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Abstract

Current control and planning algorithms are largely unsuitable for mobile robots in unstructured
field environment due to uncertainties in the environment, task, robot models and sensors. A key
problem is that it is often difficult to directly measure key information required for the control of
interacting cooperative mobile robots. The objective of this research is to develop algorithms that
can compensate for these uncertainties and limitations. The proposed approach is to develop
physics-based information gathering models that fuse available sensor data with predictive
models that can be used in lieu of missing sensory information.

First, the dynamic parameters of the physical models of mobile field robots may not be
well known. A new information-based performance metric for on-line dynamic parameter
identification of a multi-body system is presented. The metric is used in an algorithm to
optimally regulate the external excitation required by the dynamic system identification process.
Next, an algorithm based on iterative sensor planning and sensor redundancy is presented to
enable field robots to efficiently build 3D models of their environment. The algorithm uses the
measured scene information to find new camera poses based on information content. Next, an
algorithm is presented to enable field robots to efficiently position their cameras with respect to
the task/target. The algorithm uses the environment model, the task/target model, the measured
scene information and camera models to find optimum camera poses for vision guided tasks.

Finally, the above algorithms are combined to compensate for uncertainties in the
environment, task, robot models and sensors. This is applied to a cooperative robot assembly
task in an unstructured environment. Simulations and experimental results are presented that
demonstrate the effectiveness of the above algorithms on a cooperative robot test-bed.

Thesis Supervisor: Dr. Steven Dubowsky
Professor of Mechanical Engineering
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Chapter

1

Introduction

1.1. Problem Statement And Motivation

Human exploration and development of the planets and moons of the solar system are stated

goals of NASA and the international space science community [Huntsberger-3]. These missions

will require robot scouts to lead the way, by exploring, mapping, seeking or extracting minerals

and eventually constructing facilities in complex terrains. Multiple cooperating robots will be

required to set up surface facilities in challenging rough terrain for in-situ measurements,

communications, and to pave the way for human exploration of planetary surfaces (see Figure 1-

1). Tasks may include building permanent stations and fuel generation equipment. This will

require the handling of relatively large objects, such as deploying of solar panels and sensor

arrays, anchoring of deployed structures, movement of rocks, and clearing of terrain. Robots will

also assist future space explorers.

Such future robotic mission scenarios suggest that current planetary rover robots, with

their limited functionality, such as simple rock sampling (see Figure 1-2), will not be sufficient

for such missions [Baumgartner, Huntsberger-2, Parker]. A new generation of planetary worker

robots will be essential for future missions [Baumgartner, Huntsberger-1, Huntsberger-2,

Huntsberger-3, Schenker]. In addition to the exploration and development of space, such robotic

systems could prove vital in earth-based field applications including environment restoration,

underground mining, hazardous waste disposal, handling of large weapons, and

Chapter 1 13
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assisting/supporting humans in field tasks [Huntsberger-1, Huntsberger-2, Khatib-2, Osbom,

Schenker, Yeo, Walker, Shaffer].

Figure 1-1: Solar panel assembly by Figure 1-2: Rocky 7 inspecting rock sample

cooperative robots

Substantial previous research has been devoted to control and planning of cooperative

robots and manipulators [Choi, Khatib-1, Khatib-2, Marapane, Parker, Pfeffer, Takanishi,

Veloso-1, Veloso-2, Yeo, Donald, Mataric, Gerkey, Alur]. However, these results are largely

inapplicable to mobile robots in unstructured field environments. In simple terms, the

conventional approach for the control of robotic systems is to use sensory information as input to

the control algorithms. System models are then used to determine control commands. The

methods developed to date generally rely on assumptions that include: flat and hard terrain;

accurate knowledge of the environment; little or no task uncertainty; and sufficient sensing

capability. For real field environments, a number of these assumptions are often not valid.

For example, Figure 1-3 shows two physically interacting cooperative robots working in

an unstructured field environment. The mobile robotic systems have independently mobile

cameras and other onboard sensors, and are working together to assemble a large structure.

However, visual sensing is limited due to target occlusions by the object being handled and

Chapter 1 
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objects in the environment (e.g. rocks, building supplies, drums of materials, debris). There is

significant task uncertainty in relative pose between the robots and the target, the grasp points,

etc. Due to these limitations and uncertainties, classical robot control and planning techniques

break down (see Figure 1-4).

Independently
mobile camera

Physical Model of
Sensors Robot(s), Task and

il Environment

Force/Torque Mobile vehicles IncompleteSensor with suspensions Knowledge

Onboard sensors Control and

ncelrometer,c.) Physical System Planning
Algorithm

Figure 1-3: Representative physical system Figure 1-4: Conventional control architecture

The key problem is that it is difficult or impossible to directly measure key information

required for the control of interacting cooperative mobile field robots.

1.2. Purpose Of This Thesis

The objective of this research is to develop algorithms to compensate for sensor limitations

and enable multiple mobile robots to perform cooperative tasks in unstructured field

environments. The key theme is to develop optimal information gathering methods from

distributed resources.

The proposed approach in this research is to use physics based models to fuse available

sensor information with predictive models that can be used in lieu of missing sensory

information. In other words, the physical models of the interacting systems are used as the

"sensor fusion engines." Observing these models will provide virtual or surrogate sensing. This

virtual sensor information will be used to supplement the incomplete and insufficient direct

Chapter 1 
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sensor data based on the information obtained from all the members of the robot workers (crew).

Thus, experiences (measurements) of each individual robot become part of the collective

experience of the group. Such a methodology fuses dynamic models, available sensor data, and

prior sensed data from multiple robot team members. This inferred information can be applied to

robot control and planning architectures. Figure 1-5(a) outlines this idea. Figure 1-5(b) shows a

possible sensor suite of a robot or team of robots, fused using a physics based model, to yield

surrogate sensory information.

Sensor I
information

Sensor N Direct sensor information
information information
(incomplete)

Multi robot stem
Control and

multi-sensor input Physical P lmoin
with placement system(s) gorithm

optimization a

(a) Control architecture with surrogate sensing

SENSOR SUITE FOR EACH ROBOT

SENSORS MEASURING THE ENVIRONMENT

E/M SPECTRUM TACTILE
- 2D camera - force/torque sensor AUDITORY ODOR
- lateral photo effect detectors - pressire transsducers - altrasonic seinsois - specrroscopic
- JR proximity sensors - strain gauges - microphones - chemical detection
- NMR - whiskeis/bumpers - etc. - etc.
- adar -ltsermal sesors Physical Task
-etc. -etc e model

based based

opstimizatprionio

SENSORS MEASURING THE ROBOT

PROPRIOCEPTIVE VESTIBULAR
-2 c rchometer - inclinometer
-~ eoders - accelerometer i

- linear transducers - r aote gyroscopes
- ptary transducers - compass
- etc. k- etc .

(b) Sensor suite example-used in model based fusion
Figure 1-5: Physical model based sensor fusion

The approach to this research is divided into three parts "know one's self', "know one's

Chapters 1 16elrmee
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environment" and "know one's task". Fundamentally this reduces to the following. First, field

robots must have a good dynamic model of themselves to be used in model-based control

algorithms. Second, the robots must have a good geometric environment model in which the task

is being performed. Third, the robots must have a good view of the targets critical to performing

the task. Algorithms in each successive step use the algorithms developed in the previous steps.

(a) Know ones self: Here, an algorithm is developed to allow a robot to measure its dynamic

parameters in the presence of noisy sensor data. These parameters are required to

successfully apply model-based control algorithms [Hootsman]. These parameters may be

roughly known from design specifications or found off-line by simple laboratory tests.

However, for field systems in hostile environments, they may not be well known, or may

change when the robot interacts with the environment. For example, temperature fluctuations

result in substantial changes in vehicle suspension stiffness and damping. Vehicle fuel

consumption, rock sample collection, etc. cause changes in the location of the center of

gravity, mass and inertia of the system. Hence, on-line identification of these parameters is

critical for the system performance.

(b) Know one's environment: Here, an algorithm is developed to allow multiple cooperating

robots to efficiently model/map their environment. For robots working in unstructured

environments, it is often not possible to have a-priori models of the environment. The robots

will need to build these models using available sensory data. A number of problems can

make this non-trivial. These include the uncertainty of the task in the environment, location

and orientation uncertainty in the individual robots, and occlusions (due to obstacles, work

piece, other robots).

(c) Know one's task: Here an algorithm is developed to allow multiple cooperating robots to

Chapter 1 
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observe their task effectively. Once the environment model is created, the robots need to

position their sensors in a task-directed "optimal" way. That is, for a given task requiring

visual guidance, there is an associated target to observe. For example, in assembly tasks, the

target may be a single point or region in the environment, a distance between two objects,

etc. The algorithm finds optimal view poses of the target for the individual robots as the task

is carried out. These view poses provide the required visual guidance for task execution.

1.3. Background And Literature Review

There has been significant research in the area of cooperative robotics over the past decade

[Choi, Clark, Khatib-1, Khatib-2, Luo, Marapane, Parker, Pfeffer, Schenker, Takanishi, Veloso-

1, Veloso-2, Yeo, Donald, Mataric, Gerkey, Alur]. Relevant research is broken down into four

areas: (a) Control and planning of cooperative mobile robots, (b) identification of system

dynamic parameters, (c) environment modeling and (d) task modeling.

1.3.1. Control and planning cooperative mobile robots

Aspects of control and planning of cooperative mobile robots have been addressed by a number

of researchers, including modeling the environment and task, modeling the physical interactions

among robots and between robots and the environment, and assigning individual robot roles

[Khatib-1, Marapane, Parker, Donald, Mataric, Gerkey, Alur]. A typical approach to the

problem of modeling environment and task knowledge is to assume that both the environment

and the task are well-defined or can be obtained with sufficient accuracy [Choi, Khatib-1,

Khatib-2, Pfeffer, Donald, Mataric, Gerkey]. Further, many successful approaches have been

developed to model dynamic interactions during cooperative manipulation of objects. These

include: generating virtual linkages that account for internal forces; augmenting the object to

provide a dynamic description at the operational point; dynamic hybrid force/position

Chapter 1 
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compensation across a passive object; and including passive joints in the closed kinematic

manipulator-object-manipulator chain [Choi, Khatib-2, Pfeffer, Yeo].

Some researchers have addressed the problem of tip-over stability due to the dynamic

effects in a single mobile manipulator system [Dubowsky, Takanishi]. Researchers have also

addressed the problem of role assignment in cooperative systems (hierarchical (master-slave) and

equipotent team structures) [Khatib, Marapane, Veloso-1, Veloso-2]. Most work in the area of

cooperative robots has focused on small laboratory systems that accomplish simple tasks (such

as pushing small objects around a table) while avoiding collisions with other robots [Marapane,

Parker]. The planning and control algorithms are primarily heuristic, probabilistic or based on

fuzzy logic, do not exploit all the physical capabilities of the system, and testing in field

environments has been limited.

1.3.2. Identification of dynamic system parameters

Dynamic system models are often used in robot control architectures, to enhance the system

performance. Identification of system parameters is a well-studied problem [Alloum, Atkeson,

Bard, Ljung, Nikravesh, Olsen, Serban, Schmidt, Soderstorm]. Various effective algebraic and

numerical solution techniques have been developed to solve for unknown parameters using

dynamic system models [Bard, Gelb, Nikravesh, Serban]. These include techniques based on

pseudo-inverses, Kalman observers, Levenberg-Marquardt methods, and others. However, the

accuracy/quality of the identified system parameters is a function of both the system excitation

and the measurement noise (sensor noise). A number of researchers have developed metrics to

evaluate the quality of identified system parameters [Armstrong, Gautier, Schmidt, Serban,

Soderstorm]. Such metrics determine if a given set of parameters is identifiable, which is known

as the "identifiability/observability" problem [Serban]. These include tests based on differential
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algebra, where a set of differential polynomials describes the model under consideration [Bard,

Ljung]. Other metrics monitor the condition number of an excitation matrix computed from the

dynamic model. Examples of such excitation matrices include the Hessian of the model residual

vector, the derivative of the system Hamiltonian, and the input correlation matrix [Serban,

Gautier, Armstrong].

The metrics of parameter quality can be used to select the excitation imposed on the

physical system and have been applied with limited success to industrial robotic systems

[Armstrong, Atkeson, Gautier, Mayeda]. However, such approaches can be computationally

complex, an important issue for space robots where computational power is very limited. For

example, defining excitation trajectories for the identification of an industrial 3 DOF manipulator

using an input correlation matrix requires 40 hours of VAX (40MHz) time [Armstrong, Gautier].

Additionally, these methods are unable to indicate which parameter estimates have low

confidence values (low quality), since the quality metrics combines the performance into a single

parameter. Thus it is not possible to assign higher weight to parameters of greater dynamic

significance to system response.

1.3.3. Environment modeling

Environment modeling/mapping by mobile robots falls into the category of Simultaneous

Localization and Mapping (SLAM). In such algorithms, the robot is constantly localizing itself

as it maps the environment. Several researchers have addressed this problem for structured

indoor-type environments [Asada, Burschka, Kruse, Thrun-1, Kuipers, Yamauchi, Castellanos,

Leonard, Anousaki, Tomatis, Victorino, Choset]. Sensor movement/placement is usually done

sequentially (raster scan type approach) or by following topological graphs [Choset, Victorino,

Anousaki, Leonard, Kuipers, Rekleitis, Yamauchi]. Geometric descriptions of the environment
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have been modeled in several ways, including generalized cones, graph models and Voronoi

diagrams, occupancy grid models, segment models, vertex models, convex polygon models

[Brooks, Choset, Crowley, Kuipers, Miller, Weisbin]. The focus of such work is accurate rather

than efficient mapping process. Further, the environment is assumed to be effectively planar (e.g.

the robot workspace is the floor of an office or a corridor) and readily traversable (i.e. terrain is

flat and obstacles always have a route around them) [Anousaki, Thrun-1, Yamauchi, Choset,

Kuipers, Lumelsky].

Localization is achieved by monitoring landmarks and their relative motions with respect

to the vision systems. Several localization schemes have been implemented, including

topological methods such as generalized voronoi graphs and global topological maps [Choset,

Kuipers, Tomatis, Victorino], extended Kalman filters [Anousaki, Leonard, Park], and robust

averages [Park]. Additionally, several different sensing methods have been employed, such as

camera vision systems [Castellanos, Hager, Park], laser range sensors [Tomatis, Victorino], and

ultrasonic sensors [Anousaki, Leonard, Choset]. Although some natural landmark selection

methods have been proposed [Hager, Simhon, Yeh], most SLAM architectures rely on

identifying landmarks as corners or edges in the environment [Anousaki, Kuipers, Castellanos,

Victorino, Choset, Leonard]. This often limits the algorithms to structured indoor-type

environments. Others have used human intervention to identify landmarks [Thrun-1].

Some studies have considered cooperative robot mapping of the environment [Jennings,

Rekleitis, Thrun-2]. Novel methods of establishing/identifying landmarks and dealing with

cyclic environments have been introduced for indoor environments [Jennings, Thrun-2]. In some

cases, observing robot team members as references to develop accurate maps is required

[Rekleitis].
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1.3.4. Task modeling-visual sensing strategy

Previous work in visual sensing strategies can be divided into two areas [Luo, Tarabanis].

One area is concerned with sensor positioning i.e. placing a sensor to best observe some feature,

and selecting a sensing operation that is most useful in object identification and localization.

Researchers have used model-based approaches, requiring previously known environments

[Burschka, Cowan, Hutchinson, Kececi, Laugier]. Target motions (if any) are assumed to be

known [Laugier]. Brute force search methods divide the view volume (into grids, octrees, or

constraint sets), and search algorithms for optimum sensor location are applied [Connolly,

Cowan, Luo, Kececi, Nelson]. These methods require a priori knowledge of object/target models

[Tarabanis, Chu]. Such methods can be effective, but are computationally expensive and

impractical for many real field environments, where occlusions and measurement uncertainties

are present.

The other direction of research in visual sensing strategies is sensor data fusion i.e.

combining complementary data from either different sensors or different sensor poses to get an

improved net measurement [Smith, Marapane, Nelson, Tarabanis, Veloso-1]. The main

advantages of multi-sensor fusion are the exploitation of data redundancy and complementary

information. Common methods for sensor data fusion are primarily heuristic (fuzzy logic) or

statistical in nature (Kalman and Bayesian filters) [Betge-Brezetz, Luo, Repo, Clark, Marapane,

Nelson, Tarabanis].

For target model building both sensor positions and sensor fusion play key roles. However,

current methods do not effectively combine these methods to develop a sensing strategy for robot

teams in unstructured environments.

In general, current research has not solved the problem of controlling multiple mobile
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robots performing cooperative tasks in unstructured field environments, where limited sensing

capabilities and incomplete physical models of the system(s)/environment dominate the problem.

1.4. Outline Of This Thesis

This thesis is composed of six chapters and five appendices. This chapter serves as an

introduction and overview of the work, and summarizes related research.

Chapter 2 addresses the problem of "knowing ones self'. It presents a new information-

based performance metric for on-line dynamic parameter identification of a multi-body system.

The metric is used in an algorithm to optimally regulate the external excitation required by the

dynamic system identification process. This algorithm is applied to identify the vehicle and

suspension parameters of a mobile field manipulator. Simulations and experiments show the

effectiveness of this algorithm.

Chapter 3 addresses the problem of "knowing ones environment". An algorithm based on

iterative sensor planning and sensor redundancy is proposed to enable field robots to efficiently

build 3D models of the environment. The algorithm uses measured scene information to find

new camera poses based on information content. Simulations and experiments show the

effectiveness of this algorithm.

Chapter 4 addresses the problem of "knowing ones task". Here, an algorithm is proposed

to enable field robots to efficiently position their cameras with respect to the task/target. The

algorithm uses the environment model, task/target model, measured scene information and

camera models to find optimum camera poses for vision guided tasks. Simulations and

experiments show the effectiveness of this algorithm.

Chapter 5 presents an experimental example of vision-guided cooperative assembly by

mobile robots in unstructured field environments. Here, the algorithms developed in Chapters 2,
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3 and 4 are combined.

Chapter 6 summarizes the contributions of this thesis and presents suggestions for future

work.

The appendices to this thesis give detailed information on specific topics related to the

work presented. Appendix A presents a cooperative mobile robots dynamic model used for

model predictive control. Appendix B presents the derivation of the equations of motion of a

mobile robot model used in Chapter 2. Appendix C presents a description of loss-less image

compression schemes that is used for quantifying information content in a scene. Appendix D

describes the Field and Space Robotics Laboratory cooperative rover test-bed, which is used to

experimentally validate much of this work. Appendix E presents a concept for a lightweight

hyper-redundant binary manipulator that may used for camera/sensor placement tasks.
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Chapter

2
Dynamic Parameter Identification

2.1. Introduction

The first step in compensating for robot model uncertainty is to develop an algorithm that

allows field robots to measure their dynamic parameters in the presence of noisy sensor data.

These parameters are required to successfully apply model-based control algorithms

In this chapter a new performance metric, called a mutual information-based observability

metric, is presented for on-line dynamic parameter identification of a multi-body system. This

metric measures the uncertainty of each parameter's estimate. This measure is termed the

"parameter observability." The metric is used to formulate a cost function that optimally controls

the external system excitation during the identification process. The cost function weighs each

parameter estimate according to its uncertainty. Hence, the excitation is controlled so that the

identification favors parameters that have the greatest uncertainty at any given time. Parameters

may also be given greater importance in the cost function based on its significance to the

system's dynamic response. This method is more computationally efficient and yields faster

convergence than single parameter methods [Armstrong, Gautier, Schmidt, Serban, Soderstorm].

Here the algorithm is applied to the on-line parameter identification of a mobile field robot

system and is shown to be computationally efficient. A field robot may be equipped with a

manipulator arm and onboard sensors such as inclinometers, accelerometers, vision systems, and

force/torque sensors (see Figure 2-1). An onboard manipulator arm (with bandwidth constraints)
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is moved to generate reaction forces, which excite vehicle base motions. The dynamic

parameters include the mass, location of center of gravity, inertia, base compliance and damping.

The method assumes a robotic system composed of rigid elements, and there is no relative

motion of the vehicle wheels with respect to the ground during the identification process. The

algorithm also assumes that the robot is equipped with an inclinometer, accelerometer and arm

base force/torque sensor mounted at the manipulator base. It is assumed that the onboard

manipulator dynamic parameters are known, and the bandwidth of the arm actuators is

sufficiently high to excite the vehicle dynamics. Finally, the motions of the base compliance are

assumed to be small.

Multi-DOF
Payload

Sensor
suite

4-Force/Torque sensor

suspension

Figure 2-1: Representation of a general mobile field robot

The system is modeled using a Newton-Euler formulation (section 2-2). A Kalman filter is

used to solve the dynamic parameters based on the physical model (section 2-3). The mutual

information-based observability metric is used to determine the arm excitation trajectory

(sections 2-4 and 2-5). Simulation and experimental results show the effectiveness of this

algorithm (section 2-6).

2.2. System Dynamic Model

The algorithm to generate arm excitation trajectories for parameter identification requires a
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dynamic model of the system. A number of models of vehicle suspension systems have been

proposed [Alloum , Halfmann, Harris, Majj ad, Nelles]. Many of these are quarter or half-vehicle

models that consider stiffness and damping coefficients, but neglect vehicle mass and inertial

properties. Here, a Newton-Euler formulation is used to model the full spatial dynamics of the

system. The system represented in Figure 2-1 is reduced to three components: a rigid arm, a rigid

vehicle body and a compliance module (see Figure 2-2). Rotational motions of the rigid arm

result in reaction forces/moments felt by the vehicle base and in the suspension module. Motions

of the base are measured through the onboard inclinometer, accelerometer and directional

compass. Interaction forces/torques between the arm and vehicle base are measured by a base

force/torque sensor (origin coincides with frame VI-Figure 2-2).

Vehicle c.m. IV

6 DOF Vehicle
1 suspension

F Vehicle chassis
(does not move)

Figure 2-2: Representation of the simplified mobile robot

Although real vehicles have complex, multi-element suspension systems, only the net base

compliance is modeled. This is modeled as a 6 DOF linear stiffness and damping system, located

at the vehicle base center-of-gravity (see Appendix A). From the equations derived in Appendix
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A, it can be seen that for small base motions, this simplified model can accurately model the

vehicle dynamics. An advantage of the simplified model is that all coefficients can be identified

by observing only the vehicle base motions, thus eliminating the need for more exotic sensors

placed at each individual suspension. Additionally, a simplified suspension model accounts for

all sources of compliance that would be difficult to model and measure individually.

Appendix B presents the dynamic model of the mobile robot presented in Figure 2-2. From

Equation B-4, a set of 6 dynamic equations is obtained (forces and moments in 3D):

mi(d(R-'g)-d(i) 1 -bT -dil -k -dr = d(F,
0 Fii 2(2-1)

-Id() 11 - d(6x(I10)) - d(r 2 x -F) -b T d6-k -Od = d(N) (

where F 12 and N12 are the arm base reaction forces and moments, m2 and 12 are the arm mass and

inertia tensors, a2 and O2 are the arm linear acceleration and angular velocity vectors, Foi and No,

are the suspension reaction forces and moments, mi and I1 are the base mass and inertia tensors,

a, and o, are the base linear acceleration and angular velocity vectors, kr and ke are the

translational and rotational stiffness coefficients, b, and bo are the translational and rotational

damping coefficients. Using the onboard sensors described above, this set of equations present

the following unknowns, knowns, and measureable quantities:

unknowns: mi, 11, r2, kr , br, k, bo

knowns: m2, 12

measured: dr, di,, di, (III w.r.t. II), dO, d6, d (II w.r.t. I), dF12, dN12

By measuring the motions induced by three rotation modes or the arm (rotation about the x, y

and z axes in Frame IV-see Figure 2-2) and applying the six dynamic equations of motion,

results in a total of 18 independent equations. Note that the arm rotation motions about the x, y

and z axes are done individually, and require rotation of only the arm base joints (Frame IV-see

Figure 2-2). The remaining joints are held fixed. This configuration is sufficient to produce the
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dynamic forces required to generate needed vehicle excitations. Additionally, this maintains the

generality of the algorithm developed in this chapter, as no specific manipulator kinematics are

assumed (other than two base rotational joints).

2.3. Estimating The Dynamic Parameters

To solve for the unknown parameters, Equation 2-1 is first recast into the form A x = F (where A

is a known matrix of measured position values, x is the vector of unknowns, and F is a known

vector of measured forces/torques). Two common methods to solve equations in the form A x =

F are pseudo-inverse and Kalman filters. Both result in a least-squares solution to the problem.

In a pseudo-inverse solution process, a discrete set of measurements combined with the 18

equations are used to formulate the matrix A and the vector F. A solution to A x = F is simply

given by: x=(ATA)-'ATF.

A more efficient solution is to use a Kalman filter [Gelb]. A Kalman filter is a multiple-input,

multiple-output digital filter that can optimally estimate the states of a system based on noisy

measurements. The state estimates are statistically optimal in that they minimize the mean-

square estimation error. Here, rather than estimating x based on one large matrix A containing all

the position measurements, x is estimated based on a single set of measurements and an

associated covariance matrix. With each new measurement set, the estimate is improved and the

covariance updated. Since there are numerous articles in the literature describing Kalman filters,

only a flow-diagram of the process is presented here (see Figure 2-3) [Bard, Gelb, Nikravesh]. In

Figure 2-3, Qk models the uncertainty which corrupts the system model, Rk models the

uncertainty associated with the measurement and Ck gives the total uncertainty of the state

estimate.
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K P H T H P T +

dUpdate estimate

F P F T kl klk-I k [k k klk-1l
k k/kk +Q

Pk/k [IKk H / I~k-I X~

state vector : x k1 Fkx + Wk

state noise (w k) covariance : Q k
measurement vector : zk = Hk xk + vk

measurement noise (vk)covariance : Rk

Figure 2-3: Flow-diagram of a Kalman Filter

2.4. A Metric For Observability

Although the above methods (pseudo-inverse and Kalman filter) produce solutions to the

unknown dynamic parameters, a fundamental issue on the observability of unknown parameters

is still to be addressed. Essentially, this provides a measure of accuracy of the current solution

for the specific dynamic parameter. This is a difficult issue and a-priori tests are not available.

2.4.1. Classical observability metric

Classically, the concept of observability in the control literature is defined from a state model of

the dynamic system. The idea is to determine if there are a sufficient number of independent

equations relating the system states (from which these states may be inferred). Formally, a

system is observable if the initial state can be determined by observing the output for some finite

period of time. This metric is briefly outlined here and a discrete formulation is presented.

The linear system model (or state model) for a typical process in the absence of a forcing

function is given by:

P,-
k=0

Xk+1,k

Ik+llk
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x = FY + Gii7 state model (2-2)
Z = HY + i- observation model

The discrete model is implemented by converting the continuous time model, given by:

Xk+1 = kXk + FkWk state model
(2-3)

Zk = Hk!k + Vk observation model

where

Xk is the (n x 1) system state vector at time tk

Dkis the (n x n) transition matrix which relates xk to Xk+l

Fk is the (n x n) process noise distribution matrix

Wk is an (n x 1) white disturbance sequence with known covariance structure

zk is an (m x 1) measurement at time tk
Hkis an (m x n) measurement matrix or observation matrix

Vk is an (m x 1) white measurement noise sequence with known covariance

When the F matrix is constant in time and Equation 2-2 is linear, then the transition matrix is a

function only of the time step At, and is given by the matrix exponential:

a) - e FAt = I+FAt+ +... (2-4)
2!

It is assumed that process and measurement noise sequences are uncorrelated in time (white) and

uncorrelated with each other. In practice, the transition matrix can often be written by inspection.

When At is much smaller than the dominant time constants in the system, a two term

approximation is often sufficient [Kelly].

Consider the discrete nth order constant coefficient linear system, 1ik+1= D kyk , for which

there are m noise-free measurements, zk = Hxk(where k=O...m-1), where each H is an (m x n)

matrix. The sequence of the first i measurements can be written as:
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zo = Hxo

zi = Hx = Hx 0

z 2 = Hx2 =HQ 2X0 (2-5)

zi_, = Hxi, H4'-i 0

This can be written as the augmented set of equations Z = E'x 0 . If the initial state is to be

determined from this sequence of measurements, then E = HT HITHT (c) H must have

rank n. This definition is limited, in that it does not account for the effects of noisy data.

Additionally, the unobservable state cannot be determined. To address both problems, a new

mutual information based metric is proposed below.

2.4.2. Mutual information based metric

Consider a set of possible events with known probabilities of occurance of p1, P2, ... , pn. If there

is a measure of the amount of "choice" involved in selecting an event, H(pi, p2, ... , pn), it is

reasonable to require of it the following properties [Shannon]:

1. H should be continuous in the pi.

2. H(qi, q2,..., q,) is a maximum for qk=l/n for k=1... n. This implies that a uniform probability

distribution possesses the maximum uncertainty

3. If a choice is broken down into two successive choices, the original H should be the weighted

sum of the individual values of H.

It has been shown that the only H satisfying the three assumptions is of the form [Shannon]:

n

H =-K pi log pi (2-6)
i=I

where K is a positive constant. Now consider the case where the signal is perturbed by noise

during transmission i.e. the received signal is not necessarily the same as that sent out by the
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transmitter. Two cases may be distinquished. If a particular transmitted signal always produces

the same received signal, i.e. the received signal is a definate function of the transmitted signal,

then the effect is called distortion. If this function has an inverse-no two transmitted signals

produce the same received signal-distortion may be corrected. The case here is when the signal

does not always undergo the same change in transmission. In this case the received signal, Y, is a

function of the transmitted signal, X, and a second varible, the noise N: Y=f(X,N). The noise is

considered to be a chance variable. In general it may be represented by a suitable stochastic

process [Shannon]. A finite number of states and a set of probabilities is assumed: ps,(p,j). This

is the probability, if the channel is in state a and the symbol i is transmitted, that the symbol j

will be received and the channel left in state P. Thus x and P range over the possible states, i

over the possible transmitted signals and j over the possible received signals. In the case where

successive symbols are independently perturbed by the noise there is only one state, and the

channel is described by the set of transitional probabilities pi(j), the probability of transmitted

symbol i being received as j [Shannon].

Thus, if a noisy channel is fed by a source, there are two statistical processes at work: the

source and the noise. A number of important entropies can be calculated: the entropy of the

source, H(x); the entropy of the output of the channel, H(y); the joint entropy of input and output,

H(x,y); the conditional entropies H(ylx) and H(xly), the entropy of the output when the input is

known and conversely. In the noiseless case H(y)=H(x). These can be measured on a per-second

or per-symbol basis. For a discrete channel transmitting a signal, an analogy with a sensor is

made. The signal being read is the true value of the parameter being measured. The signal

transmitted is the value that the sensor provides to a computer of the measured value (corrupted

by noise).
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The above definitions are used to understand the amount of information being transmitted by

such a sensor i.e. the measure for observability. Consider the random variables x and y with joint

probability distribution p(xi,yj), 1 :4sN, 1 :4 A. The conditional entropy of x given y is defined

as:

N M
H(x I y)= - p(xi, yj)log 2 P(xi Iyj) (2-7)

i=1 j=1

H(xly) can be interpreted as the average amount of uncertainty about x (the true value) after y

(the measured value-sensor reading) has been revealed. Some important properties of the

conditional entropy can be derived [Shannon]:

(i) H(xjy) 41(x) with equality if and only if x and y are independent

(ii) H(x,y) = H(y) + H(xly) = H(x) + H(ylx)

The average amount of information about x contained in y can now be defined in terms of the

reduction in the uncertainty of x upon disclosure of y. Denoting this information by In(x,y),

define:

In(x,y)= H(x) - H(xly) (2-8)

With property (ii), it is easy to show that:

In(y,x) = H(y) - H(ylx) = In(x,y) (2-9)

Thus, the information about x contained in y is equal to the information about y contained in x.

For this reason, In(x,y) is called the average mutual information between x and y. From property

(i), In(x,y) ;f with equality iff x and y are independent. As a direct consequence of the definition

of In(x,y):

NM, p(xi,yj)
In(x,y)= 1 p(x,y )log 2  ' (2-10)

To develop the relationship p(xi,yj), sensor noise is now modeled. A single observation of a
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point (X-) is modeled as a Gaussian probability distribution centered at Y. A Gaussian to model

uncertainty in sensor data is based on two important observations. The use of the mean and the

covariance of a probability distribution function is a reasonable form to model sensor data and is

a second order linear approximation. This linear approximation corresponds to the use of a

Gaussian (having all higher moments of zero). Additionally, based on the central limit theorem,

the sum of a large number of independent variables has a Gaussian distribution regardless of

their individual distributions [Kelly]. For example, the canonical form of the Gaussian

distribution in 3 dimensions depends on the standard deviations of the measurement, ax,y,z, a

covariance matrix (C) and the mean measurement (y5) [Ljung, Nikravesh, Smith]:

p(5I = () = exp 1y -Y T  C- (y- x)J
(27ry" / 2 )I -

a 2paXaZX 1 (2-11)

where C =pxyoxyxyy 2 pYZ

where the exponent is called the Mahalanobis distance. For uncorrelated measured data p=O.

This can be generalized for an n dimensional sensor. H(x) and H(xly) can be explicitly defined in

terms of a given sensor:

H(x) = pi log p, (2-12a)

1
where, for example in a special case of a discrete sensor p = - and n = number of sensor

n

discrete states.
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n-1 fJp(X-' -j7)dx'
H(x |y) = qilogqi whereqi = a

i=Op( ' | I dx'
min

a = min+{max- min> = min+ (i+1)max- min

n n

and max = maximum sensor reading; (2-12b)

min = minimum sensor reading

p(j' ly) is obtained from Equation 2 -11

In(y,x), reflects the information content of the current estimate of the dynamic parameter being

estimated. In other words, increasing certainty of a parameter estimate is reflected in the

increasing value of In(y,x) associated with that parameter. This metric makes no assumption on

the noise statistics (Gaussian, etc.). It is convenient to establish the details using Gaussian noise.

2.5. Formulation Of Exciting Trajectories

Using the observability metric defined in Section 2.4, a method to formulate the appropriate

arm-exciting trajectory is now developed. The idea is to use the observability metric to modify

the arm motion, thus increasing the information associated with the dynamic parameter

estimates.

From Section 2 a set of differential algebraic equations of motion of the form: Ax = F is

obtained. For the robot system in the situation considered here, the arm excitation function is

sinusoidal, namely f(t)=ao+a.sin(ot) (Equation B-1). The only parameters that can be varied are

the amplitude, frequency and offset of the sinusoidal excitation function i.e. amplitude (a),

frequency (o) and offset (ao) of motion of the robotic arm.

Based on the associated information (Section 2-4) for the parameter estimate vector, xk, a

cost function is defined as follows:
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1 In In
Vd)=-j1- 1-1 a a

v In- 2 In x (2 -13)
1 I= In Yr(

2 Inx Inx 2

where i is summed over the number of dynamic parameters to identify. Inx is the current

information associated with parameter estimate xi. In"x is the current maximum information

(observability) associated with any of the parameter estimates. The control parameters vector

d e R3 consists of the amplitude, frequency and offset of the arm excitation function. Note, in

this cost function the information associated with with each parameter is weighted such that

parameters with a higher uncertainty receive a higher weight. Further, this cost function may be

easily amended to include weightings that reflect the relative importance of the individual

dynamic parameters.

A numerical minimization routine is applied to this cost function, by changing the

excitation function in amplitude, frequency and offset (the current estimates for the unknowns

are used here). By assmbling the terms r(d)into a vector R(d), given as:

R(d) = r(d),..., r,. (d)Y (2-14)

the control parameters d must be chosen so that the residual vector R is as small as possible. The

quadratic cost function V(d) of Equation 2-13 becomes:

V(d) = -RT(d)R(d) (2-15)
2

The problem of finding d from V(d) is a nonlinear least-squares problem [Nikravesh]. If the

vector R(d), is continuous, and if both first and second-order derivatives are available, then the

nonlinear least-squares problem can be solved by standard unconstrained optimization methods.
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Otherwise, a method that requires only the first derivatives of R(d) must be used [Serban]. The

first derivative of Equation 2-15 with respect to the design parameters, d, is defined as:

n,

G(d)= Vri(d)r(d) -JT(d)R(d) (2-16)

where J(d) E RnAx is the Jacobian matrix of R(d) with respect to the design parameters. The

second derivative of Equation 2-15 with respect to the design parameters, d, is defined as:

nm
H(d)= [Vr (d)ri(d)T + V 2 r(d)r (d)]= JT (d)J(d) + S(d) (2-17)

i=1

where S(d) e Rx' is part of H(d) that is a function of second derivatives of R(d). Thus the

knowledge of J(d) supplies G(d) and the part of H(d) dependent on first-order derivative

information, but not on the second order part S(d). Levenberg-Marquardt methods simply omit

S(d), and base the step selection (d') on the approximation given by [Serban]:

V(d + d') = V(d) + GT (d)d'+ I d'JT (d)J(d)d' (2-18)
2

Equation 2-18 leads to the following optimization procedure:

d(k+]) = d(k) + akd'(k) (2-19)

with

d'(k) - G(d(k))
JT(d(k))J(d(k)) (2-20)

ak = arg min[V(d ()+ adr(k)]
a

d'(k) given by Equation 2-20 represents a descent direction. Thus, using equations 2-19 and 2-20,

the amplitude, frequency and offset of the robot arm are refined during the identification process,

leading to an optimal excitation trajectory. Note, in physical systems, evaluation of the

information metric and optimization of arm motion should be carried out at time intervals larger
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than the sampling time. This permits the physical system to respond to the changes in arm

motion.

2.6. Results

2.6.1. Simulation studies

Two tests have been conducted using a 3D simulation of a mobile robot system with a

manipulator and suspension compliance. The first uses a constant parameter excitation function

to drive the arm motion. The second uses a varible paramter excitation fuction (based on the

formulation presented above) to drive the arm. The paramter identification results are compared.

The system was simulated for 10 seconds. The manipulator arm mass is assumed to be 1Kg and

inertias Ix=0.02kg-m 2 Iy=0.001kg-m 2 Iz=0.02kg-m2 Ix,=0 kg-iM2 lyz= kg-M2 Ixy=O kg-m2. In the

simulation, sensor data is corrupted by adding white noise of up to 10% of the maximum sensed

value. Evaluation of the information metric and refining arm motion occur every 0.4 secs, with a

sampling time of 0.005 secs.

For the first case, the constant parameter excitation function is given by the form:

f(t)= ao+a.sin((ot) = n/4 + 27/9.sin(7/2 t) (2-21)

This was chosen based on the arm kinematic and dynamic limitations (i.e. to be well within the

manipulator capabilities). Figures 2-4 and 2-5 show the arm excitation functions for the two test

cases. For a sensor with n-bit precision (i.e. 2" possible values), the maximum mutual

information associated with the reading is n bits (i.e. no uncertainty, see Equation 2-9). In both

test cases, a 10-bit accuracy sensor is assumed i.e. 210 possible values. Figure 2-6 shows the

value for the mutual information metric in identifying the stiffness in O, for the two test cases. It

is seen that by using the variable parameter excitation function (as opposed to constant parameter

excitation function), the amount of information associated with the unknown parameter, Ine, has
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low uncertainty (i.e. identified parameter value has high quality). Figure 2-7 shows the

convergence in identification of several parameters for the two test cases. In general, using the

variable parameter excitation function results in faster and more accurate convergence of the

estimates to the true values. Table 2-1 presents the identification results of the 22 unknowns (see

Section 2) using both arm excitation tests. The average percentage error shows an improvement

of almost a factor of six for the variable parameter over the constant parameter excitation

function. The average computational time per evaluation step for 22 unknown parameters with

In"ax =10 bits on a PIII 750MHz platform is 75 ms.

For comparison, the simulation is also run using a parameter quality metric based on the

condition number of a matrix formed by the sensed values (matrix A in section 3). The arm

motion is refined to generate lower condition numbers (i.e. matrix A is better behaved w.r.t.

inversion). On average, parameter estimates converge an order of magnitude faster (in simulation

time) using the information-based quality metric.
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gure 2-4: Constant parameter arm motion
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Figure 2-5: Variable parameter arm motion
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Table 2-1: Simulation parameter identification

Parameter True value Constant parameter Variable parameter
excitation function excitation function

Mass (kg) 3.0 4.021 3.655
Inertia I. (kg-rn) 0.15 0.123 0.144
Inertia I, (kg-M2) 0.10 0.054 0.089
Inertia I (kg-m2) 0.20 0.119 0.177
Inertia Ix,2 (kg-m 2) 0.0 0.045 0.011
Inertia IZ (kg-In) 0.03 0.071 0.047
Inertia Ix, (kg-m) 0.0 0.037 0.014

c.g. x (m) 0.01 0.030 0.012

c.g. y (M) 0.3 0.512 0.360
c.g. z (m) 0.1 -1.053 0.042
Damping x (kg/s) 100 142.554 78.362
Damping y (kg/s) 100 139.956 75.559
Damping z (kg/s) 300 22.368 16.757
Damping 0, (kg/s) 200 78.665 195.264
Damping 0r (kg/s) 300 105.061 266.254
Damping Ov (kg/s) 400 133.714 333.860
Stiffness x (kg/s2) 1000 1103.281 979.494
Stiffness y (kg/s2) 1000 1094.529 1244.836
Stiffness z (kg/s 2) 500 390.469 375.479
Stiffness 0,(kg/s2) 2000 945.103 1934.569
Stiffness Or(kg/s 2) 2500 1950.426 2394.257
Stiffness 0V(kg/s 2) 3000 2402.537 2891.637
% Avg. Error 108.8 18.9
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(a) constant parameter excitation function (b) variable parameter excitation function

Figure 2-6: Mutual information metric for stiffness O,

Chapter 2 
41

8 8

2 6

Chapter 2 41



j2

12

I..
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Figure 2-7: Example of identification converge curves
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(g) stiffness Y

Figure 2-7 (cont): Example of identification converge curves

2.6.2. Experimental studies

Experiments were performed on a four-wheeled robot with a four DOF manipulator arm

mounted on a 6- axis force/torque sensor (see Figure 2-8). On-board sensors also include a two-

axis inclinometer. An off-board computer system (Pentium 166 MHz) is used for real-time

control, data acquisition, and data processing. All programs are written in C++ operating on

Windows NT. Due to the absence of an accelerometer in the experimental platform, tests only

demonstrate the identification of rotational dynamic components (inertia, stiffness, damping of

roll/pitch axes and the location of the center of gravity). A more detailed description of the

hardware is presented in Appendix D.

Figure 2-8: Experimental mobile manipulator
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Before any parameters identification tests are run, the real dynamic parameters must be

identified. Conventional laboratory approaches are used here [Bard, Nikravesh, Serban]. Mass is

measured using a precision weighing scale. The location of the center of mass is found by titling

the vehicle on one axis supported at two points, and measuring the reaction forces at the support

points. Inertia is measured using pendulum oscillatory tests. Stiffness is measured by measuring

deflection as a function of added load. Damping is measured by fitting the impulse response of

the system to a second order equation. Linear models are used for stiffness and damping tests.

Use of the force/torque sensor in the experimental system eliminates the need to measure the

actual arm inertia tensor (see Equation 2-1).

As in the simulation studies, two tests have been conducted using the constant parameter

excitation function and the varible paramter excitation fuction to drive the arm. The parameter

identification results are compared. The experiments were run for approximately 10 seconds.

Figures 2-9 and 2-10 show the arm excitation functions for the two test cases. Figure 2-11 shows

the inclinometer pitch reading for the 2 test cases.

80
Real motion

-D 60-
CU

40\
Desired motion

20
0 2 4 t(s) 6 8 10

Figure 2-9: Constant parameter arm motion
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Real motion
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Figure 2-10: Variable parameter arm motion

X 10 
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(a) constant parameter excitation function (b) variable parameter excitation function

Figure 2-11: Inclinometer pitch reading (radians)

Table 2-2: Experimental parameter identification

Parameter True value Constant parameter Variable parameter
excitation function excitation function

Inertia x 0.072 0.04 1 0.035

c.g. y 0.054356 -0.072 0.072

c.g. z 0.036 195 -0.09 1 0.052

Damping O, 1.5 7.543 1.459

Stiffness 0, 317.0 354.711 327.885

% Avg. Error ______ 208.4 26.8
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Table 2-2 presents the identification results of the five unknowns using both arm excitation tests.

The average percentage error shows an improvement of almost a factor of 8 for the variable

parameter over the constant parameter excitation function. Figure 2-12 shows the convergence in

identification of several parameters for the two test cases. In addition to the significant

corruption of data due to sensor noise, inaccuracies in laboratory measurements of "true" vehicle

dynamic parameters contribute to the errors seen.

(a) c.g. Y

*

10
I

(b) Base X inertia

(c) Damping O, (d) Stiffness O,

Figure 2-12: Example of identification converge curves
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2.7. Conclusions

This chapter presented an algorithm for dynamic parameter estimation based on iterative

excitation of vehicle dynamics. This algorithm enabled mobile robots in field environments to

efficiently estimate their dynamic parameters, including the mass, location of center of gravity,

inertia, base compliance and damping. The algorithm uses an onboard robotic arm to generate

base motions, which are measured with simple onboard sensors, and fit to a physical model. A

mutual information theoretic basis for a metric on parameter identification is developed. This

metric provides a measure on how well a given parameter's value is known. Using this metric,

the arm trajectory is defined. Simulations and experimental results show the effectiveness of this

algorithm.
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Chapter

3
Environment Modeling

3.1. Introduction

The next step in compensating for field robot model uncertainties is to develop an algorithm for

effective modeling of the robots' environment.

This chapter presents an algorithm for geometric environment model building using vision, for

robot teams working cooperatively in unstructured field environments. In such scenarios, it is often

not possible to have a priori environment models. Robots need to build these models using available

sensory data. A number of problems make this non-trivial. These include the task uncertainty,

location and orientation uncertainty of the individual robots, and visual occlusions (due to obstacles,

work piece, other robots). If the systems are equipped with cameras mounted on articulated

mounts, intelligent planning of the camera motion can often alleviate occlusion problems, providing

an accurate geometrical model of the task and environment. If the system consists of cooperating

robots, planning the behavior of these information-sharing systems can further improve the system

performance.

It is assumed that dimensional geometric information is relevant and required for robots to

perform their operations, such as the construction of field facilities. It is also assumed that the

system consists of two or more mobile robots working in an unknown environment (such as

constructing a planetary structure-see Figure 3-1). It is also assumed that there are no physical

interactions between the robots and that the environment is static. Each has a 3D vision system
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mounted on an articulated arm. Sensing and sensor placement is limited, resulting in occlusions

and uncertainties. Again, the objective is to efficiently build a geometrically consistent dimensional

model of the environment and target, available to all robots. The key idea is that the algorithm

builds an environment and task model by fusing data from all robots, providing both improved

accuracy and knowledge of regions not visible by all robots. Using this algorithm, the individual

robots can also be positioned "optimally" with respect to the target (see Chapter 4).

Inter-system
communication

Independently
Mobile vehicles mobile camera
with suspensions

Figure 3-1: Cooperative mapping by robots
3.2. Algorithm Description

3.2.1. Overview

The first step in cooperative model building is to visually construct a model of the local

environment, including the locations of the task elements and the robots themselves. We assume

that only the geometry of the task elements (such as the parts of a solar panel that needs to be

assembled [Huntsberger]) are well known. Obstacles and robot positions are unknown.

Figure 3-2 outlines the map building algorithm. The algorithm consists of two parts. In the first

part, the articulated cameras cooperatively scan the region around a target, generating a 3D

geometric model. This allows the robots to locate themselves and the obstacles in the target

reference frame. In the second part, these models are used to find an optimum target viewing pose

for the multiple camera systems (see Chapter 4). The 3D map is modeled as a probabilistic

discretized occupancy grid. Every voxel in the map has a value for probability-of-occupancy that
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ranges from 0 (empty) to 1 (occupied). A value of 0.5 indicates maximum uncertainty in

occupancy of the voxel. The process is initialized by visually finding the target and robots in a

common reference frame. This is done by "looking around" and matching the known target

element geometric CAD model with visual data [Lara]. Next, a new camera pose is found for each

of the cameras by defining and evaluating a rating function (RF) over the known environment map,

subject to kinematic constraints of the sensor placement mechanisms for the individual robots.

Then, the cameras move to their new poses and acquire 3D data. Based on the camera mount

kinematics, the motions of the cameras are known. Small motions of the robot base (due to

suspension compliance) and errors in camera mounts lead to additional uncertainties. These are

accounted for by measuring common features during the camera motion (section 3.2.5). Finally,

the new data and its associated uncertainty are fused with the current environment map, resulting in

an updated probabilistic environment map.

Start

A

Initialize robot systems

-
B

Move system into desired state Stereo vision data fusion

Select new vision system configuration N End criteria:

for task requirements?

Y

(Stop)
Figure 3-2: Outline of model building and placement algorithm
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3.2.2. Algorithm initialization

As described above, a common target must be located to establish a common inertial reference

frame between the robots and the environment. Searching for the target by moving the robot

cameras can be done in many ways, such as exhaustive raster scanning, random walking, tracking

"space filling curves", and model-based image understanding methods [Luo, Tarabanis]. In this

study, camera positioning for target searching is done in the same way as camera positioning for

environment model building (described in Section 3.2.4.). The initialization process is outlined in

Figure 3-3. At this stage, the environment model (occupancy grid with associated measurement

uncertainties) is considered empty i.e. no points are known. The first stereo range map is taken and

fused to the model. This is described next.

Assume:
1. Target will be visible by panning/tilting the vision system
2. Located target will result in desired localization accuracy
3. A small region around vehicle is free of obstacles

01 Acquire stereo image

Reposition vision syste: N Is target currently

Sequential pan/tit visible by template
matching?

Y

Localize: get robot coordinate
frame w.r.t. target

B

Figure 3-3: Flowchart of the initialization of environment mapping algorithm

3.2.3. Data modeling and fusion

At any time, the cameras on each mobile robot can only observe a small part of their environment.
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However, measurements obtained from multiple view-points can provide reduced uncertainty,

improved accuracy, and increased tolerance in estimating the location of observed objects [Smith].

To fuse multiple range measurements of a feature by sensors, a statistical model of sensor

uncertainty is employed (see Figure 3-4). Current and previous range sensor measurements and

their uncertainty models can be integrated to give an updated probabilistic geometric model of the

environment.

Sensor Measurements Previous 3-D
Measurements &

Uncertainty

Sensor Uncertainty
Model

Probabilistic
Geomnetrical

World

Updated world model

Figure 3-4: 3-D range measurement fusion with sensor uncertainty

A single range observation of a point (Yz) is modeled as a 3-D Gaussian probability distribution

centered at Y, based on two important observations. First, the use of the mean and covariance of a

probability distribution function is a reasonable form to model sensor data and is a second order

linear approximation [Smith]. This linear approximation corresponds to the use of a Gaussian

(having all higher moments of zero). Second, from the central limit theorem, the sum of a number

of independent variables has a Gaussian distribution regardless of their individual distributions.

The standard deviations along the three axes of the distribution correspond to estimates of the

uncertainty in the range observation along these axes. These standard deviations are a function of

intrinsic sensor parameters (such as camera lens shape accuracy) as well as extrinsic sensor

parameters (such as the distance to the observed point or feature).

The basic stereo triangulation formula for perfectly aligned cameras of epipolar geometry is

shown below [Kelly]:
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Target
point

f f
YL XL R

Left camera b Right camera

Figure 3-5: Stereo imaging error evaluation
From similar triangles we get:

XL XL XR -XR

YL f R

Y(X-XL R (3-1)
f

bYd
f

Uppercase letters signify scene (3D) quantities and lowercase signify image plane coordinates.

Once stereo correspondence is performed, the Y coordinate can be determined from the disparity, d,

of each pixel. Then the X and Z coordinates come from the known unit vector through each pixel

which is given by the camera kinematic model. A quantity of disparity is defined as:

=d b (3-2)
f Y

which then gives:

Y = b (3-3)

Thus if s 66 is the uncertainty in disparity, then the uncertainty in range is:

s,, = Js 6 ,JT (3-4)
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where the jacobian, J, is given by:

J= = -b (3-5)
a5 g2

If the disparity uncertainty is equal to the constant angle subtended by one pixel, then the range

variance goes as the fourth power of the range itself:

s = j 2js y =bsgg (3-6)

and hence, the standard deviation of the range goes with range squared.

For most range sensing systems, this model can be approximated as:

u,= f(extrinsic parameters, intrinsic parameters)

where S is an intrinsic parameter uncertainty constant, Tx,y,z is an extrinsic parameter uncertainty

constant, L is the distance to the feature/environment point, and n is a constant (typically 2).

Provided two observations are drawn from a normal distribution, the observations can be merged

into an improved estimate by multiplying the distributions. Since the result of multiplying two

Gaussian distributions is another Gaussian distribution, the operation is symmetric, associative, and

can be used to combine any number of distributions in any order [Stroupe]. The canonical form of

the Gaussian distribution in n dimensions depends on the standard distributions, ax,y,, a covariance

matrix (C) and the mean (Y ) [Stroupe, Smith]:

A('I )= - exp C-(yJ - )
(27)"2 C 2 )

where C= p x, Y G2o

_9zz,0z Py~z yz yzyz

For un-correlated measured data p=O. The formulation in Equation 3-8 is in the spatial coordinate
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frame. However, all measurements are made in the camera (or sensor) coordinate frame. This

problem is addressed by a transformation of parameters from the observation frame to the spatial

reference frame as follows [Stroupe]:

CtransfonmI - R(-9) T -C -R(-O) (3-9)

where R(O) is the rotation matrix between the two coordinate frames. The angle of the resulting

principal axis can be obtained from the merged covariance matrix:

Cmerged = C(I - C(C, + C2 )') (3-10)

where Ci is the covariance matrix associated with the ith measurement (see Figure 3-6).

Additionally, a translation operation is applied to the result from Equation 3-8, to bring the result

into the spatial reference frame. Determining this transformation matrix is described in section

3.2.5.

Uncertainty of 1st observation of point Uncertainty of 2nd observation of point Combined uncertainly of ist and 2nd observations

1 0 05- - -.. 05 -

0.8 --.... 
0 04 ---.... 

0 4 .... .. .. .. .

0 6 .....- 003 ....... 0 3 . -.. .

40,02 -.....---

0 2, 001 - 0 1

100 100 100
100 100 100

50,5 50 50 50

World Y dimension 0 0 World X dimension World Y dimension 0 0 World X dimension World Y dimension 0 0 World X dimension

Figure 3-6: Sample of merging two Gaussian probability distributions (2-D case)

To contribute to the probabilistic occupancy environment model, all measured points corresponding

to obstacles are merged. That is, all measured points falling in a particular grid voxel contribute to

the error analysis associated with that voxel. Note that grid voxels falling within the field of view of

the vision system that correspond to empty space result in no contribution to the uncertainty model

(since these are not measured). However, these points are tabulated as measured (or known) points.

This will be used to select the pose for the vision system. Obtaining the covariance matrix (C) and

Chapter 3 
55
55Chapter 3



the mean (x-) while accounting for uncertainties in camera motion, is described in Section 3.25.

The data fusion process is summarized in Figure 3-7.

B

Given:
Environment model: probabilistic occupancy geometric environment map (POGEM)
Sensor model: measurement + uncertainty

Acquire stereo image

Coordinate transformation
to align vision data with
global reference frame

For points coinciding with earlier measured points:
Multiply Gaussian covariance matrices

to get a merged covariance matrix

For environment model:
Add all Gaussian distributions that have been

contributed by each measured point

Figure 3-7: Flowchart for data fusion using known vision system motion

3.2.4. Vision system pose selection

A rating function is used to determine the next pose of the camera from which to look at the

unknown environment. The aim is to acquire new information of the environment that would lead

to a more complete environment map. In selecting this new camera pose the following four

constraints are considered:
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(i) Goal configuration is collision free-from the probabilistic geometric environment model,

(x,y,z) locations with Px,y,Z < Pempty = 0.05 (2a) are considered as unoccupied. Such points form

candidate configuration space camera pose coordinates.

(ii) Goal reached by a collision free path-this is a function of the camera manipulator kinematics

and the known environment model.

(iii)Goal configuration should not befarfrom the current one-a Euclidean metric in configuration

space, with individual weights xi on each degree of freedom of the camera pose c, is used to

define the distance moved by the camera (cx = 1 for this thesis):

n Y2
d = Za,(c - c')2 (3-11)

where 5 and 5' are vectors of the new and current camera poses respectively.

(iv)Measurement at the goal configuration should maximize information throughput-Specifically,

the new information (NI) is equal to the expected information of the unknown/partially known

region viewed from the camera pose under consideration. This is based on the known obstacles

from the current environment model, the field of view of the camera (see Figure 3-8) and a

framework for entropic thresholding of information. Shannon showed that a definition of

entropy, similar in form to a corresponding definition in statistical mechanics, can be used to

measure the information gained from the selection of a specific event among an ensemble of

possible events [Shannon] (see Chapter 2). This entropy function, H, can be represented as:

n

H(qj, q2,..., qn ) = ~ q 10g2qk G(3-12)

where qk represents the probability of occurrence for the kth event.

Shannon's emphasis was in describing the information content of 1-D signals. In 2-D the gray level

histogram of an image can be used to define a probability distribution:
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q, = f / N for i =1...Nga (3-13)

where fi is the number of pixels in the image with gray level i, N is the total number of pixels in the

image, and Nray is the number of possible gray levels. With this definition, the entropy of an image

for which all the qi are the same-corresponding to a uniform gray level distribution or maximum

contrast-is a maximum. The less uniform the histogram, the lower the entropy.

Field of View

Camera

-Denh ofView

IE dd-b - b.(NJ)

Figure 3-8: Evaluation of expected new information

It is possible to extend this idea of entropy to a 3-D signal-the environment model. In such an

instance the scene probability distribution for entropy (information) analysis is still given by

Equation 3-13. However, N is the maximum number of voxels visible by the vision system (limited

by the depth of field and the field of view), and fi is the number of voxels in the scene with gray

level i. The equation is evaluated separately for mapped verses unmapped regions.

H)(q)= -nlog 2 q + + og 2 q (3-12b)
k=1 kon k=1 unknown

The possible gray level values are defined as follows. For all unknown/unsampled voxels, a gray

d
value may be defined as: p(j-) = voxel where dmax is the maximum distance from the camera to any

dlM

voxel in the camera field of view (equal to the depth of field). This is a subjective choice and other

similar choices may be conceived. However, a more complex but better form for p(-)... would

be a Markovian chain i.e. p(I) of a particular voxel is the average value of p(-) of the
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neighboring voxels. Intuitively this results in unknown regions that are mapped as averages of

closest known regions. Thus, for all spatial voxels, a gray (probabilistic) occupancy value between

0 and 1 is found. Next the values for p(s) are modified as follows:

V-() Vp(K) <0.5 VM-I Vp(K) <0.5 (-4
stretching: p'(K) = - + scaling: p"(5)= - (3-14)

1 .I V p(5 ) ! 0.5 11-00 -I V p(R) ! 0.5
Lp(X) dvoxe 2

where dvoxei is the Euclidean distance of the voxel from the camera coordinate frame. This process

causes regions with probability densities closer to 0 or 1 (regions of most certainty) to have a

reduced effect on the new information expected. Regions that have a probability density closer to

0.5 (regions of least certainty of occupancy) are "stretched out" in the scene probability distribution,

thus increasing the new expected information associated with those regions. A uniform

discretization of this range of p"(iX) values may be performed to define fi, Nay and N (equation 3-

13). With these definitions, qk (Equation 3-13) is evaluated and the results applied to Equation 3-

12b resulting in a metric for new information (NI). Alternatively (better) a uniform discretization of

p(-) may be used to define fi, Nay and N. To increase the contribution of regions with higher

occupancy uncertainty to the information metric, the term qk log 2 qk of equation 3-12b is

premultiplied by - Pk log 2 Pk -

This definition for NI does behave in an intuitively correct form. For example, for a given

camera pose, if the field of view is occluded, then NI decreases. If every point in the field of view

is known and is empty then NI=0. NI increases as the number of unknowns in the field of view

increases. Further, Equation 3-14a increases the new information expected with regions that are

known with median probabilistic values i.e. values that indicate with least amount of certainty

whether a voxel is occupied or not. On the other hand, regions with high probabilistic values for
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occupancy result in reduced associated information.

Constraints (iii) and (iv) are merged into a rating function (RF):

RF = (NI - K . d" ) . (I - Px,y,z) (3-15)

where K and n are scaling constants. Shorter distances exhibit a higher rating. This rating function

can be evaluated and optimized to find the next camera configuration from which to make future

measurements of the environment. Although this choice of rating function is somewhat arbitrary,

good results were obtained. Additional constraints can also be accommodated.

Given:
A probabilistic occupancy geometric environment map (POGEM)
A binary occupancy geometric environment map (BOGEM)
A C-space map of expanded points w.r.t. robot base

Is point i in N
BOGEM free?

s point i in
PO GEM near the

periphery or near an
obstacle?S U ... ........ .... .... .. ... .......

Y

Evaluate rating function (RF,)
at point i in POGEM

Rank the evaluated RF, values]

S=i+ I

Y

Define robot base path:
From: current base point
To: Camera target point projected up/down
till contact with C-space points

Select best ranked point in list 4

Is the N
selected point

within manipulator
workspace?

uY

Generate C-space map of
expanded points w.r.t. entire
robot and desired arn config.

Is the
- N

un-separated free
C-space?

Set desired manipulator kinematics

Is the
selected point N

within manipulator
workspace

now?

Generate C-space map of
expanded points w.r.t. entire

robot and desired arm config.

Is theN
selected point in

un-separated free
C-space?

Set desired manipulator kinematics

Use C-space map to generate robot path:
(a) complex methods such as tree searches
(b) simple small motion method--straight line

Plan vehicle path with constraints:
1. Path must be in contact with ground
2. Contact must be stable
3. Path must be traversable

V Y
E Path found?

N

Delete current point from list

Figure 3-9: Flowchart for vision system pose selection of environment mapping algorithm
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The vision system pose selection algorithm is outlined in Figure 3-9. Note that the movement of the

vision system may require motions by the mobile robot (in addition to manipulator motions). The

flowchart in figure 3-9 includes a simple path planning approach based on the principle of convex

hulls (see Chapter 4).

3.2.5. Camera motion correction

A final step in environment map building is to identify the motion of the camera. This process

eliminates manipulator positioning errors and vehicle suspension motions, and allows for accurate

data fusion. A single spatial point in the base frame, -j, is related to the image point (ui, vi) by the

4x4 transformation matrix go, (see Figure 3-10).

Spatial point

k(u,v, r
k~u/,vTarget

Camera base y frame
fram 'Ly

Figure 3-10: Relationship of camera and target frames

For motion calibration we need to identify goi:

[ i3]= g * [Ro l1 X3x- r -- (3-16)
ki f 0 1 _

where Rol is the rotational matrix, X is the translation vector, f is the camera focal length, and ki is

a scaling constant. For computational reasons it is more convenient to treat the 9 rotational

components of Rol as independent, rather than a transcedental relation of 3 independent parameters.

Each spatial point gives 3 algebraic equations, but also introduces a new variable, ki-

multiplicative constant to extend the ih image point vector (u,v,f); to the ith spatial point in the

camera coordinate frame. ki may be found from the disparity pair of the stereo images. For n
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points we have:

ku k2 u2  k U r r2 r

kivi k 2v 2  knyn rY ry rfkif k2f k f 01r r(7 r)

1 1 1 1 1 1

This set of linear equations can be readily solved using conventional techniques. A least mean

square error solution is given by:

g01 = u(rTr)'rT (3-18)

The rotation matrix, Rol, and the translation vector, X, of the camera frame with respect to the base

frame are extracted directly from this solution of goi. However, for real measured data and

associated uncertainty, a larger number of spatial points are required to more correctly identify the

geometric transformation matrix, go,. Given the (i+l)st spatial and image point, from Equation 3-18

R.1+ and X j+1 can be obtained. A recursive method can be used to determine the mean and

covariance of X and Rol based on the previous i measurements as follows:

+i+1 K +1
ix+1

x _ iCi + [ ,+1 - X+ I i+1 -$X+
i+1 (3-19)

k(Im) + ''"lkm) + R "
i+1i+1

Cl)-iCR(Im) + [RC'" - (''') RC'') - &1N )

i+1

This essentially maintains a measure on how certain the camera motion is w.r.t. its original

configuration (assuming the original configuration is known very precisely w.r.t. the common

reference frame). To obtain an estimate on the position uncertainty of a measured point in the

environment, this camera pose uncertainty must be accounted for. Let the measurement z be related
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to the state vector (actual point position) Y by a non-linear function, h( 1). The measurement

vector is corrupted by a random noise vector V of known covariance matrix, R.

Z=h(X)+ V (3-20a)

Assume that the measurement of the state vector Y is done multiple times. In terms of the current

measurement, a Jacobian matrix of the measurement relationship evaluated at the current state

estimate is defined as:

Hk = 5hi k (3-20b)

The state (or positition) may then be estimated as follows:

Kk = PkH[+ Rk

Xk+, = Xk +Kk [f -h(k)] (3-20c)

Pk+1 = [- KkH ]k

This estimate is also known as the Extended Kalman Filter which reduces to the standard Kalman

filter described in Section 2.3. for linear h(J-) [Gelb, Kelly]. Using this updated value for both the

measured point Y and the absolute uncertainty P, the measured point may then be merged with the

current envrionment model using equations 3-8 and 3-10. Note that combining noisy measurements

leads to a noisier result. For example, the camera pose uncertainty increases as the number of

camera steps increase. With every new step, the current uncertainty is merged with the previous

uncertainty to get an absolute uncertainty in camera pose. However, by merging redundant

measurements (filtering) leads to a less noisier result (e.g. the environment point measurements).

The issue of obtaining appropriate spatial points is now addressed. Spatial points are obtained

by maintaining a visible set of fiducials that are tracked during map building. As the camera

moves, the fiducials move relative to the camera, eventually moving out of the camera view. This

requires methods to identify and track new fiducials. Fiducials are selected from the probabilistic
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environment model based on three criteria: the degree of certainty with which a sampled point is

known, the visual contrast of the sampled point with its surroundings, and depth contrast of the

sampled point with its surroundings. These are combined into a single fiducial evaluation function:

F.E.F. = f(P(x))+ g(C(u,v))+ h(H(x)) (3-21)

- Fiducial certainty: f(P(x)) ~ P(x)/r, where r is the radius of a sphere centered at the potential

fiducial within which neighboring voxels have decending certainty levels. Outside this sphere

voxel certainty levels increase. Lower values for r suggest that the region surrounding a

potential fiducial is well known-a desirable property.

- Fiducial visual contrast: g(C(u,v)) - contrast (C) * window size (w). Contrast is defined as:

C(u, v) = I(X. )I (3-22)
I,

where I(x) is the 2D image intensity value of the potential fiducial at x, I, is the average

intensity of a window centered at the potential fiducial in the 2D image, and w is the maximum

window size after which the contrast starts to decrease.

- Fiducial depth contrast: h(H(x)) - H(x) * window size (w), where H(x) is the maximum spatial

frequency (from a 3D Fourier transform) at the potential fiducial within a window, and w is the

maximum window size after which the power spectrum (of the 3D Fourier transform) starts

shifting to higher frequencies. To simplify computation, this may be approximated with some

heuristics.

Additionally, a penalty is added if a potential fiducial is too close to other identified fiducials. Using

the identified fiducials, camera motion can be identified. Fiducials can be tracked with simple

methods such as region growing or image disparity correspondence. This algorithm is summarized

in Figure 3-11.
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Figure 3-11: Flowchart for vision system motion identification using scene fiducials

3.3. Results

3.3.1. Simulation studies

Results using the rating function for vision system pose selection to develop a probabilistic model

of a planar environment, are given here. Three simulation tests have been conducted: single

camera/robot modeling of an unstructured environment, two cooperative cameras/robots modeling

of an unstructured environment, and single camera/robot modeling of an indoor environment. Five

camera pose selection methods are compared:

(i) random pose selection-the next camera pose is selected randomly within the known

environment

(ii) sequential/raster pose selection-the next camera pose is selected as the next free location

in the known environment from which measurements have not yet been made

(iii) pose with maximum expected unmapped (new) region-the next camera pose is selected as

the location with the largest expected new region while accounting for known occlusions

(iv) pose with minimum mapped (old) region-the next camera pose is selected as the location

that will yield the smallest known region

(v) pose with maximum expected information
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The rating function (RF) cannot be optimized analytically. In practice, finding an optimum value

for RF requires exhaustive searching though the entire known configuration space-a process that

takes 0(n) time, where n is the number of discrete points in the configuration space. One way to

reduce the search time is to employ a finite set of goal configurations. This set of goal

configurations may be selected in several ways (random, closest to current pose, etc.). For m

possible configurations, this process takes 0(m) time--m is a constant. Thus, while the best goal

configuration would be the one maximizing RF, any configuration with a high value for RF should

suffice. Such a configuration can be found with reasonable effort.

Figure 3-12 shows an unstructured environment (100m x 100m) with occlusions (black) to

be mapped/modeled. Figure 3-13 shows the fraction of the envrionment mapped and the net

distance moved by the vision system for the five mapping methods, using a single mobile vision

system (with 900 field of view, 15m depth of field). The energy consumption by the system is

proportional to the net distance moved by the vision system. Hence it is desirable to have large

fraction of the environment mapped with small net displacements. These results show the

effectiveness of the information theroretic approach to vision system pose selection in environment

modeling. Figure 3-14 shows the path of the vision system for mapping/modeling methods 1 and 5.

7 0 00 0 0 70 80 0 100

Figure 3-12: Unstructured planar environment
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Figure 3-13: Results of single vision system modeling an unknown environment
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(a) Random walk pose selection (b) Maximum informtion pose selection
Figure 3-14: Single vision system path

(a) Random walk pose selection (b) Maximum informtion pose selection
Figure 3-15: Single vision system area mapped (gray=empty space, black=obstacle,

white=unknown)

Figure 3-16 shows the fraction of the envrionment mapped and the net distance moved by the vision

system for the five mapping methods, using two cooperating mobile vision systems (with 750 field

of view, 10m depth of field). These results again show the effectiveness of the information

theroretic approach to vision system pose selection in environment modeling. Figure 3-17 shows

the path of the vision system for mapping/modeling methods 1 and 5.
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Figure 3-16: Results of two vision systems modeling an unknown environment
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Figure 3-21: Single vision system path

3.3.2. Experimental studies

The experimental platform has been briefly described in Chapter 2 and in more detail in Appendix

D. Figure 3-22 shows a single vision system (stereo pair) mounted on a mobile manipulator.

Mapping is done by breaking up the world into a grid of voxels of specified resolution. All

measured points falling in a particular voxel, contribute to the error analysis associated with that
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voxel. Voxels corresponding to empty space falling in the field of view of the vision system are

tabulated as known, but with no contribution to the uncertainty model. The desired voxel resolution

is a function of the task. For this test the resolution is set at 1mm. Figure 3-23 shows the

identification and tracking of scene fiducials using the method described in section 3.2.5. Figure 3-

24 shows the accumulated r.m.s. translation error as a function of scan step while tracking fiducials

at an average distance from the cameras of 1100mm and 350mm. Note that redundancy in scene

fiducials help reduce this error dramatically. This error is directly mapped into the uncertainty of

measurements of the environment. Figure 3-25 shows the number of points mapped in the

environment for two pose selection methods: sequential/raster scan and maximum information

based pose selection. Once again, the effectiveness of the information based pose selection process

is seen. Figures 3-26 and 3-27 show the regions mapped using sequential camera pose selection and

maximum information based camera pose selection.

Figure 3-22: Experimental mobile vision system modeling an unstructured environment
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Identification and tracking of 6 fiducials (r--tracked with previous image, o--
tracked with next image)

35.

(a) Avg. fiducial distance 1100mm

( A fiducial ditac 35.0 m

(b) Avg. fiducial distance 350mm
Figure 3-24: Accumulated r.m.s. translation error of vision system

Chapter 3 
74

Figure:

I --I

----4

12------ J-----
Io - .-r--- -r-

-7 -

T{

- - i -

--------

-/ - --- ---

'- -- ------ -

"'

3-23:

Chapter 3 74



x 10

0 5 10 15 20 25
Camera scan nunber

30 35 40 45

Figure 3-25: Number of mapped environment points as a function of scan number
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(a) patched left-eye images (b) environment point cloud
Figure 3-26: Environment mapped/modeled-Sequential camera pose selection
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Figure 3-27: Environment mapped/modeled-Maximum information based camera pose

selection

3.4. Conclusions

In field environments it is often not possible to provide robotic teams with detailed a priori

environment and task models. In such unstructured environments, cooperating robots will need to

create an accurate 3-D geometric model. However, uncertainties in robot locations and sensing

limitations/occlusions make this difficult. A new algorithm based on iterative sensor planning and

sensor redundancy is proposed to build a map of the environment for mobile robots that have

articulated sensors. This algorithm is unique in that it uses a metric of the quality of information

previously obtained by the sensors to find new viewing positions for the cameras. Simulations and

experiments show promising results.
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Chapter

4
Task Modeling

4.1.Introduction

Once the environment model is created, the robots need to position their sensors in a task

directed optimal way. That is, for a given task requiring visual servo control, there is an associated

target to observe. For example, in assembly tasks, the target may be a single point/region in the

environment, a distance between two objects, etc. As before, a number of problems can make this

non-trivial. These include the uncertainty of the task in the environment, location and orientation

uncertainty in the individual robots, and occlusions (due to obstacles, work piece, other robots). If

the systems are equipped with cameras mounted on articulated mounts, intelligent planning of the

camera motion can alleviate some of these problems.

This chapter describes an algorithm for task directed optimal camera placement for cooperative

robots in field environments. Using the environment model created by the algorithm in Chapter 3,

the individual robots are positioned "optimally" with respect to the target. This process is described

in this chapter. It is assumed that the system consists of two (or more) mobile robots working in an

unknown environment (such as constructing a planetary structure-see Figure 4-1). Each has a 3D

vision system mounted on an articulated arm. Sensing and sensor placement is limited, resulting in

occlusions and uncertainties. The objective is to efficiently find poses for each camera system to

optimally view the target. The algorithm iterates on the known environment model, accounting for

object motions, occlusions, and camera characteristics.

Fundamentally, this is analogous to the problem of a human hanging a clock in a room. First, a
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map of the room (including the target-the clock hook) must be generated. Next, appropriate

eye/head/body motions must be generated to visually guide the clock into place. The first part of

this problem-environment modeling-is addressed in Chapter 3. This chapter addresses the

second part of the problem-task directed appropriate eye positioning.

Inter-system
communication

Independently
mobile camera

Independently (occluded)
Mobile vehicles mobile camera

with suspensions

Figure 4-1: Cooperative assembly by robots

4.2.Algorithm Description

4.2.1. Overview

Figure 4-2 outlines the map building and camera placement algorithm. The algorithm consists of

two parts. In the first part, the articulated cameras cooperatively scan the region around a target

generating a 3D geometric model. This allows the robots to locate themselves and the obstacles in

the target reference frame (see Chapter 3). The second part uses this model to find an optimum

pose for the multiple camera systems to view the target(s). As described in Chapter 3, the 3D

environment map is modeled as a discretized probabilistic occupancy grid. Every voxel in the map

has a value for probability-of-occupancy that ranges from 0 (empty) to 1 (occupied). A value of 0.5

indicates maximum uncertainty in occupancy of the voxel. Using this environment map, and a task

description, the algorithm finds an optimum vision system pose with which to view the targets. This

is repeated for every vision system available for the task.

For task directed optimal camera placement, there are four primary constraints. These are depth
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of field (DOF), target resolution, target field visibility (TFV) and target angular visibility (TAV).

Also physical mobility constraints of the sensor placement mechanism must not be violated. These

four constraints will be discussed in detail in the following sections. A rating function weighs the

relative importance of these constraints. Optimum sensor placement is accomplished by optimizing

this rating function over the environment model.

Examples of tasks include: monitoring a specific target (e.g. an insertion site), guiding the

insertion or movement of an object, and other visual servo control operations. For such tasks the

visual targets may include: a point/area in the environment (e.g. a hole in a wall), a distance

between two points (e.g. an object corner and the insertion site corner), etc. In this chapter, the task

is to monitor a specific target, and is demonstrated using simulations and experiments. In the

following chapter, a cooperative insertion task is demonstrated experimentally, where the target is

the distance between the object and the insertion site.

TStart

Initialize robot systems

Move system into desired state Stereo vision data fusion

Seec nw iio sstm ofiurtin N End crtera:

Select new vision system configratn N Is expanse and resolution sufficient Select task directed optimal camera pose(for a given robot) for takrqirmnsffl 
for task requirementsu?

(a) Outline of model building and placement algorithm
3D world geometric map

Rating function definition Optimal Camera Placement Optimum pose
- w.r.t. target

Target location - kinematic constraints Rating function performance

Camera properties

(b) Block diagram for optimal camera placement
Figure 4-2: Task directed optimal camera placement
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4.2.2. Algorithm initialization and target identification

As in the environment modeling algorithm, the first step of the task modeling and camera

placement algorithm is to identify the targets. This establishes a common reference frame for all

further mapping and camera placement operations. For the purposes of this chapter, simple circular

holes in a work-piece were used as targets. Although the choice of targets is arbitrary, it is

important to distinguish them clearly and consistently. A modified Hough transform is used to

identify the circular targets. This process is described in detail in Chapter 5.

4.2.3. Optimum camera pose identification

The approach to finding the optimal camera position is described here. Given the geometric

environment model with its uncertainties, an optimum pose for a camera to view a given target can

be developed. Based on the probabilistic geometric world map, (x,y,z) locations with Px,y,z < 0.05

are considered as unoccupied. Such points form candidate configuration space camera pose

coordinates. A rating function (RF) is defined, and optimized over the known configuration space

for the new camera pose. This rating function is defined as:

RF(x, y, z) = DOFF -ResF -TFVF -TAVF yz (4-1)

where DOFu, ResRu, TFVRF and TAVu are the contributions to the rating function due to the

depth of field, resolution of the target, target field visibility and target angular visibility

respectively, from the camera position (x,y,z). These contributions are defined in the following

sections. cx, P, y, 6 are constants (set to unity for the experiments conducted in this chapter). It is

assumed that the camera normal vector (i.e. principal axis of the lens system) points directly at the

target. Camera position improves as the rating function value increases.

4.2.3.1.Depth of field (DOF)

The DOF constraint of a camera system is defined as the maximum and minimum distance from the
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camera-lens system between which all feature points will be sufficiently in focus. This tolerance is

based on the lens aperature effects as well as the flexibility allowed by the image processing

algorithms (such as range finding, feature identification, etc.). The value of DOFR=O if the feature

point is outside the depth of field, and DOFR=1 if the feature point is inside the depth of field.

More complex non-linear functions may be used here that quantify how much a given feature point

is in focus. However, this simple binary function gives good solutions.

4.2.3.2.Resolution of target

The resolution of the target along an axis from the given position of the camera is simply:

2d tan(a/2) I
R = and Res =- (4-2)

n R

where d is the distance of the camera from the target, ct is the camera field of view and n is the

number of pixels along the detector axis. The contribution to the rating function from the resolution

is given by ResRj.

4.2.3.3.Target field visibility

The target field visibility (TFVRF) at any point in space, is defined as the largest angle of excursion

the camera can traverse around a circle centered about the target, before the target is occluded. The

target field visibility must account for occlusions in the workspace and the finite size of the target.

Finding the target field visibility (for finite sized targets) in a 3-D space while accounting for

occlusions can be very difficult and time consuming, growing exponentially with the number of

occlusions. To reduce this difficulty, a method of occlusion expansion using convex hulls is

proposed. In this process the target is reduced to a single mathematical point, while all potential

occlusions are appropriately expanded in size. As such, if the target point is now visible from a

given location, then it is guaranteed that the entire physical target will also be visible from that

location. This process consists of three steps:
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(i) Occluding object expansion and target reduction

The finite sized target is reduced to a single mathematical point while the occlusions are expanded.

Determining the field visibility of the target from any given point is thus simplified. Figure 4-3

outlines the idea of object expansion in 2-D. A coordinate frame is attached to the target at a

reference point. This point is now placed at every vertex of the occluding object and the target

projected accordingly. The new vertices of the target/feature are computed. This new set of vertices

forms the expanded object. This is known as the Minkowski sum [O'Rourke].

y A

x N

(a) original target (feature) and occlusion

Convex hull
of obstruction

(b) reduced target (feature) and expanded occlusion

Figure 4-3: Target reduction and occlusion expansion

(ii) Convex hulls of the expanded objects

The expanded object is simplified to occlusion region defined by the convex hull of the expanded
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object. The convex hull is the minimum set of points from the Minkowski sum of the expanded

object, such that all other points of the expanded object fall "inside" this set. See Figure 4-3(b).

(iii)Projection of expanded object

The convex hull of the expanded occlusion is now projected to a sphere centered on the reduced

target. The radius of the sphere is defined as the distance from the camera to the target. This

projection is seen in Figure 4-4(a) for a 2-D case and Figure 4-4(b) for a 3-D case. The TFVRF can

be directly computed from these projections, as demostrated for a 2-D case in Figure 4-5.

Occluded
region

Occluded z
region

(a) Projection to circle (2D) (b) Projection to sphere (3-D)
Figure 4-4: Projection of expanded object

(a) case 1 (b) case 2 (c) case 3

Figure 4-5: Computing the TFVRF (shaded regions)

A difference exists between the actual occluded region and the one found using the expanded

object. The latter is larger than or equal to the former. This difference is seen more clearly in

Figure 4-6. The occluded region in Figure 4-6(a) is given by a 2-ccl and in Figure 4-6(b) is given by

P2-01. As the distance between the occlusion and the target increase then X2-+@2 and a-I-+P 1.
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However, visibility of the target is still guaranteed using the method of convex hulls.

.......................................... .................................... ......................................................

vJtrr

.7

(a) Original object (b) Expanded object

Figure 4-6: Difference between true and expanded object occluded regions

4.2.3.4.Target angular visibility

Target angular visibility is defined as the dot product of the camera image normal vector and the

target normal vector, or the cosine of the inter-normal angle, P. Essentially, this is the angle at

which the target is viewed. Additionally, for most practical cases, the target may only be visible

from one side. In such a situation, the contribution to the rating function due to target angular

visibility is given by:

cosp for-> >-
TAV - 2 2 (4-3)

R F - 0 fo r 8 ! /T o r 8 < - 7
2 2

Figure 4-7 shows the TAVRF for a hole viewed at three different angles. It is clear from this that

viewing the target at certain angles may be preferred over others.
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(a) Case 1 (b) Case 2 (c) Case 3

Figure 4-7: Target angular visibility

4.2.3.5.Alternate/secondary targets

In the representative scenarios presented in section 4.2.1, where the target may be a point/area in the

environment or a distance between two points, motion of the cooperating robot systems could lead

to occlusions of the target. Even with placement optimization, it is possible that the target would

not be sufficiently visible to perform the task (e.g. the target angular visibility may be too low).

One way to resolve this problem is to identify additional targets, and evaluate the rating function for

these secondary targets. A secondary target is a feature whose geometric relationship to the

original or primary target is known (within defined tolerances).

The above rating function is readily modified to evaluate all known secondary targets. This

rating function reflects uncertainty in the geometric relationship between the secondary and primary

targets (STerror) with modification to RESRF:

2d tana/)_
R = an(a/2) + ST,,., and Res RF (44)

n R

In such a situation, a secondary target may be selected even when the primary target is not

completely occluded. For example, a hole viewed at an oblique angle (primary target) may be less

desirable to view than a hole viewed normally (secondary target).

4.2.3.6 Camera motion identification

Once an optimum pose for the vision system is obtained the physical motion of the cameras to the

S0*

90*VU-
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desired pose is achieved using the method described in Section 3.2.5.

4.3.Results

4.3.1. Simulation

In this chapter the task is to monitor a specific target in the environment. The algorithm is first

tested on a 2-D simulated environment. Results using the RF to define an optimal camera pose

given the probabilistic geometric world map are shown here. Regions where the probability of

occlusion < 0.05 are considered empty, and form candidates for optimal camera placement

locations. The rating function (RF) cannot be optimized analytically. In practice, finding an

optimum value for RF requires exhaustive searching though the known configuration space-a

process that takes 0(n) time, where n is the number of discrete points in the configuration space.

Methods to reduce the search time include: (i) increasing the environment grid "coarseness", (ii)

bounding the evaluation of RF by distance to the target, (iii) employ a finite random selection of

goal configurations to evaluate. Thus, while the best goal configuration would be the one

maximizing RF, any configuration with a high value for RF will suffice. Such a configuration can

be found with reasonable effort.

In the first simulation study, a planar environment is set up (see Figure 4-8a). The primary

target center is located at world coordinate (50,50). A secondary target is located at world

coordinate (50,75). Figure 4-8b shows the evaluation of the RF (Equation 4-1) over the entire

environment, for two positions of a potential occlusion. It is assumed that the environment is known

in both instances. Accounting for actual motions of objects will be demonstrated later. Note that the

RF value increases as the pixel intensity increases i.e. the darker the intensity the better the camera

location. In the first instance, the optimum location is found by viewing the primary target.

However, in the second instance, the optimum location is found by viewing the secondary target.
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Figure 4-8: Optimal camera placement

For most practical situations, it is expected that there would be movement of some objects in the

environment, since often the task would involve motions by one or more of the cooperating robots.

For example, Figure 4-9 shows the cooperative assembly of a panel into a mating slot. Here, there is

movement by the panel and the robot(s) carrying the panel. Clearly, the optimum camera location
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would change as a function of the panel position. This is analogous to a human mounting a clock or

picture frame on a wall. As the object is brought toward the target (e.g. a hook), the human

repositions his or her head to continue monitoring the approach of the object to the target.

Camera motion

Model
communication

Panel motion

Figure 4-9: Cooperative assembly concept

For cooperative robots, it is assumed that moving objects are well known (e.g. CAD models

are given). However, the measured uncertainty associated with their position must be accounted for.

As described in Chapter 3, for every mapped point in the environment, there is an associated

uncertainty. Rather than remap the environment every time an object (with a known model) moves,

the algorithm simply updates the enrionment model using the object CAD model. This is achieved

as follows.

1. Grid points/voxels in the environment model belonging to the moving object are identified. This

is achieved using conventional image processing approaches such as template matching, Hough

transforms, etc [Lara]. The CAD model of the object is fit to the mapped points. This is similar

(in principle) to the method described in section 3.2.5 using Equations 3-16, 3-17 and 3-18.

These grid points are removed from the environment model and assumed to be empty measured
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space (see Section 3.2.3).

2. Points in the current field of view of the vision system corresponding to the moving object are

identified. The identified points are fit to the object CAD model (as in step 1).

3. The current position of the moving object is identified. This is achieved using the known vision

system pose and the identified object pose relative to the vision system.

4. Measurements from step 2 and the object CAD model are used to update the environment model

(see section 3.2.3.)

The optimal positioning of a vision system in the presence of moving objects is addressed in the

second simulation study. Figure 4-10(a) shows a planar simulated environment with obstacles.

Primary and secondary targets are set up. Figure 4-10(b) shows the probabilistic occupancy

environment model for this scenario. Higher intensity values correspond to greater certainty in

occupancy. Note that if the number of scan steps done in modeling the environment are increased,

there would be less uncertainty in occupancy values.

Real World
100 -rmary 100 Probabilistic Geometric World Map
90 arg 90 Primary

70 W 70
i~iSecondary 70

60 rget seconay

60 (n- 5

30 30

20 2*

10 1

400

0 20 40 60 80 100 0 20 40 60 60 100
World X dimension World X dimension

(a) simulated environment (b) environment model

Figure 4-10: Simulated planar environment

Figure 4-11 shows a few steps in the selection of optimum placement of a vision system for fixed

target monitoring in the presence of a moving object (with known CAD model). Initially (Figure 4-
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1 a) the moving object is far enough away so that the vision system can look directly at the primary

target. As the moving object approaches the primary target (Figure 4-1 1b), the algorithm repositions

the vision system to avoid making contact with the target and other occlusions. Finally, the object is

too close to the primary target making it more effective for the vision system to monitor the

secondary target, rather than the primary target (Figure 4-11 c). Note, the vision system is actually

modeled as a single point located at the front principal node of the lens system of Figure 4-11.
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Figure 4-11: Optimal

Table 4-1 presents the results

The vision system is used to
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camera placement with moving object (known CAD model)

of simulating a similar scenario. However, here the task is modified.

guide the object to the goal (insertion site). Hence, the target is the
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distance between the object and the goal. The task is successful if the object can be visually guided

to the goal within the defined tolerances. The simulation is carried out 300 times and compares the

approach developed in this chapter with two other methods: biased random placement (allowing for

re-placement during task execution with some heuristics) and biased random fixed placement (not

allowing for re-placement during task execution). This is experimentally demonstrated in Chapter 5.

Table 4-1: Results of changing task difficulty, occlusion density and task execution success

300 tests per scenario Occlusion Density 1 (5%) Occlusion De sity 2 (20%) Occlusion de sity (35%)
Without With Without With Without With
secondary secondary secondary secondary secondary secondary
target target target target target target

Task Optimal 100 100 76 95 13 25
difficulty: camera re-
easy-+20% placement
tolerance Success (%)

Random 51 63 18 31 5 10
camera re-
placement
Success (%)
Random 45 58 16 28 5 9
camera
placement
Success (%)

Task Optimal 99 100 63 86 10 18
difficulty: camera re-
medium- placement
10% Success (%)
tolerance Random 30 37 11 18 3 6

camera re-
placement
Success (%)
Random 23 30 8 15 3 4
camera
placement
Success (%)

Task Optimal 97 99 30 52 3 7
difficulty: camera re-
hard-+1 % placement
tolerance Success (%)

Random 3 4 1 2 <<1 1
camera re-
placement
Success (%)
Random 1 1 <<1 <<1 <<1 <<1
camera
placement
Success (%)
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Note that as task difficulty increases, the optimal camera placement algorithm continues to perform

well. The influence of secondary targets is seen as task difficulty or occlusion density increases.

4.3.2. Experiments

Figure 4-12(a) shows an arrangement of simple block components. The target consists of a

workpiece with holes. For this demonstration, an accurate 3-D CAD model with added uncertainty

of the arrangement is provided to the planning algorithm (see Figure 4-12(b)). The optimal camera

placement is found by optimizing RF in 3-D. For the arrangement shown, this position is (r, 0, 4) =

(5", 0, it/3), where r is the radial distance, 0 is azimuth angle, 4 is the elevation angle-all measured

with respect to the primary target coordinate frame. Note that the camera principal axis always

points directly to the origin of the target (center of the hole). Figure 4-13 shows the camera view of

the target from this point.

(a) Environment setup (b) CAD model

Figure 4-12: Experimental test
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Figure 4-13: Experimental test- Camera view of target from optimum pose

4.4.Conclusions

In field environments, it is often not possible to provide robotic teams with detailed a priori

environment and task models. In such unstructured environments, cooperating robots will need to

create a 3-D geometric model positioning their sensors in a task directed optimal way. A new

algorithm based on iterative sensor planning and sensor redundancy is proposed. This algorithm

overcomes problems due to camera occlusions from fixed poses, to build the 3-D environment

model, and to position sensors. The environment modeling stage of the algorithm was developed in

detail in the previous chapter. This chapter addresses the process of optimal camera placement,

given the developed environment model. This algorithm is based on iterative sensor planning and

exploiting the sensor redundancy of cooperative robotic systems. A rating function is developed

and optimized to find the most suitable pose to view the target. Simulations and experiments show

promising results.
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Chapter

5

Cooperative Task Execution

5.1. Problem Overview

In chapter 4 a method to position a vision system in a task directed optimal way, was presented.

Simulation and experimental results show the effectiveness of this algorithm for single point

monitoring. Simulation results were also presented for the task of guiding an object to a goal. An

example of such a task would be the insertion of a computer card into a mating slot in a field

environment-a typical maintenance task. In this chapter, an experimental demonstration of this

task using two mobile field robots is presented (see Figure 5-1).

Figure 5-1: Cooperative insertion task layout
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The target for this task is the distance between the object and insertion site. This can be viewed

in Figures 5-2 and 5-3.

Insertion
module

Robot
arm

Insertion
slot
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Figure 5-2: Cooperative task target model - representative problem
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target
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Figure 5-3: Cooperative task target model - extrapolation of true viewing target
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Figure 5-4: Cooperative task target model - relating the coordinate frames of the

cooperating robots

The slave robot manipulates the insertion object and the master robot visually guides the slave

robot. To determine the required motion by the slave robot, the two robot coordinate frames must

be related. In the camera frame the rotational angles (Euler angles) for any set of cartesian axes

(formed by 3 points set at the origin and one along each of two principle directions) with respect

to the camera frame (as shown in figure 5-4) is given by:

R = tan{ Py 2J
P - P

RY = tan-I P 2 (5-1)
+p P2 _ p2 +p2

RX = tan-{ 3

P - P3,2

The transformation matrix from the vision system (Rv) to the slave robot end-effector frame
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(RT) is given by:

RT -RT -R PR
AVT=[ T  

R R= RJ (5-2)
0 1

From the slave robot arm kinematics, a transformation matrix from the arm base (Rs) to the arm

end-effector (RT) is given as:

ATS = Ts Fs] (5-3)

Thus, in the camera frame (Rv), the required object motion to reach the goal is given by:

Required Translation = PO, - PR,

Rx - RxR (5-4)

Required Rotation = R - RRT =[RE -R I
Rz - Rz0 RT_

Since the transformation of the camera frame (Rv) and the slave robot base frame (Rs) can be

inferred from AVT and ATS, Equation 5-4 can be transformed in the robot base frame (Rs), giving

the required motions to get the object to the goal. Note that to achieve the required object

motions, both vehicle and arm motions are required. Since vehicle motions are not known

exactly, the vision guide acts in a classical visual servo control mode.

5.2. Experimental Setup

For the experimental demonstration of the computer card-to-insertion slot task, certain

assumptions/simplifications have been made:

1. The insertion problem is assumed to be planar

2. Since motions are relatively slow, dynamic effects are assumed to be negligible. However,

inclinometer measurements of vehicle pitch and roll are not negated. These dynamic effects

could not be negated if (a) the vision system is looping at a much slower rate than servo loop,

Chapter 5 97



(b) task requirements are high (tolerances are tight), and (c) task needs to be done fast.

3. Optimal re-positing of the vision system is assumed to be within the kinematic limitations of

the manipulator with linear (straight line) vehicle base motions

4. An environment model consisting primarily of the computer card and insertion site is

generated using the method proposed in Chapter 3, and assumed to be sufficient (optimal

camera poses and a neighborhood of these poses are visible and free of natural occlusions)

These assumptions do not violate the principles and algorithms presented for optimal camera

placement and cooperative task execution. The assumptions have been included here due to

hardware limitations (kinematic limitations of the rovers and lack of all necessary sensors).

The experimental system was introduced in Chapter 2 with more details in Appendix D.

The computer card and the inserTion site each have two clear circular markers (see Figure 5-5).

Identification of these markers using grayscale cameras is presented in Section 5.3. As described

in Chapter 4, this choice of marker type is arbitrary, but is a convenient choice based on the

vision hardware.

Figure 5-5: White circular markers to locate object and insertion site

Task execution consists of two stages: goal approach and object insertion. In the first

stage, goal approach is accomplished using visual guidance, as described before. In the second
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stage, object insertion is accomplished using force feedback models developed in Appendix A.

The model-based sensor fusion for these two stages are shown schematically in Figure 5-6.
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Figure 5-6: Model based sensor fusion from a sensor suite

5.3. Marker Identification

To detect the circular markers (or holes), an algorithm capable of recognizing circles and

computing the coordinates of the circle centers in grayscale 2-D images is needed. This is

described here. Two steps are required to obtain circle center coordinates: image reduction to

black and white, and a Hough transform. In the first step, the image is reduced to a black and
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white image of edge points. The black points represent candidate points that may lie along the

circumference of a circle. This is accomplished in a sequence of simple image processing steps

with the only assumption that points lying in the circular markers (or holes) tend to differ

significantly in intensity than points not lying in markers. This sequence of steps is generated by

experimentation and proves to be robust to significant lighting variation and image noise. These

steps are outlined as follows:

* Process the image through a histogram equalization filter: this helps reduce variations due to

illumination conditions (for simplicity, in this work illumination was not varied).

* Threshold the image to obtain a black and white image: the threshold value is selected based

on the expected value of the pixels located in the circular holes. Clearly, this value will

change depending on illumination conditions. However, the histogram equalization step

reduces the variation in images due to this variable.

* Image is processed with a Laplacian filter: this edge detection filter is defined as the sum of

second derivatives, or in 2-D this is given as:

V2(XY)= 2 + a2 (5-5)

This can be discretized based on second central differences. Considering only first order

effects, we get the following 3x3 mask for the 2-D discrete Laplace filter:

0 1 0

1 -4 1 (5-6)
0 1 0

This steps identifies pixels that tend to belong to an edge (the rim of the marker).
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* Image filtered with a 3x3 constant low pass filter: this effectively blurs the image, reducing

image noise. This tends to give "well behaved" image histograms, with a single clean peak

(see Figure 5-7).
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(a) raw image (see Figure 5-8(a)) (b) processed image

Figure 5-7: Histogram of images

* Threshold the image to obtain a black and white image: the threshold value is empirically

selected as histogrampeak value - 5. As an example, Figure 5-8(b) shows the reduction of

the image in Figure 5-8(a).

G-

C'

0

0 r

(a) Original image (b) Reduced (black and white) image

Figure 5-8: Example of image reduction process
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In the second step, the coordinates of the holes are found using a Tracking Hough transform

(THT), which is an extension the general Hough transform [Lara]. Only black pixels are

considered here and are referred to as feature points . Three feature points are selected at

random. The circle radius and center are defined by 3 points.

Image
coordinatesU

0 - (u1,vI)

Line I

0 ' (u 2 ,v 2)

. Line 2

(U3,v3)

Figure

From Figure 5-9, we can solve for

5-9: Circle defined by three points

(x,y), the circle center, by solving:

- - - -M

y -M Y2 2 - 2x2

(5-7)

where:

= U2 -U 1

- V2 + V1

- U2 + U1

2

V2 + V1

2

Additionally, we can solve for r (circle radius) and 0

M2 = -

- V3 + V2

__ U 3 +U 2  (5-8)
2

- V3 + V2

2

(angle of intersecting segment bisectors) as:
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3

(x - u;)2 + (y -vi )2

rradius3 
(5-9)

0 = aCOS a2  where a, V2 +V] a2 V 3 +V 2

a a +U2 -U) +U3 -U

To increase the likelihood that the three points lie on a circle of interest, certain restrictions are

placed on feature point selection:

* The first point is chosen at random

* The second point is selected at a distance < D from the first point; where D is the projected

diameter of the hole onto the image

* The third point is selected at a distance < D from the first and second point. Additionally, the

angle generated by the intersecting segment bisectors (of segments formed by points 1 & 2

and 2 & 3) > dO. This ensures that the three points do not lie along or almost along a straight

line. dO is chosen empirically to be 7/6.

Once a set of three points is identified to lie along a circle, they are removed from the list of

feature points. The process is continued until all feature points have been processed. Finally, a

circle is identified if a substantial percentage of its circumference has been identified

(empirically chosen as >35%). To improve the accuracy of the center coordinates, a standard

region growing procedure is applied at the identified center coordinates. The new pair of center

coordinates is defined as the centroid of the "grown" region. A final result is shown in Figure 5-

10. This entire process takes approximately 0.3 seconds on a Pentium 166 MHz system. Hence

the visual loop runs at about 3-4 Hz, whereas the servo control loop runs at about 100 Hz.

Commanded motions must account for this for effective visual servo control. Although faster

computers may easily be employed, markers may be identified more quickly using color cameras
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and palette matching methods.

Figure 5-10: Identification of marker ( centermost hole with 0.25" diameter)

5.4. Task Execution Results

Goal approach is performed using the optimal camera placement algorithm and compared with

random camera placement. Note that some heuristics are applied to the random camera

placement method to keep camera poses bounded to reasonable locations. The insertion object

(computer card) is 4.25" wide. The experiments are carried out for three different task difficulty

levels: low difficulty (-18% object width tolerance in insertion site), medium difficulty (~6%

object width tolerance in insertion site) and high tolerance (-3% object width tolerance in

insertion site). Table 5-1 presents the results of the two methods for 10 attempts at the three

different task difficulty levels. Figure 5-11 shows four steps in the task execution process using

optimal camera placement. Figure 5-12 shows the stereo camera view during an approach and

object-insertion site contact step. Note that the vision system repositions during task execution.

However, these motions are relatively small for this scenario. Figures 5-13 and 5-14 show the

object pose convergence using optimal placement (successful) verses random placement

(unsuccessful) for a high difficulty task example. Also shown are the base sensed forces in the

plane of motion after object-insertion site contact is made. At this point, the force-feedback
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insertion method developed in Appendix A attempts to guide the object into the insertion slot. It

is seen that with good initial object-insertion site alignment achieved using optimal camera

placement, this method works well (i.e. it results in low interaction forces).

Table 5-1: Task execution success for varying task difficulty levels
Optimal camera placement Random placement

Easy 10/10 7/10
(insertion site width: 5.0")
Medium 10/10 4/10
(insertion site width: 4.5")
Hard 9/10 2/10
(insertion site width: 4.375")

fianration (b) approach

(c) lirst contact (d) insertion complete

Figure 5-11: Intermediate steps during task execution (success)
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(a) approach (left and right images)

(b) almost contact (left and right images)

(c) first contact (left and right images)

Figure 5-12: Camera view (stereo pairs)
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Figure 5-14: Random camera placement-unsuccessful task execution

Chapter 5 
107

I

S

------- --- ------ ------- - --- ---- -- -----

Desired
Contact convergence

- -level

--- ----- Desired
convergence
level

Contact

A

Desired --- ------- -- -
convergence --- - ------

--- level

-- o -t-a t-- - ----

C~---------------------

Chapter 5 107



5.5. Conclusions

This chapter addressed the process of task modeling with optimal camera placement on an

experimental platform, given the developed environment model. The task here is to

cooperatively insert an object (a computer card) in an insertion site (representing a section of a

solar panel array) in an unstructured environment-known as a cooperative guiding task. The

algorithm is developed in Chapter 4 where simulations for the cooperative guiding task show

promising results. Here, experiments compare task execution using the task directed optimal

camera placement algorithm with random camera placement. These show high improvements in

performance, especially as task difficulty increases.
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Chapter

6
Conclusions and Future Work

6.1. Contributions of This Thesis

The performance of cooperative robots in field environments is limited by model

uncertainties and on-board sensor limitations. This thesis has developed sensing and estimation

algorithms to enable multiple mobile robots to compensate for model uncertainties and

successfully perform interacting cooperative tasks in highly unstructured/unknown field

environments using optimal information gathering methods.

In Chapter 2, an algorithm based on adaptive excitation of vehicle dynamics to enable

mobile robots in field environments to efficiently estimate their dynamic parameters, including

the mass, location of center of gravity, inertia, base compliance and damping, was presented. The

algorithm used an onboard robotic arm to generate base motions, which were measured with

simple onboard sensors, and fit to a physical model. A mutual information theoretic basis for a

metric on parameter identification was developed. This metric provided a measure of how well

the value of a given parameter was known. Using this metric, the arm trajectory was refined.

Simulations and experimental results show the effectiveness of this algorithm.

Chapter 3 addressed the problem of incomplete or unknown environment models. In field

environments it is often not possible to provide robotic teams with detailed a priori environment

and task models. In such unstructured environments, cooperating robots need to create a
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dimensionally accurate 3-D geometric model by performing appropriate sensor actions.

However, uncertainties in robot locations and sensing limitations/occlusions make this difficult.

A new algorithm based on iterative sensor planning and sensor redundancy was presented to

build a geometrically consistent dimensional map of the environment for mobile robots that have

articulated sensors. This algorithm is unique in that it used a metric of the quality of information

previously obtained by the sensors to find new viewing positions for the cameras. Simulations

and experiments showed very promising results.

Chapter 4 addressed the problem of task modeling using the process of camera placement

in a task directed optimal way, given the developed environment model. The algorithm was

again based on iterative sensor planning and exploiting sensor redundancy of cooperative robotic

systems. The algorithm used a priori task and target definitions to formulate the placement plan.

A rating function was developed and optimized to find the most suitable pose to view the target.

Although, the algorithm was applied to the optimal placement of a single camera pair, it is

directly applicable to multiple systems. Simulations and experiments showed promising results.

Chapter 5 combines the algorithms developed in this thesis to execute a cooperative insertion

task in an unstructured environment. This was done on an experimental platform consisting of

two mobile fields robots (also developed for this work) using a model predictive control

architecture (developed in Appendix A).

6.2. Suggestions for Future Work

This thesis has shown that mobile field robots, working in highly unstructured and

unknown environments, can compensate for sensing limitations and for uncertainties in the

environment, task, and robot by cooperatively developing appropriate robot dynamic models,

environment models and task models. These models are then used for successful task execution.
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Although substantial work has been completed in this area, some improvements can be achieved

in the presented methodologies.

(a) Cooperative stereo vision-In the environment modeling algorithm, presented in Chapter 3,

each individual robot directly contributes range data to the environment model using onboard

stereo vision systems. Extrinsic parameters, such as camera baseline distance, limit the

resolution. Often higher resolutions may be needed without allowing the vision system to

compensate for short baseline distances by getting closer to the target (terrain may be

untraversable, kinematic limitations, target too far away, etc). As such a promising solution is

to use cooperative stereo vision, where two or more robots combine their views and locations

to form a more accurate range measurement. Uncertainties in robot/camera locations and

orientations would have to be accounted for. The environment modeling algorithm may be

easily modified to accommodate cooperative stereo imaging.

(b) Vehicle/ground friction coefficient estimation and slip prediction-Model predictive control

compensation is shown to be highly effective in disturbance rejection and improving robot

performance (Appendix A). Chapter 2 presents a method to estimate the dynamic parameters

needed for such models. However, it is assumed that the individual robots are stationary

during the estimation process. This constraint may be mathematically relaxed by

incorporating friction models and estimating the friction coefficients along with the dynamic

system parameters. Once estimated, the friction coefficients could be used in model

predictive control compensation methods to predict the incipience of vehicle slip during task

execution.

(c) Payload identification-In addition to dynamic parameter estimation, the algorithm presented

in Chapter 2, may be readily extended to estimating the inertial parameters of a payload. This
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problem gets more intricate when the unknown payload is grasped my multiple

robots/manipulators. This scenario would require cooperative excitation of the payload

dynamics.

(d) Swarm robots-Although, the algorithms developed in this thesis have not assumed single or

a few cooperating systems, they have only been tested as such. Emergent behaviors and

computation/communication limitations may not be entirely predictable until the algorithms

have been tested on robotic swarm systems. Such behaviors would be used to develop local

rules that would be used by the robotic swarm to achieve a given task. For example, the

robotic swarm may be used for information (intelligence) gathering in such environments as

battlefields, large scale extraterrestrial exploration, etc. This is a similar scenario to

environment modeling (Chapter 3). However, modifications may be needed to define

individual roles/behaviors. Additionally, in this problem, individual robots (resources) can be

allocated to regions of interest. As the swarm size and functionality increase, there are

increasing concerns on the handling the quantity of data, the complex bi-directional

communications, and the limited computational resources. This may be addressed by the

psychological phenomenon of attention (nature's solution to the complexity problem in the

context of sensory processes interacting with cognitive processes) [Barbastathis].
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Appendix A

Cooperative Mobile Robot System Dynamic Model

A.1. Model Predictive Control

In model predictive control disturbance rejection is accomplished by estimating the equivalent

disturbance of a system based on the dynamic model of the system and the sensed disturbances.

This is also known as feed-forward control as seen from the block diagram in figure A-1.

Disturbance measurements are fed into a dynamic system model to account for changes caused

by these disturbances. The resultant dynamic disturbance commands are fed forward and added

to the basic controller commands to give the system control command. The basic joint level

controller considered here is a PID controller. Such a system is dependent on an accurate

dynamic model and low noise disturbance sensors, to function effectively. Degradation in the

accuracy of the models and the disturbance measurements result in corresponding degradation of

the controller.

Vehicle motion Manipulator/Vehicle

Dynamic Model
Tdisturbance compensation

wr.t. inertial frame +

Xdesire ,+ahsne and rOreal
- Includes suspension effects Ceontroller + env iron ent

Xreal T Dynamics

Mobile Tgravity compensation

Manipulator

Kinematics

Figure A-1: Block diagram of linear feed-forward compensation for dynamic disturbance
rejection
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A.2. Development Of The Cooperative System Model

Figure A-2 shows two physically interacting cooperative robots working in an unstructured field

environment (as described in the Chapter 1).

Independently
mobile camera

Force/Torque Mobile vehicles
Sensor with suspensions

On board sensors

(accelerometer,
inclinometer, etc.)

Figure A-2: Representative physical system

Using a Lagrangian formulation, the dynamic models of the systems and task are developed.

These models account for robot base motion, compliance, and multi-robot interaction forces (see

Figure A-3). This method can be readily extended to model the closed chain dynamics of

multiple cooperating robots.

xp 1

F,

xv vov

z

xvvv e

02

XV'YV0V

F

MI

29 32

Y2

Vehicle Vehicle c.m.

chassis Suspension

+ Chassis
XV5Yv>0V motion

(a) Interacting mobile systems (b) Individual robot system with
environment interaction forces

Figure A-3: Cooperative robot modeling
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Step 1: Reduction of suspension compliance system

The first step is to reduce the suspension system (Figure A-2) to a 6 DOF compliance module

located at the vehicle base center of gravity (Figure A-3a). If the contributions to the suspension

are known to occur only from the vehicle tires and a passive compliance element, then the

combined 6 DOF stiffness at the center of gravity os given by:

Kx,yz +j I

n K suspension wheel n

Kt = ~ Kdzl 2 + Kdydz

tan- dyn
dzn

0 Kzdzl -2+Kdxdz0  (A-1)

=1 n " dXn d~
K - K

n(dxdtan-'dXn
dzn

o K ynln -Y^ + Kndxndyn

n (dxtan-'X
dyn

Similar expressions may be derived for the 6 DOF damping terms.
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Step 2: Robot model Lagrangian dynamics

In general:

QT F),= XH=ijJ
j=I

+J3hijk4qk -Gi
j=1 k=1

where

Q = generalized force on joint i

F = manipulator endpoint external force

H Mj~j)Tj~j)

j=1

h =y 1aHjk
c ak 2 &q

n

=i YMjg Tj~j)
Li

1

+ j j I)

b

b

0

by.

for a prismatic joint b. = 3x1 unit vector
X r for a revolute joint along joint axis i

Icj = e t rofc n r i

for a prismatic joint r = vector of centroid

for a revolute joint of link j from ihframe

Treat rl and 0 as manipulator joints.

J(') and J(' are defined from the manipulator Jacobian:

q = [Xv Yv Ov s Xs Ys 1 02 O3 Y (generalized variables)

Perturbation about an equilibrium state while considering small motions and

substituting into the non - linear dynamic equations of motion:

q = q' + Aq

+j +eAj + ± )fi + Aj1Aj
-> Q - JTF + G - H(q, 4e) = HA4 + h(q, 4e )A4

Alternatively, consider Computed Torque Techniques, where:
nn n

--(J TF) = ZHj + hk4j4k -
j=1 j=1 k=1

n n

Qi= Q, -(J TF), - 1h kj4k +G
j=1 k=1

- Q' = H4

As long as the left hand terms can be computed, the equations have been linearized

(A-2)

V = JO) q -:> JW -
ci L Li

-- ) - J =: JU
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Converting to state space form:

i=Ax+B(u-F[IK yV &r)
y=Cx+Du

where

x = [0, x, y 02 03 6s ks Ys y, 2 3

U = Q4 Q5 Q6 Q7; Q8 Q8 Y 1
- 13

H =

_ Px3[ft x6 I

h =[IA[L6
_f x3[fi x6 _

H is the non - singular arm inertia matrix

[ 06,6 Y

B = [ _ 6x 6  C= IJ0 6J j D= [1L
H6x

Step 3: Stability of local linear controller for position control

Robot arm dynamics:

T4 01 01 X X G4

5 =H +2 + 2 +h+ + PG

r6- 3 3 _NO_ _N G6_

T =NHq+hq^+F+fd+G

with PD control + gravity compensation + feed forward terms

T=KP(q,- q) +KD (qr - j)+ +f+ =-K - KA + Fd + fd + G
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Consider the Lyapunov function candidate:

1 1T
V(qq ) = - TKq+- I Tlq

2 2
Since K, and H are symmetric + ve definate -> V > 0 (except when q = qd)

- 1
V = 4TK + 4THq + 1q Tf

2
4Tx 4T 1 4 4TT4T 1 Tt=qKp+ T(T-hi-Fd-fd-G)+-2TH4-K - (KD T Kh+- KP N2 2

- - T(KD Th)4+ Ht = - TKD I±- T( -2h)4 _4T KDq 02 2
If V =0 - q = 0

.. 4= H h4 - ' - fd - G) H~1(-K,4 -K q - h4)= -H-K,4

.iw0,if q #q
Therefore, Lyapunov asymptotic stability applies

Step 4: Classical Controllability and Observability

T = [B I AB IA 2B I ... I A"-'B]

E= [CT I A TC T i(ATYCT |...|(AT)' CT

plugging in the previous expressions for A, B, C and n = 6 states and simplifying, it can be seen

that the rank of T and 0 is 6.

The system is both Controllable and Observable

(a general solution, but proved for the manipulator in question)

A.3. Dynamic Tip-Over Stability

Once a dynamic model of the robotic system(s) have been set up, the controller needs to

maintain tip-over stability. This is achieved by limiting the motion of the dynamic zero-moment

point to lie within the vehicle footprint (see Figure A-4) [Takanishi]. Using d'Lambert's

principle, the forces/torques on each individual mass particle is evaluated. The X and Y

components of the zero moment point are given by Equation A-5.
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M2

XX

(a) General robot system (b) f

k

orce and moments on an individual mass element

Figure A-4: Dynamic tip-over stability

Y=X = ImAQ -P)xX + G) +I(Sk -A)X Fk
Ji k

n n

i= i 9 i M =1 +g~i + s F- XSFk
k

)
(A-5)

n

m, i+ gl) - k
i=I k

n g) ( ±g)y + IM . + I(ysF,, -zS ,F y
i=1 i=1 jk

i i kZ)- 'F
i=k

mi mass of particle i

ri= [xi, yi, zi] position vector of particle i

= [x,, y ,0]: position vector of p

G =[gx, gy, gz] gravitational acceleration vector

T =[T, TY, T]: total torque acted on p

M [Mx, MY,, Mz ]: external moment J
Fk= [F,,, F,,, F ]: external force k

Sk = [Xs, YS, zs ]: position vector where external force k is put
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A.4. Cooperative Task Execution-Robotic Assembly

Using the above dynamic models and a model predictive control architecture, multiple robots can

cooperatively execute an assembly task. Here a planar model of this problem is developed. Here

robtic assembly is an insertion task. Researchers have developed several approaches to the

robotic insertion problem including motion in direction of least resitance, perturbation methods,

petri-nets and event based approaches, remote compliance center modeling contact state

identification [Giraud, Hirai, Kang-1, Kang-2, Kitagaki, Kittipongpattana, Lee, McCarragher,

Nelson, Shimokura, Whitney, Xiao, Zhang]. Here the insertion problem is addressed by

identifying the contact point (based on measured forces/torques) and formulating a motion plan

in the direction of least resistance. Figure A-5 show an example of the six possible environment

interaction states of a rectagular object at a similarly shaped insertion site.

State: 0 State: I State: 2

State: 3 State: 4 State: 5

Figure A-5: Environment contact states

Figure A-6 show the relation between interaction forces, the contact point(s) and the measured

forces/torques (F,, Fy and M) for the different contact states seen in Figure A-5. The measured

forces/torques are evaluated from force/torque sensor readings of all cooperating robots. Note

that although multiple contact points cannot be uniquely identified, yet the motion plan is valid.

Figure A-7 shows the error in location of the contact point as a function of sensor noise.
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State: 1

t
;f~ .a. .... .

F= O=F, +F +f+ +ffr

IM =0= M +r x f, + r x fr

-=tanO

(a)

State: 3

IF= O=F, +F +f, +f,

ZM=O=M+rxfn +rxffr

=tan0

(b)
State: 4

ff 4

a

F=O=F, +Fy +f +ffr

M =0=M+rxfn +rxffr

-=tan a

(c)

f

_f~

F =0 = F +Fy +f, ++ffr+ fn2 +ffr 2

I M=0 =M+r xf +rl xf,,l +r2 xf n2+r2 xfr2

=tan6
f t l

-Jix2 =tanO

(d)

State: 5

Yffr

ZF = 0 = F, + F + f + ffr, + fn2 + ffr2

IM = 0 = M +r x f + r, x f,,, +r2 x fn +r2 x ffr2

=tan a
f

2 = tanO
fy 2

(e)
Figure A-6: Relation of interacting forces, contact points and measured forces/torques

State: 2

----------------- a............ ......
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RMS error oflocation ofcontact point as a function offt sensor noise
0.25
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0.15 - -.----.......--- Y

2 0 .1 - -.--.-.-.-.--.--.....

0.05

0-
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Nois e (% ft s e ns or limits)

Figure A-7: Error of contact point location w.r.t. sensor noise

Two mobile robots (see Figure A-9) cooperate using a model predictve master-slave hybrid

position-force control architecture (see Figure A-8), to insert a segment in a truss stage. Figures

A-10, A-11 and A-12 show simulation results of the joint positions and forces felt by the

cooperating robots during task execution.

CD

f0

Fd g Motion/Force Rot + Forward
0 sensinga Controller + Robot(1) - Kinematics

Xdl FJ

Fe

F r2 Xr2

X Surrogate J +
-- sensing Motion/Force Robot(2) Forward

Fd2  Controller j o+ ot(2 Kinematics
JT

CD

C0

Figure A-8: Decentralized cooperative control architecture using surrogate sensing

_.. _....... _. _ _. .......... ....................._ _......................_......................_.............L.....
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Figure A-9: Physically cooperating mobile robots
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Figure A-10: Endpoint position and force of master robot (top) and slave robot (bottom)

Appendix A 
134
134Appendix A



-3

2 i -------- -------------- --

0

-2
0 10 20 30

150

100 ------- ----------------

- 0 ------ --- L - - - -

-50
0 10 20 30

x 00

0 10 20 30

200

50 ------ -----------------

- 00 1t - - --------- r --- --- --

S50 ------- +-J-------+-IL----------

0 - - ........-..-..- .

0 10 20 30

0.02

0.5 ----- - - - -- --------- 0.01 ----- - - ------ --------
P~ 0

0 - - ------- --------- :

-0.5 ---- -------- ------- .----- --- ----- ----

-1 -0.02
0 10 20 30 0 10 20 30

100 so

o ----- --- ---- - ----- - -
100 - -

-200 50
0 10 20 30 0 10 20 305 -3
x10 x1

5 8
6 ---- -- ------- --

S - ----- ----- --- ------ -

4 A -- --- --- -- --
F 2 - - - ------- ----

0 0 20 30 0 0 20 30

200 100

Q 50 ------- - - ------------ Q - ....

- U 100 - --- ---- ---- -

100 --- - ----- ------
50 +V --------------

S 00--- - - - ----- -200
0 . . 2 3.........-0

0 10 20 30 0 II0 20 30

Figure A-11: Arm joint and base position of master robot (top) and slave robot (bottom)
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Figure A-12: Arm joint and base forces of master robot (top) and slave robot (bottom)
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Appendix B

Newton-Euler Equations of Motion of Mobile Robot

B.1. Mobile robot dynamic model

This appendix presents the dynamic model of the mobile robot presented in figure 2-2.

NO,1
1,2M2912

F1,2 N1.

S Ir3
IV

(a) rigid arm (b) vehicle base

Figure B-1: Force/moment balance

The spatial interaction forces/moments of the rigid arm are:

(F1,2 IV +(m 2 g)1V = (m2 acm2 )IV

(N 1 2 -(r2xF )=r ) + m'"
1,)V (l F,2)V =( a x (I m v M (B-1)

(F12 )v and (N, 2 )V => from arm base F/T sensor

where F12 and N 12 are the reaction forces and moments, m 2 and 12 are the arm mass and inertia

tensors, a2 and 02 are the arm linear acceleration and angular velocity vectors. The spatial
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interaction forces/moments of the rigid base are:

(FO.), 1 + (- F1,2 ). +(m-g). = (mia,.,),,

(FO1 )I = (m acm I - (7 FI2 )r - (m g)

(No, + (- N - (r2 x F a(Iu + MuCr"

(N ) = (I 0 ) + Mj"cm x (Imm '"f') - (- N,2 + (r2 xF 2 )1

where Foi and No, are the reaction forces and moments, m, and I1 are the base mass and inertia

tensors, a1 and 0oi are the base linear acceleration and angular velocity vectors.

-NO1

-FOI

0'

Figure B-2: Force/moment balance of compliance module

Finally, the spatial interaction forces/moments of the compliance module are given by:

d(- F.i)I = b -dil +k,( -d(r, - r0)

d(- NO1 ) = b T d6+k T- d(O -0)
(B-3)

where kr and ko are the translational and rotational stiffness coefficients, b, and bo are the

translational and rotational damping coefficients. Using Equations B-1, B-2 and B-3 a set of 6

dynamic equations is obtained (forces and moments in 3D):

x (i "'') )

(B-2)
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d(- F) = bT -di +kT -d(r, -r 1o)

d(- F) 1 -b T -dij -k T -dr, = 0

-> d(-(mFi) +(- F2)1 +(miR-'g))- b T-dij -k T- dr = 0

-md(r) + d(- FiJ ) +md(R'g)- b T dir -k T -dr = 0

-> mi (d(R-'g)- d(iij1 -b ) -di1 -k T -dr, = d(F )l

(B-4)

d(- N )1 = b T d6 +kT -d(O - 00)

>d(- N 1 )1 - bT -Ad-k -dO = 0

->d(-(I1 1±+ x (I1 1))11 (- N), -(r 2 xF 2),)- b Td -kT -*dO = 0

->Iid(6)1 - d(6 x (I1 i) 11 - d(N) 1 - d(r2 xF -) b1 -b -b d- -dO = 0

=> -1d(6)1 - d(6 x (I 1 ))1, - d(r2 x F 2 )- - d - k T dO = d(N 1,2

B.2. Alternate derivation

This appendix also presents an alternative derivation for the dynamic equations of motion for a

spatial (3D) mobile robot system. The key difference between this derivation and one derived in

Section B-i is the location of an intermediate reference frame (Frame II). However, this small

change leads to final equations of motion that are incompatible with the available sensory data

for the model based dynamic paramter identification problem-an important consideration when

using model based identification methods. The system represented in Figure 2-1, is again

reduced to three components: a rigid arm, a rigid vehicle body and a compliance module (see

Figure B-3).
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m29

IV

Figure B-3: Representation of the simplified mobile robot

N'
F F1,2

m2,121

IV

(a) Rigid arm (b) Vehicle base

Figure B-4: Force/moment balance

The spatial interaction forces/moments of the rigid arm (Figure B-4a) are:

(FI,2) V + (m2g 1V = (m2dCM )V

(N, 2 ) 1 ~-IxF,2 ) 1 v 2 + -- CM 1J (B-5)

(F,2)V and (K 2 )IV => from arm base F/T sensor

where F 12 and N 12 are the reaction forces and moments, m2 and 12 are the arm mass and inertia
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tensors, a2 and _2 are the arm linear acceleration and angular velocity vectors. The spatial

interaction forces/moments of the rigid base (Figure B-4b) are:

(N, )J +(- N2, + = (mMA. ' )r
(FO, I= (mI '") 1 -I N, 2 -(mI )11

- (mR;'k)

F,,), -(m,R;'9)
= +m +( x is,. + x -1 x r-,) + b- x X r-j 0-1 X 4) iI

(B-6)

(K01)1 + (- I,2)11-( XF2)11 =

(aI I + V CMatL. a

a + V '" (I "M' ')
atI I I )

x (I'"yf'" ~1

= + x X (

where E01 and No are the reaction forces and moments, m, and I1 are the base mass and inertia

tensors, a, and _oi are the base linear acceleration and angular velocity vectors.

-No,

-F 
oj 

-4 '

Figure B-5: Force/moment balance of compliance module

Using Equations B-3, B-5, B-6 a set of 6 dynamic equations is obtained (forces/moments in 3D):

d(- F-')I =- Tdr,+)r- d(T -TO)

=> d(- a)- - = 0

1 0 -x xx+(--3 r +(m R;'g) (B-7)

- -d- - = 0

= m d(R;'9)- d(n +2+ x + +- x r + x X x, +0 x r-I - d - - d. = d()g2)d
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d (- No,, + +d (, x - TO, )= -do-+ T- d( --04)

d(-- 01 )I +d(i x-i)I -- T -dO- -d- = 0

S- I d( 1 -- d( x I - d x ',2 )n - d(i,1 x midcmi)r + d(71 xmRlg

Nb~o-I dO o 0 =)d 0F

X9I I I, 11, X211)

Note the last equation (B-8) require measurements of absolute positions (R) with respect to the

nominal "spring" position. In general this is difficult to measure and incompatible with the

onboard sensors.
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Appendix C

Loss-less Image Compression

C.1. Run Length Encoding-The General Idea Of Compression

Data files frequently contain the same character repeated many times in a row. Digitized

signals can have runs of the same value, indicating that the signal is not changing. Run-length

encoding is a simple method of compressing these types of files.

A compression program is used to convert data from an easy-to-use format to one optimized

for compactness. Likewise, an uncompression program returns the information to its original

form. Here only compression is addressed (since a measure on the information present after

compression is required, with no needs for decompression of the data). Decompression

techniques can be inferred from the compression methods or refer to [Smith-2] for complete

descriptions.

There are many different forms of compression which have been classified in various ways.

One way to classify these is: Lossless vs. lossy. A lossless technique means that the restored data

file is identical to the original. This is absolutely necessary for many types of data, for example:

executable code, word-processing files, tabulated numbers, etc. In comparison, data files that

represent images and other required signals do not have to be kept in perfect condition for

storage or transmission. All real world measurements inherently contain a certain amount of

noise. If the changes made to these signals resemble a small amount of additional noise, no harm

is done. Compression techniques that allow this type of degradation are called lossy. This

distinction is important since lossy techniques are much more effective at compression than
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lossless methods. The higher the compression ratio, the more noise added to the data. In this

appendix, a few common methods of lossless compression are briefly described. A thorough

review is beyond the scope of this thesis, but can be found in [Smith-2].

C.2. Simple ccompression

In digitized (binary) input data, each time a zero is encountered, two values are written to the

output file. The first of these values is a zero, a flag to indicate that run-length compression is

beginning. The second value is the number of zeros in the run. If the average run-length is longer

than two, compression will take place. However, many single zeros in the data can make the

encoded file larger than the original.

C.3. More efficient case-Huffman coding

This method is named after D. A. Huffman, who developed the procedure in the 1950s. The

histogram of a data file may show a large percentage of certain symbol(s) occurring more often

than others. This can be used to make an appropriate compression scheme for this file. The idea

is to assign frequently used characters fewer bits, and seldom used characters more bits. In

mathematical terms, the optimal situation is reached when the number of bits used for each

character is proportional to the logarithm of the character's probability of occurrence. This is

achieves by generating a binary tree (i.e. any node can only have two branches) where each leaf

(terminal node) is assigned a unique symbol from the data file. Each branch of this tree is

assigned a value of 0,1. The code for any given symbol is found by reading the O's and l's from

the root to the leaf of the tree. The key is to set up the branching of the tree appropriately. This is

done as follows:

(i) initialization: put all nodes (symbols at this point) in an open list

(ii) Repeat the following until the open list has only one node left
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(a) from the open list pick two nodes having the lowest probabilities of occurrence

and place them into two leaf locations

(b) create a parent node of them in the tree

(c) assign the sum of the children's probabilities of occurrence to the parent node and

insert the parent node label into the open list

(d) assign code 0,1 to the two branches of the parent node in the tree and delete the

children from the open list

C.4. Very efficient case-LZW coding

LZW compression is named after its developers, A. Lempel and J. Ziv, with later

modifications by Terry A. Welch. It is the foremost technique for general purpose data

compression due to its versatility. Typically, you can expect LZW to compress text, executable

code, and similar data files to about one-half their original size. LZW also performs well when

presented with extremely redundant data files, such as tabulated numbers, computer source code,

and acquired signals. Compression ratios of 5:1 are common for these cases. LZW compression

uses a code table. A common choice is to provide 4096 entries in the table. In this case, the LZW

encoded data consists entirely of 12 bit codes, each referring to one of the entries in the code

table. Decompression is achieved by taking each code from the compressed file, and translating

it through the code table to find what character or characters it represents. Codes 0-255 in the

code table are always assigned to represent single symbols from the input file. The LZW method

achieves compression by using codes 256 through 4095 to represent sequences of bytes. The

longer the sequence assigned to a single code, and the more often the sequence is repeated, the

higher the compression achieved. Although this is a simple approach, there are two major

obstacles that need to be overcome: (1) how to determine what sequences should be in the code
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table, and (2) how to provide the decompression program the same code table used by the

compression program. The LZW algorithm exquisitely solves both these problems. When the

LZW program starts to encode a file, the code table contains only the first 256 entries, with the

remainder of the table being blank. This means that the first codes going into the compressed file

are simply the single symbols from the input file being converted to 12 bits. As the encoding

continues, the LZW algorithm identifies repeated sequences in the data, and adds them to the

code table. Compression starts the second time a sequence is encountered. The key point is that a

sequence from the input file is not added to the code table until it has already been placed in the

compressed file as individual characters (codes 0 to 255). This is important since it allows the

decompression program to reconstruct the code table directly from the compressed data, without

having to transmit the code table separately. The actual LZW algorithm is summarized in a

flowchart in figure C-1. One drawback of the LZW algorithm is its computational complexity.

However, several commercial software packages are available that have optimized this algorithm

to make it computationally efficient.
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to input?

N

(Stop)

Figure C-1: LZW compression flowchart

C.5. Lossless JPEG compression

This compression method is a special case of the JPEG where there is no loss. It uses a

predictive method. A predictor combines the values of up to three neighboring pixels to give the

predicted value for the current pixel. The encoder compares this prediction with the actual pixel

value at the given position, and encodes the difference (prediction residual) losslessly. Since it

uses only previously encoded neighbors, certain pixels will use their original values for

encoding.
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C.6. Compression comparison results

9 techniques for data compression are compared here:

Huffman coding
500 different images were coded by each of the methods (image sizes considered:

642, 1282, 2562 pixels)

- 100 pure noise images were also coded by each of the methods

- Comparison of information content before and after coding give the compression ratio i.e.

number of bits needed to represent a pixel before and after compression using the Shannon

entropy function

- From table C-1 and Figure C-2 predictor method 5 appears to give the highest compression

ratios and is extended to the information theoretic vision planning algorithm in chapter 3.

Table C-1: Comparison of compression methods on 2-D images

Compr ession ratio (CR ±a)
Image: 162 pixels Image: 322 pixels Image: 642 Image: 1282 Image: 2562

pixels pixels pixels
Method 1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Method 2 1.009 ± 0.038 1.142 ± 0.045 1.253 ± 0.063 1.375 ± 0.089 1.531 ± 0.146
Method 3 1.013 ±0.033 1.142 ±0.044 1.247 ±0.064 1.358 ±0.091 1.488 ±0.147
Method 4 0.980 ± 0.025 1.060 ± 0.031 1.149 ± 0.046 1.250 ± 0.066 1.348 ± 0.101
Method 5 0.983 ± 0.041 1.143 ± 0.042 1.277 ± 0.068 1.416 ± 0.111 1.723 ± 0.234
Method 6 0.996 ± 0.041 1.156 ± 0.041 1.289 ± 0.063 1.427 ± 0.098 1.646 ± 0.184
Method 7 0.997 ±0.039 1.157 ±0.039 1.288 ±0.064 1.422 ±0.101 1.619 ±0.181
Method 8 1.018 ± 0.035 1.159 ± 0.036 1.282 ± 0.056 1.414 ± 0.086 1.564 ± 0.145
Method 9 1.008 ± 0.031 1.126 ± 0.035 1.236 ± 0.052 1.358 ± 0.077 1.480 ± 0.123
Method 10 0.997 ± 0.001 0.996 ± 0.001 0.996 ± 0.001 0.996 ± 0.001 0.996 ± 0.001

Method 1 No compression
Method 2 Predictor: I(u,v) = I(u,v) - I(u,v-1)
Method 3 Predictor: I(u,v) = I(u,v) - I(u-1,v)
Method 4 Predictor: I(u,v) = I(u,v) - I(u- 1,v- 1)
Method 5 Predictor: I(u,v) = I(u,v) - (I(u,v- 1)+I(u- 1,v)-I(u- 1,v- 1))
Method 6 Predictor: I(u,v) = I(u,v) - (I(u,v- 1)+(I(u- 1,v)-I(u- 1,v- 1))/2)
Method 7 Predictor: I(u,v) = I(u,v) - (I(u- 1,v)+(I(u,v- 1)-I(u- 1,v- 1))/2)
Method 8 Predictor: I(u,v) = I(u,v) - (I(u-1,v)+I(u,v-1))/2
Method 9 Predictor: I(u,v) = I(u,v) - (I(u- 1,v)+I(u- 1,v- 1)+I(u,v- 1))/3
Method 10

162, 322,
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Figure C-2: Comparison of 2-D image compression methods
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Appendix D

Experimental Cooperative Robot System

This section contains a brief description of the Field and Space Robotics Laboratory (FSRL)

experimental cooperative robot system, which are used to experimentally validate much of the

work in this thesis. The two FSRL robots were designed and built primarily by Grant Kristofek.

A more detailed description of the rover can be found in (Kristofek, 2002). All power electronics

and computer interfaces were developed by the author.

(a) Conceptual physical cooperation

159.1mm

228.6mm 159.1mm

89.3mm . 8.2mm

344.2mm

76.2mm

101.6mm

(b) Physical system schematic

(c) Physical system implementation
Figure D-1: FSRL Experimental cooperative rover
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Each of the FRSL experimental robots is a four-wheeled mobile robot with an articulated

center (see Figure D-1). This passive joint allows all 4 wheels to maintain ground contact

without the need for independent suspensions. The four wheels are driven by 12 V geared DC

motors with a peak stall torque of 908 oz-in and angular velocity of 49 rpm at 208 oz-in. The

resulting velocity of the rover is approximately 25 cm/sec at 208 oz-in motor torque. The robot is

steered with skid-steering. Each system is also equipped with a 4 DOF arm that can control

endpoint (x, y, z) position and angular pitch (see Figure D-2). Each joint of the arm is driven by

12 V geared DC motors with a peak torque of 1495 oz-in. The robot weighs (w/o arm) 3.74 kg

and the arm weighs 0.76 kg.

01 Angles are measured w.r.t. local coord frame
0 2 0 \ 3  12 0 4  13

Okinemaic origi EeT M

Force-torque sensor

Figure D-2: Experimental system: 4 DOF manipulator kinematics

The rover has on-board interface card that links the robot sensors and vehicle/arm drive

motors to a power amplifier card and a Pentium 166 MHz computer. An 8 axis motion control

card provides the analog, digital and encoder interfaces required to perform closed loop control

on the individual motors. Power to the motors is provided by an 8 axis PWM amplifier card built

using the National Semiconductor's LMD18200T 3A 55V solid state amplifiers. The 18200T

chips takes a low power PWM input signal and outputs a high power PWM signal (proportional

in frequency and duty cycle as the input; amplitude given by the supply voltage, V,). The low

power PWM input signal is generated using a 555 timer chip. The frequency of the output is set

up by a clock. The duty cycle of the 555 output is a controlled fraction of the clock duty cycle.

Appendix D 150



This control fraction is the command voltage/max. voltage (Vec). The command voltage is

supplied by the analog output of the motion control card, set by the control software. Although, a

conventional quartz oscillator may be used as a clock, it is better to use another 555 timer chip to

provide the clock input. This way the clock duty cycle may be selected close to 100%, giving a

greater range of duty cycles for the PWM output from the second stage 555 timer chip. A single

axis circuit is given in figure D-3.

1.21 KQ

NSLM556 +VC 0.01 F NSLM556

- 1 14 1 140

2 13 0213*

03 121 +V 0312'0

i4 110 0. 1pF=+V 0411-0

05 100 - 5 100

06 906 90

F07 807 80

0.01ptF

N LMDJ8200T

VICC 2 - - - -

-3
Dir 4

999100-

0.0 1p

Figure D-3: PWM motor control circuit

The robot sensor suite is composed of tachometers to measure the wheel angular

velocities, encoders to measure arm joint angles, a potentiometer to measure the articulated

center angle, and a two-axis Crossbow CXTA02 inclinometer mounted to the robot body to

determine roll and pitch relative to an inertial frame. A JR3-67M25A six-axis force/torque sensor

is mounted under the robot arm to measure forces exerted on the robot body by the manipulator.

Inter-rover communication is achieved using 9600 bps wireless modems. Additionally, one of

the two robot systems is also equipped with a stereo vision system. An overview of the hardware

architecture interface is seen in figure D-4.
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Actuators

Sensors

Figure D-4: Overview of experimental system hardware

Calibration is required for the Crossbow inclinometers since the factory power settings

(8V-3OVdc) are different than the laboratory power settings (5Vdc). In the sensor's linear range

(±200) the output of the sensor (volts) is converted to a pitch/roll angle (radians) using the

following:

v -v
O l out -Jri/p

r Srp

(D-1)

where V0 ut is the current sensor reading, Srip is the sensitivity of the roll/pitch axis and V,/, is the

zero angle voltage for roll/pitch axis. The goal of calibration is to determine Vrip and Sr/p. Thus

we need two angular readings 0rp and Vo0 t for each axis, to give us two equations in two

unknowns in each axis. Using these two readings the unknown constants can be solved. These

two equations for each axis are obtained by tilting the robot/sensor system in the desired axis.
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Vout is measured directly from the inclinometer. 0
rp is measured using the force/torque sensor-

at every new angle the force/torque sensor is reset to zero, a weight is added, and the resulting

force components give direction of the gravity vector and r,.. Table D-1 give the results after

calibration:

Table D-1: Inclinometer calibration data at room temperature

Calibration Robot 1 Robot 2

parameters Roll axis Pitch Axis Roll Axis Pitch Axis

(VOlts) 2.406 2.381 2.447 2.392

Sr,/p(mV/degree) 33.631 34.733 29.338 34.905

Inter-robot communication can be achieved in several ways. However, since this is not a

critical part of this research, a simple method is implemented. Digital I/O data cards in each

computer are linked using one byte and a handshaking protocol is set up. To save space, bits are

used for both transmitting and receiving data. The "transmitting" robot issues a transmit

command to the "receiving" robot and waits for an acknowledgement command. Upon receiving

the acknowledgement command it starts transmitting the data byte-wise separated by an end-of-

byte command. The last byte is followed by an end-of-data command. The "receiving" robot

periodically checks its receiving port for transmit command. Upon receiving this, it sends out an

acknowledgement command and starts reading the data. The end-of-byte commands help the

"receiving" robot separate the data coherently. Additionally, this protocol must make sure that

the "receiving" robot is able to read data at least as fast as it is being transmitted. This can be

achieved in two ways. First, the "transmitting" robot can be forced to transmit at a slower rate,

by empirically determining the receiving rate. This is not very robust. A second, slower but more
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robust method requires sending a received-ok command from the "receiving" robot to the

"transmitting" robot, between each byte. This simple protocol can be expanded for n-bytes.

Visual data is acquired by a stereo camera pair. The monochrome CCD cameras use

8.5mm lenses, with a 41.2* FOV. Each camera has a 1/3" interline transfer CCD, with 510x494

(H x V) pixels. Pixel dimensions are 9.6 x 7.5 pm (H x V).

Table D-2: Camera specifications
Camera supplier P39,244 from Edmund Scientific, Barrington, NJ 08007-1380.
Imaging Device " interline transfer CCD
Pixels 510H x 492V
Pixel Size 12.7 x 9.8pim
Horizontal Resolution >350 TV lines
Sensing Area 6.4 x 4.8 mm
Signal Format EIA (RS-170);
Video Output IV p-p, 75W; RCA connector
Lens Mount C-mount
Flange Back Length 12.5 mm
Sync System Internal
Min. Sensitivity 0.2 lux
S/N Ratio >46 dB
Electronic Shutter Speed N/A
Gamma 0.45
Auto Gain Control 27 dB
Power requirement 12V DC; 200mA max.
Storage/Operating Temp. -30 to 70 0C/-20 to 55"C
Dimensions 30.5 x 30.5 x 61 mm
Mounting %-20 TPI tapped
Weight 120g

For an ideal stereo camera pair (cameras aligned parallel), range resolution is governed by:

Ar = (r2/(bf))Ad (D-2)

where r is the distance to the target, b is the inter-camera baseline distance, f is the focal length,

and Ad is the minimum disparity (e.g. 1 pixel). Thus for a desired resolution (Ar) of 0.1mm, at a

range (r) of 100mm, with a focal length (f) of 8.5mm and minimum disparity (Ad) of 1 pixel (or

about 0.0075mm), we get a required baseline distance of about 88mm. However, due to the

properties of the stereo imaging software (Small Vision SystemTM, Videre Design), the stereo

baseline is set at 38mm.
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Appendix E

Lightweight hyper-redundant binary mechanisms

E.1. Introduction

As shown in Chapters 3, 4 and 5, the environment and task modeling algorithms require

significant motion of visual sensors. This includes both large and precise motion of the cameras

as well as manipulator dexterity (i.e. hyper-redundancy in manipulator motion to get around

obstacles). Here, a new design for a lightweight hyper-redundant manipulator based on binary

actuators is presented. This mechanism is called the BRAID-Binary Robotic Articulated

Intelligent Device. With a large number of binary actuators, the mechanism can approximate a

continuous system in dexterity and utility. However, with its polymer construction and binary

actuation the design is very lightweight and simple, appropriate for space exploration systems.

E.2. Background and Literature Review

In the robotic research community, efforts have been made to develop concepts of simple

manipulators with good performance. An interesting example is binary manipulators [Ebert-

Uphoff, Hughes, Lees]. In this concept, a manipulator is controlled by activating actuators that

can assume only one of two states ("on" or "off'). The joint level control is very simple. By

activating the given actuator in the system a discrete change in state is obtained. Often, the

control does not require feedback sensors. The two states are the extreme positions of the

actuator. This form of control has been classified as sensor-less manipulation [Erdmann,

Goldberg, Lees]. As the number of binary actuators in the system increases, the capabilities of

the device approach that of a conventional continuous manipulator. However, this leads to
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mechanisms with complex system kinematics. Studies of the kinematics and control of such

"hyper-redundant" manipulators, both with and without binary actuation have been performed

[Chirikjian, Ebert-Uphoff, Huang, Hughes, Kwon]. A single, yet lightweight, robust and simple

device that could perform a number of these tasks would be highly desirable. It would need to

have fine motion resolution, a large motion workspace, high accuracy, multiple degrees of

freedom, control simplicity, and have a small stowed volume.

This appendix presents the design of an element that is intended to meet these

requirements and overcome the challenges. This device, called a Binary Robotic Articulated

Intelligent Device (BRAID), consists of compliant mechanisms with large numbers of embedded

actuators and is a step toward practical implementation of binary devices for space robotic

systems. Several potential application concepts for the BRAID element have been proposed

[Lichter-1, Lichter-2, Sujan]. In some ways it resembles deployable systems that have been used

in the past for space applications as: deployable booms, solar arrays, antennas, articulated masts

and others [Dotson, Gantes, Meguro, Syromiatnikov]. However, these are not controllable and

usually constructed from heavy and complex components, such as gears, motors, cables, etc.,

although there are some notable exceptions [Darby, Lichter, Pellegrino]. This appendix addresses

the design issues, system kinematics, and practical implementation concerns that go into

developing such a system.

E.2. BRAID Design

The BRAID mechanism is made of a serial chain of parallel stages (see Figure E-1(a)). Each

three DOF stage has three flexure-based legs, each with muscle type binary actuator. In the

experimental system described here these are shape memory alloy (SMA) actuators. Muscle

actuation allows binary operation of each leg. Figure E-l(b) shows one stage of the BRAID
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element. Each leg has three flexure joints-two one DOF joints and one three DOF joint. This

results in five axes per leg: three in parallel, the fourth orthogonal to the first three and the fifth

orthogonal to the fourth. Coupling the three legs together (symmetrically 120* apart) gives the

parallel link stage three DOF mobility (vertical translation, pitch, and yaw). However, in the

physical implementation of the design the fifth DOF in each leg was removed, as this motion is

small and can be accommodated by elastic deflections.

2 DOF Flexure Joint

Yn

I DOF
Flexure Muscle-type
Joints Actuators

o

X0

(a) Assembled structure (b) Single parallel link stage
Figure E-1: BRAID design concept

In the BRAID application large ranges of motion and low stiffnesses in the axes of

rotation are desired, while maintaining high stiffnesses in all other axes. Repeated bending of a

flexure can cause fatigue failure. The relationship between performance and fatigue life can be

estimated to first order by considering a simple beam of thickness t, with Young's modulus E,

bent elastically to a radius of R. Surface strain and maximum elastic stress is given by:

6= and a= EL (E-1)
2R 2R

This stress must not exceed the fatigue yield strength of the material, of. The minimum bend

radius is given by:

R t E (E-2)
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Materials that can be bent to the smallest radius or the ones where M (defined in Equation E-2) is

maximized are desirable because they give the largest range of motion. Literature suggests the

best choices are polymeric materials and elastomers with M equal to 3x1 02 [Ashby]. Materials

such as polyethylene, polypropylene and nylon fall into this category. For comparison, for spring

steel M equals 0.5x10- (which would be appropriate when high stiffness and small range of

motion is desired). An ultra high molecular weight polyethylene is chosen here, based on its

machinability, fatigue life, stiffness, weight, and cost. Detents help lock each binary leg into a

discrete state, providing more accurate and repeatable positioning. They also eliminate the need

for power while the BRAID is stationary.

E.3. Kinematics

E.3.1. Forward kinematics

A BRAID based system has further challenges, due to the complexity of its kinematics. A typical

four-by-four homogeneous transformation matrix is formulated as a combination of a rotation

matrix and a translation vector of one coordinate frame with respect to another. The kinematic

variables are three rotational and three translational variables (six DOF). In general, given the

four by four transformation matrix A11 ,j, of the ith coordinate frame with respect to the i-lth

coordinate frame, one can derive the forward kinematics of the entire n-staged system. A0,

defines the forward kinematics from base to end-effector of the entire system and is given by:

n
Aon=AoiAi2 A2 ... An=J7 (E-3)O'l = o, 1,2 2,3 '' n-l,n = A -1, ( -3

i=1

where Apj, 1 is given by:

_ -- i __ 0 yi R y4A -[R g' g' g3; Ye] (E4)
0 1A z Z1

O- I _j L0 I _
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- I -~~I-~I-

and rotation matrix R is given by:

R = (0) (E-5)
where 0' , 0' are rotation of ith frame about 1h frame x, y axes

In a single parallel link stage of the BRAID system, the three legs are positioned about the

vertices of two equilateral triangles (see Figure E-2). Based on the joint configuration of each

leg, the single stage has three degrees of freedom-pitch (0p) and yaw (0y) and a vertical (z)

translation (coupling effects lead to non-independent motions in the x and y directions as well).

ZZ
YZ'

C ZG

3 2 1600,3 B
J H

600 E 600 A

xiI X Y

(a) Physical parallel link stage (b) diagrammatic representation
Figure E-2: i1th parallel link stage

In this formulation the leg lengths, l', are the control variables. The relationship between these

leg lengths and the pitch, yaw, and vertical translation of the ith coordinate frame with respect to

the i-lth coordinate frame can be formulated. From Figure E-2:

7 1= 0, Y y=yr'.+y y,>, r,+n (E-6)
where

r= sin(7r/6)0 (E-7)

yt = sinr/6 ;(E8

6isinr; 'o(r3 = r cos(zc/6) -r cos(r/6) cos(6 ) - ij sin(ry() (E-9)

,52sin ry+ii~ 
'___2'___ = r cos(7r/6) - r cos(7r/6) cos(, )+ 6y sinQ') (E- 10)

cos(,r/3)
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where

V/2 =6- sin(O'i) (E-12)

i6 ) (E-13)

Ir (E-14)VYl = 6 sin(O, E-4

= 7= sin(Oy ) (E- 15)
'/3 6

where r is the radius of the coupling disks in each parallel link stage. The deflection parameters

(81, y', ') give us the coupled x' and y' translation of the ith stage:

x1 = -51 sin(y') (E-16)

r SjsnY3 - r Cos0 (E- 17)
2 cos r/6 2

The vertical projections (b2 and b32) of the leg lengths, i and 13, are found from the following:

,c52'siny y 5~~2' si 72
(1 =a +b= +cos7r16 cos;r/3 (E-18)

2___ (S~ in 2 +b
(i1=a2+b' = / s + +3' (sE-19)

(13 3 3 cosr/6 ) cos r/3(E19

Figures E-3 and E-4 shows the projections of sections ABCD and EFGH defined in Figure E-2.

Using these projections, the relationship between the desired unknowns, zi, O, Osy and the known

link lengths li, l2, P3 can be established.

C 0x

03 D
h', z

B A

Figure E-3: Projection of section ABCD from Figure E-3

First from Figure E-3, h can be found as:
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sin02= b2 +b3  (E-20)
2

A relationship between the angles 01, 02, 03, 04, and 0x, can also be established:

(h9 i)2 + 3 r 2 2

0 ( = acos +2 ) wherefl 2 =3 r -Icoso0 +j(sin0,2 (E-21)
2(h, r)2

-2 =0'+0" where 0' = asin 1,sin 0 and 02"= asin 23rsin3 (E-22)
2 2 2 2 ~ ) V-~ll

O =- 3 - 2 (E-23)

Also from Figure E-3 we have:

h1 sin O2 -l sin 0, = r sin Ox (E-24)
2

Using Equations E-18, 19, 20, 21, 22, 23 and Equation E-24, we get one equation in two

unknowns (0, and y). A similar equation can be derived using the geometry in Figure E-4.

hi2 z2 
hi

E H

Figure E-4: Projection of section EFGH from Figure E-3

From Figure E-4, h and h' are found as follows:

h' sin a 2 1.b2 + 1 sin0, (E-25)
2 3 2 3

h' sin a, = b1 + 1' sin , (E-26)
3 31

Once again, a relationship between the angles cc,, a 2, G3, a 4, and Qy, can be established:

a3 =acos hj) 2 +(2rtan/6> 8 2  tan/6-h; cosa) 2 +(h sina,)2  (E-27)
2(h(2r tan 7r/6)(2rtanr

a2 =a +a2 where a = asin and a2 = asin r/6sin a, (E-28)

o = 7C-a3 -a2 (E-29)
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Also from Figure E-4 we have:

h sin a 2 -h' sin a = rsin (E-30)

Using Equations E-18, 19, 25, 26, 27, 28, 29 and Equation E-30, we get one equation in two

unknowns (0, and Oy). Equations E-24 and E-30 give two independent equations in two

unknowns. However, both are highly non-linear transcedental equations and can only be solved

numerically. A Newton-Raphson algorithm is implemented to solve for the unknowns, 0, and 0y.

The vertical translation can be solved using solutions for 0,, and Qy and equation E-3 1:

z= h' sin a - r sin , = h. sin92- r sin , (E-31)
2 21 3 2

This is the general solution for the BRAID system for the given leg lengths. Hence, A.1,1 is only

a function of the variable leg lengths of the ith stage (Pi, 2,3). However, for a binary system, since

only two leg lengths need to be considered, given one of the two lengths (i.e. the maximum or

open leg length) the second one is then a well defined function of the first. The minimum value

of the leg length I, given the maximum value of h", (from Figure E-3) is found by solving:

r = (r+l;)cosa = (r+l ) (3r/2) +(3r/2+lf) -(h) (E-32)
3r(3r/2 +l 1)

The minimum value of the leg length h'i given the maximum value of 11, is found by solving:

r = +hlO COS2= r + ,.(3r/2)2 +(3r/2+h)2 
_ (1 )2 (E-33)

2 2 ) 2 3r(3r/2+h )

The minimum leg length h'2 given max h 3 (from Figure E-4) is found by solving:

r( r2 + h2 r h -)2

= (S0r+h + h] (E-34)

2 2r/.2r+

Since every leg in the system can be in only one of two states (binary), each leg length can have
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only one of two values. Hence, each term of As-,j can have only 8 different discrete values

corresponding to the 8 possible states of a single BRAID stage. Figure E-5 shows the workspace

generated for a 5 stage BRAID element. The workspace consists of 215 unique states.

Workspace of 5 stage BRAID system

Y axis (inches) X axis (inches)

Figure E-5: Workspace of 5 stage BRAID element (BRAID element base center=origin)

E.3.2. Inverse kinematics

The inverse kinematics problem cannot be expressed in a closed form solution. Exhaustive

search methods may prove appealing for systems with few stages (less than 5), but become

impractical for larger systems. For every additional stage there is about an order of magnitude

increase in the number of states in the workspace. Two possible efficient search methods for the

inverse kinematics problem are explored: a genetic search and a combinatorial heuristic search

algorithm. The search metric is to minimize the error between the end-effector and desired pose.

Performance of the two search methods is quantified on a stochastic basis using a Monte Carlo

method. 1000 target points are selected randomly within the volume of a binary workspace

cloud. Each target is given a random orientation. The inverse kinematics for each target point is

then solved and the solution times, displacement and angular errors are computed and recorded.

These results have been previously published [Lichter-2].
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E.4. Actuator control

A hyper-redundant BRAID would need a large number of actuators. In future, the actuators

would be expected to be polymer-based smart materials, such as conducting polymers and

electrostrictive polymers [Madden, Pelrine]. In the near term, shape memory alloys (SMAs) are

being used as surrogate muscle actuators. These alloys can be used as actuators, as the ratio of

the deformation stress to the recovery stress can be higher than 10 to 1 [Gilbertson]. To actuate

the BRAID element, the actuators need to be triggered selectively, as required by the inverse

kinematics. Conceptually, such a binary control is simple requiring no sensory feedback.

However, a large number of actuators can rapidly make the physical realization of such a system

difficult, if each actuator requires unique power supply lines. A multitude of wiring introduces

possibility for error and would result in additional weight and volume, large external forces, and

complexity. The BRAID uses a more compact and efficient form of supplying power and control

(see Figure E-7). A common power line and ground are provided to all the actuators. Each

actuator has a small "decoder" chip that can be triggered into either binary state by a carrier

signal "piggybacked" on the power line. The carrier signal is a sequence of pulses that identifies

a unique address in the form of a binary word for the actuator that requires toggling. This

architecture reduces the wiring of the entire system to only two wires (see Figure E-7).

Signal line
SMA wires (piggy backed on ^. B . ..

main power line) 2-' output lines (one for each SM A)
ea SM has ass ' ad ss

each SMA has as "OFF' address

On/Off cormnand

+V Decoder
IC

To SMA Main power
Power line with encoded selection signal

(a) Overview of actuator control electronics (b) Power/control bus decoder architecture
Figure E-7: SMA power and control bus

The signal (consisting of a sequence of pulses) is extracted from the main power line by a
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simple Thevenin voltage divider. This is driven through a de-bouncer circuit to remove noise. A

counter adds the number of pulses in the pulse train. The output of the counter forms the binary

address of the SMA to be triggered (on or off). A buffer between the counter output and the

latching circuit prevents intermediate count values to accidentally trigger the wrong SMA.

The buffer can be implemented in several ways. Two possibilities are described here.

First, a RC delay circuit can be used. The resistor (R) and capacitor (C) values can be changed so

as to adjust the rise time (t = 0.63 R C), to allow sufficient time for the entire signal to be

processed by the counter before TTL (or CMOS) voltage thresholds are reached. Hence, the

output of the counter affects the latching circuit only after a delay equal to the rise time. To be

practical (allowing for variations in signal transfer time), this may require large values for the

resistance and capacitance terms, making the circuit bulky.

A second option for the buffer is to use a series of flip-flops triggered by an end-of-pulse-

train flag, added to the signal line in the form of a voltage spike. By introducing another voltage

divider between the signal line and the buffer, all address pulses may be ignored as they would

lie below the TTL (or CMOS) voltage threshold level. The buffer would be triggered by the end-

of-pulse-train flag. For example, for TTL thresholds (1.3V), the signal line with address pulses

would peak at 2V. A 2.5:1 voltage divider would force the buffer to see a 0.8V (<TTL thresh.)

signal. The buffer trigger pulse would peak at 5V on the signal line. This would force the buffer

to see a 2V (>TTL thresh.) signal, thus triggering it. This end-of-pulse-train flag can also be used

to reset the counter. In testing, the second method proves to be more reliable and is implemented.

After the buffer acquires the signal, a latching circuit decodes the address using standard

combinatorial logic, and latches it to the appropriate actuator trigger line using sequential logic

(see Figure E-8). For simplicity in fabrication each decoder chip can be identical, having as
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many output lines as there are actuators. However, for any decoder chip, only one line is

connected, thus providing unique addressing.

B SA
u v SMA SMA,
0 0 SMA SMAI'
01 0 1

Be10 1 0n1 11 1 1SMA2

(u,v) =>(1,O) when SMA is to be turned on
(u,v) =>(O,1) when SMA is to be turned off
(u,v) =>(O,O) when SMA is to be unchanged

Figure E-8: SMA power bus address decoding and latching electronics

E.5. Experimental system

The experimental system constructed is shown in Figure E-9. It consists of five parallel link

stages. With binary control this structure has 23x5 (or 32768) possible states giving the device

suitable freedom for a number of applications. For other applications this could be extended to

10 or 20 stages giving 23x20 (approximately 1018) possible states. While this closely approximates

a continuous workspace, it leads to some interesting inverse kinematic problems due to the

hyper-redundancy of the system, (see Section E.3).

Figure E-9: Experimental platform of BRAID
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