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Abstract

This thesis deals with the Power Allocation of Multi-Rate Multi-Priority Transmis-
sions in a hostile environment. Previous efforts have examined systems with data-
streams of different bit-rates but none, to the authors knowledge, have explored
multi-rate data-streams with different priorities. A definition of a prioritizing scheme
is given and analyzed in two jammer environments. First, the jammer is modeled
as full-band additive white Gaussian noise. Second, the jammer is modeled using
optimal partial band jamming. Spread Spectrum is used with non-coherent modula-
tion/demodulation in order to hide the transmitted data-streams as well as improve
overall system performance.
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Chapter 1

Background

1.1 Introduction

Reliable communications in the presence of jamming signals is critical for the success-

ful operation of many military, as well as commercial, operations in today's technolog-

ically advanced society. A specific problem that presents itself is the robust one-way

communication of multiple messages of varying importance in the presence of a jam-

mer. A real world example of this might arise in secure military communications from

a base command center or communications satellite to a unit of soldiers in a tactical

theater. In this case, the top priority message might be mission instructions from the

Pentagon as to where to attack next. Information of secondary importance might

include maps of the surrounding area, to facilitate finding certain strategic locations.

The lowest priority message might be a video signal of the President addressing the

nation.

This thesis will analyze efficient and effective power allocation and modulation/

demodulation strategies used to transmit multi-priority multi-rate data streams over

a jammed broadcast channel. The word data-stream will be used here on instead of

message, since message implies finite length data, where data-networking issues are

relevant. Data-networking will not be discussed here.

In secure communications over a hostile channel, the best way to mitigate the

effects of a jamming signal is to avoid it completely. This might be accomplished
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Figure 1-1: Block Diagram of a Spread Spectrum Communications System.

by hiding or disguising the transmitted signal in the background noise, so that the

jammer does not know in which frequency to transmit. A popular and effective means

of accomplishing this is through spreading the signal energy over a large bandwidth.

This spreading decreases the magnitude of the power spectral density of the signal

in the occupied bandwidth, so that it resembles noise. With the signal resembling

noise, the jammer's receiver will have a low probability of intercepting the signal(LPI).

LPI systems, as they relate to anti-jamming scenarios, are discussed in detail in [3].

Numerous methods have been developed to accomplish this task, and combined they

carry the name of spread spectrum. Figure 1-1 shows a block diagram of a general

spread spectrum communications system.

1.2 Spread Spectrum

Spread spectrum also has the added bonus of a low probability of detection or de-

modulation (LPD.) Once a receiver detects that a signal is present, the next step is

demodulation. LPD is achieved by spreading the signal with a pseudo-random binary

code, usually produced by a feedback shift register. Extensive research and theory

has been developed in designing shift registers and there are many books and papers

that proficiently cover shift register design and implementation. An example of a

linear shift register is shown in Figure 1-2. The multipliers ao, ai,.. . , am- take on

values of either (0,1). The designing of a linear feedback shift register requires choos-

ing values for the multipliers and the initial values in the registers R 0 , R 1, .. . , Rm. In

order to correctly de-spread the signal, the receiver must know the topology of the

8
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OUTPUT
* 0 0

0 0 0

Figure 1-2: Linear Feedback m-state Shift Register

particular shift register used to spread the signal as well as the initial values loaded

into the register. As long as the unintended receiver doesn't have these two vector

variables, it remains virtually impossible for the jammer to de-spread the signal. It

is virtually impossible to successfully demodulate a spread signal, if it is properly

designed. However, it is relatively easy for a jammer to determine the variables from

a section of the output sequence of a linear shift register. For this reason, non-linear

feedback shift registers are more commonly used, since it is virtually impossible to

determine the topology of a non-linear feedback register from the output sequence.

For a good introduction to shift registers and the generation of pseudo-random codes

see [7, 4].

There are three major spreading techniques: Direct Sequence, Frequency Hopped

and Time-Hopped. In Direct-Sequence Spread Spectrum (DS-SS) a waveform is pro-

duced from a pseudo-random binary code (values (+1,-i)) of length N. The period

of each bit in the waveform (called a chip) is Tc = Tb/N, where Tb is the period of the

unencoded bit stream. This waveform is then multiplied to the original bit stream

waveform, to produce the spread sequence (see Figure 1-3.) Note that since the new

bit (chip) period Tc is N times smaller than the original bit period Tb, the coded (or

spread) spectrum has a bandwidth equal to N times the original bandwidth. This

SS system is said to have a processing gain of N since a jammer, transmitting band-

limited Gaussian noise, must increase the signal power by N in order to maintain

the same bit error rate (BER). DS-SS is used mainly with coherent detection. The

focus of this thesis will be on systems with non-coherent detectors (for reasons to be

explained later), so DS-SS will not be considered any further.
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Figure 1-3: Direct-Sequence Spreading

The most commonly used spreading technique with non-coherent detection is Fre-

quency Hopped Spread Spectrum (FH-SS). Here, bandwidth spreading is achieved

by pseudo-randomly hopping the carrier frequency so that the signal appears to have

a larger bandwidth. Again, the pseudo-random hopping patterns are produced by a

feedback shift register. An FH-SS system with processing gain of N, has N possible

frequency slots in which to transmit. The frequency slots do not necessarily have to

be adjacent to one another, as they can exist in different frequency bands. Figure 1-4

shows an example of FH transmissions.

FH-SS is sub divided into two types. The difference between the two hopping

schemes lies solely on the frequency hop rate, Rh = 1. When the FH rate is faster

than the symbol rate (or T, > Th), it is called Fast Frequency Hopped Spread Spec-

trum (FFH-SS). Here the frequency carrier, controlled by a digitally controlled vari-

able controlled oscillator (VCO), hops over multiple frequency slots during the period

of one symbol transmission. When the hop rate is slower than or equal to the symbol
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Figure 1-4: FH transmissions with adjacent frequency

rate (or T, < T), it is called Slow-Frequency Hopped Spread Spectrum (SFH-SS). In

this scheme, there is one or more symbols transmitted in each frequency slot. Caution

must be used when choosing Rh, for if the hop rate is too slow, it is conceivable for

an intelligent intercept system to follow the hopping, and effective spreading does not

occur. The differences in performance between the FFH-SS and SFH-SS systems are

seen primarily in complex channel models, that include fading or multi-path propa-

gation effects. Channel fading will not be discussed and so FFH-SS and SFH-SS will

have identical performances here.

The last type of spreading technique discussed here will be Time Hopped Spread

Spectrum (TH-SS). This is the time dual of FH-SS. Instead of hopping about fre-

quency slots, the time axis is sub-divided in N time-slots into which one slot is

randomly selected for transmission. In order to maintain the same data rate as the

original message, the symbol period must be reduced by N. This symbol period

reduction by N increases the signal bandwidth by N. The pseudo-random output

sequence of a shift register is used to decide into which time-slot to transmit. Since

the period of the pulse gets smaller, synchronization effects become more of a factor

here. In order to detect a shorter pulse length the synchronization of the demodu-

lator has to be much more precise. Slight offsets in the time synchronization may

cause the demodulator to sample the signal when the modulator is not transmitting,

resulting in errors. In this respect, FH-SS systems are easier to implement and a
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favorite among SS system designers.

Hybrid systems can also be devised that have both TH-SS and FH-SS. In these

systems there are N frequency slots and M time slots. This increases the signal

bandwidth NM times. Depending on the nature of the jammer's signal, hybrid sys-

tems might prove to give good anti-jam protection. For the simple channel models

discussed here, hybrid systems have no advantage over the conventional SS systems.

1.3 Modulation/Demodulation

Non-coherent demodulation will be used in the systems here. In a hostile communi-

cations environment jamming signals can easily disrupt the operation of an intended

receivers phase-tracking device, such as a phase-locked-loop (PLL), forcing it into

an unlocked state. In coherent demodulators, when the phase of the carrier sig-

nal cannot be determined (which is the result of an unlocked PLL), the required

matched filtering operation does not get successfully performed, therefore rendering

the detection sub-optimal. In fact, most coherent demodulators will not perform the

maximum likelihood detection until the PLL is locked. Non-coherent demodulators

do not utilize phase information because envelope or square-law detectors are used.

Envelope detection takes the square root of the sum of the squares of the orthog-

onal (quadrature) components of the signal; that is, the magnitude of the signal.

This manifests itself in completely different decoding statistics, from that of coher-

ent detectors (which are based on the Q-function.) Jamming signals with Gaussian

statistics when passed through an envelope detector yield Rayleigh statistics. The

Rayleigh probability density function (pdf) is:

r2

r - e 202

fW(r) = j m2 (1.1)

When a jamming signal of band-limited Gaussian noise is added to a signal and
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passed through envelope detection, Ricean statistics are obtained. The Ricean pdf is:

r2+A2

fr - e- 2_ r A
fr.(r) = 2 2 o( ) (1.2)a 92

Where Io is a zero-order modified Bessel Function of the first kind. The derivation of

these pdfs are given in Appendix A.

Two types of modems (modulators/demodulators) will be analyzed. The first is

Frequency Shift Keying (FSK), of which the most basic form is Binary Frequency Shift

Keying (BFSK). In BFSK, transmission occurs with two distinct frequency carriers.

It operates by transmitting a pulse in frequency slot 1 if the bit has value '0' or a pulse

in frequency slot 2 if the bit value is '1'. The associated matched filter demodulator

is a bank of four orthogonal filters followed by a sampler, an envelope detector, a

summer, and a comparator. Figure 1-5 shows a correlation demodulator for BFSK.

From Appendix A, the BER for BFSK is:

Pb = -e 
2

NT - -e 2R(NT) (1.3)
2 2

Where Eb is the energy per bit, NT is the total noise power spectral density, R is the

rate, and p is the power transmitted, where p = EbR.

This can be extended from two frequency slots to M frequency slots (MFSK.) The

symbol error rate for MFSK from [1] is:

M -1 (._k+1 M ) (1.4)PS = E ( e k+1 NT(14

k=1k+I k)

By a combinatorial argument Pb M1_ P. With M slots, each pulse transmis-

sion yields log 2 M bits of information. This implies that Eb = E, where E, is the

energy transmitted per symbol.

In the upcoming analysis, it will be required to solve explicitly for the power p,

from the BER rate equations. This is not possible for MFSK, since the BER involves

a sum of exponentials that cannot be factored. For this reason, only BFSK will be

13



A cos(wIt)

Figure 1-5: Correlation Demodulator for BFSK

considered in the analysis of chapter 2.

Pulse Position Modulation (PPM) is the time dual of MFSK. The time axis is

divided into M slots and a time pulse is transmitted in one of them, so that Ts = MT,.

In Binary-PPM there are 2 adjacent time slots, T = 2Tp. If the incoming message

bit has a value of '0' then a pulse is transmitted in the first slot, otherwise a pulse

is transmitted in second. The associated demodulator is a correlation receiver that

integrates, samples twice, and then compares the sampled values. If the first sampled

value is larger, a '0' is declared. A diagram of a M-ary PPM demodulator is shown

in Figure 1-6. Since the noise is modeled as white Gaussian, the register values

in Figure 1-6 from different time samples are uncorrelated and orthogonal, just as

in FSK. Because of this, the BER equations are exactly the same as in FSK(see

Appendix B).

Just as in MFSK, each pulse transmission yields log 2 M bits, resulting in a mod-

ulation rate of l"g2 . The rate is the ratio of number of input bits used, over theM

number of output pulse-periods used to transmit the information (provided that the

pulse period remains constant.) See Figure 1-7 for an example transmission pattern

for 8-PPM. In this example the rate is 1, that is, for every 3 input message bits, 88' sfoevr3inumesgbis8

14
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Figure 1-7: Example of transmission progression of 8-PPM

output bits are produced.

1.4 Characteristics of the Jammer

To simplify analysis, only a few types of jamming signals will be considered. The

signals will be derived from Additive White Gaussian Noise (AWGN.) Full band

continuous jamming along with pulsed jamming and partial band jamming will be

considered. The benefits of using the AWGN model are; one, a simplified analysis

and, two, possible application to multi-user communications.

In the design of anti-jam (AJ) systems, the jammer is assumed to have a com-

plete characterization of the communications system (i.e knowledge of the type of

modulation, spreading, and frequency location). It has all the information that the

intended receiver has, except for pseudo-random spreading code generator. It is the

randomness of the spreading code, that gives the AJ advantage of SS.

15



Given a specific jammer model, the optimal signal power of each message will be

determined in order to obtain the best overall system performance. Since the receiver

is in a hostile environment, transmitting will not be allow, and therefore feedback or

channel equalization cannot be utilized. Channel coding will also not be considered;

however, it is well known that gains of around 3dB can be achieved with appropriate

channel coding.

16



Chapter 2

Power Allocation

2.1 Formulation

The objective of this thesis is to find power allocation methods that give good BERs

for different data-streams of varying importance. The first question to address is how

to quantitatively assign importance values to the data-streams. This depends mostly

on the specific application.

A certain application might require minimum BERs for the given data-streams.

If this is the case, and the data-streams are assigned such that the most important

objective is that data-stream 1 maintains a minimum BER, followed by data-stream

2 and so on, a simple solution exists. After a characterization of the jammer noise

is made, power is allocated to data-stream 1 such that the minimum BER is barely

ensured. After the minimum BER for data-stream 1 is satisfied the process is repeated

for data-stream 2. This process is continued until either all the available power is used,

or the minimum BERs for all data-streams are satisfied. If the latter is satisfied, the

remaining power can be divided up in a number of ways; however, this is not relevant,

since the original problem presented has already been solved.

The solution to the specific problem above is quite obvious and subsequently not

very interesting. A new formulation of the power allocation problem is now posed

that will be used here on. It is based on assigning costs to each data-stream, and then

minimizing the sum of the BERs, weighted by the costs. With these assignments, we

17



can reduce the power allocation problem to a non-linear programming optimization

problem.

M independent data-streams of rates R 1, R 2 ,..., RM with corresponding impor-

tance values I1, I2,... , IM, are broadcasted through a corrupted channel. The rates

will be indexed such that I1 > 12 > ... > IM(i.e. data-stream 1 will be the most

important, followed by 2, etc.) A rate normalized cost will be defined as the impor-

tance multiplied by the rate, or Ci = IjRj. Importance will be defined with the least

important message assigned a one (IM = 1), making the cost of the lowest priority

message equal to its rate (Cm = RM). As an example, if the second data-stream

of a two data-stream system is 10 times as important as the first data-stream then

I1 = 10 and 12 = 1. The reasoning behind this assigning protocol will be explained

later in this chapter. What is left is to minimize the sum of the BERs for the M

data-streams, weighted by the rate-normalized cost numbers.

2.2 BFSK with FH-SS

The form of a transmitted bit from the ith data-stream is [5]:

xi(t) = Mcos(wc + wi + wm)t , (0 < t < T) (2.1)
V2

Where pi corresponds to the transmitted power of the i-th message, and is constant

through out the bit period T (i.e. no pulse shaping). The bit period is equal to the

inverse of the data-rate, T -, for i = 1... M. The carrier frequency is we, while

wi is the hopping frequency, and wm is the modulation frequency. All M data-streams

will be transmitted simultaneously over the hostile channel. To avoid inter-symbol

interference (ISI), the bandwidth must be at least twice the inverse of the symbol

period. However, since the BFSK system uses two frequency bands for modulation,

twice the minimum bandwidth is required, or Bi = 4R = -4. The total bandwidth

without spreading is then:

18



M M M

B = Bi = 4 Ri = 4R, R = (Ri.
i 1i=1 i=1

After the data-stream is spread via frequency hopping, the resultant total spread

bandwidth is Bss. Since the jammer is assumed to have full knowledge of the spread-

ing scheme (excluding the pseudorandom hopping pattern), it is most beneficial to

utilize the maximum bandwidth allowable for every data-stream. Therefore, each

data-stream will be spread along the entire bandwidth, giving different processing

gains for streams with different data rates, Ni= Bs. The pseudorandom hopping

scheme will be carefully chosen such that no two data-streams are occupying the

same frequencies at any given time. This is called orthogonal signaling. Note that if

the Ni are too small, it might not be possible for transmission of all data-streams to

occur on non-overlapping (orthogonal) channels. It will be assumed that the Ni's are

sufficiently large. The total transmit power is defined as the sum of the individual

powers, P = Em1 pi.

2.2.1 Full-Band Gaussian Noise Jammer

Here the transmitted signal gets corrupted by thermal noise plus a jammer transmit-

ting Gaussian noise of average power J. The thermal noise can be modeled as additive

white Gaussian noise (AWGN) with double sided power spectral density (PSD) N.

The jammer signal can also be modeled as AWGN, with PSD f (the jammer has

to distribute his power along the total spread bandwidth, Bss.) Since the two in-

terference signals are independent Gaussian processes, the sum is also Gaussian with

PSD equal to the sum of the individual PSDs, that is T= + F s. Now, this

system can be modeled as the transmitted signal going through an AWGN channel

with PSD .

The following cost function to be minimized is now defined:

M

(Ci - Pb(i) (2.2)

19



where Pb(i) is the probability of bit error, or the bit error rate (BER). Lagrange

Multipliers are used to find values of pi that minimize Equation 2.2. From Appendix

A, the BER for BFSK with the current model is:

lL 1 2Ri(O
Pb. - -e 2NT -e 2Ri(No+

2 2
(2.3)

The optimization is then to:

M ( Pi
mn( Cie 2Ri(No+ B

(i=12
(2.4)

with the constraints that P = Ei pi and pi > 0. So :

Pi
2
Ri(No+) +A pi

M I

#(p1,... -, pM)= -Cie
i=1

- =- e 2Ri(No )

Dpi 4Ri(No+ ) B S+

Jpi = -2Rj(No+ )In
Bss

M

p2 = P = -2(No + B ) In

( 4 AR(N

(4A(No +

(2.5)

(2.6)

(2.7)

M

+i=
Ri n( Ri)

M

SRi

Now, the reason for the particular definition for Ci is made clear. In order to

get the correct cancellation, Ci must have the same units as Ri. Eliminating A,

substituting I = C2/R and some algebra results in:

R-
p R= P + 2(No + Bss R, ln( )] (2.8)

M

,=1

From Equation 2.8, it is important to note that the energy per bit is a function of

the importance value, and can be written in the form:

= a + #3ln(Ii)

20
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Using the condition that pi > 0, in Equation 2.8, results in the minimum total

power condition of:

J M I.
P > 2(N, + Bss) i R, ln(-L) , i = 1, 2, ... ., M (2.9)

yielding in a minimum signal to noise power ratio (SNR) of:

P 2 I -
SNR = > R2 n( i), i =- 1, 2, ., M. (2.10)

(NoBss + J) BSs j=1 I

Substituting the optimized value for pi into Equation 2.3 yields a BER of:

1 P m R 1 M R

Pb = - exp (- - -Z ln() = 2 exp ( () R

* 2 2R(No + ) J _1 R 2I; 2R(No + ) J
(2.11)

giving a minimized objective function of:

M m .J M R1,

C 1: e 2R(No+-S 1 jSCiPbi - 2 _RN+~s 1/ (2.12)
i=1 i=1 j=1

To verify that the above is a local minimum, the second partials of #(pi,...,pM)

must be examined. From [6] conditions for a local minimum are given as #'(pi,. . . , pM)

0, and Di > 0,for i = 1, 2,... , M, where Di are determinants of the Hessian matrix

of #, and have the form:

ii~PP ... OP1Pi

i P2P1 O 2 2  22i (2.13)

c.PiPl..............q5 i

The first condition above was already used to find the values of pi, so the constraint

Di > 0 must now be verified. In evaluating the determinant, it is clear that all the

elements outside the main diagonal go to zero, or #", = 0 when i j. Thus

Di= H1- Differentiating Equation 2.7 results in:

21



824Ci 2Ri(No+ )
e 2(Rss ) (2.14)

2(2Ri(No+BS))2

which is always positive since the exponential e' is a strictly positive (non-zero)

function for real finite values of x. Now since the product of positive numbers is also

positive, and Di > 0 (for i = 1, 2,... M), the value obtained for pi in Equation 2.10

yields a minimum of Equation 2.2.

Interpretation of Results

The simplest form of this problem is achieved under the constraint that Ci = Ri, or

I, = 1, for i = 1, 2, ... , M (i.e. all the bits are equally valuable). In this case, the

logarithms from Equation 2.8 go to zero resulting in pi= RP and Eb = !. This gives
P

Pom - {e2R(No+Pbi = e 2
R(N+s-s), and a objective function of ZEim CPb, Pb, Em, C2 = RPb2 .

Because all streams are of equal importance, it makes sense that the power allocation

that minimizes the combined weighted probability of bit error, assigns the same Eb

for every data-stream. This results in each data-stream having the same BER, as

expected.

The following are a few simple examples.

Example 1: Equal Importance Values, Equal Rates:

R1 RM = C1 CM.
P

Thus, we get pi = ], and Pab = je 2RiM(No+B)

We indeed expect the total power P to be divided equally among the transmitted

data-streams, since all the streams are assigned the same importance. As M decreases

(we have fewer data-streams), we allow more power in each data-stream and, the

probability of error decreases.

Example 2: Equal Importance Values, Unequal Rates:

R2= aR1 and 12 = I1 = 1.
P

Here, Pi = an 2 , rP =ai P 1 = Pb2 = e R( +)
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This is the two rate version of what was discussed in the beginning of this section.

Example 3: Equal Rates, Unequal Importance Values:

R1 = R 2 , and I1 = a, 12 = 1, C > 1.

Here, pi = + ln(a)R1(No + ) and P2 - ln(a)RI(No + )
P P

P= _ 2R(No+J 2R(No+ )

Pbi 2e >ess and Pb2  2 e eSS

This yields Pb2 = aPbl.

Example 4: Unequal Rates, Unequal Importance Values:

R 2 = aR1 and I1 = , 12 = 1. # > 1.

Here, p1 = 4 P + 2(1) ln(#)(No + BS)R2, and

P2 = P - 2( ) ln(3)(No + R1.
P 1 __ _

Pb Y e 2R(Na+ ) and Pb2 2R(N+ ) We get Pb 2 = #Pb 1 -

As expected, the probability of error follows the importance values.

In the next example, specific values are given for the system in Example 4.

Example 5:

R1 = 20kbs/sec, R 2 = 100kbs/sec, and I1 = el ~ 20, I2 = 1.

Let P = 2 W, J = 10 W, BSS = 1 MHz, No = 10-7 WHz- 1. Plugging

the values here into the results from Example 4 gives, pi = 1.34 W, and

P2 = 0.66 W. This yields Pb1 = 9.9 - 10-6, and Pb2 = 2 - 104.

The above system has the jammer transmitting 5 times as much power as the trans-

mitter. With out spread spectrum, this would lead to extremely poor BERs. Spread-

ing the signal over a larger spectrum results in the good BERs seen above. Data-

stream 1 has a processing gain of 50, while data-stream 2 has a processing gain of

10. Note that the thermal noise has a negligible effect on the above system. Over the

spread bandwidth, it contributes merely 0.1W of power compared to the 1OW from
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the jammer. Further improvement of the BER can be achieved by either increasing

the transmitter power or increasing the bandwidth.

In all of the above examples, it was assumed that Equation 2.10 was satisfied. If

this is not the case and P is not large enough for a given set of constraints, then the

minimization gives a negative value for some pi. This is clearly not correct, so the

end-points must be examined for a minimum. The next example will demonstrate

this case.

Example 6: Degenerate Case

R1 = R2 = 50kbs/sec, and I1 = e2 ~ 7, 12 = 1.

Specifically define: P = 1W, J = 1OW, BSS 1MHz, N= 0.

From Example 3, pi = + ln(a)R1 (No + J), and P2 = - ln(a)R1(No +

S). This accordingly gives P2 - which is not possible. Examining the

end-points gives us a minimum of the objective function at p1 = 1, and P2 = 0,

resulting in Pb =e- and Pb2 =

In general, the transmitter should operate in a region sufficiently above the re-

quired SNR.

2.2.2 Partial Band Jamming

Here, the jamming (additive Gaussian noise) is limited to a fraction a, (0 < a < 1)

of the total spread spectrum bandwidth Bss. Since a smaller bandwidth is jammed,

the power spectral density of the jamming signal can increase (Ni = Q,) while

maintaining the same average power J. This benefit, however, does not come without

a price. If the jamming is over a bandwidth of aBss, then the probability that the

signal is in the jammed band is a. In order to facilitate this analysis an important

assumption must be made. Namely, if the signal hops into the jammed band, it will

be assume that the entire unspread signal spectrum is jammed. Cases when only a

fraction of the unspread signal spectrum is jammed, will not be considered. The exact

spectral location of the partial-band jamming is irrelevant if the above assumption

24



holds. With this in mind the BER is as follows:

P = e 2Ri(No+- 2R (NO) (2.15)
2 2

For a specified a, the same optimization as in the previous section is performed

to find optimal values of pi. To be optimized is:

M ea i 2R(N
Min -e + 2RiNo(2.16)

i=1 2  2

with the constraints that P = pi and pi > 0. Define:

M M(ac,2.( 0 ~ + (1i a)Ci Pe )

S 2Ri2NO)(pi, .. - - M) , pM2 e 2 + (N2+ )e 2R4 No

(2.17)

_# aCi - aCi -
- = -- e N - 2Ri No

opi 4R(N± ) e R -JT_ (14R(No e +A=0 (2.18)

Unfortunately the above equation cannot be solved explicitly for pi. A number of

assumptions can be made to make this problem more manageable. Namely, if it is

assumed that the second term above is negligible compared to the first the following

results:
R- J M L

P + 2(No + R. In( (2.19)
R aBss j=1 ii

This form is very similar to what was seen in the first section. To see when this

assumption is accurate, a few two-stream systems will be examined. In each of these

examples, pi is calculated using the above approximation and is then compared to pi

found by using the Nelder-Mead simplex (direct search) method from MATLAB. We

plot the values of pi, and the associated BERs, as a varies from 0 to 1.
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In Figure 2-1, Nj = 10-5, which implies that J = Bss 10-5. Some system

parameters that satisfy this expression would be J = 10 W, Bss =1 MHz or J = 100

W, BSs = 10 MHz. It is apparent that P2 > pi, for all a. Even though the power in

data-stream 2 is larger, the BER is smaller, since the energy per bit in data-stream 1

is greater than the energy per bit in data-stream 2. Note that as a decreases from 1 to

about 0.24, the system performance deteriorates (the cost function gets larger.) The

estimation used in Equation 2.19 is accurate for values of a as low a 0.06. At a = 0.06

the cost function, calculated from the estimated values of pi and P2, increases rapidly.

Figure 2-2 has the same system parameters as Figure 2-1, except for an increase

in the magnitude of the jammer PSD. Here, Nj - 10-4, which is 100 times as large

as No. Values such as J = 5 W, Bss = 500 kHz or J = 50 Watts, Bss = 5 MHz,

are possible system values. Since the jammer has a larger PSD here, the performance

clearly deteriorates. The estimation is valid on a small interval. The estimated values

of pi start straying from the optimal pi at a = 0.56, although a significant increase in

the cost function does not occur until about a = 0.48.

Figure 2-3 differs from Figure 2-1 in that data-stream 1 has an importance value

100 times greater than data-stream 2. With full-band jamming (a = 1), the power

allocation for pi is increased only about a half a watt from Figure 2-1. This is due to

pi's logarithmic dependence on Is, in Equation 2.8. The estimation fails for a < 0.1.

In Figure 2-4 the magnitude of the jammer PSD is increased ten times from that

in Figure 2-3. Here, with Nj = 10-4, the estimation fails for all values of a : 1.

Because of the large difference in importance values and relatively small SNR, at

a = 1, the BER for data-stream 2 is very poor (Pb2 ~ 0.4.)
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Optimum Partial-Band Jamming

Which value of a is most beneficial for the jammer, or what a will maximize the

probability of error? This is what is called a mini-max problem. The goal of the

jammer is to:

M M

max(min nCi -P). ,O<a<1. O<pi<1,Vi, Epi = P. (2.20)

On the opposing side, the goal of the transmitter is to:

M M

min(max E Ci - Pb). O<a<l. 0<pi<1, Vi, Epi = P. (2.21)
Pi ai=1 i=1

It is well known from mini-max theory that Equation 2.20 and Equation 2.21 are

equal. To simplify the optimization it will be assumed that the PSD of the jammer

is much larger than the thermal noise (Nj >> N) and that the thermal noise is very

small (N, << 1). The optimization is performed by differentiating the combined

probability of errors and setting the result equal to zero. The simplified weighted

objective function to maximize in Equation 2.20 is:

a M capiBSS

-jZC e 2RiJ (2.22)
i=1

Differentiating the BER by a, and setting the result equal to zero:

P M apiBss Ci _apiBSS

~ Z 1 - -e 2RiJ = 0 (2.23)
Oa i_ 2RJj 2

By setting the term in the parenthesis equal to zero for all i, the above equation equals

zero. This can only be done if the rates are equal and all have the same importance

values. If this is not the case, an analytic solution for a can not be found. Equal

rates and importance values gives the constraint that:

a R = 2 , i = 1,2, ... , M. (2.24)
piBss Eb /Nj
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Since 0 < a < 1, the above only holds when > 2. When Ei < 2, we setNj - Nj

a = 1, which implies that full-band jamming gives the best results. Assuming that

the transmitter performs that optimization of the cost function, knowing that optimal

partial band jamming is used, the worst case BER is:

JRi 1 I
P JR e- -- = 1(2.25)piBss EbiNj

To verify that the above is a maxima, the second derivative evaluated at the

extrema must be negative.

&b M apiBss -piBssCi _-piBSS piBssCi _apiBSS]

aa2 _ 2RiJ e 2RJ 2RiJ 2R

The first term is zero and the second term is always negative, giving a maximum.

This method does not produce a very useful maximum, since the focus here is on

multi-rate multi-priority systems. However, even if the system is single rate and has

equal importance values, the problem arises that a is function of pi and pi is a function

of a. Since there is no analytic solution to this problem, numerical methods must be

utilized.

Seeing that numerical methods will be used, the approximation in Equation 2.22

need not be used. The mini-max problem is solved with MATLAB. Table 2.1 shows

a comparison of the achievable BER in the previously used examples. The full-band

and (the numerical results of) the optimal partial band jammer models are compared.

2.3 Binary PPM with Time Hopping

The analysis of this type of system is facilitated by noticing the duality relationship

it has with BFSK FH-SS. While BFSK transmits in one of two frequencies (with

non-overlapping spectrums), Binary PPM transmits in one of two non-overlapping

time slots. This time-frequency duality seen between BFSK and Binary PPM can

be also be seen between TH and FH Spread Spectrum. Because of this, the two are
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Figure I Optimal a Data
Stream

BER
(a =1)

BER
(Optimal a)

Cost
(a =1)

Cost
(Optimal a)

2-1 0.23 1 9.9 - 10-4 0.0051 1.1 - 103 5.6. 103
2 9.9- 10~3 0.051

2-2 1 1 0.039 0.039 4.3- 104  4.3 - 10
2 0.39 0.39

2-3 0.49 1 1.2 -1 6.3. 10- 1.3- -03 8.6-
2 1.2- 10-2 0.086

2-4 1 1 0.0048 0.0048 5.3- 104 5.3 . 104
2 0.48 0.48

Table 2.1: Performance of Full-Band Jamming and Optimal Partial Band Jamming.

mathematically isomorphic.

2.4 Conclusion

It was found that for a multi-rate multi-priority system as described in Section 2.1,

the optimal power allocation is related to the logarithm of its importance value.

Furthermore, for data-streams with large signal to noise ratios, optimal partial-band

jamming was found to degrade system performance significantly, in comparison to

full-band jamming.
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Appendix A

Derivation of the BER for BFSK,

from [1].

The following is a derivation for the BER for BFSK signaling in white Gaussian noise.

A correlation demodulator with a square-law detector is used, as shown in Figure A-1.

With BFSK, the two possible signals that can be sent to represent a bit are:

sm(t) Acos(wmt +#m)

A cos 0m cos wmt - A sin Om sin wm, 0 t < Tb, m 0, 1 (A.1)

where m= (0,1) correspond to the input stream bit-values. A is the amplitude, T

is the bit period, and Om is a random phase value with uniform distribution (See

Figure A-2). After going through the channel and getting corrupted by additive

white Gaussian noise n(t) with two-sided PSD, - , the demodulator receives the

signal, rm(t) = sm(t) + n(t). The probability of bit error (BER) is:

Prb= Pr(0 detected~si) - Pr(si) + Pr(1 detected~so) -Pr(so). (A.2)

The a priori probability that so or si is sent is 1/2, and by symmetry, the Pr(0
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A cos(wj)

Figure A-1: Correlation Demodulator for BFSK

f

27n

0 2

Figure A-2: Probability Density Function for #.
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detectedfsi) = Pr(1 detectediso). The probability of error then reduces to:

Prb= Pr(O detected~si) = Pr(ro > risi), (A.3)

since the comparison of r' > r', which takes place in the comparator of Figure A-1,

is equivalent to ro > ri. Given that si is sent, the received signals are:

ric = Eb cos #1+ nic,

roc = noc,

ris = Eb sin #1 + ni,

ros = nos.

with the following definitions

Eb =f s2(t) = b n [ b n(t)-Acoswmtdt, ums= - n(t)-Asinwmtdt.
o 2 o Jo

Where nc and n~s are both uncorrelated Gaussian random variables with variance,

o - EbNJ. Now, the pdf of r, given that s1 was sent, for some #1 is:

(A.5)

where,

J (r
1 (rlc-Eb cos #1)

2
+(ris-Eb sin # 1 )2

ic, risIsi, #1) = nEJfe
7rEbN eE

f (roc, rosIso) = - e EbN

(A.6)

(A.7)

Since the pairs (ric, ri,) and (roc, ro,) are uncorrelated and Gaussian, they are

independent and their marginal pdf's can be multiplied together in Equation A.5.

Note that the last pdf in Equation A.5 is not dependent on #1. Since rmc and rms

are themselves uncorrelated, the cross-correlation term of the bi-variate Gaussian

distribution is zero, resulting in the above equations. Making a change of variables

rmc = rm COS -y, rms = rm sin -y,
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and integrating #1 out of Equation A.6 yields:

1 e_ EbNj
7rEbNJ

1 ___+E
= e EbNy

7rEbNJ

1~ 27r -2-(r1 cosycos1tri r sinysini)

I27r (o )

.-T ir

Since the angle formula [ri cos -y cos #1 + r1 sin -y sin #1 = r1 cos(# 1 - -y)] reduces the

integral to a zero-order Modified Bessel Function of the 1" kind:

Io r(2) Ij2,7 2
ew7 r' cos 071 d, (A.9)

Equation A.6 now yields: f (roc, rossi) = EbNj which implies that,

1 __+_o+E

f (rls1 ) e EbNJ
(7rEbNJ) 2 Io ( ri

Ni (A.10)

Since the decision rule is based on the random variables ro and ri, a change of variable

in the pdf must also occur. So,

f (rm ~si) =
L2*r f (rms, rmc,-y si) dy (rm drm) = 2 7rrm f(rmcrmsisi).

And finally,

Prb = Pr(ro > rils1 ) = f(risi)

= f(r1|si) j
o Jr1

= -e 2

2

1 _ E
= -e 2Nj

2

f (roIsi) dro dri

E2N e~ dro dri

E 2r.

oo 2e 2 I dri
21

(A. 12)

where the third line of Equation A.12 is the integral of the Ricean pdf over all possible

values of ri. The final result, after some tedious computation, is a simple exponential.
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Appendix B

Derivation of BER for Binary PPM

The detector for Binary PPM is shown in Figure B-1. The derivation of the BER

for Binary PPM is identical to BFSK as shown in Appendix B1, with the following

substitution. Equation A.1 is now:

SM(t ) - AV-cos(wt + #m)

= A' d(cos #m cos wt - sin #m sin wt),
mTb <<

2 -
(m + 1)T

2
m= 0, 1

Since the transmitter is only transmitting half of the time, the amplitude of the carrier

is increased by x/- to keep the average transmitted power constant. Equation A.4 is

now:

Tlc= Ebcos #1 + nic,

roc = 0c

with the following definition:

Tb
Eb=J s (t)

2

Tis =Eb sin # 1 + niS

r0s nos -

(A V 2 Tb 2 Tb

4 2

The final result for the BER is the same as BFSK.
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A cos(w t)

Figure B-1: Correlation Demodulator for Binary PPM
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