
14.12 Game Theory Lecture Notes

Theory of Choice

Muhamet Yildiz

(Lecture 2)

1 The basic theory of choice

We consider a set X of alternatives. Alternatives are mutually exclusive in the sense

that one cannot choose two distinct alternatives at the same time. We also take the set

of feasible alternatives exhaustive so that a player’s choices will always be defined. Note

that this is a matter of modeling. For instance, if we have options Coffee and Tea, we

define alternatives as C = Coffee but no Tea, T = Tea but no Coffee, CT = Coffee and

Tea, and NT = no Coffee and no Tea.

Take a relation º on X. A relation on X is a subset of X ×X. A relation º is said
to be complete if and only if, given any x, y ∈ X, either x º y or y º x. A relation º is
said to be transitive if and only if, given any x, y, z ∈ X,

[x º y and y º z]⇒ x º z.

A relation is a preference relation if and only if it is complete and transitive. Given any

preference relation º, we can define strict preference Â by

x Â y ⇐⇒ [x º y and y 6º x],

and the indifference ∼ by

x ∼ y ⇐⇒ [x º y and y º x].

A preference relation can be represented by a utility function u : X → R in the

following sense:

x º y ⇐⇒ u(x) ≥ u(y) ∀x, y ∈ X.
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The following theorem states further that a relation needs to be a preference relation in

order to be represented by a utility function.

Theorem 1 Let X be finite. A relation can be presented by a utility function if and only

if it is complete and transitive. Moreover, if u : X → R represents º, and if f : R→ R
is a strictly increasing function, then f ◦ u also represents º.

By the last statement, we call such utility functions ordinal.

In order to use this ordinal theory of choice, we should know the agent’s preferences on

the alternatives. As we have seen in the previous lecture, in game theory, a player chooses

between his strategies, and his preferences on his strategies depend on the strategies

played by the other players. Typically, a player does not know which strategies the

other players play. Therefore, we need a theory of decision-making under uncertainty.

2 Decision-making under uncertainty

We consider a finite set Z of prizes, and the set P of all probability distributions p : Z →
[0, 1] on Z, where

P
z∈Z p(z) = 1. We call these probability distributions lotteries. A

lottery can be depicted by a tree. For example, in Figure 1, Lottery 1 depicts a situation

in which the player gets $10 with probability 1/2 (e.g. if a coin toss results in Head)

and $0 with probability 1/2 (e.g. if the coin toss results in Tail).

Lottery 1
1/2

1/2

10

0

Figure 1:

Unlike the situation we just described, in game theory and more broadly when agents

make their decision under uncertainty, we do not have the lotteries as in casinos where the

probabilities are generated by some machines or given. Fortunately, it has been shown
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by Savage (1954) under certain conditions that a player’s beliefs can be represented by

a (unique) probability distribution. Using these probabilities, we can represent our acts

by lotteries.

We would like to have a theory that constructs a player’s preferences on the lotteries

from his preferences on the prizes. There are many of them. The most well-known–and

the most canonical and the most useful–one is the theory of expected utility maximiza-

tion by Von Neumann and Morgenstern. A preference relation º on P is said to be

represented by a von Neumann-Morgenstern utility function u : Z → R if and only if

p º q ⇐⇒ U(p) ≡
X
z∈Z

u(z)p(z) ≥
X
z∈Z

u(z)q(z) ≡ U(q) (1)

for each p, q ∈ P . Note that U : P → R represents º in ordinal sense. That is, the agent
acts as if he wants to maximize the expected value of u. For instance, the expected

utility of Lottery 1 for our agent is E(u(Lottery 1)) = 1
2
u(10) + 1

2
u(0).1

The necessary and sufficient conditions for a representation as in (1) are as follows:

Axiom 1 º is complete and transitive.

This is necessary by Theorem 1, for U represents º in ordinal sense. The second

condition is called independence axiom, stating that a player’s preference between two

lotteries p and q does not change if we toss a coin and give him a fixed lottery r if “tail”

comes up.

Axiom 2 For any p, q, r ∈ P , and any a ∈ (0, 1], ap + (1 − a)r Â aq + (1 − a)r ⇐⇒
p Â q.

Let p and q be the lotteries depicted in Figure 2. Then, the lotteries ap+ (1− a)r

and aq + (1− a)r can be depicted as in Figure 3, where we toss a coin between a fixed

lottery r and our lotteries p and q. Axiom 2 stipulates that the agent would not change

his mind after the coin toss. Therefore, our axiom can be taken as an axiom of “dynamic

consistency” in this sense.

The third condition is purely technical, and called continuity axiom. It states that

there are no “infinitely good” or “infinitely bad” prizes.

1If Z were a continuum, like R, we would compute the expected utility of p by
R
u(z)p(z)dz.
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Figure 4: Indifference curves on the space of lotteries

Axiom 3 For any p, q, r ∈ P , if p Â r, then there exist a, b ∈ (0, 1) such that ap+ (1−
a)r Â q Â bp+ (1− r)r.

Axioms 2 and 3 imply that, given any p, q, r ∈ P and any a ∈ [0, 1],

if p ∼ q, then ap+ (1− a) r ∼ aq + (1− a)r. (2)

This has two implications:

1. The indifference curves on the lotteries are straight lines.

2. The indifference curves, which are straight lines, are parallel to each other.

To illustrate these facts, consider three prizes z0, z1, and z2, where z2 Â z1 Â z0.

A lottery p can be depicted on a plane by taking p (z1) as the first coordinate (on

the horizontal axis), and p (z2) as the second coordinate (on the vertical axis). p (z0)

is 1 − p (z1) − p (z2). [See Figure 4 for the illustration.] Given any two lotteries p
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and q, the convex combinations ap + (1− a) q with a ∈ [0, 1] form the line segment

connecting p to q. Now, taking r = q, we can deduce from (2) that, if p ∼ q, then

ap + (1− a) q ∼ aq + (1 − a)q = q for each a ∈ [0, 1]. That this, the line segment
connecting p to q is an indifference curve. Moreover, if the lines l and l0 are parallel,

then α/β = |q0| / |q|, where |q| and |q0| are the distances of q and q0 to the origin,

respectively. Hence, taking a = α/β, we compute that p0 = ap + (1− a) δz0 and q0 =

aq + (1− a) δz0, where δz0 is the lottery at the origin, and gives z0 with probability 1.

Therefore, by (2), if l is an indifference curve, l0 is also an indifference curve, showing

that the indifference curves are parallel.

Line l can be defined by equation u1p (z1)+u2p (z2) = c for some u1, u2, c ∈ R. Since
l0 is parallel to l, then l0 can also be defined by equation u1p (z1)+u2p (z2) = c0 for some

c0. Since the indifference curves are defined by equality u1p (z1)+u2p (z2) = c for various

values of c, the preferences are represented by

U (p) = 0 + u1p (z1) + u2p (z2)

≡ u(z0)p(z0) + u(z1)p (z1) + u(z2)p(z2),

where

u (z0) = 0,

u(z1) = u1,

u(z2) = u2,

giving the desired representation.

This is true in general, as stated in the next theorem:

Theorem 2 A relation º on P can be represented by a von Neumann-Morgenstern

utility function u : Z → R as in (1) if and only if º satisfies Axioms 1-3. Moreover, u

and ũ represent the same preference relation if and only if ũ = au + b for some a > 0

and b ∈ R.

By the last statement in our theorem, this representation is “unique up to affine

transformations”. That is, an agent’s preferences do not change when we change his

von Neumann-Morgenstern (VNM) utility function by multiplying it with a positive

number, or adding a constant to it; but they do change when we transform it through a
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non-linear transformation. In this sense, this representation is “cardinal”. Recall that,

in ordinal representation, the preferences wouldn’t change even if the transformation

were non-linear, so long as it was increasing. For instance, under certainty, v =
√
u and

u would represent the same preference relation, while (when there is uncertainty) the

VNM utility function v =
√
u represents a very different set of preferences on the lotteries

than those are represented by u. Because, in cardinal representation, the curvature of

the function also matters, measuring the agent’s attitudes towards risk.

3 Attitudes Towards Risk

Suppose individual A has utility function uA. How do we determine whether he dislikes

risk or not?

The answer lies in the cardinality of the function u.

Let us first define a fair gamble as a lottery that has expected value equal to 0. For

instance, lottery 2 below is a fair gamble if and only if px+ (1− p)y = 0.

Lottery 2
p

1-p

x

y

Define an agent as Risk-Neutral if and only if he is indifferent between accepting and

rejecting all fair gambles. Thus, an agent with utility function u is risk neutral if and

only if

E(u(lottery 2)) = pu(x) + (1− p)u(y) = u(0)

for all p, x, and y.

This can only be true for all p, x, and y if and only if the agent is maximizing the

expected value, that is, u(x) = ax + b. Therefore, we need the utility function to be

linear.
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Therefore, an agent is risk-neutral if and only if he has a linear Von-Neumann-

Morgenstern utility function.

An agent is strictly risk-averse if and only if he rejects all fair gambles:

E(u(lottery 2)) < u(0)

pu(x) + (1− p)u(y) < u(px+ (1− p)y) ≡ u(0)

Now, recall that a function g(·) is strictly concave if and only if we have

g(λx+ (1− λ)y) > λg(x) + (1− λ)g(y)

for all λ ∈ (0, 1). Therefore, strict risk-aversion is equivalent to having a strictly concave
utility function. We will call an agent risk-averse iff he has a concave utility function,

i.e., u(λx+ (1− λ)y) > λu(x) + (1− λ)u(y) for each x, y, and λ.

Similarly, an agent is said to be (strictly) risk seeking iff he has a (strictly) convex

utility function.

Consider Figure 5. The cord AB is the utility difference that this risk-averse agent

would lose by taking the gamble that givesW1 with probability p andW2 with probability

1 − p. BC is the maximum amount that she would pay in order to avoid to take the

gamble. Suppose W2 is her wealth level and W2−W1 is the value of her house and p is

the probability that the house burns down. Thus in the absense of fire insurance this

individual will have utility given by EU(gamble), which is lower than the utility of the

expected value of the gamble.

3.1 Risk sharing

Consider an agent with utility function u : x 7→ √x. He has a (risky) asset that gives
$100 with probability 1/2 and gives $0 with probability 1/2. The expected utility of

the asset for the agent is EU0 = 1
2

√
0 + 1

2

√
100 = 5. Now consider another agent who

is identical to this agent, in the sense that he has the same utility function and an

asset that pays $100 with probability 1/2 and gives $0 with probability 1/2. We assume

throughout that what an asset pays is statistically independent from what the other

asset pays. Imagine that our agents form a mutual fund by pooling their assets, each

agent owning half of the mutual fund. This mutual fund gives $200 the probability 1/4

(when both assets yield high dividends), $100 with probability 1/2 (when only one on the
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Figure 5:
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assets gives high dividend), and gives $0 with probability 1/4 (when both assets yield low

dividends). Thus, each agent’s share in the mutual fund yields $100 with probability

1/4, $50 with probability 1/2, and $0 with probability 1/4. Therefore, his expected

utility from the share in this mutual fund is EUS =
1
4

√
100 + 1

2

√
50 + 1

4

√
0 = 6.0355.

This is clearly larger than his expected utility from his own asset. Therefore, our agents

gain from sharing the risk in their assets.

3.2 Insurance

Imagine a world where in addition to one of the agents above (with utility function

u : x 7→ √x and a risky asset that gives $100 with probability 1/2 and gives $0 with
probability 1/2), we have a risk-neutral agent with lots of money. We call this new agent

the insurance company. The insurance company can insure the agent’s asset, by giving

him $100 if his asset happens to yield $0. How much premium, P , the agent would be

willing to pay to get this insurance? [A premium is an amount that is to be paid to

insurance company regardless of the outcome.]

If the risk-averse agent pays premium P and buys the insurance his wealth will be

$100 − P for sure. If he does not, then his wealth will be $100 with probability 1/2

and $0 with probability 1/2. Therefore, he will be willing to pay P in order to get the

insurance iff

u (100− P ) ≥ 1
2
u (0) +

1

2
u (100)

i.e., iff √
100− P ≥ 1

2

√
0 +

1

2

√
100

iff

P ≤ 100− 25 = 75.

On the other hand, if the insurance company sells the insurance for premium P , it will

get P for sure and pay $100 with probability 1/2. Therefore it is willing to take the deal

iff

P ≥ 1
2
100 = 50.

Therefore, both parties would gain, if the insurance company insures the asset for a

premium P ∈ (50, 75), a deal both parties are willing to accept.
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Exercise 3 Now consider the case that we have two identical risk-averse agents as

above, and the insurance company. Insurance company is to charge the same premium

P for each agent, and the risk-averse agents have an option of forming a mutual fund.

What is the range of premiums that are acceptable to all parties?
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