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Abstract—We present a novel method of building comfort
control, focused around the occupant. Custom sensing, communi-
cation, and actuation hardware were developed to locate users in
a building, and measure various parameters directly on the body.
These signals were used to infer user comfort and control the
air-conditioning system to direct air flow where it was needed,
when it was needed. A three month study of the system was
conducted, with four weeks of this experimental control strategy
compared to the previous four weeks of standard control. An
improvement in both comfort and energy usage are shown as a
result of this user-centric control system.

I. INTRODUCTION

Creating an appropriate indoor climate is essential to worker
productivity [1] and personal happiness. It is also an area
of large expenditure for building owners [2]. The largest
consumer of energy in the United States is buildings, with
residential stock accounting for 21% and commercial stock
accounting for 18%, combining to 39% [3]. Within buildings
themselves, the largest energy sinks are the heating, ventilation
and air-conditioning (HVAC) systems. In residential appli-
cations, HVAC accounts for 26.1% of the total energy us-
age [4], whereas in commercial applications, HVAC accounts
for 53.4% [5]. This makes building support systems, especially
in the case of commercial buildings, a prime target for energy
savings.

But, what can be done to reduce costs in these areas? Either
more efficient ventilation technologies can be developed, or
the existing technologies can be used more efficiently. Con-
sidering the long life span of buildings, and the fact that
most commercial buildings are more than 15 years old [6],
the latter proposition seems more cost effective, as merely
adding a new control and sensing layer would be far less
expensive than replacing a whole ventilation system. This
idea is promoted further by the notion that most buildings
are currently being run inefficiently due to the non-adaptable
nature of their control systems, and that savings of up to 35%
are possible [7]. As Vastamäki et al. clearly describe in their
analysis of thermostat usage [8], the fundamental efficiency
of the building and the comfort of the occupants both suffer
when the occupant does not understand the behavior of the
building. Users are shown to consistently over-turn thermostat
dials in response to uncomfortable conditions, causing thermal
oscillations that waste energy and create an uncomfortable
environment.

Work to create such responsive environments began in
earnest with the beginning of ubiquitous computing in the late

1980s. At Xerox PARC, offices were equipped with radio-
frequency identification (RFID) and light, temperature, and
occupancy sensors, which were allowed to turn off outlets,
adjust HVAC systems, and control lighting [9]. Portable de-
vices allowed users to edit preferences wherever they were in
the building. Lee et al. [10] use a similar approach to resolve
the conflicting comfort needs of users.

These very programmatic responses were challenged by
Mozer, whose neural networked house [11] would purpose-
fully turn lights off in order to understand if they were
needed. Although this creates a longer learning curve than
preassigned knowledge, it is capable of adapting over time
without intentional user input. Adaption has also been explored
by modeling buildings as multi-agent systems [12].

Ultimately, the majority of HVAC control work is focused
on energy savings and temperature regulation, not human com-
fort. Although the control algorithms and adaptive strategies
are directly applicable, the determination of personal comfort
is not a solved problem. Multiple factors have been studied
in their relationship to comfort, with the Predicted Mean
Vote (PMV) [13] being the most common metric. The PMV
averages user comfort over large populations considering tem-
perature, humidity, wind speed, thermal radiation, activity, and
clothing. This works well in practice [14], but does not fit all
needs. A variety of other factors influence comfort, including
age [15], local climate and culture, and the availability of
natural ventilation [16].

The major use of the PMV is to set boundaries on tempera-
ture, humidity, and wind speed to a comfortable level within a
building. Distributed sensor networks have been employed in
attempts to assess comfort by measuring PMV values in real-
time [17] [18] [19], but these involve cumbersome hardware,
invasive systems, or have limited accuracy.

These previous works, with the exception of [19], attempt
to assess the PMV as a global variable: a fixed standard for
all people. Megri et al. [20] use PMV sensors similar to [18],
and poll the user as [19] does, but instead use a support vector
machine algorithm to determine the indices of the occupant’s
comfort, rather than using a PMV table. They show 99%
accuracy at predicting comfort in this manner, which points
to the possibilities of automatic recognition of comfort, on
a person-by-person basis. Unfortunately this work involved
large, tethered sensors which are required in three locations in
close proximity to the user.

The problem is not only one of assessing an individual’s
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personal comfort level - an effective control system must
also be able to locate the person and affect that proximate
temperature. As temperatures can vary greatly, even within the
same room, this proves a difficult task. Forced air distribution
systems, particularly underfloor methods, can be tapped at
points along the run to allow air to circulate locally. Many
companies make systems [21] which implement this, usually
under the name Task Ambient Conditioning (TAC). These
systems allow the user to adjust air flow, and sometimes
temperature, at a local vent. Not only is the availability of fresh
air shown to give greater comfort, it is also more efficient [22],
as air is only chilled where needed, and larger sections of the
building can be allowed to drift out of normal comfort zones.
TAC systems are very expensive and difficult to install after
initial construction, however.

Our work addresses these problems by creating and testing
at scale a uniquely adaptive control structure based upon
both preassigned and dynamic knowledge. The user is only
required to press a button indicating the direction of dis-
comfort, if and when she is uncomfortable, and the building
deals with the difficult tasks of dynamic energy management
and conflict resolution. Specific sensor hardware is developed,
which make the task of installing and operating these systems
easier. Adaptive pattern recognition and control algorithms are
presented, along with their efficacy in increasing the personal
comfort of building occupants while reducing building energy
consumption.

II. SYSTEM OVERVIEW

The Personalized HVAC System consists of four main
components: portable nodes, room nodes, control nodes, and
a central network hub. A diagram of a typical installation
can be seen in Figure 1. These nodes work together to track
user location and comfort, make control decisions, and actuate
the necessary airflow sources. The portable nodes and control
nodes communicate via wireless to the room nodes, which
relay the data and control commands to the central network
hub via ethernet. The wireless protocol is a low-power, 2.4GHz
communication scheme based on the 802.15.4 MAC layer. We
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Fig. 1. Typical installation with fixed and wearable portable nodes(1 – 3),
room node(4), control nodes(5 – 6), and the central network hub(7).

briefly overview the system design in this section - Ref. [23]
provides much more detail.

This sensor network was deployed on the third floor of the
MIT Media Laboratory’s Wiesner Building with four offices
and one large common space being outfitted, encompassing the
workspace of 10 people. Two operable windows exist in this
space that were equipped with control nodes and motorized
openers. There were also seven variable-air-volume (VAV)
dampers, which were retrofit with control nodes and motors
for regulating chilled air (no heat sources were used).

At the heart of the system is the building occupant; this
is where the comfort information resides. To best assess the
occupant’s comfort level, a portable node was developed. This
sensor node is lightweight and small enough to remain almost
unnoticed by its user. It weighs 30g, and measures 54mm by
40mm by 14mm when packaged (see Figure 2). It also has low
average power consumption (11µA, giving a two year coin-
cell battery life), as frequent battery recharges or large battery
size are nuisances to the user.

This portable node senses the local temperature, humid-
ity, light level, and inertial activity level of the user. The
continuous inertial sensing is accomplished at a fraction of
what’s typically required via the use of a specially designed
passive piezo accelerometer with an analog activity integrator.
It also has three buttons on the side, which allow the user to
input current comfort state (one button each for hot, cold, and
neutral). These data are sent wirelessly, at one minute intervals,
to the central network hub via the room nodes. Fixed versions
of portable nodes were also placed in each room, next to the
preexisting thermostat, and on the exterior of the building to
gather local climate data.

The actuation of the various air sources (windows and
air-conditioning dampers) is achieved via control nodes (see
Figure 3), which are tethered to a 24VDC power source, and
have a motor that opens or closes the associated mechanical
element via wireless commands. They also monitor local wind
speed, temperature, humidity, and light level. These data, along
with the current state of the motor, are sent off wirelessly at
one minute intervals to the central network hub via the room
nodes.

The backbone of the system is comprised of room nodes
(see Figure 4), which receive data from the portable and
control nodes and act as network coordinators, ensuring that
each proximate node is only talking to one device. Since each
room has at least one room node, the room-scale locations

Fig. 2. Portable node as worn on a user’s wrist.
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Fig. 3. Control node circuit board.

Fig. 4. Room node circuit board.

of the portable nodes can be inferred from the received
signal strength indicator (RSSI) of the RF device. They also
assess the local temperature, humidity, light level, and passive
infrared (PIR) activity level and send these data to the central
network hub at thirty second intervals. Communication to the
central network hub is accomplished via an on-board ethernet
module.

The central network hub is a computer that receives all of
the data over ethernet and processes it according to the comfort
and control algorithms. It checks for current activity in the
network, and only responds to new data, resetting room nodes
if they are no longer active. It also backs up current system
state in case of failure, and timestamps and logs each data
point for offline system analysis.

III. CONTROL ALGORITHMS

To effectively handle the complex mapping requirements of
this MIMO network, a hybridized control system is employed.
In a hybrid system, individual nodes exchange information
and trade off responsibilities in an ad-hoc, but hierarchical
fashion. This fits particularly well with the topology of sensor
networks, as the control layer matches the physical instantia-
tion. A full high-level dataflow chart can be seen in Figure 5.
Our system consists of seven types of software modules: Con-
trol Modules, Location Modules, Window Modules, Outdoor
Modules, Thermostat Modules, Portable Modules, and Room
Modules. Each node in the network has a specific instantiation
of a module associated with it to keep track of its own local
state and needs.

The Control Modules receive setpoint commands from the
Window, Thermostat, Room, and Outdoor Modules, and make

Fig. 5. Control system flowchart.

decisions as to how to appropriately control the associated
damper and window motors to reach these setpoints. They
check for full open or full closed actuators, and implement a
positional-integral (PI) control scheme around a small dead-
band, maintaining temperature or comfort profiles without an
excess of wireless communication or motor motion.

The Location Modules aggregate all the wireless transmis-
sions from the portable nodes, and create a location table
that the Room Modules can access to find out who is where.
The location is based upon the strongest RSSI from the room
nodes, and a voting algorithm over the past three responses
is used to smooth out the data. Although location accuracy
could be improved by also using the RSSI from the control
nodes in the same room with a more sophisticated estimator,
this simple method worked well enough for our application
because of the isolating effect of metal studs in the walls, as
can be seen in Figure 6 for a typical occupant over a one hour
time period. Any brief confusion, as seen at the end of the
plot, was generally rectified by the voting algorithm.

The Window Modules receive information from the window
control nodes, and keep a log of when the window was last
manually operated, which is accessed by the Outdoor Modules
when determining whether to open or close the windows. The
Window Modules also monitor the air speed coming in through
the window, and close the windows if it becomes too windy.

The Outdoor modules receive outdoor temperature and hu-
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Fig. 6. Example RSSI values across all room nodes for an occupant of Room
44.

midity information, and poll the indoor Thermostat Modules to
decide whether to open the windows and let in cool outside air.
In this way, the air-conditioning can be shut off to minimize
energy consumption, while still maintaining a comfortable
room temperature.

The Thermostat Modules track individual room air temper-
atures, and poll the Room Modules to determine whether or
not they should be performing control actions. Based upon the
Room Modules’ states, the Thermostat Modules will either run
normal control, setback control, or no control at all. ‘Normal’
control, performed when the motion detector indicates that
the room is occupied but no wearable module is detected,
uses the wall-mounted sensor to regulate temperature to a
predetermined setpoint. In setback control, when the room
is assumed to be unoccupied, the temperature is raised 4◦F
to conserve energy. When wearable sensors are present, the
Room Modules are active, and the VAV damper is regulated
by the sum of all occupants’ comfort states, as inferred by
the wearable nodes and portable modules. The Thermostat
Modules also determine if the room is too cold, at which point
the Window Modules can not open the windows (outside air
was only used for cooling).

The Portable Modules keep track of each individual user, i.e.
whether they are active and comfortable. The activity recogni-
tion algorithm takes into account the user’s local temperature,
activity mean, and activity variance to determine whether the
portable node is being worn, or is just being jostled on a
table. This is an important criterion, as the temperature data
from a node that is not being worn can not be allowed to
control the room’s air-conditioning system. This problem is
made more difficult by the fact that the temperature sensor has
a considerable time lag, and users are often sitting quite still
while working at their desks. An example of this algorithm in
practice can be seen in Figure 7. Short false positive spikes are
common due to the sensitive nature of the algorithm, as fast

Fig. 7. Example activity algorithm results over four days - the node was not
worn on the first and last day.

system response time was desired - these have only limited
effect on system performance, however.

The Room Modules poll the Portable Modules and Location
Modules to find out if users are currently active, where they
are located, and if they are comfortable. Based upon these
findings, they either relinquish control to the Thermostat Mod-
ules, or work with all sensor data to minimize the discomfort
in the rooms. The PIR motion sensor data is used by the Room
Modules to know whether the room is occupied, and predict
when it will next be occupied. This prediction is based upon
the arrival times of the past week, and is critical to maintain
the room at an appropriate temperature when users first enter.
It is also inefficient to excessively cycle the air-conditioning
system, so a three hour timeout is placed on room vacancy
detection.

IV. COMFORT ALGORITHM

In order for the system to function effectively, it must have
a metric by which to judge how far the user is from being
comfortable. This places a number of difficult constraints on
what types of algorithms can be used, but is required due
to the fact that the output of the implemented algorithm must
drive a control loop. For this reason, it must have a monotonic
structure to avoid instabilities and local minima. These could
be accounted for through a non-linear control scheme, but
this is avoided in order to minimize the number of variables
involved in determining system stability and performance.
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Many standard pattern recognition techniques are inade-
quate for this control task, as they seek to draw boundaries
around similarly labeled data, giving accurate classification,
but no distinction of levels within those classes. A simple
Bayesian analysis could give a probability of comfort, but
would require a much more accurate model than is currently
available, given the limited set of on-body comfort indices
used. Only temperature and humidity are measured on-body,
whereas the PMV also requires clothing level, metabolic rate,
and air flow. This problem is compounded by the limited
labeling of the acquired data. In comparison to the PMV’s
seven point scale, users of this system only have three choices:
hot, cold, or neutral. This means there is no way of knowing
exactly how hot or cold they are at the instant a button is
pressed. This metric must be inferred from the distribution of
received data.

Not only are the labeled data points ambiguous as to their
level of discomfort, but they are also very sparse in their
occurrence. Users are not required to press any buttons, but
only asked to do so if they feel uncomfortable, limiting the
amount of labeled data points to an average of about one per
person per day. Another issue faced in this reduced data set
is the lack of an even distribution of hot and cold labels. For
some users, the room was never cold enough to make them
feel cold, so only hot data points exist, giving no information
by which to determine a lower limit on comfort.

For any system to be effective, it must deliver predictable
results for users, or they might respond in ways which counter
both the goals of the system and themselves. For this reason, a
linear discriminant was chosen, which creates a clearly defined
boundary from which a positive or negative distance can be
measured. The Fisher Discriminant seeks the most effective
rotation matrix for the given data set to produce a projection
on a lower dimensional space with high class separation. It
takes a statistical approach of finding the greatest between-
class scatter for the lowest within-class scatter. For this case,
it is a simple matter of reducing a two dimensional space
(temperature and humidity) to one, with the only difficulty
being in choosing a decision boundary. Rather than the usual
approach of using the intersection of sample distributions,
the decision was based upon discriminating between points
that represent the boundary conditions. In this case, the most
representative training points are assumed to be those with
the most extreme values (e.g. ‘hot’ data with the lowest
temperature values), and a separating line is created at the
mean of these data. The comfort distance can then be simply
computed as the distance to this boundary.

In order to accommodate the adaptation of the comfort
algorithm, a limited set of data points were used in creating
the decision boundary, with new points replacing the old. Nine
points each of ‘hot’ and ‘cold’ labeled data were used, which
allowed a complete update in two to three weeks (users press
buttons on average once a day), which was enough time for
users to adapt the system before the end of the experiment. In
cases where nine data points were not available, as many as
were present were used. If less than two data points existed,

Fig. 8. Example decision boundary for Fisher Discriminant.

two points were selected that created a reasonable line in
comparison to other users. A representative result of the Fisher
Discriminant is shown in Figure 8, and more details on the
analysis are given in [23].

The distance between the ‘hot’ and ‘cold’ labeled points
varied greatly for the different users. Accordingly, the cal-
culated comfort distance also varied greatly between users.
To normalize this reported comfort distance so the control
system could effectively arbitrate between users, the mean
distance of ‘hot’ and ‘cold’ points from the decision boundary
was calculated. As new temperature and humidity data were
collected by a user’s portable node, the final comfort output
was computed as the comfort distance divided by this mean
distance. In this way, it is assumed all users are equally
uncomfortable for a given comfort value.

V. EVALUATION

In order to assess the efficacy of a body-worn comfort
control system, a long-term user study was performed from
May 18th through August 21st (summer) of 2009. The study
was carried out with a mostly graduate student population
at the MIT Media Laboratory. Ten people were assigned
individual portable nodes, and four offices and a large common
area were equipped with room nodes and control nodes.

Phase One of the study ran from May 18th to June 21st.
No actuation was performed for this period, and data were
merely gathered on how users interacted with the devices. In
order to have a fair baseline for comparison, the maintenance
department made repairs to the VAV damper controllers and
thermostats for all of the offices and common spaces, certi-
fying that the basic 1985-vintage HVAC operation met their
standard. Phase Two of the study ran from June 22nd to July
26th. This stage consisted of baseline comfort data collection.
Users were asked to complete a questionnaire regarding their
comfort under the current HVAC system. They were also asked
to wear the portable nodes, and press a button whenever they
felt inclined to do so (either hot, cold, or neutral).
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Phase Three ran from July 27th until August 21st. During
this period, the experimental control system was run, with the
HVAC system and window motors being controlled via the
various sensors in the network as described earlier. Users were
told that the climate control system would respond to their
wearable sensor, and would try to mediate the comfort pref-
erences of each occupant of the individual office or common
space. Periodic surveys were administered during this period
to assess the users’ comfort level, and their beliefs about the
system. Phase Three is subdivided into three sections: Week
Two, Week Three, and Week Four.

A. Energy Metrics

The only method the system had available to measure
energy usage was via the air flow sensors retrofitted onto the
VAV boxes. Although energy monitors on the chilled water
lines and fan motors would give more accurate results, the
area being controlled by the experimental system was a small
percentage of the total space being cooled, hence any effects
would be unnoticeable. Nonetheless, our sensors show the fan
usage for the space very accurately. Since fan energy usually
represents 40% of total HVAC power consumption [24], this
is an important metric by itself. The chiller energy can be
estimated by multiplying by the number of cooling days.
Cooling days are an integration, over an entire day, of the
outdoor temperature difference from 65◦F. This is often used
to determine how much energy is required to cool a space, as it
represents the temperature difference the HVAC system must
produce, and has been shown to give linear correlations [25].
Our fan data is thus divided through by the number of degree
cooling days to make the results more generally applicable -
this energy metric, showing each room’s contribution, can be
seen in Figure 9.

It can be clearly seen that the total chilled air used decreased
under active control. A cursory approximation of energy
savings, comparing Phase Two and an average of Week Three
and Week Four, shows a reduction of 75%. This is based upon
an estimated 40% fan usage times the normalized VAV air
usage, plus an estimated 60% chilled water usage times the
non-normalized VAV air usage. The actual savings are much
smaller for two reasons. Firstly, the main savings shown are
due to Room 36 and Room 40 reductions, which represent
an unfair comparison, as the area they cooled was also
serviced by eight other VAV boxes, none of which were under
experimental control. Secondly, the HVAC system, despite
having been repaired, was not running perfectly for all rooms
during Phase Two.

Just looking at energy consumed by the ventilation system,
we saw an 8% average decrease in chilled air usage per
degree cooling day, which, when multiplied by the 40%
fan usage metric, can be taken as a lower energy savings
bound of 3.2%. This, however, doesn’t include reduction
in refrigeration, which will contribute very significantly to
energy savings. As we couldn’t measure this directly in these
tests, we can infer it from temperature differences. To best
account for this energy usage, Room 44 will be analyzed

Fig. 9. Chilled air usage per cooling degree day by room.

in detail. This room is selected because it was functioning
perfectly during Phase 2, having had both the thermostat and
damper motor controller replaced. During Phase 2, its average
regulated temperature was 73.1◦F. Comparing this to Week
Three’s data, as this week had a very similar average number
of cooling degree days to the baseline, gives an increase of
average temperature to 73.5◦F, a decrease in air usage of
17%, and a decrease in air usage per cooling degree day
of 4%, summing to an estimated 11.8% energy savings. The
average temperature increase across all rooms was 0.8◦F. And,
assuming a linear correlation between temperature change
and energy savings, this average temperature increase would
indicate a 24% energy saving. Additional insight into energy
saving is provided in [23].

B. Comfort Metrics

There are two ways in which the comfort of the ex-
perimental subjects was measured: through ‘hot’ and ‘cold’
button presses and through weekly surveys. A comparison
between the Entrance Surveys and Exit Surveys is shown in
Figure 10, with the Entrance Survey representing user beliefs
under normal unretrofit HVAC control, and the Exit Survey
referencing the four weeks of experimental control. These
surveys had identical questions, and were taken two months
apart from each other, making them a relatively unbiased
indicator of user preferences.

During Phase Three, weekly polls of thermal comfort level
were performed. These employed the seven point scale used in
the PMV, and can therefore be compared to standard HVAC
practices of keeping the temperature within bounds of 80%
occupant satisfaction. The PMV counts the ‘Slightly Cool’
through ‘Slightly Warm’ categories as being comfortable,
and the occupants were in this zone 81% of the time. This
percentage increased over the study, starting at 76% and
ending at 85%, most likely due to the system learning the
preferences of the users. Details are presented in [23].

For the majority of the users, over 95% comfort rates were
common. In fact, the only users for which this is not the case
are those for which ‘cold’ data points had to be manually
entered (as they never punched ‘too cold’ on their wearable),
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Fig. 10. Response to entrance and exit surveys: “Overall, I am satisfied with
the comfort level in my office”.

and User 20, whose data was not received during Week Two
because of radio problems. User 20’s comfort increased from
20% to 75% after this bug was fixed, suggesting that our
results are not merely placebo gains.

An insight into how well our comfort calculation algorithm
performs is given in Figure 11, which shows a plot of users’
reported comfort level versus the system’s beliefs of their com-
fort. The data is taken from weekly polling of users, ranging
from −3 (‘cold’) to +3 (‘hot’). The computed comfort uses a
similar metric, with greater positive values representing greater
heat discomfort. Nodes that were partly malfunctioning at the
time this data was taken are shown with asterisks in the plot,
to help differentiate their performance from the functioning
nodes (sensor data, hence comfort level, is still valid here,
but the control algorithm wasn’t functioning properly, which
resulted in the higher discomfort levels). Lines are also drawn
on this plot to indicate the deadband within which the active
comfort control algorithm would decide that no action was
required.

control deadband

Fig. 11. Reported comfort versus computed comfort for all users: Week Two
through Week Four.

With the exception of a few points, the computed comfort
tends to follow the reported comfort. It is also important to
note that the level of reported comfort used in the PMV to
determine comfort boundaries is ±1, which is where all the
functioning nodes lie, indicating that our control system is
working properly. Even for the majority of the malfunctioning
nodes, the system knew that those users were hot, but was
unable to respond accordingly.

This personalized system also arbitrates between users shar-
ing a common space. A plot of two users’ computed comfort
distances can be seen in Figure 12, along with the associated
VAV damper air flow, to indicate the control system’s actions.
When User B enters the room, it can be seen that the damper
shuts off the airflow, as that user is assumed to be cold.
When User A enters at 2h, and is assumed hot because of
her different comfort profile, the system increases the air flow
in an attempt to average the comfort of the two users. The
damper is full open, and the comfort distances change only
slightly, although in the correct directions. When each user
leaves, the system again compensates correctly, as quickly as
the system response and room heat capacity allow, which is
often quite slow.

Despite this fairly long response time, users still felt that
the system was responding to their needs, and trying to
average between all occupants. 80% of the users responded
favorably to the survey question, “I believe the personalized
comfort system is doing a good job of balancing the thermal
comfort needs of all the people in my workspace.” From
personal recollection, users would often look forward to their
officemates leaving, so they could have a more comfortable
environment.

Another metric of personal comfort is the number of button
presses made during the experiment, since each user had the
ability to register his or her personal comfort at any point in
time via the wearable nodes. As detailed in [23], the average
number of button presses decreased 14% between Phase Two

Fig. 12. Example arbitration between users.
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and Phase Three. This is not a dramatic change, but it is
significant, due to the fact that there was greater incentive
during Phase Three to press buttons, as this would actually
change environmental conditions. Users were clearly being
made more comfortable by the experimental system, despite
slow control responses.

VI. CONCLUSIONS

Although the energy savings vary depending upon as-
sumptions, it is clear that our experimental control system
significantly reduced chilled air usage, and we estimate an
energy savings of up to 24% over the standard HVAC control
system that was running previously. It accomplished this by
only cooling areas as much as required to maintain occupant
comfort, and not cooling areas when occupants were not
present. It also worked to maintain room temperatures at an
equitable level for all involved. It was able to do all of this as
a result of an ultra-low-power, wrist worn sensor node, which
made the building aware of its occupants’ state via sensor data,
and simple ‘hot’ and ‘cold’ button presses.

These energy savings were the direct result of improving
user comfort. In a well-functioning building, it is not the
case that the temperature is either too hot or too cold, but
rather that it is too hot or too cold for particular individuals:
the air is not being distributed effectively. A number of
personal cooling systems are commercially available, but these
are expensive, and in some cases impossible to install (e.g.
underfloor systems). Our system overcomes these limitations
by using wireless sensors and actuators, enabling the retrofit
of older and less efficient buildings. Indeed, it exceeded the
80% comfort goal, which all commercial buildings aspire to,
but very few meet.

Our future work will explore longer studies involving more
people and an entire building that we can control year-round
without extensive retrofitting (as it is already equipped with
a modern HVAC system). We will also explore variations
on the wearable sensor, perhaps wearing it elsewhere on the
body or integrating it into a watch, which would be more
comfortable for our users. We will explore ways of bet-
ter accommodating transients (when users transition between
thermal environments), and mining all sensor data (including
integrated activity level) for inferring comfort. We are also
integrating our system with mobile phone applications and a
pervasive display network installed throughout our building
to explore aspects of persuasive computing - showing users
how the system is working to keep them comfortable while
reducing energy consumption and encouraging them to accept
a wider range of comfort in exchange for energy impact.
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