
F

Design and HCI Applications of a Low-Cost

Scanning Laser Rangefinder

by

Joshua Andrew Strickon

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1999

© Joshua Andrew Strickon, MCMXCIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document ENG

in whole or in part. (I ;

Author
Dertment of Electrical Engineering and Computer Science

Feb 3, 1999

Certified by..........
Joseph Paradiso

Principal Research Scientist
Thesis Supervisor

Accepted by...
ArthvriC. Smith

Chairman, Department Committee on Graduate Students

Design and HCI Applications of a Low-Cost Scanning Laser

Rangefinder

by

Joshua Andrew Strickon

Submitted to the Department of Electrical Engineering and Computer Science
on Feb 3, 1999, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

A low-cost scanning laser rangefinder was developed and optimized for applications
involving real-time human-computer interaction (HCI). The usable range extended
across several meters, enabling the device to be applied to such applications as track-
ing hands (e.g., as in touchscreens) in front of large displays. The system was imple-
mented as a continuous-wave, quadrature phase-measuring rangefinder. This thesis
will examine the current states of laser rangefinders and discuss the design and func-
tion of the prototype system, as well as propose and demonstrate new HCI applica-
tions of such a low cost device.

Thesis Supervisor: Joseph Paradiso
Title: Principal Research Scientist

2

Acknowledgments

I'd like to thank Joe Paradiso for advising me on this project for the past few years.

We actually made it.

I'd also like to thank Tod Machover and the Opera of the Future group for sup-

porting me during this project.

I'd like to thank Neil Gershenfeld and the Physics and Media Group for help and

support.

I would like to thank Pete Rice for his involvement with the SIGGRAPH instal-

lation and for providing interesting content to be used with the Rangefinder.

I would like to thank everyone in the new Responsive Environments group for

providing a place to setup the rangefinder.

I would like to acknowledge the support of the Things That Think Consortium

and the other sponsors of the MIT Media Laboratory.

Finally, I would like to thank my family for supporting me.

3

Contents

1 Introduction 10

1.1 HCI Motivation and Existing Methods 10

2 Rangefinding 16

2.1 Advantages of Laser Rangefinders . 16

2.2 Methods of Rangefinding . 17

2.2.1 Triangulation . 17

2.2.2 Time-of-Flight . 18

2.2.3 Continuous Wave Phase . 19

3 Design of the Rangefinder 21

3.1 Triangulation . 21

3.1.1 Lateral-Effect Photodiode Camera and Scanning Assembly . . 22

3.1.2 Synchronous Detector and Position Computation 23

3.1.3 Data Acquisition and Analysis 25

3.2 Continuous Wave Phase . 25

3.2.1 Avalanche Photodiode Camera Imager 28

3.2.2 Laser D river . 29

3.2.3 Optical Assemblies . 30

3.2.4 Quadrature Clock Generator 31

3.2.5 Demodulator . 32

3.2.6 Voltage Controlled Amplifier 34

3.2.7 Microcontroller . 35

4

3.2.8 Embedded Code . 35

3.3 Calibration Program . 38

3.4 Numerical Methods . 39

3.4.1 Linear Least Squares Fit . 39

3.4.2 Nonlinear MATLAB Fit . 41

3.4.3 Polynomial Fit . 42

3.5 Performance . 45

4 Applications 48

4.1 It W orks! . 48

4.2 Stretchable Music . 49

4.3 Mouse Pointer. 51

4.4 Two Handed Approaches . 53

5 Conclusions 54

5.1 Mini Time of Flight. 54

5.2 Microscanners 55

5 .3 3D . 56

A Schematics 58

B Source Code 62

B.1 Embedded Code . 62

B.1.1 PIC . 62

B.1.2 Hitachi SH-1 . 72

B.2 Matlab Scripts . 99

B.2.1 Lasercal.m . 99

B.2.2 Dltap.m . 103

B.2.3 Postplot.m . 104

B.2.4 Bernd.m . 105

B.3 PC Software . 108

B.3.1 Laser Interface . 108

5

B.3.2 Serial . 130

6

List of Figures

1-1 Chromakey Technology . 11

1-2 Gesture W all Setup . 12

1-3 Gesture W all In Use . 13

1-4 The Media Lab's SmartDesk, Tracking hands with Multiple Cameras 14

2-1 The Softboard from Microfield Graphics 17

3-1 Triangulation Rangefinder . 22

3-2 Triangulation Rangefinder Scanning Head 23

3-3 Triangulation Position Detection Circuitry 24

3-4 Drawing in the air, above a Smart Tabletop, with the Triangulation

R angefinder . 26

3-5 Block Diagram of CW Phase-Measuring Rangefinder 27

3-6 Camera Optics, with Camera Vertically Displaced from the Laser . . 31

3-7 Camera Optics with Hole in Mirror and Coplanar Camera and Laser 32

3-8 Scanning Optics, Front and Back Views 33

3-9 Demodulation Electronics Rack Unit 34

3-10 Rear-Projection Baffle Setup . 37

3-11 Scope Trace of One Range Channel with Two Hands 38

3-12 Linear Least Squares Fit o- = 41 VGA pixels across a 8' X 6' screen . 40

3-13 Nonlinear Least Squares Fit o = 32 VGA pixels across a 8' X 6' screen 42

3-14 Fifth Order Polynomial Fit o = 4 VGA pixels across a 8' X 6' screen 43

4-1 Laser Wall Installation Diagram . 49

7

4-2 First Musical Installation Tracking Two Hands 50

4-3 Stretchable Music Installation . 51

4-4 Laser Mouse Program . 52

A-1 Demodulator Schematic . 59

A-2 Front End Amplifier Schematic .. 60

A-3 Laser Driver,Voltage Regulation and Laser Power Control Schematics 61

8

List of Tables

3.1 Serial Data Stream . 47

9

Chapter 1

Introduction

As computers are slowly creeping out of their traditional settings, they will require

new interfaces[Par98]. For example, there is currently no cheap, easy and universally

applicable way of getting accurate real-time measurements of a person's gesture in an

immersive environment. More specifically, different technologies have been applied

in HCI (Human Computer Interaction) research and development to track the posi-

tion of hands and objects atop intelligent surfaces. None of them so far have been

accurate, cheap, fast and generally reliable enough to warrant their application in

tracking hands above large interactive (e.g. display) surfaces. In recent years, laser

rangefinders have been a tool of surveyors[Re90], and aid to soldiers[Urb95] and eyes

for robot vision[Eve95]. To meet such requirements, scanning laser rangefinders have

typically cost several thousands of dollars and produced results of sub-millimeter ac-

curacy and/or attained kilometers of range measurement. This thesis describes the

development of much lower cost scanning laser rangefinders with moderate resolution

and only several meters of range, well-suited to working as an input device for large

screen displays.

1.1 HCI Motivation and Existing Methods

Non-contact user interface design has been addressed in a variety of fields by the use

of multiple disciplines. A familiar illusion of a non-contact interface most commonly

10

Figure 1-1: Chromakey Technology

takes form during the evening weather telecasts (Fig. 1-1), where chromakey tech-

nology allows actors to be placed in a scene through the use of a blue screen. By

replacing the blue back drop with a video image, a person can be situated anywhere.

This technology doesn't allow for much interaction though, as the actor sees only the

blue screen, and must observe an off-camera monitor to see himself as immersed.

Early uses of non-contact interfaces date back to the 1920's, with the work of Leon

Theremin[Cha97]. His use of capacitance proximity sensing as a musical instrument

was the earliest electronic, free gesture device. More recently, other types of non-

contact sensing have been applied to HCI applications in The Brain Opera[Wil97], a

large scale interactive music project developed at the MIT Media Lab. The sensing

systems varied from sonars and radars to electric field sensors[Par97]. Electric Field

11

Receiver Sensors

Video
Projector

Performer
MU

IM)
0

0

Transmit Antenna Calibrator
Sensor

Figure 1-2: Gesture Wall Setup

Sensing has been used to track gesture in one of The Brain Opera's installations,

measuring the body's motion in front of projection screen[SWD+98]. This installa-

tion was called the Gesture Wall (Fig. 1-3). Here, as in Fig. 1-2, the user's body was

driven by a weak electric field coupled in through the floor; a set of receive electrodes

were placed at the edge of the display perimeter, measuring the body's distance via

capacitive coupling. The architecture of this system, however, didn't provide the

ability to track repeatably. The ambiguity as to what part of the body the system

was tracking put undue constraints on the body's position and posture.

Other approaches have used video systems[Wre97). Computer vision research

seeks to solve some of the same problems, but requires large processing on the part

of the host computer. The performance overhead is considerable and these systems

generally tend to be very sensitive to background light and clutter, often relying on

high contrast of a person's image. They also can require expensive computers to

implement the tracking algorithms in real time. They often try to correct for many

12

Figure 1-3: Gesture Wall In Use

of these problems and derive 3D through the use of multiple cameras[Aya9l] as in

the SmartDesk installation (see Fig. 1-4)[AP96], although still costly, introducing

more ambiguity and processing, and not well-suited to tracking hands just above the

screen.

Other commercial optical systems have been released for such interfaces. The

Dimension Beam, from Interactive Light[www.interactivelight.com], uses the simple

intensity of an infrared light source, as reflected off a person's hand, to measure

range[FW95]. This system, however is a one-dimensional sensor and is sensitive to

material color and background light, as it responds only to unprocessed intensity.

The largest commercial market for 2-D surface tracking devices has been in "smart

wallboards", that digitally record handwriting. While many of these systems require

contact or pressure to be applied against the sensitive surface (working like a large

touchscreen), others detect the position of objects just above the wallboard. Most

of latter employ optical sensing, which enables simple, passive reflecting targets to

be easily detected in a sensitive plane defined by a collimated light source, such as

13

Stereo Cnmeres

Figure 1-4: The Media Lab's SmartDesk, Tracking hands with Multiple Cameras

a diode laser. The requirement of these retro-reflectors detracts from an interface's

ability to be transparent to the user and effective in allowing natural motion. Many

of these wallboard sensors are not by themselves ranging systems, but rather rely on

triangulating multiple angular measurements. These systems then have the drawback

of being able to unambiguously track only a single object.

Other technologies are also being used in attempts to create interactive surfaces.

The Holowall[ROMK98] is an installation, designed by researchers at Sony, that em-

ploys IR-sensitive cameras behind a screen with rear projection[RM87]. There are also

IR transmitters behind the screen that blast the surface with invisible IR light. The

video cameras are sampled by a computer and the amount of IR radiation reflected

from people on the front side of the IR-transparent projection screen is measured

by the cameras. This method is very sensitive to background IR light and clutter,

as well as having the large overhead of the video processing. It also requires an

14

IR-transparent display screen.

There is essentially no non-contact interface available at the moment that can

track a user interacting with a smart wall without introducing considerable constraints

or performance compromises. This prompted research into a smarter interface, and

encouraged a look at scanning laser rangefinders, which measure both range and angle

from a single location.

15

Chapter 2

Rangefinding

2.1 Advantages of Laser Rangefinders

Laser Rangefinders have the capability of tracking objects in free space without ambi-

guity. The laser highly-collimated beam provides a unique sample point that enables

this method to accurately track particular objects over large ranges in distance. In

addition, the amount of time it takes the light to reach the target and return as reflec-

tion can be accurately measured, enabling one to use the speed of light as a reference

for measuring distance, as incorporated into a variety of laser rangefinders. Sonar can

also be used, but the travel time of sound is 6 orders of magnitude longer than that of

light. There are also other optical rangefinding techniques that rely on triangulation,

but these simply take advantage of the unique sampling point or pattern and do not

use the time-of-flight of the beam. Radar and sonar generally have much broader

beams, thus cannot be used to easily image the intricacies needed to track precise

human hand gesture.

16

Figure 2-1: The Softboard from Microfield Graphics

2.2 Methods of Rangefinding

2.2.1 Triangulation

The most common laser rangefinders, triangulation devices, come in two varieties.

The first employs a single sensor. These devices optically image (via a lens) onto a

position-sensitive photodiode or an imaging array. With every change in range, there

is an associated change in the incident angle, hence imaged position of the reflected

beam. This technique is commonly used in optical proximity sensors[CG95]. This

measurement is nonlinear, asymptotic with distance. These devices are often used

for profiling surfaces[PTR+98] and typically have short active ranges, well suited to

capturing 3D surfaces for computer graphics applications. A compact device can be

constructed for a reasonable cost, but it will not meet the required accuracy spec-

17

ification across several meters[BFB+98]. Another type of triangulation rangefinder

is one that uses two incident beams at a fixed angle. The distance between the two

beams imaged is thus a function of range, This system is also nonlinear and has the

additional problem of not being able to be scanned planarly. This system is often

used for surface imaging on a very small scale[Rea97]. The third type of triangulation

system uses two scanners and independently calculates the angle of an object relative

to each scanner, purely determining its x,y position. A well known example of the

system is the "SoftBoard" by Microfield Graphics[Eg94] (See Fig. 2-1). This system

incorporates the two displaced laser scanners atop a white board, each of which only

measures angle. A user is required to write with special pens identified by a barcoded

retro reflector on the tip. This system is only used to track a single object due to the

requirement of the dual scanners. These types of rangefinders work well in this appli-

cation, but are clearly not the best solution for a free-gesture, multi-hand, bare-hand

input device over a large surface.

2.2.2 Time-of-Flight

Time-of-flight laser rangefinders[Rea97] rely on a simple principle. They function

by measuring the time that a pulse of laser light takes to eminate out, reflect off

a target and return to a reciever on the rangefinder. This measurement is linear

with distance, improving on triangulation techniques. This system employs the least

analog hardware, only requiring a pulse generator and a simple high-gain reciever.

Since one only requires a logic-level signal from the returning wavefront, a simple

fast amplifier circuit can be used. The system relies on a high speed time-to-digital

converter(TDC)[Gen9l] (potentially a just a fast counter), and a fast photodiode to

maintain the timing information. Since this method isn't bound by distance, it is

easily scaled for varying ranges. Many methods employ dual phase-locked clocks for

varying levels of accuracy[BS91]. These rangefinders are the type that are most often

used on military aircraft and vehicles. Theoretically, they could be scaled easily and

used most effectively, since they are digital in many aspects.

There are variations on the time-of-flight rangefinder that measure frequency.

18

The Acuity rangefinder uses such technique[www. acuityresearch. com]. It measures

the frequency of a an oscillating feedback loop composed of a laser diode and the

receiver; the transit time of the light to and from the target forms the delay line

that defines the oscillator's frequency. In both types of devices, the receive and

transmit electronics can be very similar, but the fundamental output is different, one

being the period and one being the frequency. The frequency measurement can be

done easily using analog or digital technologies. The period can most easily be done

digitally. Time-of-flight rangefinders have the problem of being partially sensitive

to background noise, since this method doesn't synchronously detect the laser; they

generally use a very intense but brief pulse of laser light to readily be discriminated.

2.2.3 Continuous Wave Phase

For our purposes, phase-measurement devices improve on triangulation rangefinders

in many ways. The first and most important distinction is that phase is a linear

measurement. Phase-measuring devices determine distance by determining the phase

delay of a continuous-wave, amplitude-modulated beam. The major limitation to

such a system is given by the modulation frequency, as the range measurement will

phase-wrap after one wavelength is reached between the laser and photodetector

(a half-wavelength from the scanner to the object if the laser and detector are co-

located), and the achieved resolution is inversely proportional to the wavelength.

Since we are considering the speed of light, even at tens of Megahertz of modulation,

the wavelength is still several meters. Because they are synchronously detected,

phase-measurement devices are also less sensitive to background light and noise as

well. These are often used for high-end measurement applications, (producing sub-

millimeter resolution across large ranges) [HHO94], and at today's prices, the cheapest

of these systems that respond fast enough for real-time scanning can still cost on the

order of $10,000.00, which is too expensive for common HCI usage. The tolerances

for user interface applications aren't that strict, however, and the same techniques

can be incorporated in a less accurate and lower-range version that can be designed

at lower cost.

19

This, as are of all the devices introduced here, is still an optical system, thus is

subject to occlusion of inline objects along a single ray; usually answerable through

software tracking filters[RK94] or dual scanners.

20

Chapter 3

Design of the Rangefinder

Two different rangefinders were developed using two of the methods outlined in Chap-

ter 2. Both a triangulation device and a continuous-wave phase measurement device

were constructed. Although the phase device was the obvious winner theoretically,

we chose to build the triangulation rangefinder first, as it was electrically much sim-

pler. We found that the non-linearity of the triangulation range measurement was

unsatisfactory for a compact user interface over long distances, but were able to pull

out some useful data when scanning a small area. After more electronics design,

we were able to build the phase-measuring device. Two units were constructed, a

prototype using mostly hand-stuffed boards and a second revision, using all printed

circuit boards. The first version was also built using expensive off-the-shelf prototyp-

ing optics hardware, while the second version was built using simple, custom-built

mechanical assemblies. After another modest design simplification, this device should

be ready for prompt duplication and limited-run manufacturing.

3.1 Triangulation

A triangulation rangefinder was constructed as a starting ground for the development

of low-cost laser hand trackers[PS97). As this technique can be explored using video

cameras or simple, low-frequency photodiode circuits, it is a relatively easy first step

to examine the utility of such devices. Our triangulation prototype consisted of two

21

Lens 1-axis
PSD

Synchronous Detection
See only 260 kHz chopped laser

er Diode

Scanning
Mirror

Figure 3-1: Triangulation Rangefinder

components; a scanning head and a synchronous photo-detector.

3.1.1 Lateral-Effect Photodiode Camera and Scanning As-

sembly

The head-scanning module consists of a few subassemblies. It contains the laser

driver, the lateral effect photodiode camera, the start and stop phototransistors and

the scanning optics. This arrangement is depicted in Figs. 3-1 and 3-2. The scanning

optics are arranged to align the laser in a vertical line with the camera. The scanner

itself is a cut piece of mirror, glued into a delron mount, attached to a DC toy

motor. The mirror assembly scans the camera view and laser together, such that

the camera images laser reflections along a constant vertical line. The photodiode

22

Figure 3-2: Triangulation Rangefinder Scanning Head

camera contains a one-dimensional Hamamatsu lateral effect photodiode and front-

end amplifier for the top and bottom signals. The phototransistors are used to trigger

the microcontroller to start and stop sampling at the beginning and end of the scan.

The two photodidode signals, along with the phototransistor signals, are sent to

the main rack unit. Although a video camera could be used to image the reflected

laser spot[Bov88], we opted to use the lateral effect photodiode system because of

the attenuation of background light from synchronous detection and the lack of any

image processing overhead.

3.1.2 Synchronous Detector and Position Computation

The laser is amplitude modulated with 262Khz square wave. The rack unit contains

a synchonous detection circuit as well as the sum and difference computations. The

23

ilarization I .. iser 1?angcf inclcr w.d.

b o t .4 o o 0 tf
lock mroLcor A(;(1(1I AtC IA a +5+12

Figure 3-3: Triangulation Position Detection Circuitry

following equations are used to determine the asymptotic range, where top and bottom

are the corresponding amplified photodiode signals. The normalized position of the

imaged spot on the photodiode(y) can be calculated via Eq. 3.1. The distance(r) can

then be computed with an additional scale factor(s, the baseline distance separating

the detector and the laser), the focal length of the photodiode optics(f0), the resulting

magnification factor(m.) and the angle of the incident beam to the photodode's lens

as measured from the baseline(9).

top - bottom (3.1)
bottom + top

24

sfo (mo + 1) cos(O) (3.2)

After the signals are amplified in an AGC amplifier(using the demodulated sum as

a reference), and brought to baseband by the demodulator, this computation is done

using two simple opamp circuits that are then fed into a multiplier circuit configured

as a divider. The phototransistors are used to trigger a ramp circuit, used as an

analog timing reference for interpolating the mirror angle between the start and stop

pulses. The ramp is built out of a phase-locked-loop, locked to the motor speed.

This allows the unit to maintain a continuous measurement of angle, independent of

average motor speed. The ramp signal, along with the range signal, is sent to the

microcontroller board. An image of the circuit boards appears in Fig. 3-3.

3.1.3 Data Acquisition and Analysis

A data acquisition board based around the Motorola 68HC11 microcontroller is used

to interface the rangefinder to the host computer. It performs limited data analysis

and reduction. Figure 3-4 shows this system in operation, tracking a hand across a

scanned tabletop. However, this system was never used with a more sophisticated

program, as it didn't provide enough range for the intended application. The use-

able range was less than one meter. The asymptotic falloff with 1/r (see eq. 3.2)

severely limited the dynamic range of the system. This opted for developing the

phase-measurement device.

3.2 Continuous Wave Phase

A continuous-wave (CW) phase-measuring rangefinder was constructed[SP98]. Two

versions were built, a prototype and more robust version for public installations. For

the purpose of the design, we shall describe the second, better-perfected version. The

circuits were similar in both cases. The major changes were mostly in data acqui-

sition and software. Both devices were displayed internally at the Media Lab. The

second device was shown with a public installation at SIGGRAPH 98[SRP98]. The

25

0.7

0.5

0.3-

0.1.
Scanner at (0,0)

0 0.2 0.4 0.6 0.8
X (m)

Figure 3-4: Drawing in the air, above a Smart Tabletop, with the Triangulation
Rangefinder

continuous-wave device allows for a measurement linear in r. This is important in

measuring long distances, allowing the device to return a linear measurement with

the dynamic range evenly distributed about the active area. The continuous-wave

device measures range by detecting the phase slip of an amplitude modulated laser

beam. The phase slip can be measured by a phase detector or by quadrature detec-

tion. Quadrature detection allows one to disregard any phase loss in the circuit by

calibrating the range after it is setup. In both cases, to avoid phase-wrap and range

ambiguity, the measuring range must not exceed one half wavelength of the modu-

lated beam (accounting for the return path as well). Thus the farthest distance that

one can unambiguously measure here is one half wavelength. We chose a modulation

oscillator frequency(25MHz) appropriately such that the allowed range of phase is

within a reasonable amount of the distance we would like to measure. This produces

26

to host AD1
Cotrn Finds amplitude Low-Pass0

PDi

parameters - LwPsXDa

LowPas X * YA-

In ~ MPY600

MAX436 Dust AD603
Tuned Amplifier AG6

Figure 3-5: Block Diagram of CW Phase-Measuring Rangefinder

the following wavelength.

c 3x108_M
A - S I 12m (3.3)f 25Mhz

This A C 12 meters thus allows us to measure up to 6 meters away from the

rangefinder, well suited to the projection surfaces that were intended. It is possi-

ble to easily change the oscillator frequency along with the demodulation filter cutoff

and thereby change the measurement range of the rangefinder for other applications.

The rangefinder was constructed modularly. As with the earlier triangulation

rangefinder, the laser and receive optics and electronics were all in one unit. The

demodulator was in a separated rack unit along with the microcontroller interface.

As the operating frequency of the phase system increased by two orders of magnitude

beyond the triangulation unit, many of the components were upgraded to reflect that

change. This device was built and satisfied our criterion for such a system. A block

diagram is shown in Fig. 3-5 and described below. Schematics of the system are given

in Appendix A.

27

3.2.1 Avalanche Photodiode Camera Imager

The sensor for the system was a EG&G Optoelectronics CA30817E avalanche pho-

todiode (APD). The APD operates in avalanche breakdown mode and creates a high

gain junction. In order to operate in the avalanche mode, the photodiode requires a

400 volt back bias. This is accomplished by using a EMCO High Voltage Co. step

up inverter. It is coupled to the photodiode by a simple passive low-pass filter stage,

to attenuate noise. The photodiode camera contains two circuit boards connected

back-to-back. The first board is the first amplification stage. The second board

contains the second stage of the front end amplifier, an AGC, a tuned filter, and

a line driver. The boards are mounted in a machined block of aluminum. A Thor

Labs 1" optics mount is attached to the the block. A delron ring was machined to

center the photodiode in the optical assembly. This is important, as the total active

area of the photodiode is only 1.5mm 2, making alignment critical. The first board

requires only +12 Volts. The second board runs with +5 and -5 voltage rails. These

voltages are regulated on the board by 7805 and 7905 series regulators. The photo-

diode is directly coupled into a cascade of 2 Minicircuits MAR-2 2 GHz, low-noise,

monolithic amplifiers. The MAR-2 stages are coupled together, as well as coupled to

the second board by .1pjF capacitors. The two MAR-2 stages provide about 25dB

of gain, each MAR-2 providing approximately 12.5dB. The first component of the

second amplifier board is an Active Gain Control (AGC) circuit[AD695]. The AGC

is built using two Analog Devices AD603 variable gain amplifiers. They provide a

low-noise, high-gain circuit circuit that can run at the frequency we desire. A switch

allows this circuit to be flipped between an adjustable constant gain or the AGC

mode, with adjustable reference. The AGC amplifier is able to provide up to 83dB

of gain. In actual use though, the AGC was always on and the constant gain was

never used, although handy for debugging. The feedback loop, following the AGC, is

closed after an additional tuned amplifer stage. The tuned amplifier is constructed

out of a Maxim MAX436 wideband transconductance amplifier. It is tuned to the

modulation frequency using an iron core inductor. This allows the Q of the circuit

28

to be maximized(providing an additional 30dB of gain). The MAX436 is followed

by two Linear Technology's LT1223 100MHz current-feedback amplifiers. They are

used as low-gain cable drivers (in actuality each provides an additional 7dB of gain

then reduced by a factor of 2 from cable matching). A 50Q BNC cable follows this

stage and connects to the rack unit demodulator. The signal following the last stage

is well-conditioned and stable enough to be fed directly into the demodulator. As

the gain of both boards and photodiode together approaches 200dB, it was impor-

tant to appropriately shield the boards and take considerable layout effort to prevent

the laser modulation from contaminating the photodiode signal. The boards each

have top and bottom ground planes. The aluminum mount is also grounded. The

openings of the housing are covered by copper plates. The performance of this unit

was optimized in the second prototype by incorporating lessons learned from the first

prototype into the PCB board layouts.

3.2.2 Laser Driver

The laser driver board was also attached to the main scanning assembly. It is housed

in its own floating, shielded box, isolating it from the receive electronics. It contains a

50Q line receiver for the 25MHz clock signal. The output of this receiver is connected

to the gate of a fast Supertex VN1304 MOSFET. The drain of the MOSFET is wired

to a 68Q resistor, put in series with the laser diode, used to limit the drive current.

A 5mW visible laser diode is used. For various tests, depending on the availability

and cost, a range of wavelengths were used, varying from 630-670nm. The laser was

to be driven at about 60mA averaged current (as the laser is to be modulated with

a 50% duty cycle, the peak current can be higher than the recommended setting).

The anode of the laser diode is connected to the laser power connection of the board.

The power source for the laser diode can be switched on the rack unit. It can be a

constant 5 volts or a servoed voltage, that is a function of the demodulated receive

signals (the maximum of I and |Ql). This allows the power of the laser to decrease

with reflected intensity; e.g., increasing the measurements range by not saturating

the front end amplifier stage when an object is close to the scanner and avoiding eye

29

damage should someone look into the laser at very close range. The performance

of the laser drive circuitry allows the laser to be modulated well above the required

25MHz.

3.2.3 Optical Assemblies

The optical system(Fig. 3-6) had to be as simple as possible, yet allow for alignment

adjustments in all axes. This was accomplished by shooting the laser at a right angle

to the lens tube of the camera. A mirror was positioned under the lens tube to reflect

the laser along the central axis of the scanner. The mirror can be angled up and

down as well as left and right. Although the laser is vertically displaced from the

camera's view, the mirror is adjusted such that the laser focuses at infinity onto the

center of the photodiode. This geometry enables objects to be detected when they

are displaced at least 6" from the mirror. A photo of the actual refined scanning

assembly appears in Fig. 3-8. One might think that the best solution would be to

use a beam splitter, but the loss of optical power on the receive end, together with

some difficulty in removing residual reflection, would not be acceptable in this design.

An option for future designs(see Fig. 3-7) could employ the trick of drilling a small

hole in a mirror, angled at 45 degrees in front of the lens. The laser could then be

shot through the hole. As the lens is much bigger than the hole, the lost area of the

hole gives insignificant loss in the amount of laser light arriving at the receiver. This

configuration would require the least adjustment of all, as the laser and camera views

would be colinear.

The lens and the scanning mirror are aligned to scan through approximately 90

degrees. The scanning mirror is a surplus stepper motor fitted with a machined 4-

sided mirror mount. Each facet is 1.5" wide by 1" high. This allows the 1" lens

to collect a reasonable amount of light across the scan. Two phototransistors are

mounted on each end of the scanning range (labeled stop and start in Figs. 3-6 and

3-7). The collectors of the transistors are pulled up to 5 volts with a resistor in parallel

with a filtering capacitor. The collector signals are conditioned by a 4050 buffer. The

pullups and the buffers are located on the demodulator board. This generates a clean

30

Start

Sto

Camera

Scanning Mirror

Laser

Figure 3-6: Camera Optics, with Camera Vertically Displaced from the Laser

set of timing signals for the digital board. This planar scanning system works well

for the application of scanning a smart surface, but could be redesigned to scan other

geometries.

3.2.4 Quadrature Clock Generator

The quadrature clock generator is used to generate two clock signals, 90 degrees out

of phase. The initial clock signal is generated by a 50 MHz crystal oscillator. The

signal is split and fed into two 74F86 XOR gates. One is configured as a buffer and the

other as an inverter. This is to keep the propagation delays the same for both signals.

These signals are wired to two 74F74 D flip-flops, configured as toggle flip-flops. The

clock signals are connected to the clock inputs. The D output is connected to the Q

input. Since one of the clocks is inverted, one flip-flop is triggered on the rising edge

while one is triggered on the falling edge. This creates two 25MHz clock signals, 90

31

Start

Laser

Scanning Mirror

Figure 3-7: Camera Optics with Hole in Mirror and Coplanar Camera and Laser

degrees out of phase, thus providing our I and Q references. The clock signals are then

buffered by using the unused XOR gates. One in-phase(I) clock signal is connected

to a differential line driver to drive a 50Q cable to the laser. One in-phase(I) and

one quadrature(Q) signal are also coupled to the multipliers for demodulation by two

toroidal transformers, avoiding a direct ground connection thus providing the least

amount of noise and clock feed through.

3.2.5 Demodulator

The demodulator is the key to the quadrature phase detection circuitry. It is where

the high and low frequency sections of the board meet. A photo of the completed

32

Figure 3-8: Scanning Optics, Front and Back Views

circuit appears in Fig. 3-9. The circuit is relatively simple. It consists of two Burr-

Brown MPY600 analog multipliers and a pair of low-pass filters. The in-phase and

quadrature reference signals from the clock generator are terminated with 50Q resis-

tors following the toroidal transformers, as mentioned above. One of the multipliers

is fed with I and the other with Q. The signal from the APD camera is also connected

to both multipliers. This will modulate the photodiode signal to baseband and twice

the fundamental. A low-noise, low-pass filter stage follows the multipliers to select

the baseband signal. An Analog Devices OP-297 low-drift amplifier is configured as

the low-pass, with a capacitor and resistor in feedback. The positive terminals of the

opamps are set by two potentiometers, determining the DC offset of the signal. The

cutoff frequency was set fairly low(approximately 500Hz) to pass the lowest amount

of noise, but high enough to enable a 30Hz scan rate. In running, this cutoff could

probably moved higher, as the optimized layout provided a very clean signal. The

photodiode output is directly demodulated to baseband in this design. This allows

a simple circuit, but has the added problem of not allowing another AGC to be run

at an intermediate frequency. An improvement of the design would demodulated the

signal to an intermediate frequency and then again to baseband. The Burr-Brown

33

Figure 3-9: Demodulation Electronics Rack Unit

multipliers, however, were seen to work well enough in this application to allow the

direct-to-baseband mode.

3.2.6 Voltage Controlled Amplifier

The demodulated signals are sent to a voltage-controlled amplifier stage. It is built

out of an Analog Devices SSM2164 quad, matched voltage-controlled amplifer. The

wiper of a 10KQ potentiometer is used as the gain control voltage. The SSM2164

outputs current and requires an opamp configured as a transimpedence amplifier on

the output to produce a voltage. A Maxim MAX474 is used. The MAX474 is a

single supply opamp and can run 0 to 5 volts, making it idea for interfacing to a

microcontroller. The VCA allows both I and Q gains to be simultaneously adjusted,

preserving their ratio, which determines range.

34

3.2.7 Microcontroller

A Hitachi SH-1 7032 microcontroller running at 20MHz is used to interface to a host.

Its 32-bit architecture, along with its 10-bit analog-to-digital converters and its low

cost make it an ideal solution. For ease of intergration, a Hitachi evaluation board

was used. It contains circuitry for all of the RS-232 level conversion as well as the

reset. The I and Q channels are connected to the microcontroller's A/D inputs, along

with the start and stop phototransistor signals as logic levels.

3.2.8 Embedded Code

The embedded code was written in C for the SH-1 micrcontroller. It was compiled

and burned into an EPROM. The code is structured in such a way as to utilize

many of the functional blocks of the SH-1. The I and Q channels are digitized by

configuring the analog-to-digital converter of the SH-1 to scan-convert channels one

and two. Once configured and started, the scan converter will sample at the fastest

speed, continually updating the registers with the newest results. Upon reset, the

microcontroller begins scanning the two analog channels, determining a valid scan

interval to be between the "start" and "stop" phototransistor signals. It first takes a

calibration scan, averaging all of the samples to determine a baseline for the signals.

It then sits in a holding mode, waiting for the configuration information from the

host. The controller communicates to the host using RS-232 serial protocol, sending

8 bits without parity, at a 19200 baud rate. The angle is taken as the time on a

16-bit timer that has elapsed since the "start" phototransistor pulse. The timer is

reset before each scan.

A 'T' character is sent from the host, signifying the setting of the threshold. Two

bytes are then sent for the threshold value, high byte first. A 'W' character is sent

from the host to signify that the following 2 bytes determine the wait time. This is

the time after a valid start signal before data should be considered. This makes sure

that the reflection from the phototransistor housing isn't contrived to be a data point.

If a 'D' is sent, the processor enters into a debug mode. This will print all of the

35

results in ASCII, allowing the terminal program to be used as a debugger. In order

to reduce the number of bytes sent, they are normally transmitted in binary. Once all

of the desired configuration is set, the host will send an 'R' signifying the run mode.

This allows the unit to run continually, analyzing data while scanning, and sending

out the serial data when the laser is out of the scan range (after the stop and before

the next start). While in the scan range, a simple peak finder and data reduction

algorithm is running. The reduced data stream, containing only parameters for valid

reflection points, is then packetized and sent out as RS-232 serial data.

Data Reduction and Peak Finding

The rangefinder is normally set up as shown in Fig. 3-10, where a matte-black baffle

surrounds the projection area. Very little laser light returns from this surface, allowing

hands to readily stand out as amplitude peaks that can be easily discriminated by a

fixed threshold(Fig. 3-11). A simple peak finder runs while the scanner is in the scan

range. A peak in the data is determined by a Manhattan metric, i.e., the sum of the

absolute value of both the in-phase and quadrature signals. When the sum goes above

the threshold level, a boolean is set signifying that you are now in a peak. The time of

the start of the peak is noted. While in the peak, the inphase and quadrature signals

are accumulated. When the Manhattan discrimator drops below the threshold, an

out-of-peak state is set. The number of peaks is incremented and the data is stored.

The time of the highest point of the peak, the time start of the peak, the ending time

of the peak, the maximum values of I and Q, along with the total sum of the I and Q

channels are stored. The maximum number of discrete peaks is currently limited to

4 in the firmware, only to reduce the number of bytes that must be sent to the host

after each scan (a faster data transfer would enable more peaks). Once all data is

sent out, this process repeats. Rather than determine the hand locations from peaks

in the reflected amplitude, they could be derived by discontinuities in the detected

range sequence. Although this would remove the need for the black baffle around the

screen, it would require more complicated embedded code, thus was not pursued in

these applications.

36

Nonreflective black frame

Figure 3-10: Rear-Projection Baffle Setup

Serial Protocol

The device, when running, continually streams data as summarized in Table 3.1. It

contains a packet of 73 bytes proceeded by a unique 4-byte start header. As the

chances of the unique combination are low, they provide a means of obtaining a

reference frame within the data stream. The next byte following the header is the

number of peaks, limited to a range of zero through 4. This allows us to only look

at the appropriate number of bytes. The data stream contains a constant number

of bytes as a simple solution, although a dynamically changing serial stream is also

possible. Once the number of peaks is sent, 18 bytes are sent for each peak in the

data. The first two are 16-bit quantities values for the maximum values of the I

and Q channels in the peak. They are sent high-byte first, as with all of the data.

The next three 16-bit values have to do with the timing of the peak. The first time

37

Figure 3-11: Scope Trace of One Range Channel with Two Hands

measurement is the time of the maximum peak height, followed by the start time and

finishing with the end time. The start and end times allow one to compute a simple

measurement of the width of the peak in the data. This gives a good reference as to

the relative size of an object. The following two 32 bit values are the sum of the I

and Q channels over the peak in the data. This is what is actually used to determine

the range data, as the maximum point can be fairly noisy. There are a total of 4

such 18-byte packets sent to the host. If the number of peaks is less than four, the

appropriate sections are ignored in the data stream. All of these bytes are sent as

binary. In contrast, the debug mode sends full ASCII, allowing a simple terminal

emulator to list the data along with printing various line-feeds and status markers.

3.3 Calibration Program

A graphical calibration program was developed. The purpose of the calibration pro-

gram was to solve for the coefficients fitting functions that mapped the rangefinder

data into graphics raster coordinates. This program calibrates the usable range as

38

well as any offsets and nonlinearities in r and 0. The program was developed on a

PC using Windows NT and OpenGL[WND96][KF97]. A five-by-five grid of data was

collected, where a marker was plotted on the screen, a hand placed into the scan

beam at that position and data taken at each successive calibration point. For each

of these twenty-five points, r and 0 were computed from the rangefinder data; r was

calculated by the following equation:

r = arctan Eoverveaki 34

(overpeakQ

where overpea is the accumulated data over a given peak, output directly from the

rangefinder's serial port, and the signed, quadrature ARCTAN2 routine was used

to map through 360' of phase. The averaged data over many samples for the 25

points was written to a file along with the expected screen coordinate values(rex, Oex).

This file was read into MATLAB[www.mathworks.com] and the coefficients for various

fitting functions were computed. These were then made available to other programs

for mapping the rangefinder's coordinates to screen positions.

3.4 Numerical Methods

3.4.1 Linear Least Squares Fit

The raw data produced by the rangefinder is essentially in polar coordinates, using

units of clock time for mirror angle(0) and quadrature phase angle for range(r). A

conversion formula is needed to translate this data into the appropriate screen raster

coordinates used by the graphics routines. This can first be accomplished by fitting

the measured rin and 0 rn to expected rex and Bex values computed from screen coordi-

nates assuming the scanner at the origin. Using the calibration program described in

the last section, a data set was written along with the corresponding expected screen

coordinates in polar form. A MATLAB program was written (Lasercal.m), to try

various kinds of fits to the data and solve for respective coefficients. The following

39

Linear Least Squares Fit of data to Raster(640 X 480) +=predicted o=expected
600

500- -

400-

0 0 0 0 0

U) +

200.

400- ++

0 0 0 +0 +0

0- O+ +

-100
-100 0 100 200 300 400 500 600 700

x raster coordinates

Figure 3-12: Linear Least Squares Fit o-_= 41 VGA pixels across a 8' X 6' screen

equations are used as a basis for an initial linear least squares fit:

rout = a. * rin + br * Oin + c, (3.5)

0t = ao 0 rn+ b0 + 0in + CO (3.6)

x = rout * cos(0t) (3.7)

y = rout * sin(0t) (3.8)

The MATLAB least-squares algorithm used this function to compute the best-fit

values for r and 0 in polar form. The variables a, b and c are solved independently for

the r and 0 equations. Once the best-fit r and 0 were computed, a simple conversion

to Cartesian screen space was performed. Fig. 3-12 shows a sample data set fitted to

these functions, as taken with the rangefinder across a 8' X 6' screen. The o- value

for this fit is 41 pixels, with the data spanning a 640 X 480 VGA grid. There is

40

some noticeable warp in the agreement from nonlinearities that this fit was unable to

describe. Clearly this can be improved.

3.4.2 Nonlinear MATLAB Fit

In order to improve on the linear fit, a more complicated nonlinear fit is tried. This

fit attempts to model some of the known sources of error and account for these. The

nonlinear fit is accomplished by the following equations.

x [(rin + roffset) * Sr + Srq * (rin + roffset)2] * (3.9)

cos [(Oi + Ooffset) * Sol - Xoffset

y [(rin + roffset) * Sr + Srq * (rin + roffset)2] * (3.10)

sin[AGn + Ooffset) * SO] - Yoffset

with rin and O6, directly produced by the rangefinder and all other variables adjusted

by the fit. The.first thing that must be accounted for is the X and Y displacement

of the scanner from the screen. This is easily accounted for by solving for an offset

(Xoffset, Yoffset) in each of these variables. Once the scanner is translated to the origin,

we can examine the errors in r and 0. Most of our nonlinear errors will occur in the

r value, as the 0 values are directly taken from an accurate 16-bit counter on the

microcontroller. The 0 value must simply be mapped to the appropriate scan angle

(e.g., 0 to 90'). This is accomplished by adding an offset and scaling the sum by an

appropriate number such the desired range of angles is computed. A similar fit is

accomplished with r except for the addition of a second-order term. The hope is that

this will remove some of the warping due to quadrature errors of the electronics. The

various coefficients were solved for using the MATLAB fmins optimization routine

and the results are shown in Fig. 3-13. The o is somewhate less than the linear

fit, and can still be improved upon. Additional perturbations arising from amplitude

and phase errors in the quadrature demodulation, bias errors, residual crosstalk and

unmodelled geometry must be taken into account.

41

Nonlinear Least Squares Fit of data to Raster(640 X 480) +=predicted o=expected
600

500- +
0+ 0 0 0 0

400- + +

(D0 0 0t+0
CU+

0
0300-

+
00 -0 0 0+ 0

+

200- +

100- +0 +0 0+ 0 + +0

011+ E) lE+
-100 0 100 200 300 400 500 600 700

x raster coordinates

Figure 3-13: Nonlinear Least Squares Fit o = 32 VGA pixels across a 8' X 6' screen

3.4.3 Polynomial Fit

As one begins to account for more sources of possible errors, the modeling parame-

terization grows more complex and one may begin to doubt the ease at which fitting

the data will possible. As you cannot explicitly account for every possible variation,

one idea is to fit the data to a polynomial. The following equation is the generic form

for all of the basis terms for an N-dimensional polynomial of order M.

M

y(i) = [fi(x; d) (3.11)

The question then becomes what order is necessary and how to find the coefficients?

This problem translates to one of searching. One possible search algorithm is cluster-

weighted modeling[Ger99][GSM]. Cluster-weighted modeling(CWM) can be used to

fit a probabilistic model to the data. In this case, a 2-dimensional global polynomial

42

o: pointing location, x:original laser data, +:corrected laser data
600 I i i I i

500
Xx

400- x -
x x

300- -
x x x

200-

100-

x

Ox 0 X &

-100 I I I I I
-700 -600 -500 -400 -300 -200 -100 0 100

Figure 3-14: Fifth Order Polynomial Fit o- = 4 VGA pixels across a 8' X 6' screen

is to be fit to the set of data taken as described earlier. A cluster-weighted modeling

package, developed by Bernd Schoner at the MIT Media Lab, was used in conjunction

with MATLAB to find various orders of polynomials. It was determined that a fifth

order polynomial was satisfactory for our data set. The data was fit using one cluster,

solving for a global polynomial for the entire parameterized space. The results can

be seen in Fig. 3-14, where o- is now 4 VGA pixels, significantly less than the other

fits. In order to use CWM, the data must first be transformed to zero mean and unit

variance in x and y. The following equations are used to transform the raw data from

43

the rangefinder:

Oscaled (7/2) * 9 in (3.12)
(Omax - Omin)

=init = r * COS(Oscaled) (3.13)

Yinit = r * Sill(Oscaled) (3.14)

Xpre (Xinit - xdata)/(-xdata (3.15)

Ypre (Yinit - ydata)/o-ydata (3.16)

The raw angle is first mapped to the range of 0 to 900 by the first equation, where

the difference between the maximum and minimum 6 values of the 5-by-5 data set

are used to scale the angles. A raw value for x and y can then be computed (Eqs.

3.13 and 3.14) using the raw rin value produced by the rangefinder. The x and y

values are then converted to zero mean, unit variance in Eqs. 3.15 and 3.16. The

data is now ready for the CWM engine to find the coefficients of the polynomial.

For consistency, similar operations are performed on the expected screen position

coordinates. The following equations are expanded forms of the generic polynomial

equation for a 2-dimensional, fifth-order fit:

xpost Axx , + Bxx ,e +Cxe +Dxx ,e+ Exxpre + F + (3.17)

Gxeypre + Hxepre + IxXeypre ypre + Kxpre +

L xreYpe + MxxpreYpre + Nxxpreype + Ox ypre +

Pxxreypre + QxXpreypre + Ry re +

Txxpreye + Uxpyre +

VX Yre

44

ypost y ,e Brx pr + C +Bx 4 + Dyxr + Eyxe (3.18)
YX pr pr prep ey r K y r

Gyx reYpre + HyX%,eypre + Iyxpreypre + Jyxpreypre + Kyypre +

Lyx pre + Myxpeyre + Nyxpreypre + YyPre +

P 2re3 r~ 3 Rn2
Yxprey re + QYyXpreYre + RYpre +

Tyxprey re + UyYje +

ljY ;re

The CWM engine has the ability to solve for all 42 coefficients. Once the fit converges,

the data can be mapped to the predicted model. As the data is now zero mean, unit

variance, this is accomplished by a reverse operation of scaling the data first and then

adding the offset, this time by the mean and o values of the expected output space.

The data is now mapped to the screen coordinates by the following equations:

Xscreen Xpost * oxscreen + Xscreen (3.19)

Yscreen ypost * ayscreen + Yscreen (3.20)

This method can aptly produce the best results as it has the mathematical language

to describe all of the local maxima and minima of the data set. It potentially has the

problem of overfitting, since as order of the polynomial increases, the model can have

many more basis terms than data points. The fifth-order fit seems to describe the

scanner's response adequately, however. The predicted model is going to be integrated

with a new two-handed application that is currently being developed(See Chapter 4).

3.5 Performance

The performance of the rangefinder did achieve our specifications. From the data, we

were able to estimate that the overall resolution met our need for millimeter accuracy.

The range did extend out to the full 6 m limit imposed by the modulation frequency;

in actuallity, the camera, once aligned, was able to see out much further. With

changes to the optics and a better mirror, the accuracy could be improved. Wobble

45

in the scanning optics created apparent noise, which was attenuated by an averaging

filter running on the host computer. The scan rate did attain 30Hz, limited by the

demodulation filter cutoff along with the size of the packet transmitted after each

scan. A faster communications path could have been established to send more data

to the host. The currently attainable 30Hz rate was fast enough for our applications,

however. It is an interesting problem in deciding how much processing the host must

do. It wouldn't be inconceivable to have all of the embedded processing running on

the host, requiring only two fast sampling channels.

The radial scan also adds limitations, since the laser beam moves faster as it tracks

farther from the source. The level of resolvable detail thus decreases with range, not

allowing smaller objects to be detected far away. Although our system could find

finger-sized objects at a 3-4 meter radius when scanning at 30Hz, extended range

could be attained by slowing the scan rate or raising the demodulation filter cutoff

(potentially passing more noise, however).

The parts cost of the system was below $500. This could be reduced further,

with additional integration. In addition, more careful design of the front-end elec-

tronics and possibly the introduction of an IF gain stage could remove the necessity

of the avalanche photodiode (which dominates the parts cost); allowing a much less

expensive PIN photodiode to be used in its place.

An important consideration is also the safety of such a system. The 5mW laser

diode had a 50% duty cycle. This, along with the active dynamic power control of

the laser, should be enough to make it safe for brief periods of eye exposure[Weh97].

The visible laser added the intrinsic ability of being extra careful in keeping it away

from the eyes, as the flash is noticeable.

46

header byte 0 1
header byte 1 27
header byte 2 48
header byte 3 187

number of peaks 0, 1, 2, 3 or 4
Inphase Peak 0 byte 1 byte 0

Quadrature Peak 0 byte 1 byte 0
Time Peak 0 byte 1 byte 0
Time Start 0 byte 1 byte 0
Time End 0 byte 1 byte 0

Inphase Sum 0 byte 3 byte 2 byte 1 byte 0
Quadrature Sum 0 byte 3 byte 2 byte 1 byte 0

Inphase Peak 1 byte 1 byte 0
Quadrature Peak 1 byte 1 byte 0

Time Peak 1 byte 1 byte 0
Time Start 1 byte 1 byte 0
Time End 1 byte 1 byte 0

Inphase Sum 1 byte 3 byte 2 byte 1 byte 0
Quadrature Sum 1 byte 3 byte 2 byte 1 byte 0

Inphase Peak 2 byte 1 byte 0
Quadrature Peak 2 byte 1 byte 0

Time Peak 2 byte 1 byte 0
Time Start 2 byte 1 byte 0
Time End 2 byte 1 byte 0

Inphase Sum 2 byte 3 byte 2 byte 1 byte 0
Quadrature Sum 2 byte 3 byte 2 byte 1 byte 0

Inphase Peak 3 byte 1 byte 0
Quadrature Peak 3 byte 1 byte 0

Time Peak 3 byte 1 byte 0
Time Start 3 byte 1 byte 0
Time End 3 byte 1 byte 0

Inphase Sum 3 byte 3 byte 2 byte 1 byte 0
Quadrature Sum 3 byte 3 byte 2 byte 1 byte 0

Table 3.1: Serial Data Stream

47

Chapter 4

Applications

The phase-measurement rangefinders were used in variety of multimedia demonstra-

tions. The second prototype was used in three different applications, most of which

were in large, public spaces. It was interesting to see the results of average users

interacting with the device. The applications demonstrated that a clear need is being

filled by such a system. Although the rangefinder can track multiple nonoccluding

hands, in many cases it was used as a mouse substitute, and not exploited to its

full capabilities. The system was shown internally at the MIT Media Lab as well as

publicly at SIGGRAPH 98[SRP98]. The laser rangefinder was set up in front of a

rear-projected screen, as shown in Fig. 4-1. The projector used was an Infocus Light

Pro 720 together with a 6' X 8' rear projection screen, and the host computer used

was a Pentium II 266 Mhz. The rangefinder camera head was connected to a rack-

mount unit containing the digital hardware and demodulator board. The rackmount

unit sent serial data to the host PC.

4.1 It Works!

The first use of the prototype rangefinder was in a simple multimedia installation(see

Fig 4-2)[SP98]. The phase-measuring prototype was used with a Microchip PIC

16C73 microcontroller interface. Although the acquired data had lower resolution

than the final design, the system worked very well. In the simple application, rotating

48

Scanning Laser Rangefinder
(tracks hands)

() (r,<)

Video
Projector

Figure 4-1: Laser Wall Installation Diagram

multicolor squares were plotted at the detected hand positions. This also worked as

a music controller for which the screen was divided into four sections. When the

presence of a hand was detected in each section, a drum loop was triggered. If more

than one hand was detected in the sensing plane, an bass-lead arpeggio was started.

The range in pitch of the apeggio would increase with the distance between the hands.

This installation was displayed at several Media Lab events and was well received.

This first software did very little analysis of the data. Further research followed to

develop algorithms for successfully mapping the data points to raster coordinates

more accurately.

4.2 Stretchable Music

Stretchable Music [Ric98] is a interactive graphical music program, developed by Peter

Rice, at the MIT Media Lab. It allows a user to manipulate a scored piece of music

49

Figure 4-2: First Musical Installation Tracking Two Hands

by stretching and pulling various parts of graphical objects. A composed piece of

music plays while various objects appear on the screen. When the objects are on the

screen, they can be manipulated by stretching and pulling on various control points.

By manipulating the objects, you can change various parameters of the music. Each

object represents a different musical layer in the piece. The system was developed

as a tool to allow users to control how a piece of music can be played back. It was

initially developed for a mouse but was later integrated with the laser rangefinder.

The second phase-measurement prototype was connected with the system. The laser

interface allowed for multiple users, but, since this was a simple mouse port, the active

cursor was simply the first peak seen in the scan of the data (e.g., the lowest hand,

first detected in the scan); additional hands generated a set of twinkling points that

tracked as well as added an ambient sound. The installation was setup at SIGGRAPH

50

Figure 4-3: Stretchable Music Installation

98 for a period of one week[Mah98]. The audience response was extremely positive,

although some people initially confused the interface for a touch pressure screen. It

had to be explained that one simply must break the beam of the laser with the hand

and nothing more. In fact, using a visible red laser as opposed to an invisible IR

beam proved to be an advantage, as the users could see the beam on their hands

when they were being tracked. As the system attracted people of all races, we were

able to attest to its adequate tolerance across skin complexions.

4.3 Mouse Pointer

A mouse-pointer application was developed using the rangefinder to drive the Win-

dows system. It sends virtual mouse commands through a windows system call. The

laser mouse program uses the same calibration routine as that of Stretchable Music.

51

Figure 4-4: Laser Mouse Program

After calibration, the program is set into a run mode, which simulates mouse clicks.

For the first application, it was only to be used as a simple interface, e.g. to bring

up web pages, drive drawing programs, etc.(Fig 4-4). When a user inserts his or her

hand into the path of the laser, a virtual single mouse click is sent to the system.

This allows a user to click, or click and drag, but not double click. It is important

to consider that this new interface offers other abilities that a mouse is lacking. As

it isn't a mouse, gestures like double-clicking are not natural in this environment

(although they could be incorporated in a number of ways, e.g. "double-clicking"

with the hand, moving in a second hand, etc). The rangefinder can detect the width

of the peak in the data. That measurement relates to the size of the object and

its range in the scanned plane. This could be used, for instance, for reaching in a

3rd dimension. The user interface of Windows could then incorporate some sense of

the 3rd dimension in the desktop. The rangefinder also tracks multiple hands. This

52

too is also not addressed by the Windows interface. It is like having multiple mice.

You could then be allowed to do true multi-tasking by operating on two areas of the

screen. Clearly, the rangefinder is not a mouse and will not replace a mouse, but

for large screens, it offers an ability to reach out and touch the objects that you are

interested in. Also, there is clearly a new area of Human Computer Interface that can

be addressed in software as to how these new, immersive, multi-parameter controllers

can fully be exploited. Other user interfaces enabled by this device will also give new

abilities. The expanded capabilites of the laser rangefinder is being further tested in

a application specifically designed for multiple hands, discussed below.

4.4 Two Handed Approaches

The use of two hands is being addressed by the development of a new musical ap-

plication. Although the application has not been completed, with the addition of

the polynomial fit, as well as some new tracking algorithms that manipulate the user

to avoid occlusion, the interface will be pushed to its limits. The application will

take a form similar to the Stretchable Music application; as a rear-projection musical

installation. The focus will be likewise that of a musical instrument. The ability to

track multiple points will be a primary goal of research. The ability to accurately

track the hands will allow the successful use of gesture recognition technology. Pla-

nar, large-area gesture can now easily and accurately be tracked, enabling a sensitive

surface that can incorporate human emotion in a new electronic musical context.

53

Chapter 5

Conclusions

Engineers are often are unaware as to the contribution they are truly making to a

field until their invention reaches the hands of the public. Such has been the case in

developing the laser rangefinder for the user interface community. It wasn't until the

rangefinder was demonstrated at the Media Lab for a technical and computer-human

interface community that I began to understand the uniqueness of such a device.

That alone didn't fully prove its worth. Demonstrating it at SIGGRAPH '98 brought

the device out to a more general audience, technically adept in many fields, but new

to many of the. ideas of HCI design. Computer programers have been plagued by

the mouse and keyboard interface that is standard on today's computers. That is

changing, and programmers will have to think of how to effectively use the emerging

hardware. The laser rangefinder is such a device. It is bringing us closer to a more

natural way of interacting with a computer. The currently-designed version is only

the first step, and other versions and modifications can be forseen, opening up even

more applications.

5.1 Mini Time of Flight

The final rangefinder that was developed was mostly analog in its construction. This

required the use of special components rated at a fairly high frequency. The cost of

such components is significant. It also requires careful planning in the layout of the

54

printed circuit boards, to avoid ground loops, crosstalk, oscillation and other effects.

A solution to such a problem is to design a device that could be more fully digital,

possibly fitting mostly into one application-specific IC or field-programmable gate

array. Such a solution could be attained by developing a miniature time-of-flight

rangefinder. The time-of-flight rangefinder relies on a simple principle; measure the

time it takes a short pulse of laser light to leave the device, hit an object, and return.

Most of the hardware could be developed in an FPGA. All that is otherwise needed is

a high-gain photodiode receiver and a laser pulser. The laser pulser can simply be a

logic line pulsing a fast driver such as the one we already have. The receiver can also

be similar to what exists in our current circuit, with the simple addition of a high-pass

filter and digital discriminator after the front end amplifier. The only problem that

exists is that of resolution. Since light travels at 3x108m/s, in order to measure with

an accuracy of one meter you need to clock the counter with a 150Mhz input(the

divide-by-two comes from the path back as well as to the object; measuring a meter

in range requires a travel of two meters). If one wanted to clock with centimeter

resolution, the clock rate rises to 100 times that frequency, which may be somewhat

unreasonable. Many systems that use this technique employ two phase-locked clocks,

thus reducing the number of bits necessary for the fast clock[BS91]. You can then use

the coarse clock for lower resolution and then add the counts of the fine clock. Other

systems use a simple time-stretcher circuit[VKY+97], quickly charging a capacitor

during the interval to be measured, then timing how long it takes it to be fully

discharged at a much lower current (hence longer interval). These overall methods

are simple, but mostly require very fast logic. Such TOF systems are most often used

in cases were higher precision isn't necessary, e.g., in military rifle sights[Urb95] or

spacecraft remote sensing[Col96].

5.2 Microscanners

The next improvement that could be addressed is that of the scanning and optical

assemblies. They can easily be made much smaller. There are two levels of minia-

55

turization. The first is simply to adopt a smaller, more integrated form, (e.g. in

analogy to the optical assembly of a CD player). By having a fully integrated design,

the optical path can be colinear. They can also be made in such a way that manual

alignment will be minimized. This is critical in fabricating a viable product. It is

also important in making the system the simplest to assemble. This miniaturized

system could then take advantage of smaller scanners such as galvonmeters. These

scanners can only support a small mirror and thus can image a smaller area. This

isn't a problem if the mirror is closer to the optics and the optics are smaller(e.g.

possible with more sensitive photonics or a more powerful laser). Such a system can

be built such that everything fits into a package the size of a camera.

A still further miniaturization may be possible at the chip level. This could

perhaps take form of a MEMS device[ML98], consisting of a scanner, laserdiode and

photodiode. This system could also interface to a second ASIC that could contain all

of the detection and driver circuitry. An installation could then counter the occlusion

problem by easily introducing more scanners. These could all be networked in such

a way that you can image not just a plane, but an entire room.

As the optical apertures are much smaller than in the device that we have built

now, the laser illumination would have to be much brighter. As the pulse is only a few

nanoseconds long in a time-of-flight laser rangefinder, this could be attained without

damaging the laserdiode or harming eyesight; the average power is still very low.

5.3 3D

Scanning three dimensions is a next possible step. The computer graphics industry

is currently using 3D laser rangefinders to scan complicated 3D models[PTR+98].

These systems are not being used for real-time HCI. They are often slow and have

limited ranges, as they are mainly triangulation devices. As the components of TOF

rangefinders become more integrated and cheaper, it is possible to forsee an inexpen-

sive version that provides the ability to scan spaces. One possibility is simply to fix

the optics of the current system such that the laser is colinear with the sensor, as

56

in Fig. 3-7. One simply attaches an x-y scanning assembly and you can scan 3D.

The other possibility to create a network of simpler miniature scanners, as described

above, and interpolate the data between them. This would create an installation that

you can walk into. To get a sense of a 3D interface, you need not obtain uniform

sampling points in space. One such idea is to use a scanning prism and simply wash

over a space in some unique pattern. You could then create a sensing cone of light

or other desired pattern. Another idea is to integrate the laser rangefinder with a

scanning intelligent light, such that the projected spotlight became a sensor. You

could then scan the light and thus the sensor around the room. This type of interface

could be use for such applications as nightclubs and concerts, as a way of giving the

attendees a coordinated method of interacting with the music and visuals.

Although this first-step goal of creating a two-dimensional scanner brought about

a multitude of options and new abilities for the user, 3 dimensional scanning is clearly

a next step in going further. When multiple users can gesture freely, it will be the duty

of the software to make the best use of the data. It is often the case that providing

better data alone will not give new capability. Part of the process of developing such

an interface is to also develop compatible analysis and interpretation software and

applications, as are only beginning to be explored.

57

Appendix A

Schematics

58

OTj

n o
e+1

0

2 3 4 5 6

+400 +12

+519

I 0.1 28D2W

D D ATAi 3AQ (A 20K, Aw 0 p 22uf +5 .22nF D

0. WF QIF 4 7 v+ MAXWI.M dNlVSD Ke. MAR2 MAR2 l00 OAF 4 Ald3QR 1F Z+>+ T6 6

00 +,+

C1.2K 4 Au

OC

(D B

A A

Lser1 Fron End Ampla -nd Deteto

(-ile \\.Fr-e~c Q) :

i -

-Il e

+ I

GND - ' GN--- I

J--

I o o 2. + 3 ||: 2C : 4 X

Figure A-3: Laser Driver,Voltage Regulation and Laser Power Control Schematics

61

Appendix B

Source Code

B.1 Embedded Code

B.1.1 PIC

Lasrun2.c

#include <16c73a.h>

#include <stdlib.h>

#include "math. c"

#fuses HS,NOWDT,NOPROTECT,PUT

#use Delay(Clock=16000000)

#define SAMPLEHOLD PINA5

#define STARTSCAN PINBO

#define ENDSCAN PINB1

#define IN PINAO

#define QUAD PIN_Al

#use RS232(Baud=19200, Parity=N, Xmit=PINC6 Rcv=PINC7)

byte NumSamples=O;

signed int Ins[6];
signed int Quads[6];

byte InsSumHigh[6];
byte InsSumLow[61;
byte QuadsSum_ High[6];
byte QuadsSumLow[6];
byte Time[61;
byte TimeStart[6];
byte TimeEnd[61;
byte zero=O;

byte sixfour=64;

short InPeak=O;

int NumPeaks=O;

signed int ITemp;

signed int Q_Temp;

byte ITemp2;

62

byte QTemp2;

byte TimeTemp;

byte ISumHighTemp=O;

byte ISumLowTemp=O;

byte QSumHighTemp=O;

byte QSumLowTemp=O;

signed int IMax;

signed int QMax;

byte TimeMax;

byte TimeStartTemp;

long
long
byte
byte

int SumMax;

int SumTemp;

Threshold=O;

Wait_Time=O;

signed int IBaseHigh;

signed int QBaseHigh;

signed int IBase;

signed int QBase;

#intext
extisr() {

// External interrupt on BO

}

#intad
adisr()

}

#inttbe
tbe_isr()

{
// A/D Conversion complete

{
// Async Serial Data Transmitted

}

#intrda
rdaisr() {

// Async Serial Data In

}

#INTRTCC

clock-isr(){

++TimeTemp;

}

void sample(void){ //sample I and Q Capture Timer
output-low(SAMPLEHOLD);

63

delay-us(5);

setadcchannel(IN);

delay-us(20);

ITemp=ReadADC();
setadcchannel(QUAD);

delayus(20);

QTemp=ReadADC();

output-high(SAMPLEHOLD);

}

void storebaseline(void){ //find Baseline for i and q

int i;
IBase=O;

QBase=O;

IBaseHigh=O;

QBaseHigh=O;

ITemp=O;

QTemp=O;
while(input(StartScan)){}

while(!input(StartScan)){}

for (i=0; i<64; ++i){

sample(;

add16(I_Base_High, IBase,

add16(QBaseHigh, QBase,

zero, ITemp);

zero, QTemp);

}

divl6by8(IBaseHigh, IBase, sixfour);

div16by8(QBaseHigh, QBase, sixfour);

}

void setthreshold(void){

Threshold=getchar();

printf("\rThreshold set

}

void setwait(void){

WaitTime=getchar(;

printf("\rWait Time set

}

to %2X\n",Threshold);

to %2X\n", WaitTime);

void output-data(void){

int i=0;
putchar(Num_Peaks);

//printf("Number of Peaks = X2X\r\n",NumPeaks);
//printf("Number of Samples = %2X\r\n",NumSamples);
for (i=0; i<NumPeaks; i++){

64

putchar(Ins[i]);
//printf("I= X2X\r\n",Ins[i]);

Ins[i]=0;

putchar (Quads [i]);
//printf("Q= %2X\r\n", Quads [i]);

Quads[i]=0;
putchar(Time[i]);

//printf("Time= X2x\r\n",Time[i]);

Time[i]=0;
putchar(TimeStart[i]);

//printf("TimeStart= X2X\r\n",TimeStart[i]);

TimeStart[i]=O;

putchar(TimeEnd[i]);
//printf("TimeEnd= X2X\r\n", TimeEnd[il);

putchar(InsSumHigh[il);

//printf("I Sum=X2XX2X\r\n", InsSumHigh[i], InsSum_Low[i]);
putchar(InsSum_Low[i]);
putchar(QuadsSumHigh[i]);

//printf("Q Sum=X2X%2X\r\n", QuadsSumHigh[i], QuadsSumLow[i]);

putchar(QuadsSumLow[il);

}
NumSamples=0;

NumPeaks=0;

}

void readdata(void){

while(input(StartScan)){}

while(!input(StartScan)){}

set-rtcc(0);

TimeTemp=0;

while(Time_Temp < WaitTime){}
while(input(EndScan))

{
sampleo;

++NumSamples;

ITemp2=ITemp;

QTemp2=QTemp;
ITemp=ITemp-IBase;
QTemp=QTemp-QBase;

SumTemp=ABS(ITemp)+ABS(QTemp);
delay-us(5);

if (SumTemp > Threshold)
{

Addl6(ISumHighTemp, ISumLowTemp, zero , I_Temp2);

Subl6(ISumHighTemp, ISumLowTemp, zero, I_Base);

Addl6(QSumHighTemp, QSumLowTemp, zero, QTemp2);

Subl6(QSumHighTemp, QSumLowTemp, zero, QBase);

// Check if Above Threshold

if(InPeak)

{
// Check if Currently in a Peak

if(SumTemp>SumMax)

65

// Check to see if Value is Greater than Max

SumMax=SumTemp;
I_Max=ITemp; // If it is store it

QMax=QTemp;
TimeMax=TimeTemp;

}
}

else
{InPeak=1;

TimeStartTemp=TimeTemp;

SumMax=SumTemp;

I_Max=ITemp;

QMax=QTemp;
TimeMax=TimeTemp;

}

I

// Now in peak set flag

// sum is less than threshold

if(InPeak)
{ // out of peak for first time

InPeak=O;

SumMax=O;

if(NumPeaks<6){

Ins[NumPeaks]=IMax;

Quads[NumPeaks]=QMax;

Time[NumPeaks]=TimeMax;

TimeStart[NumPeaks]=TimeStart_Temp;

TimeEnd[NumPeaks]=TimeTemp;

InsSumHigh[NumPeaks]=ISumHighTemp;

InsSumLow[NumPeaks]=ISumLowTemp;
QuadsSumHigh[NumPeaks]=QSumHighTemp;
QuadsSumLow[NumPeaks]=QSumLowTemp;

++NumPeaks;

I_SumHighTemp=O;
I_SumLowTemp=O;
QSumHighTemp=O;

QSumLowTemp=O;
}

}

output_data(;

SumMax=O;
I_SumHighTemp=O;
ISumLowTemp=O;

QSumHighTemp=O;

QSumLowTemp=O;

void waitchar(void){

byte command;

command=getchar();

66

{

}
else

{

I

I

if (command=='T'){

setthresholdO;}

if (command=='W'){

setwaitO;}

if (command=='R'){

readdatao;

}
}

main() {

settrisa(OxOf);

settrisb(Oxff);

settrisc(Ox80);

set-rtcc(0);
setup-counters(RTCCINTERNAL,RTCCDIV_2);

setup-port-a(RA0_RA1_RA3_ANALOG);

setupadc(ADCCLOCK_DIV_32);

// enablejinterrupts(EXT_INT);

// enablejinterrupts(ADCDONE);

// enable_interrupts(INTTBE);
// enableinterrupts(INT_RDA);

enable-interrupts(RTCCZERO);

enable-interrupts(GLOBAL);

output-high(SAMPLEHOLD);

printf("\rLaser Online\n");

storebaselineO;

printf("IBase= X2X QBase= X2X\r\n",IBase,QBase);

while(1){

wait-charo;

}

}

67

Math.c

#inline
void add16(byte & ah, byte & al, byte bh, byte bl) {

//// ahal = ahal + bhbl
#asm

movf bl,w

addwf al,f

btfsc 3,0

incf ah,f

movf bh,w

addwf ah,f

#endasm

}

void sub16(byte & ah, byte & al, byte & bh, byte & bl) {
// ahal = ahal - bhbl

#asm

movf bl,w

subwf al,f

btfss 3,0

decf ah,f

movf bh,w

subwf ah,f

#endasm

}

#inline

void divl6byl6(byte & bh, byte & bl, byte ah, byte al) {
//// bhbl = bhbl / ahal

byte ch,cl,dh,dl,count;

dl=bl;

dh=bh;
bh=0;

bl=0;
ch=0;

cl=0;

count=16;

if((dh!=0)||(dl>al)) {
#asm

loop:

bcf 3,0

rlf dl,f

rlf dh,f

rlf cl,f

rlf ch,f

movf ah,w

subwf ch,w

btfss 3,2

goto nochk

68

movf al,w
subwf cl,w

nochk:

btfss 3,0

goto skip

movf al,w

subwf cl,f

btfss 3,0

decf ch,f
movf ah,w

subwf ch,f

bsf 3,0

skip:

rlf bl,f

rlf bh,f

decfsz count,f

goto loop

#endasm

}
}

#inline

void reml6by8(byte & bh, byte & bl, byte al, byte & rl) {
//// bhbl = bhbl / al

//// rl = bhbl X al
byte ch,cl,dh,dl,count,ah;

dl=bl;

dh=bh;
bh=O;

bl=0;

ch=0;

cl=0;

ah=0;

count=16;

#asm

loop:

bcf 3,0
rlf dl,f
rlf dh,f

rlf cl,f

rlf ch,f
movf ah,w

subwf ch,w

btfss 3,2

goto nochk

movf al,w

subwf cl,w

nochk:

btfss 3,0

goto skip

movf al,w

69

subwf cl,f

btfss 3,0

decf ch,f
movf ah,w
subwf ch,f

bsf 3,0

skip:

rlf bl,f

rlf bh,f

decfsz count,f

goto loop

#endasm
rl=cl;

}

#inline

void mull6by8(byte & bh, byte & bl, byte a) {
//// bhbl = bhbl * a

byte ch,cl,dh,dl,count;

dl=bl;

dh=bh;
bh=O;

bl=0;

count=16;

#asm

loop:

rrf dh,f

rrf dl,f
btfss 3,0

goto skip

movf a,w

addwf bl,f

btfsc 3,0

incf bh,f

skip:

rrf bh,f
rrf bl,f

rrf ch,f

rrf cl,f
decfsz count,f

goto loop

#endasm

bl=cl;

bh=ch;

}

70

#inline
void divl6by8(byte & bh, byte & bl, byte aL) {

//// bhbl bhbl / a
byte ch,cl,dh,dl,count,ah;

dl=bl;
dh=bh;

bh=O;

bl=0 ;
ch=0;

cl=0;

ah=0;
count=16;

if((dh!=0)||(dl>al)) {
#asm

loop:

bcf 3,0

rlf dl,f

rlf dh,f

rlf cl,f

rlf ch,f

movf ah,w

subwf ch,w

btfss 3,2

goto nochk

movf al,w

subwf cl,w

nochk:

btfss 3,0

goto skip

movf al,w

subwf cl,f

btfss 3,0

decf ch,f

movf ah,w
subwf ch,f

bsf 3,0
skip:

rlf bl,f

rlf bh,f
decfsz count,f

goto loop

#endasm

}
}

71

B.1.2 Hitachi SH-1

IOSH7030.h

/* IOSH7030.h
*

* History:

* 16-Oct-1995

* 01-Aug-1996

* 19-Apr-1998

* 13-May-1998

* 27-May-1998

I/O addresses for SH1 series

Created by J.D. (Not all checked)

Bugs in ITU defs fixed by Andrew Huang

rehmi@media.mit.edu: Added SCI and PBCRMD bits

strickon@media.mit.edu added AD bits

strickon@media.mit.edu added more itu bytes

* standard type definitions

*/

define FALSE (0=1)

define TRUE (!FALSE)

define NULL ((void *)OL)

typedef

typedef

typedef

typedef

typedef
typedef

typedef

unsigned

signed
signed
signed

unsigned
unsigned

unsigned

char
char
short
long
char
short
long

BOOL;
BYTE;
WORD;
LONG;

UBYTE;
UWORD;
ULONG;

/*ITU SHARED*/

#define ITUTSTR

#define ITUTSNC

#define ITUTMDR

#define ITUTFCR

#define ITUTOCR

/*ITU CHANNEL 0*/
#define ITUTCRO
#define ITUTIORO
#define ITUTIERO

#define ITUTSRO

#define ITUTCNTO
#define ITUGRAO

#define ITUGRBO

/*ITU CHANNEL 4*/

#define ITUTCR4

#define ITUTIOR4

#define ITUTIER4

#define ITUTSR4

#define ITUTCNT4

#define ITUGRA4

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile
(volatile

(volatile
(volatile
(volatile
(volatile

(volatile
(volatile
(volatile
(volatile
(volatile
(volatile

UBYTE
UBYTE
UBYTE
UBYTE
UWORD

UBYTE
UBYTE
UBYTE
UBYTE
UWORD
UWORD
UWORD

UBYTE
UBYTE
UBYTE
UBYTE
UWORD
UWORD

*)(Ox05ffffOO))

*)(Ox05ffffOl))

*)(OxO5ffffO2))
*)(OxO5ffffO3))
*)(0x05ffff31))

*)(OxO5ffffO4))

*)(OxO5ffffO5))
*)(OxO5ffffO6))

*)(OxO5ffffO7))

*)(OxO5ffffO8))

*)(OxO5ffffOA))

*)(0x05ffff0C))

*)(OxO5ffff32))

*)(Ox05ffff33))

*)(OxO5ffff34))

*)(OxO5ffff35))

*)(OxO5ffff36))

*)(OxO5ffff38))

72

#
#

#

(volatile UWORD

(volatile UWORD

(volatile UWORD

*)(0x05ffff3A))

*)(OxO5ffff3C))

*)(OxO5ffff3E))

/*DMAC CHANNELS 0-3 SHARED*/

#define DMAOR (* (volatile UWORD *)(OxO5ffff48))

#define DMAORPR1 0x0200

#define DMAORPRO Ox0100
#define DMAORAE 0x0004

#define DMAORNMIF 0x0002

#define DMAORDME Ox0001

/*DMAC CHANNEL 0*/

#define DMASARO

#define DMADARO

#define DMATCRO

#define DMACHCRO

(volatile ULONG

(volatile ULONG

(volatile UWORD

(volatile UWORD

*)(OxO5ffff4O))

*)(OxO5ffff44))

*)(OxO5ffff4a))

*)(OxO5ffff4e))

DMACHCRDM1

DMACHCRDMO

DMACHCRSM1

DMACHCRSMO

DMACHCRRS3

DMACHCRRS2
DMACHCRRS1

DMACHCRRSO

DMACHCRAM

DMACHCRAL

DMACHCRDS

DMACHCRTM
DMACHCRTS

DMACHCRIE
DMACHCRTE

DMACHCRDE

/*DMAC CHANNEL 1*/
#define DMASAR1

#define DMADAR1

#define DMATCR1

#define DMACHCR1

/*DMAC CHANNEL 3*/
#define DMASAR3

#define DMADAR3

#define DMATCR3

#define DMACHCR3

/*DMAC CHANNEL 4*/

#define DMASAR4

#define DMADAR4

#define DMATCR4

#define DMACHCR4

(volatile

(volatile
(volatile
(volatile

(volatile
(volatile
(volatile
(volatile

(volatile
(volatile
(volatile
(volatile

ULONG
ULONG
UWORD
UWORD

ULONG
ULONG
UWORD
UWORD

ULONG
ULONG
UWORD
UWORD

*)(Ox05ffff50))

*)(OxO5ffff54))

*)(0x05fffF5a))

*)(Ox05ffff5e))

*)(OxO5ffff6O))

*)(OxO5ffff64))

*)(OxO5fffF6a))

*)(Ox05ffff6e))

*)(OxO5ffff7O))

*)(0x05ffff74))

*)(0x05fffF7a))

*)(Ox05ffff7e))

73

#def ine
#define
#define

ITUGRB4

ITUBRA4

ITUBRB4

#define
#define
#define
#def ine
#define
#define
#define
#def ine
#def ine
#define
#define
#def ine
#def ine
#def ine
#def ine
#define

0x8000
0x4000
0x2000
0x1000
0x0800
0x0400
0x0200
0x0100
0x0080
0x0040
0x0020
Ox0010
0x0008
Ox0004
0x0002
Ox0001

/*INTC*/
#def ine
#define
#def ine
#define
#define
#define

/*UBC*/
#def ine
#def ine
#def ine
#define
#def ine

/*BSC*/
#define
#def ine
#def ine
#define
#define
#def ine
#def ine
#def ine
#define
#def ine

/*WDT*/
#def ine
#define
#define

/*POWER
#def ine
#def ine
#def ine

INTCIPRA (*

INTCIPRB (*

INTCIPRC (*

INTCIPRD (*

INTCIPRE (*

INTCICR (*

UBCBARH (*

UBCBARL (*

UBCBAMRH (*

UBCBAMRL (*

UBCBBR (*

BSCBCR (*

BSCWCR1 (*

BSCWCR2 (*

BSCWCR3 (*

BSCDCR (*

BSCPCR (*

BSCRCR (*

BSCRTCSR (*

BSCRTCNT (*

BSCRTCOR (*

WDTTCSR (*

WDTTCNT (*

WDTRSTCSR (*

DOWN STATE*/
PDTSBYCR (*

SBYCRHIZ

SBYCRSBY

/*PORT A*/

#define PADR

/*PORT B*/
#define PBDR

/*PORT C*/
#define PCDR

/*PFC*/
#def ine
#define
#def ine
#define
#define
#def ine
#def ine

PFCPAIOR

PFCPBIOR

PFCPACR1

PFCPACR2

PFCPBCR1

PFCPBCR2

PFCCASCR

(volatile
(volatile
(volatile
(volatile
(volatile
(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile
(volatile
(volatile
(volatile
(volatile
(volatile
(volatile
(volatile
(volatile
(volatile

UWORD
UWORD
UWORD
UWORD
UWORD
UWORD

UWORD
UWORD,
UWORD
UWORD
UWORD

UWORD
UWORD
UWORD
UWORD
UWORD
UWORD
UWORD
UWORD
UWORD
UWORD

(volatile UBYTE

(volatile UBYTE

(volatile UBYTE

(volatile
Ox40
Ox80

a)(OxO5ffff84))
)(0x05ffff86))
)(0x05ffff88))

)(0x05ffff8A))

)(0x05ffff8C))

)(0x05ffff8E))

)(Oxo5ffff9O))

)(0x05ffff92))

)(0x05ffff94))

)(0x05ffff96))

)(0x05ffff98))

t)(OxO5ffffAO))

*)(OxO5ffffA2))

*)(OxO5ffffA4))

*)(OxO5ffffA6))

*)(OxO5ffffA8))

*)(OxO5ffffAA))
*)(OxO5ffffAC))

*)(OxO5ffffAE))

*)(0xO5ffffBO))

*)(OxO5ffffB2))

*)(OxO5ffffB8))

*)(OxO5ffffB9))

*)(OxO5ffffBB))

UBYTE *)(0xO5ffffBC))

(* (volatile UWORD *)(OxO5ffffCO))

(* (volatile UWORD *)(OxO5ffffC2))

(* (volatile UWORD *)(OxO5ffffDO))

(volatile
(volatile
(volatile
(volatile
(volatile
(volatile
(volatile

UWORD
UWORD
UWORD
UWORD
UWORD
UWORD
UWORD

(OxO5ffffC4))

(OxO5ffffC6))

(OxO5ffffC8))

(OxO5ffffCA))

(OxO5ffffCC))

(OxO5ffffCE))

(OxO5ffffEE))

74

/*TPC*/
#define
#define
#define
#define
#define
#def ine
#define
#define

#def ine
#define
#define
#define
#define
#define
#define
#define

#def ine
#define
#def ine
#def ine
#define
#define

#define
#define
#define
#def ine
#def ine
#define

SCIOSMRREG

SCIOBRRREG

SCIOSCRREG

SCIOTDRREG

SCIOSSRREG

SCIORDRREG

SCI1_SMRREG

SCI1_BRRREG

SCI1_SCRREG

SCI1_TDRREG

SCI1_SSRREG
SCI1_RDRREG

(volatile UWORD *)(OxO5ffffFO))

(volatile UWORD *)(OxO5ffffFl))

(volatile UWORD *)(OxO5ffffF2))

(volatile UWORD *)(OxO5ffffF3))

(volatile UBYTE *)(OxO5ffffF4))

(volatile UBYTE *)(OxO5ffffF5))

(volatile UBYTE *)(OxO5ffffF6))

(volatile UBYTE *)(0xO5ffffF7))

OxO5FFFECO /* sci channel 0 base address */

OxO5FFFEC8 /* sci channel 1 base address */
0 /* serial mode register offset */
1 /* bit rate register offset */

2 /* serial control register offset */

3 /* transmit data register offset */

4 /* serial status register offset */

5 /* receive data register offset */

(*(volatile UBYTE

(*(volatile UBYTE

(*(volatile UBYTE

(*(volatile UBYTE

(*(volatile UBYTE

(*(volatile UBYTE

(*(volatile UBYTE

(*(volatile UBYTE

(*(volatile UBYTE

(*(volatile UBYTE

(*(volatile UBYTE
(*(volatile UBYTE

*)(SCIOBASE+SCISMR))

*)(SCIOBASE+SCIBRR))

*)(SCIBASE+SCISCR))

*)(SCIBASE+SCITDR))

*)(SCIOBASE+SCISSR))

*)(SCIOBASE+SCIRDR))

*)(SCI1_BASE+SCISMR))

*)(SCIlBASE+SCIBRR))

*)(SCIlBASE+SCISCR))

*)(SCIlBASE+SCITDR))

*)(SCI1_BASE+SCISSR))
*)(SCI1_BASE+SCIRDR))

* Serial mode register bits

#define SCISYNCMODE Ox80
#define SCISEVENBITDATA 0x40

#define SCIPARITYON Ox20

#define SCIODDPARITY Ox10

#define SCISTOPBITS_2 Ox08

#define SCIENABLEMULTIP Ox04

#define SCICKS1 Ox02

#define SCICKSO Ox01

* Serial control register bits

#define SCITIE

#define SCIRIE

#define SCITE

Ox80
Ox40
0x20

/* Transmit interrupt enable */
/* Receive interrupt enable */
/* Transmit enable */

75

TPCTPMR

TPCTPCR

TPCNDERH

TPCNDERL

TPCNDRB

TPCNDRA

TPCNDRB1

TPCNDRA1

SCIOBASE

SCIlBASE
SCISMR

SCIBRR

SCISCR'

SCITDR

SCISSR

SCIRDR

#define
#define
#def ine
#def ine
#def ine

SCIRE
SCIMPIE

SCITEIE

SCICKE1
SCICKEO

* Serial status register bi

*/
#define
#def ine
#define
#define
#define
#def ine
#def ine
#define

SCI _TDRE
SCIRDRF

SCIORER

SCIFER
SCIPER
SCITEND

SCIMPB
SCIMPBT

Ox10

Ox08
Ox04
Ox02
Ox0 1

ts

Ox80
Ox40
0x20
Ox10

Ox08
Ox04
0x02
Ox0 1

1*

1*

1*

Receive enable */

Multiprocessor interrupt enable */

Transmit end interrupt enable */
Clock enable 1 */
Clock enable 0 */

Transmit data register empty */

Receive data register full */
Overrun error

Framing error */
Parity error

Transmit end */
Multiprocessor bit */

Multiprocessor bit transfer */

* BRR value calculation

#define SCIBRRVALUE(cks,rate)

((CPUCLOCKSPEED / (32 * (1 << (cks*2)) * rate)) - 1)

/* ---
** Pin Function Controller register definitions
**---
#define PBIOR (*(volatile UWORD *)(Ox5ffffc6))

#define PBCR1 (*(volatile UWORD *)(Ox5ffffcc))

#define PBCR2 (*(volatile UWORD *)(Ox5ffffce))

//#define PBDR (*(volatile UWORD *)(Ox5ffffc2))

* Port

#define

#define
#def ine
#define
#define
#def ine
#def ine
#define
#def ine
#define
#define
#define
#define
#define
#def ine
#def ine

B control register 1 bits

PB15MD1
PB15MDO
PB14MD1
PB 14MD0
PB13MD1
PB13MD0
PB12MD1
PB12MD0
PB11MD1
PB11MD0
PB10MD1
PB10MD0
PB9MD1
PB9MD0

PB8MD1
PB8MD0

0x8000
0x4000
0x2000
Ox1000
Ox0800
0x0400
0x0200

Ox0100

0x0080
0x0040
0x0020

Ox0010
0x0008
0x0004

0x0002
Ox0001

/*

bit
bit
bit

bit
bit
bit

bit
bit
bit
bit
bit
bit

bit
bit
bit
bit

15*/
14*/
13*/
12*/
11*/
10*/
9 */

8 */

7 */
6 */

5 */

4 */
3 */

2 */
1 */
0 */

#define PAIOR (*(volatile UWORD *)(Ox5ffffc4)

76

#define PACR1

#define PACR2

//#define PADR

* Port A control

#define PA15MD1

#define PA15MDO
#define PA14MD1

#define PA14MDO

#define PA13MD1

#define PA13MDO

#define PA12MD1

#define PA12MDO

#define PA11MD1

#define PA11MDO

#define PA10MD1

#define PA10MDO

#define PA9MD1

#define PA9MDO

#define PA8MD1

#define PA8MDO

(*(volatile UWORD *)(Ox5ffffc8))

(*(volatile UWORD *)(Oxbffffca))

(*(volatile UWORD *)(Ox5ffffcO))

register 1 bits

0x8000
0x4000
0x2000
Ox1000
0x0800
0x0400

0x0200
Ox0100
0x0080
0x0040
0x0020
Ox0010
0x0008
0x0004
0x0002
Ox0001

1*

1*

bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit

15*/
14*/
13*/
12*/
11*/
10*/
9 */

8 */
7 */
6 */

5 */
4 */
3 */

2 */

1 */
0 */

*Analog to digital converter stuff
*

*/
#define ADCADDRA

#define ADCADDRB

#define ADCADDRC

#define ADO_ADDRD

(* (volatile UWORD

(* (volatile UWORD

(* (volatile UWORD

(* (volatile UWORD

)(Ox05fffee0)) / a/d data registers */

*)(OxO5fffee2))

*)(Ox05fffee4))

*)(Ox05fffee6))

/* a/d contro/status register */
#define ADCADCSR (* (volatile UBYTE

/* a/d control register */

#define ADCADCR (* (volatile UBYTE

*)(Ox05fffee8))

*)(Ox05fffee9))

77

laser.c

* main.
*

*/
#include
#include
#include

"IOSH7030.h"

"laser.h"

<stdlib.h>

char tmp[200];

int adcchan1;
int adcchan2;

int timer_0;

int debug=O;

void sample(void){ //sample I and Q and Timer 0
readadcchl2(&I_Sample, &QSample);

get-timerO(&TimeTemp);

}

int StartScano{ //start photo transistor

return(PBDR & OxO001);

}

int StopScan){ //stop photo transistor

return (PBDR & 0x0002);

}

void storebaseline(void){ //find Baseline for i and q

int i=0;

int IBaseTemp=0;

int QBaseTemp=O;
IBase=0;

QBase=0;
while(StartScan()){}
while(!StartScanO){}

while(StopScan()){

++i;

sampleo;
I_BaseTemp=IBaseTemp+ISample;
QBaseTemp=QBaseTemp+QSample;

}
I_Base=IBaseTemp/i;
QBase=QBaseTemp/i;

}

void setthreshold(void){

int t;

t=consolegetcO;

t=t<<8;

Threshold=t+consolegetc();

sprintf(tmp,"Threshold set to %4X\r\n",Threshold);

78

c

console-puts(tmp);

}

void setwait(void){

int t;

t=consolegetcO;

t=t<<8;

WaitTime=t+console-getcO;

sprintf(tmp,"Wait Time set to %4X\r\n", WaitTime);

console-puts(tmp);

}

void setdebug(void){

if(debug)

{debug=O;

sprintf(tmp,"Debug Mode Off\r\n");

console-puts(tmp);

}
else{debug=l;

sprintf(tmp,"Debug Mode On\r\n");

console-puts(tmp);

}
}

void output-data(void){

int i=0;

console-putc(11);

console-putc(27);

console-putc(48);

console-putc(187);

NumPeaks=2;

for(i=0; i <4 ; i++){
Ins[i]=-238;

Quads[i]=999;
Time[i]=32324;

TimeStart[i]=9800;

TimeEnd[i]=56000;

InsSum[i]=-1000;
QuadsSum[i]=80077;

}

console_putc(Num_Peaks);

for (i=0; i<4; i++){

console-putshort(Ins[i]);

Ins[i]=0;

console-putshort(Quads[i]);

Quads[i]=0;

console-putshort(Time[i]);

Time[i]=0;

console-putshort(TimeStart[i]);

TimeStart[i]=0;
console.putshort(TimeEnd[i]);

79

TimeEnd[i]=0;

console-putlong(InsSum[i]);

InsSum[i]=0;

console-putiong(QuadsSum[i]);

QuadsSum[i]=0;

}
NumSamples=0;

NumPeaks=0;

}

void output-data-debug(void){

int i=0;

sprintf(tmp,"NumPeaks = %d\r\n",NumPeaks);
console-puts(tmp);

sprintf(tmp,"Number of Samples = %d\r\n",NumSamples);
console-puts(tmp);

for (i=0; i<4; i++){

sprintf(tmp,"I=Xd Q=Xd\r\n",Ins[i],Quads[i]);

console-puts(tmp);
sprintf(tmp,"Time=%d. TimeStart=%d.\r\n",Time[i] ,TimeStart[i]);

console-puts(tmp);

sprintf(tmp, "TimeEnd=Xd. TimeSample=%d.\r\n",

TimeEnd[i], TimeSample[il);

console-puts(tmp);

sprintf(tmp,"ISum=Xd QSum=Xd\n\r",InsSum[i],QuadsSum[i]);

console-puts(tmp);

Ins[i]=0;
Quads[i]=0;

Time[i]=0;

TimeStart[i]=0;
TimeEnd[i]=0;

InsSum[i]=0;

QuadsSum[i]=0;

}
NumSamples=0;

NumPeaks=0;

void readdata(void){

while(1){
while(StartScan()){}

while(!StartScan()){}
cleartimer0O();

TimeTemp=0;

while(TimeTemp < WaitTime){gettimer_0(&TimeTemp);}
cleartimer0O();

while(StopScano)

{
sampleo;

++NumSamples;

ITemp=ISample-IBase;

QTemp=QSample-QBase;

SumTemp=abs(ITemp)+abs(QTemp);

80

//sprintf(tmp,"\rS=%8X T=%4X\n",SumTemp,Threshold);

//console-puts(tmp);

if (SumTemp > Threshold)
{
I_SumTemp=ISumTemp+ITemp;

QSumTemp=QSumTemp+QTemp;

// Check if Above Threshold

if(InPeak)

{

if

{

Check if Currently in a Peak

(SumTemp>SumMax)

// Check to see if Value is Greater than Max

SumMax=SumTemp;

I_Max=ITemp; // If it is store it

QMax=QTemp;
TimeMax=TimeTemp;

}
}

else
{InPeak=1;

TimeStartTemp=TimeTemp;

SumMax=SumTemp;
I_Max=ITemp;

QMax=Q_Temp;

TimeMax=TimeTemp;

tmp-time-sample = NumSamples;
}

}
else

{

// Now in peak set flag

// sum is less than threshold

if(InPeak)
{ // out of peak for first time

InPeak=O;

SumMax=O;

// sprintf(tmp,"num=%d\n",NumPeaks);
// console-puts(tmp);

if(NumPeaks < 4)
{
Ins[NumPeaks]=IMax;

Quads[NumPeaks]=QMax;

Time[NumPeaks]=TimeMax;

TimeStart[NumPeaks]=Time_Start_Temp;

TimeEnd[NumPeaks]=TimeTemp;

InsSum[NumPeaks]=ISumTemp;

QuadsSum[NumPeaks]=QSumTemp;

TimeSample[NumPeaks] = tmptimesample;

++NumPeaks;

I_SumTemp=O;

Q.SumTemp=O;

}
}

}

81

}

InPeak=O;
if (debug) {
output datadebugO;

}
else {output-data();}

SumMax=O;

I_SumTemp=O;

QSumTemp=O;

}
}

void waitchar(void){

unsigned int command;

command=console-getco;

if (command=='T'){

setthresholdO;}

if (command=='W'){

setwaito;}

if (command=='D'){

setdebugO;}

if (command=='R'){

readdataQ;

}
}

int

enter()

{
/* Turn on the LED */
PBIOR |= Ox8000;
PBCR1 &= Ox7fff;
PBDR J= Ox8000;

PFCPAIOR 1= Ox1OOO;
PFCPAIOR &= ~0x2000;
PFCPACR1 OxOFOO;

* This is necessary to run on the SH1 LCEVB:
* use /HBS,/LBS,/WR instead of /WRH,/WRL,AO

BSCBCR |= 0x0800;

SCI-init ();

console-puts ("Initialized SCI!\r\n");

copy-data 0;

console-puts ("Copied Data!\r\n");

PBCR2=OxOOOO;

sprintf(tmp,"Laser Online\r\n");

console-puts(tmp);

82

startadc-chl2();

setup-timerO();

storebaselineO;

starttimerso;

sprintf(tmp, "IBase= %4X Q._Base= %4X\r\n" ,IBase,QBase);

console-puts(tmp);

while (1){

waitcharO;

}

return 0;

}

83

analog.c

/* functions for reading adc */
/* Josh Strickon 7/1/98 */

#include "IOSH7030.h"
void

setup-adc(){

}
void

readadcchl2(int *chanl, int *chan2){

*chanl=ADCADDRA >> 6;
*chan2=ADCADDRB >> 6;
}
void

startadcch12({

ADCADCSR=0x39;

}
void

stop-adc(){

ADCADCSR=OxOO;

}

84

timer.c

/* timer funcitons for sh */
/* Josh Strickon 7/1/98 */

#include "IOSH7030.h"

void
start-timers(void){

ITUTSTR=Oxff;

}

void
stoptimers(void){

ITUTSTR=OxOO;

}

void

cleartimerO(void){

ITU_TCNTO=OxOO;

I

void
setup-timer_0(void){

ITU_TCRO=0x03; /*count

I

void

clock div 8*/

get-timerO(int *timer){
*timer=ITUTCNTO;

I

85

util.c

/* espcam.c Everest Summit Probe camera controller program

*

* -*- Mode:C -*-

*

* History:

*

* 09-Apr-1998 rehmi~media.mit.edu

* Created this file to control a VLSI Vision

* VV5300 CMOS digital camera on the VV300 sensor card.

*

* 19-Apr-1998 rehmi

* Massive cleanup to make this code maintainable/hackable;

* Minor changes to make the code use the actual ESPCAM

* board and to make it compile standalone.

*

#define DEVELOPMENT 1

unsigned long MARKER = 0x12345678;

#include "1IOSH7030.h"

#define CPUCLOCKSPEED 20000000

delay-ms (int n)

{
int i;

* This is calibrated empirically using dotiming-blips()

while (n > 0) {
for (i = 0; i < 390; i++);
n--;

}
}

delay_100_us 0
{

int i;

* This is calibrated guesstimatically from delay-ms()

*/

for (i = 0; i < 34; i++)

i =
}

86

SCIO_38400 0
{
SCIOSMRREG = (SCIOSMRREG & ~(SCICKS1|SCICKSO));
SCIOBRRREG = SCIBRRVALUE(0, 38400);

}

SCIinit 0
{
int i;

* Set up SCI 0 to run at async 8-N-1 1200 baud

* (to talk to VV5300 camera)

/* disable Tx and Rx */

SCIOSCRREG &= -(SCITE I SCIRE);

/* select communication format, async 8-N-1 */
SCIOSMRREG &= (SCISYNCMODE I SCISEVENBITDATA |

SCIPARITYON | SCIODDPARITY
SCISTOPBITS_2 | SCIENABLEMULTIP);

/* select baud rate */

SCIO_384000;

/* select internal clock, output on SCK */

SCIOSCRREG = SCICKEO;

SCIOSCRREG & SCICKE1;

/* wait at least one bit time */

delay-ms (1);

/* enable Tx and Rx */

SCIOSCRREG 1= SCITE I SCIRE;

* Set up SCI 1- to run at async 8-N-1 38400 baud
* (to talk to ESP main controller board)

*/
#if 0

/* disable Tx and Rx */
SCI1_SCRREG & ~(SCITE I SCIRE);

/* select communication format, async 8-N-1 */
SCI1_SMRREG &= ~(SCISYNCMODE I SCISEVENBITDATA

SCIPARITYON I SCIODDPARITY
SCISTOPBITS_2 SCIENABLEMULTIP);

/* select baud rate */
#if 1

SCI1_38400 0;

87

#else
SCI1200 0;
#endif

/* select internal clock, output

SCI1_SCRREG 1= SCICKEO;

SCI1_SCRREG &= ~SCICKE1;

/* wait at least one bit time */

delay-ms(10);

/* enable Tx and Rx */

SCI1_SCRREG I= SCITE I SCIRE;
#endif

on SCK */

/* select TxD and RxD pin functions with the PFC

* enable TxDO, TxD1, SCK1 as outputs
* enable RxDO, RxD1, SCKO as inputs

PBIOR &= ~(Ox55OO); // input pins (RXDO, RXD1, SCKO, IRQ6)

PBIOR |= OxAAOO; // output pins (TXDO, TXD1, SCK1, IRQ7)

PBCR1 | PB8MD1 // RXDO input

| PB9MD1 // TXDO output

| PB1OMD1 // RXD1 input

| PB11MD1 // TXD1 output

| PB13MD1; // SCK1 i/o

PBCR1 &= ~(PB8MDO // RXDO input

I PB9MDO // TXDO output

| PB1OMDO // RXD1 input

| PB11MDO // TXD1 output

| PB12MD1 // PB12 normal i/o

| PB12MDO // instead of SCKO

| PB13MDO // SCK1 i/o

| PB14MDO // IRQ6 i/o

| PB14MD1 // IRQ6 i/o

I PB15MDO // IRQ7 i/o

| PB15MD1 // IRQ7 i/o

}

SCIOtransmit (UBYTE c)

{
/* SCI status check and transmit data write:

read the SSR, check that TDRE is 1, then write

transmit data into TDR and clear TDRE to 0 */

while (!(SCIOSSR_REG & SCI_TDRE)) {
/* spin */

}

SCIOTDR_REG = c;
SCIOSSRREG &= ~SCITDRE;
}

88

SCIOreceiveready 0
{
if (SCIOSSRREG & (SCIORER I SCIPER I SCIFER)) {

SCIOSSRREG &= (SCIORER I SCIPER I SCIFER);
SCIOtransmit ((UBYTE)7); // output BEL on error

}

return (SCIOSSR_REG & SCIRDRF) != 0;

}

UBYTE SCIOreceive 0
{
UBYTE r;

while (!SCIOreceive-ready() {
/* spin */
}
r = SCIORDRREG;
SCIOSSRREG &= ~SCIRDRF;
return r;

}

LED-init 0
{
PFCPBIOR I= Ox8000;

PFCPBCR1 &= Ox3fff;

}

LEDtoggle 0
{
PBDR 0x8000;

}

/* ** */

console-puts (char *s)

{
while (s && *s) {
SCIOtransmit ((UBYTE)*s++);

}
}

console-putc (int c)

{
SCIO_transmit ((UBYTE)c);

}

console-putshort(int c)

{
short tmp=c;

console-putc(tmp>>8);

89

console-putc(tmp& Oxff);

}

console-putlong(int c)

{
console-putc(c>>24);

console-putc((c>>16)&Oxff);

console-putc((c>>8)&Oxff);

console-putc(c&Oxff);

}

console-peek 0
{
return SCIO-receive-ready(;

}

console-getc 0
{
return SCIO-receive 0;
I

console-puthexn

{
console-putc ("0

console-puthexb

{
console-puthexn

consoleputhexn

}

(unsigned long n)

123456789ABCDEF"[n&151);

(unsigned long b)

(b >> 4);
(b);

console-puthexw (unsigned long w)

{
console-puthexb (w > 8);
consoleputhexb (w);

}

console-puthexl (unsigned long 1)

{
consoleputhexw (1 > 16);
consoleputhexw (1);

}

consoleputdec (int n)

{
if (n < 0) {

console-putc ('-');

n = -n;
}

90

if (n > 9)
console-putdec (n / 10);

console-putc ("0123456789"[n%101);

}

/* ** */

void

copy-data ()
{
ULONG *src;

ULONG *dst;

ULONG *end;

extern ULONG _data, _edata, _text, _etext, _bss, _ebss;

src = &_etext;
dst = &_data;

end = &_edata;

while (dst < &_edata) {
*dst++ = *src++;

}
}

/* ** */

int
exit 0
{
again:

asm ("sleep");

goto again;

}

/* ** */

#if 0

uprintf (char *fmt, long a, long b, long c, long d, long e, long f)

{
char buf [40961;

sprintf (buf, fmt, a, b, c, d, e, f);
console-puts (buf);

}
#endif

unsigned long REKRAM = Ox9ABCDEFO;

91

vect.s

vect.s

! This file was automatically generated by the HiVIEW project generator.

!---

.global _vectortable

.section .vect

_vector-table:
.long start

.long __stack

.long start

.long __stack

TODO: complete interrupt vector table

92

crtO.s

.section .text

.global start

start:

mov.1 stack_kr15

!!!

Don't zero out the BSS! We depend upon static storage.
!!!

zero out bss

mov.l edata_k,rO

mov.1 endk,rl

mov #O,r2

start_1:

mov.1 r2,@rO

add #4,rO

cmp/ge rO,rl

bt start_1

! call the mainline
mov.1 main-k,rO

jsr @rO

or rO,rO

! call exit
mov rO,r4

mov.1 exit-k,rO

jsr OrO
or rO,rO

.global __text

.global _etext

.global __data

.global __edata

.global __bss

.global __ebss

.align 2

stackk:

.long __stack

edatak:

.long __edata

endk:

.long _end

main k:

.long -enter

exitk:

.long _exit

93

.section .stack

stack: .long Oxdeaddead

94

Icevb.ld

OUTPUTFORMAT("symbolsrec")
OUTPUTARCH(sh)

INPUT(libm.a libc.a libgcc.a libc.a libgcc.a)

MEMORY

{
rom ORIGIN = OxOOOOOOOO, LENGTH = 64k

ram ORIGIN = OxOAOOOOOO, LENGTH = 256k

}

SECTIONS

{
.vect OxOOOOOOOO:

{
*(.vect);

} > rom = Oxffff

.text Ox00000400:

{
CREATEOBJECTSYMBOLS;

*(.text);

*(.strings);
} > rom = Oxffff

__text = ADDR(.text);

__etext = ((ADDR(.text) + SIZEOF(.text) + 1k - 1) & ~ (1k - 1));

.data OxOAOOOOOO: AT(__etext)

{
*(.data);

} > ram

data = ADDR (.data);

__edata = ADDR(.data) + SIZEOF(.data)

.bss BLOCK(OxlOO):

{

*(COMMON);

end =
} > ram

__bss = ADDR(.bss);

__ebss = ADDR(.bss) + SIZEOF(.bss);

.stack OxOA03FFFC:

{
*(.stack);

} > ram
__stack = ADDR(.stack);

95

.tors

{
___ctors =

* (ctors);

__ctorsend =

___dtors = .

*(.dtors);

___dtorsend =

} > ram

.stab 0 (NOLOAD):
{

*(.stab);

}

.stabstr 0 (NOLOAD):

{
*(.stabstr);

}
}

96

MAKEFILE

MAKEFILE Makefile for ESPCAM project

History:

18-Apr-98 Created by Rehmi Post <rehmi~media.mit.edu>

CC=gcc

RUN=run

GDB=gdb

ASYNC=asynctsr

COM=1

BAUD=9600

CCFLAGS=-nostartfiles # -nostdlib -nodefaultlibs

ASFLAGS=

LDFLAGS=#-e _entry

rules to make object files from C and assembly source

.SUFFIXES : .hex .x .o .c .s

X.o : X.c
$(CC) $(CCFLAGS) -Wa,-ahls,-a=$*.lst -c -ml -04 -o $@ -g $*.c

X.o : Xs
$(AS) $(ASFLAGS) -ahls -a=$*.lst -o $@ $^

end of preamble.

all: laser.hex

laser.hex: laser.o crtO.o analog.o timer.o util.o vect.o lcevb.ld

$(LD) $(LDFLAGS) -g -o $@ $^ -Tlcevb.ld -Map $*.map

laser.o: IOSH7030.h laser.h

analog.o: IOSH7030.h

timer.o: IOSH7030.h

util.o: IOSH7030.h

#all: espcam.hex

espcam.o: IOSH703O.h

espcam.hex: espcam.o crtO.o vect.o lcevb.ld

$(LD) $(LDFLAGS) -g -o $@ $^ -Tlcevb.ld -Map $*.map

clean:

97

-del *.o

-del *.lst

cleanall: clean

-del *.hex

-del *.map

demo of gdb running and talking to eval board
on serial port

gdbdemo : flash.x
- mode com$(COM):9600,n,8,1,p

- $(ASYNC) $(COM)

$(GDB) -command flash.gsc

98

B.2 Matlab Scripts

B.2.1 Lasercal.m
clear all;
load lasernew.dat

laser = lasernew;

% Note: This program assumes that you've already

% loaded all data into the array "laser"!!

Xclear all;
Xload laser2.dat;
%laser = laser2;

X Coordinate Testing

Xy = [480,480,480,240,240,240,0,0,0];
Xx = [620,310,0,620,310,0,620,310,01;
Xy = [0,240,480,0,240,480,0,240,480];

Xx = [0,0,0,310,310,310,620,620,620];
Xr = sqrt(x.^2 + y.^2);
Xt = atan2(y,x);

Xyr = r.*sin(t);
%xr = r.*cos(t);

%xo = .2;
%yo = .16;

Xyp = y + yo;
Xxp = x + xo;

Xrp = sqrt(xp.^2 + yp.^2);
Xtp = atan2(yp,xp);

Xrp = .1*rp + 2.;
Xtp = .3*tp + 0.5;

% Invert the coordinates

x = laser(:,1)';

y = laser(:,2)';
x = 640 - x;

y = 480 - y;
xO = X;

yO = y;

%rp = laser(:,3);
%tp = laser(:,4);

rp = laser(:,3);
Xp = (laser(:,4)/2)*pi/180.;
tp = (laser(:,4)/457)*pi/180.; % Josh's SH Scanner

rp = rp';
tp = tp';
rpO = rp;

99

tp0 = tp;

X Cut out bad points in these arrays

sz = size(x);

nw = 0;

for np = 1:sz(2)
Xif (x(np) >

nw = nw +
xq(nw).

yq(nw)

rq(nw)

tq(nw)

100)1(y(np) > 150)
1;
= x(np);
= y(np);
= rp(np);
= tp(np);

/end;
end;
x = xq; y = yq; rp = rq; tp = tq;

r = sqrt(x.^2 + y.^2);
t = atan2(y,x);

X Linear cal into r and theta

mp(:,1) = rp';
mp(:, 2) = tp';
mp(:,3) = 1;
sp= size(mp);

cv = eye(sp(1));
rc = lscov(mp,r',cv)
tc = lscov(mp,t',cv)
rcc = rc(1)*rpO + rc(2)*tpO + rc(3);
tcc = tc(1)*rp0 + tc(2)*tp0 + tc(3);
ycr = rcc.*sin(tcc);
xcr = rcc.*cos(tcc);

% Quadratic cal into r and theta, with quadratic r term

rqq = rp. 2;

rqq0 = rpO.^2;
mp(:,1) = rqq';
mp(:,2) = rp';
mp(:,3) = tp';

mp(:,4) = 1;
sp= size(mp);

cv = eye(sp(1));
rcq = lscov(mp,r',cv)
tcq = lscov(mp,t',cv)
rcc = rcq(1)*rqqo + rcq(2)*rp0
tcc = tcq(1)*rqqO + tcq(2)*rpO
ycrq = rcc.*sin(tcc);
xcrq = rcc.*cos(tcc);

+ rcq(3)*tpO + rcq(4);
+ tcq(3)*tpO + tcq(4);

X Fit into simply assumed x and y space

rccp = rc(1)*rp + rc(2)*tp + rc(3);

100

tccp = tc(1)*rp + tc(2)*tp + tc(3);

ycrp = rccp.*sin(tccp);
xcrp = rccp.*cos(tccp);
cp(:,1) = xcrp';
cp(:,2) = ycrp';
cp(:,3) = 1;
xcp = lscov(cp,x',cv)
ycp = lscov(cp,y',cv)
xcc = xcp(1)*xcr + xcp(2)*ycr + xcp(3);

ycc = ycp(1)*xcr + ycp(2)*ycr + ycp(3);

% Fit in r and theta space, not using crossterm

mr(:,1) = rp';

mt(:,1) = tp';

mr(:,2) = 1;
mt(:,2) = 1;
sp= size(mr);

cv eye(sp(1));
rcg = lscov(mr,r',cv)

tcg = lscov(mt,t',cv)

rccg = rcg(1)*rpO + rcg(2);
tccg = tcg(1)*tpO + tcg(2);
ycrg = rccg.*sin(tccg);
xcrg = rccg.*cos(tccg);

X Nonlinear fit

%opt(18) = 100;

opt(14) = 70000;

XzO = [80,-80,rcg(2),tcg(2),rcg(1),tcg(1),0];
XzO = [rc(3),rc(3),rc(3),tc(3),rc(1),tc(2),0];
XzO = [80,80,rcq(4),tcq(4),rcq(2),tcq(3),0];
zO = [120,35,2.5,-10.,-80,1,0]
'crap'

Xz0 = [80100,-500,0.5,6,50,.8,50];
load zstart.m
XzO = zstart;

eO = dltap(zO,x,y,rp,tp)
z = fmins('dltap',zO,opt,[],x,y,rp,tp);
zp = z';

save zfit zp -ascii

ef = dltap(z,x,y,rp,tp)
zO

z

rcr = (rp0 + z(3));
rcr2 = rcr*z(5) + z(7)*rcr.^2;
xnon = rcr2.*cos((tpO + z(4))*z(6)) - z(1);
ynon = rcr2.*sin((tpO + z(4))*z(6)) - z(2);

zv = [.2,.16,-2.,-0.5,10,3.33331

101

plot(xOyOIolxcrycr,'-Ixcrqycrq,

xccycc,,--Ixcrgycrg,':Ixnonynon,'-.1)

%fopen(5,'w')

%fprintf(5,'Linear fit

rc

tc

rcq

tcq

102

B.2.2 Dltap.m
function e = dltap(z,x,y,rp,tp);

Xz = [xO,yO,rO,tO,sr,st,srq]

rcr (rp + z(3));
rcr2 = rcr*z(5) + z(7)*rcr.^2;
xx = rcr2.*cos((tp + z(4))*z(6)) - z(1);
yy = rcr2.*sin((tp + z(4))*z(6)) - z(2);

xd = xx - x;

yd = yy - y;
q = sum(xd.^2 + yd.^2);
e =q;
Xe = sqrt(q);

103

B.2.3 Postplot.m
plot (x,y, 'o')
hold on

d = 5;

k 5;

for j = 1:k
plot(xnon((j-1)*d+1:j*d),ynon((j-1)*d+1:j*d),'g')

plot(xnon((j-1)*d+1:j*d),ynon((j-1)*d+1:j*d),'+g')

end;

for j = 1:k

plot(xcrq((j-1)*d+1:j*d),ycrq((j-1)*d+1:j*d),'r')

plot(xcrq((j-1)*d+1:j*d),ycrq((j-1)*d+1:j*d),'xr')

end;

hold off

104

B.2.4 Bernd.m
clear all;
load lasernew.dat

laser = lasernew;

% Note: This program assumes that you've already
X loaded all data into the array "laser"!

xraw = laser(:,1);
yraw = laser(:,2);
r_raw = -laser(:,3);
thetaraw = laser(:,4);

X inititalize
x_pixels = 640;
y-pixels = 480;

A = x-pixels;
B = y-pixels;

rO = - min(r-raw);

r1 = sqrt(x-pixels^2+y-pixels^2) / (max(r-raw) - min(r-raw));

theta0 = - min(theta-raw);

thetal = (pi/2) / (max(theta-raw) - min(theta-raw));

x-given = A-x-raw;

y-given = B-y-raw;

r = (rO + rraw) * r1;

theta = (theta0 + thetaraw) * thetal;

x = r.* cos(theta);
y = r.* sin(theta);

X assign input/output vector
x_w_poly=[x'; y']';
x-poly=x-w-poly;

y-poly=[x-given'; y.given']';

x_d_poly=[];

y-d-poly=[];
dimyd=0;

nclusters=1;

niterations=l;
X polyorder=5;
polyorder=input('Enter the polynomila order (>=1)!')

polyorder

crossvalidationfactor=0;

covarianceinput=0;

fixedclasseratiox=0;

fixedclasseratio-y=O;

105

XXXXXXXXXXXX% X %XX
% build a grid of points to check if prediciton is smooth
1=0;

step=40;

delta=30

for (kl=-delta:step:x_pixels+delta)

for (k2=-delta:step:y-pixels+delta)

1=l+1;

x_w_mesh-poly(l,1)=A-k1;

x_w_mesh-poly(1,2)=B-k2;

end

end

L=l;
x_mesh-poly=x-w-meshpoly;

XX
X build polynomial model
[datastatistics, pcluster, mucluster, varxcluster, ...

varycluster, betacluster, proby-dcluster] =

cwmall(x-w-poly, x-poly, x-d-poly, y-poly, y-d-poly, ..

nclusters, niterations, polyorder, ...

crossvalidationfactor, covarianceinput, ...

fixedclasseratio-x, fixedclasseratioy);

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX%%%%XXX %%XXXXXXXXXXXXXXXXXXXXX
% predict data and grid
[ypred, y-dpred, y-dp] = predict-all(x-w.poly, x-poly, x-d-poly,..

dimyd, polyorder,...

covarianceinput, datastatistics, ...

pcluster, mucluster, varxcluster, varycluster,...

betacluster,...

proby-dcluster);

[ypredmesh, y-dpred, y-dp] = predictall(x_w_meshpoly,...
x_mesh-poly,x-d-poly, dim-yd, polyorder,...

covarianceinput, datastatistics, ...

pcluster, mucluster, varxcluster, varycluster,...

betacluster, proby_dcluster);

figure(1)

clf

plot(-x-given, y.given,'bo')

hold on

plot(-x, y,'g+')

plot(-ypred(:,1), ypred(:,2),'r+')

title('b: pointing location, g:original laser data, ...

r:corrected laser data')

hold off

figure(2)

clf
for (1=1:L)

106

plot([-x-mesh-poly(l,1) -ypred-mesh(1,1)],...

[x-mesh-poly(1,2) ypred-mesh(l,2)],'r-')

hold on

plot(-ypred-mesh(l,1),ypred-mesh(1,2),'ro')
end

title('correction vector field, o: corrected value')

hold off

107

B.3 PC Software

B.3.1 Laser Interface

laser-interface.cpp

// laserinterface.cpp

// this file defines the methods an application will use to talk to the

// laser range finder hardware through the laserinterface object

// C++ methods

#include "laserinterface.h"

#include "serial2.h"

#include "testmain.h"

#define PI 3.14159265359

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

laserinterface *li;

laserinterface::laserinterface(double in-x-range, double in-y-range)

{
polling = true;

user_x_range = in-x-range;
user-y-range = in-y-range;

//com-portnum = 1;
//baudrate = 19200;

//InitializeSerial(com-port-num, baudrate);

comSetupo;

//reset 0;

for(int i=0; i<MAXSIGNALS; i++) {
signals[i].I = 0;
signals[i].Q = 0;
signals[i].timep = 0;
signals[i].timei = 0;
signals[i].timef = 0;
signals [i] .isum = 0;
signals [i] .qsum = 0;
signals[i].theta = 0;
signals[i].r = 0;
signals[i].x = 0;

108

signals[i].y = 0;
signals [i] .xold = 0;
signals.[i].y-old = 0;

}

for(i=0; i<NUMXYCOEFFS; i++) {
r_coeff[i] = 0;
theta-coeff [i] = 0;

}

for(i=0; i<4; i++) {
q-r-coeff[i] = 0;
q-theta-coeff[i] = 0;

}

//load config file here
FILE *fp;

threshold = 0;
waittime = 0;

fp = fopen("laser.cfg", "r");

fscanf(fp, "%d %d", &threshold, &wait-time);

setthreshold(threshold);
//set-wait(wait-time);

fclose(fp);

// setup averaging variables

sigsetjindex = 0;

sig-set-num = 0;

collecting-data = false;

// loadcalibrationo;

// load-quad-coeffso;

loadnlcoeffs();

}

laserinterface::~laserinterface()

{
}

void laserinterface::msg(char *s)

{
// insert your relevant printing message here

rogu->tw.pr("%s", s);
}

void laserinterface::error-msg(char *s)

{
// insert your relevant printing function here

rogu->tw.pr("ERROR: Xs\n", s);

}

void laserinterface::reset()

{

109

polling = false;
//char outstr[5];
char instr[200];

char output [200];
int inlen = strlen("Initialized SCI!\r\nCopied
Data!\r\nLaser Online\r\nIBase= xxxx QBase= xxxx\r\n");

MessageBox(NULL, "Please reset the board now.", "LaserGL!", MBICONSTOP);

read_bytes(in_len, (unsigned char *)in-str);

// Communicate(NULL, 0, instr, injlen, 0);

// this scanf doesn't work right at all, but it doesn't matter

// because we don't use these values anyway!

int q, i;

sscanf(instr, "Laser Online\r\nIBase= %4x Q-base= X4x\r\n", &i, &q);

Ibase = i;
Qbase = q;

//I
}

//sprintf(output, "RESET! Qbase: Xf Ibase: %f\n", Qbase, Ibase);

sprintf(output, "%s\n\n", in-str);

msg(output);

polling = true;

void laserinterface::setthreshold(short int t)

{
polling = false;

char str[5];

char reply [40];
char s[50];

int len = strlen("Threshold set to xxxx\r\n");

// char tmp =t;

sprintf(str, "Tcc", t/256, t%256);

rogu->tw.pr("Threshold command:Xd Xd\n", t/256

writedata((unsigned char *)str);

read-bytes(len, (unsigned char *)reply);

sprintf(s, "thresh reply: Xs\n", reply);

msg(s);

// polling = true;
}

void laserinterface::set-wait(short int w)

{

, tX256);

110

polling = false;
char str[5];
char reply[40];
char s[501;

int len = strlen("Wait Time set to xxxx\r\n");

sprintf(str, "WcYc", w/256, w%256);

rogu->tw.pr("wait command:Xd Xd\n", w/256, wX256);

writedata((unsigned char *)str);

read.bytes(len, (unsigned char *)reply);

sprintf(s, "wait reply: Xs\n", reply);
msg(s);

// polling = true;
}

void laserinterface::readdata() {

// first zero out the all of the signal structures

for(int q=0; q<4; q++) {
signals[q].I=0;

signals[q].Q=0;

signals[q].timep=0;

signals[q].timei=0;

signals[q].timef=0;

signals[q].isum=0;

signals[q].q-sum=0;

}

unsigned char str[100];

readdata(str);

numsignals = strEO];

int tmp=0;
int tmpl=O;

int tmp2=0;

for(int i=0; i<num-signals; i++) {

// read in I as signed 16 bit and extend to 32

tmp = str[i*BLOCK+1];
if(tmp&Ox80) {signals[i].I = Oxffff000| tmp<<8 Istr[i*BLOCK+1+1];}

else{signals[i].I=tmp<<8 Istr[i*BLOCK+1+1];}

// read in Q as signed 16 bit and extend to 32
tmp = str[i*BLOCK+2+11;
if(tmp&0x80){signals[i].Q = OxffffOO001 tmp<<8 Istr[i*BLOCK+3+1];}

111

else{signals[i].Q=tmp<<8 Istr[i*BLOCK+3+1];}

tmp=(str[i*BLOCK+4+1] <<8);

signals[il.timep = tmp I (str[i*BLOCK+5+1]& OxO00000ff);

tmp=(str[i*BLOCK+6+1] <<8);

signals[i].timei = tmp I (str[i*BLOCK+7+1]&OxOOOOOff);

tmp=(str[i*BLOCK+8+1] << 8);
signals[i].timef =tmp I (str[i*BLOCK+9+1]&OxOOOOOff);

tmp=(str[i*BLOCK+10+11 <<24);

tmpl=(str[i*BLOCK+11+1] <<16);

tmp2=(str[i*BLOCK+12+1] <<8);

signals[i].i-sum = tmp I tmp1l

tmp=(str[i*BLOCK+14+1] <<24);

tmpl=(str[i*BLOCK+15+1] <<16);

tmp2=(str[i*BLOCK+16+1] <<8);

signals[i].qsum = tmp I tmpll

tmp2 I (str[i*BLOCK+13+1]& OxOOOO0ff);

tmp2 I(str[i*BLOCK+17+1]& OxOOOOOOff) ;

signals [i].theta = .5*(float) (signals [i] .timei + signals [i].timef);
signals[i].r = atan2(signals[i].i-sum, signals[i].q-sum);

if(signals[i] .r>O){
signals[i].r=signals[i].r-2*3.14159;

}

if(signals[i].isum > 0 && signals[i].q-sum > 0) {
signals[i].good = false;

}
else

{

signals[i].good = true;

}
// for(i=0;i<1;i++){

// char s[200];

// sprintf(s, "Peaks=Xd Numsignal=%d I:Xd Q:%d timep:Xd

// timei:%d timef:%d \ni-sum:Xd q-sum:Xd\n",

// numsignals,i,signals[il.I, signalsEi].Q,

//signals[i].timep, signals[i].timei,

// signals[i].timef, signals[i].isum, signals[i].q-sum);

// msg(s);
// }

// here we record the data for averaging and calibration

if(collecting-data) {

112

// first determine which is the biggest signal

int currentbiggest = 0;
int biggest-index =0;

//sprintf(s, "\nnum-signals: %.d\n", num-signals);

//msg(s);

for(int i=0; i<num-signals; i++) {
if(abs(signals[i].i-sum) + abs(signals[i].q-sum) > current-biggest) {

current-biggest = abs(signals[i].i-sum) + abs(signals[i].q-sum);
biggestindex = i;

}
// sprintf(s, "I:Xd Q:Xd timep:%d timei:Xd timef:%d \ni-sum:Xd q-sum:Xd\n",
// signals[i].I, signals[i].Q, signals[i].timep, signals[i].timei,

// signals[i].timef, signals[il.i-sum, signals[i].q-sum);

// msg(s);

}

if(numnsignals>0 && sigsetindex < MAXDATAPOINTS &&
signals[biggest-indexl.good) {

sig-set[sig-set-index].I = signals[biggest-index].I;
sig-set[sig-set-index].Q = signals[biggest-index].Q;
sig-set[sig-set-index].timep = signals[biggest-index].timep;
sig-set[sig-set-index].timei = signals[biggest-index].timei;
sig-set[sig-set-index].timef = signals[biggest-index].timef;
sig-set[sig-set-index].i-sum = signals[biggest-indexl.i-sum;
sig-set[sig-set-index].q-sum = signals[biggest-indexl.q-sum;
sig.setindex++;

}
}

}

void laserinterface::first-poll(){

char s = 'R';

write-bytes(1, (unsigned char*)&s);

}

// least squares stuff

void laserinterface::recorddata-point

(int n, float expected_r, float expected-t)

{
char s[100];

113

cal-data[n][0] = atan2(good-avg-i-sum, good-avg-q-sum);
if (cal-data[n] [0] >0) {

caldata[n][0]=cal-data[n][0]-2*3.14159;

}
cal.data[n][1] = good-avg-t;

sprintf(s, "avg-i-sum: Xf avg-q-sum: Xf avg-t: Xf\n",
good-avg-i-sum, good-avg-qsum, good-avgt);
msg(s);

sprintf(s, "translates to... r: Xf theta: Xf\n",
cal-data[n][0], good.avg-t);

msg(s);

sprintf(s, "from %d samples\n", sigset_index);

msg(s);

target-data[n][0] = expected_r;
target-data[n][1] = expected-t;

}

void XYDivideMatrices(double AENUMPOINTS][NUMSENSORS + 1],
double B[NUMPOINTS],

double X[NUMSENSORS + 1]);
void XYGaussJ(double a[NUMSENSORS +1][NUMSENSORS + 1]);

void laserinterface::calculate-xys()

{
for(int i=0; i<numnsignals; i++) {

double adj.r = signals[i].r*r-coeff[0] +
signals[i].theta*rcoeff[1] + r-coeff[2];
double adj-theta = signals[i].r*thetacoeff[0] +
signals[i].theta*thetacoeff[1] + thetacoeff[2];
signals[i].x = adj-r*cos(adj-theta);
signals[i].y = adj-r*sin(adj-theta);

}
}

void laserinterface::quad-calculate-xys()

{
for(int i=0; i<num-signals; i++) {

double tr = signals[i].r*-1;
double tt = signals[i].theta/2*(PI/180);
double adj-r = q-r-coeff[0]*tr*tr + q-r-coeff[1]*tr + q-r-coeff[2]*tt +

q-r-coeff[3];
double adj-theta = q-theta-coeff[0]*tr*tr + q-theta-coeff[1]*tr +

q_thetacoeff[2]*tt + q-theta-coeff[3];

signals[i].x = adj-r*cos(adj-theta);
signals[i].y = adj-r*sin(adj-theta);

}
}

void laserinterface::nlcalculate-xys()

{

114

for(int i=0; i<numsignals; i++) {
double tt = signals[il.theta/457*(PI/180);
double rcr = signals[i].r + nlcoeff[21;

double rcr2 = rcr*nlcoeff[4] +

nlcoeff[6]*rcr*rcr;

signals[i].x = rcr2*cos((tt + nl-coeff[3])*

nlcoeff[5]) - nlcoeff[0];
signals[i].y = rcr2*sin((tt + nl-coeff[31)
*nlcoeff[5]) - nicoeff[1];

}

//rogu->tw.pr("r: Xf theta: %f\n",

//signals[0].r, signals[0].theta);
//rogu->tw.pr("num-sigs: %d x: Xf y: %f\n",

//num-signals, signals[0].x, signals[0].y);

}

void laserinterface::calibratelaser()

{
double A[NUMPOINTS][NUMSENSORS + 1];

int i, j;
double DesiredX[NUMPOINTS], DesiredY[NUMPOINTS];

/* Set up the Matrix A: */

for(i = 0; i < NUMPOINTS; i++) /* copy in the sensor data */
for(j = 0; j < NUMSENSORS; j++)

A[i] [j] = cal-data[i] [j];
for(i = 0; i < NUMPOINTS; i++) /* offset values for each point */

A[i][NUMSENSORSI = 1.0;

/* Set the desired values of X and Y

The caldata rows must match these rows

in order for the points to match */

SetDesiredValues(DesiredX, DesiredY);

/* Calculate the x coefficients */

XYDivideMatrices(A, DesiredX, rcoeff);

/* Calculate the y coefficients*/

XYDivideMatrices(A, DesiredY, thetacoeff);

}

void laserinterface::savecalibration()

{
int i;

char filename[25];

char tmp[40];

FILE* myfile;

sprintf(filename, "laser.cal");

myfile = fopen(filename,"w");
if (myfile == NULL)

115

{

sprintf(tmp, "Unable to open %s. Calibration not saved!\n",filename);

error-msg(tmp);

return;

}

for(i=O;i<NUMXYCOEFFS;i++) // initialize sensor values

fprintf(myfile, "X.f\n", r-coeff[i]);

for(i=O;i<NUMXYCOEFFS;i++)

fprintf(myfile, "%f\n", thetacoeff[i]);

fclose(myfile);

sprintf(tmp, "Calibration saved to file Xs\n",filename);
msg(tmp);

}

void laserinterface::loadcalibration()

{
int i;
char filename[25];

char tmp[40];

FILE* myfile;

double d;

sprintf(filename, "laser.cal");

myfile = fopen(filename,"r");
if (myfile == NULL)

{
sprintf(tmp, "Unable to open Xs. Calibration not read!\n",filename);
error-msg(tmp);

return;
}

for(i=0;i<NUMXYCOEFFS;i++) // initialize sensor values

{
fscanf(myfile, "%lf", &d);
r_coeff[i] = d;

// tw.pr("%f\n", d);
}
for(i=O;i<NUMXYCOEFFS;i++)

{
fscanf(myfile, "Xlf", &d);

theta-coeff[i] = d;
// tw.pr("%f\n", d);
}

fclose(myfile);

sprintf(tmp, "Calibration loaded from file Xs\n",filename);

msg(tmp);

}

116

void laser-interface::load-quad-coeffs()

{
int i;
char filename[25];

char tmp[40];

FILE* myfile;

double d;

sprintf(filename, "laserq.cal");

myfile = fopen(filename,"r");
if (myfile == NULL)
{

sprintf(tmp, "Unable to open %s. Calibration not read!\n",filename);

error-msg(tmp);

return;

}

for(i=0;i<4;i++) // initialize sensor values

{
fscanf(myfile, "Xlf", &d);
q-r-coeff[i] = d;

// tw.pr("%f\n", d);
}
for(i=0;i<4;i++)

{
fscanf(myfile, "Xlf", &d);
q-theta-coeff[i] = d;

// tw.pr("%f\n", d);
}

fclose(myfile);

sprintf(tmp, "Calibration loaded from file Xs\n",filename);
msg(tmp);

}

void laserinterface::loadnlcoeffs()

{
int i;
char f ilename [25];
char tmp[40];
FILE* myfile;

double d;

sprintf(filename, "las_nl.cal");

myfile = fopen(filename,"r");
if (myfile == NULL)
{

sprintf(tmp, "Unable to open %s. Calibration not read!\n",filename);

error-msg(tmp);

return;

}

117

for(i=0;i<7;i++) // initialize sensor values

{
fscanf(myfile, "%lf", &d);
nlcoeff[i] = d;
rogu->tw.pr("Xf\n", d);

}

fclose(myfile);

sprintf(tmp, "Calibration loaded from file Xs\n",filename);
msg(tmp);

}

void DoError(char *Error)

{
char s[401;

sprintf(s, ".s\n", Error);

li->error-msg(s);

}

/* This sets the desired values Matrices for CalibrateGestureWall */

void laserinterface::SetDesiredValues(double

DesiredR[NUMPOINTS], double DesiredT[NUMPOINTS])

{
for(int i=0; i<NUMPOINTS; i++) {

DesiredREil = target-data[i][0];
DesiredT[il = target-data[il [1];

}

//double tx, ty;

// tx=0; ty = user-y-range;

// DesiredR[01 = ty; /* Upper left corner */
// DesiredT[0] = tx;

// tx=user_x-range/2; ty=user-y-range;

// DesiredR[l] = sqrt(tx*tx+ty*ty); /* Upper middle */
// DesiredT[1] = atan(tx/ty);

// tx=user_x-range; ty=user-y-range;

// DesiredR[2] = sqrt(tx*tx+ty*ty); /* Upper right corner

// DesiredT[21 = atan(tx/ty);
/* -- *

// tx=0; ty=user-y-range/2;

// DesiredR[3] = sqrt(tx*tx+ty*ty); /* Middle left side */

// DesiredT[3] = atan(tx/ty);

// tx=user_x-range/2; ty=user-y-range/2;

// DesiredR[4] = sqrt(tx*tx+ty*ty); /* Middle */
// DesiredT[4] = atan(tx/ty);

// tx=user-x-range; ty=user-y-range/2;

118

// DesiredR[5] = sqrt(tx*tx+ty*ty); /* Middle right side */
// DesiredT[5] = atan(tx/ty);

/* -- *

// tx=O; ty=O;

// DesiredR[6] = sqrt(tx*tx+ty*ty); /* Lower left corner */

// DesiredT[6] = PI/2;

// tx=user_x-range/2; ty=O;

// DesiredR[7] = sqrt(tx*tx+ty*ty); /* Lower middle */
// DesiredT[7] = PI/2;

// tx=user_x-range; ty=O;

// DesiredR[8] = sqrt(tx*tx+ty*ty); /* Lower right */
// DesiredT[8] = PI/2;
}

/* This divides matrices A and B and puts the result in X.

This is used exclusively by CalibrateGestureWall

Note that the Matrix dimensions are static. */

void XYDivideMatrices(double AENUMPOINTS][NUMSENSORS + 1],

double BENUMPOINTS],

double X[NUMSENSORS + 1])

{
double ATranspose[NUMSENSORS + 1][NUMPOINTS];
double ProductOfATransposeAndA[NUMSENSORS + 1][NUMSENSORS + 1];

double ProductOfATransposeAndB[NUMSENSORS + 1];

int i, j, k;
double Accumulator;

/* Transpose the A matrix: */

for(i = 0; i < NUMSENSORS + 1; i++)

for(j = 0; j < NUMPOINTS; j++)
ATranspose [i] [j] = A[j] [i];

/* Multiply ATranspose and A so we have a square matrix we can invert: */
for(i = 0; i < NUMSENSORS + 1; i++)

{
for(j = 0; j < NUMSENSORS + 1; j++)

{
Accumulator = 0; /* Reset the accumulator */

for(k = 0; k < NUMPOINTS; k++)
/* take the dot product of the row and column */

Accumulator += (ATranspose[j][k] * A[k][i]);

ProductOfATransposeAndAj] [i] = Accumulator;

}
}

/* Invert the ProductOfATransposeAndA matrix: */

XYGaussJ(ProductOfATransposeAndA);

/* Multiply ATranspose with the B matrix of desired solutions */

for(j = 0; j < NUMSENSORS + 1; j++)
{

Accumulator = 0; /* Reset the accumulator */

119

for(k = 0; k < NUMPOINTS; k++)

/* take the dot product of the row and column */

Accumulator += (ATranspose[j][k] * B[k];
ProductOfATransposeAndB[j] = Accumulator;

}

/* Now we multiply ProductOfATransposeAndA with Product0fATransposeAndB

This is the final answer so we throw it in X */

for(j = 0; j < NUMSENSORS + 1; j++)
{

Accumulator = 0; /* Reset the accumulator */

for(k = 0; k < NUMSENSORS + 1; k++)

/* take the dot product of the row and column */
Accumulator += (ProductOfATransposeAndA[j][k] *

ProductOfATransposeAndB[k]);

X[j] = Accumulator;
}

}

#define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} /* Used by GaussJ */

/* Gets the Inverse of the square matrix A with NUMSENSORS + 1 rows

Taken mostly from Numerical Recipies in C */
void XYGaussJ(double a[NUMSENSORS +1][NUMSENSORS + 1])

{
int *indxc, *indxr, *ipiv;

int i, icol = 0, irow = 0, j, k, m, mm;

int n = NUMSENSORS + 1;
double big = 0, dum = 0, pivinv, temp;

/* Allocate space for these guys */

indxr = (int *)malloc(sizeof(int)*n);

indxc = (int *)malloc(sizeof(int)*n);

ipiv = (int *)malloc(sizeof(int)*n);

for(j = 0; j < n; j++)
ipiv[j] = 0;

for(i = 0; i < n; i++)

{
big = 0;
for(j = 0; j < n; j++)

if(ipiv[j] != 1)
for(k = 0; k < n; k++)

if(ipiv[k] == 0)
{

if(fabs(a[j][k]) >= big)
{

big = fabs(a[j][k]);

irow j;
icol =k;

}
}
else

{

120

if(ipiv[k] > 1)
DoError("Gaussj: Singular Matrix-1");

}

++(ipiv[icol]);

if(irow- != icol)

{
for(m = 0; m < n; m++)

SWAP(a[irow][m], a[icol][m]);

}

indxr[i] = irow;

indxc[i] = icol;

if(a[icol][icol] == 0)
DoError("GaussJ: Singual Matrix-2");

pivinv = 1 / a[icol][icol];

a[icol][icol] = 1;

for(m = 0; m < n; m++)

a[icol][m] *= pivinv;

for(mm = 0; mm < n; mm++)

if(mm != icol)

{
dum = a[mm][icol];
a[mm][icol] = 0;

for(m = 0; m < n; m++)
a[mm][m] -= a[icol][m] * dum;

}
}

for(m = n-1; m >= 0; m--)

{
if(indxr[m] != indxc[m])

for(k = 0; k < n; k++)

SWAP(a[k] [indxr Em]], a[k] [indxc [m]]);
}

/* remember to free them!*/

free(ipiv);
free(indxr);

free(indxc);

}

// signal averaging stuff

void laserinterface::begin-collecting-data()

{
sig-setindex = 0;

sig-set-num = 0;

121

collecting-data = true;
}

void laser-interface::stop-collecting-data()

{
collecting-data = false;
dump-data-tofileo;

finddata-avg(;

}

void laserinterface::dump-data-to-file()

{
FILE *fp;

fp = fopen("laser.dat", "w");

for(int i=0; i<sig-setindex; i++) {
fprintf(fp, ".f Xil Xil\n", .5*(sig-set[i].timef+sig.set[i].timei),

sig}set~i].i-sum, sig-seti].q-sum);
}

fclose(fp);

}

void laserinterface::writecaldatatofile()

{
FILE *fp;

fp = fopen("lasercal.dat", "w");

for(int i=0; i<25; i++){

fprintf(fp, "%f Xf %f Xf\n", target-data[i][0],
target-data[i][1], cal-data[i][0], cal-data[i][1]);

}
fclose(fp);

}

void laser-interface::finddata-avg()

{
char s[40];
sprintf(s, "Computing Avg.. .\n");

msg(s);

// calculate the first average

float avg.q-sum = 0;

float avg-i_sum = 0;

float avgtime = 0;

for(int i=0; i<sig-setindex; i++) {
avg-q_sum += sig-set[i].q-sum;

avg-isum += sig-set[i].isum;

avg-time += .5*(sig-set[i].timef

}

avg-q-sum = avg-q-sum/sigsetindex;

+ sig-set[i].timei);

122

avg-i-sum = avg-i-sum/sig-set-index;
avg-time = avg-time/sig-setindex;

// calcualte the variance

float q-var = 0;
float i_var = 0;
float t-var = 0;

for(i=0; i<sig-setindex; i++) {
q-var += (sig-set[i].q-sum-avg-q-sum)*(sig-set[i].q-sum- avg-q-sum);
i_var += (sig-set[i].i-sum-avg-i-sum)*(sig-set[i].i-sum-avg-i-sum);
t_var += (.5*(sig-set[i].timef + sig-set[il.timei)-avg-time)*

(.5*(sig-set[i].timef + sig-set[i].timei)-avg-time);
}

qvar = qvar/sig-set-index;
i_var = ivar/sig-set-index;
t_var = tvar/sigset index;

// select good points and calculate a new average

float new-q-avg=0;

float new-i-avg=0;

float new-t-avg=0;

int num-new-data=0;
for(i=0; i<sig-set-index; i++) {

if((sig-set[i].q-sum-avg-q-sum)*(sig-set[i].qsum- avg-q-sum) <= q-var &&
(sig-set[i].i-sum-avg-i-sum)*(sig-set[i].i-sum-avg-i-sum) <= i-var &&
(.5*(sig-set[i].timef + sig-set[i].timei)-avg-time)*
(.5*(sig-set[i].timef + sig-set[i].timei)-avg-time) <= t.var) {

new-q-avg += sig-set[i].q-sum;
new-i-avg += sig-set[i].i-sum;
new-t-avg += .5*(sig-set[i].timef + sig-set[i].timei);
numnewdata++;

}

}

new-qavg = new-qavg/num-newdata;
new-i-avg = new_i avg/num-newdata;
newtavg = new_t_avg/numnew_data;

sprintf(s, "num-new-data: %i\n", num-new-data);

msg(s);

good-avg-q-sum = new-q-avg;
good-avg-_isum = newi-avg;
good-avg-t = new_t-avg;

}

void laserinterface::process-data(void){

int i;

123

float alpha = ALPHA;

//The filter operating system generates values of xPos and yPos based on

//what it thinks it was linked to the previous time.

//peaks are same, just average

if(numsignals == num-signals-old) {
for(i=O;i<numsignals;i++) {

signals[i].x = alpha * signals[i].x-old + (1-alpha)*signals[i].x;

signals[i].y = alpha * signals[i].y-old + (1-alpha)*signals[i].y;
}

}
//copy data over

num-signals-old=num-signals;

for(i=O; i<num-signals;i++){

signals[i].x-old=signals[i].x;
signals[i].yold=signals[i].y;

}

}

// interface functions

void initialize-rangefinder(double in_x_range, double in-y-range)

{
li = new laserinterface(in_x_range, in-yrange);
//li->reset(;

}

void rangefinder-first.poll()

{
li->first-poll();

}

void get-rangefinder-points(double *x, double *y, int *num_points)

{
// char sE100];

//li->calculate-xyso;
//li->quad-calculate-xyso;

li->nlcalculate-xyso;

(*numpoints) = li->num-signals;

//li->process-data();

for(int i=0; i<*num-points; i++) {
// sprintf(s,"r= Xf theta=Xf ", li->signals[i].r, li->signals[i].theta);

I li->msg(s);

124

x[i] = 640 - li->signals[i].x;

y[i] = 480 - li->signals[il.y;
//x[i] = li->signals[i].x;
//y[i] = li->signals[i].y;

}
//if((*num-points)<0) exit(0);

/*
char ww[30];

sprintf(ww, "np: %d", *num-points);

g-moe->debug-output(ww);

// rogu->tw.pr("num-peaks: Xd x: Xd y: %d\n", *num-points, x[0], y[O]);

}

void resetrangefinder()

{
li->reseto;

}

void set-rangefinder-threshold(short int t)

{
li->setthreshold(t);

}

void set-rangefinder-wait(short int w)

{
li->setwait(w);

}

void cleanup-rangefinder()

{
delete li;

}

void writedata-file()

{
li->writecaldata-tojfile(;

}

void recordrangefinder-datapoint(int n, float x, float y)

{
// li->record-data-point(n, sqrt(x*x+y*y), atan2(y, x));

li->record-data-point(n, y, x);

}

void loadrangefinder-calibration()

{
li->loadcalibrationo;

}

void save_rangefinder.calibration()

125

{
li->save-calibrationo;

}

void calibrate-rangefinder()

{
li->calibratelaser();

}

void begin-collecting-data()

{
if(!(li->collecting-data)) {
char s[40];

sprintf(s, "beginning to collect data....\n");

li->msg(s);
li->begin-collecting-data(;

// li->polling=true;

}
}

void stop-collecting-data()

{
li->stop-collecting-data(;
char s[40];
sprintf(s, "done collecting data!\n");

li->msg(s);
// li->polling=false;

}

void run()

{
if(!(li->collecting-data)) {
char s[40];

sprintf(s, "running\n");

li->msg(s);

li->begin-collecting-data(;

li->polling=true;

}
}

void rangefinder-readdata()

{
li->readdata(;

}

126

laser-interface.h

//d:\sdk\rogus\c\1.9a\include\rogus\1.9a

//d:\sdk\rogus\c\1.9a\lib\rogus\1.9a\RogDebug.lib

//c:\Rogusl.9\lib\RogDebug.lib

//c:\Rogusl.9\include\

// laserinterface.h

#define MAXSIGNALS 30

#define BLOCK 18

#define MAXBYTES 270

#define NUMPOINTS 25

#define NUMSENSORS 2

#define NUMXYCOEFFS NUMSENSORS + 1
#define MAXDATAPOINTS 1000

#define ALPHA .7

class laserinterface

{
public:

laserinterface(double in_x_range, double in-y-range);

~laserinterface();

bool polling;

int com-port-num;

int baudrate;

int threshold;

int waittime;

int Ibase;

int Qbase;

void msg(char *s);

void error-msg(char *s);

void reset();

void setthreshold(short int t);
void set-wait(short int w);

void poll();

void first-poll();
void process-data(;

// least squares stuff

double user-x-range; // the x, y ranges of values that

double user-y.range; // the program expects to get back

double caldata[NUMPOINTS][NUMSENSORS];

double rcoeff[3];

double thetacoeff [3];

double q-r-coeff[4];

double q-theta-coeff[4];

double nlcoeff[7];

127

void calculate-xyso;

void quad-calculate-xyso;

void nlcalculate-xyso;
void calibrate-lasero;

void savecalibrationO;
void loadcalibrationO;

void loadquad-coeffso;

void load_nlcoeffsO;

void SetDesiredValues(double DesiredR[NUMPOINTS], double DesiredT[NUMPOINTS]);

void recorddata-point(int n, float expected_r, float expected-t);

float target-data[NUMPOINTS][NUMSENSORS];

typedef struct _signal { //a single signal readout unit
int I;

int Q;
int timep;

int timei;

int timef;

int i-sum;

int q-sum;

float r; //r=arctan(q/i)

float theta; //theta=width/r

float x;

float y;

float xold;

float y-old;

bool good; //1 means we plot it

} Signal;

int num-signals;

int numnsignalsold;

Signal signals[MAXSIGNALS];

// signal averaging stuff

int sig-set-index;

int sig-setnum;

Signal sig-set[MAXDATAPOINTS];

bool collecting-data;

void begin-collecting.datao;

void stop-collecting-datao;

void dump-data-tofileO;

void writecaldatatofileO;

void finddata-avgO;
float good-avg-q-sum;

float good-avg-i-sum;

float good-avg-t;

void readdatao;

};

extern laser-interface *li;

128

void initialize-rangefinder(double in_x_range, double in-y-range);

void get-rangefinder-points(double *x, double *y, int *numpoints);

void resetrangefinderO;

void set-rangefinder-threshold(short int t);

void set-rangefinder-wait(short int w);

void cleanup-rangefindero;

void recordrangefinder-datapoint(int n, float x, float y);

void loadrangefinder.calibrationO;

void saverangefinder-calibration(;

void calibrate-rangefindero;

void begin-collecting-datao;

void stop-collecting-datao;

void rangefinderfirst-poll();

void runo;
void writedatajfile(;

void rangefinder-readdatao;

129

B.3.2 Serial

serial2.cpp

#include "testmain.h"

#include "serial2.h"

static HANDLE hCom;

void

comSetup ()

{
DCB dcb;

DWORD dwError;

BOOL fSuccess;

const char* serialPort = "COM1";

hCom = CreateFile(serialPort,
GENERICREAD I GENERICWRITE,
0, /* comm devices must be opened w/exclusive-access */

NULL, /* no security attrs */

OPENEXISTING, /* comm devices must use OPENEXISTING */

0, /* not overlapped I/0 */

NULL /* hTemplate must be NULL for comm devices */

if (hCom == INVALIDHANDLE_VALUE) {
dwError = GetLastErroro;

/* handle error */

rogu->ew.w("Error opening %s",serialPort);

return;

}

* Omit the call to SetupComm to use the default queue sizes.

* Get the current configuration.

f Success = GetCommState(hCom, &dcb);

if (!fSuccess) {
/* Handle the error.

rogu->ew.w("Error getting the comm state");

return;

}

/* Fill in the DCB: baud=19200, 8 data bits, no parity, 1 stop bit. */

dcb.BaudRate = 38400;
dcb.ByteSize = 8;

dcb.Parity = NOPARITY;
dcb.StopBits = ONESTOPBIT;

130

dcb.fOutxCtsFlow=FALSE;

dcb.fOutxDsrFlow=FALSE;

dcb.fDtrControl=DTRCONTROLDISABLE;

dcb.fDsrSensitivity=FALSE;

dcb.fNull=FALSE;

fSuccess = SetCommState(hCom, &dcb);

if (!fSuccess) {
/* Handle the error. */

rogu->ew.w("Error setting the comm state");

return;

}

SetupComm(hCom, 300, 300);

COMMTIMEOUTS cto;

cto.ReadIntervalTimeout = MAXWORD;
cto.ReadTotalTimeoutMultiplier = 0;
cto.ReadTotalTimeoutConstant = 0;
cto.WriteTotalTimeoutMultiplier = 0;
cto.WriteTotalTimeoutConstant = 100;

if (!SetCommTimeouts(hCom, &cto))

rogu->ew.w("Unable to set proper timeouts");

}

void readdata(unsigned char *data)

{

bool noheader=1;

unsigned char foo[100];

unsigned char temp-foo[100];

DWORD bytesread;

int i;
bool reading=1;

COMSTAT ComStat;

unsigned long dummy;

foo[0] = 7;

// buffer empty

ReadFile(hCom, foo, 1, &bytesread, NULL);

while(bytesread>0) {
ReadFile(hCom, foo, 1, &bytesread, NULL);

//rogu->tw.pr("Xi\n", foo[0]);

}
exit(0);

131

ClearCommError(hCom, &dummy, &ComStat)

while(reading){

while(noheader){

ReadFile(hCom, foo, 1, &bytesread, NULL);

//rogu->tw.pr("1: %d bytes read %d\n", bytesread, foo[O]);

if (bytesread == 0)

{
exit(0);

continue;

}
if(bytesread==1 && foo[0]==11){

ReadFile(hCom, foo, 1, &bytesread, NULL);

//rogu->tw.pr("2: %d bytes read Xd\n", bytesread, foo[0]);
if(bytesread==1 && foo[0]==27){

ReadFile(hCom, foo, 1, &bytesread, NULL);

//rogu->tw.pr("3: Xd bytes read %d\n", bytesread, foo[O]);
if(bytesread==1 && foo[0]==48){

ReadFile(hCom, foo, 1, &bytesread, NULL);

//rogu->tw.pr("4: %d bytes read %d\n", bytesread, foo[0]);

if(bytesread==1 && foo[0]==187){

noheader=0;

} else continue;

} else continue;
} else continue;

} else continue;

//if(foo[0]==11&&foo[1]==283&&foo[2]==48&&foo[3]==187){
// noheader=0;

//} else

//{

}

ReadFile(hCom, foo, 73, &bytesread, NULL);

if (bytesread == 0)

continue;

if(bytesread==73) {

for (i = 0; i < 73; i++)

132

{
// rogu->tw.pr("Xd ", (int)foo[i]);
if (foo[i] ! temp-foo[i])

{
temp-foo[i] = foo[i];

}
}
ClearCommError(hCom, &dummy, &ComStat)

if(ComStat.cbInQue < 77) reading = 0;

else {

ReadFile(hCom, foo, 77, &bytesread, NULL);

while(ComStat.cbInQue>=77) {
for (i = 0; i < 73; i++)

{
// rogu->tw.pr("%d ", (int)foo[il);
if (foo[i+4] != temp_foo[i])

{
temp-foo[i] = foo[i+4];

}
}
ReadFile(hCom, foo, 77, &bytesread, NULL);

//rogu->tw.pr("bytes: %d\n", bytesread);

ClearCommError(hCom, &dummy, &ComStat)
}
reading=0;
}

}
else {
rogu->ew.w("Expected 73 data bytes; read %lu", bytesread);

noheader=1;

continue;

// reading=O;

if(bytesread == 72) Sleep(3);

}

/*

if (bytesread != 73)

{
rogu->ew.w("Expected 73 data bytes; read Xlu", bytesread);
noheader=1;

continue;

// reading=O;

if(bytesread == 72) Sleep(3);

}
else{reading=0;}I

133

// rogu->tw.pr("NumPeaks=%d\n",(int)foo[0]);

// rogu->tw.pr("\n");

for(i=0; i<73; i++) {
if (foo[i] != data[i])

{
data[i] = foo[i];
}
}
}

void writedata(unsigned char *data) {

bool writing=true;

DWORD byteswritten=O;

while(writing){

WriteFile(hCom, data, 3, &byteswritten, NULL);

if (byteswritten == 0)
continue;

// always writes only 3 bytes at a time

if(byteswritten != 3) {
rogu->ew.w("Error! wrong number of data bytes written: %d\n", byteswritten);

} else
writing = false;

}

}

void write-bytes(unsigned int num-bytes, unsigned char *data){

bool writing=true;
DWORD byteswritten=0;

while(writing){

WriteFile(hCom, data, num-bytes, &byteswritten, NULL);

if (byteswritten == 0)

continue;

if(byteswritten != numbytes) {
rogu->ew.w("Error! wrong number of data bytes written: %d\n", byteswritten);

} else
writing = false;
}

}

134

void read-bytes(unsigned int num-bytes, unsigned char *data){

bool reading=true;

DWORD bytesread=O;

while (reading){

ReadFile(hCom, data, num-bytes, &bytesread, NULL);

if (bytesread == 0)

continue;

if(bytesread != num-bytes) {
rogu->ew.w("Error! wrong number of data bytes read: %d\n", bytesread);

} else
reading = false;
}

}

135

serial2.h

void comSetupo;

void readdata(unsigned char *data);

void writedata(unsigned char *data);

void read-bytes(unsigned int num-bytes, unsigned char *data);

void write-bytes(unsigned int num-bytes, unsigned char *data);

136

Bibliography

[AD695] Ad603 low noise, 90mhz variable-gain amplifier. Analog Devices Data
Sheet, 1995.

[AP96] Ali Azarbayejani and Alex Pentland. Real-time self-calibrating stereo
person tracking using 3-d shape estimation from blob features. In Pro-
ceedings of ICPR '96, Vienna, Austria, August 1996. IEEE.

[Aya9l] Nicholas Ayache. Artificial Vision for Mobile Robots Stereo Vision and
Multisensory Perception. The MIT Press, Cambridge, 1991.

[BFB+98] Nunzio Alberto Borghese, Giancarlo Ferrigno, Guido Baroni, Antonio
Pedotti, Stefano Ferrari, and Riccardo Savar. Autoscan: A flexible
and portable 3d scanner. IEEE Computer Graphics and Applications,
18(3):38-41, May/June 1998.

[Bov88] V. M. Bove, Jr. Pictorial applications for range sensing cameras. In Im-
age Processing, Analysis, Measurement, and Quality, volume 901, pages
10-17, Bellingham, 1988. Society of Photo-Optical Instrumentation En-
gineers.

[BS91] George J. Blanar and Richard Sumner. New time digitizer applications in
particle physics experiments. In Proceedings on the First Annual Confer-
ence on Electronics for Future Colliders, pages 87-97. Research Systems
Division, LeCroy Corporation, 1991.

[CG95] Walt Chapelle and Ed Gillis. Sensing automobile occupant position with
optical triangulation. Sensors, pages 18-21, December 1995.

[Cha97] Joel Chadabe. Electric Sound The Past and Promise of Electronic Music.
Prentice Hall, Upper Saddle River, 1997.

[Col96] Timothy D. Cole. Laser altimeter designed for deep-space operation.
Laser Focus World, pages 77-86, September 1996.

[Egl94] H. Eglowstein. Almost as good as being there. Byte Magazine, pages
173-175, April 1994.

[Eve95] H. R. Everett. Sensors for Mobile Robots Theory and Application. A K
Peters, Ltd., Wellesley, 1995.

137

[FW95] C. R. Fisher and S. Wilkinson. Diy: Build the em optical theremin.
Electronic Musician, 11(5):58-64, 1995.

[Gen9l] Jean-Franois Genat. High resolution digital tdc's. In Proceedings on the
First Annual Conference on Electronics for Future Colliders, pages 229-
238. Research Systems Division, LeCroy Corporation, 1991.

[Ger99] Neil Gershenfeld. The Nature of Mathematical Modeling. Cambridge
University Press, Cambridge, 1999.

[Gra95] Jerald Graeme. Photodiode Amplifiers Op Amp Solutions. McGraw-Hill,
New York, 1995.

[GSM] N. Gershenfeld, B. Schoner, and E. Metois. Cluster-weighted modeling
for time series analysis. Nature. (to appear).

[Hec90] Eugene Hecht. Optics. Addison-Wesley Publishing Company, Reading, 2
edition, 1990.

[HH094] K. S. Hashemi, P. T. Hurst, and J. N. Oliver. Sources of error in a laser
rangefinder. Rev. Sci. Instrum., 65(10):3165-3171, October 1994.

[KF97] Renate Kempf and Chris Frazier. OpenGL Reference Manual. Addison-
Wesley Publishing Company, Reading, 2 edition, 1997.

[Mah98] Diana Phillips Mahoney. Laser technology gives video walls a hand. Com-
puter Graphics World, 21(10):17-18, October 1998.

[McC88] Gordon McComb. The Laser Cookbook. McGraw-Hill, New York, 1988.

[ML98] Richard S. Muller and Kam Y. Lau. Surface-micromachined microoptical
elements and systems. In Proceedings of the IEEE, volume 86, pages
1705-1720. IEEE, August 1998.

[Par97] Joseph A. Paradiso. Electronic music: new ways to play. IEEE Spectrum,
34(12):18-30, December 1997.

[Par98] Joseph A. Paradiso. Getting the picture. IEEE Computer Graphics and
Applications, 18(3):26-27, May/June 1998.

[PS97] Joseph A. Paradiso and Flavia Sparacino. Optical tracking for music and
dance performance. In Optical 3-D Measurement Techniques IV, pages
11-18. A. Gruen, H. Kahmen eds., 1997.

[PTR+98] Michael Petrov, Andrey Talapov, Timothy Robertson, Alexei Lebedev,
Alexander Zhilyaev, and Leonid Polonshiy. Optical 3d digitizers: Bring-
ing life to the virtual world. IEEE Computer Graphics and Applications,
18(3):28-37, May/June 1998.

138

[Re90] J. M. Reger. Electronic Distance Measurement. Springer-Verlag, New
York, 3 edition, 1990.

[Rea97] John F. Ready. Industrial Applications of Lasers. Academic Press, New
York, 1997.

[Ric98] Pete W. Rice. Stretchable music: A graphically rich, interactive compo-
sition system. Master's thesis, MIT Media Lab, September 1998.

[RK94] J. Rehg and T. Kanade. Digiteyes: Vision-based hand tracking for
human-computer interaction. In Proc. of hte Worksop on Motion of Non-
Rigid and Articulated Objects, pages 116-22, Austin, November 1994.
IEEE.

[RM87] J. Rekimoto and N. Matsushita. Perceptual surfaces: Towards a human
and object sensitive interactive display. In Workshop on Perceptual user
Interfaces, pages 30-32, Banff, October 1987.

[ROMK98] Jun Rekimoto, Masaaki Oka, Nobuyuki Matsushita, and Hideki Koike.
Holowall: Interactive digital surface. In Conference Abstracts and Appli-
cations Siggraph 98, page 108. ACM, 1998.

[SP98] Joshua Strickon and Joseph Paradiso. Tracking hands above large in-
teractive surfaces with a low-cost scanning laser rangefinder. In CHI98
Extended Abstracts, April 98, pages 231-232. ACM, 1998.

[SRP98] Joshua Strickon, Pete Rice, and Joseph Paradiso. Stretchable music with
laser range finder. In Conference Abstracts and Applications Siggraph 98,
page 123. ACM, 1998.

[SWD+98] Joshua Smith, Tom White, Christopher Dodge, Joseph Paradiso, Neil
Gershenfeld, and David Allport. Electric field sensing for graphical
interfaces. IEEE Computer Graphics and Applications, 18(3):54-60,
May/June 1998.

[Urb95] Ellison C. Urban. The information warrior. IEEE Spectrum, 32(11):66-
70, November 1995.

[VKY+97] G. Varner, H. Kichimi, H. Yamaguchi, R. Sumner, and G. Blanar. A time
expanding multihit tdc for the belle tof detector at the kek b-factory. In
Proceedings of the International Conference on Electronics for Particle
Physics, pages 17-24. Research Systems Division, LeCroy Corporation,
1997.

[Weh97] Aloysisus Wehr. 3D-Laserscanning. Institute of Navigation, University
Stuttgart, Zurich, 1997.

[Wil97] Scott Wilkinson. Phantom of the brain opera. Electronic Musician, 13(1),
1997.

139

[WND96] Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programming
Guide. Addison-Wesley Publishing Company, Reading, 2 edition, 1996.

[Wre97] C. et. al. Wren. Pfinder: Real-time tracking of the human body. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 19(7):780-785,
1997.

140

