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We investigate Zeeman relaxation in cold Sb(4S◦
3/2)–He collisions in a magnetic field. Ensembles of >1013

laser-ablated Sb atoms are cooled in cryogenic 4He buffer gas to 800 mK and inelastic collisions are observed
to equilibrate the mJ -state distribution to the translational temperature. The ratio γ of momentum transfer to
inelastic collision rates is measured to be � 9.1 × 102. We also perform quantum scattering calculations of
Sb–4He collisions, based on ab initio interaction potentials, that demonstrate significant anisotropy of the ground
state induced by the spin-orbit interaction. Agreement is obtained between theory and experiment with a ≈10%
increase in the ab initio potential depth. This work suggests that buffer-gas-cooled pnictogen atoms lighter than
Sb can be loaded into a magnetic trap.

DOI: 10.1103/PhysRevA.88.012707 PACS number(s): 34.50.Cx, 34.20.Cf

I. INTRODUCTION

The study of inelastic collisions between atoms at low
temperatures has expanded over the last decade to include a
wide range of atomic systems exhibiting a range of atomic
structures and interactions. Cold collisions of atoms with
structureless rare gas targets, in particular, are a useful tool
for studying anisotropy in the electron-density distribution
(see Ref. [1] for a review). This anisotropy is explicit for
atoms bearing nonzero orbital angular momentum L, such as
atomic oxygen in the 3P state, and may allow for strong, direct
coupling between magnetic sublevels [2]. However, L �= 0
is not a sufficient condition: anisotropy can be dramatically
suppressed by spin-orbit coupling, like in the case of 2P1/2

atoms [3,4], or by electron screening, like in the case of
transition metals [5,6] and rare-earth-metal atoms [7,8] with
the submerged open shells. Vice versa, multielectron S-state
atoms may also exhibit anisotropic interactions due to internal
couplings to excited anisotropic L �= 0 states [9].

The pnictogens comprise an interesting test bed for ob-
serving an important and widespread interaction: spin-orbit
coupling. All pnictogen atoms have the ground-state term 4S◦

3/2
arising from a half-filled p shell, although this term becomes
less exact with increasing pnictogen mass. At the top of the
column, nitrogen (N) is well described by this spherical term.
Hence collisions of N with other atoms and with molecules are
highly elastic, in many cases limited only by modest magnetic
dipole-dipole interactions [10–12]. This collisional elasticity,
along with fundamental importance to chemistry, has fueled
interest in collisional physics with atomic N, including its use
as a sympathetic coolant for molecule species. At the bottom of
the pnictogen column is bismuth (Bi), the heaviest stable atom
with a half-filled p shell. While nominally exhibiting the same
electronic structure as N, Bi is affected by strong spin-orbit
interactions that mix the anisotropy of excited states with

the same electronic configuration into the otherwise spherical
ground state. As a result, Bi exhibits highly inelastic collisions
with helium [9] and is unlikely to be useful for sympathetic or
evaporative cooling.

Anisotropy of an atom’s interaction with a rare gas atom
correlates to the anisotropy of the atom’s response to a
permanent external electric field (see Refs. [13–16]). A recent
theoretical study [17] demonstrated that the anisotropic static
dipole polarizability increases from N to Bi by 6 orders of
magnitude, roughly in accord with the hydrogenlike Z4 scaling
of spin-orbit coupling with the nuclear charge Z. While the
collision dynamics with a buffer gas have been explored for
the extreme cases of N [18] and Bi [9], the transition between
N-like elastic collisions and Bi-like inelasticity thus far has
not. In addition, the measurements of cold Zeeman relaxation
collisions (those that change the projection, mJ , of the atom’s
total angular momentum J) between N and Bi and helium
provide only weak bounds on the inelastic collision rate that
are orders of magnitude short of the theoretical predictions,
leaving the experimental landscape rather sparse.

We report here a study of collisions between atomic
antimony (Sb) and helium. As the second-heaviest pnictogen,
Sb is well situated to probe the onset of relativistic effects. We
directly measure the ratio γ of momentum transfer to inelastic
collision rates and supplement it by the quantum scattering
study based on the ab initio spin-orbit calculations. We find that
the Sb–He system is strongly influenced by spin-orbit-induced
anisotropy, but to an order of magnitude weaker extent than
seen in Bi–He, consistent with the theoretical models and
calculations. Zeeman relaxation driven by this anisotropy is
too fast for straightforward magnetic trapping of Sb atoms
using buffer-gas cooling. Our results suggest, however, that
such trapping could be achieved for the lighter and more
isotropic [17] pnictogens arsenic (As) and phosphorus (P).
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II. EXPERIMENT

To measure the rate of spin relaxation in Sb–He collisions,
we prepare a buffer-gas-cooled sample of Sb atoms in a
magnetic field and observe decay from the low-field-seeking
(LFS) stretched state (mJ = J = 3/2) to lower-energy high-
field seeking (HFS) states. The experiment takes place inside
a double-walled G-10 CR fiberglass-epoxy composite cell.
Superfluid helium fills the space between the two walls to
surround the cell and maintain a uniform temperature over its
length. A superfluid helium link anchors the cell to a dilution
refrigerator to maintain a cell temperature of 800 mK. 4He
buffer gas is added and removed via a small impedance to a
separate cold gas reservoir to achieve a variable gas density
that remains effectively constant for the duration of a single
measurement (<1 s). The cell sits inside the bore of a pair of
superconducting Helmholtz magnetic field coils.

We produce >1013 cold Sb atoms by ablating a solid Sb
metal target into the buffer gas. The atoms are produced in
an equal distribution across all electronic and nuclear spin
states of the ground 4S◦

3/2 manifold. After cooling to the cell
temperature, the Sb atoms diffuse to the cell walls and stick
there, undergoing 104–105 collisions with the helium buffer
gas. The magnetic field is uniform over most of the cell and
does not significantly affect the diffusive transport.

We probe the atomic Sb ensemble by laser absorption on
the 4S◦

3/2 → 4P5/2 transition at 206.9 nm. The probe light
is generated by single harmonic generation (SHG) in a
beta barium borate (BBO) crystal using a resonant cavity.
Approximately 80 mW of light from an injection-locked
diode laser at the 413.8-nm fundamental wavelength results in
≈100 nW of UV. We note that the doubling cavity lock
is not optimized and an order of magnitude greater SHG
conversion efficiency is likely possible with the same input
power in this system. The UV beam is split into an intensity
reference beam and a probe beam that enters the cryogenic
dewar and retroreflects from a mirror in the cell. Dielectric
mirrors mounted in long tubes provide spectral and spatial
filtering of unwanted light, after which both beams are incident
upon photomultiplier tubes.

The hyperfine spectrum of the 4S◦
3/2 → 4P5/2 transition

at 206.9 nm spans 30 GHz; we are unable to scan our
laser across the entire spectrum within the diffusion time.
Instead, we hold the laser frequency constant, resonant with
a transition from either the stretched LFS or HFS states
(mJ = ±J ), and monitor the optical depth (OD) over time.
The two transitions used are closely spaced in frequency with
opposite Zeeman shifts, allowing one or the other to be tuned
to resonance with ≈10% adjustment of the magnetic field.
The 4He density in the cell decays over tens of minutes,
during which we alternate between measurements of the
LFS and HFS state decay, at approximately 1-min intervals.
An example pair of such measurements is shown in Fig. 1.
Immediately following translational cooling in the buffer gas,
the relative LFS and HFS state populations come to thermal
equilibrium through inelastic Sb–4He collisions. Indeed, we
initially observe rapid LFS decay and a corresponding increase
in the HFS population. Once in equilibrium, the two states
decay in tandem due to diffusion to the cell walls. From the
HFS data at late times, we use this diffusive decay to determine
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FIG. 1. (Color online) Decay of low- and high-field seeking (LFS
and HFS) states (mJ = +3/2 and −3/2) of Sb at T = 800 mK and
B = 0.86 T.

the Sb–4He collision rate. Interpolating between HFS state
decay measurements provides the collision rate at the times at
which LFS state measurements are made.

III. DECAY MODEL

We describe here a simplified version of the relaxation
model developed in Ref. [19]. For a gas of Sb atoms with
equal mJ state populations, we expect the time evolution of
the mJ = J state to be driven by a combination of diffusion
in the buffer gas and Zeeman relaxation to states of lower mJ .
The lowest-order diffusion mode decays exponentially with
time constant τd, given by [20]

τd = nbσd

v̄G
, (1)

G = 3π

32

(
j 2

01

r2
+ π2

L2

)
, (2)

in a cylindrical cell of radius r and length L, where nb is the
buffer gas density, σd is the thermally averaged momentum
transfer cross section, v̄ = (8kBT/πμ)1/2 is the mean Sb–4He
collision velocity at temperature T with reduced mass μ,
and j01 ≈ 2.405 is the first root of the Bessel function J0(x).
Higher-order diffusion modes decay much more rapidly and
can be ignored at late times.

As an Sb atom diffuses through the buffer gas, an inelastic
collision with 4He can cause a transition to a state of different
mJ . For the stretched LFS state with mJ = J , this transition
only occurs to states of lower mJ , which is energetically
favorable. The time constant for this process, τR, is found
by including all possible spin relaxation transitions:

τR = (nb kR)−1 , (3)

kR =
∑

m′
J �=J

kmJ →m′
J
, (4)

where kR is the total Zeeman relaxation rate constant.
At zero temperature, the low-field-seeking state decays
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exponentially under the combined effect of diffusion and
relaxation. However, at finite temperature there are two
important modifications to the time dependence.

First, atoms with mJ < J will also experience mJ -changing
collisions, and the collision energy will sometimes be sufficient
to promote an atom to a state of higher mJ , thus repopulating
the stretched state [19]. These thermal excitations will alter
the relaxation to equilibrium, an effect that is amplified at
higher temperatures and in atoms with large J and thus small
sublevel splitting. We have numerically modeled this effect
for our experimental conditions and we find that it leads to a
<10% underestimation of kR.

Second, at finite temperature there will remain a thermal
population in the mJ = J state, even at equilibrium. Thus
the time dependence of this state’s population NJ , neglecting
thermal excitations, will be

NJ (t) = Ñe−t/τd

[
feq +

(
1

2J + 1
− feq

)
e−t/τR

]
, (5)

where Ñ is the total initial atom population,

feq = exp
[− gJ JμBB

kBT

]
∑

mJ
exp

[− gJ mJ μBB

kBT

] (6)

is the thermal equilibrium fraction of the total population in
the mJ = J state at temperature T and magnetic field B, kB

is the Boltzmann constant, and gJ is the Landé g factor. Note
that at zero temperature, feq → 0 and Eq. (5) simplifies to the
appropriate simple exponential.

The elasticity of the colliding system is described by the
dimensionless ratio γ = kd/kR of the elastic and inelastic
collision rates, where kd = σdv̄. Large values of γ imply that
many collisions can occur before a mJ -changing transition
occurs. We can compute γ directly from Eqs. (1) and (3) to
yield

γ = v̄2GτdτR. (7)

While it is in principle possible to extract γ from a single
measurement, we make many measurements over a range of
4He densities (i.e., a range of τd) and compare the results to the
form of Eq. (7), which predicts τR ∝ τ−1

d at constant γ . This
provides a check against systematic error. In particular, there
may be other processes affecting the decay of the LFS state or
of all states—such as molecule formation [21] or temperature
variation—which exhibit a different dependence on buffer gas
density.

IV. RESULTS AND ANALYSIS

We fit the HFS decay at late times to exponential decay to
extract the diffusion time τd and fit the LFS decay to Eq. (5)
to extract τR (Fig. 1). The LFS data are fit on the interval after
t = 6 ms to allow for decay of higher-order diffusion modes
and of unwanted fluorescence in the cell caused by ablation. To
reduce statistical uncertainty and minimize systematic error,
we constrain the LFS fit by fixing the value of τd to be the same
as that of the HFS state. Since only one state is monitored
during any single measurement, all values of τd determined
from HFS measurements are first fit to the exponential decay
expected due to buffer gas being slowly pumped (over tens
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FIG. 2. (Color online) Apparent Zeeman relaxation time constant
τR obtained from fitting low-field-seeking (LFS) state decay at T =
800 mK and B = 0.86 T to Eq. (5). The data do not follow the
functional form of Zeeman relaxation predicted by Eq. (7) (dashed
black line), and a linear fit (solid green line) yields a slope statistically
consistent with zero. Hence the LFS state decay is likely modified by
cooling of the cell and is thus slower than the actual Zeeman relaxation
rate. The red square point is used to set a bound of γ � 9.1 × 102

(dashed black line); data with lower τd may be affected by a transient
increase in buffer gas density caused by ablation.

of minutes) back through the filling impedance. The fitted
function for the exponential decay of τd is evaluated at the
times when LFS measurements are made to fix τd, in turn,
for fitting the LFS state decay using Eq. (5). In addition, we
constrain feq to its minimum χ2 value across all measurements
made at the same temperature and magnetic field, since feq is
not a function of buffer gas density.

The fitting results are plotted in Fig. 2. There is no
statistically significant dependence of the apparent relaxation
time on buffer gas density. Therefore the decay of the LFS
state is not a direct observation of the Zeeman relaxation rate.
Instead, the decay is most likely a combination of Zeeman
relaxation and cooling of the cell and buffer gas after heating
caused by ablation. The reason for this is as follows: if the cell
temperature is not stable on the time scale of the decay, then
the form of the decay predicted by Eq. (5) will be modified by
the temperature dependence of feq (and to a lesser extent, that
of τd). In the limit of extremely rapid relaxation (τR → 0), the
magnetic sublevel distribution will be in equilibrium with the
translational temperature, and the LFS state decay will closely
follow the cell’s cooling profile. Since we do not have sufficient
knowledge of the temporal and spatial thermal profile of the
cell and buffer gas to separate translational cooling from Zee-
man relaxation, the experiment is only able to bound the relax-
ation rate as being at least as fast as the observed equilibration.

We set an upper bound on the collision ratio γ using Eq. (7)
and the data with the shortest value of the product τd × τR.
In doing so, we consider only data for which τd > 25 ms,
for which the absorption signal strength and lifetime are large
enough to allow for confirmation that the buffer gas density is
constant over the fitting interval. To be conservative, we do not
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use data with shorter diffusion times because of the possibility
that a short-lived pulse of helium desorbed from the cell walls
by the ablation pulse could cause the early-time buffer gas den-
sity to differ from the late-time density where τd is measured—
such a discrepancy could cause an underestimation of γ . At
higher buffer gas densities, the effect of this pulse is negligible.
The best constraint on γ is therefore obtained from the red
(square) point in Fig. 2, which yields γ � 9.1 × 102.

V. ELECTRONIC STRUCTURE

In this section, we investigate the electronic structure of
the Sb–He complex that determines collision dynamics. We
consider the states of the complex correlating to the three
lowest asymptotic limits that corresponds to the 4S◦, 2D◦, and
2P ◦ terms (given as 2S+1Lp) of the Sb(5s 25p3) atom. In the
standard LS coupling notation, 2S+1�σ , these are 4�−(4S◦),
2	(2D◦), 2
(2D◦), 2�−(2D◦), 2
(2P ◦), and 2�+(2P ◦). Here S

is the total electronic spin angular momentum, L is the total
electronic angular momentum of an atom, � is the projection
of L̂ onto the interatomic axis R, and p and σ designate the
parities of the electronic wave functions.

The LS potential energy curves are computed in the scalar-
relativistic approximation within the internally contracted
multireference configuration interaction (MRCI) method [22].
MRCI, as well as the preceding state-averaged complete active
space multiconfigurational self-consistent field (CASSCF)
[23,24], distributes seven electrons over the five active orbitals
representing the 5s5p shells of Sb and the 1s shell of He.
For the Sb atom, we employ the small-core (28-electron)
relativistic effective core potential ECP28MDF by Metz et al.
[25] together with the corresponding augmented quintuple-ζ
correlation-consistent polarized valence (aug-cc-pV5Z) basis
set [26]. For the He atom, we adopt an equivalent aug-cc-pV5Z
set [27].

To provide better description of the ground 4�− electronic
state, we also compute its potential energy curve using the cou-
pled cluster method with single, double, and noniterative triple
excitations, CCSD(T) [28,29], with the standard counterpoise
correction to the basis set superposition error [30]. To saturate
the dominant dispersion contributions to interaction energy,
the 3s3p2d2f 1g set of the bond functions [31] is added to the
atom-centered basis set described above at the midpoint of the
Sb–He interatomic distance R.

The MRCI excitation energies are added to the CCSD(T)
ground-state potential energy curve and shifted in energy
to reproduce the experimental centers of the 2P ◦ and 2D◦
fine-structure multiplets [32] EP and ED at large (50 Å)
internuclear distance.

Since the energy splittings between the states correlating
to the asymptotes with different L are much larger than
weak atom-atom interaction, the differential radial and angular
nonadiabatic couplings are neglected.

Vectorial spin-orbit (SO) interaction is treated using the full
Breit-Pauli SO operator at the CASSCF level of theory. The full
SO matrix spanned by all 23 components of the six LS states
is obtained and used to extract five independent SO coupling
matrix elements, defined as in Ref. [9], after its transformation
to the pure |LMLSMS〉 angular momentum representation. In
the limit of separated atoms, AD and AP elements are related

TABLE I. Ab initio parameters describing SO energy levels of
Sb and Bi atoms (cm−1).

Parameter ED EP BSP BPD AD AP

Sb, this work 9224 16 047 2747 3081 73 14
Bi [9] 8944 15 769 8610 9637 92 131

to the internal splittings of isolated 2D◦ and 2P ◦ multiplets,
respectively, whereas BSP and BPD describe the couplings
between states of 4S◦ and 2P ◦ multiplets and between those of
2P ◦ and 2D◦ multiplets, respectively. The 4S◦ and 2D◦ terms do
not interact with each other in an atom, but interaction with He
induces the SO coupling between the ground 4�− and 2
(2D◦)
states, BSD .

Diagonalization of the electronic Hamiltonian matrix at
the separated atom limit gives the following energies for the
fine-structure atomic levels (relative to the 4S◦

3/2 level in cm−1,
with experimental values [32] in parentheses): 2D◦

3/2 8731
(8512), 2D◦

5/2 9636 (9854), 2P ◦
1/2 16 546 (16 395), and 2P ◦

3/2

18 100 (18 464). The deviations do not exceed 400 cm−1 and
are generally smaller than are found in the Bi–He calculations
[9]. Table I compares the asymptotic parameters obtained here
for Sb–He with those computed for Bi–He in Ref. [9]. It
is evident that while the Coulomb excitation energies vary
from Bi to Sb insignificantly, the SO matrix elements decrease
dramatically; the dominant intermultiplet couplings BSP and
BPD both decrease by a factor of 3.12.

Scalar-relativistic CCSD(T) calculations reveal that Sb–He
forms a van der Waals complex bound predominantly by the
dispersion interaction. The ground-state interaction energy De

is determined to be 11.1 cm−1 at the equilibrium distance
Re = 4.50 Å, which implies slightly stronger binding than
that of the the Bi–He complex (De = 10.0 cm−1, Re = 4.64 Å
[9]), despite a weaker dispersion interaction (the leading
dispersion coefficient C6 is equal to 23.6 atomic units (a.u.),
while for Bi–He C6 = 25.6 a.u.). The reason for this is the
shorter range of the repulsive exchange interaction.

Excited scalar-relativistic potentials are also similar for
the two systems. In particular, the 2
 and 2�+ states of
Sb–He correlating to the 2P ◦ atomic term have De = 7.5 cm−1,
Re = 4.83 Å and De = 11.0 cm−1, Re = 4.53 Å, respec-
tively (De = 6.9 cm−1, Re = 4.96 Å and De = 11.5 cm−1,
Re = 4.44 Å for Bi–He [9]). This indicates that the anisotropy
of the 2P ◦ state is slightly larger for the Bi atom, in accord with
the behavior of static dipole polarizabilities [17]. Similarity
of the potential energy curves of all the molecular states
arising from the ns2np3 configuration of Sb or Bi likely
reflects the similarity in the scalar dipole polarizabilities of
the corresponding atomic states.

The SO interaction does not affect the ground 4�− state to
the first order of perturbation theory. At higher orders, however,
SO couples the ground state with the excited 2� states split by
the interaction anisotropy. As a result, the degeneracy of the
� = 3/2 and 1/2 components of the ground state is lifted,
as shown in Fig. 3. [� is the projection of the total (orbital
plus spin) electronic angular momentum onto the interatomic
axis.] As shown in Ref. [17], this is the source of anisotropy in
the static dipole polarizability of 4S◦ states of the pnictogens.
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FIG. 3. (Color online) Sb–He interaction potentials of the lowest-
energy non-relativistic and SO-coupled states. The inset enlarges the
region near the potential minima.

To the second order of perturbation theory, only the coupling
to the excited 2
(2P ◦) and 2�+(2P ◦) states given by the BSP

parameter contributes to the splitting. The same conclusion
was inferred from the analysis of Bi–He interactions [9],
which found that the splitting 	E� between the � = 3/2 and
1/2 SO components of the ground state (i.e., the interaction
anisotropy) can be approximated to second order as [9]

	E� = 2

3

[
BSP (R)

EP

]2

[VP
(R) − VP�(R)] , (8)

where VP
 and VP� are the potential energy curves of the
excited 2
 and 2�+ states, respectively. Figure 4 shows
that Eq. (8) closely reproduces the results of numerical
diagonalization of the ab initio coupling matrices for both the
Sb–He and Bi–He systems. Comparing ab initio results for
the two systems indicates that each of the factors in Eq. (8)—
the energy and anisotropy of the 2P ◦ state and its SO coupling
to the ground state—vary with increasing pnictogen mass such

FIG. 4. (Color online) Radial dependence of the splittings be-
tween the � = 1/2 and � = 3/2 adiabatic potential energy curves
of the ground 4�− states of the Sb–He and Bi–He systems. The ab
initio results are well approximated by the second-order expression
[Eq. (8)], even if the BSP parameter is approximated by its asymptotic
constant value. Arrows indicate the ground-state equilibrium distance.

that interaction anisotropy is increased, although the coupling
BSP plays by far the dominant role. It should also be noted
that BSP varies with R very weakly, so that the ground-state
splitting is perfectly reproduced with the asymptotic BSP

value. The AP and BSD SO couplings show more pronounced
dependence on R but affect the ground state only in the third
and fourth orders of perturbation theory. In accord with this
reasoning, the effect of their radial dependence on Bi–He
collision dynamics was found to be small [9].

VI. SCATTERING CALCULATIONS

In order to interpret our measurement and draw compar-
isons to other pnictogen systems, we performed rigorous
quantum scattering calculations [2] based on the ab initio
interaction potentials and matrix elements presented in the
previous section. Our theoretical approach closely resembles
that implemented before for the Bi–He system in Ref. [9]. The
Sb–He interaction Hamiltonian is written in atomic units as [9]

Ĥ = − 1

2μR

∂2

∂R2
R + �̂2

2μR2
+ V̂ (R) + Ĥas, (9)

where μ is the reduced mass and �̂ is the rotational angular mo-
mentum of the nuclei. The asymptotic Hamiltonian describing
the electrostatic, SO, and external field-induced interactions in
the isolated Sb atom is given by

Ĥas = ĤSI + ĤSO + ĤB, (10)

where

ĤSI =
∑
L,L′

HLL′
SI |L〉〈L′| (11)

accumulates the terms of the electronic Hamiltonian of the free
atom that do not depend explicitly on the spin. Its diagonal
matrix elements HLL

SI , with L = 0,1, and 2, are the electronic
excitation energies ES , EP , and ED , respectively, with ES =
0. Nondiagonal matrix elements correspond to the interstate
couplings, H 01

SI = BSP and H 12
SI = BPD . The remaining diagonal

part of the SO interaction is described by the SO Hamiltonian,

ĤSO =
∑
LS

ĤLS
SO |LS〉〈LS|, (12)

for which we use the mean-field approximation,

ĤLS
SO = ALL̂ · Ŝ, (13)

justified by the weakness of intramultiplet SO couplings AP

(L = 1) and AD (L = 2) as compared with the splittings
between the different LS states (Table I). The use of R-
independent asymptotic values of the coupling terms is
justified in the previous section. The Hamiltonian ĤB describes
the interaction of the atom with an external magnetic field of
strength B and is given by Eq. (5) of Ref. [9].

The Sb–He interaction potential operator in Eq. (9) is given
by

V̂ (R,r) =
∑
L,L′

V̂ LL′
(R)|L〉〈L′|. (14)

The diagonal part of the operator

V̂ LL =
∑

μ

V LL
μ (R)Pμ(R · r), (15)
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where Pμ is a Legendre polynomial [2], describes the interac-
tion of an atom in a state with orbital angular momentum L with
a structureless atom. The off-diagonal part (V LL′

with L′ �= L)
describes the coupling induced by the interatomic interaction
between states of different L. The matrix elements of Eq. (14)
in the direct-product scattering basis |(LS)JmJ 〉|lml〉 are
given by

〈(LS)JmJ |〈�m�|V̂ (R,r)|(L′S ′)J ′m′
J 〉|�′m′

�〉
= δSS ′ (−1)L+S+J ′+J−mJ −m′

� [(2L + 1)(2L′ + 1)

× (2J + 1)(2J ′ + 1)(2� + 1)(2�′ + 1)]1/2

×
∑

λ

V LL′
λ (R)

{
L J S

J ′ L′ λ

}

×
(

J λ J ′
−mJ mJ − m′

J m′
J

)(
� λ �′

−m� m� − m′
� m′

�

)

×
(

L λ L′
0 0 0

)(
� λ �′
0 0 0

)
, (16)

where the symbols in figure brackets and parentheses are 3-j
and 6-j symbols, respectively. This expression generalizes
Eq. (3) of Ref. [3] to collision-induced transitions between the
different L states.

The details of scattering calculations have been presented
elsewhere [9]. In brief, the wave function of the Sb–He
collision complex is expanded in a direct-product basis set
(Eq. (16) here and Eq. (2) of Ref. [9]), and the radial expansion
coefficients were obtained by solving the coupled differential
equations given by Eq. (4) of Ref. [9]. The scattering basis
included the |(LS)JmJ 〉 states of Sb with L = 0, 1, and 2
(S, P , and D states) [9] augmented with seven partial waves
(� = 0–6). The coupled equations were integrated on a grid
of R ∈ [1,100] Å with a grid spacing of 0.02 Bohr radii
using the scattering code developed previously for Bi–He
by Krems [9]. Scattering calculations were performed at 200
collision energies between 0.02 and 4 cm−1 with a constant
step size of 0.02 cm−1.

For accurate comparison with the experiment, we first
calculate the momentum transfer cross section by solving a
one-dimensional (1D) scattering problem based on the lowest
non-relativistic Sb–He potential of 4�− symmetry (Fig. 3).
To validate this approach, we also compute the total elastic
cross section in the same manner and compare it to the exact
multichannel result (Fig. 5). We find that the 1D approximation
reproduces the exact cross section to within 10% over the
temperature range 0.1–2 K, including scattering resonances.

Second, we compute the quantum scattering cross section
for transitions from the mJ = J = 3/2 stretched Zeeman state
to all final mJ states. The rate coefficients for momentum
transfer and Zeeman relaxation are calculated from the cross
sections by thermally averaging over the Maxwell-Boltzmann
distribution. The total Zeeman relaxation rate kR is calculated
by adding contributions for transitions to all other magnetic
sublevels [Eq. (4)]. The calculated ratio γ of the two rates is
shown in Fig. 6 for several values of the magnetic field B, along
with the bound obtained by the experiment at B = 0.86 T. We

0 1 2 3 4
Collision energy (cm-1)

102

103

C
ro

ss
 se

ct
io

n 
(Å

2 )

elastic (multichannel)
elastic 1D (4Σ non-rel. potential)
momentum transfer 1D (same potential)

FIG. 5. (Color online) Calculated Sb-4He total elastic and mo-
mentum transfer cross sections. The solid curve is an exact multi-
channel calculation and the dashed curves are calculated using a 1D
approximation that includes only the lowest non-relativistic adiabatic
potential. The excellent agreement between the two calculations of
the total elastic cross section (solid black and dashed red curves)
implies that the approximation is good over this temperature range.

find that the calculated value exceeds the experimental upper
bound by about a factor of 2.

Since the inaccuracy in interaction potentials is the most
important factor affecting γ , we repeat our calculation with
all the scalar-relativistic interaction potentials [V LL

μ (R) in
Eq. (15)] scaled by a constant factor λ (Fig. 7). We find
that γ decreases nearly monotonically over this range and
that theory and experiment are in agreement for a deepening
of the potentials by ≈10%. This level of error is reasonable
for the ab initio calculations, which are expected to slightly
underestimate the attractive dispersion interaction due to the
finite basis set and included correlations.

10
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10
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10
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10
4

temperature (K)

γ

 

 

B = 0.05 T
0.1 T
1 T
4 T

FIG. 6. (Color online) Calculated Sb-4He momentum-transfer-
to-inelastic collision rate ratio γ . The experimental upper bound
obtained at B = 0.86 T is also shown (dashed blue line).
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FIG. 7. (Color online) Calculated momentum-transfer-to-
inelastic collision rate ratio γ as a function of the interaction
potential scaling factor λ. The blue circles are those corresponding
to the experimental parameters. The experimental bound (dashed
line) is in agreement with theory for λ = 1.1. Also shown are
calculated results for the Sb–3He system (green triangles), for which
the inelasticity is reduced due the absence of a collision resonance
near 1 K.

In comparison to the Bi–He system under similar conditions
[9], the rate of Zeeman relaxation in Sb–He collisions is an
order of magnitude lower, due to the weaker SO coupling of
the ground 4S◦

3/2 state to anisotropic states. This is in agreement
with the reduction in the interaction anisotropy 	E� (Fig. 4),
as well as with a Z4 scaling.

VII. CONCLUSION

We present experimental and theoretical results for Sb–
He collisions that demonstrate significant distortion of the
isotropic 4S◦

3/2 ground state due to the SO interaction. The
resulting electronic interaction anisotropy drives rapid Zeeman
relaxation in this system. However, we show theoretically that
relaxation occurs at a rate about an order of magnitude slower
than the Bi–He system, in agreement with the second-order
SO approximation [Eq. (8)] developed in Ref. [9]. This is
also consistent with the strong relativistic dependence on Z

of the SO interaction. Our measurement at T = 800 mK
and B = 0.86 T confirms the strong inelasticity, setting a
bound on the momentum-transfer-to-inelastic collision rate

ratio of γ � 9.1 × 102. This bound implies that the ab
initio potential underestimates the interaction strength by
≈10%, which provides valuable feedback to the theoretical
models.

The rapid Sb–He Zeeman relaxation that we observe here
precludes buffer-gas loading of Sb into a magnetic trap. The
rates of Zeeman relaxation of Bi, Sb, and N in collisions with
He are consistent with a Z4 scaling for temperatures near
1 K and magnetic fields near 1 T [9,18], following the same
trend shown in the static dipole polarizability anisotropy [17].
A natural extension of this work is to look further up the
pnictogen column to arsenic (As) and phosphorus (P), for
which our theoretical model predicts significantly reduced
relaxation in collisions with He. We can estimate these rates
using Eq. (8) and the energies and SO coupling parameters of
the isolated atoms [17,32]. Assuming conservatively that the
difference VP
 − VP� decreases for pnictogens lighter than
Sb, we find 	E� to be at least 7 and 170 times smaller for As
and P, respectively, than for Sb. We therefore expect that these
lighter atoms could be magnetically trapped after buffer-gas
cooling for long enough to remove the buffer gas, which may
allow for observation of collisions between trapped pnictogen
atoms.

Pnictogen atom-atom collisions could potentially be used
as a path to the creation of ultracold pnictogen ensembles.
The N–N system has been demonstrated to be sufficiently
elastic that evaporative cooling can likely be achieved [10],
with Zeeman relaxation driven primarily by the magnetic
dipole-dipole interaction. With the same magnetic moment, P
and possibly As may exhibit similar behavior. We note that the
wavelengths of optical E1 transitions from the ground states
of pnictogens lighter than Sb are lower than 200 nm [32],
presenting a formidable challenge for laser cooling of these
atoms. However, buffer-gas cooling has been used to produce
ensembles of N, Sb, and Bi with over 1011 atoms [9,18], and
similar performance is expected for the other pnictogens. The
combination of buffer-gas cooling, magnetic trapping, and
evaporative cooling may allow for studies and applications
of ultracold N, P, and As.
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