, design A, also fails to meet specifications (S.11) for

sensor noise rejection and (S.16) for stability robustness. In design B',, the TLHS uses a

much larger collective and slightly larger cyclic control than in design B2. In the deter-

ministic simulations, the larger controls in design B,, occasionally produce slightly faster

responses in the regulated variables than in design B2, but in every case, these variables in

the former design show larger magnitudes than in the latter. In the stochastic simulations,

design B,, achieves much improved performance in the variables AX, XL - EZx, and Ei,

but worse performance in the variables 0 m (0,) and Az, than design B2. As a result, this

No1, design violates the time domain specification (S.3) on 0m (0,), as well as both the time

and frequency domain specifications (S.4) and (S.9) on Az. In addition, the large collective
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response in design Boo during the stochastic simulation far exceeds the 10* magnitude con-

straint of specification (S.12). As seen in Figure 6-28, a,[C(3w)] in design Boo meets both

specification (S.11) for sensor noise rejection and (S.16) for stability robustness. This Ao

design actually slightly betters design B2 in achieving sensor noise rejection, but achieves

less in the way of stability robustness, as -ma[C(3w)] comes very close to the bounding

function 1/|w. (3w)| over frequencies from 2 to 7 rad/s.

6.3 7(oo Designs

For designs C, and Vo, the selected outputs are Ax, XL - Ex, and E6, with design Doo

including the additional output Ei. The weighting functions for these designs are listed in

Tables 5.5 and 5.6. The order and size of these weighting functions determine the order of

the generalized plant, and hence of the corresponding 7eo or W2 compensator. Thus for

designs Coo and C2, the controllers are of order 23, whereas for designs Doo and D2, the

compensator order is 26.

Recall from section 4.3.3, that W,,o synthesis involves constructing the controller Koo

in (4.18), with -y equal to the infimum over all y such that conditions (C.1)-(C.5) hold. In

practice, 7min is found to within some prespecified tolerance, which in this thesis is chosen

as 0.01. As discussed in section 4.4.2.1 on loop shaping, it is also desirable to construct

each generalized plant in 7eoO design such that -y < 1. The values ultimately arrived at for

-y in designs Coo and Doo are 0.98 and 0.95 respectively. Each corresponding W2 controller

results from allowing y in the corresponding Woo design to approach infinity. In practice,

the controllers C2 and D2 are constructed by letting y equal 104 .

6.3.1 Time Domain

6.3.1.1 Transient Response

Figures 6-29 to 6-37 show the transient response of the TLHS regulated variables and

controls to the two initial conditions (IC.1) and (IC.2) given in section 5.2.2.1. Recall that

(IC.1) affects only the SM plant, and hence only Ax, AO, and ABIc show non-zero responses.

Similarly, (IC.2) affects only the ASM plant, inducing responses in the variables XL - EX,

E6, Az, Ei, EBic, and AEc.
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Figure 6-32: Transient Response of XL - EX to Initial Condition XL - EX = 1 ft, Az = 2 ft
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Figure 6-37: Transient Response of Bicm, B1c, to Initial Condition XL - Ex = 1 ft, Az = 2ft

(IC.1)

Figures 6-29 to 6-31 show the TLHS response to (IC.1). In all of the designs, the response

of Ax oscillates several times before settling into equilibrium in around 6 seconds. The

response in design D, is initially faster than that in design C', with a smaller undershoot

of equilibrium. After around 2 seconds, however, the two W... responses are nearly identical.

The 712 designs produce responses in Ax that closely resemble those in the corresponding

W,,, designs, but with a lower oscillation frequency and slightly larger amplitude. The

frequency difference is most pronounced between designs C, and C2 . In all of the designs,

specification (S.1) is easily satisfied.

The pitch angle response to (IC.1) shows some high frequency oscillation before settling

into equilibrium in around 5 seconds. The response in design D.. is of a higher frequency

than that in design Co, and initially oscillates with a larger amplitude. After around

1 second, however, design D. generally shows greater magnitude reduction than design C,.

As with Ax, the pitch angle responses in the 712 designs resemble those in the corresponding

W... designs, but with a lower oscillation frequency, and with this frequency difference most

pronounced between designs C, and C2 . The W2 designs show smaller oscillation amplitudes
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than the corresponding 1oo designs in the first 2 seconds of the response, but show slightly

larger oscillation amplitudes afterwards. In all of the designs, the response of 0 m (-6,)

stays within the bounds of specification (S.3).

In all of the designs, the cyclic control responds very rapidly, reaching equilibrium in

around 3 seconds. Design Doo shows a larger amplitude and higher frequency than design

Coo. The responses of Blcm (-Bc,) in the 712 designs are lower in frequency and smaller

in amplitude than those in the corresponding 7oo designs, with the frequency difference

between designs Coo and C2 being far more significant than that between designs Doo and

D2 . In all of the designs, the cyclic control response meets specification (S.13).

(IC.2)

Figures 6-32 to 6-37 show the TLHS response to (IC.2). The responses of XL - EX

in designs Coo and Doo are similar in shape, with that in design Coo achieving significantly

greater magnitude reduction. Each of these W.. responses settles into equilibrium in around

20 seconds. The response of XL - Ex in design C2 is nearly identical to that in design Coo,

with the main difference being a time delay of about 0.5 seconds present in the former

design. Similarly, the response of XL - EZX in design D 2 is very close to that in design Do,

with the main difference being a slightly greater magnitude reduction in the former design.

In all of the designs, the response of XL - EX meets specification (S.2).

The pitch angle response to (IC.2) shows some low frequency small amplitude oscillation

before settling into equilibrium in around 16 seconds. After initial undershoots exhibited

in between 0 and 2 seconds, the Woo responses oscillate more slowly and with smaller

amplitudes than the N72 responses. In this same time period, 0 m (0,) in design Coo responds

more quickly and with a slightly smaller amplitude than in design Doo. Similarly, the

response of 0m (0,) in this period is smaller in design C2 than in design D 2 . During the

initial seconds of the response, where the undershoots are occur, the pitch angle behavior

differs substantially from that later on, with design Coo responding the most quickly and

with a larger magnitude than design Doo, and design D 2 showing the smallest magnitude

among all of the designs. In all of the designs, 0m (0,) remains within t0.6', and hence

specification (S.3) is easily satisfied.

The response of Az to (IC.2) bears many of the characteristics seen in the response of the

load deviation from center. In each design, Az shows several small amplitude oscillations
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before gradually achieving equilibrium in around 16 seconds. Design C, shows significantly

greater magnitude reduction and a slightly shorter settling time than design Do. Each H 2

response closely follows its corresponding W,,. response, with the main differences being a

time lag present in design C2, and a magnitude reduction seen in design D2, both similar to

those observed in the response of XL - EX. In all of the designs, the response of Az easily

stays within the bounds of specification (S.4).

In all of the designs, the response of E1i remains small, never exceeding a magnitude

of 0.7 ft/s. In designs C, and i, i shows some small amplitude oscillation before

settling into equilibrium in around 25 seconds. The responses in these two designs are

similar in shape, with that in design D, showing a larger oscillation amplitude and a

slightly shorter settling time. In the first 5 seconds of the response, the W 2 designs produce

smaller amplitude oscillations than the corresponding 1-,N, designs. After this initial period,

however, the W2 responses show the largest magnitudes and longest settlings times, with

the response in design C2 taking an especially long time to reach equilibrium. In all of the

designs, the small magnitude response of Ei easily meets specification (S.5).

The collective control response to (IC.2) shows several oscillations of decreasing am-

plitude before settling into equilibrium in around 4 seconds. In designs C, and D., the

responses are similar in shape, with design D producing a much larger amplitude and

slightly higher frequency. Both designs also show some high frequency dips and peaks su-

perimposed with the response's first oscillation. These higher frequency dips and peaks die

out significantly more slowly in design C, than in design D . Each W2 response is smaller

in amplitude and lower in frequency than its corresponding W-,. response. In designs C,

and C2 , the more substantial difference is in frequency, whereas in designs D and D2, the

difference in amplitude is the more pronounced. In all of the designs, the response of Ecm

(-e,) stays within the bounds of specification (S.12).

In all of the designs, the cyclic control response is characterized by high frequency rapidly

decaying oscillations superimposed with a lower frequency more slowly decaying oscillation.

The lower frequency components among the four designs are close in both amplitude and

frequency, with design D producing the largest amplitude, and design C, the smallest.

Design D) also produces the highest frequency among the four lower frequency components,

followed by design C,, and then by the two W 2 designs. The higher frequency components

of the four responses are also close in frequency, but the amplitude in design C) far exceeds
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that in the other designs, initially reaching around 1.50. In the other three designs, the

amplitude of the higher frequency component never exceeds 0.250, with the W2 designs

producing the smallest amplitudes. In spite of the large initial magnitude differences, Bcm

(Bies) in all of the designs settles into equilibrium in around 3 seconds. The magnitude of

this cyclic response easily meets specification (S.13).

6.3.1.2 Stochastic Response

For each of the controller designs, the closed loop response is observed to the stochastic

inputs d,(t) and d,(t), generated as described in section 5.2.1 of chapter 5. These process

and sensor noises are the same as those used in the stochastic simulations of the W2 designs.

In addition to stochastic plots of the TLHS variables and controls, steady state RMS values

are generated for these outputs, calculated from the state covariance matrices. Table 6.3

lists the RMS values when only the process noise d,(t) is included as an input. It is from

this table that the scaling factors ri for each sensor noise di(t) are taken. Table 6.4 then

lists the RMS values when the input includes both the process and sensor noises.

Figures 6-38 to 6-46 show the stochastic response of the TLHS to the inputs d,(t) and

d, (t). For the variable Ax, the responses in all of the designs are similar in shape, but differ

in magnitude. Design Do, shows slightly more magnitude reduction than design Coo. This

magnitude difference is reflected in the RMS values for these two designs, of 1.20 and 1.54

respectively. The magnitude of Ax in each W2 design is larger than in its corresponding

Woo) design, with the difference most pronounced between designs Coo and C2 . Again, this

result is consistent with the RMS values calculated for designs C2 and D2 , of 2.16 and 1.40

Variables/ Design
Controls Coo Doo C2  D2

AX 1.5374 1.2028 2.1557 1.3953

XL - Ex 1.4810 1.1685 2.1258 1.6162
6m, Os 1.6131 3.3995 2.3973 2.8309

Az 2.3614 5.3309 2.1568 3.2043
Ez 19.477 1.5979 16.195 3.5619

Ecm, Ecs 1.3799 2.8341 1.1548 1.7072
Bicm, Bes 1.9815 1.5287 1.9617 1.6047

EO 0.5917 3.1516 1.3702 2.4150

Table 6.3: RMS Values of Variables and Controls with Input d,(t)
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Variables/ Design
Controls Coo Doo C2  D2

AX 1.5390 1.2039 2.1582 1.3966
XL - x 1.4813 1.1735 2.1267 1.6202

6m, 63 1.7346 3.4638 2.4687 2.8950
Az 2.3650 5.3780 2.1654 3.2281
E__ _ 19.477 1.6030 16.195 3.5639

Ecm, Ecs 1.4214 3.3417 1.1829 1.8579
Bicm, Bics 2.1048 1.8567 2.0113 1.8366

E6 0.5926 3.1527 1.3716 2.4165

Table 6.4: RMS Values of Variables and Controls with Inputs d,(t) and d,(t)

respectively. In designs Co, Do, and D2, the response of Ax meets the 6 ft magnitude

constraint of specification (S.1). In design C2 , however, Ax becomes as large as 8 ft, and

hence specification (S.1) is violated.

As with Ax, the responses of the load deviation from center are similar in shape, but

differ in magnitude. The oscillations in design Do are generally smaller in amplitude than

those in design Co. This magnitude difference is reflected in the RMS values for these two

designs, of 1.17 and 1.48 respectively. Also similar to Ax, the responses of XL - EX show

less magnitude reduction in the R2 designs than in the corresponding 1.o designs. With

XL - Ex, however, the magnitude difference between designs Doo and D 2 is comparable to

that between designs Coo and C2 . The RMS values for the designs C2 and D 2 are 2.13 and

1.62 respectively. In all of the designs, the load deviation from center remains within the

bounds of specification (S.2).

The pitch angle responses in designs C. and Do show significant differences both in

shape and in magnitude. In design Co, Om and 0, exhibit uniformly high frequency oscil-

lations never exceeding a magnitude of 6'. In design Do, while this same pattern of high

frequency oscillations is present, it is superimposed with an additional lower frequency, but

comparable amplitude oscillation. This lower frequency component of the design Do re-

sponse develops slowly, and hence Figures 6-40 and 6-41 show 0m and 0, over two separate

time intervals. As each figure shows, the additional lower frequency component creates

pitch angle magnitudes repeatedly near or equal to 90, and hence much larger than those in

seen design Coo. This magnitude difference between designs Coo and Doo is aptly reflected

in the RMS values calculated for these two designs, of 1.73 and 3.46 respectively. The -2
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Figure 6-38: Stochastic Response of Ax to Process Noise dp and Sensor Noise d,
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Figure 6-39: Stochastic Response of XL - EX to Process Noise d, and Sensor Noise d,
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Response of Om to Process Noise dp and Sensor Noise d, (two separate durations of time)
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Figure 6-40: Stochastic Response of 0m to Process Noise d, and Sensor Noise d,
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Response of O, to Process Noise dp and Sensor Noise d, (two separate durations of time)
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Figure 6-41: Stochastic Response of 6, to Process Noise d, and Sensor Noise de
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Response of Az to Process Noise dp and Sensor Noise ds (two separate durations of time)
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Figure 6-42: Stochastic Response of Az to Process Noise d, and Sensor Noise d,
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Response of lk to Process Noise dp and Sensor Noise d,
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Figure 6-43: Stochastic Response of Ei to Process Noise d, and Sensor Noise d,
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Figure 6-44: Stochastic Response of ec0,, to Process Noise dp and Sensor Noise d,

121



Response of Bcm to Process Noise dp and Sensor Noise d,
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Figure 6-45: Stochastic Response of Blcm to Process Noise d, and Sensor Noise d8
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Figure 6-46: Stochastic Response of Ble, to Process Noise d, and Sensor Noise d,
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responses of 0m and 0, are each similar to their corresponding W,, responses, with the

primary difference being one of magnitude. In this respect, design D 2 achieves significantly

more, and design C2 significantly less, magnitude reduction. The RMS values for these two

W 2 designs are 2.90 and 2.47 respectively. In all of the designs, the stochastic responses of

0m and 0, do not exceed the magnitude of 10*, and hence specification (S.3) is satisfied.

The stochastic response of Az is characterized by high frequency oscillations superim-

posed with a lower frequency waveform. As with the pitch angles, the lower frequency

component of the response becomes more prominent as time progresses, and hence Fig-

ure 6-42 shows Az over two separate time intervals. The responses in designs Coo and Doo

oscillate at the same frequencies, but exhibit widely differing magnitude characteristics. In

particular, the high frequency component in design Coo oscillates with an average amplitude

of around 2.5 ft, whereas that in design Doo shows an average amplitude of around 4 ft.

In addition, the lower frequency waveform in design Coo has a smaller amplitude than the

higher frequency one, whereas in design Doo, the reverse is true. As a result, the magnitude

of Az in design Doo far exceeds that in design Coo, a difference reflected in the RMS values

for these two designs, of 5.38 and 2.36 respectively. The responses of Az in the W2 designs

show an oscillatory pattern similar to that in the W1oo designs, but with differing magnitude

characteristics. In design C2 , the higher frequency component of the response has about the

same amplitude as that in design Coo, whereas the amplitude of the lower frequency compo-

nent is significantly smaller. Hence design C2 shows overall a greater magnitude reduction

than design Coo, reflected in the RMS value calculated for this 12 design of 2.17. In design

D 2 , both the higher and lower frequency components of the response show smaller ampli-

tudes than the corresponding components in design Doo. Consequently, design D 2 achieves

far greater magnitude reduction than design Doo, reflected in the RMS value for this l12

design of 3.23. In designs Coo, C2 , and D2 , the response of Az never exceeds a magnitude

of 8.5 ft, and hence specification (S.4) is satisfied. In design Doo, however, the magnitude

of Az repeatedly exceeds the 10 ft magnitude constraint of this specification.

Like Az, the stochastic response of Ei shows a superposition of multiple different fre-

quency waveforms. In designs Doo and D2 , waveforms of two different frequencies are

evident. While the amplitudes of the higher frequency components are similar in the two

designs, the amplitude of the lower frequency component is much smaller in design Doo than

in design D2. Consequently, design Doo shows significantly greater overall magnitude re-
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duction. The RMS values for designs D, and D2 are 1.60 and 3.56 respectively. In designs

Co and C2 , the same two waveforms seen in designs D2 and D 2 can be observed, but these

waveforms are greatly diminished by their superposition with a third much larger amplitude

and lower frequency oscillation. Hence the magnitude of Eib in designs C. and C2 is much

larger than in designs Do and D2 , with design C, showing the largest response among the

four designs. The RMS values for designs C) and C2 are 19.5 and 16.2 respectively. In de-

signs D, and D2 , Ei remains within the 15 ft/s magnitude constraint of specification (S.5).

In designs C. and C2 , however, this constraint is severely and repeatedly violated.

The collective control response in all four designs shows high frequency oscillations which

vary periodically in amplitude. While Ecm (-0c,) responds with a similar shape in designs

C, and D,, the former design shows much greater magnitude reduction. The RMS values

for these two designs are 1.42 and 3.34 respectively. The R2 responses are similar in shape

to but smaller in magnitude than their corresponding W-,, responses, with the magnitude

difference between designs D, and D2 being far more significant than that between designs

Co and C2 . The RMS values for designs C2 and D2 are 1.18 and 1.86 respectively. In all of

the designs, the response of 0cm (-Ec,) satisfies specification (S.12).

The cyclic control responses in designs C. and D show similar oscillation patterns but

differing magnitude characteristics. In each design, Bicm and B1e, exhibit high frequency os-

cillations superimposed with lower frequency waveforms. However while the lower frequency

components in the two designs have similar amplitudes, the higher frequency components

are much larger in design D than in design C,. In addition, the responses in design C.

are characterized by a positive offset from zero not seen in design D., and hence design C.

achieves less in the way of overall magnitude reduction. The RMS values for designs C,

and Do are 2.10 and 1.86 respectively. The -2 cyclic responses are similar to their corre-

sponding No responses, with designs C, and C2 showing the more significant contrast. In

these two designs, the higher frequency components often differ in amplitude, with design

C. usually, but not always, showing the larger peaks. The cyclic responses in design C2 also

exhibit a slight time lag relative to those in design C,. In designs D. and D2, the only

significant difference is in the amplitude of the higher frequency components, with that in

design D, generally exceeding that in design D2. The RMS values for designs C2 and D 2 ,

at 2.01 and 1.84 respectively, are just slightly smaller than their ?I,, counterparts. In all of

the designs, the responses of Blcm and Bics satisfy specification (S.13).
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6.3.2 Frequency Domain

Figures 6-47 to 6-54 show the maximum singular value plots for each of the controller

designs. The first set of plots axe for the transfer functions from the wind disturbances,

d,(t), to each of the TLHS regulated variables and controls. These plots also show the

frequency domain specifications for process noise rejection put forward in sections 5.2.2.2

and 5.2.3.2 of chapter 5. The last plot, in Figure 6-54, is for the complementary sensitivity

function C(s). The two specifications relating to this transfer function are (S.11), for sensor

noise rejection, and (S.16), for stability robustness to a time delay. Hence Figure 6-54 also

includes markers of the coordinates relevant to specification (S.11), together with a plot of

the bounding function in specification (S.16).

6.3.2.1 Wind Disturbance Transfer Functions

Figures 6-47 to 6-53 show the maximum singular values for the transfer functions from

d,(t) to each of the regulated variables and controls. The maximum singular values for

TAX,4 (jw) are very similar in shape, but differ in magnitude over the lower frequencies. In
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each esign omn[Ax,d,(Jo)] remains relatively flat until around 0.2 rad/s, and then in-

creases to peak at around 2 rad/s. After peaking, the responses converge and roll off.

Before rolling off, design D,, shows the smallest gain, followed in order by design V2, C".,

and lastly C2. This ordering exactly matches that produced by comparing the RMS values

for Ax among the four designs. In designs D,,, D2, and C,,, amx[TAx,dp,(3w)] remains below

-20 dB for w < 0.3 rad/s, and hence specification (S.6) is satisfied. Recall that the selected

weighting functions for loop shaping given in section 5.3.2.2 guaranteed the meeting of this

specification by the 'H,, designs. In design C2, amax[TAx,dp,(3w)] slightly exceeds the -20 dB

constraint for w < 0.3 rad/s, and hence specification (S.6) is violated.

The responses of UmaX[T2L-EX,d,(3w)] differ in both shape and magnitude over the lower

frequencies. In design Co,., ama [Tx -E ,(3w)] remains relatively flat at around -23 dB until

around 0.2 rad/s, at which point the response increases to peak at between 2 and 3 rad/s

before rolling off. By contrast, omax[ToL-Fx,d,(3w)] in design D,, is not flat over the lower
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frequencies, but instead increases steadily from a gain as low as -45 dB at 0.03 rad/s, to

eventually peak and converge with the design C, response. The two No designs then show

a similar roll off behavior. The W2 responses show flat gains over the lower frequencies before

increasing and peaking in a manner similar to the design C, response. The flat gains and

peaks in the R2 responses are larger than in the -o responses, and as with Ax, ordering the

designs according to these gains corresponds exactly to the ordering produced by comparing

the RMS values for XL - x. After peaking, the responses in all four designs converge as they

roll off. In designs D , C,, and D 2 , specification (S.7) for process noise rejection is satisfied.

As with Ax, the selected weighting functions for loop shaping guaranteed the meeting of

this specification by the W... designs. In design C2 , the gain of Umax[TXL-1X,d,(JW)] just

slightly exceeds the -20 dB constraint for w < 0.3 rad/s, and hence specification (S.7) is

violated.

The singular values for Tm ,d,(jw) (T,,dd(jw)) in designs C. and D', remain relatively

flat over frequencies below 0.2 and 0.7 rad/s respectively, with corresponding gains of around

-28 and -12.5 dB. After 0.2 rad/s, the response in design C, very gradually ascends until

around 1 rad/s, and then increases sharply to peak at between 2 and 3 rad/s before rolling

off. In design Do, Umax[TOm ,dp(jw)] (0max[To,,d,(jw)]) shows a very gradual descent until

slightly over 1 rad/s, at which point the response increases to peak at the same frequency

as in design C,, but with a slightly smaller gain. The response in design Do then rolls

off, converging with the design C, response. In design C2 , the response of Umax[Tm ,d,(jw)]

(Omax[TO,,d,(jw)]) is nearly identical in shape to that in design C,, but shows a larger

gain up until around 3.5 rad/s, at which point the two responses converge as they roll off.

Over frequencies below 0.2 rad/s, Umax[Tm,dp (w)] (Umax[To.,dp (0)]) in design C2 maintains

a relatively constant gain of around -22 dB. Similarly, the response of Umax[TOm,dp(JW)]

(omax[To ,d,(jw)]) in design D 2 closely resembles that in design D,, but shows an earlier

descent, at around 0.1 rad/s, and then reaches a significantly lower gain before peaking

with a gain slightly larger than that in design D'. The two responses then converge

as they roll off. Over frequencies below 0.1 rad/s, design D2 shows a relatively constant

gain just slightly smaller than that in design D,. The relative gains of Umax[Tom,dp(3W)]

(Umax[To.,d,(jw)]) over the lower frequencies corresponds exactly with the relative pitch

angle RMS values. In all of the designs, the response of umax[Tom,dP(jW)) (Umax[To,,, (3w)])

meets specification (S.8).
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The responses of ama[TAz,d,(3w)] in designs Co, and D, vary both in shape and in

magnitude. In design C0,, max[TAz,d,(3w)] remains relatively flat at around -13 dB until

around 0.01 rad/s, at which point the response begins gradually decreasing to a minimum

of around -22 dB at around 1 rad/s. The response then increases sharply to peak twice,

once at between 2 and 3 rad/s, and again at around 4 rad/s, before rolling off. In design

Do, max[TAz,d,(3w)] shows a constant gain of about -8 dB until around 0.5 rad/s, at which

point the response gradually descends to a minimum of around -14 dB at between 1 and

2 rad/s. The response then increases to peak twice at the same frequencies as the design

Coo response, but with larger magnitudes. The two WNoo responses roll off together, with

that in design DoO showing a slightly larger gain. The responses of ama[TAz,d(3w)] in the

R 2 designs closely resemble those in the corresponding 'UO designs, with several notable

differences. First, each R 2 response shows a smaller gain over the lower frequencies, and

also dips to a minimum at a slightly lower frequency than does its corresponding WUoo

response. Second, the amplitude of the first peak in design C2 is larger than that in design

Co, and the amplitudes of the second peaks in both 12 designs are smaller than those in

the corresponding Roo designs. Lastly, the 12 responses roll off with slightly smaller gains

than their corresponding Rco responses. The relative gains of Uma[TAz,d,(3W)] over the

lower frequencies corresponds exactly with the relative RMS values calculated for Az. In

designs Coo, C2 , and D2, the response of am,[TAz,d, (3w)] meets specification (S.9) for process

noise rejection. In design Dc, however, ama[Tz,dp,(3w)] exceeds the -10 dB constraint for

w < 0.3 rad/s, and hence specification (S.9) is violated.

The singular values for Tr,,(jw) show large gain differences between the C and V

designs over the lower frequencies. In design Coo, amax[Trt,d,(3w)] maintains a relatively

constant gain of around 14 dB until around 0.02 rad/s, and then slopes to a minimum of

around -16 dB at around 1 rad/s. By contrast, design D2oo shows a constant gain of -20 dB

until around 0.4 rad/s, at which the point the response begins a gentle upward slope. The

two responses converge at slightly over 1 rad/s, each peaking at between 2 and 3 rad/s,

and again at around 4 rad/s, before rolling off. The 12 responses closely resemble their

corresponding Woo responses, with the primary difference being in the gains over the lower

frequencies. In this respect, design C2 achieves slightly more, and design 12 significantly

less, process noise rejection. The relative gains over the lower frequencies correspond exactly

with the relative RMS values calculated for Ei. While amax[Tr.,d,(3w)] in designs Doo and
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D 2 remains below the -5 dB constraint of specification (S.10), the large gains in designs C,

and C2 violate this specification.

In all of the designs, the singular values for Tecm,d,(jw) (Te,,d,(3w)) show a similar

shape. In design Co, oma(Tecm,d,(0)] (am,[Tec,d,(0)]) maintains a relatively constant

gain of around -28 dB until 0.01 rad/s, and then decreases slightly to maintain another

constant gain of around -31 dB at between 0.06 and 1 rad/s. At between 1 and 2 rad/s,

the response then dips to a minimum of around -37 dB. In design , [mn[Tecm,d,(3w)]

(max[Tec,,d,(3w)]) remains relatively constant at -27 dB until around 0.2 rad/s, at which

point the response gradually decreases to a minimum of -34 dB at slightly under 2 rad/s. At

around 2 rad/s, the two 1, responses converge and peak twice, at between 2 and 3 rad/s,

and again at between 4 and 5 rad/s, before rolling off. The response of oma[Tcm,d,(J)]

(Umax[Tec,,d,(0)]) in design C2 closely follows that in design Co,, but shows a slightly smaller

magnitude over frequencies under 0.1 rad/s, a slightly larger magnitude over frequencies

between 0.3 and 4 rad/s, and then a smaller magnitude again for frequencies above 4 rad/s.

Similarly, the response in design V 2 closely resembles that in design Do, but with a slightly

smaller gain throughout. The ordering of the gains over the lower frequencies exactly

matches the ordering of the RMS values calculated for Ecm (Ec,). Also note that in all of the

designs, oma[TEcm,d,(Jw)] (Omax[Te,,d,(JW)]) shows a downward peak at around 27 rad/s,

the frequency where sensor noise energy is greatest. The response of um4[Tecm,d,(3')]

(umax[Te,,d,(Jw)]) in all of the designs easily meets specification (S.14).

The responses of am.[TBicm,d,(JW)) (max[TBc,,d,(3w)]) in designs C, and Do differ

significantly in magnitude at frequencies below 0.01 rad/s, with approximately constant

gains of around -9 and -20 dB respectively. The response in design C, then decreases

to -20 dB, converging with that in design D, at around 0.2 rad/s. After peaking at

between 2 and 3 rad/s, the two responses then roll off, exhibiting several peaks and dips

in the process. The response in design C2 is similar to that in design C', but with a

slightly smaller gain over frequencies below 0.2 rad/s, a slightly larger gain over frequencies

between 0.2 and 3 rad/s, and a smaller gain at frequencies above 3 rad/s. Similarly, the

response of oma[TBicm ,d (3w) (Ormax TBes,d,(jw) ) in design V 2 closely follows that in design

D , but shows a slightly larger gain over frequencies below 3 rad/s, and a slightly smaller

gain for frequencies above 3 rad/s. Consistent with the relative singular value magnitudes

over frequencies under 0.2 rad/s, the RMS values for Blcm (Blcm) in designs D and 2 are
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smaller than those in designs C, and C2. While the RMS in design C, is slightly larger than

that in design C2, the RMS in design Do, just slightly exceeds that in design D2 . This RMS

reduction by design D2 over design D becomes a slight amplification, however, when the

sensor noise is not included as an input. As with the collective control, O-max[TBCm,d (3)]

(o-max[TBc-,,,(3w)]) in all of the designs shows a downward peak at around 27 rad/s. All of

the cyclic responses meet specification (S.15) for process noise rejection.

6.3.2.2 Complementary Sensitivity Function

Figure 6-54 shows the maximum singular values of C(3w) for all four designs, together

with the bounding function 1/|w,(3w)| in specification (S.16). The coordinates 27 rad/s

and -20 dB are also marked for assessing the meeting of specification (S.11). All of the

responses of max[C(3w)] follow a similar shape, showing a downward peak at 27 rad/s

followed by an upward peak at around 40 rad/s. In all of the designs, the downward peaks

fall beneath -20 dB, and hence specification (S.11) for sensor noise rejection is satisfied. At

this downward peak frequency of 27 rad/s, the 72 responses show smaller gains than the

R,, responses, with design C, showing the least amount of magnitude reduction among

the four designs. As with specification (S.11), specification (S.16) for stability robustness

is also met by all four designs. While designs C2, Do,, and D2 meet this specification with

some remaining margin for error, the response in design Ce, peaks at 40 rad/s to nearly

touch the bounding function in this specification.

6.3.3 Conclusions

Both of the R.o controller designs, C) and DV, meet all of the specifications considered

mandatory for acceptable design performance. The nature of the responses in each design,

however, differ considerably. The two designs also vary in the extent to which they each

meet (or do not meet) the specifications, both those mandatory and those desirable. These

differences are often explainable in terms of variations in the output matrix and weighting

functions used to construct the respective generalized plants.

In general, design C, achieves superior performance in the regulated variables 0m (0,)

and Az, whereas design DV achieves superior performance in the regulated variables Ax

and E These performance differences are most pronounced in the stochastic simulations

and wind-to-variable singular value plots. In design C,, Ei violates specification (S.5) in
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the stochastic simulation, as well as specification (S.10) in the plot of um.(Tm,d, (3w)]. This

reduced performance of Ei results from the omission of this variable as one of the outputs.

Design Ce, not having Ei as an output, however, translates into more focused control on E6,

and hence design C, shows much greater magnitude reduction in 0m (9,) than design does

Do. This improved performance in the pitch angle response is accompanied by a significant

improvement in the response of Az. Hence, in design C,, Az meets both specification (S.4)

in the stochastic simulation and specification (S.9) in the plot of Oma[TAz,d,(jw)], whereas

in design D,, both of these specifications are violated. The collective control in design

Co is consistently significantly smaller than that in design Do. Conversely, design D,,

usually shows a smaller magnitude cyclic. As seen in Figure 6-54, while both designs

meet specification (S.16) for stability robustness, umax[C(3w)] in design C, peaks much

higher than in design DV at around 40 rad/s, actually touching the bounding function in

this specification. Over the lower frequencies, however, oma[C(3w)] in design C, actually

shows a smaller gain than in design D,. Table 5.5 shows that in these two W,, designs,

the selected weighting functions w2(s), used to shape uma[C(Jw)], differ only by a constant

scaling factor. This scaling factor was introduced into design Co to ensure that aman,[C(3w)]

achieve the sensor noise rejection requirement. Figure 6-54 shows that both N, designs

do indeed meet specification (S.11) for sensor noise rejection. The success of meeting this

specification is also seen by comparing the RMS values in Tables 6.3 and 6.4. In each design,

the difference between output RMS values with the sensor noise input and without it, is

negligible.

Each W2 design differs significantly from its corresponding W design, and these differ-

ences exhibit some noticeable trends. In general, the Wo designs achieve greater magnitude

reduction in the variables included among the outputs, whereas the W2 designs achieve

greater magnitude reduction in the other regulated variables and in the controls. These

differences are most apparent in the stochastic simulations and the wind-to-variable sin-

gular value plots. In addition, the deterministic time domain simulations show that the

WN, designs generally produce faster responses, both in the regulated variables and in the

controls, than the corresponding W2 designs. The W2 designs, however, achieve more in the

way of stability robustness and sensor noise rejection, with the differences between designs

C2 and C, being especially prominent in this regard.

In design C2 , the TLHS generally produces larger magnitudes in Ax, XL - Ex, and 0m
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(0,) than in design C,, but shows greater magnitude reduction in Az, Ei, 1cm (Ec,), and

Bcm (Bes). The only exception to this pattern is in the pitch angle response to (IC.1),

where 0m (-0,) in design C, initially oscillates with a larger amplitude than in design C2.

The poorer performance of design C2 in regulating Ax and XL - EX leads to the violation

by this design of the time and frequency domain specifications (S.1) and (S.6) on Ax, and

the frequency domain specification (S.7) on XL - EX. While design C2 does achieve greater

magnitude reduction in Ei than design C., the former design still violates the time and

frequency domain specifications (S.5) and (S.10) on this variable. Figure 6-54 shows that

design C2 achieves the greatest amount of sensor noise rejection among the four designs,

and compared to design C,, meets the stability robustness requirement with a much larger

margin for error.

In design V 2, the TLHS generally produces larger magnitudes in AX, XL - EX, and

Ei than in design D,, but shows greater magnitude reduction in 0m (0,), Az, Ecm (E9c),

and Bcm (Bie,). The only exceptions to this pattern are in the responses of 0m (-0,)

to (IC.1) and XL - EX to (IC.2). The variables Az and Ei show the largest magnitude

contrasts between the two designs. Conversely, the cyclic control responses exhibit only

very small magnitude differences. As a result of the greater magnitude reduction in Az

produced by design V 2 , this design, unlike design D , satisfies both the time and frequency

domain specifications (S.4) and (S.9) on this variable. Figure 6-54 shows that the response

of o-max[C(y)] in design V 2 is very similar to that in design Do,, but achieves slightly better

sensor noise rejection, and meets the stability robustness requirement with a slightly greater

margin for error.

6.4 Conclusion

Both the R 2 and W,, design methodologies with frequency weightings produce con-

trollers that satisfy the mandatory design specifications put forward in chapter 5. Within

each approach, performance trade offs are achieved through intuitive variations in the out-

put matrices and weighting functions. Such trade offs include improved performance in the

regulated variable Ei and improved stability robustness, resulting from including the vari-

able Ei as a fourth output, versus improved performance in the regulated variables 0m (08)

and Az, resulting from having only three outputs. The design selected for implementation
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will depend on which specifications are deemed the most important. In general, the 71oo

approach to design produces the desired results more efficiently than the 7W2 approach. This

greater efficiency is attributable to the predictability inherent in using frequency weights for

direct loop shaping, especially when design requirements are specified in the frequency do-

main. Both methodologies, however, provide an intuitive and effective means for achieving

the performance and stability robustness desired of the closed loop system.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, the -2 and R-,, control methodologies are used to design automatic flight

control systems for a twin lift helicopter system. The theory of the two methodologies is

developed within a generalized plant framework, where the goal of R 2 and N, control is

to minimize the "size" of this generalized plant with feedback from the controller. The

norms used to measure this plant's size, and which differentiate the two methodologies,

are defined and interpreted, and characteristics of each type of controller discussed. The

theoretical development concludes with a discussion and illustration of how frequency de-

pendent weighting functions can be incorporated into the generalized plant to target specific

performance and stability robustness requirements on the closed loop system. Particular

emphasis is placed on the ability in W4, design to use design weights for direct singular

value loop shaping.

After establishing the theoretical framework for 12 and No control, these two method-

ologies are applied to control a twelfth order multi-input multi-output TLHS. To motivate

the generalized plant designs for controller synthesis, performance and stability robustness

specifications are put forward based upon assumed external disturbances and an assumed

unmodeled time delay of up to 0.05 s. With these specifications established, four generalized

plants, two for l 2 and two for ?it synthesis, are designed, with the parameters and weight-

ing functions for these plants targeted to achieve the performance and stability robustness

objectives. Analysis of the resulting controllers reveals that both the R 2 and Ito design

methodologies, when used with frequency weightings, are able to meet the specifications put
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forward for closed loop system behavior. Differences and performance trade offs amongst

the controllers are shown to correlate intuitively with variations in the weighting functions

and other parameters used to define the generalized plant. In addition, the ability in W',.

design, but not W 2 design, to directly shape singular values, makes this former approach

generally more efficient in producing the desired results. The controller analyses illustrate,

however, that both design methodologies provide an intuitive and effective means within

the multivariable setting for specifically targeting, and hence achieving, the performance

and stability robustness desired of the closed loop system.

7.2 Future Work

The two design methodologies described and applied in this thesis can be readily used to

design controllers for any number of multi-input multi-output systems. Frequency weight-

ings can be constructed to represent particular stability robustness and performance require-

ments, and the weightings can be placed in a configuration similar to, or very different from,

that shown in Figure 4-4. In addition, future work might extend the Small Gain Theorem

and 1iN, loop shaping to enable non-conservative controller analysis and synthesis for stabil-

ity robustness to "structured" uncertainty and/or for performance robustness [11], [12], [9].

Such an extension involves computing the structured singular value [13], and much research

has been done to demonstrate the power and versatility of making such a computation.

See [14], [15], [16], [17], and [18] for additional information on the structured singular value,

its computation, and its applications.
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