
A Web-based System for Collaboratively Developed

Ontologies

by

Clare Lee

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degrees of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

September 1999

@1999 Clare Lee. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author...
Department of Electrical Engineering and Computer Science

August 13, 1999

Certifie,
Philip G. Greenspun

Thesis Supervisor

Accepted by.............
Arthur U. bmitn

Chairman, Department Committee on Graduate Theses

ENG

A Web-based System for Collaboratively Developed Ontologies

by

Clare Lee

Submitted to the
Department of Electrical Engineering and Computer Science

August 13, 1999

In Partial Fulfillment of the Requirements for the Degrees of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

This work describes the design, implementation, and test of a programming tool and user

interface. A classified ads system is rewritten to experiment with the application program-

ming interface for the tool and the conclusions derived from this experience are summarized.

This tool makes it easier to engineer a broad class of web services - any services that uses

an ontology to organize content. This paper describes a system to manage categorizations

for online content.

Thesis Supervisor: Philip G. Greenspun
Title: Research Scientist, Laboratory for Computer Science

2

Acknowledgments

Naturally, I must begin by thanking Dr. Philip Greenspun for his help in making this an
exciting thesis and for his editorial contributions to this paper. His perspective is always
enlightening. Thanks also to Alex for reminding me of the future. I also thank Prof. Harold
Abelson for his advice regarding the direction of my research.

I would like to thank Tracy Adams for her guidance during the design and implemen-
tation of the ontology system. Her suggestions were timely and helpful, not to mention
motivating. Thanks also go to the people at ArsDigita, LLC.

Thank you to all my friends and family. I thank Richard Li and Janet Liu in particular

for their friendship that made the time palatable.

I dedicate this thesis to my parents. My grateful thanks to them for packing my room

for me. I would not have been able to leave MIT without their help. I thank them for their
love and long-suffering support.

3

Contents

1 Introduction 7

1.1 The Problem . 7

1.2 The Solution . 8

2 Design 9

2.1 Overview 9

2.2 A D om ain . 10

2.3 Categories........ 11

2.4 Item s 11

2.5 Permissions 11

2.6 A P I 12

3 Implementation 13

3.1 System Overview . 13

3.2 D ata M odel . 14

3.2.1 D om ains . 14

3.2.2 C ategories . 15

3.2.3 PL/SQL procedures . 18

3.3 Tcl procedures . 19

3.4 Administration Pages . 19

3.5 U ser Pages . 20

3.6 Rewriting the Classified Ads Module . 20

4 Results 23

4.1 Ontology Pages . 23

4

4.2

4.3

4.4

Ontology API

Overall Effectiveness

Discussion Section

4.4.1 Multiple Parents

5 Conclusion

5.1 Future work

5.1.1 Minimum depth for adding an item .

5.1.2 Multiple hierarchies

5.1.3 Pay attention to user input

5.1.4 Data transferral.

5.1.5 Performance improvements

5.1.6 More display options

5.1.7 Administration

5.2 Concluding remarks .

A SQL Data Model

B Online Ontology Documentation

B.1 The Big Picture

B.2 The Medium-sized Picture

B.3 Perm issions

B .4 The Steps .

B.4.1 Applying this Package to an Existing Module . .

B.4.2 Categorizing New Content

B.5 Application Programming Interface

C Tcl Procedures and Application Programming Interface

References

5

24

24

25

25

26

. 26

. 26

. 26

. 27

. 27

. 27

. 27

. 28

28

29

33

33

33

36

37

37

39

40

43

89

List of Figures

3-1 System Architecture . 13

3-2 ont-items_1 (created when domain.id = 1) 18

6

Chapter 1

Introduction

This work describes an application programming interface (API) for a general ontology

system: Ontology Tool. This tool builds and manages hierarchies of categories.

Most web services today require ontologies. They range from the simple flat, eleven-

category ontology like Salon Entertainment's [11], to eBay's [5] extensive four-level hierar-

chy. Categories are fundamental to eBay's business of online trading. Buyers and sellers

can only find themselves through searching or browsing categories. If buyer and seller use

the wrong title string or the wrong category, they will never meet, and eBay fails.

In the ACS toolkit alone, there are six separate systems, each with an category hierarchy:

bulletin boards, neighbor-to-neighbor, calendar, general classified ads, static pages, and the

ad server. All of these modules can benefit from the ontology tool.

1.1 The Problem

For each service, the categorization code must be designed from scratch. For example,

when building the Virtual Compassion Corps [4], a web site allowing users to post listings

requesting and offering help. The capability of this site is similar to the classified ads

systems in the ArsDigita Community System (ACS) [13]. Why didn't we use this well-

tested system? We needed a multi-level hierarchy to organize donations or requests. It

was too difficult to separate the ontology from the rest of the system. Assumptions about

a two-level hierarchy were embedded in dozens of classified ads. Programming resources

should be applied towards the unique aspects of each application.

7

1.2 The Solution

I developed an ontology tool and application programming interface (API) for this purpose.

Programmers can use this API to build systems that categorize their content and let admin-

istrators manipulate the categorizations. Web services built with this system can support

multiple publishers. Users are allowed to add content, remove content, and move content

into different categories. Additional features include dictating the depth of the ontology.

If users would like to categorize already-existing content, they can use the ontology tool's

Web interface directly to organize it, bypassing the API.

I rewrote the existing classified ads module in the ACS to evaluate the effectiveness of

this architecture for the purposes of categorization. The rewritten system has the same

external interface and equivalent capabilities. The following chapters explain the design

of the ontology system, its implementation, and results and analysis stemming from the

implementation and usage.

8

Chapter 2

Design

The goal is to develop a generic ontology system that faciliates software development and

results in a higher quality, more consistent end-user experience. We want to make the

process of programming a service shorter and maintaining the service easy as the needs of

the service change. We plan to derive these benefits from the principles of code modularity

and abstraction.

2.1 Overview

The design principles focused on saving the programmer time and making the resulting

service easy to maintain. To save time, the API should do everything that the programmer

would want to do. It should also be simple and easy to understand - the more abstraction

at this point the better. The programmer shouldn't have to know how this is done.

To make the tool easy to maintain requires a good design and simple procedures to make

modifications and enhancements. If it is difficult to understand the code, a programmer

would probably rather write their own code rather than deal with someone else's.

The ontology system begins with a domain. The domain specifies the subset of in-

formation that the hierarchy is organizing. One domain might be a set of classified ads

for photography-related listings. Another domain might be a forum about taking care of

tropical fish. The domain defines a community of users.

The domain also contains a category hierarchy. Categories contain items defined by

the end-user for that domain. The category hierarchy should be flexible enough to allow

manipulation and movement of categories. Categories can be edited, moved, and deleted.

9

The depth of the hierarchy can be fixed at a particular level or left unlimited. If a hierarchy

has three levels at which items can be posted, categories can be added at the top level and

one level below.

Categories contain content; this can be anything that can be categorized online. Let us

call this content "items." The publisher creates or supports this content.

2.2 A Domain

A domain represents a particular topic or focus; the rallying point for a collection of end-

users. Without users there is no service, so there must be a reason for them to come

back to the service. For example, a site could categorize both musical items and tropical

fish information. Both of these topics may not belong in the same ontology, but can be

supported by the same service.

Within the domain there are further categorizations appropriate for items under that

topic. Many publisher choices belong at the domain-level of the ontology. A publisher

specifies the title of the ontology, such as "Janet's Movie Reviews." Janet can limit the

depth of the hierarchy to two levels deep, if she only wants one level of categories. Janet

doesn't plan on writing a vast number of reviews, and only trusts reviews by a few other

people, so a few top-level categories are all she needs. Richard wants to organize a collection

of links to fun things to do in Japan. He doesn't know how much this collection of links

will grow, as he is soliciting suggestions from all his friends. So he leaves the hierarchy

unlimited.

With each domain comes one person or more who will administer it: creating and

altering the ontology, managing end-users, promoting other users to help administer the

domain. So we have administrators who perform this role in the system while ordinary

end-users have limited permissions.

A domain dictates the form of content it supports. It specifies the interface between the

ontology system and the content defined by the end-users. How can the domain display the

content it organizes? By keeping a few key pieces of information to show how this content

should be displayed. The domain will need to know what items are in what categories; an

identifier for the items. A listing of items will be displayed, so we need to know where to

look for a title or short description of the item. Finally, the domain needs to know where

10

to direct the end-user to see the full details regarding a particular item, a URL. This URL

is written by the programmer specifically for the items being categorized.

The domain allows the programmer to specify a service for the domains being created.

Janet and Richard may both want to use the classified ads system, but Janet is only

interested in ads for movie premiere tickets, while Richard wants to handle ads for youth

hostels in Japan. These two topics are quite distinct from each other, and a single ontology

detailing both would be essentially 2 hierarchies slapped together. Thus there is a need

for multiple domains to use the same service. As a result the ontology system can support

multiple domains for multiple services.

2.3 Categories

Each category is part of a particular domain. A category can be something like "Documen-

taries" in Janet's Movie Reviews domain, or "Youth Hostels on the Chuo Line" in Richard's

domain. A category's location is determined by the identity of its parent category. To sim-

plify navigation, each child can only have one parent.

2.4 Items

The contents of the categories are designated iitems. An item can be anything from a para-

graph of text to a classified ad. An item is a programmer-defined unit of web-based content.

The ontology system knows nothing about items other than the information specified in the

domain: this is a substantial source of power and generality.

2.5 Permissions

There are two roles for people connected to the web interface of this ontology system:

administrator and end-user. An administrator can create domains and construct and modify

the ontology, in addition to the user privileges. The end-user can add and modify items,

and browse the ontology.

11

2.6 API

The API must contain procedures to do the following:

" display the entire category hierarchy tree

" show the contents of a single category

" add, move, and delete categories

e show items in a category

" add, move, and delete items

12

Chapter 3

Implementation

This chapter describes the implementation of a basic ontology system using the design

previously mentioned in Chapter 2. It will also discuss the specific data model chosen for

the system and the reasoning behind it.

3.1 System Overview

To understand the ontology system, the supporting architecture must be explained.

Service-specific Software

ACS Toolkit

RDBMS (Oracle)

OS (Unix)

TCP/IP

Power

Figure 3-1: System Architecture

The tool is built on top of the ArsDigita Community System (ACS) [13], a toolkit for

building online collaborative communities. The ACS is open-source and freely available for

download. The toolkit runs on top of the Oracle Relational Database Management System

13

(RDBMS) and AOLserver, communicating through the AOLserver Tcl API.

The user groups module and the permissions module in the ACS both provide features

that significantly simplified the work for the ontology package. The user groups module

aggregates users for common user and administration functions. The ontology system takes

advantage of this facility in managing user authorization issues. End-users are grouped

with their associated roles. The permissions package builds upon the user groups module,

creating user groups of type "administration" to grant administration privileges to users.

Each domain has a group of this type. This enables us to ask "is user X authorized to

perform action Y?"

3.2 Data Model

The Oracle SQL tables and the transactions they support are explained below.

3.2.1 Domains

The domain is represented with the following table in SQL.

create table ont-domains (

domain-id integer primary key,

domain-pretty-name varchar(100) not null,

-- the full name of the domain, properly formatted, etc.

hierarchy-depth-limiiinteger,

domain-key varchar(100),

-- link to an external table for augmenting information

service varchar(20),

-- directory name for the service using this domain

activep char(1) default 't' check (activep in ('t', I'f)),

creation-date date,

on-which-table varchar (50),

-- which table it is going to link to

id-columnname varchar(50),

-- what is the column name of the id in this table

pretty-name-column varchar(50),

14

-- what is the pretty column name in this table

item-base-url varchar(100),

-- the base url of the an item in the module

last-modif ied date not null,

lastmodifying-user not null references users,

modified-ip-address varchar(50) not null

The column on-which-table stores the name of the table holding the items. This table

must have a primary key column so that individual items can be selected easily. The

name of this column is stored in id-column-name. An item listing in a category will look

uninteresting and indistinguishable if only a primary key is displayed; in particular if the

primary key happens to be a numeric value. For this reason we store the name of a title

column in pretty-name -column to use as a heading for the item.

A URL is stored for directing an end-user to the actual content display, taking the

end-user into the publisher's system and away from the ontology display. This URL is

stored in the column item-base-url. If the item-base-url is incorrect, the link provided

to end-users will be broken. The item-base.url is passed the primary key for the desired

item. Thus the page stored in item-base-url should not require any additional information

passed in.

For each domain, an administration group is automatically created that can be managed

from the ACS user group administration pages.

3.2.2 Categories

Categories are represented with the following two tables.

create table ont-categories (

cat-id integer not null primary key,

cat-pretty-name varchar(1000) not null,

-- the full name of the category, properly formatted, etc.

extra-info varchar(4000),

domain-id references ont-domains,

15

-- identifying domain

active-p char(1) default 't' check (active-p in ('t', 'f')),

creation-date date,

last-modified date not null,

lastmodifying-user not null references users,

modified-ip-address varchar(50) not null

ont-categories contains the basic attributes of the categories.

The categories are connected in a tree structure, represented in a separate table. They

are linked to each other in parent-child relationships which dictate the shape of the tree.

Storing this hierarchy in a separate table frees the relationship between categories from

any inherent structure. Categories can be in multiple parent-child pairs, depending on the

implementation of the category code. The only restriction is that a category cannot be a

parent or child of the same category twice.

create table ont-hierarchy (

child-id not null references ont-categories(cat-id),

-- id number identifying child category

parent-id not null references ont-categories(cat-id),

-- parent of the category specified by child (one level up in

-- the hierarchy)

last-modified date not null,

lastmodifying-user not null references users,

modified-ip-address varchar(50) not null,

primary key(child-id, parent-id)

All categories associated with a specific domain that do not show up as children in this

hierarchy table are top level categories. These categories are the first ones the end-user

will see in the hierarchy. Specifically, top-level categories are recognized by the lack of the

existence of a row in the hierarchy table. So a category is in the top of the hierarchy for a

specific domain if it is a row in ont-categories but does not exist in ont-hierarchy.

16

If a programmer decides that multiple parents for a category are vital to the service he

or she wishes to provide, the current data model can support this with some changes in the

Tcl procedures.

Category Hierarchy Representation

A key question in the design of the system was whether to use a table storing parent and child

relationships or use a sort key in the ont _categories table to store hierarchy information.

As explained in the bulletin board example in [9], a sort key indicates numerically the

position of the corresponding category within the entire hierarchy. The top level categories

would all use the category id as their sort key. When a sub-category is added to one of

the parents, its sort key is calculated as the parent's sort key, with a period and 2 digits

appended to it. For example, if a top level category has the sort key "000001", the first

sub-category added to it will have the sort key "000001.00". An additional sub-category

will be given "000001.01", "000001.02". If the ordering changes with the addition of the

new sub-category then the sort keys among the sub-categories will have to be swapped.

When ordering by the sort key, the categories are ordered by parentage in the hierarchy.

Issues with the sort key include the difficulty in moving a category within the hierarchy.

Together, all the sort keys present a fixed encoding of the hierarchy. If a category is moved,

all the sort keys for the moved category and any sub-categories will have to be updated

to reflect the new hierarchy. Also, with the described sort key implementation, multiple

parents do not make sense with this model. This model can only support single parent

category trees.

In the context of this ontology system we need to order all the categories, and indicate

which categories are sub-categories of others. With the parent-child hierarchy, the categories

are looked up using a SQL "connect by" clause. The usage of "connect by" in Oracle is

limited so that you cannot order the leaves, which is simple with the sort key. Additionally,

with this clause we cannot join tables together and select information from both tables.

To bypass this restriction, we use PL/SQL functions in their place. These functions are

convenient but with overuse comes a performance cost. In this implementation the parent-

child hierarchy was effective but the sort key would have worked just as well, depending on

the needs of the end-users.

The contents of categories can be moved around as easily as the categories themselves.

17

create table ont-items_1 (
cat-id references ont-categories,

item-id references ont-domains. on.which-table,

last-modif ied date not null,

lastmodifying-user not null references users,

modified-ip-address varchar(50) not null

Figure 3-2: ont-items_1 (created when domain-id = 1)

The information describing the items sits in a programmer-defined table. With a few facts

about the item table specified in the domain, we can safely perform all categorization

functions. Using the column name of the primary key for the item information, we generate

a table referencing both the unique category key and the unique key for the item. There is

one table per domain, whose name is generated from the domain identifier. A sample table

is shown in Figure 3-2.

An alternative approach is to create a single table to map all items to all categories. It

could reference the category information table and have a column to store the item keys.

However, in a multiple domain environment this model has difficulties. The single global

mapping table would have to maintain domain information for each row, whereas having

one mapping table per domain implicitly maintains this information. Also, as the number of

items grow, queries on the single table will take longer to return, slowing down the service.

Searching the domain-specific table will automatically decrease performance penalties.

Items in the top level of a domain are recognized by the lack of a parent category in the

mapping table. An item is in the top level if it is in the ont-items_$domain-id table with

cat-id set to null. Placing the item in the ont-items_$domain-id table associates the item

with the specific domain.

3.2.3 PL/SQL procedures

The category trees are obtained with the help of the SQL connect by clause. However,

this clause has certain limitations, in particular that we cannot get information from more

than one table while using it, nor can we order the items in the rows returned by a connect

by. The category hierarchy information and category details are stored in two separate

tables. To get around the restrictions of connect by, I built procedures in the Oracle-

18

specific language PL/SQL to get the category details for cat-pretty-name, active p, and

domain-id.

3.3 Tcl procedures

A collection of Tcl procedures form the API for the programmer.

User permissions are checked in the Tcl procedures. The alternative is examining per-

missions in the Tcl pages, where the programmer must decide who is allowed to do what.

Placing the permissions checks at the API level does not give the programmer the same

flexibility in choosing end-user roles, but does ensure consistency in determining who has

the correct permissions. Rather than hope that the programmer will remember to check the

permissions of end-users, the API hides this detail from the programmer. At the API level

the user permissions are specifically set to divide end-users into the previously mentioned

two groups: the user and the administrator.

Tcl procedures can also be memoized, saving database queries and providing major

increases in performance.

Once a domain is created, none of the API procedures allow the depth of the hierarchy

or the item-base-url to change. Changing the depth of the hierarchy will create incon-

sistencies in the display of the hierarchy if categories and items already exist below the

specified depth. They would be counted as items in visible categories, but never displayed.

3.4 Administration Pages

The administration pages are located in a directory called /admin/ontology/. For each

domain, an administration user group of module "ontology" and submodule with a value

derived from the unique domain key domain-id is created. Administration of this user

group can then be done using the Tcl pages in the above-mentioned directory.

As defined, there is one administration group per domain. With the two roles in the

system, the only distinction is whether the end-user is an administrator or not. If a person

is not an administrator, that makes him or her solely an end-user. Beyond defining who

can do what, the administration pages are where the category hierarchy can be changed. If

necessary, administrators can also edit domain attributes and move and delete items.

19

Appropriate user groups are set up automatically when a domain is created. They define

the roles and corresponding permissions for each domain and each end-user in the domain.

Each domain has its own user group with module=ontology and submodule=domainrid.

Having the checks at the API level has the significant advantage of hiding the details

from the programmer. An end-user is any registered user of the ACS running on the

virtual server on which the ontology system is running. Administrators are end-users in the

administration group for the specified domain.

Initially, the administration strategy was to have two user groups: site administrators

and category administrators. Category administrators can manage their category and child

categories. For each domain there could be a user group, however for many uses, any

random end-user should be able to browse and add content to a site. If permissions are

more strict they can be modified in the programmer's system.

3.5 User Pages

The end-user pages are found in the /ontology/ directory. These pages provide the normal

user's view of the ontology. End users can add items, remove them, and browse the hierar-

chy; actions which are configurable by the programmer for user permissions. These pages

demonstrate various API procedures, and some Tcl pages are reusable. In particular, the

category-move pages display the ontology of categories that can provide a new home for

the category to be moved. There is also a set of item-select pages for selecting an item

to be moved.

3.6 Rewriting the Classified Ads Module

The classified ads system [7] as seen at photo.net shows classified ads. Some of the domains

have fixed hierarchies. Other domains let end-users create a new category to hold their ad

if they do not like any of the options available. All of the hierarchies have exactly one level

of categories. Users can view ads by category or chronologically.

The primary SQL tables for the classified ads system are ad-domains and classif ied-ads.

The table ad-domains specifies all sorts of details about a classified ads domain including

default expiration date, auction options, and extra fields the classifieds will contain. The

20

system uses categories as attributes of an ad. This model is good for showing the same

content in several different hierarchy views.

The overall idea in rewriting the module was to replace all the category and domain

code and use the ontology system to manage the ontology details, while leaving the existing

code to manage the classified ads and related details specific to the service itself.

Most of the calls to the API are straightforward. One conceptual complexity is in the

frequent need for the domain value, the unique identifier for a domain. ont-domains uses

domain-id as a unique identifier instead. All the API procedures use domain-id and all the

Tcl code uses domain. To logically connect the ontology domain with the administrator-

defined domain specifics, the ont-domains table has a domain-key column. The domain

value for each ad-domains row is stored in the corresponding row for ont-domains. This

lets the programmer grab the domain-id given the domain and vice versa, making it simple

to switch between identifiers.

The unique identifier domain-key in ont _domains can be used as a reference to any addi-

tional domain information. Since the rewritten service is the new classified ads system, the

directory for the new service is "gcnew", for "general classifieds new." Use "gcnew" as the

name of the service, and pass it as the value for the service input to the ont-domain-add.

Use ont-domain-idnew to get a new domain-id when checking for double clicks on

a submission page. Grab a new id on the first page in the sequence of submissions. If

the end-user double clicks on a page, the code will try to enter two rows with the same

unique identifier. In the even of a failure resulting from this double entry, the code can test

whether the given domain-id already exists in the ontdomains table. If it exists, the row

must already have been inserted. This procedure is also available for categories.

Categories in the classified ads system are part of the classified-ads table. The table

maintains a primary-category column and two sub-category columns. With the ontol-

ogy system these columns can be ignored. Category manipulation is done through the

API calls and category and item display are taken care of using the many tree display

procedures. These procedures can return HTML or Tcl lists. The Tcl lists are for the

programmer to use if the HTML procedures do not provide enough interfaces or functions.

ont-item-list returns a list of the identifier values for all the items in a specified cate-

gory. ont-cat-with-items-tree_html lists the entire hierarchy in a nested list format. The

programmer can provide URL, title pairs to be listed beside each category. For the new

21

classified ads, this procedure was used to provide edit and move category links beside each

category. The URL for the edit page was listed with the title of the URL "Edit." This list

was listed with the delete list, and passed to the procedure.

22

Chapter 4

Results

This chapter evaluates the stand-alone ontology system and the API. The ontology pages are

evaluated by looking at the process of creating several domains. The experience of replacing

code in the ACS classified ads module with the API points out some of its strengths and

weaknesses. Overall the API design worked easily within the framework of the existing

classified ads system.

4.1 Ontology Pages

The stand-alone ontology pages demonstrate that the design chosen can categorize generic

content. The system has a default table where users can store basic information about an

item, such as title, description, and URL. These items are easy to move about the ontology,

and categories are simple to change. The interface with tables unknown to the ontology

system was tested by creating domains for random existing tables in the Oracle database,

such as users. There is a single Tcl page to display the public details about a specific

user, where users were being categorized. The data model for ont-domains expects that

the specified page can display information about any item when provided with the value

of the unique identifier for the items table from which it gets information. The ontology

pages pass the value of the item identifier to the specified page, dictating a portion of the

interface between the system and external pages.

23

4.2 Ontology API

The rewritten classified ads package demonstrates more requirements that the data model

imposes upon the programmer through the API. However it also shows that the API takes

care of all necessary actions with reasonable effort on the part of the programmer.

As mentioned in 2.6, the programmer has procedures to switch between the ontology sys-

tem's domain-id and the programmer's unique id for additional domain information. These

procedures assume that the domains were created so that the unique identifier was stored in

the domain-key of ont-domains. Switching between identifiers is necessary in the classified

ads pages because the domain for the auxiliary domain information in ad-domains is used

throughout the module. Most of the procedures in the ontology API use the domain-id as

context for the procedure call. All of the procedures which display links pass the domain-id

along with other variables to the listed Tcl pages. This means that any classified ads pages

that are linked need to be able to handle getting a domain-id value instead of a domain

value. The programmer has to translate the domain-id back to the domain in all cases, if the

system being used has augmenting information. Another approach is to use the domain-id

as the primary id in all the code.

4.3 Overall Effectiveness

The original classified ads system has about the same amount of code as the new system

using the ontology API. A detraction from the API is the complexity of the interface.

Unfortunately this was unavoidable given the myriad of options possible when displaying

a hierarchy. The module eliminates the ad-categories table and removes the need for

the category rows in the classified-ads table. The interface presented to the user has not

changed with the addition of this API. Some additional functionality and alternate displays

are available to the programmer for enhancements of the system. For example, the hierarchy

depth can be greater than one level with the new system.

Improvements to the category code for the classified ads system can now be shared across

any other services using the module. We can take advantage of the benefits of modularity.

Multiple services and multiple domains within each service can all use this ontology system

simultaneously.

In the effort to create a generally useful ontology system, we lose the conciseness of

24

code applied directly to the problem at hand. The code base for the ontology system is

significant, but also more flexible to change than the built-in ontology system for classifieds.

4.4 Discussion Section

The major design decisions for this tool dealt with the hierarchy representation.

4.4.1 Multiple Parents

Given the use of the parent-child table, there was the option of having hierarchies that

allowed multiple parents of a category. The tool could also allow the listing of an item in

multiple categories. However, with multiple parents, various functions become very difficult

to implement generically. More contextual information becomes necessary when calling

category procedures. For example, if multiple parents are allowed, the current parent must

be specified when moving a category. Otherwise, the system will not know which row to

update in the hierarchy table. This would force the programmer to know more about the

data model, a situation we would like to avoid in the interest of promoting modularity and

maintainability.

There are similar difficulties with allowing an item to be posted in multiple categories.

When deleting or moving an item, the behavior changes. As with moving a category,

the procedure to move an item requires knowing its parent category in order to move the

item. When deleting an item from a specific category, if it exists in multiple categories, the

item should only be deleted from the category requested. However if it only exists in one

category, it should be deleted from the system, including its entry in the ont-categories.

Depending on the implementation of the system, this action becomes complex. Providing a

feature such as multiple parents for a single item precludes the existence of any procedures

which require a one-to-one mapping of items to categories.

Allowing multiple entries increases the range of capabilities available for the user and

publisher. However, a single parent model simplified the design of the system.

25

Chapter 5

Conclusion

5.1 Future work

A software package is never complete. The following is a list of capabilities that would

simplify the programmer's job and improve the experience for the end-user.

5.1.1 Minimum depth for adding an item

The present system allows items to be posted anywhere as long as they do not exceed the

maximum depth of the domain hierarchy.

Publishers may want to specify where an item can be added to prevent unruly end-users

from flooding the top of the hierarchy with self-serving content. Options could include

allowing content to be placed at all levels of the ontology, or only past a certain depth, or

only at the bottom level of the hierarchy. So Richard can say that end-users may only post

in the second level of the tree, ensuring that only categories will be seen at the top level.

5.1.2 Multiple hierarchies

Occasionally it is difficult to determine the best hierarchy structure for a service. This is

frequently an issue when location becomes important. Say that Richard is looking for a

camera lens. He wants to buy it from someone in his area as he doesn't trust the parcel

service. So he would like the listings to display only sellers in Boston. In contrast, Janet

is looking for a rare movie camera. So she doesn't care about geographic location of the

sellers, but rather their prices and quality ratings. Different hierarchy views of the same

26

content would let both Richard and Janet view the same listings using different axes of

reference [6].

5.1.3 Pay attention to user input

How can we simplify navigation for end-users? It would be interesting to explore possible

dynamic mutations of ontologies. Procedures could track end-users' clicking patterns and

modify the site hierarchy to bring the most popular parts of the site to the top level. We

could create a specialized view for each end-user without any specific personalization on the

part of the end-user.

Various category policies can be established on top of the existing system. For example,

let users make suggestions that will be visible on the hierarchy and implemented or deleted

by administrators. The policies for adding categories can be more community-oriented also.

End-users could vote on category suggestions, collectively deciding whether the suggestions

should be followed or ignored.

5.1.4 Data transferral

Converting large bodies of data over to use this ontology tool requires an application to con-

vert them into the appropriate category structure. Unfortunately, the category conversion

will probably differ by individual system, as category implementations will vary.

5.1.5 Performance improvements

Performance could be improved by:

" adding indices to speed queries

" memoizing or caching to take advantage of common queries so they do not need to be

reexecuted

" setting a limit on how many search results are listed on a single page to prevent a

page from taking too long to display when searching for an item

5.1.6 More display options

The range of category displays can be expanded. In particular, an accordion-like display of

the entire hierarchy of categories would be an interesting interface. With this procedure,

27

the end-user could click on a category and expand its contents, as a folder of files can be

expanded or minimized.

5.1.7 Administration

In a site with heavy traffic and a complex ontology, category administrators might be

needed to manage the content in individual branches. For advanced behavior the API can

facilitate more sophisticated administration roles. This would allow more granularity in

terms of who is allowed to do what. Statistics of how end-users go through the ontology

and other behavior would also be useful for administrators. This could be implemented

along with the features mentioned in 5.1.3.

5.2 Concluding remarks

Using the tool to rewrite a classified ads system, the API has been expanded to include

general procedures that would replace more specific functions in the ads system. The process

of rewriting the classified ads system with the ontology API shows that that the problem

of coding an ontology can be abstracted sufficiently to form a categorization package.

The described ontology system design and implementation are effective alone and when

integrated into the classified ads system. The set of API procedures duplicated the capa-

bility of the existing classified ads system and introduced more features.

28

Appendix A

SQL Data Model

at9.Opt

create sequence ont at5.Opt at9.Opt at5.Opt at9.Opt at5.Opt at9.Opt at5.Opt at5.Opt at9.Opt at5.Opt at9.Opt at5.Opt at9.Opt al

create table ontdomains (

domain id integer primary key,

domainprettyname varchar(100) not null,

-- the full name of the domain, properly formatted, etc.

hierarchydepthlimit integer,

domain_key varchar(100),

-- link to an external table for augmenting information

service varchar(20),

-- directory name for the service using this domain

activep char(1) default t' check (activep in ('t', 'f')),

creationdate date,

onwhichtable varchar(50),

-- which table it is going to link to

idcolumnname varchar(50),

-- what is the column name of the id in this table

prettynamecolumn varchar(50),

-- what is the pretty column name in this table

itembaseurl varchar(100),

-- the base URL of an item in the domain

last-modified date not null,

last modifying-user not null references users,

modifiedip_address varchar(50) not null

29

create sequence ontcatidsequence;

create table ont_categories (

catid integer not null primary key,

catprettyname varchar(1000) not null,

-- the full name of the category, properly formatted, etc.

extrainfo varchar(4000),

domain id references ontdomains,

-- identifying domain

activep char(1) default T check (activep in ('t', 'f')),

creation-date date,

lastmodified date not null,

last modifyinguser not null references users,

modifiedipaddress varchar(50) not null

create table onthierarchy (

childid not null references ont-categories(cat-id),

-- id number identifying child category

parentid not null references ont-categories(cat-id),

-- parent of the category specified by child (one level up in

-- the hierarchy)

lastmodified date not null,

last modifyinguser not null references users,

modifiedip_address varchar(50) not null,

primary key(child_id, parentid)

create index ont-hierarchybyparentjid

on ont hierarchy (parentid) tablespace ontology;

create index onthierarchyby child id

on ont hierarchy (child id) tablespace ontology;

create sequence ont default-itemid sequence;

create table ont default items (

item id integer primary key,

30

itempretty_name varchar(100),

iteminfo varchar(1000)

domain id references ontdomains

-- For each domain this table is generated to link categories

-- with their contents.

-- create table ontitems_$domain-id (

-- catid references ont categories,

-- item id references ont domains.on which table,

-- lastmodified date not null,

-- lastmodifying-user not null references users,

-- modifiedipaddress varchar(50) not null

-- index on cat id

-- index item id

-- you can't do a JOIN with a CONNECT BY so we need a PL/SQL proc to

-- pull out category name, activep, and domain id from catid

create or replace function catprettynamefromcat_id(v-cat-id IN integer)

return varchar

is

prettyname ont-categories.catpretty_name%TYPE;

BEGIN

select catprettyname INTO prettyname

from ontcategories

where catid = vcatid;

return pretty_name;

END catpretty namefromcat id;

show errors

create or replace function active_pfromcatd (v catjid IN integer)

return varchar

is

active ontcategories.activep%TYPE;

31

BEGIN

select activep INTO active

from ontcategories

where cat id = vcatid;

return active;

END active_p from_cat_id;

show errors

create or

return

is

replace function domainidfromscatid(vcatjid IN integer)

integer

domain ontdomains.domain-id%TYPE;

BEGIN

select domainid INTO domain

from ontcategories

where cat id = v-cat-id;

return domain;

END domain_id_fromcatid;

show errors

32

Appendix B

Online Ontology Documentation

" User directory: /ontology/

" Admin directory: /admin/ontology/

" data model: /doc/sql/ontology.sql

" procedures: /tcl/ontology-defs.tcl

B.1 The Big Picture

A standardized way of managing categorizations, or subsets of ontologies.

B.2 The Medium-sized Picture

This system can be used with several domains. Multiple publishers can use the same service.

All of the information for a particular domain is specific to a particular publisher. A service

using this package can support multiple publishers, but requires only one.

A domain can represent a particular topic or focus. Within the domain there are further

categorizations appropriate for items under that topic. For example, a site could categorize

both musical items and tropical fish information. Both of these topics may not belong in

the same ontology, but can be supported by the same server.

33

create table ont-domains (

domain-id integer primary key,

domain-pretty-name varchar(100) not null,

-- the full name of the domain, properly formatted, etc.

hierarchy-depth-limitinteger,

domainkey varchar(100),

-- link to an external table for augmenting information

service varchar(20),

-- directory name for the service using this domain

active-p char(1) default 't' check (activep in ('t', 'f')),

creation-date date,

on-which-table varchar(50),

-- which table it is going to link to

id-columnnname varchar(50),

-- what is the column name of the id in this table

pretty-name -column varchar(50),

-- what is the pretty column name in this table

item-base-url varchar(100),

-- the base URL of the an item in the module

lastmodified date not null,

lastinodifying-user not null references users,

modified-ip-address varchar(50) not null

A publisher has the option of limiting the depth of the ontology to a specific value.

hierarchy-depth-limit is blank if the depth is unlimited.

Taking categorized content and displaying user-intelligible information requires a few

columns of information. The columns on-which-table, id-namecolumn, prettyname -column,

and item-base-url provide the details necessary to link to the content being categorized.

on-which-table stores the name of the table which holds the content (collection of items).

This table must have a primary key column so that individual items can be selected easily.

34

idname-column holds the name of this column. An item listing in a category will look

uninteresting and indistinguishable if only a primary key is displayed; in particular if the

primary key happens to be a numeric value. For this reason pretty-name-column stores

the name of a pretty name to use as a title or heading for the item. A last final bit of

information is where a user should go to see the actual content, rather than these bits of

summary details. Since this is web content, itembase-url stores the link to the actual

content that the user wants to see.

Be warned that if the item-base-url is incorrect, there will be a broken link that users

will click on unsuspectingly. Note also that the item-base-url is passed the primary key for

the desired item. Thus the page stored in item-base-url should not require any additional

information passed in.

create table ont-categories (

cat-id integer not null primary key,

cat-pretty-name varchar(1000) not null,

-- the full name of the category, properly formatted, etc.

extra-inf o varchar(4000),

domain-id references ont-domains,

-- identifying domain

active-p char(1) default 't' check (active.p in ('t', 'f')),

creation-date date,

last-modified date not null,

last modifying-user not null references users,

modified-ip-address varchar(50) not null

Each category is a part of a particular domain.

create table ontlhierarchy (

child-id not null references ont-categories(cat-id),

-- id number identifying child category

parent-id not null references ont-categories(cat-id),

-- parent of the category specified by child (one level up in

35

-- the hierarchy)

last-modified

last-modifying-user

modif ied-ip-address

primary key(child-id,

date not null,

not null references users,

varchar(50) not null,

parent-id)

This table defines the parent-child relationship for all categories, to dictate the structure

of a hierarchy of categories. For the category to be in the hierarchy, it must be a child id

in at least one row of the table.

create table ont-items_$domainid (

cat-id

item-id

last-modified

last-modifying-user

modif ied-ip-address

references ont-categories,

references ont-domains .on-which-t able,

date not null,

not null references users,

varchar(50) not null

For each domain there is a table of this form, named after the specific domain, ont-items_[$domain-id].

This associates content with a particular category. Here, item-id references on-which-table

in ontdomains. item-id is the primary key of the table that is holding the items (on-which-t able).

B.3 Permissions

Appropriate user groups are set up automatically when a domain is created. They define

the roles and corresponding permissions for each domain and each user in the domain.

" use the permissions package.

" Each domain has its own user group with module=ontology and submodule=domain-id.

" There is be a user group for each domain.

" Users in the group for a domain can administer that domain.

36

B.4 The Steps

B.4.1 Applying this Package to an Existing Module

Consider the classified ads system. Detailed below is the process of replacing the existing

categorization scheme with the ontology package.

The classified ads system already has tables for maintaining domains and their corre-

sponding categories. Since the ad-domains table maintains a significant amount of infor-

mation that ont-domains does not, we keep it as an augmenting table for ont-domains,

and reference it using the domain-key column in ont-domains. We can switch between

the domain-id and domain-key using the functions ont-domain-key-from-domain-id and

ont-domain-id-from-domain-key. The table classified-ads is the table that the domain

references (on-which-table).

First, the admin pages /admin/gcnew/:

" In index.tcl, replace the select statement with calls to ont-domainlistlhtml.

" In domain-add-2.tcl, add a call to ontdomain-key-exists to the uniqueness check for

the domain. Insert a call to [ontdomain-add $db $full-noun "" "classif ied-ads"

"classified-ad-id" "one-line" "/gcnew/view-one.tcl"]. Remove the adminis-

tration code, as ont-domain-add takes care of it. Place a request for the hierarchy

depth in the form. Insert a call in domain-add-3.tcl to [ontdomain-depth-edit $db

$domain-id $hierarchy-depth].

A simpler alteration to this set of pages is to insert the hierarchy depth request in the

first domain-add page, and have a single call to ont-domain-add in the second page.

Both approaches work equally well.

Also, combine the two administrator links to both go to the user-groups page for the

domain.

" insert calls to ont-domain-toggle-active-p in admin/gcnew/toggle-active-p.tcl. Use

ont-domain-id-from-domain-key to get the domain-id.

" In domain-top.tcl, if the domain doesn't exist, call ont domain-keyifrom-domain-id.

Also, use ontdomain-admingroup-id get the group-id for the domain to be used for

the user/helper administrators link.

37

" In domain-delete-2.tcl, insert a call to ont-domain-delete. Replace the count of ads

in the domain with a call to ontdomain-item-count.

" In domain-edit2.tcl, insert a call to ontdomain-edit to update the title of the domain

and domain-key.

" In manage-categories-for-domain.tcl, replace the category code with calls to ont -cat _with-items-tree

" Modify category-add.tcl so the user also picks a parent category for the new category

(using ont-cat-all-select-box). In category-add-2.tcl replace the code with a call

to ont-cat-add. To guard against double clicks, use ont-cat-id-new to get a cat-id

in the first category-add page.

An alternative view could use [ont _cat _tree -widget $db $domain.id "category-add-2.tcl?[expo

cat-id]" "category-add-2.tcl? [export url-vars cat-id] "] to display a hierar-

chy tree for selecting the parent category first, then going to category-add.tcl and the

existing chain of pages.

" Modify category-edit.tcl so that the user can also move a category by adding a

link to the category-move.tcl pages. Copy over the category-move pages from /ad-

min/ontology/ and modify them to fit your service. You can either change mentions

of domain to domainid, or use ont-domain-id-from-domain-key to extract the do-

main-id from the domain value.

" Insert a call to ontcatedit in category-edit-2.tcl, and use ontdomainid..f rom-domain-key,

ontcat _pretty-name, ont _domain-pretty-name, and ontcatextra-inf o to extract

any information you will need in category-edit.tcl

" In delete-category.tcl, insert a call to ont-cat-deactivate

" In ads-from-one-category.tcl, use the tcl list returned by ont-item-list, rewrite the

code to loop through it and select information such as originating-ip, etc. Change

URLs to pass cat-id to the delete page.

" Modify delete-ad-2.tcl to call ont-item-delete also. Be sure to specify the catid, as

the procedure deletes the item in the specified category.

" Similarly, adjust delete-ads-from-one-user-2.tcl to use ont item-delete-spec-sql.

38

" Modify edit-ad.tcl to call ontcatall-selectbox and edit-ad-2.tcl to call ontitem-move.

" Modify ads.tcl to pass the value of domain to the delete and edit-ad pages.

Then, the user pages /gcnew/:

" in index.tcl, replace the domain listing with a call to ont-domain-listihtml

" In domain-top.tcl, replace the listing of categories with a call to ont -cat with-items _tree _html.

Also extract the domain from the domain-id.

" in domain-all.tcl, the code allows for two ways to order the ads. For the listing by cat-

egories, replace the category selection with a call to ont-cat _spec-items-tree-html,

and nested calls to ont-subcat-listlhtml.

For the listing by items, use the code as normal.

" in place-ad.tcl replace the category listing with ont-cat-list allhtml. In place-ad-

2.tcl replace mentions of primary-category with cat-id or cat-pretty-name. Place-ad-

4.tcl insert a call to ontitemadd.

" In edit-ad-2.tcl, insert a call to ont _cat _pretty-name-sub to get a user-viewable cate-

gory title. In edit-ad-4.tcl, replace the select box with a call to ont _cat _all-select _box.

Insert a call to ontitem-move in edit-ad-5.tcl.

" Modify delete-ad-2.tcl to call ontitem-delete also.

" define-new-category-2.tcl, insert a call to ontcatadd.

* In view-category.tcl, insert a call to ont-item-list.

B.4.2 Categorizing New Content

If the content you are categorizing already has a table to refer to it, skip the following step.

e Create a table to hold your data. Ideally the table has an id column, and a pretty

name (like a title) column. And, since this is all web content, there should be a URL

that takes the id column value and displays the information corresponding to that id.

This is referred to as the item-base-url.

39

" Go to /ontology and click on Edit ontology domains.

" (user needs a password to get to the admin pages)

" Create a new domain called Pictures.

" Add categories as you would like.

" Go back to /ontology/ and add content.

B.5 Application Programming Interface

ont-cat-with-itemsAree-html - Returns a nested HTML list showing the category hi-

erarchy in a branched tree format. You can choose to get only categories that have

items (or their sub-categories), or categories that don't have items.

ont-cat-id-new - Returns a new cat-id unused in the database.

ont-cat-add - Insert a new category with the specified name to the position specified by

parent-id within the category hierarchy. Set parent-id to "" if adding the category to

the top level of the hierarchy.

ont-cat-add-p - Returns 0 or 1 indicating whether a sub-category can be added at the

specified position in the hierarchy. If cat-id is not supplied, it assumes that we are at

the top of the hierarchy.

ont-cattree-widget - Returns the entire category hierarchy in a tree format - all active

categories regardless of their contents.

ontcatedit - Edit the mutable attributes of a category: catpretty-name and extra-inf o.

ont-cat deactivate - Remove a category and its contents from view.

ont-cat-items-count Count the items in a category and its sub-categories.

ont-cat-pretty-name - The full name of the category.

ont-cat-extra-info - The value of the extra info field.

ont-cat-all-select-widget - A selection box containing all the categories in the domain.

40

ont-cat-list all-html list all active categories in the domain.

ont-subcat-listhtml - A hyper-linked list of the sub-categories in the specified category,

or the top of the hierarchy.

ont-cat tree-widget - A nested hyper-linked list displaying the category hierarchy tree.

ont-cattree-options-widget - A nested hyper-linked list displaying the category hier-

archy tree, with supplied options beside each category. This can be used to provide

edit options for a category.

ont-context-fragment - Navigation (context) bar linked HTML fragment of the path

down the hierarchy to the category specified.

ont-context-fragment-list - Context fragment Tcl list of the URL, title pairs for the

path down the hierarchy to the category specified.

ont-domain-listhtml List all the domains for the given web service, usually indicated

by the name of the directory associated with it.

ont-domaintoggle-active-p - Deactivate or activate the domain depending on its cur-

rent value.

ont-domain-add - Create a new domain.

ont-domain-edit - Edit the attributes of a domain (title, hierarchy depth, and item URL

are the only edit-able attributes at present).

ont-domain-depth-edit - Update the hierarchy depth of the domain.

ont-domain-id - Look up the domain-id for the specified category.

ont-domain-id-from-domain-key - Look up the domain-id given the domain-key.

ont domain-id-from-domain-key - Look up the domain-id given the domain-key.

ont-domain-pretty-name - Look up the full title for the domain.

ont-domain-delete - Permanently delete the specified domain.

ont-domain-id -from-domain -key - Look up the domain-id given the domain-key.

41

ont-domain-item-count - Count the items in the domain.

ont-hierarchy-depth-unlimited-p - Returns 1 if the specified domain has unlimited

depth, 0 otherwise.

ont-item-add - Insert an item to the category specified. Set cat-id to "" or don't provide

it if moving the item to the top of the hierarchy. User must be registered to add an

item.

ont-item-add-p - Returns 1 if can add an item to the category specified by catid, 0

otherwise. Currently this returns 1 all the time if the user is part of the user-group

ont-item-delete - Delete an item from the category or top of the hierarchy.

ont-item-delete-spec-sql - Returns a sql statement that deletes the specified item from

the category hierarchy.

ont-itemlist - returns a Tcl list of all the item-id values in the specified category.

ont-item-list-html - Returns a linked HTML list of the items in the specified category.

ont-item map-table-name - Name of the table that associates items with categories for

a particular domain.

ont-item-move - Move the item to the category specified.

42

Appendix C

Tcl Procedures and Application

Programming Interface

ontology - defs. tcl

by cslee @ alum . mit . edu , July 1999

proc-doc prep tuple_listfor-args { list } "Appends ? or & to the url in the list of listed pairs of url, title elements, as appropriate." {

set preppedjist ""

foreach element $list {

set url [lindex $element 0]

set title [lindex $element 1]

lappend preppedlist [list [prepurl-forargs $url] $title]

}
return $prepped~list

}

proc-doc prepurl-for args { url } "Appends ? or & to the provided url as appropriate. If url contains arguments, a & will be appendec

if { [string first '" $url] > -1 } {

there is a ? so there should be at least one arg . passed in w / the url

if { [string first "=" $url] > -1 } {

there appears to be an arg w / the url

43

append url "&"

I
} else {

no ? so add one

append url "?"

}
return $url

}

procdoc ontdomainkeyexists { db domainkey } "Does the domain-key exist already? Returns number of occurrences in the table."

return [database totclstring $db "select count(domain-key) from ont-domains where domainkey = '[DoubleApos $domain-key]

}

procdoc ontdomain-id-exists { db domainid } "Does the domainid exist already? Returns number of occurrences in the table." {

return [database totcltstring $db "select count(domainid) from ontdomains where domainid = '[DoubleApos $domain-id]"']

}

procdoc ontdomainitemcount { db domainid } "Count the number of items in the domain." {

set itemtable [ontitems-maptablename $domain_id]

return [database totcl-string $db "select count(*) from $item-table"]

I

procdoc ontdomain admin group-id { db domainid } "Look up the group-id of the administration group for the domain." {

set groupname [ont-admin user-groupname $db $domainid]

set helper-table [adusergrouphelpertablename "administration"]

return [database totcl stringornull $db "select groupid from user-groups where groupname='$group_name"' 0]

}

44

procdoc ontdomaindelete { db domain-id } "Delete the domain" {

set helper-table [adusergrouphelper-tablename "administration"]

set groupid [ontdomainadmingroup_id $db $domainjid]

set user-id [ad verifyandgetuserjid]

set tablename [ontitemmaptable name $domainid]

set list [ont-domainiteminfo $db $domain-id]

set id column-name [lindex $list 1]

set prettyname-column [lindex $list 2]

ns_db dm1 $db "delete from user groupmapqueue where groupid = $groupid"

nsdb dml $db "delete from usergroup map where groupid = $groupd"

ns-db dml $db "delete from onthierarchy

where parent-id in (select cat-id

from ont categories

where domain_id = $domain-id)"

nsdb dml $db "drop table $table-name"

nsdb dml $db

ns-db dml $db

ns-db dml $db

nsdb dml $db

nsdb dml $db

"delete from usergroupmap where group_id=$group_id and user_id=$user id"

"delete from administrationinfo where groupid=$group_id"

"delete from $helper-table where submodule = '$domainid"'

"delete from usergroups where groupid = $groupid"

"delete from ontdomains where domain id='$domain id"'

}

procdoc ontdomain list-html { db active domainjurl extra-list { service "" } } "list all domains, either active or inactive, as specified.

if { $active } {

set active "t"

} else {

set active "f"

45

I

set list ""

set counter 0

set domainurl [prepurl-for-args $domain_url]

set extraurls [prep tuplejistjforargs $extra-list]

set restriction ""

if { ![emptystringp $service] } {

set restriction "and service = '[DoubleApos $service]"'

}

set selection [nsdb select $db "select domain id, domain pretty_name from ont_domains where active p = '$active' $restriction"]

while { [ns-db getrow $db $selection] } {

setvariables afterquery

incr counter

append list "$domain-prettyname"

foreach urltitle $extra-uris {

set url [lindex $url title 0]

set title [lindex $url title 1]

append list " | $title"

}

append list "\n"

I

if { $counter == 0 } {

append list "no domains found."

}

return $list

}

proc_doc ont_itemjist { db domain_id top p { input..catjid "" } { sql table "" } { sqlrestriction "" }}" Returns a tcl list of the items

46

SqL table and sql]restriction allow you to further qualify the

basis on which items are listed . Sql_table holds any table names

(separated by commas) that are needed for the added restriction

specified in sqltrestriction .

Sqlrestriction holds any additions to the sql select , following

a where clause . All column names in sqltrestriction should be

fully qualified with the corresponding table names . It should not

contain where , as it follows a where clause , but if it is an

addition to the where statement it should have an and .

top_p : if value is 1 then catid is not expected , and a list of the

top level items is returned

set itemlist ""

set item map table [ontitemmaptablename $domainid]

if { [string first $sql table] != 0 && ![emptystringp $sql table] } {

set sql table $sql table"

}

set selection [ns-db 1row $db "select onwhichtable, idcolumn-name, prettyname column, itembaseurl

from ontdomains $sql table

where domainid = '$domain id'

$sqlrestriction

"I

set variables afterquery

if { $top-p } {

set selection [ns-db select $db "select $onwhichtable.$idcolumn name, $pretty namecolumn

from $onwhichtable, $itemmaptable

where cat_id is null

and $itemmaptable.itemjid = $on whichtable.$idcolumnname

} else {

set selection [ns-db select $db "select $on whichtable.$id_columnname, $prettynamecolumn

47

from $itemmaptable, $on whichtable

where catid = $inputcat-id

and $itemmaptable.itemid = $onwhichtable.$idcolumnname

}

while { [ns-db getrow $db $selection] } {

setvariables afterquery

lappend itemlist [set $id column-name]

}

return $item-list

}

procdoc ontitem list html { db domainid topp { input-catid "" } { sql table .} { sqlrestriction .} { url-args "" } } "Returns a

Sqltable and sqlirestriction allow you to further qualify the

basis on which items are listed . Sqlttable holds any table names

(separated by commas) that are needed for the added restriction

specified in sqltrestriction .

Sqlrestriction holds any additions to the sql select , following

a where clause . All column names in sqltrestriction should be

fully qualified with the corresponding table names . It should not

contain where , as it follows a where clause , but if it is an

addition to the where statement it should have an and .

The base url for the hyperlinks is specified by the domain definition

url-args : the value is appended to the end of the base

url, then the variables domainid and the value of id_columnname

(also specified in the domain definition) are added too .

url-args should not begin with &

top_p : if value is 1 then catid is not expected , and a list of the

top level items is returned .

set itemtext ""

set item maptable [ontitemmap tablename $domainid]

48

if { [string first "," $sql table] != 0 && ![emptystring-p $sql table] } {

set sql table ", $sql-table"

}

set selection [ns-db 1row $db "select onwhichtable, idcolumnname, pretty_namecolumn, itembaseurl

from ontdomains $sql-table

where domainid = '$domain id'

$sqlrestriction

"]

set variables-afterquery

set item base-url [prep_url-for args $item baseurl]

if { $top-p } {

set selection [ns-db select $db "select $onwhichtable.$id_columnname, $pretty_namecolumn

from $onwhichtable, $itemmaptable

where catid is null

and $itemmap table.itemid = $onwhichtable.$id_columnname

} else {

set selection [ns-db select $db "select $on whichtable.$idcolumn name, $prettynamecolumn

from $item map table, $on whichtable

where cat-id = $input-catjid

and $item map table.itemid = $onwhichtable.$idcolumnname

while { [ns-db getrow $db $selection] } {

setvariables afterquery

append item-text "[set $prettynamecolumn]</

}

if { $item-text "" } {

return "\n \n$item text \n \n"

} else {

49

return ""

}

}

procdoc ontitemmap table_name { domain-id } "Returns name of the table that maps items to categories." {

return ont items_$domain id

}

procdoc ontitemstablecreate { db domain-id } "Creates ontitems_\$domainid table and indices on the catid and itemid. Return

set selection [ns-db 1row $db "select on whichtable, idcolumnname from ontdomains where domainid = $domain-id"]

setvariablesafterquery

set table [ontitemmaptable_name $domainjid]

set create sql "create table $table (

catid references ont-categories,

item_id references $onwhich table\($id columnname\)

)

ns-db dm1 $db $create-sql

nsdb dml $db "create index [set table]_cat id idx on $table (catid)"

nsdb dml $db "create index [set table]_item-id idx on $table (item-id)"

}

procdoc ont itemadd_p { db domain-id { catid "" } } "Returns 1 if can add an item to the category specified by catid, 0 otherwise.

set user-id [ad verifyandget_userjid]

if { [emptystringp $user-id] } {

return 0

}

return 1

}

50

procdoc ont item add { db domainid item-id { cat-id "" } } "Adds the item_id specified to the category specified. Set catid to \"'

set userid [ad verifyand-get-user-id]

if { [empty._stringp $user-id] } {

return "Please register first."

}

set item maptable [ontitemmaptable-name $domain-id]

set insert sql "insert into $item maptable (catid, item id)

values('$cat-id', '$item-id')

nsdb dml $db $insert-sql

}

procdoc ontitem delete { db domain_id item-id { cat-id "" } } "Removes the item from the specified category. If user does not have

set user-id [ad verifyandgetuser-id]

if { [emptystring-p $userid] } {

return "Please register first."

i

set item map table [ont item map table_name $domainjid]

set selection [ns-db 1row $db "select on which-table, idcolumn name from ontdomains where domain id = $domain id"]

setvariablesafter_query

nsdb dml $db "delete from $itemmaptable where item id = '$item id"'

I

procdoc ontitem delete spec-sql { db domainid item sql } "Returns sql statement to delete the items specified by item sql from the

set itemmap table [ontitemmap tablename $domain-id]

return "delete from $itemmap table $item-sql"

51

I

procdoc ont_itemmove { db domain id item id { cat id "" }} "Moves the item id specified to the category specified." {

set item map table [ontitemmap-tablename $domainid]

set update sql "

update $item_map table

set cat id = '$cat id'

where item id = '$item_id'

nsdb dml $db $update-sql

}

procdoc ontitem move sql { domain id item-id { cat-id "" } } "Returns the sql for moving the item_id specified to the category speci

set itemmap table [ontitemmaptablename $domainjid]

return "update $item_maptable

set catid = '$cat id'

where item id = '$itemid'

}

procdoc ontcat-id-from-item-id { db domain id item id } "Select the catid associated with the itemid in the specified domain. Rett

set itemtable [ont item maptable name $domainid]

set selection [ns-db select $db "select cat id from $itemtable where item-id = '$itemid"']

while { [ns-db getrow $db $selection] } {

setvariables afterquery

break

I

ns db flush $db

if { [info exists cat-id] } {
return $cat-id

52

} else {

return 0

}

proc_doc ont_cat_all select_box { db domain id { defaultval "" } { select_name "category" } { sizesubtag "size=10" } } "Returns a s

set widget-value "<select name=\" $selectname\">\n"

if { $default-val == "" } {

append widget-value "<option value=\" none\" SELECTED>Choose a Category</option>\n"

}

set domain_name [ontdomainprettyname $db $domainjid}

append widgetvalue "<option value=\" \ ">$domain_name</option>\n"

set selection [ns db select $db "select cat id, cat-pretty name from ont categories where domain id = '$domain id' and activep =

while { [nsdb getrow $db $selection] } {

set variables after_query

if { $default-val == $catid } {

append widget-value "<option value=\" $catid\" SELECTED>[ns_quotehtml $catpretty-name]</option>\n"

} else {

append widget-value "<option value=\" $cat id\ ">[nsquotehtml $catprettyname]</option>\n"

}

append widget-value "</select>\n"

return $widget-value

}

procdoc ontcat_tree_move_cat widget { db domain_id domainurl cat url move-cat } "returns a nested hyperlinked list displaying a hi

set db-sub [nsdb gethandle subquery]

53

set domain prettyname [ont domainpretty-name $db $domainid]

set widget ""

set counter 0

set unlimitedp [ont hierarchydepthunlimited_p $db $domain id]

top of the hierarchy is level = 0

set limit fontdomainhierarchydepthlimit $db $domain-id]

if { $unlimited-p || $limit > 2 } {

incr counter

set prevlevel -1

construct domainurl , cat url

set domain_url [prepurl-for-args $domainurl]

set caturl [prepurl forargs $cat-url]

append widget "<Ii>$domainpretty_name \n"

select all categories at top level , then connect by to find all their children

set selection [ns-db select $db "select catid as top-cat, catpretty-name

from ont categories

where domain id = $domain id

and activep = 't'

and catid <> $movecat

and not exists (select 1

from ont-hierarchy

where ont-hierarchy.childid = ontcategories.catid)

order by catpretty_name

"]

while { [ns.db getrow $db $selection] } {

setvariables after_query

54

top level categories are at level 0

set level 0

if { $prev_level < $level } {

append widget "\n\n"

}
set prev_level $level

set catid $top-cat

append widget "$cat-prettyname\n"

if { $unlimited-p } {

set subselection [nsdb select $dbsub "select child_id as catid, level,

catprettynamefrom-cat_id(childjd) as prettyname, active_pfrom-catid(childid) as active_p

from onthierarchy

where active_pfrom_cat_id(childjid) = T

and childid <> $movecat

start with parentid = $top_cat

connect by parentid = prior child_id

"]

} elseif { $limit > [expr $level+2] } {

set subselection [nsdb select $dbsub "select child_id as catid, level, catpretty_name fromcat-id(childid)

as pretty name, active_pfromcat_id(childjd) as active_p

from onthierarchy

where active_pjrom_cat_id(childjid) = T

and level < $limit - 2

and child-id <> $move-cat

start with parentid = $topcat

connect by parentid = prior childid

} else {

skip subquery

continue

55

I

while { [nsdb getrow $db-sub $subselection] } {
setvariables after subquery

if { $prev_level < $level } {

append widget "\n\n"

I

append widget "$prettyname\n"

for {set i $level} {$i < $prev-level} {incr i} {

append widget "\n\n"

}

set prev level $level

I

I

if{ $counter > 0 } {
while { $prev level > -1 } {

append widget "\n"

set prev_level [expr $prevlevel-1]

}
}

}

ns db releasehandle $db sub

if { $counter ==0} {

append widget "no suitable categories found"

}

return "\n $widget "

I

procdoc ontcat spec items-tree-html { db domain id { item sql "" } { item-string "" } } "Returns a nested html list of the category I

56

itemsql : should have a line in it saying where [id_columnname J = $ itemid where idcolumn name is the

set db-sub [ns-db gethandle subquery]

select first level categories (categories at the top of the hierarchy)

for each first level cat that has items select all active children that have items

save a list of cats , catprettyname , and levels

set catjlist [ontcatwithitemslevellist $db $domain-id]

set treehtml ""

set prevlevel 0

foreach idnamelevel $catjlist {

set branchparent [lindex $id_namelevel 0]

set cat-id $branchparent

set catprettyname [lindex $idname-level 1]

set level [lindex $idnamelevel 2]

if { $prevlevel < $level } {

append tree-html "\n\n"

}

append treehtml "<h3>$catprettyname</h3>\n"

go through and select the items for each category

set selection [ns-db select $db "select itemid from [ontitem-maptable name $domain id] where catid = $catid"]

while { [ns-db getrow $db $selection] } {

setvariables afterquery

set sub-selection [nsdb 0or1row $db-sub [eval sql $itemsql]]

if { ![emptystringp $sub-selection] } {

setvariablesafter subquery

append tree html "[eval-sql $item-string]\n"

I

57

}

for { set i $prevlevel } { $i < $level } { incr i } {

append treehtml "\n\n"

}

set prevlevel $level

I

nsdb releasehandle $dbsub

while { $prev_level > 0 } {
append treehtml "\n\n"

set prev_level [expr $prevlevel-1]

}

return $tree_html

I

proc eval sql {item-sql} {

upvar eval-sqlsql statement eval-sql-sql-statement

set eval sql sql statement $itemsql

uplevel {

eval $eval-sql-sql statement

}

procdoc ont cat_with_items_level list { db domain id } "Returns a tcl list of triples consisting of cat id, cat pretty name, and level, rep

select all categories at top level (cat id and pretty name)

set topcatlist [ont cat id name toplist $db $domain_id]

set unweeded cat list ""

58

get the count (level) for each category

foreach idnamepair $topcat-list {

set branchparent [lindex $idname_pair 0]

set catprettyname [lindex $id-namepair 1]

set level 0

lappend unweededcatlist [list $branchparent $catpretty-name $level]

set selection [ns-db select $db "select childid as catid, level, cat prettynamefromcat id(childid) as pretty_name

from onthierarchy

where active_pfrom-cat-id(childid) = T

start with parentid = $branchparent

connect by parent-id = prior child_id

while { [ns-db getrow $db $selection] } {

setvariables after query

lappend unweededcatjist [list $catid $prettyname $level]

}
}

set totalcatlist ""

weed out categories that don ' t have any items (count = 0)

foreach idnamepair $unweeded-catjist {

set catid [lindex $id-name-pair 0]

set catpretty name [lindex $idname pair 1]

set level [lindex $id_name-pair 2]

set count [ont-cat-items count $db $cat-id]

if { $count > 0 } {

lappend total-catlist [list $cat-id $catprettyname $level]

}

}

return $total catjlist

}

59

proc-doc ont catwithitemstree html { db domain-id caturl { withitemsp 1} { show-domain-p 0 } { domain uri "" } { urltitlelist

urltitle-list [urll titlel] [url2 title2]

set db-sub [ns-db gethandle subquery]

set treehtml ""

set prev_nestingjlevel 0

if { $show-domain-p } {

set domainpretty name [ont domain pretty name $db $domain id]

set domain_url [prep_urlfor args $domainurl]

set treehtml "$domainprettyname \n"

domain is at level - 1

set prev_nestinglevel -1

}

set cat uri [prep uri for args $caturl]

set preppedurlpairlist [preptuplejlist for-args $url-titlejist]

select all categories at top level , then connect by to find all their children

set catidname-list [ont cat_id_nametop list $db $domainid]

set counter 0

foreach id_name pair $cat_id_namelist {

set level 0

incr counter

if { $level > $prevnestinglevel } {

append tree html "\n\n"

60

} else {

for { set i $level } { $i < $prevnestingjlevel } { incr i } {

append treehtml "\n\n"

}

set prey nestingjlevel $Ievel

set branchparent [lindex $idname_pair 01

set cat id $branchparent

set catprettyname [lindex $idname-pair 1]

set count [ont cat itemscount $db $cat-id]

if { $withitemsp && $count > 0 } {

append tree html "<Ii>$cat pretty-name ($count)"

} elseif { !$with_itemsp && $count == 0 } {

append treehtml "<Ii>$catprettyname"

} else {

skip this category

continue

I

tack on the extra hyperlinks

foreach urltitle $preppedurl_pairlist {

set url [lindex $url title 0]

set title [lindex $url title 1]

append tree html " $title"

}

set selection [nsdb select $db "select childid as catid, level, catpretty_namefromcat id(child id) as prettyname,

active-pfromcatjid(childjid) as active p

from onthierarchy

where active_pfrom-cat-id(childjid) = T

start with parent_id = $branch-parent

connect by parentid = prior child-id

"I

61

while { [ns-db getrow $db $selection] } {

setvariables afterquery

set count [ont-cat itemscount $dbsub $catid]

if { $with items p && $count > 0 } {

if { $level > $prev-nesting-level } {

append tree-html "\n\n"

} else {

for { set i $level } { $i < $prevnesting-level } { incr i } {

append treehtml "\n\n"

}
}
set prev_nesting level $level

append treehtml "$pretty-name ($count)"

} elseif { !$with-items p && $count == 0 } {

if { $level > $prev-nesting-level } {

append tree html "\n\n"

} else {

for { set i $level } { $i < $prevnestingjevel } { incr i } {

append treehtml "\n\n"

}
}
set prevnesting_level $level

append treehtml "$prettyname"

} else {

skip this category

continue

}

tack on the extra hyperlinks

foreach urltitle $preppedurlpairjist {

set url [lindex $url title 01

set title [lindex $url title 1]

62

append tree_html " $title"

}

append tree html "\n"

}

}

nsdb releasehandle $dbsub

if{ $counter > 0 } {

while { $prev-nestinglevel > 0 } {

append tree html "\n\n"

set prev_nesting-level [expr $prev-nestingjlevel-1]

}
} else {

append treehtml "no categories defined currently"

}

if { $show-domain-p } {

append tree html "\n</uI>\n"

}

return "\n$treehtml\n"

I

procdoc ont_cat tree widget {db domainid domainurl cat url { extraurltitlelist "" } } "Widget returns a nested hyperlinked list diE

extra urltitlelist : [url titlel] [url2 title2]

set db-sub [ns-db gethandle subquery]

set domain prettyname [ont domainprettyname $db $domainid]

set domain-url [prep_urlfor args $domain-url]

set cat url [prepurlfor-args $cat-url]

set preppedurlpairjist [prep tuplejist for-args $extraurl_titlelist]

set widget "<Ii> $domainprettyname"

63

tack on the extra links

foreach element $preppedurlpair_list {

set url [lindex $element 0]

set title [lindex $element 11

append widget $title"

}

append widget "\n"

select all categories at top level , then connect by to find all their children

set selection [ns-db select $db "select catid as branch-parent, cat-prettyname from ontcategories

where domainid = $domainid

and active-p =

and not exists (select 1

from ont-hierarchy

where ont-hierarchy.childid = ontcategories.catid)

order by cat prettyname

"I

set previlevel -1

set counter 0

while { [ns.db getrow $db $selection] } {

set-variables afterquery

top level categories are at level 0

set level 0

incr counter

if { $prevlevel < $level } {

append widget "\n\n"

} else {

for {set i $level} {$i < $prev-level} {incr i} {
append widget "\n\n"

I

64

I

set prev_level $level

set catid $branchparent

append widget "$cat-pretty-name\n"

set subselection [ns-db select $db-sub "select child_id as catid, level, catprettyname from-catjid(child id) as prettyname,

active_pfromcat-id(child id) as active_p

from onthierarchy

where active_pfrom-catid(child id) = T

start with parentid = $branchparent

connect by parentid = prior child id

"]

while { [ns-db getrow $db-sub $sub-selection] } {

set variables after subquery

if { $level > $prevlevel} {

append widget "\n\n"

} else {

for {set i $level} {$i < $prev-level} {incr i} {

append widget "\n\n"

}
}
set prevlevel $level

append widget "$pretty-name"

tack on the extra links

foreach element $preppedurlpair list {

set url [lindex $element 0]

set title [lindex $element 1]

append widget " $title"

}

append widget "\n"

65

}
}

ns-db releasehandle $dbsub

if{ $counter > 0 {

while { $level > -1} {

append widget "\n\n"

set level [expr $level-1]

}

return "\n$widget"

}

procdoc ont-context fragmentlist {db domainid domain-url { ending-context "".} {inputcat-id "" } {cat-url ""} I "Returns a list of

set domain prettyname [databasetotcl string-or null $db "select domainprettyname from ontdomains where domain id = '$dorr

set ancestorlist ""

if { [string first "?" $domain-url] > -1 } {

there is a ? so there should be at least one arg . passed in w / the url

if { [string first "=" $domainurl] > -1 } {

there appears to be an arg with the url

append domain url "&"

}
} else {

no ? so add one

append domain url "?"

}

set up cat url

if { [string first "?" $cat-url} > -1 } {

if { [string first "=" $caturl] > -1 } {

append cat_url "&"

}

66

} else {

append caturl "?"

}

if { ![emptystring~p $inputscatjid] } {

lappend ancestor-list [list "$domainurl[exporturlvars domain-id]" "$domainpretty_name"]

set sqlquery "select parent_id as cat_id, level, catprettyname fromcatid(parentid) as prettyname

from ont-hierarchy

start with child id = $inputcat_id

connect by child-id = prior parent-id

order by level desc

set selection [ns-db select $db $sqlquery]

while { [ns-db getrow $db $selection] } {

setvariables afterquery

set url "$cat-url[export_urlvars domain-id cat-id]"

lappend ancestorlist [list "$url" "$pretty_name"I

set catprettyname [databasetotcl string $db "select catpretty_name from ont categories where catjid = $input-cat_id"I

if { ![empty-string-p $ending context] } {

tack on the last category on the

set cat-id $input-catjid

list (linked)

set url "$cat-url[export_urlvars domain-id cat-id]"

lappend ancestor-list [list "$url" "$catpretty-name"]

lappend ancestorlist "Sending-context"

} else {

tack on the category unlinked

67

lappend ancestorlist "$catprettyname"

I
} else {

if { ![emptystringp $endingcontext] } {

lappend ancestorlist [list "$domain-url[exporturlvars domainid]" "$domainprettyname"]

lappend ancestor list "$ending-context"

} else {

lappend ancestor list "$domain_prettyname"

}

return $ancestor_list

}

procdoc ontcontext fragment {db domainid domain url { ending context "" } {input-cat-id ""} {cat url ""} } "Returns a hyperlink

set domain pretty-name [databasetotcl stringor null $db "select domainprettyname from ontdomains where domain id = '$don

set ancestors ""

set domain_url [prepurifor args $domain-url]

set cat-url [prepurl forargs $cat-url]

if { ![emptystringp $input-catjid] } {

lappend ancestors [list "$domain-url[exporturlvars domain_id]" "$domainprettyname"]

set sqlquery "select parentid as catid, level, catprettynamefromcat_id(parent-id) as pretty-name

from ont hierarchy

start with child id = $inputcatid

connect by child id = prior parent-id

order by level desc

set selection [ns-db select $db $sqlquery]

while { [ns-db getrow $db $selection] } {

setvariables after query

68

set url "$cat-url[exporturlvars domain id cat id]"

lappend ancestors [list "$url" "$prettyname"]

}

set cat pretty name [database to_tcLstring $db "select cat pretty name from ont categories where cat id = $input cat id"]I

if { ![emptystringp $ending-context] } {

tack on the last category on the

set catid $input-cat-id

list (linked)

set url "$cat-url[exporturlvars domainid cat id]"

lappend ancestors [list "$url" "$catprettyname"]

lappend ancestors "$ending-context"

} else {

tack on the

lappend ancestors

}

category unlinked

"$catprettyname"

} else {

if { ![emptystringp $endingcontext] } {

lappend ancestors [list "$domain-url[export_urlvars domain id]" "$domainprettyname"]

lappend ancestors "$endingcontext"

} else {

lappend ancestors "$domainprettyname"

}

set test_string "adcontext_bar $ancestors"

set context-bar [eval $test-string]

return $contextbar

}

proc_doc ont_hierarchy depth unlimited~p { db domain id } "Returns 1 if the hierarchy of the specified domain is unlimited, 0 otherwis

69

set limit [ontcdomainhierarchydepth-limit $db $domain-id]

if { [string compare $limit ""] == 0 } {

return 1

} else {

return 0

}
}

procdoc ontdomain-hierarchydepthjlimit { db domain-id } "Returns 1 if the specified domain has unlimited depth, 0 otherwise." {

set limit [databasetotclstringornull $db "select hierarchydepthlimit from ontdomains where domain-id = '$domainid"' 0]

return $limit

}

procdoc ontdomain id { db cat-id } "Look up the domainid of the specified category." {

return [database totclstring $db "select domainid from ontcategories where catid = '$catjid"']

}

procdoc ontdomainiteminfo { db domain-id } "Get the onwhichtable, idcolumnname, pretty-namecolumn, itembaseurl values

set selection [ns-db 1row $db "select onwhichtable, idcolumn-name, pretty_namecolumn, itembase-url

from ont domains

where domainid = '$domainid'

setvariablesafterquery

return [list $onwhichtable $id_column-name $prettynamescolumn $itembaseurl]

procdoc ontdomain idfrom domain key { db domain-key } "Returns the domainid for the domain-key specified, or -1 if there is no

return [database totcl stringornull $db "select domainid from ontdomains where domain-key = '[DoubleApos $domain_key]"'

I

procdoc ontdomainkeyjromdomainid { db domain-id } "Returns the domainkey for the domainid specified, or -1 if there is no s

return [database totcl-stringor_null $db "select domainkey from ontdomains where domainid = '$domainid"' -1]

}

70

procdoc ont domain_id_new { db } "Return a new domain-id." {

return [database totclstring $db "select ontdomainid-sequence.nextval from dual"]

}

procdoc ontdomainprettyname { db domain-id } "Look up the domainpretty_name of the specified domain." {

return [database totcl stringor ull $db "select domainprettyname from ont-domains where domainid = '$domain id"' "No N

}

procdoc ontdomain edit { db domainid title { domain_key "" } { url"" } } "Edit the title, domainkey, and item url for the domain

if { ![ad-permission-p $db "Ontology" $domainjid] } {

return "You do not have permission to add an item."

}

check input values

set update-domain "update ontdomains set"

set titlep 0

if { ![emptystring-p $title] } {

append update-domain "domainpretty_name = '[DoubleApos $title]"'

set title_p 1

}

set url_p 0

if { ![emptystringp $url] } {

if {$title-p } {

append update-domain ",\n"

}
append update-domain "item-base-url = '[DoubleApos $url]"'

set urlp 1

}

set keyp 0

if { ![emptystringp $domainkey] } {

71

if { $title-p || $url-p } {
append update-domain ",\n"

}
append update-domain "domainkey = '[DoubleApos $domainkey]"'

set keyp 1

}

set user id [adget user id]

set clientipaddress [nsconn peeraddr]

if { $title-p || $url-p || $keyp } {

append update-domain ",\n"

}

append update-domain "last-modified = sysdate,

lastmodifyinguser = $userid,

modifiedipaddress = '$clientipaddress'

where domain id='$domain id'"

if [catch { nsdb dml $db $update-domain } errmsg] {

return $errmsg;

}
}

procdoc ontdomain depth edit { db domainid depth } "Edit the hierarchy depth for the domain." {

if { ![ad-permission-p $db "Ontology" $domainid] } {

return "You do not have permission to add an item."

}

Error Count and List

set exception-count 0

set exceptiontext ""

check input values

if { [regexp {([^0-9])} $depth] } {

incr exception-count

72

append exception-text "The value you entered for the hierarchy depth limit is not a valid number.\n"

I

if { $exceptioncount > 0 } {
return $exception-text

}

set user id [ad-get user id]

set client ipaddress [ns-conn peeraddr]

set updatedomain "update ontdomains set

hierarchydepthlimit = '$depth',

lastmodified = sysdate,

lastmodifyinguser = $userid,

modifiedipaddress = '$client-ipaddress'

where domainid='$domain id'"

ns-db dml $db $update-domain

}

procdoc ontdomain toggle-activep { db domain-id } "Toggle whether the domain is active or not." {

if { ![ad-permission-p $db "Ontology" $domain_id] } {

return "You do not have permission to edit the domain."

}

ns-db dml $db "update ontdomains set activep = logical negation(activep) where domainid = '$domain id"'

I

proc doc ont domain add I db domain pretty name hierarchy depth limit table name id column name pretty name column item base u

Error Count and List

set exceptioncount 0

set exceptiontext ""

if [empty stringp $tablename] {

if ![info exists Table] {

73

incr exception-count

set exception-text "You did not enter a table name"

} else {

set tablename $Table

}
}

if ![nstable exists $db $table-name] {

incr exceptioncount

set exceptiontext "The table named $tablename does not exist in the database.\n"

}

if ![ns-column exists $db $table-name $idcolumnname] {

incr exception_count

set exceptiontext "The column $idcolumnname does not exist in the table $tablename.\n"

}

if ![ns-column exists $db $tablename $pretty-name column] {

incr exception-count

set exceptiontext "The column $prettyname column does not exist in the table named $tablename.\n"

}

error - check input : hierarchydepth limit is a number

if { [regexp {([^0-9])} $hierarchydepth-limit] } {

incr exception-count

append exception-text "The value you entered for the hierarchy depth limit is not a valid number.\n"

}

if {$exceptioncount > 0} {

return $exception-text

}

if { [emptystringp $domainjid] } {

set domain-id [ont domainidnew $db]

}

set user id [adget user id]

set clientipaddress [ns-conn peeraddr]

74

set insert-domain "insert into ontdomains

(domainid,

domainprettyname,

hierarchydepth limit,

domainkey,

service,

creation-date,

on whichtable,

prettyname column,

id columnname,

itembaseurl,

last-modified,

lastmodifyinguser,

modifiedipaddress)

values

($domainid,

'[DoubleApos $domainprettyname]',

'[DoubleApos $hierarchydepth_limit]',

'[DoubleApos $domain-key]',

'[DoubleApos $service]',

sysdate,

'[DoubleApos $table-name]',

'[DoubleApos $prettyname_column]',

'[DoubleApos $id_columnname]',

'[DoubleApos $itembaseurl]',

sysdate,

$user-id,

'$clientipaddress')"

set modulename "Ontology"

nsdb dm1 $db $insert-domain

set groupname [ont admin usergroup_name $db $domainid]

adadministration-groupadd $db $groupname $module-name $domainid "/admin/ontology" "f"

adadministration groupuseradd $db $adminuserid "administrator" $modulename $domain id

75

ontitemstablecreate $db $domainid

}

procdoc ontcatwithcontents list html { db domainid url { sql-table "" } { sqlrestriction "" } { urltitle list "" } } "Returns a hyp

set url [prepurlfor args $url]

set preppedurl_pair list ""

foreach element $url title list {

set url [lindex $element 0]

set title [lindex $element 1]

lappend prepped_urlpair list [list [prepurl for args $url] $title]

}

if { ![emptystringp $sql table] && [string first "," $sql table] 0 } {

set sql table ", $sql table"

}

set db-sub [ns.db gethandle subquery]

set activecats ""

set sqlquery "select catid, catprettyname

from ont categories $sql table

where domainid = $domain id

and active_p = T

$sqlrestriction

order by catprettyname

set selection [ns-db select $db $sql_query]

while { [nsfdb getrow $db $selection] } {
setvariables afterquery

set count [ont cat itemscount $dbsub $cat id]

if { $count > 0 } {

76

append active-cats "$cat pretty-name"

tack on the extra hyperlinks

foreach element $preppedurl_pairlist {

set url [lindex $element 0]

set title [lindex $element 1]

append widget " $title"

}

}
}

ns_db releasehandle $db_sub

return "\n \n$active cats \n \n"

}

procdoc ontcat idnew { db } "Returns a unique catid for use." {

return [database totcl string $db "select ontcat_id-sequence.nextval from dual"]

}

procdoc ontcatparent-id { db catid } "Returns the catid of the parent of this category (the first one found if there are multiple par

set selection [ns-db select $db "select parent-id from onthierarchy, ont-categories

where child-id = $cat-id

and catid = $cat_id

and activep = '"]

while { [ns-db getrow $db $selection] } {

setvariables afterquery

break

}

nsdb flush $db

if { [info exists parent-id] } {
return $parentid

77

} else {

return 0

}
}

procdoc ontcat id name toplist { db domain id } "Returns a tcl list of lists of cat-id, catprettyname for all the categories in the top

set list ""

set sqlquery "select cat_id, catprettyname

from ont categories

where domainid = $domain_id

and active-p =

and not exists (select 1 from ont hierarchy where child id = catid)

order by catprettyname

set selection [ns-db select $db $sqlquery]

while { [ns-db getrow $db $selection] } {

set variables afterquery

lappend list [list $cat-id $catprettyname]

}

return $list

}

proc_doc ont_cat_list_all html { db domain id url } "Returns a hyperlinked list of all the categories in the domain. The base uri for the

if { [string first "?" $url] > -1 } {

there is a ? so there should be at least one arg . passed in w / the url

if { [string first "=" $url] > -11 {

there appears to be an arg with the url

append url "&"

I

78

} else {

no ? so add one

append url "?"

}

set db-sub [ns-db gethandle subquery]

set active-cats ""

set sqlquery "select cat_id, catprettyname from ont categories

where domain id = $domain id

and activep = '

order by catprettyname

set selection [ns-db select $db $sqlquery]

while { [ns-db getrow $db $selection] } {

set-variables.after_query

set count [ont cat items-count $dbsub $cat-id]

append active-cats "<1i>$cat prettyname ($count)"

}

ns-db releasehandle $dbsub

return "\n \n$active cats \n \n"

}

proc-doc ont catprettyname { db catid } "Look up the catpretty_name of the specified cat id." {

return [database totclstring $db "select catpretty name from ont categories where catid = '$catjid"']

}

procdoc ontcatprettyname-sub { cat id } "Look up the catprettyname of the specified cat-id - grabs a db handle from the subqu

set dbsub [ns-db gethandle subquery]

return [database totclstring $db sub "select catprettyname from ont-categories where catjid = '$cat-id"']

79

nsdb releasehandle $dbsub

}

procdoc ontcat extra info { db cat-id } "Look up the extra_info for the specified cat-id." {

return [database totclstring $db "select extrainfo from ontcategories where catid = '$catjid"']

}

procdoc ontcatitemscount { db cat-id } "Count the number of items in a category and any subcategories." {

set domainid [ont domainid $db $cat-id]

set tablename [ontitemmap table name $domain_id]

set childcount [database totcl-string $db "select count(*)

from $tablename

where cat_id in (select child-id

from onthierarchy

start with parent-id = $catid

connect by parent-id = prior child id)

"]

return [databasetotclstring $db "select count(*)+$child-count from $tablename where catid = $cat-id"]

}

procdoc ontsubcatlisthtml { db domain id url top-p {input-catid ""} } "Returns a hyperlinked list of the subcategories in the spec

if{ [string first "?" $url] > -1 } {
there is a ? so there should be at least one arg . passed in w / the url

if{ [string first "=" $url] > -1 } {

there appears to be an arg with the url

append url "&"

}
} else {

no ? so add one

append url "?"

}

set db-sub [ns-db gethandle subquery]

set activecats ""

80

if { $top-p } {

set sql_query "select cat-id, catprettyname

from ont categories

where not exists (select 1

from onthierarchy

where ont_hierarchy.childid = ontcategories.catid)

and domainid = $domain id

and active-p = T

order by catpretty-name

} else {

set sql_query "select cat-id, cat pretty_name

from ont categories, onthierarchy

where active-p T

and parent-id = $input-catid

and cat id = childid

order by catpretty-name

}

set selection [ns-db select $db $sqlquery]

while { [ns-db getrow $db $selection] } {

set variables after query

set count [ont cat itemscount $dbsub $cat-id]

append activecats "cat-pretty_name ($count)"

}

ns-db releasehandle $dbsub

if { $active-cats != "" } {
return "\n \n$activecats \n \n"

} else {

return ""

}

81

I

procdoc ontcatmove { db domainid cat-id parent-id new parent-id} "move the category to the specified parent category. If new pa

set user-id [ad verifyand_getuser id]

if { ![ad-permission-p $db "Ontology" $domain-id $userjid] } {

return "Sorry, you do not appear to be authorized to access this page."

}

if { [emptystring-p $parent_id] } {

cat id is a top level category - no parent in hierarchy

set cur parent_is top-cat-p 1

} else {

set cur parent_is topcatp 0

if { [emptystringp $newparent_id] } {

moving to new parent in hierarchy

set newparentistopcat p 1

} else {

- move catid to top of hierarchy

set new parentis-topcat p 0

}

set modified_ipaddress [ns-conn peeraddr]

if { !$cur parentis topcat_p && !$new-parentis topcatp } {

set sql "update onthierarchy

set parentid = $newparentid,

lastmodifyinguser = '$user-id',

modifiedipaddress = '$modified-ipaddress',

lastmodified = sysdate

where child id = $cat id

and parent-id = $parentid"

} elseif { !$cur-parentis topcatp && $newparentis-topcatp } {

moving cat to top of hierarchy

82

set sql "delete from ont hierarchy where child id = $cat-id and parentid = $parent-id"

} elseif { $curparent is topcatp && !$newparentis-top catp } {

add category to hierarchy

set sql "insert into ont-hierarchy

(child id, parent id, lastmodified, last_modifyinguser, modifiedipaddress)

values

($catid, $newparentid, sysdate, $userid, '$modified_ip_address')

} else {

no change

return

}

if [catch { nsdb dml $db $sql } errmsg] {

return $errmsg

}
}

procdoc ont_cat edit { db catid catprettyname { extrainfo "" } } "Edit the attributes of a category. " {

if { [emptystringp $cat prettyname] } {

return "Category title missing"

}

set user-id [ad-get-user-id]

set ipaddress [nsconn peeraddr]

if { ![emptystringp $extrainfo] } {

set update sql "update ont.categories

set catprettyname = '[DoubleApos $catprettyname]',

extra-info = '[DoubleApos $extrainfo]',

lastmodifying user = '$userid',

modifiedipaddress = '$ipaddress',

lastmodified = sysdate

where cat-id = $cat-id"

83

} else {

set update sql "update ont.categories

set catprettyname = '[DoubleApos $catprettyname]',

lastmodifyinguser = '$user_id',

modifiedipaddress = '$ipaddress',

lastmodified = sysdate

where catid = $catid"

}

if [catch { nsdb dml $db $update-sql } errmsg] {

return $errmsg

}
}

procdoc ontcat activate { db catid } "activate the specified category. Returns errmsg if there is a problem activating the category."

set domainid [ont-domain id $db $cat-id]

if { ![ad-permission-p $db "Ontology" $domain id] } {

return "You do not have permission to activate a category."

}

set categoryexistsp [databasetotclstringor-null $db "select 1 from ont categories where catid = $cat-id" 0]

set user id [ad-get user id]

set client ipaddress [ns-conn peeraddr]

nsdb dml $db "update ontcategories set activep = ',

lastmodified = sysdate,

lastmodifyinguser = $user_id,

modifiedipaddress = '$client ip address'

where catid = $cat_id"

I

procdoc ontcatdeactivate { db cat-id } "Deactivate the specified category. Returns errmsg if there is a problem deactivating the ca

see if there is anything in this category: subcategories / items

84

set domain_id [ont domain id $db $cat-id]

if { ![ad-permission-p $db "Ontology" $domainid] } {

return "You do not have permission to deactivate a category."

}

set categorycount [database totclstringornulI $db "select count(*)

from ont-hierarchy, ont categories

where active p = 't' and parentid = $cat id " 0]

set itemcount [database to.tcl-stringor_null $db "select count(*) from [ont-itemmap tablename $domain-id] where catid = $cat

if { $category count > 0 || $item-count > 0 } {

return "This category holds subcategories or items. Please move or deactivate them before deactivating this category."

}

set user-id [ad-getuser id]

set clientipaddress [nsconn peeraddr]

ns-db dml $db "update ontcategories set active p = 'f',

lastmodified = sysdate,

lastmodifyinguser = $userid,

modifiedipaddress = '$clientip_address'

where catid = $catid"

}

procdoc ontcataddp { db domain id { cat id ""} } "Returns 1 if can add a sub-category to the specified catid, 0 otherwise. If ca

if { ![ad-permission-p $db "Ontology" $domain-id] } {

return 0

}

see if we have reached limit specified by hierarchydepth limit

set limit [ontdomainhierarchydepthlimit $db $domainid]

if { [emptystringp $cat-id] } {

set current-level 1

} else {

set current-level [database totclstring or null $db "select greatest(level) from ont hierarchy start with child id = $cat id connec

85

}

if { [ont-hierarchydepth unlimitedp $db $domain-id] 1| $limit > $currentlevel } {

return 1

} else {

return 0

}
}

proc doc ont cat add { db domainid catpretty name extra info parent id { cat id "" } } "Adds a new category with the specified nan

if { ![ont cat add-p $db $domain_id $parent-id] } {

return "Cannot add a category - either you do not have permission or this is the limit of the hierarchy depth."

}

if { [emptystringp $cat-id] } {

set cat_id [ont cat id new $db]

}

set user-id [adget user id]

set clientipaddress [ns-conn peeraddr]

if { [emptystringp $parentid] } {

set addto topof hierarchyp 1

} else {

set add to-topof hierarchyp 0

}

set insert-category

insert into ontcategories

(cat id, catpretty-name, extrainfo, domain-id, creation-date, lastmodified, last-modifyinguser, modifiedipaddress)

values

($catid, '[DoubleApos $catpretty-name]', '[DoubleApos $extra-info]', '$domainid', sysdate, sysdate, $userid, '$client ipaddress')

if { $add to top of hierarchyp } {

add to ontcategories but don ' t add to

domain , so it has no parent category)

hierarchy (its parent is

86

if [catch { ns-db dml $db $insert-category } errmsg] {

if { [data base totclstring $db "select count(*) from ont categories where catid = $cat-id"] } {

user double clicked , this category already exists

return

} else {

return $errmsg

}
} else{

return

}
}

otherwise , also insert into hierarchy, since it has a parent category

Error Count and List

set exception-count 0

set exceptiontext ""

set childparentpair exists p [data base-to-tcl stringor_null $db "select count(*) from ont hierarchy where child id = $catid and (p

if { $childparent pairexists-p == 1 } {

incr exceptioncount

append exception-count "The specified category is already in the category specified."

}

if { $exceptioncount > 0 } {

return "$exception-text"

}

set inserthierarchy

insert into onthierarchy

(childid, parentid, last_modified, last modifyinguser, modifiedip-address)

values

($catid, $parent-id, sysdate, $user-id, '$client-ipaddress')

ns-db dml $db "begin transaction"

87

if [catch { nsdb dml $db $insert_category I errmsg] {

nsdb dml $db "end transaction"

set cat id existsp [databasetotclstring $db "select count(catjid) from ont categories where cat-id = $cat_id"]

if { $cat-id-exists-p == 1 } {

user double clicked, this category already exists.

return

} else {

return $errmsg

}
}

if [catch { nsdb dml $db $insert-hierarchy } errmsg] {

ns-db dml $db "rollback"

return $errmsg

}
ns db dml $db "end transaction"

}

procdoc ontadmin usergroupname { db domainid } "Returns the name of the administration usergroup for the specified domain"

set domain-prettyname [ont domainpretty_name $db $domainid]

return "$domainprettyname \($domainid\) Administrators"

}

88

References

[1] Tracy Adams, "Permission Package," http://photo.net/doc/permissions.html.

[2] America OnLine, "AOLserver," http://aolserver.com, 1995.

[3] Andover.Net, "Slashdot homepage," http://www.slashdot.org, 1997-1999.

[4] Michael Bryzek, Richard Li, et. al., "Virtual Compassion Corps homepage,"

http://www.Compassion Corps. org, 1999.

[5] eBay, "eBay homepage," http://www.ebay.com, 1995-1999.

[6] Philip Greenspun, "Developers Guide," http://photo.net/doc/developers.html.

[7] Philip Greenspun, "Generic Classifieds," http://photo.net/gc/.

[8] Philip Greenspun, "Chapter 3: Scalable Systems for Online Communities,"

http://photo.net/wtr/thebook/community.html, 1997.

[9] Philip Greenspun, "Chapter 13: Case Studies," http://photo.net/wtr/dead-

trees/53013.htm, 1997.

[10] Philip Greenspun, "User Groups," http://photo. net/doc/user-groups. html.

[11] Salon Entertainment, "Salon Entertainment homepage," http://salon.com, 1999.

[12] Yahoo!, "Yahoo! homepage," http://www.yahoo.com, 1999.

[13] ArsDigita LLC, "The ArsDigita Community System," http://software.arsdigita.com,

1999.

89

