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Abstract

The emergent field of synthetic biology is different from many other biological
engineering efforts, in that its roots, design principles, and forward engineering
perspective have been adopted from electrical engineering and computer science.
Synthetic biology is uniquely poised to make great contributions to numerous fields
such as bio-fuel, energy production, agriculture and eco-remediation, national
defense, and biomedical and tissue engineering. Considerable progress has been
made in engineering novel genetic circuits in many different organisms. However,
not much progress has been made toward developing a formal methodology to
engineer complex genetic systems in mammalian cells. One of the most promising
areas of research is the study of embryonic and adult stem cells. Synthetic biology
has the potential to greatly impact the progression and development of research in
this area of study. A critical impediment to the development of stem cell engineering
is the innate complexity, little to no characterization of parts, and limited
compositional predictive capabilities.

In this thesis, I discuss the strategies used for constructing and optimizing the
performance of signaling pathways, the development of a large mammalian genetic
part and circuit library, and the characterization and implementation of novel
genetic parts and components aimed at developing a foundation for mammalian
synthetic biology. I have designed and tested several orthogonal strategies aimed at
cell-cell communication in mammalian cells. I have designed a characterization
framework for the complete and proper characterization of genetic parts that allows
for modular predictive composition of genetic circuits. With this characterization
framework I have generated a small library of characterized parts and composite
circuits that have well defined input-output relationships that can be used in novel
genetic architectures. I also aided in the development of novel analysis and
computational tools necessary for accurate predictive composition of these novel
circuits. This work collectively provides a foundation for engineering complex
intracellular transcriptional networks and intercellular signaling systems in
mammalian cells.

Thesis Supervisor: Ron Weiss
Title: Associate Professor of Biological Engineering
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Chapter 1

1. Introduction

Synthetic gene networks are at the forefront of systems biology and provide

a framework for understanding and engineering life. The field of synthetic biology

offers tremendous potential to both understand natural biological phenomena and

to re-engineer existing cells and organisms to equip them with synthetic capabilities

that are useful for predetermined functionalities[1].

The origins of synthetic biology are seen in the initial efforts of the field. The

first devices built were biological analogues of simple electrical engineering

components. They created gene networks to create basic 'devices' such as

oscillators, memory elements and transcriptional cascades aimed at signal

amplification[2-4]. Other success stories include a transcriptional 'pulse generator'

and engineered cell-cell communication in prokaryotes resulting in controlled

population control or predictable pattern formation[5, 6]. The full and well-defined

characterization of the input-output relationships of these basic electrical devices

allowed the successive engineering of a plethora of more complex systems.

However, a sufficient and well-defined method of characterization of the biological

analogues has not yet been achieved. With the knowledge obtained from these

initial engineered circuits the field began to focus on more advanced application-

oriented projects such as gene therapy to cure illness and prevent disease,

metabolic engineering, drug production, and tissue engineering.

Chapter 1 1



One such health problem where synthetic biology can hope to contribute is

Diabetes Mellitus, which is characterized by an immune-mediated loss of pancreatic

p cells (cells that produce insulin). It is a devastating, currently incurable disease

that affects over 8% of the population in the United States alone[1]. Recent

developments in genome technologies, tissue engineering and synthetic biology

offer exciting possibilities to establish highly accurate and robust approaches for

predictable and controllable cell fate regulation which can be used to address the

root causes of diabetes.

Synthetic biology holds the promise for one such cure, engineered tissue

homeostasis. Artificial tissue homeostasis involves engineering an isogenic

population of human embryonic stem cells (hESC) or adult (e.g. iPS) stem cells to

have the capability to produce a stable population of insulin producing P cells. In the

engineered system, cells are not simply exogenously induced to differentiate, but

rather are programmed to sense and respond to changes in their environment and

the state of other cells, allowing them to coordinate their collective behavior based

on the needs of the system. In this system, a growing population of engineered

mammalian embryonic stem cells will communicate using an artificial signaling

pathway. They must be able to detect the size of their own population (quorum

sensing I), detect the size of insulin producing P cell population (quorum sensing II),

be able to decide when it is appropriate to produce more P cells (differentiate),

when it is necessary to divide or stop dividing (proliferation and quiescence), and

each cell must know which state it is in (hESC or P cell). A cell in this system must
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constantly be making calculations based on inputs from its surrounding

environment. A genetic representation of this system is seen in chapter 4 Figure 6a.

This system is extremely complex and would be intractable with out the

development of computer aided design tools to properly predict the resulting

function of large genetic circuits. Computational design and modeling is needed to

guide the experimental construction of the proposed complex synthetic system.

The goal of this thesis is to create foundational tools for synthetic biology in

mammalian cells by creating new orthogonal signaling pathways, designing a

characterization framework for transcription factors, developing analytical and

modeling tools to aid in the design of more complex genetic circuits and

constructing and verifying the functionality of novel genetic circuits. The ability to

obtain sufficient information about individual genetic parts and develop a computer

model that will use this information to quantitatively predict novel interactions of

the individual parts will significantly advance the field of synthetic biology. It will

allow for the design and construction of much larger and more complex systems

then have been seen thus far.
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1.1. Thesis Statement

The predictive composition of genetic circuits from well-characterized parts

has been the central dogma of synthetic biology since its inception. However, the

innate complexity of biological systems and lack of knowledge has thus far

prevented the development of a standard characterization technique that will yield

enough high quality information about individual parts to be used in computer-

aided design. Mammalian cells provide additional difficulties and complications

owing to the heterogeneity of individual cells, the methods used to introduce foreign

DNA, and the lack of intercellular communication systems to coordinate population

behavior.

Having a method to coordinate population wide behavior is necessary if we

wish to create complex systems that can operate in diverse environments and

respond spatially and temporally to extracellular cues. Developing intercellular

communication systems that are orthogonal to innate signaling pathways has

proved somewhat difficult in mammalian cells. To date, a completely orthogonal

extensible, intercellular communication pathways has not been developed that is

robust and can coordinate multicellular behavior for the purpose of tissue

engineering. Also, there have not been any examples of predictable composition of

intracellular genetic circuits in mammalian cells.

A synthetic orthogonal communication system combined with a novel
characterization process can be used to coordinate population behavior and
predictively compose novel intracellular genetic circuits to create a foundation
for mammalian synthetic biology.
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The approach described below outlines methods to engineer cell-cell

communication networks and to create a characterization framework for the

predictive composition of genetic circuits. This approach was used to construct and

test 4 different communication systems, characterize 3 transcription factors, and

test 6 different transcriptional cascades. The ability to coordinate population

behavior in mammalian cells and design and predictively engineer genetic circuits

will create a foundation for the development of autonomously regulated tissues and

a myriad of other applications.

1.2. Approach and Summary of Contributions

A major thrust of synthetic biology has been on developing modular libraries

of parts with well-characterized operations. A direct result of having such libraries

is being able to combine these parts in novel architectures to carry out complex

logic functions. Synthetic biology in mammalian cells has the potential for direct

applications in humans but lacks the necessary development of tools and paradigms

required to engineer mammalian synthetic systems.

The better understood part libraries have thus far been composed of

transcription factors that directly regulate the expression of one or more proteins at

the transcriptional level. A large amount of work has gone into creating libraries of

orthogonal transcription factors in prokaryotes (Zinc Finger proteins in the Collins

lab, TetR homologs in the Voigt lab) [108,109] . Also, numerous tools have been

developed along these lines to help synthetic biologists quickly and
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combinatorically create large libraries of parts and components for prokaryotes (i.e.

Bio Bricks, BglBricks, Golden Gate, Gibson etc...)[7, 8].

Engineering complex systems becomes intractable without a fundamental

infrastructure. Mammalian synthetic biology is no exception; unfortunately, it does

not have a standard parts library yet. Several standard prokaryotic parts libraries

exist each with their own limitations, but they provide a framework on which to

build upon. A quick efficient method is needed that can create large combinatorial

libraries of promoter-gene pairs for use in mammalian systems. These libraries of

parts also need a well-defined method of characterization in order to be used in

novel networks and circuits.

Another challenge when working with mammalian cells is our inability to

control large multicellular systems with precise spatio-temporal control. Although

independently operating engineered cells can perform tasks of varying complexity,

more sophisticated coordinated tasks are possible with populations of

communicating cells. However, a number of challenges confront the successful

development of intercellular signaling components and the utilization of these

components to form multicellular systems. When a new signaling pathway is

initially incorporated into a host, signal synthesis and response elements often

require considerable modification for proper function. Furthermore, once a

functional set of devices is constructed to enable intercellular communication, these

communication devices must be interfaced with intracellular signal processing

modules that determine how the cell responds to the intercellular messages

received [1].
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1.2.1. DNA Part Library

As part of my thesis, I supported the development of an infrastructure for

mammalian part construction. In short, I constructed and tested over 70 plasmids

for 'part' libraries and expanded the construction paradigm from a two part system

to include a third part, a 3' UTR. I have also contributed over 300 promoter-gene

pairs to our expression library. The new construction paradigm will allow for the

quick generation of a part and component library similar to what has been seen in

prokaryotes. It is dependent on Gateway@ technology from Invitrogen and Gibson

assembly [8]. Gateway@ is an in vitro recombination based method of cloning that

has extremely high efficiencies. There is a library of promoters and a similar library

of genes. Any promoter can be combined with any gene to create a promoter-gene

pair that can be directly expressed in mammalian cells. The first stage of

construction creates a promoter-gene pair, or expression vector, and these vectors

can also be combined with other expression vectors to create large genetic circuits

contained on a single plasmid. The second stage construction involves using Gibson

assembly with a dedicated region of 40bp overhangs on either side of the expression

cassette. Populating these libraries with as many known parts as possible, allows for

characterization and future use in larger more complex systems.

1.2.2. Cell-cell Communication Systems

One of the traits of multi-cellular systems is coordinated cell behavior in a

population. To realize this in a synthetic system, one needs to have a way for the
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cells to communicate with each other in order to synchronize their states or

exchange other information that enables control of a population. Engineering a cell-

cell communication system presents significant challenges. There needs to be the

generation of a signal inside a cell, reliable transmission of the signal across cell

membranes, and recognition and decoding of the signal in the recipients triggering

the appropriate response. Other pre-requisites are that the signal be non-toxic, have

a reasonable half-life that ensures its stable production and detection, and that the

signal does not have crosstalk with other endogenous pathways[1].

I initially tried engineering a cell-cell communication system based on acyl-

homoserine lactone (AHL) that had promising results from a previous graduate

student[1]. I tried implementing some improvements that should have produced the

desired behavior, but unfortunately this system did not yield any fruitful results.

Based on my experience in the lab with lenti virus particle production, I sought to

engineer a virus-like-particle (VLP) based communication system that would carry

any reasonably sized protein inside a protected particle. Cell type specific targeting

could be achieved by pseudotyping the virus with various membrane receptors that

would make it selectively infect certain cells. The immunological concerns combined

with other challenges discussed in chapter 4 deterred continued effort along this

path.

Another group had developed an intercellular communication system based

on the TEV (tobacco etch virus) protease. It was initially used in conjunction with

endogenous pathways to produce novel actuation from existing signals [9]. The TEV

system works by anchoring a transcription factor (TF) to the membrane and
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selectively cleaving it with the TEV protease to activate or repress transcription. Dr.

Patrick Guye and myself worked on developing an orthogonal version of this

communication system with promising preliminary results.

I also engineered a two-component system that demonstrated promising

preliminary results. This system is based on PhoB, a transcription factor found in

prokaryotes, that is combined with the signaling network of Arabidopsis thaliana

and responds to the signaling molecule IP (isopentenyl adenine) [10]. A sender cell

contains the IP synthase and the receiver cells contain a membrane bound receptor

for IP, AHK4, a phospho-transferase, AHP3, and the transcription factor PhoB that

regulates expression based on its phosphorylation state. Once IP binds AHK4, a

phospho relay system would be activated ending in transcription from the PhoB

cognate promoter.

1.2.3. Characterization Framework

Synthetic biology creates novel circuits from existing parts to solve

important biological problems. A good characterization system does not yet exist

that can produce predictable behavior of parts in novel contexts. I have participated

in developing a characterization framework to elucidate the input/output

relationship (also called a transfer function) for each part. The information obtained

from such characterizations would be used to modularly compose circuits

independent of the part original characterization circuit. The characterization

method is able to garner an input-output relationship from a transcription factor
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that is extensible over an entire library of parts. These parts are sufficiently

characterized for their use in predictable engineering of novel genetic circuits.

1.2.4. Predictive composition

A major thrust of synthetic biology has been the predictive design of

engineered circuits from well-characterized parts; similar to what has been seen in

the electronics industry. However, the goal of quantitative predictive engineering of

biological circuits has not previously been achieved in mammalian cells. High

quality characterization data combined with a tight coupling to high-level design

tools, developed during the TASBE (A Tool-Chain to Accelerate Synthetic Biological

Engineering) project [110], has allowed us to achieve this long sought after goal. I

have characterized 3 biological parts using an innovative characterization

framework described previously. I also created 6 different genetic transcriptional

cascades based on these 3 parts to verify our quantitative predictive capabilities.

Predictions with <1.6 fold mean squared error have been achieved.

1.3. Thesis Outline

In the remainder of the thesis, Chapter 3 discuses the DNA assembly

technology used to create the libraries of parts and circuits. One application of these

foundational technologies (i.e., characterization and cell-cell communication) is the

design of an artificial tissue homeostasis system, described in Chapter 4. Chapter 5

discusses the intercellular communication systems I pursued to coordinate

population level behavior. Chapter 6 presents the contributions towards a
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characterization framework and the quantitative predictive capabilities achieved

from this novel method. Finally Chapter 7 looks at the future of the exciting field of

synthetic biology and presents a few applications that can be pursued based on

efforts and results found in this thesis.

Chapter1 11



Chapter 2

2. Background and Significance

Mammalian synthetic biology has made great progress in recent years. Most

efforts were seen in replicating the accomplishments achieved in lower eukaryotes

and prokaryotes [1,9,10,11,16,23,24]. However, these successes should not be

diminished because of their previous accomplishment in lower organisms.

Mammalian cells present new and difficult challenges that must be overcome in

order to attain comparable results to these lower organisms. The increased

complexity and compartmentalization of mammalian cells into organelles presents a

further obstacle, as proteins introduced must be trafficked to the appropriate target

sites for proper functionality unlike the bacterium where the cytoplasm is a bag of

enzymes, proteins and DNA which interact with one another through probabilistic

collisions and mutual attractions [26]. For example, in mammalian cells, DNA

binding proteins need to be targeted to the nucleus. Also, owing to the complexity of

the mammalian transcription machinery, activation and repression domains may

need to be fused to such DNA binding proteins without compromising the

functionality of their native domains, to ensure transcriptional activation and

repression. These are but a few of the complications that need to be considered

when engineering circuits in mammalian cells[1].
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2.1. Engineering and characterization efforts

Some of the earliest efforts in eukaryotic cells were to re-create simple

systems from lower organism such as synthetic cascades, toggle switches, and

oscillators. Kramer et al. in 2003[11], created a three-stage cascade similar to one

created in bacteria by Hooshangi et al. [5]. They are similar in that they are both

three-stage cascades, but the one in mammalian cells is composed of activators

where as the bacterial one is composed of repressors. In the mammalian cascade

they were able to tune the output by repressing any of the activators with small

molecule inhibitors. By disrupting the cascade at different places they were able to

precisely tune the behavior of the output through the degree of leaky expression

that carried through the cascade [11].

Some of the earliest efforts in bacteria were seen by the creation of genetic

toggle switches that operated through cross repression [3]. A similar epigenetic

toggle switch in mammalian cells was created by Kramer et al. 2004b in which a

DBD (DNA binding domain) was fused to a KRAB (kruppel associated box) domain

[12] and through cross repression created a toggle switch memory element[13]. The

toggle switch consisted of PIP-KRAB and E-KRAB both cross-repressing each other.

The system was switchable by the addition of a small molecule inducer that

repressed its cognate repressor and allowed expression of the other arm of the

memory element.

Oscillators are ubiquitous in natural systems. Cell cycle regulation and

circadian rhythms are just some functions governed by consistent robust oscillators.
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Most efforts to understand natural oscillators are seen in reverse engineering efforts

to determine functional importance of various elements [14]. Synthetic biology aims

to forward engineer systems and allows for in depth understanding of the systems

created. One of the first and simplest oscillators constructed was the Goodwin

oscillator where the expression of a repressor stopped its own production [15]. A

more complex oscillator was engineered by Elowitz et al, called the "repressillator".

It consisted of three repressors where each acted on its successor and created a

closed loop of repression [4].

The next logical step for oscillator construction was to include not only

negative feedback but also have positive feedback. The combination of positive and

negative feedback systems is routinely seen in endogenous oscillators and has been

shown to increase the stability and robustness of oscillations. Hasty et al. created

such a system in bacteria that was fast, robust, and tunable and included both

positive and negative feedback [16]. One of the first mammalian oscillators also

contained both positive and negative feedback and was created by Fussenager et al.

[17]. Its network topology was very similar to the Hasty oscillator.

Of all these devices that were created and characterized, none were done so

in a predictive manner. Each oscillator mentioned above had an accompanying

computer model, however, the models were not used for quantitative predictions.

The computer models and simulations were able to provide qualitative information

about the device (i.e. which parts were more sensitive to change and which were

more robust) and this helped determine areas to focus their engineering efforts.

The oscillators in the end were developed through years of painstaking trial-and-
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error and researchers' intuition. A long-standing goal of synthetic biology is to

rapidly engineer new regulatory circuits from simpler regulatory elements

whose properties have previously been characterized individually [101].

There have been numerous efforts at characterization but they have not yet

yielded a generalizable method to characterize an individual part such that a

quantitative prediction can be made from the connection of numerous individual

parts. The Collins lab characterized a large number of variable strength promoters

but only for maximum and minimum expression levels and never obtained the full

transfer curve [20]. Similarly Imperial CSynBI does not obtain a full dynamic range

for their characterized parts. Both the BioBricks specification sheet and the BIOFAB

project collects data across a full dynamic range, however, the data collected is of

the population averages and does not give information about the individual cells or

cell-to-cell variability [18] [19]. Elowitz was able to predict an integrated feedback

circuit but it is uncertain if this method generalizable to non-integrated circuits

without feedback [21]. Prior work by Weiss did not collect single cell information

and did not calculate the transfer functions on a per plasmid copy basis and was

unable to make quantitative predictions [5].

A recent publication tried to achieve prediction based composition of genetic

circuits. Two repressors quantitatively characterized and then connected together

to create an 'AND' gate. Quantitative characterization of the 'AND' and 'NOT' allowed

predictable composition of these two parts [22]. However, this prediction

methodology still relies on parameter estimation and fitting and determining

biochemical rate constants. As soon as the context of the system becomes more
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complicated it is unclear if their prediction method will hold, where as the

prediction method described later in this thesis proposes a method that implicitly

accounts for contextual changes by phenotypically characterization and

composition of new genetic circuits.

2.2. Cell-cell Communication systems

Coordinated behavior of a population of cells allows for complicated logic

functions that are not possible without cell-cell communication. Mammalian cells

have numerous mechanisms to relay information about their surrounding

environment inside the cell. Many of these mechanisms are specialized and have

very particular responses associated with them. In order to implement new

communication systems in mammalian cells one would need to introduce

completely new orthogonal systems or reappropriate endogenous pathways for

new functionality, or some combination of the two.

One of the first systems introduced into mammalian cells used acetaldehyde

as the communication signal [23]. Sender cells comprised an alcohol dehydrogenase

that converted traces of spiked ethanol into acetaldehyde. Acetaldehyde has a

boiling point of 21*C and is therefore in its gaseous form at 37'C in which the

experiment was carried out. The signal would diffuse to the receiver cells through

the air and turn on expression of a reporter gene. The receiver cells were able to

detect the signal through an acetaldehyde-inducible expression system that used

AlcR to activate a chimeric promoter in the presence of acetaldehyde[24].
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Weber et al. were able to engineer a pathway that did not use endogenous

receptors or reporter proteins. Their senders however, used a protein derived from

the liver. Another communication system that was purported into mammalian cells

was based on the Tobacco Etch Virus (TEV) protease. Barnea et al. knew that p-

arrestin gets recruited to GPCR's (G-protein coupled receptors) in order to down

regulate a GPCR response after activation. In order to redirect the response of a

GPCR, a transcription factor (TF) was fused to the cytoplasmic tail of the GPCR with

a TEV cleavage site in between. The TEV protease was also fused to the P-arrestin so

that when the GPCR is activated the TEV protease will be recruited and release the

TF from the membrane to enter the nucleus and activate transcription [9]. Barnea et

al. similarly used a receptor tyrosine kinases (RTK) and fused the TEV protease to

the SH2 domain protein that gets recruited upon activation of the RTK to release a

TF to the nucleus. This is the basis for one of the communication systems I am

working on and discuss later in my thesis. In Barnea's system there is cross talk

since they are using an endogenous pathway to activate their signal. In my design it

is completely orthogonal.

Chen and Weiss et al. had previously engineered a histidine kinase (HKs) or

two-component system. A two-component system from plants was engineered to

function in yeast creating a novel communication system in eukaryotes [25]. Sairam

Subramanian tried to implement this same system in mammalian cells but was

unable to get the receivers cells to function [1].

Antunes et al. was able to take a bacterial HK and implement it in plant cells

[10]. A bacterial TF PhoB was fused to a VP64 domain and was used in conjunction
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with a specifically created minimal promoter with PhoB binding sites upstream.

When PhoBVP64 bound the promoter it activated the reporter gene. Some

promiscuity was discovered in HK phosphorylation insofar as activation of a plant

hormone pathway phosphorylated PhoB. Localization differences of PhoBVP64

were seen upon activation of AHK4(plant receptor that responds to

isopentenyladenine (IP) and trans-zeatin). The change in localization was used to

create a reporter system that responded to the addition of a small molecule, trans-

zeatin [10]. This system seemed attractive to purport to mammalian cells since

Sairam Subramanian had already created mammalian cells that could produce IP[1].

The use of the PhoB system could possibly overcome the problems seen in previous

attempts at creating a mammalian two-component system (discussed in more detail

in chapter 5). This system also adapted to detect other ligands, which would prove

useful for extensibility of this design [26].

Efforts at developing an orthogonal communication system in mammalian

cells have been met with much resistance. The existing systems have evolved to

carry out a specific function and the more that is understood about endogenous

pathways, the more likely it is that synthetic biologists can engineer a system to

have the capabilities necessary to coordinate population level control.
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Chapter 3

3. DNA assembly Technology

Mammalian synthetic biology is less developed than its prokaryotic

counterpart, such that there are several bacterial standards (i.e. BioBrick, BglBrick,

etc...)[7, 27]for assembling different modular components, however, in mammalian

cells there is no standard or easy way to create these modules. This problem affects

the speed, versatility, and expandability of mammalian synthetic biology. We sought

to develop a standard to allow us to use principles of synthetic biology for the

creation of mammalian parts. In bacterial assembly methods, standard cloning

techniques would utilize enzymes that were not commonly found in prokaryotic

proteins. But often in mammalian systems the constructs are so large and varied,

one can usually find one of these restriction sites in the genes of interest. The

techniques developed in the Weiss lab can overcome the shortcomings in systems

designed without regard for future expansion into mammalian cells.

DNA assembly technology has recently seen a large gain in technical

achievement through the advent of such techniques as golden gate and Gibson

assembly. Initially, the main technique for creating mammalian genetic parts was

still standard restriction enzyme cloning. Through painstaking efforts to build

genetic constructs we realized that in order to build large modular mammalian

genetic circuits quickly and efficiently, a new DNA assembly platform needed to be

created. Two people in my lab, Yinqing Li and Patrick Guye, started to develop a new
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system that combines Gateway@ technology (Invitrogen; Carlsbad, CA) and Gibson

assembly[8].

3.1. Gateway@ Cloning

The Gateway@ system from Invitrogen relies on homologous recombination.

The entry vectors are created by first PCRing the gene or promoter of interest and

adding unique flanking regions called attB sites. These PCR products can be used for

homologous recombination in a BP reaction. The BP clonase enzyme recognizes attB

and attP sites and performs the recombination event to create an entry vector

(Figure 1). Once entry vectors have been created and sequenced it is extremely

unlikely for any mutations to occur to the gene parts because all the following steps

rely on homologous recombination; allowing for quick and cheap validation of

successful construction of expression vectors using restriction mapping.

Once the library of entry vectors is created the next step is to create an

expression vector. An expression vector is a combination of two or more entry

vectors and a mammalian expression backbone or destination vector. A similar

protocol to entry vector creation is used when making expression vectors. The

difference is that numerous parts will be combined together to create a functional

expression unit. In one reaction a destination vector and up to four entry vectors

can be combined to create an expression vector (Figure la,b).
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3.1.1. Gateway@ Entry vectors

The Gateway@ system from Invitrogen (Carlsbad, CA) was used to create the

library of parts. This system relies on homologous recombination of sites that vary

from 20-250bp in length making it extremely unlikely to find these sequences in any

gene used. This system has 3 levels of constructs used to make the final genetic

module. The first level is the donor vector, the backbone used for the library of parts

(promoters and genes). There is a donor vector for each element (i.e. promoter,

gene, 3'UTR). Once a homologous recombination event is performed in vitro

between a donor vector and either a promoter, gene, or 3' UTR (which normally was

PCR'd), a entry vector is created. These entry vectors make the library of basic parts

used in combination with each other to create functional parts (The "entry clones"

level in Figure 1).

This system has 3 libraries of parts, one is a library of promoters, the second,

a library of genes, and the third is a library of 3' un-translated regions (UTR's) such

as micro RNAs or their binding sequence and poly adenylation (polyA) sequences.

The system was initially designed with only promoters and genes by Li and Guye,

and I later expanded it to include a third entry vector library of 3'UTR's.

3.1.2. Gateway@ Destination vectors

The other component to the Gateway@ system is the destination vectors.

These are the final backbones for the Gateway@ system and the location in which a

promoter-gene pair will end up. The initial destination vectors designed had the
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components necessary to create lenti virus particles for integration into mammalian

genomes. Once the library of parts is created, one can combine any promoter, gene,

and 3'UTR with any destination vector to create a novel expression vector. This is

the second level of the 3-part assembly scheme. A schematic of the process can be

seen in Figure 1b. This provides the versatility and interchangeability to combine

any promoter with any gene, and the speed necessary to test many different

combinations of parts. This also allows for the creation of huge libraries of parts

with the flexibility to change the destination vector for use in different situations

(i.e. instead of lenti-viruses one can use a different method for integration and the

only change was creating a new destination vector).
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PCR fragments
BP reaction

pDONR Vectors

Entry Clones

LR reaction

Destination Vector

Expression Clone

PCR fragments

pDONR Vectors

3

BP reaction

Entry Clones

LR reaction

Destination Vector

Expression Clone

Figure 1 Gateway Assembly
A) The gateway method to create an expression vector starting from PCR fragments of the desired parts.
This shows a two-part gateway reaction that utilizes two entry vectors. B) This shows a gateway reaction
that involves 3 entry vectors and is called multi-site gateway cloning. Up to a 4-way multisite cloning
strategy can be used with decent efficiency. (Figure adapted from Invitrogen; Carlsbad, CA)
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Basic Assembly Module

Figure 2 Assembly System Developed in the Weiss Lab[281
A) The promoter and gene entry vectors along with the destination and important features added to the
specific destination vectors used. Also shows which L and R sites used for recombination. Seq n and n+1
represent 40bp overhangs used for Gibson assembly at a later stage in assembly. Insulators are used to
transcriptionally isolate each expression unit from each other. The ccdb and CmR are used for counter
selection after performing an LR reaction and the Poly A. sequence is used for mRNA stability. B) An LR
reaction with our entry vectors and the resultant expression vector [Figure courtesy of Patrick Guye and
Yinqing Li].
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3.1.3. Gibson Assembly

This system provided a lot of versatility and speed although the lenti viral

vectors restricted the size of the circuit to be integrated to one promoter-gene pair

per virus. In order to create most imagined mammalian circuits, one would need to

make several rounds of infection to test one configuration. The amount of time

needed per round of infection and selection is approximately 2 weeks. It would take

5-6 weeks to test out a three promoter-gene pair circuit. All the circuits that we are

interested in are much larger than 3 promoter-gene pairs and would therefore

require several months to a year just to test one configuration. If any part needed to

be altered, one would have to start from the beginning. Also, cells that were exposed

to multiple rounds of infection had reduced fitness from all the random integrations.

Using lenti-viruses as a delivery vector seemed intractable for our purposes.

Integrating DNA permanently into mammalian cells is desirable for long-

term experiments as well as to simplify the characterization models for simple

circuits. Since lenti viruses seemed impractical for this purpose a new method for

integrating large genetic cassettes was developed. For this purpose, we turned to an

isothermal single step reaction using enzymatic assembly of multiple pieces of DNA

(called from here on as 'Gibson assembly') (Figure 4). The Gibson method allowed

for the construction of very large genetic circuits on a single plasmid. The assembly

method can be seen in Figure 3. It uses regions of DNA that are 40bp in length that

are homologous to only one other identical region on another expression vector. By

using these unique DNA regions DNA can be combined in a specific order. The
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destination vector used to create expression vectors are unique in that they contain

two 'Gibson sites'. Each Gibson site on a destination vector matches one other

Gibson site on another destination vector. This creates an ordered assembly of the

expression vectors (Figure 3ab)
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Digest + Gibson
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Figure 3 Gibson Assembly Developed in Weiss Lab
A) Depicts a standard expression module containing Gibson specific 40bp overhangs. Step 1 is to digest
with I-Scel exposing the overhangs so that congruent overhangs can be sewn together. B) A schematic
representation of the one pot reaction where numerous expression cassettes are combined into one
carrier vector to create a large circuit. C) The resultant large circuit contained on a single plasmid
[Figure courtesy of Patrick Guye and Yinqing Li]
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T5 Exonuclease Chews Back
Transcription unit Overlapping Sequence

5' overlap sequences anneal

Transcription unit Overlapping Sequence

Overlapping Sequence

mmee.

Transcription unit

Polymerase repairs matched double stranded DNA

Transcription unit

e *

Overlapping Sequence Transcription unit

as*

Ligase repairs nick left by polymerase

Transcription unit

*~ -
Overlapping Sequence Transcription unit

U 0*0

j I One pot isothermal reaction

Figure 4 Gibson Assembly Protocol
The first step in the gibson reaction is to expose an end of DNA such that a T5 exonuclease can act. This is
done in our lab through restriction digestion, but if one starts with a PCR product the end is already
exposed. Once the T5 has exposed the homologous regions to be connected, they anneal to one another
and the polymerase and ligase fill in and repair the missing DNA. This occurs in a one pot isothermal
reaction Figure adapted from [8].
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3.2. Discussion

The new assembly method based on Gateway and Gibson protocols allows

for the modular assembly of very large circuits, containing up to 14 promoter gene

pairs at the present (>60kbp). A hierarchical method of Gibson assembly was also

created and was shown to assemble much larger circuits. To use the hierarchical

method of assembly, one must first create a circuit using a new carrier vector that

contains additional Gibson sites that can be exposed after its construction. The large

(but still incomplete) circuit can then be digested with I-Scel like the other

expression units and combined in the same fasion as the normal assembly method.

The difference in this case is that one "expression unit" contains several other

expression units. A schematic of the hierarchical assembly process can be seen in

Figure 5.

In the development of this this assembly technology I have contributed by

adding over 70 vectors to the promoter and gene libraries in a very short time frame

compared to traditional methods. I have also constructed and tested over 300

hundred expression vectors that can be used for Gibson assembly or directly for

transfection experiments. I have also created a third library for 3'UTRs and a new

set of destination vectors that can accommodate three-entry-vector gateway

assembly. I have helped in the development and testing of this very helpful DNA

assembly technology.

These DNA assembly methods have allowed significant progress to be made

towards building and testing various circuits in mammalian cells that would not

have been possible otherwise. By using this DNA assembly method, the burden has
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shifted from the bench top and creating the physical DNA to the researcher, deciding

what DNA he/she wishes to make. By helping develop these tools and libraries of

parts I was able to create and test numerous large genetic circuits in matter of

weeks instead of months and quite possibly years.
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Figure 5 Heirarchical Gibson Assembly
Depicted here is the weiss lab's heirarchical assembly that uses the same Gibson protcol. The only
difference is which carrier vector is used. A) This depicts a circuit created using a different carrier
vector that contained sites to be used in heirarchical assembly. The Gibson sites surrounding this circuit
are used for this purpose B) The large circuit and other smaller expression cassettes can be digested to
expose the 40bp overhangs and combined together in a standard Gibson reaction. C) The final product
is a very large circuit that has been heirararchical assmebled. D) Thus far 14 pieces have been gibson'd
together to form up to ~60kbp circuit. The assembly efficiencies are shown here. [Figure Courtesy of
Patrick Guye and Yinqing Li]

D) 100-

ao-

W-

40-

20-

0-

4A
Qj
C
0

z

0
U

4-
0

o4e-n- CYJ

Chapter 3 31



Chapter 4

4. Artificial Tissue Homeostasis

The ability to engineer large multicellular systems is an important challenge

that face synthetic biologists today. Tissue homeostasis is one example where the

ability to engineer such systems would be beneficial. Tissue homeostasis is the

balance between growth and death. The growth of new cells can come from cells

replicating to form identical copies of itself and from stem cells differentiating into a

predefined cell type. Studying the challenges associated with engineering a tissue

homeostasis system can give invaluable insight into how endogenous systems

perform the same task as well as how to correct natural systems from failure. Mis-

regulation of tissue homeostasis plays an important role in Type I Diabetes.

Current standard treatments for Type I Diabetes include the maintenance of

insulin levels by blood monitoring, diet, and exogenous insulin injections. More

radical treatments include full organ transplants, islet cell transplants or P-cell

transplants [29]. Even when patients are lucky enough to be chosen for an

allogeneic pancreatic organ transplant, they must take immunosuppressants in

order to battle graft vs. host disease [29]. A recent attempt to use islet cell

transplant therapy provided short-lived relief in most patients but the transplanted

p cells subsequently died or ceased to produce insulin in a majority of the initial

successful transplants [30]. Clearly another approach is necessary to alleviate the

problems caused by diabetes and address the root causes of the disease.
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The best possible treatment would be one in which a person's own adult

stem cells are collected, turned into iPS (induce pluripotent Stem) cells, re-

programmed, and reintroduced into the body to relieve the disease state. In this

situation, the correct "program" needs to be developed in order to cure the patient.

Synthetic biology holds the promise in the development of such a program;

engineered artificial tissue homeostasis. This project focuses on engineering an

isogenic population of human embryonic stem cells (hESC) or adult (e.g. iPS) stem

cells that will have the capability to produce a stable population of insulin producing

p cells.

As seen in Figure 6a, the proposed system[101] is very complicated and

contains several stand-alone modules that can be worked on independently of the

others. By replacing different modules of the artificial tissue homeostasis system

one can also relieve other disease states. If instead of pancreatic P cells, one wanted

neuronal cells, all one would have to do is change the differentiation module that

determines cell fate and this system could serve to restore function to damaged

neuronal tissue as a potential cure for Alzheimer's.

In Figure 6a the large system is broken up into modules by the light shading

and boxed regions. The modules outlined consist of an intercellular communication

system that can relay the number of stem cells in the system (cell-cell

communication system I). Another cell-cell communication system (in green) is

used to relay the number of p-cells in the system. The differentiation control circuit

(top right) contains the logic circuit that decides when to have cells

grow/differentiate/quiesce. Once a cell has met certain conditions it will
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differentiate. The differentiation module is seen in the bottom right of Figure 6A.

Also, it might be necessary to include a safety mechanism in the event that a stem

cell re-locates to an undesired location (bottom left).

The differentiation control circuit provides numerous challenges that face

mammalian synthetic biologists. By focusing on this module I am able to work on

several important questions in synthetic biology; Is it possible to engineer a

orthogonal extensible intercellular communication system? Is it possible to

predictively compose large genetic circuits based on prior characterization? What

characterizations are necessary for the predictable composition of circuits? What is

the optimal circuit topology for a robust consistent oscillator in mammalian cells?

Below I enumerate the function and progress of each component in the system I am

working on.
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Figure 6 p-Cell Tissue Homeostasis

A) Depicts the entire tissue homeostasis system proposed to cure type I diabetes. There are 4 modules
that can be worked on Independently and can be Interchanged to perform a different task if necessary.
The "stem cell population control" Is a quorum senseing system to Indicate stem cell population size. The
differentiation control circuit performs the logic computation used to decide to differentiate or not. The
differentiation circuit takes the stem cell to whatever cell type desired with out exogenous cues. The
protective mechanism makes sure that the cells do not cause cancer or relocate to another area. B) The
logic function being performed in this system takes in three inputs and AND's them together. If all three
conditions are met it will flip the toggle switch and cause differentiation to occur. Figure adapted from
[101]
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4.1. Differentiation control circuit

The differentiation control circuit is designed to take in several inputs

(communication signals), perform a logic computation on whether or not the cell

should differentiate into a P cell, and store this decision in a memory element

(toggle switch). The logic circuit that controls differentiation has three specific

conditions that must be met before a cell can differentiate, first, there must be

enough hESCs, second, there must be too few P cells, and third, the input from an

artificial genetic oscillator must be in its "high state". A schematic example of this

decision can be seen in Figure 6b. The two inputs would come from intercellular

communication signals that can be integrated into one cascade through an 'AND'

gate. The control circuit then comprises a cascade, an oscillator and a toggle switch

(yellow, blue and red boxed regions respectively in Figure 6a)

4.1.1. Oscillator

The purpose of the genetic oscillator is to provide symmetry breaking of the

isogenic population. If the entire population of stem cells is receiving the same

information, i.e. there is not enough P cells and enough stem cells, one would expect

that the entire population of stem cells would all decide to turn into P cells at the

same time. If this scenario were to occur the system would collapse and be a

transient non-permanent solution [101]. Nature solves this problem by creating a

niche for stem cells, and cells that are not located in the niche, differentiate. The

oscillator creates an artificial niche by introducing heterogeneity in an isogenic

population. This asynchrony, which arises due to the stochastic variability between
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each cell, creates the heterogeneity. In this situation, the endogenous noise in a

biological system is being used to increase stability of the overall system.

The proposed oscillator design consists of an activator that activates itself

and another activator, which in turn activates a repressor. The repressor represses

the expression of the first activator (Figure 9a). The principles behind the design of

this oscillator come from numerous natural oscillators [102]. It has a positive

feedback loop combined with delayed negative feedback (which is increased by

having a second activator). After modeling the system using a stochastic Gillespie

algorithm, certain design features became apparent for stable oscillations. First,

repression needed to be dominant over self-activation; otherwise the system will

never be in the "low state" (i.e. when activator one is off) [101]. Second, the

dynamics of the repressor needed to be much slower than that of the activators (i.e.

the half life of the repressor needed to be longer than the activator) [101]. This can

be accomplished by fusing decay tags to the ends of the transcription factors to vary

their stability. Clonetech sells several decay tags destabilization domains (DD) that

can control the degree of decay via a small molecule. This way one can test more

thoroughly the effect of differing rates of decay on the oscillations.

A problem arose initially when trying to use the DD tag because the

mechanism by which the DD works is to recruit the proteasome to the protein that

contains the tag and have it degraded. However, the proteins that were tagged with

the DD domain were localized to the nucleus because they are TF with an NLS

domain. The proteasome did not have access to these TF's while they were in the

nucleus and therefore had no effect on their activity or stability. Figure 7a shows
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that shield (the small molecule that reverses the effect of the DD) had no effect on

the downstream expression of EYFP caused by DD-rtTa (the corresponding circuit is

below the graph). This problem was circumvented by attaching an NES (nuclear

export signal) to the C-terminus of the TF's. This provided the protein with the

ability to shuttle back and forth between the nucleus and the cytoplasm and allowed

access to the proteasome for degradation. In Figure 7b shield has a significant effect

on expression once the TF has the NES domain. I have already characterized and

tested several components for the oscillator including: TRE-LacOlOid, DD-rtTa3-

NES-4xFF4, DDg-LacI-NES-mkate, DD-VP16Gal4-NES.

After validating that all these parts work, I transfected the two-stage

oscillator. The circuit diagram can be seen in Figure 8. Three hours after I

transfected the cells with the plasmids, I changed the media to Optimem,

(Invitrogen; Carlsbad, CA) which does not contain phenol red, and added the

inducers. I then took microscope images for the next 48 hours at 15-minute

intervals. Figure 8 shows three time points (Ohrs, 24hrs, 48hrs) for each of the

reporters used in the circuit. The constitutive EBFP2 seems to continually increase

over the 48-hour period. The EYFP and mkate, which report on the activator and

repressor respectively, increase for 24 hours and then level off (and some cells even

seem to decrease). This is highly suggestive that the circuit might oscillate under the

correct conditions. By observing that the EYFP and mkate do not follow the same

pattern of the EBFP2 we can infer that these two elements of the circuit are

interacting with each other and behaving differently than a constitutive reporter

(EBFP2).
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The future work for the oscillator is to combine all these parts onto a single

plasmid via Gibson assembly and integrate the whole circuit into the genome for

testing. Integration into the genome is necessary since the system will need to be

monitored over many days (more than 2 days) and transfection does not provide

the necessary stability of each DNA construct that would be needed for the time

course movie. Single cell tracking software will also need to be developed in order to

analyze the microscopy images to determine if oscillations are taking place.
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Figure 7 Destabilization Domain and Nuclear Export Signal
A) The graph shows the 8 different combinations of inducers for the system and their outputs. The
legend shows the order in which the data is graphed. The red arrows indicate the places in which the
only difference Is +/- Shield. To determine if the DD domain is working one would compare the pairs
indicated by red arrows. Below the graph is a circuit topology for this experiment. B) This graph shows
the efficacy of the DD domain once an NES has been fused to a transcription factor. Here there is only two
inputs since DD-rtTa3-NES is constitutive. The red arrow again indicates the pair in which only shield is
different.
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Figure 8 Oscillator Movie
This Figure shows a time course movie of a transfection experiment of the above circuit. The cells were
cultured in Dox. at a concentration of 200nM and Shield at a concentration of 0.1lnM for 2 days. Images
were taken every 15 minutes. The EBFP2 appears to Increase in brightness from 24-48 where as the
EYFP and mkate appear to level off and decrease a little. This is highly suggestive that the cells might be
oscillating.
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4.1.2. Toggle Switch

The design of the toggle switch is a simple cross-repressional system in

which one repressor inhibits the production of the other, similar to Collins' toggle

switch in E coli [3]. Previously, Sairam had constructed and tested a toggle switch

[1], which was composed of TetR and Lad both fused to KRAB (kruppel-associated

box) repression domains. This system worked in human embryonic kidney cells

(HEK293FT) but did not work in murine ES cells (mES) because of endogenous gata

factors which bound to a part of the Tet operator site inevitably causing the system

to always switch into a state in which TetRKRAB was high [31, 32]. Also the

dynamics of the system were not ideal because the switching time needed to change

from one state to the other was 6 days. The hypothesis for the slow switching time is

that the KRAB domain caused methylation and deacetylation of the histones and the

cell is slow to recover from these epigenetic changes.

To improve the shortcomings of the previous toggle switch a new toggle

switch based on the same design principles of strong but equal cross-repression is

being built (Figure 9b). But, if we want to use any two repressors, which may not

have small molecule inducers, then we need a method for switching from one state

to the other. The approach used to solve this issue is depicted in Figure 9c. Two

inducible activators that each express one of the repressors involved in the memory

element are placed before the toggle in order to switch the states. To switch the

state of the system one would add the corresponding small molecule to activate the

desired arm. Instead of repression domains, many different repressors are being

characterized to determine which ones would be best suited to be used together

Chapter 4 42



based on three criteria; high fold repression, increased stability, and fast switching

time. Several parts have already been characterized and numerous others are in

progress of being characterized. A large library of TALER (TAL effector repressor)

proteins are currently being constructed and will soon be characterized. Several

TALER TF's have already been characterized and show promising data for their use

in this genetic architecture (data shown in Chapter 5). There is also ongoing work to

create and characterize a library of TetR homologs found in bacteria to be used in

mammalian cells. One of these homologs has already been tested and appears to

show a 60-fold repression change (data shown and discussed in chapter 5).

4.1.3. Transcriptional Cascade

The cascade consists of an inducible promoter that activates the expression

of a repressor. This repressor in turn shuts off the expression of another repressor

(Figure 9c). This describes a two-stage cascade. In the differentiation control circuit,

each level of the cascade is connected to one state of the toggle switch. Activation of

the cascade chooses which state of the toggle is going to be expressed and therefore

which state the cell is in (Figure6a). The cascade is described in more detail in

chapter 5 and is the basis for the design and implementation of predictive

composition of genetic components.
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Figure 9 Cascade, Oscillator, Toggle
A) A genetic representation of an oscillator for the cell proJect.B) A schematic of a switchable toggle or
RS latch memmory element. C) A genetic circuit diagram of a proposed cascade for use in the P cell
project.
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4.2. Discussion

In this chapter, I have presented the overall system design for artificial tissue

homeostasis with regards to replacement of P cells in the treatment of Type I

diabetes. I have concentrated my work on the differentiation control circuit and

presented several designs for the components of this logic circuit. Ten different

cascades have been built and verified (explained in more detail in chapter 6). A new

cross-repressional toggle switch was presented for use in this particular context to

hold the state of the cell. The oscillator has been stochastically modeled and shown

to be functional if certain requirements are met [101]. Several genetic parts have

been constructed and tested for use in the oscillator. I have transfected and tested a

version of the oscillator (Figure 8) and it is highly suggestive that oscillations could

occur under the right conditions. The oscillator is currently being integrated into

mammalian cells for microscopy verification over a longer time scale. The

integration will also hopefully reduce the cell-to-cell variability.
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Chapter 5

5. Engineered Mammalian Cell-Cell Communication

Developing tissues and organs through out development are governed by a

complex interplay of intracellular and extracellular signals that are integrated by

endogenous genetic circuits to produce a functional organism with all the right parts

[103,104]. As scientists elucidate different aspects of these processes they are able

to recapitulate them in controlled laboratory environments. Through a combination

of artificial scaffolds and the addition of exogenous extracellular signals they have

been able to recreate certain tissues and organ systems for use in medical therapies.

They have even been able to recapitulate the growth of specific tissues in vivo in

specially created microenvironments [33].

The ideal situation would be to engineer a population of stem cells with a

genetic program to differentiate and pattern themselves into a tissue without the

use of artificial scaffolds and exogenous signals. This chapter of my thesis

enumerates the different strategies that I have explored to create artificial inter-

cellular signaling systems.

5.1.1. AHL Communication

There are many natural cell-cell communication systems in biological

systems. Even the relatively simple organisms such as bacteria have developed cell-
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cell communication systems termed "quorum sensing (QS) systems" [105]. They are

able to communicate the size of their own population and change their behavior

accordingly (i.e. creating biofilms) [106]. A requirement of the components in our

system for engineered tissue formation is that they are orthogonal with endogenous

processes. For the cell-cell communication system this means that we either develop

a completely new mechanism or pathway for communication or try to implement a

different system from another organism that will have minimal cross talk with our

natural system.

From earlier efforts researchers have had success translocating acyl-

homoserine-lactone(AHL) signaling system from Vibriofisheri into E. coli [34]. Vibrio

fisheri are a marine organism that live symbiotically with other marine dwelling

organisms and produce light upon certain stimuli. The lux operon is responsible for

producing and sensing the QS molecule 3-oxo-C6-homoserine-lactone (30C6HSL) as

well as responding to different concentrations of 30C6HSL by producing light under

the proper conditions [35, 36]. The way the system works is there is a gene LuxI that

is a synthase that produces 30C6HSL [37, 38]. Another gene, LuxR, responds to this

small molecule through a conformational change that allows it to bind the Lux

operator and activate transcription [37-40].

Previous efforts were made to try to implement this system in mammalian

cells. The system was designed to be a sender-receiver circuit to recapitulate the

behavior seen in bacteria. Initially, only LuxI and mammalian optimized LuxR fused

to an activation domain VP16 combined with a minimal promoter with 7 Lux

operators was constructed and tested. The mammalian and bacterial type II fatty
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acid synthesis (FAS) pathways appear to be similar enough such that the precursor

metabolites would be available for Luxi to produce enough 30C6HSL for detection

with LuxR [34]. The initial system design was unable to produce the desired

behavior. The receiver or detection component of the system, LuxR, was re-

engineered to use a hyper-sensitive version fused to a new activation domain that

was mammalian optimized and had the addition of a nuclear localization signal

(NLS), p65H4LuxRFmNLS (Figure 10a&b) [1, 41, 42]. The receiver worked upon

addition of exogenous AHL and was able to detect 100nM AHL concentrations

(Figure 10c). Unfortunately, the senders were not able to produce enough AHL to

create a functional sender-receiver system. It was theorized that the problem was in

the availability of intermediary metabolites from the fatty acid synthesis (FAS)

system in mammalian cells for the production of AHL by LuxI [43]. The FAS-II

system in bacteria is much more inefficient compared to mammalian cells.

Mammalian cells use a single FAS gene that encodes a multi-domain enzyme that

catalyzes all steps of fatty acid synthesis, but bacteria have individual enzymes to

catalyze each part of the reaction (Figure 11)[34, 43]. In a first attempt, pinocytotic

vesicles were used to introduce the metabolites needed by LuxI to produce AHL,

namely, s-adenosyl methionine (SAM) [44] and hexanoic acid. This again did not

yield any detectable concentrations of AHL. Since these metabolites short half-lives'

might have been a reason for the lack of production of AHL, the next step was to

endogenously increase production of SAM and acyl carrier protein (ACP). Lenti viral

constructs that encode the synthase of SAM and the gene for ACP were used but one

still added exogenous hexanoic acid to the system [45]. This was unable to produce

Chapter 5 48



levels of AHL that were detectable by "bacterial sensors" that are able to sense

biologically relevant levels of AHL. The "bacterial sensor" was E. coli that had been

transformed with the LuxR gene and the promoter pLux, which controlled

expression of EGFP. The bacteria were able to detect as low as 2nM AHL. (Figure

12b). The next course of action was to reconstitute part of the bacterial FAS-II

system in mammalian cells in order to create available intermediate metabolites for

LuxI to use to make 30C6HSL. Since there were so many components it was unlikely

through co-transfection and/or co-infection that a large enough percentage of cells

would contain the required 9 genes.

In order to solve this issue, new constructs were created using small 2A

domains from different viruses that enable multi cistronic expression of genes from

a single promoter [46]. This would allow for the use of 3 constructs instead of 9.

However, this also did not yield any positive results. The literature had one possible

explanation; lactone rings are degraded quite rapidly in mammalian cells and cell

culture media [47]. The half-life of AHL in the normal media was only 2.5 hours

(Figure 13). Without knowing the reason for the lack of production of AHL as well as

AHL's short half-life in a mammalian context future work would be needed to

employ this system. The numerous open questions led to the exploration of different

types of communication systems that might be better suited in mammalian cells.

The first system re-engineered was one that had already been successful in

transmitting messages from one mammalian cell to another, viruses!
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Figure 10 Mammalian LuxR
A)The genetic representation of the constructs tested [1]. B) the results of testing the response of each
new LuxR variant with exogenous AHL of 1OOuM [1]. C) The mammalian receiver desing of the entire
system tested. And the dosage response of the best LuxR construct from B. [1] (This figure is adapted
from [1] for explanatory purposes)
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Figure 11 Bacterial and mammalian FAS I pathways
A) Bacterial FAS II system. The inset shows a time course for the bacterial sender receiver system for
AHL communication [1, 34]. B) Mammalian FAS II system [43] C) The multi domain mammalian protein
that carrys out the function of the mammalian FAS system. D) Mass spectrometry levels of SAM produced
upon addition of MAT genes to increase pre cursor metabolites for production of AHL [1]. (This figure is
adapted from [1] for explanatory purposes)
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5.1.2. Virus Based Communication

After attempting to engineer the AHL communication system from bacteria

in mammalian cells, I attempted to implement a system based on virus production

and infection. Viruses have already developed a very efficient way of delivering

information from one cell to another. Lenti virus particle production is a well

understood method having been used for numerous years [107]. This seemed like

an ideal system for "proof-of-concept" for this new communication system.

A TF was fused to an endogenous protein of HIV that gets incorporated into

the inactive HIV particle. A protein involved in infectivity of HIV-1 called Nef is

incorporated into the HIV viral particle on the order of 10 nef molecules per virion.

Recently a lab discovered a mutant of nef called nef7. A variant was found to have

over a 100-fold increase of incorporation into the virus and had fused EGFP and

thymidine kinase (TK) to nef7 and shown transport from sender cells to receiver

cells. Cell death was shown to be induced by the delivery of nef7-thymidine-kinase

viral constructs in the presence of ganciclovir [48]. This system seemed attractive to

be used to transport a transcription factor, such as reverse tetracycline trans

activator (rtTa), instead of EGFP or TK.

The first step was to recreate the experiment done by Peretti et al. A Nef7-

EGFP fusion was created and transfected into mammalian cells. Images were taken

with the Leica confocal microscope and they had the ability to visualize the

individual viral particles containing EGFP adsorbed on the surface of cells (Figure

14a).
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Figure 12 Mammalian AHL Senders
A) Schematic design of the mammalian AHL sender. It has multiple genes responsible for producing AHL.
To test the sender separate from the mammalian receiver to debug the system a bacterial receiver was
used and grown in mammalian media. B) The dosage response of the bacterial receiver from exogenous
AHL. C) A western Blot for Nef7-XX constucts where XX represents Nef7's cargo. Only Nef7-EGFP was
seen in the wester blot. Also a control for the Capsid protein of HIV on the right.
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After several attempts to create viral particles that showed an effect on

receiver cells (HEK 293 cells that were infected with TRE-EGFP), it seemed rtTa was

unable to make it into the nucleus of receiver cells to activate transcription of TRE-

EGFP. There were several possible points of failure: 1) Nef7-rtTa fusion did not yield

a protein that was successfully incorporated into viral particles. 2) If Nef7-rtTa was

being incorporated then it was not making it to the nucleus, possibly because of the

myristoylation sequence attached to the N terminus of Nef7 (the purpose of this

myristoylation tag is for incorporation into the virion). 3) There is not enough rtTa

reaching the cell to cause a measurable effect. Verification that fusing Nef7 and rtTa

did not destroy the function of rtTa was not possible because nef7 excluded rtTa

from the nucleus.

The third hypothesis was easiest to test and was therefore approached first.

In a dose dependent manner, more and more viral particles were added to the same

number of cells increasing the effective multiplicity of infection (MOI). At an MOI of

10 the cells showed significant signs of cytotoxicity but still no signs of detecting

rtTa (data not shown). However, this experiment did provide useful information

pertaining to the maximum concentration of virus that can be used without

significant cytotoxicity (which is an MOI of 5).

The other two hypotheses were approached simultaneously because both

required modification to the Nef7-rtTa construct and were orthogonal problems. To

visualize incorporation of Nef7-rtTa into the virion a FLAG-tag peptide was attached

to the C-terminus of the construct [49]. To address the issue that rtTa is prevented

from entering the nucleus because it is still tethered to the membrane (or vesicle), a
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native protease domain [50], used by HIV to cleave the capsid protein from the

matrix protein, was inserted between the Nef7-rtTa fusion along with flexible

GGGGS linkers [51]. This should allow for cleavage of Nef7 from rtTa once packaged

into the virion since the viral protease is inactive until having budded from the host

cell [52, 53].

I also constructed a version of rtTa containing N-terminally the amino acid

residues that would be present post cleavage and C-terminally a FLAG-tag, in order

to check functionality of rtTa with these additions and to use as a positive control

for future western blot experiments (PR-rtTa-FLAG) (Figurel4c). The newly

constructed protein was still functional with these additions as seen through co-

transfection with TRE-EGFP into HEK 293 cells (data not shown).

Having these new constructs at my disposal, I began testing each of the

aforementioned hypotheses. In order to test if the construct is being included in the

lenti viral particles, a western blot was performed on purified virus particles and

whole cell lysates that were expressing PR-rtTa-FLAG from a strong constitutive

promoter (Hefla). Both the PR-rtTa-FLAG from the whole cell lysates and the Nef7-

PR-rtTa-FLAG constructs were undetectable in the numerous western blots

performed (Figure 12c). I turned to the literature to see if anyone else had had

success in seeing rtTa in a western blot. The answer was no [54, 55]. I knew rtTa

was present because of my functional assay that used TRE-EGFP even though I was

unable to see it in a western blot. I had reached an impasse and chose to pursue

another system that had fewer complications. There are also numerous other

Chapter 5 56



concerns of in vivo use of lenti viral particles as a communication system in

mammalian cells, dealing with immune response and prolonged use. [56-58]

5.1.3. TEV Communication

The TEV (tobacco etch virus) system is a receptor based communication

system that depends on the dimerization of two membrane bound constructs to

induce an intracellular proteolytic event to release a tethered transcription factor,

which can then enter the nucleus and mediate expression [9].

The initial design of our system included a fusion protein containing a

membrane localization signal and transmembrane domain from the fibroblast

growth factor receptor 2 (FGFR2) fused to a TEV protease cleavage site (TCS) and

VP16Gal4 (which remained intra-cellular along the cell membrane) as seen in

Figure 15a. The extracellular portion of the FGFR2 receptor was replaced by a rigid

helical linker sequence that contained the cMyc peptide recognition sequence at its

amino terminus. The helical linker was to serve as a spacer to provide distance

between the cMyc peptide and the surface of the cell membrane. A similarly

constructed part contained the TEV protease instead of the TCS-VP16Gal4 as the

intracellular domain. The purpose of the cMyc peptide is to cause dimerization by

addition of cMyc antibody between the two adjacent constructs. Upon dimerization

a proteolytic event would lead to VP16Gal4 being released into the nucleus. cMyc is

easily produced in HEK 293 cells and was re-constituted in the Weiss lab by Adrian

Slusarczyk and confirmed by western blot [59-61].
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Figure 14 Virus Protein Design
A) A confocal microscopy image of HEK 293 cells stained with DAPI. The Green dots are viral particles
containing NEF7-EGFP adhered to the membrane. B) Viral budding and proteolytic cleavage of matrix,
capsid and other proteins into a mature virion. C) Structural diagram of the multi protein made by the
viral genome with protease domains. Also the design of my NEF7 carrier that would include a protease
domain and a transcription factor. (Figure C adapted from [50])
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Figure 15 VLP System Design
A schematic diagram of the viral sender-receiver design. The pink cell is the sender that produces the
viral particle. After the virion buds off the protease becomes active and produces a mature virion. This
process also separates the Nef7 from the transcription factor. The transcription factor is then available
to enter the nucleus after infection occurs.
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The system was designed to anchor any transcription factor to the

membrane and upon dimerization, induced by adding an antibody, the TEV protease

would cleave off the TF that would then localize to the nucleus and modulate

transcription of the gene of interest (Figure 16). The design's modularity allows for

quick expansion of the number of orthogonal communication channels. The

extracellular epitope recognition tag and the intracellular tethered TF can be

expanded and combined to create a huge library of different communication

channels that would be able to perform complex population logic.

Initially, the system appeared not to work. I was unable to see a difference

between three conditions (in each case a reporter construct, UASga4-EYFP, is co-

transfected): 1) the construct, cMyc-HL-FGFR2-TCS-Vp16Gal4 (TF tethered to

membrane), alone 2) both receptor constructs, cMyc-HL-FGFR2-TCS-Vpl6Gal4 and

cMyc-HL-FGFR2-TEVpr (contains TEV protease), without addition of cMyc antibody

3) both receptor constructs in 2 with addition of cMyc antibody. These three

conditions did not produce any difference in the reporter (UASgal4-EGFP) that was

present in all three cases. This led to the hypothesis that the TEV protease was not

cleaving the TF from the membrane.

To investigate this possibility several constructs were built containing an

additional fluorescent protein fused to the C-terminus (EBFP2 was added to the TF

and mkate was added to the TEV protease) in order to visualize the cleavage and

change in localization by microscopy. We were unable to see any change in

localization, which was highly suggestive that the TEV protease was not cleaving the

VP16Gal4. Another possibility was that not enough of the surface receptors were
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being cleaved to visualize the change in localization. We researched the problem

and discovered that the TCS being used was in fact the recognition sequence for the

TEV protease; however, the recognition sequence was more context dependent than

previously thought. Several more surrounding amino acids needed to be purported

to our fusion protein in order for the TEV protease to recognize and efficiently

cleave our construct.

After adding in the new residues to our fusion protein we were able to see a

difference with and without the TEV protease construct (Figure 16d). This shows

that the TEV protease construct is cleaving and allowing translocation of the TF

from the membrane to the nucleus to activate UASgal4-EYFP. This shows promising

results that the TEV system is working within a single cell. The next step would be to

see if it is possible to relay a signal from outside the cell inside. Addition of

exogenous cMyc antibody should tell us if our system is working and then we can

combine the senders and receivers.

5.1.4. PhoB Two Component Signaling

Cells have developed the ability to sense different signals in their

environment through a variety of mechanisms. One method involves proteins inside

the cell binding specific ligands that affect its ability to regulate transcription and

ultimately how the cell responds to particular stimuli. One example is how bacteria

respond to different concentrations of glucose in their environment using the lac

operon [62-64]. In this particular situation glucose diffuses into the cell and directly

affects transcription. Cells have also developed the ability to sense changes in their
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environment through receptor-mediated pathways [65-68]. Specialized membrane

proteins that usually consist of an extracellular, transmembrane, and intracellular

domain are able to sense things in the environment and transmit that information

inside the cell [69-73].

This receptor mediated signaling is a major method for transmitting

information into the cell. The extracellular domain usually consists of a receptor

that binds a specific ligand and either causes a conformational change to the

intracellular domain or induces dimerization. These two events usually proceed to

cause a phosphorylation cascade that ends in transcriptional regulation. The

phosphorylation cascade in bacteria is dominated primarily by histidine and

aspartate residues that transfer the phosphate group [74-76]. In mammalian cells,

the dominant residues that transfer the phosphate groups are serine, threonine, and

tyrosine [77-79]. The histidine-aspartate relays have been seen to be more

promiscuous than the serine-threonine-tyrosine ones which may be a reason

mammalian cells evolved away from using the histidine-aspartate ones [80-82]. The

promiscuity of the His-Asp relays has afforded us the ability to "mix and match"

different intracellular components with different receptors to create novel

responses from existing pathways.
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Figure 16 TEV Communication Design
A) Shows the receptor design. Extracellularly there is a cMyc epitope that can be bound by cMyc
antibody. Intracellularly there is a TF bound to one receptor with a cleavage site in between and a TEV
protease bound to the other receptor. The receptors are designed to hybridize and cause cleavage. B)
The receiver cell for the system. C) the sender and receiver system working to express a protein. The
TEV protease cleaves off a TF to activate transcription. D) Transfection results in HEK cells with and
without the TEV protease construct. There are two versions of the TEV protease 1 and 2.
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Recently, a group was able to take a bacterial TF, PhoB [83, 84], which is part

of a bacterial two-component system and use it in plant cells [10]. Here they used

the AHK4 (Atcrela) receptor in plants, that responds to the ligand trans-zeatin and

has a lower affinity to isopentenyladenine (IP); both are plant hormones. In this

system AHK4 upon binding trans-zeatin phosphorylates AHP5 (a phospho-

transferase) and AHP5 phosphorylates PhoBVP64. Upon Phosphorylation

PhoBVP64 translocates to the nucleus and binds its respective operator sites. The

nuclear translocation was an interesting discovery since bacteria do not have a

nucleus and therefor have no need for an NLS sequence. It is thought that when the

phosphate group is transferred to PhoB the conformational change reveals a DNA

binding domain that contains several positive residues that are recognized by

nuclear transport proteins and translocated to the nucleus.

This system seemed like an attractive option to try to purport from plants to

mammalian cells for several reasons. A previous graduate student Sairam had tried

to implement a two-component system in mammalian cells from yeast and was

unsuccessful. The most probable cause of failure was that the TF when

phosphorylated in yeast changes the activity of its activation domain. Since the

activation domain from yeast does not work in mammalian cells and was replaced

by a mammalian activation domain the phosphorylation event would not affect

transcription of the mammalian version. The PhoB system does not suffer from this

problem. The yeast two-component system used the same receptor, AHK4 [25].

Also, we have already shown that mammalian cells have the ability to create IP

(Figure 17) [1].
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The first step was to take all the components from the paper and get them

synthesized for use in mammalian cells. The codons were optimized for human cells,

PhoBVP64 was changed to PhoBVP16, and I created a mammalian minimal

promoter with PhoB operator sites (minCMV-PhoBx6). The proposed system would

function as seen in Figure 17a.

Once I had all the components, I transfected them into HEK 293 cells with the

addition of different concentrations of exogenous IP. As seen in Figure 18b, the cells

are able to respond to different amounts of IP. However, you will notice that as IP

increases the output from our promoter decreases and this system, as designed,

should respond in a positive manner to IP. Also, you will note, that my constitutive

fluorescent protein is also decreasing slightly with increasing IP. My initial

hypothesis was that IP was causing some sort of toxic effect on the HEK cells causing

protein production to decrease. To determine if the decrease in EYFP was in fact

some sort of non-specific toxic side effect, I created an inverter to show that the

response of my system is specific to IP and increases as IP increases. I was indeed

able to show that IP is causing the change in expression and not some overall toxic

effect that decreases protein production (Figure 19a). Also note that the response

from the PhoB promoter is greater than the change in the constitutive promoter. To

further validate that PhoB is causing the expression from the designed promoter, I

put PhoBVP16 under the control of an inducible gene, rtTa3, varied Dox. and

recorded the changed in expression. As you can see in Figure 19b, there is a positive

correlation between the amount of PhoBVP16 and the activation from the PhoB

promoter.

Chapter5 65



A)

Send

+ e

) Mammalian senders (293 HEK)
DsRed indicates transfected cells

cytokinin
(Isopentenyladenine)

0@

cytoknim

Yeast Receivers BLANK
mammalian media

Yeast receiver

Yeast Receivers SENDER
Mammalian media

Figure 17 SKN7 Two-Component Signaling
A) Schematic diagram depicting a sender receiver system for Two-component signaling based on the
yeast system that uses SKN7. The cell on the left produces IP and the cell on the right would detect it
through a phosphoyrlation cascade. B) Depicts a system to test the mammalian sender with a yeast
receiver. C) the results from testing a mammalian sender with a yeast receiver. Mammalian senders are
on the left. Yeast receivers with blank mammalian media are in the center. Yeast receivers with Sender
mammalian media are on the right. Figure adapted from [1] for explanatory purposes
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Figure 18 PhoB Two-Component Signaling
A) Schematic diagram depicting a sender receiver system for Two-component signaling based on the
plant system that uses PhoB. The cell on the left produces IP and the cell on the right would detect it
through a phosphoyrlation cascade. B) Results from mammalian receivers with exogenous amounts of IP
added. The left graph represents a contransfection with all the components expect Hefla-PhoB on a
single plasmid cotransfected with Hefla-PhoB. The right is a co-transfection with everything on
separate plasmids.
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The question still remained, how come the system is behaving contrary to the

design? To elucidate this mystery, a red fluorescent protein, mkate, was fused to

PhoBVP16 in order to visualize the translocation from the cytoplasm to the nucleus

upon induction with IP. There did not appear to be a difference in mkate localization

with IP induction. It appeared to be mostly cytoplasmically localized (data not

shown). This appeared to suggest that small amounts of PhoB were needed to fully

activate the system and the response from IP is not due to localization changes.

Future work would include determining if PhoBVP16 is being

phosphorylated. Since His-Asp relays are hard to work with because the transfer of

the phosphate is fast, I sought to find mutants of PhoB that are seen to be

constitutively active or inactive regardless of phosphorylation state. A comparison

could then be made between the activity of these mutants and the non-mutated

version of PhoBVP16 currently in use. This might shed some light on what is taking

place in this system.

5.2. Discussion

This chapter enumerates the multifarious methods I have employed as

orthogonal mammalian cell-cell communication systems. Employing the bacterial

quorum sensing system had difficulties with the sender cells whereby they were

unable to produce sufficient quantities of AHL that were detectable by mammalian

receiver cells. The VLP communication system was unable to show versatility in the

"message" one would send inside the particle. There were also numerous

immunological concerns with in vivo use. The PhoB receiver system appears to

Chapter 5 68



detect exogenous IP but the exact mechanism of signal transduction in mammalian

cells needs further elucidation. The TEV system has been shown to work in

individual cells. The protease is able to cleave the TF from the membrane to activate

transcription. This system appears promising and requires further experiments to

demonstrate its efficacy. The design and response to antibodies will also have to be

verified.
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Figure 19 PhoB Characterization
A) A co-transfection of the PhoB receiver circuit, except the output from the PhoB promoter is Lac-
mirFF4 which repressed Hefla-LacOlOid-EYFP. This made the response positive and increasing with
increasing amounts of IP. B) An experiment with an inducible PhoB activator. This would allow us to
determine if PhoB is responsible for the response we are seeing. Also would allow us to see if there is an
optimal amount of PhoB in the system. Each line reresents a different concentration of Dox. while
varying the amount of IP.
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Chapter 6

6. Predictive Composition of Genetic Circuits

The TASBE (Tool-chain to Accelerate Synthetic Biology Engineering) project

is a collaborative effort between several groups with the aim to make synthetic

biology more automated [110]. A large thrust of this project is to be able to

characterize a genetic part sufficiently such that a computer would be able to choose

which parts to use in a new circuit (based on its functional specifications) and a

robot would construct the necessary DNA to be tested. In collaboration with people

from Raytheon BBN Technologies (Jacob Beal PhD, Fusun Yaman PhD, and Aaron

Adler PhD) a new characterization methods was developed to help realize the end

goal of this project; automatable design and construction of genetic circuits.

Synthetic biology aims to forward engineer genetic circuits from individual

characterized parts. Many efforts have been made toward uncovering the necessary

requirements of a characterization method that is capable of producing quantitative

predictions that can be used for composition of novel genetic circuits. However,

previous efforts were unable to garner enough information about individual parts to

be able to engineer new genetic architectures in a quantitatively predictive manner.

Here we show a new method for characterizing individual genetic parts, that is

context independent and which allows predictable construction of novel genetic

circuits in mammalian cells. Characterization of individual genetic parts was carried

out through transient transfection, which allowed the in-depth study of the circuit's
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temporal dynamics. Through direct use of each part's individual transfer function

combined with the temporal expression dynamics we were able to successfully

predict quantitatively a novel combination of two characterized parts. Six genetic

cascades were created to validate the predictive power of the new characterization

and prediction methodology. We were able to achieve a quantitative prediction

within 1.25 fold average error for a cascade with greater than 15-fold gain. Our

results demonstrate the validity and power of the characterization and prediction

method developed. We anticipate this method to be used in creating libraries of

well-characterized parts in mammalian cells that will be used to predictively

engineer complex genetic circuits that were unable to have been created previously.

This modular predictable composition method is a foundational tool of synthetic

biology that will lead the way for better design principles and allow more complex

circuits to be created.

6.1. Cascade

The cascade module is the component that was chosen as the 'proof of

principle system' to show that with proper characterization and computational

methods quantitative predictions could be made about the behavior of previously

characterized parts in a novel architecture.

The reason the cascade was chosen was because the other two modules have

added complexities. The toggle is a closed loop system and as such, in order to

properly test its functionality it needs to be stably integrated it into the genome for

long term steady state analysis. From the expression data in mammalian cells, the
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switching dynamics appear to be longer than the time of a single transfection

experiment due to the speed of transcription/translation in mammalian cells. The

oscillator would also need to be integrated into the genome for long-term analysis.

The cells will not be synchronized and as such flow cytometry measurements

cannot be used to analyze the circuit behavior. Long-term microscopy experiments

will be needed to characterize the oscillatory behavior and custom software will

need to be developed for cell tracking and analysis.

The cascade (described previously in Figure 9c) functions as a double

inversion gate. As Dox is added rtTa3 activates TRE and increases the amount of the

first repressor. This repressor binds and deactivates the transcription of the second

repressor. The second repressor levels drop and relieve repression of the output.

The behavior of the cascade can then be summarized such that as Dox increases, the

output increases. The timing dynamics and open loop system allowed for

experiments to be done with transient transfection. Flow cytometry data could also

be used to analyze individual cells behavior. By using flow cytometry we could

obtain data on large numbers of cells, between 1x104 and 2x10 5 cells per induction

point.

6.2. Characterization Circuit

The main thrust of Synthetic biology has been to develop a set of

standardized parts that are characterized, modular, and can be assembled in any

order. Most of the focus has been on developing a standard for the construction of

these genetic parts (i.e Bio Bricks, Bgl Bricks, goldengate, etc...) [7, 27, 87] and little
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has been done to develop a standard for the characterization of these parts. A

characterization circuit that allows us to gather high quality data on a specific

promoter-gene pairs in mammalian cells has been developed. An example of this

circuit can be seen in Figure 20ab where the promoter-gene pair that is being

characterized is Hefla-LacOloid and LacI-mirFF4 respectively.

The characterization of a genetic part involves obtaining the input-ouput

relationship between the amount of TF (input) needed to produce a certain level of

output response from its cognate promoter. This input-ouput relationship is called a

transfer function. The characterization circuit seen in Figure 20 has been designed

such that you can obtain this input-output relationship. This relationship is

garnered by obtaining flow cytometry for the input fluorescent protein (IFP), which

represents the input transcription factor, and the output fluorescent proteins (OFP),

which directly measures the response of the promoter.

The TF is controlled through an inducible gene, (i.e rtTa3_Dox,

RheoSwitch_RSL, VgEcR-RxrPonA, etc...)[88-90] rtTa3, and its inducer doxycycline

(Dox) in a positive manner (i.e. the more Dox one adds, the more TF one gets). The

inducible gene also controls a fluorescent protein (from an identical promoter on a

different plasmid) that represents the amount of the TF being characterized. In

some cases the cognate promoter for the repressors being characterized is a

"hybrid" promoter in that it needs an activator to be in the "on" state but also

contains operator sites for the repressor around the minimal promoter. In our

design the activator used is VP16Gal4, which is produced from a strong constitutive

promoter (CAG). (Figure 20)
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Figure 20 Characterization Circuits
A) A characterization circuit of a simple gene-promoter pair. In this circuit the transfer function
obtained is of LacI-mirFF4 and Hefla-LacOloid pair. B) Depicted here is another characteriation circuit
of a "hybrid" promoter. "Hybrid" because it requires an activator to be on, but can also be repressed by
an orthogonal transcription factor. If the activator is always present then it can be considered to be a
standard repressible promoter.
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6.3. Data Analysis

6.3.1. Obtaining quality data

The data produced and obtained from these characterization circuits needs

to be of sufficient quality such that predictions can be made for novel circuit

architectures. This requirement forced us think more carefully about trivial choices

such as fluorescent reporter combinations, current color compensation models, and

noisy biological processes.

There are five main requirements on the data collected from each part. The

first criterion is to have large numbers of single-cell measurements (as opposed to

population average values). This will allow better understanding of differential

behavior seen between individual cells and more information about the inherent

noise in mammalian cells. In conjunction with single cell measurements we need

data to determine the per-copy effect of the construct by using a plasmid marker.

Another requirement is to have measurements of the level of output signal(s) across

the full dynamic range of levels of part input signal(s). Without the full range of

information about each part we would not be able to compose new circuits

regardless of context. In order to estimate the noise in the system we need the

statistical distribution of single-cell output levels for each input level. And finally we

need information about the expression of the different proteins over time in order

to predict larger composite circuits in which the course of expression over time is

significant.
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None of the previous efforts mentioned in Chapter 2 satisfy all five

requirements above, and thus cannot produce the kind of characterization data that

is necessary for predictable part composition. Understanding the minimal set of

necessary and sufficient information on each part allowed for the development of a

method to characterize parts for the predictive composition of genetic circuits.

The current characterization system comprises three fluorescent reporters,

IFP (input fluorescent protein), OFP (output fluorescent protein), and CFP

(constitutive fluorescent protein). Fluorescent proteins have wide emission spectra

with a long "tail" that is likely to overlap with another fluorescent protein emission

spectra. Initially the IFP, OFP, and CFP chosen were AmCyan, EYFP, and mKate

respectively. A complication immediately arose from this combination of fluorescent

reporters. The contribution from AmCyan to EYFP was approximately 10%. That

meant the OFP was incorrect by 10% and the transfer curve is not accurately

representing the input-output relationship. Greater than a 1% bleed through

(contribution from one fluorescent protein to the channel of another fluorescent

protein) from one channel to another was unacceptable because of the noise created

and confounding of contribution of signals. This limited the quality of data and

therefore the accuracy to which our predictions could be made.

There were several avenues for improvement that were explored after this

issue arose, a biological, a hardware, and an analytical one. In the end, a combination

of all three was employed. The biological avenue consisted of finding a new

fluorescent protein or new set of fluorescent markers that could be used together to

produce IFP, OFP and CFP with less than 1% bleed through (less than 1% of the
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signal being contributed from a neighboring channel). EBFP2 is one such protein

that fluoresces farther away from the EYFP spectrum [91]. Several commercial

products (HaloTag Promega; Madison, WI) that produced narrow spectral

fluorescence were considered. However, to use these tags one had to add a specific

amino acid sequence in which the fluorescent probe could bind. These were non-

anti body based and could be used for live cell analysis but required more work than

using fluorescent proteins and were a secondary measure if the fluorescent proteins

did not work.

The flow cytometer hardware used is the LSR Fortessa from BD Biosciences

and can house up to 4 lasers with numerous filters for each laser. The correct

laser/filter combination is selected for each channel in order to maximize signal and

minimize crosstalk. There is some flexibility in choosing which laser and filter to use

in order to find the optimal combination.

To determine the optimal choice of fluorescent protein and laser/filter

combination, a heat map was created testing all three of these parameters (Figure

21a). In this Figure, on the left is a combination of a fluorescent protein and a filter

and this is compared to the filter on the bottom. For instance, if one look at

EYFP/FITC-A on the left hand side compared to FITC-A on the bottom there is a

color value of 0 (the normalized value for this protein filter pair). For that particular

row, (EYFP/FITC-A) we can compare how well other filters detect EYFP compared

to FITC-A. In this case no other channel detects EYFP signal better than the FITC-A

channel. The optimal combination of fluorescent proteins and filters can therefore

be determined by selecting fluorescent proteins/filter pairs that are uniquely hot on
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the map when compared to each other. An interesting consequence of this heat map

is that one can find spectral overlaps that one might have logically overlooked such

as 'bleed through' from EBFP2 into the PE-Texas red channel (or mkate channel).

The analytical solution was to develop a better color compensation model

such that small 'bleed through' effects could be taken into account. The BD software

has the option to perform compensation from one channel to another when using

the correct controls. However, certain aspects of the compensated data were

troubling. The software was unable to properly compensate highly fluorescent cells

at the same time as low and medium fluorescent cells. Using their software one had

to choose which data to compensate. This was unacceptable for our data

requirements. The issue that existed in the BD software was that it took into account

the autofluorescent population and tried to compensate everything equally. By

ignoring the autofluorescent population a simple linear relationship can be found

that compensates properly for each pair of channels (Figure 22b). If a new

fluorescent protein and/or filter was to be used, one could just use the same method

to develop a new compensation curve for the new combinations of colors.
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Figure 21 Spectral Overlap And Compensation
A) A heat map that describes the bleed through of proteins into other channels. The left hand side has
protein/filter pairs and the x-axis has the read-filter. The proetin/filter pair on the left gets compared to
the signal read from the filter on the bottom and a heat value is assigned compared against a self filter
normalization. EYFP/FitC-A when compared to FitC-A gives a heat value of 0 and then EYFP/FItCA when
compared to Pacific blue-A is cold. B) A graph representing the color compensation fit used to correct for
bleed through effects. The light blue dots are data from a single constitutive color and the x-axis is the
fluorescence in the Fitc channel, the y-axis is the fluorescence in the mkate channel. Here you see bleed
through into the mkate channel from high EYFP values that is non- linear. A linear relationship is
represented by the red line which does not fit the data properly. Figure adapted from [85]
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Figure 22 Binning
A) A representation of binning on the constitutive fluorescence. The blue lines represent the division of
the cells into bins. In practice there are bins every 1/5 of a decade. The colors of each bin correspond to
the color coding of the transfer functions. This particular binning profile is only a schematic
representation of the actual binning B) A representation of the number of data points in each bin and the
computer fit to each of these. There are two gaussian curves modeling the CFP to get a better description
of cells to be included in analysis. C) The difference between analyzing population averages versus
binning the cells into small bins that better represent Individual cell behavior. Figure adapted from [85]
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6.3.2. Analyzing data

Following the practices laid out in the previous section to obtain data of

sufficient quality, one must now analyze the data to understand the behavior of the

system. Most data analysis used for transfer functions has looked at population

behavior [92]. The expectation for mammalian cells was such that we believed

population behavior would be insufficient to fully understand the system. One

reason for this hypothesis was due to the method of delivery of the genetic circuits

to the cells. Lipofection was used to introduce 6 separate plasmids into HEK 293 FT

cells (Invitrogen) using Metafectene Pro (Biontex). This method of DNA delivery

produces a wide variance in the number of circuits each cell receives. It is also

generally accepted that this method of DNA delivery allows each cell to get

approximately equal numbers of each plasmid for the circuit due to the "packet

delivery" method seen in lipofection [93].

Under these assumptions we might see differing circuit behavior in cells

containing one copy of the circuit compared to cells containing hundreds to

thousands of copies. Using population level analysis could obfuscate the underlying

difference in cells with more or less copies of the circuit. To investigate this

possibility, a two-dimensional binning analysis was developed to separate out the

cells by induction level and plasmid copy number [85]. As mentioned before, to

obtain a marker for copy number a plasmid producing a constitutive fluorescent

protein was included in the circuit that was transfected. The more plasmids a cell

receives, the more fluorescent protein produced [94].

Chapter 6 82



Using this constitutive copy number the cells were divided into bins based on

the strength of their constitutive fluorescence (Figure 22a) Initially, there were not

enough data points obtained from the flow cytometer to split the cells into too many

bins. This becomes important for the bins for very low and very high constitutive

fluorescence, since one expects a somewhat Gaussian distribution for copy number.

If the bins do not contain enough cells the data will be too noisy and

unrepresentative of the proper behavior of the cells. There should always be at least

several hundred cells in the smallest bins and thousands of cells in the center bins. A

representative cell-bin count is seen in Figure 22b. The CFP distributions are

approximated by two overlapping Gaussian distributions, the autofluorescent

population and the population that received our circuit. By using this double

Gaussian one can separate out much better the cells that should be considered in the

analysis and the ones that should not.

Once the cells are split into separate bins, a transfer function can be garnered

for each bin that describes the behavior for that copy count. From this we can see

whether or not different copy counts give different types of behavior for the same

circuit. There is a differential behavior in the cells with lower number of circuits as

can be seen in (Figure 27a middle), and without binning we lose 10-fold sensitivity

(Fig 22c). In order to compare the circuits from one cell to another with differing

copy number we needed to normalize the data in each bin. For our transfer

functions we normalized only the output. This gives the response per promoter for a

given input. Since we are able to get the full range of input we do not care if the
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input came from one promoter or many, a single copy of the output promoter still

"sees" that particular level of input (Figure 23a).

As one can see from Figure 23b, there is a spreading of the data from one bin

to another. There is also an "inversion" from the raw data to the normalized data in

that the high copy number bin (in red) is on top in the raw data and is now on the

bottom in the normalized data (Figure 23b). These phenomena caused quite a bit of

concern for a while. There were two possible explanations for the spreading of the

data, one was that as copy count increases the output from an activatable promoter

(such as TRE) levels off and at some point does not increases linearly like the

constitutive promoter does. The other possibility is that by binning the cells one

creates a sampling bias. As one goes farther away from the mean number of

plasmids per cell the effect becomes stronger (and a sigmoidal like appearance is

seen in the expression from TRE as compared to constitutive).

We did not think that the activatable promoter would behave differently

from a constitutive promoter and thus sought an analytical solution. The sampling

bias is explained by the unequal contribution from neighboring bins. This occurs

because expression noise is greater than the bin size and because of the underlying

plasmid copy-count distribution. This contribution becomes more pronounced the

farther away from the mean copy count one goes.
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Figure 23 Normalization Inversion and Sampling Bias
A) There are two Dox induction curves. The one on the left is not normalized according to plasmid count.
The one on the right is. There is an inversion in colors from the graph on the left to the graph on the right
meaning there is over normalization for high plasmid count, and under normalization for low plasmid
count. B) This describes the sampling bias. Our actual constitutive distribution is made up of cells from
neighboring bins because of expression noise. The ratio of contribution from neighboring bins changes
as you move farther away from the plasmid copy number mean. We are able to deconvolve the
contributions from each bin and correct for it. Figure adapted from [85]
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Figure 24 2A Effects
A) A comparison of noise with and without a 2A tag used in the expression of the consitutive
fluorescence. On the left the construct includes a 2A tag and as such has a wider spread than the graph
on the right. The two network topologies are underneath each graph respectively.
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The solution to this problem is found by using Bayes' law, where the

convolution of two Gaussians is a Gaussian where the geometric mean is

multiplicative and the geometric variances are summed. In this system there are

two types of distributions that have been convolved together to create the

constitutive fluorescence distribution (which is obtained directly through flow

cytometry measurements). The two distributions that are convolved together to

create the observed distribution are expression noise and copy number distribution.

The expression noise is measured by taking the variance in the distribution

in the two other channels (i.e. IFP and OFP). By measuring expression noise

distribution and constitutive expression distribution, and assuming plasmid

distribution is a Gaussian (since it is a random process), Bayes law allows us to

deconvolve expression noise from our constitutive expression distribution to obtain

our plasmid copy number distribution (Figure 23b). Once we are able to obtain the

plasmid copy number distribution we can then un-bias our sampling bias as seen in

Figure 24a [85].

Another consequence of stringent requirements on the quality of our data

was that slightly more noisy processes, which normally were overlooked from a

biologists' perspective, could not be ignored from an engineering standpoint. A

problem arose when trying to express multiple proteins from one promoter using

certain biological "tricks" found in nature (namely the 2A tag). Normally in

mammalian cells only one protein can be expressed from one promoter, called

mono-cistronic expression.
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Certain viruses have developed a trick to express multiple proteins from one

promoter (most likely due to their inherent size limitations). The 'trick' employed in

these constructs was the use of an amino acid sequence known as a 2A sequence

(discussed previously). This sequence causes the ribosome to 'skip' and

translationally creates two separate proteins from one single transcript. However,

the ribosome does not skip 100% of the time. Only a certain percentage of the

transcripts are separated, another portion of the transcripts only have the first

protein translated because the ribosome presumably 'falls off' the transcript. And

yet another portion of the transcripts could create a giant non-functional protein

where both the first and second interfere with each other [46].

This creates noise in the expression of this construct that is not taken into

account in our current analysis and models. Therefore, fluorescent proteins and

input proteins to be characterized cannot use this 2A tag. We found a significant

increase in the accuracy of our analytical methods when the expression of the

constitutive marker, mkate (which accounted for plasmid copy count), was

expressed from its own promoter (Figure 24a). This is seen by the reduced spread

from the normalization technique when comparing with and without the 2A tag

expressing the constitutive fluorescent protein.
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6.3.3. Timing analysis

The dynamic behavior of gene expression led us to study more closely the

effect this had on our characterization circuits and genetic cascades. Because we use

relatively stable proteins and transient transfection, our circuits will not generally

be in equilibrium; we gather time series data to characterize how the observed

expression level changes over time which is particularly important for transient

transfections, but also relevant for any circuit with non trivial dynamics.

We measured expression levels for constitutive expression and for rtTA3 and

VP16Gal4 driven expression at 16 time points ranging from 12 to 72 hours post-

transfection (Figure 25). We found that the fraction of cells with observable (i.e.

above auto-fluorescence) constitutive expression of a fluorescent protein increases

linearly following a short delay, saturating at approximately 70% of cells at 42 hours

(Figure 25). Given an unsynchronized population of cells, this observation is

consistent with typical lipofection efficiency and the standard lipofection hypothesis

of plasmids entering the nucleus during mitosis. There is no significant difference

between the rate at which the mean fluorescence of the expressing population rises

to its saturated level for constitutive expression in comparison to activation by

rtTA3 and VP16Gal4 (Figure 25). This implies that transcriptional activation delays

in protein production are not significant factors in the behavior of the circuit

architecture under consideration and are further obfuscated by the wide range of

expression variation observed in the transfer curves.
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Figure 25 Time Course Information and Prediction Methdology
A) Following a short delay, time sequence characterization shows a linear Increase in the fraction of cells
constitutively expressing a fluorescent reporter (a), until reaching a saturated level of approximately
70% transfection efficiency. Progression of mean fluorescence level (b) is similar for both constitutive
and activator-driven fluorescence, implying little impact from time delay or unsaturated activation.
Normalized expression for each sequence is computed by dividing by mean MEFL for t = 48 to 72. (C)
EQuIP predicts the output expression level O(t) of a biological device at time t from its input 1(t) using an
incremental model of the production and loss of output. This model is taken from empirical
characterization of transfer curve, time sequence, and unit calibration. Figure Courtesy of Jacob Beal.
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Figure 26 Prediction Method
A) Example of prediction for TAL14-TAL21 circuit, showing prediction of the 7th CFP bin under induction
with 50 nM dox. Information flows through the model down over time and right from device to device.
Concentration of the input repressor, TAL21, rises and dilutes with each time step. A lookup on the
rescaled transfer curve finds the amount of TAL14 produced, which accumulates and is looked up on its
own transfer curve to find the amount of OFP produced. The predicted transfer curve (right) thus shifts
incrementally over time, predicting the relationship at different instants of time. Figure Courtesy of
Jacob Beal.
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6.3.4. Predictive model

With the ability to obtain high quality, single cell, measurements for each of

our parts combined with the advanced analytics used to differentiate different

behavior based on plasmid copy count and inducer level in a time dependent

manner we were able to gain enough information on each part to then create a

predictive model based on the individually characterized parts. To predict the

output of a novel circuit, the model uses the time-dependent expression information

and the transfer function from each part to build up a transfer curve over time for

the new circuit (Figure 25c). Each part's transfer function is taken at 72 hours (the

same time the cascade transfer function is obtained). It is not sufficient to just use

the transfer functions at 72 hours to predict the cascade at 72 hours. A time

evolution of expression is needed for each part to create a predicted time evolution

for the cascade expression.

After obtaining time-dependent information about the dynamics of the

repressors and activators used in the circuits, a model was built to simulate the

expression over time for the cascade that led to the transfer functions obtained for

each part at 72 hours. The predicted output for the cascade is taken directly from

the transfer functions of the individual parts over time. The output from repressor 1

for a given induction level, plasmid number, and time point is taken as the input for

repressor 2 at the same plasmid number, induction level, and time point. This is

then traced through the transfer curve for repressor 2 to predict the output of the

new cascade circuit at a given time point (Figure 26). By generating the time

evolution of the cascade expression from the individual transfer functions based on
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their expression dynamics, we are able to produce quantitatively accurate

predictions for dynamic circuits without ever knowing specific rate constants or

having detailed information about the operation of each part. We use the transfer

function obtained for each part combined with time dependent expression

information to predict novel genetic architectures.

6.4. Characterization and Prediction results

The characterization data obtained consists of a doxycycline induction curve

that provides exact input levels and a corresponding transfer function relating the

input level and the normalized output. A sample of this type of data can be seen in

Figure 27. I have characterized 3 parts, LmrA, TAL14, and TAL21.

As mentioned previously, when collecting data to fully characterize a part, it

is necessary to properly cover the range of input. It was determined that a

logarithmic progression ranging from 0.0nM to 2000nM was optimal (i.e. 0.0, 0.1,

0.2, 0.5, 1, 2, 5, 10... 2000). 2uM was the maximum induction concentration because

toxicity was observed above 2uM without an increase in output.

Figure 27 shows predictions for two sample genetic cascades (TAL21-TAL14

and TAL14-TAL21) (Figure 27b) and sample individual transfer functions of some

parts characterized (Figure 27a). The circles in Figure 27b represent the predicted

result for each cascade and the stars are the data obtained through flow cytometry

of each cascade. The lines connect different induction level data belonging to the

same bin (based on CFP levels, like the inset at the bottom shows). The non-

normalized view allows a clearer picture as to how well the predictions line up with
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the actual data. The predictions for the cascades are within a 1.6 mean squared

error.

6.5. Discussion

The characterization framework, analysis tools, and prediction models

developed make a significant contribution to mammalian synthetic biology. Our

ability to make predictions without specific rate constants or operational details

about the parts makes this a powerful abstraction. Using this method we merely

require the transfer function of the individual part and the time-dependent

expression information for these parts in mammalian cells. Synthetic biology, like

electrical engineering before it, needs abstractions like this in order to build more

and more complex circuits. By having standard predictable modular units that can

be composed into larger more complex architectures it shifts the focus from "what

can we create?" to "what should we create?". This new powerful tool will help to

foster the creation of huge libraries of characterized parts that can be used to usher

in anew wave of increasingly more complex rationally designed mammalian circuits.
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Figure 27 Characterization and Prediction Results
A) Characterization transfer curves for each of three parts, LmrA, TAL14, and TAL21. Inset represents
actual bin colors In the transfer curve. BOTTOM LEFT: A non normalized TAL14-TAL21 cascade transfer
curve. BOTTOM RIGHT: A normalized TAL14-TAL21 transfer curve B) LEFT: Prediction results overlaid
on non-normalized data for easier viewability for TAL2 1-TAL14 cascade. Inset represents actual bin
colors for transfer curves RIGHT: Prediction results for TAL14-TAL21 cascade. Inset represents actual
bin colors for transfer curves. C) Table showing the mean prediction error for all cascades created. The
cascades curves not shown in (B) can be found in the appendix. Figure Courtesy of Jacob Beal.
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Chapter 7

7. Conclusion and Future work

7.1. Conclusions

This thesis establishes a foundation for engineering genetic regulatory

networks and intercellular pathways of communication in mammalian cells. A

library of well-characterized parts and modules is of paramount importance when

complex systems are to be engineered in multi-cellular organisms. The DNA

assembly method presented in Chapter 3 allows for unprecedented speed and

versatility when constructing mammalian genetic components. The advance in DNA

construction technology permits us to concentrate on design and testing. This

creates the opportunity for future researchers to pursue more complicated and less

well understood systems, such as the one proposed in Chapter 4,. This system

outlined a basis for artificial tissue homeostasis and defines the necessary

components that need to be created in order to realize one possible method to

create this system. The modules described here attempt to provide answers to some

fundamental questions of synthetic biology (i.e. can we predictively compose

genetic circuits? Can we create an orthogonal extensible intercellular

communication system in mammalian cells?).

The control of cells in a population requires that information be exchanged

across cellular boundaries. Hence, a cell-cell communication system is required.

Since pattern formation through programmed differentiation of embryonic stem
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cells is one application of this research, the communication signal should be capable

of establishing concentration gradients and the cells should be able to respond to

these gradients in a pre-determined fashion. In Chapter 5, I introduced several novel

cell-cell communication system designs adapted for mammalian cell use from

systems in organisms ranging from the marine bacterium Vibriofischeri to the plant

Arabidopsis thaliana. I ported the bacterial Type II FAS synthesis pathway into

mammalian cells by codon optimization and expression of the relevant enzymes in a

compact manner using 2A tags. I constructed a virus like particle (VLP) that can

carry a load from a sender cell to a receiver cell. In Chapter 5,1 also present a design

for a two-component system adapted from a hybrid mix of plant and bacteria. I

show initial promising results of the response to exogenous IP and processing of

that response in a cascade format to invert the signal. I also propose a versatile and

promising system using the TEV protease. I have shown that TEV protease cleaves

TF's from the cell membrane and activates transcription with in a single cell.

In Chapter 6, I address a fundamental question of synthetic biology; is

predictive composition of genetic circuits possible in mammalian cells? Yes! We are

able to collect high quality characterization data on numerous genetic parts, analyze

and process the data to extract the relevant information (transfer functions), and

feed this information into computer models that are able to predict the behavior of

novel genetic architectures. I validated these predictions by constructing and testing

several genetic cascades in mammalian cells. It establishes a general method for

characterizing TF's for use in novel circuits. This research creates a foundation to

engineer large complex genetic circuits from well-characterized parts.
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7.2. Future Work

The engineering of synthetic inter-cellular communication modules coupled

to exogenous intra-cellular transcription networks offers tremendous possibilities

to program cells at the population level. The work presented in my thesis presents

numerous avenues that can be expanded upon to push the boundaries of synthetic

biology. Below I present some areas that have promise for future research.

The PhoB system presented in Chapter 5 appears to work. In order to show

that the PhoBVP16 is actually responsible for the response to IP one just needs to

tease out the mechanism of action in the cells. Several mutants have already been

created based on constitutively active and inactive versions of PhoB [95, 96].

The TEV system is the most promising cell-cell communication system seen

thus far. One reason for its attractiveness is because of its expandability to many

different channels. The proof of concept of this system has been demonstrated and

with a little more characterization I believe that the system will be able to function

as designed. The TEV system also could be used in a different manner.

The most attractive cell-cell communication system would be one where the

receiver cells did not have to be genetically modified. The sender cells would send

messages that could influence the behavior of unmodified cells by actuating on

endogenous pathways. The TEV system, with a couple small modifications could

become such a communication system. Recently, it has been demonstrated that

acylated tagged proteins accumulate at the membrane and get incorporated into

exosome vesicles, that are taken up by neighboring cells[97]. If we anchor the TEV

constructs to the membrane with an acyl tag instead of the FGFR2 transmembrane
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domain the TEV constructs could get incorporated into these vesicles and transmit

TF or other proteins to any unmodified receiver cells one desired. This would be a

very attractive solution for creating IPS cells where the cells are genetically

unmodified.

The future work for the characterization project would be to create huge

libraries of characterized parts that could be used in mammalian cells. Further

validation of the predictive software we have developed would be needed for more

complicated systems. Also, new analytical tools will need to be developed for closed

loop systems such as the toggle, where there is feedback, as well as the oscillator.

The parts can still be characterized in the same method that has been developed in

this thesis. But the analytical and predictive tools will need more work to better

understand these more complex systems.

In order to truly have an expansive library of parts, we will need to employ

automation. The tedious, time consuming, and repetitive nature of characterization

lends itself immediately to full automation. Some places have already begun

automating their own characterization processes (i.e. BIOFAB). Currently, in our

lab, Jonathan Babb is working on automating every step of the DNA assembly to

FACS preparation of the mammalian cells. If he were successful, one would only

need to perform the transfections and cell culture work. The BD LSR Fortessa

already has a high throughput device for 96 well plates. I began to use this device to

collect data towards the end of the characterization work when the number of

samples I had for the flow cytometer reached unmanageable levels.
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The future of synthetic biology is wide open and with the new tools

developed in this thesis, mammalian synthetic biology will be able to grow much

faster than before. We will be able to construct large complex genetic circuits that

work based on the initial design. The only limit on what we create in the future will

be our own imagination.
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Materials and Methods
A. Strains and Culture Conditions

A.1. Bacterial Strains and Culture Conditions

E. coli DH10b, P endAl recAl galE15 galK16 nupG rpsL AlacX74

<D801acZAM15 araD139 A(ara,leu)7697 mcrA A(mrr-hsdRMS-mcrBC) K, [98] was

used to clone and propagate plasmids all plasmids. LB broth (Difco, Detroit, MI) with

the appropriate antibiotic(s) was used as a growth medium in all experiments. For

the construction of non lentiviral plasmids, 50 pg/mL kanamycin (Shelton Scientific,

Shelton, CT) and 100 ptg/mL ampicillin (Sigma, St. Louis, MO) were used. For the

construction of lentiviral plasmids 100 pg/mL ampicillin (Sigma, St. Louis, MO) was

used. AHL was added at the specified concentration. The AHL 3-oxohexanoyl-

homoserine lactone (30C6HSL) was acquired from Sigma-Aldrich. For all growth

experiments, cultures were incubated at 37 -C in a shaker at 250 rpm. All minipreps

of plasmid DNA were done using the Qiagen Miniprep kit (Qiagen, MD) and

midipreps and maxipreps of DNA were done using the Qiagen midiprep/maxiprep

kits (Qiagen,MD).

A.2. Mammalian Culture Conditions

293FT (Invitrogen) human embryonic kidney fibroblasts (stably expressing

the SV40 large T antigen) were used for transfection experiments that tested non-

lentiviral plasmids and for virus harvest. Polybrene (Sigma) was used at a
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concentration of 10 pg for infecting cells. All the cells were grown at 37-C and 5% C02

in a sterile tissue culture incubator. Cell culture media for culturing 293FT cells is

composed of 87.9% DMEM (Hyclone), 10% Tet-approved Fetal Bovine Serum

(Clontech), 1% Penicillin-Streptomycin (Hyclone), 0.1% Fungin (Invivogen) filtered

through a 0.45 mu filter (Nalgene).

B. Selected Protocols

B.1. Lentivirus Production and Infection

Adapted from Coleman et al. Physiol Genomics 2003 12:221-228 by Dr.

Christoph Schaniel.

Day 0: 293FT (Invitrogen R70007) cells are plated at a density of 7.8 * 106

per 10cm dish or 1.75 * 107 293FT cells per 15cm dish. Generally 3 15cm dishes are

used. The cells are incubated in culture medium (88.9% DMEM, 10% FBS, 1%

Penicillin-Streptomycin, 0.1% Fungin) at 37-C, 5% C02.

Day 1: To produce the virus, 293FT cells are first transfected with two

packaging plasmids [99] and the lentivirus vector containing the circuit of interest

using Superfect transfection reagent (Qiagen). The supernatant media containing

the virus is harvested 30h post transfection and an equal amount of growth media is

added to the dish. The harvested supernatant is filtered through a 0.22ptm low

protein binding filter (Nalgene) to remove cellular debris.

Day 2: Supernatant is again collected 45-72h post infection, filtered as before

and combined with the supernatant from Day 1. The virus is concentrated by either

by ultrafiltration using Centricon Plus-70 100 kDa spin filters (Millipore) or by
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ultracentrifugation at 50000 g for 2.5 hours. Following concentration, the virus can

be stored at -80-C without significant loss of viability for several months. If the viral

particles are pelleted by ultracentrifugation, the pellet is carefully re-suspended in

PBS by shaking overnight at 4-C and the viral particles are aliquoted (20[l each) and

stored at -80-C.

To determine virus titer 293 HEK FT cells are seeded at a density of 5 * 104

per well of a 24 well plate. Polybrene (Sigma Aldrich 10768-9) is added to culture

media so that the final concentration is 10pg. 24 hours after seeding, the culture

media of the cells is replaced with media containing Polybrene. Three different

serial dilutions of 2 0 pl of virus are made and added to individual wells. The media is

replaced with normal cell culture media 24h post infection with virus. The cells are

assayed using the FACS 48h post infection and the viral titer is determined. Once the

titer is determined, target cells are infected at the desired MOI by using virus and

media supplemented with 10pig Polybrene.

B.2. Transfection

Transfections for characterization or testing purposes were carried out with

Metafectene Pro (Biontex). For one well of a 24 well-plate I used 500ng of DNA that

is first mixed into 60ul of DMEM (no antibiotics or serum) and then I add 1.5ul of

Metafectene Pro and wait for 15 min at room temperature. During this time I coat

the well with 0.1% gelatin and split the cells. I seed 0.5 ml of cells at a density of 6 *

105 cells per 1ml media. I then add the transfection mixture to the cells. The media is

changed 24 hours post transfection and the cells are assay 72 hours post

transfection.
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B.3. Western Blot Analysis

Western blot analysis is performed using two techniques. Expression of

proteins is assessed by lysing the cells and running the lysate on a 4-20%

acrylamide gradient gel. Proteins are transferred using a standard Western blot protocol.

The desired proteins are detected with HRP-conjugated antibodies raised against the T7,

His, HA, or FLAG tag expressed with the given protein. Detection is performed via a

colorimetric assay using TMB stabilized substrate for HRP, or via a luminescence assay

using ECL Western blotting detection reagents.
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C. Prediction Transfer Curves

The figures below are prediction transfer curves for the 4 remaining

cascades that are not shown in the main text. The table described the mean squared

error for each of these in the main text in Figure 27c. (Figure courtesy of Jacob Beal)

TAL14-LmrA
10'

10

10"

10* ~ .,*-4

10 10 10'
IFP MEFL

LmrA-TAL14

10:

10
10'

TAL21-LmrA

0

10 10"

1- 0

5 4

10 10MM
IFP MEFL

C-
WL
0

10 10

10

10'

10 5

10AI
10

W

10

10

10

10-
10'

4---

10 10
IFP MEFL

LmrA-TAL21

C, A-4-+

10 10a
IFP MEFL

D.Plasmids

The following table provides an overview of the plasmids constructed for the

various systems described in this thesis. Plasmids beginning with pENTR are entry

vectors. Plasmid starting with pZDONR are expression vectores. Plasmids beginning
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with the initials 'pLV' denote lentiviral vectors. The earlier ones were constructed

using basic molecular cloning techniques described in standard molecular biology

laboratory manual [100]. The plasmids were constructed by the use of custom

designed oligonucleotides and PCR Accuprime Pfx Supermix (Invitrogen)that PCR

amplify parent plasmids with overhangs containing the appropriate restriction sites.

Restriction enzymes were purchased from New England Biolabs. Synthetic

oligonucleotides were ordered from Integrated DNA Technologies. All the cloning

was performed with heat shock transformation using DH10b chemical competent

cells made in the laboratory. Sequencing reactions were performed at Genewiz Inc.

(Cambridge, USA). Synthesis of DNA was done by Geneart (Germany).

1 pENTRL4_CAGop_R1_ND

2 pENTR L4 CMV5-CUO_R1-12-20-10

3 pENTR L4_HeflaR2

4 pENTR L4 Hefla-5xGal4-5xCuO R2

5 pENTR L4_Hefla-5xCuOR2

6 pENTR L4_Hefla-6xC7_R2

7 pENTR L4 Hefla-LacOlOid-12-11-09_R2

8 pENTR L4_Hefla-TAL1x2_R2

9 pENTR L4_Hefla-TAL4x2_R2

10 pENTR L4_TRE R1

11 pENTR L4_TRE-LacOlOid-59.5_R1

12 pENTRL4_TRE-LacOlOid-59.5_R1

13 pENTRL4_TRE-LacOlOid-81.5_R1

14 pENTR L4_TRE-LacOlOid-81.5_R1

15 pENTR L4_Gal4UASR2

16 pENTR L4 Hefla-CI434x2 R1

17 pENTRL4_minCMV-1xCl434_R1

18 pENTR L4 minCMV-4xCI434_R1

19 pENTR L4 Hefla-LexAx3_R1

20 pENTR L4_minCMV-1xLexA_R1

21 pENTRL4_minCMV-4xLexA R1

Chapter 7 106



pENTRL4 Hefia-Mntlx2 Ri

23 pENTRL4 minCMV-lxMntlRi

24 pENTRL4 minCMV-4xMntl_Ri

25 pENTRL4 minCMV-7xMntl_Ri

26 pENTRL4 minCMV-lxPho_Ri

27 pENTRL4 minCMV-4xPho_Ri

28 pENTRL4 minCMV5xPhoRi

29 pENTRL4 minCMV6xPhoRi

30 pENTRL4 minCMV-7xPho Ri
31 pENTR_ Li AHK4-2A-AHP5_L2

32 pENTRL1 AHP2 L2

33 pENTR_L1 AmCyan-mirFF4-2A-LaclL2

34 pENTRL1_AtiPt4_L2

35 pENTR_L1_ C77N LSKRAB-2A-mKateL2

36 pENTR_L1 Ca-rtta-Flag_L2

37 pENTR_L1 _C434 L2

38 pENTR_L1 _C434VP16 L2

39 pENTR_L1_CymR_L2

40 pENTR_L1_DD-EBFP2_L2

41 pENTR_L1 DD-EYFP-4xFF4_L2

42 pENTRL1 DD-mkate4_L2

43 pENTRL1 DD-rtTa-L2

44 pENTR_L1_DD-rtTa3-4xFF4_L2

45 pENTR_L1_DD-rtTa-4xFF4_L2

46 pENTRL1_DD-VP16Gal4_L2

47 pENTR_L1_FGFR2-TCS-VP16Gal4_L2

48 pENTR_L1 FGFR2-TCS-VP16Gal4-mkateL2

49 pENTR_L1 FGFR2-TevL2

50 pENTR_L1 FGFR2-Tev-EBFP2_L2

51 pENTR_L1_FRB-GS-Tev-L2

52 pENTR_L1 HsPuml-NPM1_L2

53 pENTR_L1 NPM1-HsPumlL2

54 pENTR_L1 Lad L2

55 pENTR_L1 LaclKRAB L2

56 pENTR_L1_LacIKRABL2

57 pENTR_L1_LaclKRAB-2A-mkateL2

58 pENTRL1_Lacl-mkate-mirFF4_L2

59 pENTRL1_LexA-mirFF6_L2

60 pENTRL1_LexAVP16_L2

61 pENTRL1_mKate-PEST-D1_L2

62 pENTRL1_Mnt1_L2

Chapter7

22

107



pENTR Li Mnti-mirFF6_L2

64 pENTR LiMntlVP16_L2

65 pENTRL1_Myr-mkate-TCS-VP16Gal4_L2

66 pENTR LiNef7-MACA-rtTa-FlagL2

67 pENTR_Li_Nef7-MACA-VP16Ga14-FlagL2

68 pENTR Li Nef7-VP16Gal4-FlagL2

69 pENTR Li PhoB-GS-VP16-_L2

70 pENTR Li PhoB-GS-VP16-mkateL2

71 pENTR Li rtTa-DiL2

72 pENTR Li rtTa-D2 L2

73 pENTR_LirtTa-D4_L2

74 pENTR Li rtta-FlagL2

75 pENTRL1_ss-Myc-H2-TM-TevL2 (Sbfl,Noti) (new new tev)

76 pENTRL1_ss-Myc-NZIP-H2-TM-rtTa3_L2 6-10-10(Sbfl but no Noti)

77 pENTRL1_ss-Myc-NZIP-H2-TM-TevL2 6-10-10(Sbfl but no Noti)

78 pENTRL1_ss-Myc-H2-TM-TevL2 (New Tev)

79 pENTR Li TEVL2 (no Notl)

80 pENTR Li TEVL2

81 pENTR_L1_CymR-2A-puroL2

82 pENTR Li EYFP-4xFF4_L2

83 pENTR_LiEYFP-2A-Hygro-4xFF5_L2

84 pENTR_LiEGFP-DiL2

85 pENTR Li EGFP-Dibis L2

86 pENTR Li EGFP-D2 L2

87 pENTR Li EGFP-D4 L2

88 pEXPR_1-GTW-2_pENTR_L4_CAG_R1 I pENTR_LirtTA3-2A-Hygro_L2

89 pEXPRI-GTW-2_pENTRL4 EGSH R1|pENTR_LiAmCyan-mirFF4-2A-LaclL2

90 pEXPR_1-GTW-2_pENTR_L4_EGSH R1|pENTR_Li_C7C7NLSKRAB-2A-mKateL2

91 pEXPR_1-GTW-2_pENTR_L4_EGSH R1|pENTR_LiLacl-FF5-miRFF4_L2

92 pEXPR_1-GTW-2_pENTR_L4_EGSH R1 pENTR_LirtTa-DiL2

93 pEXPR1-GTW-2_pENTRL4_EGSH R1 pENTR_LirtTa-D2_L2

94 pEXPR_1-GTW-2_pENTR_L4_EGSH Ri pENTR_LirtTa-D4_L2

95 pZDonor i-GTW-2| pENTR L4 EGSH_Ri pENTRL1_rtTA3-2A-HygroL2

96 pZDonor i-GTW-2| pENTR L4 EGSH_Ri pENTR Li DDrtTaL2

97 pZDonor 1-GTW-2| pENTR L4 UbCR1IpENTR_LiFGFR2-TCS-VP16Gal4_L2

98 pZDonor 1-GTW-2| pENTR L4 UbC R1|pENTR_Li_Myr-mkate-TCS-VP16Gal4_L2

99 pZDonor 2-GTW-3| pENTR L4_EGSH_Ri pENTR_L1_AmCyan-L2

100 pZDonor 2-GTW-3| pENTR L4_EGSH_Ri pENTR L1_CerL2

101 pZDonor 2-GTW-3 I pENTR L4 EGSH_R1|pENTR_LiCymRL2

102 pZDonor 2-GTW-3| pENTR L4 EGSH_R1|pENTR L1_mKateL2

103 pZDonor 2-GTW-3| pENTR L4_Gal4UAS-11-16-09_R2|pENTR Li EGFPL2
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pZDonor 2-GTW-3|pENTR_L4 TRE-tight_R1|pENTR_ LiAHK4-2A-AHP5_L2

105 pZDonor 2-GTW-3 I pENTR_L4_TRE-tight_Ri I pENTR_Li_CymRL2

106 pZDonor 2-GTW-3| pENTR_L4_TRE-tight_Ri I pENTR_LiEGFP-PestDlL2

107 pZDonor 2-GTW-3|pENTR_L4_TRE-tight_R1|pENTR_LiEGFP-PestDlbisL2

108 pZDonor 2-GTW-3|pENTR_L4_TRE-tight_R1|pENTR_LiEGFP-PestD2_L2

109 pZDonor 2-GTW-3|pENTRL4 TRE-tight_R1|pENTR_Li EGFP-PestD4 L2

110 pZDonor 2-GTW-3|pENTR_L4_TRE-tight_R1|pENTR_LiLacl-FF5-miRFF4_L2

11 pZDonor 2-GTW-3| pENTR_L4_TRE-tight_Ri pENTR_LimKateL2

112 pZDonor 2-GTW-3 I pENTR_L4_Tre-tight_Ri pENTR_LiVP16Gal4_L2

113 pZDonor 2-GTW-3| pENTR_L4_UbCR1 I pENTRL1_Myr-FKBPx2-TCS-mkate-
VP16gal4_L2

114 pZDonor 3-GTW-4| pENTR_L4_CMV5-CUO_R1-12-20-10| pENTRL1_AmCyan-mirFF4-2A-
LaclL2

115 pZDonor 3-GTW-4|pENTR_L4_CMV5-CUORI-12-20-10|pENTR Li EYFP-FF4x4_L2

116 pZDonor 3-GTW-4|pENTR_L4_CMV5-CUO_R-12-20-I0|pENTR Li Lacl-FF5-miRFF4_L2

117 pZDonor 3-GTW-4|pENTR_L4_EGSHR1IpENTR_LiAmCyan-L2

118 pZDonor3-GTW-4|pENTR_L4_Hefia-6xC7_R2|pENTR LiEYFPL2

119 pZDonor3-GTW-4|pENTR_L4_Hefla-LacO1Oid-12-11-09_R2|pENTR_LiEYFP-FF4x4-L2

120 pZDonor3-GTW-4|pENTR_L4_Hefia_R1|pENTR_LiFGFR2-TevL2

121 pZDonor3-GTW-4|pENTR_L4_Hefia_R1|pENTR_LimKateL2

122 pZDonor3-GTW-4IpENTR_L4_Hefia_R1|pENTR_LiPuroL2

123 pZDonor 3-GTW-4|pENTR_L4_minCMV-4xPho_R1|pENTR_LiEYFP-FF4x4-L2

124 pZDonor 3-GTW-4|pENTR_L4_minCMV5xPhoR1IpENTRL1_EYFP-FF4x4-L2

125 pZDonor 3-GTW-4|pENTR_L4_minCMV6xPhoR1IpENTR_LiEYFP-FF4x4-L2

126 pZDonor 3-GTW-4| pENTR_L4_TRE-tight_Ri I pENTR_LiEYFP-FF4x4_L2

127 pZDonor 3-GTW-4| pENTR_L4 TRE-LacO1Oid-59.5 Ri I pENTR Li EYFP-FF4x4-L2

128 pZDonor 3-GTW-4|pENTR_L4_TRE-LacOlOid-81.5_R1IpENTR_LEYFP-FF4x4-L2

129 pZDonor 3-GTW-4|pENTR_L4_UASgal4_R1|pENTR_LiEYFP-FF4x4_L2

130 pZDonor3-GTW-4|pENTR_L4_UbCR1|pENTR_LTEVL2

131 pZDonor 4-GTW-5| pENTR_L4_CAG_Ri I pENTR_L1_VgEcR-2A-RXRL2

132 pZDonor4-GTW-5|pENTR_L4_Hef1aR1|pENTR_ L1_PhoB-GS-VPi6_L2

133 pZDonor 4-GTW-5|pENTR_L4_Hefla RI|pENTR_L1_mKateL2

134 pZDonor 4-GTW-5IpENTR_L4_Hefia R1|pENTR_LiPuroL2

135 pZDonor 4-GTW-5| pENTR L4 TRE-tight_Ri I pENTR_ L1_PhoB-GS-VP16_L2

136 pZDonor 4-GTW-5| pENTR_L4 TRE-tight_Ri I pENTRL1_AmCyan-L2

137 pZDonor 4-GTW-51 pENTR_L4 TRE-tight_R1|pENTR_L1 Cerulean L2

138 pZDonor4-GTW-5|pENTR_L4_UbCR1|pENTR_LiVgEcR-2A-RXRL2

139 pZDonor 5-GTW-6| pENTR_L4_CAG_Ri pENTRL1_AmCyan-L2

140 pZDonor 5-GTW-6|pENTR_L4_CAGR1|pENTR_LiCeruleanL2

141 pZDonor5-GTW-6pENTR_L4_CAGR1|pENTR_L1_mKateL2

142 pZDonor5-GTW-6|pENTR_L4_Hefla R1IpENTR_L1_PuroL2

143 pZDonor6-GTW-7|pENTR_L4_Hefla R1IpENTRL1_Lacl-FF5-miRFF4_L2
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pZDonor 6-GTW-7|pENTR L4 Hefia_R1|pENTR L1 Puro L2
145 pZDonor 2-GTW-3 I pENTR L4 Rheo-5xUASRi I pENTR-LI-TetR-mirff4-L2

146 pZDonor i-GTW-2| pENTR L4 UbCR1 I pENTR_Li Rheoact-2a-Rheoswitch-L2

147 pZDonor 3-GTW-41 pENTR-L4 Hefla-tetO2-R1|pENTR Li EYFP-FF4x4-L2

148 pZDonor 4-GTW-5| pENTR L4 Rheo-5xUAS RI I pENTRL1_AmCyan-L2

149 pZDonor 2-GTW-3| pENTRL4 UASrheo5xR1|pENTR Li rtTa-D1_L2

150 pZDonor 2-GTW-3| pENTR L4 UASrheo5x_R1 pENTR_LirtTa-D2_L2

151 pZDonor 2-GTW-3| pENTR L4 UASrheo5xRi pENTR_Li rtTa-D4_L2

152 pZDonor 2-GTW-3| pENTR L4 UASrheo5x_R1 pENTR Li rtTA3-2A-HygroL2

153 pZDonor 2-GTW-3| pENTR L4 UASrheo5x_R1 pENTR Li DD rtTaL2

154 pZDonor 2-GTW-3| pENTR L4 UbC_R I pENTRLiFRB-GS-Tev-L2

155 pZDonor 2-GTW-3r pEntr L4 5xUAS RheoR1|TetR-mirff6

156 pZDonor 3-GTW-4r pENTRL4_Hefa-LacO1id-12-11-09_R2 I pENTR_LiEYFP-FF6x4-
L2

157 pZDonor 2-GTW-3| pENTR L4_TRE-tight_R I pENTR Li C1434 L2

158 pZDonor 2-GTW-3| pENTR L4_TRE-tight_R1|pENTRL1 LexAVP16_L2-version2

159 pZDonor 2-GTW-3| pENTRL4_TRE-tight_R1|pENTR_L1 Mnt1_L2

160 pZDonor 3-GTW-4| pENTR L4 Hefla-C434x2 R1IpENTR LiEYFP-2A-Hygro-4xFF5_L2

161 pZDonor 3-GTW-4| pENTRL4 Hefia-LexAx3_Ri I pENTR_Li EYFP-2A-Hygro-4xFF5_L2

162 pZDonor 3-GTW-4| pENTR L4 Hefia-Mntix2_Ri I pENTR Li EYFP-2A-Hygro-4xFF5 L2
163 pZDonor 4-GTW-5| pENTR L4 Hefla_R1|pENTR Li EBFP2_L2

164 pZDonor 4-GTW-5| pENTR L4_TRE-tight_Ri I pENTR_LiEBFP2_L2

165 pZDonor 4-GTW-5| pENTRL4 TRE-tight_R1|pENTR_LimKateL2

166 pZDonor 4-GTW-5| pENTR L4 UASrheo5x_Ri I pENTR Li EBFP2_L2

167 pZDonor 5-GTW-6-Hefia-EBFP2

168 pZDonor 6-GTW-7|pENTR L4 Hefla_R1|pENTR Li EBFP2 L2

169 pZDonor 1-GTW-2| pENTR L4 Hefia_R1|pENTRL1_rtTA3-L2

170 pZDonor 2-GTW-3| pENTRL4 minCMV6xPho_R1|pENTR_Li EBFP2 L2

171 pZDonor 2-GTW-3IpENTRL4 UASrheo5x_R1|pENTR_ L AHK4-2A-AHP5_L2

172 pZDonor 3-GTW-4| pENTR L4 minCMV6xPho R1IpENTR Li Lacl-FF5-miRFF4 L2

173 pZDonor 3-GTW-4|pENTRL4_minCMV6xPho R1IpENTR_LirtTA3-L2

174 pZDonor 3-GTW-4| pENTR L4 TRE-tight_Ri I pENTRL1 EYFP L2

175 pZDonor 4-GTW-5| pENTRL4_attB[BxB1]_Ri I pENTR_Li_BleoL2

176 pZDonor 5-GTW-6|pENTR L4 Hefia-LacO1Oid-12-11-09_R2|pENTR L 1rtTA3-FF4x4-L2

177 pZDonor 5-GTW-6| pENTR L4 TRE-tight_R1|pENTR LiLacl-FF5-miRFF4_L2

178 pZDonor 6-GTW-7| pENTRL4 minCMV6xPhoR1|pENTR_LiEBFP2 L2

179 pZDonor 6-GTW-7| pENTR L4 minCMV6xPho R1IpENTR_Li Lac-FF5-miRFF4_L2

180 pZDonor 7-GTW-8|pENTRL4 minCMV6xPhoR1|pENTR_Li EBFP2 L2

181 pZDonor 7-GTW-8| pENTR L4 minCMV6xPho R1|pENTR_Li Lacl-FF5-miRFF4_L2

182 pZDonor 7-GTW-81 pENTR L4 minCMV6xPhoR1|pENTR Li rtTA3-L2

183 pZDonor I-GTW-2| pENTR L4 Hefia R1IpENTR L1_AtiPt4_L2

184 pZDonor 3-GTW-4| pENTR L4_CAGop_RiNDIpENTR_LiEYFP-FF4x4_L2
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pZDonor3-GTW-4|pENTR_L4_Hefla-TALix2_R1|pENTR LiEYFP-2A-Hygro-4xFF5_L2

186 pZDonor 3-GTW-4|pENTRL4_Hefia-TAL4x2_R1|pENTR Li EYFP-2A-Hygro-4xFF5_L2

187 pZDonor3-GTW-4|pENTRL4_Hefla_RlpENTR_Li HsPuml-NPM1_L2

188 pZDonor3-GTW-4|pENTRL4_Hefla_R1|pENTR_LiNPM1-HsPum1 L2

189 pZDonor 4-GTW-5ipENTRL4_TRE-tight_R1|pENTR Li PhoB-GS-VP16-mkate L2

190 pZDonor 5-GTW-6|pENTR L4 UASgal4_R1|pENTR_Li Lacl-FF5-miRFF4_L2

191 pZDonor 1-GTW-2|pENTRL4_UAS-TiT1-72bp_R1|pENTR Li DD-VP16GaI4 L2

192 pZDonor 1-GTW-2|pENTR_L4_TRE-LacOlOid-81.5_R1IpENTR_LiDD-rtTa-4xFF4_L2

193 pZDonor 1-GTW-2|pENTR_L4_TRE-LacO1id-59.5_R1IpENTR_LiDD-rtTa-4xFF4_L2

194 pZDonor 1-GTW-2|pENTR_L4_TRE-LacO1id-81.5_R1|pENTR_LiDD-rtTa3-4xFF4_L2

195 pZDonor 1-GTW-2|pENTR_L4_TRE-LacOlOid-59.5_R1IpENTR_LiDD-rtTa3-4xFF4_L2

196 pZDonor 2-GTW-3|pENTR_L4_UASrheo5x_R1IpENTR LirtTA3-L2

197 pZDonor 2-GTW-3 I pENTR_L4_UASgal4_Ri I pENTR_L1-Kozak-EYFP-2A-TAL1-L2

198 pZDonor 2-GTW-3 I pENTR_L4_TRE-tight_Ri I pENTR_L1 Lacl-mkate-mirFF4_L2

199 pZDonor 2-GTW-3|pENTR_L4_UASgaI4_R1|pENTR_L1_Lacl-mkate-mirFF4_L2

200 pZDonor 3-GTW-4|pENTR_L4_UAS-T1TI-72bp_R1|pENTR_LiDD-mkateL2

201 pZDonor3-GTW-4|pENTR_L4_UAS-TIT1-72bpR1|pENTR_LIDD-EBFP2_L2

202 pZDonor3-GTW-4|pENTR_L4_TRE-LacOlOid-81.5 R1IpENTR_LiDD-EYFP-4xFF4_L2

203 pZDonor3-GTW-4|pENTR_L4_TRE-LacOlOid-59.5_R1IpENTR_LDD-EYFP-4xFF4_L2

204 pZDonor 3-GTW-4|pENTR_L4_UAS-T1Ti-72bpR1IpENTR_L1_Lac-FF5-miRFF4_L2

205 pZDonor 4-GTW-5|pENTR_L4_TRE-tight_R1|pENTR_L1 DD-VP16GaI4_L2

206 pZDonor 4-GTW-5|pENTR_L4_TRE-tight_R1|pENTR Li mKateL2

207 pZDonor 4-GTW-5|pENTR_L4_TRE-tight_R1|pENTR Li DD-EBFP2_L2

208 pZDonor 4-GTW-5|pENTRL4 TRE-tight_R1|pENTR_LiVP16Gal4_L2

209 pZDonor 4-GTW-5|pENTRL4_UASgal4_R1|pENTR Li rtTA3-L2

210 pZDonor 5-GTW-6|pENTRL4_UASgal4_R1|pENTR_LiLacI-mkate-mirFF4 L2

211 pZDonor 5-GTW-6|pENTR_L4_Hefla-LacO1Oid-12-11-09_R2|pENTR_L_mKate-FF5-
FF4_L2

212 pZDonor 5-GTW-6|pENTRL4 TRE-tight_RIpENTR_L1 DD-EBFP2_L2

213 pZDonor 5-GTW-6|pENTR_L4_TRE-tight_R1|pENTR_L1 EBFP2_L2

214 pZDonor 5-GTW-6|pENTRL4_UASgal4_R1IpENTR_LiEBFP2_L2

215 pZDonor6-GTW-7|pENTR_L4_UASgal4_R1|pENTR_L1_mKateL2

216 pLVR4R2_GTW3|pENTRL4_CMV5-CUO_R1-12-20-10|pENTR_LEYFP-FF6x4-L2

217 pZDonor-pEXPR_4-5_TRE-EYFP-2A-TAL1

218 pZDonorpEXPR_2-3_TagBFP-2A-VP16Gal4

219 pZDonor 1-GTW-2|pENTR_L4_Hefla R1IpENTR_LirtTA3-2A-NLS-mKate2_L2

220 pZDonor 1-GTW-2|pENTRL4_TRE-tight_R1|pENTRLIEYFP-2A-TALI-L2

221 pZDonor 2-GTW-3|pENTR_L4_UASrheo5x_R1|pENTRLiDD-rtTa3-4xFF4_L2

222 pZDonor 2-GTW-3|pENTRL4 UAS-T1T1-72bp_R1|pENTR_Li Lacl-FF5-miRFF4_L2

223 pZDonor 2-GTW-3|pENTR_L4_TRE-tight_Rl|pENTR Li EBFP2_L2

224 pZDonor 3-GTW-4|pENTRL4_CAGR1IpENTR_LimKate-2A-PuroL2

225 pZDonor3-GTW-4|pENTRL4 Hefia R1|pENTR_L1 rtTA3-2A-NLS-mKate2_L2
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pZDonor 4-GTW-5IpENTR L4_Hefla_R1|pENTRLi VP16Gal4 L2
227 pZDonor 5-GTW-6|pENTR L4_Hefla_R1|pENTR Li mKate-2A-Puro L2

228 pZDonor 5-GTW-6 I pENTR L4 Hefla-LacOlOid-12-11-09_R2|pENTR Li DD-EBFP2_L2

229 pZDonor 7-GTW-8 I pENTR L4 Hefia R1IpENTR Li EBFP2_L2

230 pZDonor 7-GTW-8 I pENTR L4 Hefla_R1|pENTR Li PuroL2

231 pZDonor 4-GTW-5 I pENTR L4_CAG R1|pENTR Li rtTA3-2A-NLS-mKate2 L2
232 pZDonor 5-GTW-6 I pENTR L4 CAG R1 I pENTR Li rtTA3-2A-NLS-mKate2_L2

233 pZDonor 2-GTW-3 I pENTRL4 UASrheo5x_R1|pENTR Li Lacl-FF5-miRFF4_L2

234 pZDonor i-GTW-2 pENTRL4 TRE-tight_Ri I pENTR_LLacl-T2A-EBFP2-miRFF4_L2

235 pZDonor 2-GTW-3 pENTRL4_Hefla-LacO1Oid-12-11-09_R2|pENTR_Li EYFP-FF4x4_L2

236 pZDonor 2-GTW-3 I pENTR L4 Hefia_R1jpENTR LiVP16Gal4 L2

237 pZDonor 2-GTW-3 pENTR L4_TRE-LacOiOid-81.5_Ri I pENTRLi EYFP-FF4x4_L2

238 pZDonor 2-GTW-3 pENTR L4_TRE-tight_Ri I pENTRLiDD-VP16Gal4_L2

239 pZDonor 2-GTW-3 I pENTR L4 UAS-T1T1-72bp_R1|pENTR_LimKate-FF5-FF4_L2

240 pZDonor 3-GTW-4| pENTR L4_CAG_Ri I pENTR Li rtTa3-T2A-VP16Gal4 L2

241 pZDonor 3-GTW-4| pENTRL4_Hefla-LacO1id-12-11-09_R2| pENTR_LimKate-FF5-
FF4_L2

242 pZDonor 3-GTW-4|pENTR L4 Hefla_R1|pENTR Li RheoAct-2A-Rec-FF3_L2

243 pZDonor 3-GTW-41 pENTR L4_TRE-LacOiOid-81.5_Ri I pENTRLimKate-FF5-FF4_L2

244 pZDonor 4-GTW-5 pENTRL4_CAG RI pENTR_Li rtTA3-2A-HygroL2

245 pZDonor 4-GTW-5 pENTRL4_CAGRi pENTR_Li rtTa3-T2A-VP16Gal4 L2

246 pZDonor 4-GTW-5|pENTR L4 Hefla_R1|pENTR Li RheoAct-2A-Rec-FF3_L2

247 pZDonor4-GTW-5|pENTRL4_UASrheo5xR|pENTR_Li DD-EBFP2_L2

248 pZDonor 5-GTW-6|pENTR L4_CAG_ R1|pENTR_Li VP16Gal4-T2A-EBFP2 L2

249 pZDonor i-GTW-2|pENTR L4 minCMVLux07 R1|pENTR_Li EYFP-2A-TALi-L2

250 pZDonor6-GTW-7|pENTRL4_HefiaRIpENTR Li_65H4LuxRFmNLSL2

251 pZDonor 1-GTW-2-TRE-LacO1Oid-81.5-rtTA3-FF4x4

252 pZDonor 1-GTW-2-UASrheo5x-Lac-FF5-miRFF4

253 pZDonor 1-GTW-2-UASrheo5x-Lac-T2A-EBFP2-FF5-miRFF4

254 pZDonor 4-GTW-5-TRE-LacO1Oid-81.5-DD-rtTa3-4xFF4

255 pZDonor 4-GTW-5-TRE-LacO1Oid-81.5-rtTA3-FF4x4

256 pZDonor 5-GTW-6-TRE-LacOiOid-81.5-DD-EBFP2

257 pZDonor 5-GTW-6-TRE-LacO1Oid-81.5-EBFP2-4xFF4

258 pZDonor 7-GTW-8-Hefia-VP16Gal4

259 pZDonor 7-GTW-8-Hefia-VP16Gal4-T2A-EBFP2

260 pZDonor 5-GTW-6-TRE-LacO1Oid-81.5-mKate-FF5-FF4

261 pZDonor 5-GTW-6-TRE-LacOiOid-81.5-DD-mkate

262 pZDonor 1-GTW-2-TRE-tight-Lacl-FF5-miRFF4

263 pZDonor 2-GTW-3-Hefia-Bleo

264 pZDonor 2-GTW-3-Hefia-EBFP2

265 pZDonor 2-GTW-3-UASgal4-LacI-FF5-miRFF4

266 CAG-BxBl integrase
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pZDonor 1-GTW-2-Hefla-DD-EYFP-2A-rtTA3-4xFF4

268 pZDonor 1-GTW-2-Hefla-DD-rtTa3-NES-4xFF4

269 pZDonor 1-GTW-2-UAS-T1T1-72bp-DD-EBFP2-T2A-VP16Gal4

270 pZDonor 2-GTW-3-UAS-T1T1-72bp-m Kate

271 pZDonor 3-GTW-4-CAG-rtTa3-T2A-VP16Gal4

272 pZDonor 3-GTW-4-CAG-rtTa3-T2A-VP16Gal4-E2A-mkate

273 pZDonor 3-GTW-4-Hefla-65H4LuxRFmNLS

274 pZDonor 3-GTW-4-Hefla-EBFP2-3xNLS

275 pZDonor 3-GTW-4-Hefla-LacOlOid-EYFP-2A-TAL1-4xFF4

276 pZDonor 3-GTW-4-TRE-tight-DD-EBFP2-T2A-VP16Gal4

277 pZDonor 4-GTW-5-CAG-rtTa3-T2A-VP16Gal4

278 pZDonor 4-GTW-5-Hefla-Bleo

279 pZDonor 4-GTW-5-Hefla-EBFP2-3xNLS

280 pZDonor 3-GTW-4-CPPT-UASgaI4-mir223-destRFP-WPRE from Velia Siciliano

281 pZDonor 1-GTW-2-minCMVtet(TRE)-tTA-IRES2-GFP-WPRE from Velia Siciliano

282 pZDonor 2-GTW-3-minCMVtet(TRE)-mir223-mcherry-WPRE from Velia Siciliano

283 pZDonor 1-GTW-2-TRE-LacOlOid-81.5-DD-EYFP-2A-rtTA3-4xFF4

284 pZDonor 1-GTW-2-TRE-LacOlOid-81.5-DD-rtTa3-NES-4xFF4

285 pZDonor 1-GTW-2-UAS-T1T1-72bp-Lacl-T2A-EBFP2-miRFF4

286 pZDonor 3-GTW-4-CAGop-EYFP-2A-TAL1-4xFF4

287 pZDonor 3-GTW-4-Hefla-Bleo

288 pZDonor 4-GTW-5-CAG-rtTa3-T2A-VP16Gal4-E2A-mkate

289 pZDonor 4-GTW-5-Hefla-LacOlOid-EYFP-2A-TAL1-4xFF4

290 pZDonor 4-GTW-5-minCMVLoxO7-EYFP-2A-TAL1

291 pZDonor 5-GTW-6-CAG-rtTa3-T2A-VP16Gal4

292 pZDonor 5-GTW-6-CAG-rtTa3-T2A-VP16Gal4-E2A-mkate

293 pZDonor 1-GTW-2-TRE-tight-Lacl-mkate-mirFF4

294 pZDonor 2-GTW-3-UAS-T1T1-72bp-EBFP2-4xFF4

295 pZDonor 3-GTW-4-Hefla-LacOlOid-TAL1

296 pZDonor 1-GTW-2-minCMVLuxO7-EYFP

297 pZDonor 1-GTW-2-TRE-tight-LmrA-VP16

298 pZDonor 2-GTW-3-CAGop-EYFP-FF4x4

299 pZDonor 2-GTW-3-pminCMV-LmrAx6-EYFP

300 pZDonor 2-GTW-3-UAS-T1T1-72bp-EBFP2

301 pZDonor 2-GTW-3-UAS-T1T1-72bp-EYFP

302 pZDonor 3-GTW-4-CAGop-EBFP2-4xFF4

303 pZDonor 3-GTW-4-CAGop-TAL1

304 pZDonor 3-GTW-4-Hefla-LacOlOid-EBFP2-4xFF4

305 pZDonor 3-GTW-4-UAS-LmrAx2-EYFP

306 pZDonor 4-GTW-5-minCMVLuxO7-TAL1

307 pZDonor 5-GTW-6-CAG-EBFP2
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3 pZDonor 1-GTW-2-TRE-tight-LmrA

309 pZDonor 1-GTW-2-Hefla-LmrA

310 pZDonor 1-GTW-2-Hefla-LmrAVP16

311 CMV-iRFP

312 pZDonor 1-GTW-2-TRE-tight-EBFP2-T2A-Lacl-FF5-mirFF4

313 pZDonor 1-GTW-2-UASrheo5x-DD-rtTa3-NES-4xFF4

314 pZDonor 5-GTW-6-Hefla-LmrA-VP16

315 pZDonor 1-GTW-2-TRE-tight-Lacl-FF5-miRFF4

316 pZDonor 1-GTW-2-TRE-tight-TAL1

317 pZDonor 2-GTW-3-UAS-LmrAx2-TAL1

318 pZDonor 2-GTW-3-UAS-T1T1-72bp-LmrA

319 pZDonor 3-GTW-4-UAS-LmrAx2-EBFP2

320 pZDonor 3-GTW-4-UAS-LmrAx2-EYFP

321 pZDonor 3-GTW-4-UAS-LmrAx2-TAL1

322 pZDonor 3-GTW-4-UAS-T1T1-72bp-EYFP

323 pZDonor 3-GTW-4-UAS-T1T1-72bp-LmrA

324 pZDonor 4-GTW-5-UAS-LmrAx2-EYFP

325 pZDonor 4-GTW-5-UAS-T1T1-72bp-EYFP

326 pZDonor 4-GTW-5-pminCMV-LmrAx6-iRFP

327 pZDonor_5'cHS4x2-3-GTW-4-CAGop-TAL1-4xFF4

328 pZDonor 5'cHS4x2-3-GTW-4-Hefla-LacOlOid-TAL1-4xFF4

329 CAGop-LmrA-4xFF4

330 Hefla-LacO1Oid-LmrA-4xFF4

331 TRE-tight-DD-VP16GA14-NES

332 UAS-LmrAx2-Lacl-mirFF4

333 pLV-TRE-IRES2-EGFP

334 pLV-Ubc-IRES2-mCherry(1)

335 pLV-Ubc-IRES2-mCherry(2)

336 pLV-Ubc-VP16Gal4-IRES2-mCherry (1)

337 pLV-Ubc-VP16Gal4-IRES2-mCherry(2)

338 pGal4UAS-IRES2-EGFP

339 pIRES2-Bla

340 pPacl-Hefla-LacOlOid-EcoRI

341 pLV-Hefla-TetO2-Nhel-LaclKRAB-IRES2-EGFP

342 pLV-Hefla-TetO2-Nhe-IRES2-DsRed2

343 pLV-Hefla-LacOlOid-Nhe-IRES2-EGFP

344 pLV-Hefla-LacOlOid-TetRKRAB-IRES2-mCherry

345 pLV-Gal4UAS-MyoD-IRES2-EGFP

346 pLV-TRE-Gal4VP16-lRES2-Puro

347 pPacl-Hefla-CuO-EcoRI

348 pLV-Hefla-LacOlOid-CymR-IRES2-mCherry
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pLV-Hefla-CuO-LaclKRAB-IRES2-EGFP

350 pGal4UAS-CuOb-IRES2-EGFP

351 pLV-Gal4UAS-CuOb-IRES2-EGFP

352 pLV-Hefla-LacOlOid-CymR-IRES2-Bla NON functional

353 pLV-Hefla-LacOlOid-CymRKRAB-IRES2-mCherry NON functional

354 pLV-Hefla-TetO2-Gal4VP16-IRES2-DsRed2

355 pLV-Ubc-LaclKRAB-IRES2-Hygro

356 pAD-CMV5-CymR

357 pAD-CMV5-CuOg-LacZ

358 pTagFP635C (CMV-mKate with C-terminus MCS)

359 pTagFP635N (CMV-mKate with N-terminus MCS)

360 pLV-minCMVLux07-rtTA-IRES2-DsRed2

361 pLV-Ubc-CymR-Hef1a-Cer-2A-Puro

362 pLV-minCMVLux07-IRES2-EGFP

363 pPG6600

364 plRESBLEO3 midi

365 pLV-Hefla-LacOlOid-Nhel-IRES2-EGFP

366 pLV-Hefla-TetO2-Nhe-IRES2-DsRed2

367 pLV-Tre-NgnIEYFP-2A-mkate-Ubc-Puro

368 pLV-Ubc-p65H4LuxRFmNLS-IRES2-Hygro

369 pLV-Hef1a-rtTa-his-IRES2-puro

370 #148

371 #149

372 pAD-CMV5-CuOs-LacZ

373 pAD-CMV5-CuOg-LacZ

374 pAD-CMV5-CymR

375 pAD-CMV5-cta

376 pAD-CMV5-rcta

377 pAD-CR5-LacZ

378 Nef7 from gene art

379 plRESBLE03 from clontech

380 pACT-MyoD

381 pBIND-id

382 pGL4.31

383 Nef7 midi

384 pLEIGW

385 PMT413

386 PMT1002

387 pBIND-id midi

388 pACT midi

389 pGL4.31 midi
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