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We derive a correspondence between the contour integration of
the Casimir stress tensor in the complex-frequency plane and the
electromagnetic response of a physical dissipative medium in a
finite real-frequency bandwidth. The consequences of this corre-
spondence are at least threefold: First, the correspondence makes
it easier to understand Casimir systems from the perspective of
conventional classical electromagnetism, based on real-frequency
responses, in contrast to the standard imaginary-frequency point
of view based onWick rotations. Second, it forms the starting point
of finite-difference time-domain numerical techniques for calcula-
tion of Casimir forces in arbitrary geometries. Finally, this corre-
spondence is also key to a technique for computing quantum
Casimir forces at micrometer scales using antenna measurements
at tabletop (e.g., centimeter) scales, forming a type of analog
computer for the Casimir force. Superficially, relationships between
the Casimir force and the classical electromagnetic Green’s function
are well known, so one might expect that any experimental
measurement of the Green’s function would suffice to calculate
the Casimir force. However, we show that the standard forms of
this relationship lead to infeasible experiments involving infinite
bandwidth or exponentially growing fields, and a fundamentally
different formulation is therefore required.

Casimir forces arise due to quantum fluctuations of the elec-
tromagnetic field (1–4) and can play a significant role in

the physics of neutral, macroscopic bodies at micrometer separa-
tions, such as in new generations of micro-electromechanical
systems (5, 6). These forces have previously been studied both
in delicate experiments at micron and submicron length scales
(7–10) and also in theoretical calculations that are only recently
becoming feasible for complex nonplanar geometries (11–22).
Theoretical efforts to predict Casimir forces for geometries very
unlike the standard case of parallel plates have begun to yield
fruit, having demonstrated a number of interesting results for
strong-curvature structures (17, 23–29). But theoretical chal-
lenges still remain, more so in geometries involving multiple
bodies and/or multiple length scales (14).

In this paper, we describe a correspondence between the cal-
culation of Casimir forces for vacuum-separated objects and a
similar electromagnetic-force calculation in which the objects
are instead separated by a conducting fluid, as illustrated in Fig. 1.
The requirement that the geometry be mapped in this fashion is
a practical consideration for any calculation based on the time
domain (real frequencies). In fact, it is the theoretical equivalent
of a crucial and well-known technique for accurate numerical
evaluation of Casimir forces, in which the force integrand is de-
formed via contour integration and commonly evaluated over the
imaginary-frequency axis (2, 14). Our formulation circumvents
difficulties with all previous expressions of Casimir forces in
terms of frequency integrals of classical Green’s functions, which
required either formally infinite bandwidth (when evaluated over
real frequencies) or exponentially growing fields (when evaluated
over imaginary frequencies)—instead, we exploit the moderate-
bandwidth real-frequency response of a physical, dissipative
system. We believe that this mathematical equivalence between
complex contour mappings and physical dielectric deformations
reveals unique opportunities for the experimental and theoretical
study of Casimir interactions. On the theoretical side, this corre-
spondence makes it easier to understand Casimir systems from

the perspective of conventional classical electromagnetism, based
on real-frequency responses, in contrast to the standard point of
view based on Wick rotations (imaginary frequencies). Further-
more, it has already led to a finite-difference time-domain
numerical method for calculation of Casimir forces in arbitrary
geometries and materials (30, 31).

In this paper, we focus on the derivation of this correspon-
dence along with a third application of that idea: a technique
for calculation of Casimir forces based on experimental S-matrix
(microwave antenna) measurements in centimeter-scale models.
Note that an experiment (centimeter-scale model) of the sort
proposed here is not a Casimir “simulator,” in that one is not
measuring forces but rather a quantity that is mathematically re-
lated to the Casimir force—in this sense, it is an analog computer.
The use of tabletop models and analog computers in physics,
though previously unexplored in the context of quantum vacuum
fluctuations, continues to play an important role in contemporary
research areas like quantum evolution (32) and quantum infor-
mation (33). For example, many analog computers have been
developed to simulate fluid flow problems (34, 35), electromag-
netic and acoustic wavefields (36), cell electrolysis (37), and many
of the problems governed by Laplace’s equations (38). More
recently, advances in the field of microwave electromagnetics
(which offers unprecedented control over sources and detection
of microwaves), have spurred the development of classical elec-
tromagnetic analog computations for studying complex quantum
problems, including the calculation of the energy levels of Bloch
electrons in magnetic fields (39) and the dynamics of certain
classes of chaotic quantum systems (32), to name a few. Comput-
ing fluctuation-induced effects like the Casimir force is substan-
tially different from previous analog-computation problems in
quantum simulation, in that it involves not the evolution of a
single quantum state but rather the combined effect of fluctua-
tions over a broad (formally infinite) bandwidth.

In what follows, we describe the step-by-step conceptual devel-
opment of an analog computer for calculation of Casimir forces.
The first section reviews a well known formulation of the Casimir-
force problem, in which the Casimir force is expressed in terms
of an integral of the classical Green’s function (GF) via the elec-
tromagnetic stress tensor (ST) and the fluctuation-dissipation
theorem (2). Although numerical constraints normally require
integration over either the real or imaginary-frequency axes,
we abandon both of these standard choices and instead consider
mappings over the general complex-frequency (ω) plane. The
following section derives an equivalence between the complex-
frequency GF (the GF evaluated over a complex-frequency
contour) of a geometry and the real-frequency (standard) GF
of an identical geometry with a transformed electromagnetic
medium εc. This correspondence is a way to realize this contour-
deformation technique in a real experiment. From this point of
view, it becomes clear that only certain contours in the
complex-frequency plane correspond to physically realizable εc
and that neither the real or imaginary-frequency axes are suitable
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for experiments (the latter due to the fact that it is equivalent to a
gain medium). Instead, we identify a suitable contour whose re-
sponse is equivalent to a physically realizable, conventional con-
ducting medium. TheNumerical Experiment section demonstrates
that the response of such a medium yields the correct Casimir
force by performing numerical experiments on the geometry
shown in Fig. 1 and then goes on to describe the properties of
the corresponding integrand. Finally, we consider the implica-
tions of the above mapping for practical experiments, including
possible materials, length scales, and sources of experimental
errors. The key point is that, once the Casimir force is expressed
in terms of the response of a realizable medium over a reasonably
narrow bandwidth, the scale invariance of Maxwell’s equations
permits this response to be measured at any desired length scale,
e.g., in a tabletop microwave experiment.

Casimir Force via Stress Tensor
The Casimir force can be expressed as an integral of the mean
electromagnetic ST over all frequencies (2). The mean ST is
determined simply from the classical GF (the fields in response
to current sources at a fixed frequency), a consequence of the
fluctuation-dissipation theorem. It turns out, however, that this
frequency integral is badly behaved from the perspective of nu-
merical calculations (or experiments, below). In particular, the
integral is formally infinite, requiring regularization, and highly
oscillatory. Fortunately, because the integrand is analytic, one
can deform the integration contour into the complex-frequency
ω plane. More generally, given an arbitrary contour ωðξÞ (conve-
niently parameterized by a real ξ), the force in the ith coordinate
direction is given by

Fi ¼ Im
Z

∞

0

dξ
dωðξÞ
dξ

Z
surface ∑j

hTijðr;ωðξÞÞidSj: [1]

The standard Wick rotation corresponds to the particular choice
ωðξÞ ¼ iξ and yields a smooth and rapidly decaying integrand
(14). The mean ST hTiji is related to the electric (E) and magnetic
(H) field correlation functions by the standard equation (assum-
ing nonmagnetic materials, μ ¼ 1, for simplicity):

hTijðr;ωÞi ¼ hHiðrÞHjðrÞi −
1

2
δij∑

k

hHkðrÞHkðrÞi

þ εðr;ωÞ
�
hEiðrÞEjðrÞi −

1

2
δij∑

k

hEkðrÞEkðrÞi
�
: [2]

The field correlation functions are, in turn, related to the
frequency-domain classical photon GF, Gijðω; r; r0Þ, by the
fluctuation-dissipation theorem:

hEiðrÞEjðr0Þi ¼
ℏ
π
ω2Gijðω; r; r0Þ; [3]

hHiðrÞHjðr0Þi ¼ −
ℏ
π
ð∇×Þiℓð∇0×ÞjmGℓmðω; r; r0Þ; [4]

where Gij satisfies Maxwell’s equations:

½∇ ×∇ × −εðr;ωÞω2�Gjðω; r; r0Þ ¼ δðr − r0Þêj: [5]

Eq. 5 can be solved in a number of ways, for example, by a finite-
difference discretization (14) or even analytically in one dimen-
sion (2). Of course, the diagonal (r0 ¼ r) part of the GF is formally
infinite, but this singularity is not relevant because its surface
integral is zero, and it is typically removed by some regularization
(e.g., by the finite discretization or by a finite antenna size in the
proposed experiments below). A crucial step for evaluation of
Eq. 1, as mentioned above, is the passage to imaginary frequencies
ωðξÞ ¼ iξ. For real frequencies ωðξÞ ¼ ξ, the GF is oscillatory,
leading to a highly oscillatory ST integrand that does not decay
—even when a regularization (ultraviolet cutoff) is imposed, in-
tegrating a highly oscillatory function over a broad bandwidth
is problematic. When evaluated over imaginary frequencies,
on the other hand, the GF is exponentially decaying, due to
the operator in [5] becoming positive-definite (∇ ×∇ ×þεξ2)
(14), leading to a decaying nonoscillatory integrand.

However, the Wick rotation is not the only contour in the com-
plex plane that leads to a well-behaved decaying integrand. This
idea is illustrated by Fig. 2, which shows the force integrand in the
complex plane for the piston-like geometry of Fig. 1, recently
shown to exhibit nonmonotonic variations in the force as a func-
tion of plate separation h (14, 26). In particular, we calculate the
(x-direction) force integrand dFx∕dω ¼ ∫ surf∑jTxjðr;ωÞdSj on
one square, for h ¼ 0.5d and s ¼ d, where d is the separation
between the blocks. Here, we plot ln jℜdFx∕dωj, which illus-
trates the basic features of the integrand dω∕dξdFx∕dω (whereas
ImdFx∕dω also contributes to the total force, it is qualitatively
similar and therefore omitted). As described above, this inte-
grand is oscillating along the ℜω axis and decaying along the
Imω axis. Moreover, it also decays along any contour where
Imω is increasing (such as the three contours shown, to be
considered in more detail below).

ds

εcε=1 h

Casimir force measurement Antenna measurement

fluid

metals

cmµmvacuum

Fig. 1. Schematic illustration of correspondence between two methods of
calculating Casimir forces. (Left): Numerical method requiring evaluation of
the force integrand over the imaginary-frequency axis (or some suitable com-
plex-frequency contour). (Right): Antenna (S-matrix) measurements of the
electromagnetic response at tabletop (e.g., centimeter) length scales. Here,
theeffectof a contour deformation is achievedby amaterial deformation that
corresponds to the presence of a conductive fluid between the objects.
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Fig. 2. Complex-frequency ω plot of the Casimir-force integrand
(ln jℜdFx∕dωj), where dFx∕dω is in units of ℏ∕d2, for the geometry of Fig. 1.
As the real-ω axis is approached, the integrand becomes highly oscillatory,
which is only partially revealed here because of the finite frequency resolu-
tion. Various integration contours of interest are labeled as black and dashed
lines. (Inset): Vacuum ε ¼ 1 contour deformations ωðξÞ and their correspond-
ing (real frequency) physical realizations εcðξÞ.
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Correspondence
The fact that ω and ε appear together in [5], as εω2, immediately
suggests that, instead of changing ω via a complex mapping ωðξÞ
(again parametrized by real ξ), we can instead operate at real ξ by
transforming ε. Specifically, evaluating [5] over a complex con-
tour ωðξÞ is formally equivalent to evaluating [5] over real fre-
quencies ωðξÞ ¼ ξ, but for a complex dielectric permittivity
given by

εcðr; ξÞ ¼
ω2ðξÞ
ξ2

εðr;ωðξÞÞ: [6]

Thus, given a medium εðr;ωÞ and a complex-frequency contour
ωðξÞ over which we wish to compute the ST, we can transform to
an equivalent problem involving a real-frequency ST evaluated
over a complex dielectric εcðr; ξÞ, determined by [6]. [Conversely,
the GF of any frequency-dependent material εcðξÞ at a given
point in space can be related to the GF for vacuum (ε ¼ 1) at
that point by going from the real frequency ξ to a complex fre-
quency ω ¼ ξ

ffiffiffiffiffiffiffiffiffiffi
εcðξÞ

p
.] Eq. 6 yields an intuitive explanation for

why transforming to the complex-frequency plane is numerically
advantageous: Complex-frequency deformations correspond to
lossy materials that act to damp out the frequency oscillations.
Furthermore, this equivalence is also of practical value to
Casimir-force calculations (beyond being of pedagogical value):
First, it forms an essential ingredient of a numerical finite-
difference time-domain method, formulated in ref. 30 and de-
monstrated for various geometries in ref. 31. The other applica-
tion, discussed below, involves the possibility of computing the
force via real experiments (in contrast to numerical experiments),
in the spirit of analog computations.

Complex-Frequency Green’s Functions via Correspondence
Because the Casimir ST is expressed in terms of the electromag-
netic GF, and the GF of a system at microwave length scales is
merely a rescaling of the GF of the system at micron length
scales*, one can conceivably measure the GF (electric field in re-
sponse to a current source) in an experiment via the S-matrix ele-
ments of antennas at centimeter scales and in doing so determine
the Casimir force via integration of the ST. The passage to com-
plex frequencies is essential to an experiment, as in numerics, be-
cause measuring the GF in the original geometry εðr; ξÞ (real
frequency ξ), as the electromagnetic response to an oscillating
current source ∼eiξt, will yield narrow peaks in its spectrum, re-
quiring integration of a highly oscillatory force integrand over an
infinite bandwidth and thus imposing significant experimental
challenges. Thus, one would like a way to implement the effect
of complex-frequency deformations in an experiment, which is
the subject of the remaining text.

There are at least three ways to obtain the complex-frequency
GF Gijðr; r0;ωÞ of a geometry εðr;ωÞ in an experiment [the elec-
tric field EðrÞ at a point r in response to a dipole current source
J ¼ δðr − r0Þe−iωt, evaluated at complex frequency ω ¼ ωðξÞ]:
First, one may directly measure the electromagnetic field in re-
sponse to a current source with time dependence ∼e−iωðξÞt [the
most straightforward interpretation of complex-frequency GFs
(2)]. However, an ωðξÞ in the upper-half complex plane corre-
sponds to both sources and fields with exponential growth in time,
which is difficult for experiments. A second possibility involves
measuring the standard real-frequency GF (the response to an
oscillating source e−iξt) over a large frequency bandwidth and

then performing a numerical analytic continuation of the form
ξ → ωðξÞ. However, it is already known that inferring the Casimir
force from real-ωGFmeasurements is extremely difficult, requir-
ing the GF over a very wide bandwidth to a high accuracy (14).
A third alternative, and the subject of this paper, is to instead
exploit the correspondence above, in order to measure the real-
frequency GF (the response to an oscillating source ∼e−iξt) of a
physical medium with a complex permittivity given by [6]. As
noted above, due to the presence of loss [corresponding to the
imaginary part of ωðξÞ], the integrand will be both smooth and
decaying as a function of real-frequency ξ.

In order for this approach to be experimentally viable, εc must
satisfy two properties: It should correspond to an ω contour
where the ST integrand is rapidly decaying, and it should be
physically realizable. For simplicity, we begin by considering com-
plex contours for a geometry in which the objects are separated by
vacuum, so that the ST need only be evaluated in vacuum (ε ¼ 1).
This choice implies that, at those points where the ST needs to
be evaluated, the real-frequency medium corresponding to a
contour-deformation ωðξÞ is determined by a dielectric function
of the form εcðξÞ ¼ ωðξÞ2∕ξ2.

We begin by noting that, in order for εcðξÞ to correspond to a
physical medium, it must satisfy the complex-conjugate property
εcð−ξÞ ¼ εcðξÞ� as well as the Kramers–Kronig (K–K) relations
(40). It is most important to satisfy these conditions for small
ξ, because the ST integrand is dominated by long-wavelength con-
tributions. One should also prohibit gain media, which would lead
to the exponentially growing fields we are trying to avoid by not
using sources with complex ω. For example, a Wick rotation cor-
responds to a medium with dispersion εcðξÞ ¼ −1, and this is only
possible at ξ ¼ 0 in a gain medium, because in a dissipative med-
ium, εc is real and positive along the whole imaginary-ω axis (this
is implied by K–K). The generalization to arbitrary rotations in
the complex plane ε ¼ e2iϕ yields similar difficulties, because
these both act as gain media and also violate εcð−ξÞ ¼ εcðξÞ� near
ξ ¼ 0. Thus, no realizable material can emulate these standard
contours even in a narrow bandwidth around ξ ¼ 0, as summar-
ized in Table 1 (also shown in the Inset of Fig. 2).

Although traditional Wick rotations correspond to unphysical
materials (as argued in the preceding paragraph), there are ob-
viously many physical lossy materials to choose from, each of
which corresponds to a contour in the complex plane, and one
merely needs to find such a “physical” contour on which the
ST is rapidly decaying so that experiments can be performed over
reasonable bandwidths. A simple and effective lossy material for
this purpose is a conductor with conductivity σ. Because the in-
tegral will turn out to be dominated by the contributions near
zero frequency, it is sufficient to consider σ to be a constant
(the dc conductivity), although of course the full experimental
permittivity εcðξÞ could also be used. Specifically, we consider
the general class of conductors defined by dispersion relations
of the form εcðξÞ ¼ 1þ iσ∕ξ, corresponding to vacuum with a
complex contour ωσðξÞ ¼ ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iσ∕ξ

p
. As shown in Fig. 2, the in-

tegrand of this contour is in fact well behaved, rapidly decaying
and exhibits few oscillations. Moreover, because conductive fluids
are ubiquitous, this choice is especially promising for experiments
(see the section on analog computations).

Table 1. Vacuum ε ¼ 1 contour deformations ωðξÞ and their
corresponding (real frequency) physical realizations εcðξÞ
ξ → ωðξÞ ε → εcðξÞ Physical realization

ξ
ffiffiffiffiffiffiffiffiffiffi
εcðξÞ

p
εcðξÞ Any physical material

iξ −1 Violate K-K as ξ → 0
ξeiϕ e2iϕ

ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iσ∕ξ

p
1þ iσ∕ξ Conductor

*The invariance of the GF to changes in length scale is a consequence of the scale
invariance of Maxwell’s equations for geometries composed of perfect-metal objects.
When either the perfect-metal approximation breaks down or real materials are
involved, changing the length scale of the problem also requires an appropriate dielectric
rescaling–i.e., materials with the appropriate dielectric response at the relevant length
scales.
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Numerical Experiment
We now consider the Casimir force for the same structure as in
Fig. 1, still calculated by the same finite-difference method as in
Fig. 3, but we now focus on the properties along different contour
choices for both physical and unphysical media. In particular,
Fig. 2 (Top) plots the partial integral ∫ ξ

0ðdω∕dξÞðdFx∕dωÞdξ, nor-
malized by the total force ∫ ∞

0 dFx, as a function of ξ. [As it must,
the total integral over ξ, the force Fx, is invariant regardless of the
contour ωðξÞ and agrees with previous results (14); specifically,
Fx ¼ 0.0335 (ℏc∕d3)]. We now comment on two important fea-
tures of the ωσ contour that are relevant to experiments.

First, the Jacobian factor for ωσ is given by dωσ∕dξ ¼
0.5ð2þ iσ∕ξÞ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ iσ∕ξ
p

and turns out to be very important at
low ξ. The ST integrand itself goes to a constant as ξ → 0
(due to the constant contribution of zero-frequency modes),
but the Jacobian factor diverges in an integrable square-root sin-
gularity ∼

ffiffiffiffiffiffiffiffi
σ∕ξ

p
. Because this singularity is known analytically,

however, separate from the measured or calculated GF, integrat-
ing it accurately poses no challenge. Second, the larger the value
of σ, the more rapidly the ST integrand decays with ξ, and as a
consequence the force integral for larger σ is dominated by smal-
ler ξ contributions. In comparison, previous calculations of Casi-
mir forces along the imaginary-frequency axis revealed that the
relevant ξ bandwidth was determined by some characteristic
length scale of the geometry such as body separations (14). Here
we have introduced an additional parameter σ that can squeeze
the relevant ξ bandwidth into a narrower region. This “spectral
squeezing” effect is potentially useful for experiments, because it
partially decouples the experimental length scale of the geometry
from the required frequency bandwidth.

A Casimir Analog Computer
As a consequence of the above results, we can now outline a pos-
sible experiment at centimeter length scales that determines the
Casimir force at micron length scales, a Casimir analog computer
(CAC). Suppose that one wishes to compute the Casimir force
between perfect-metal objects separated by vacuum, such as the
geometry in Fig. 1. One would then construct a scale model of this
geometry at a tabletop scale (e.g., centimeters) out of metallic
objects (which can be treated as perfect metals at microwave
and longer wavelengths). To determine the ST integrand along
a complex-ωσ contour, one would measure the GF at real-
frequencies ξ for the model immersed in a conducting fluid.
The GF is related to the S matrix of pairs of antennas, and
the diagonal of the GF to the S-matrix diagonal of a single
antenna (noting that the finite size of the antenna automatically
regularizes the integrand, as noted after [5]). It is important for
the model structure to be large enough that the introduction of a
small dipole-like antenna does not significantly alter the electro-
magnetic response. In general, the ST must be integrated in space
over a closed surface around the object, and correspondingly the
antenna’s S-matrix spectrum must be measured at a number of
antenna positions (two-dimensional quadrature points) around
this surface. (Unless one is interested in computing the force
on a single atom, which requires a single antenna measurement.)
The different components of the GF tensor correspond to differ-
ent antenna orientations. The magnetic GF can be determined
from the photon GF by [3] or possibly by employing “magnetic
dipole” antennas formed by small current loops.

We now consider a particular CAC (at the centimeter scale)
that employs realistic geometric and material parameters. Many
available fluids exhibit almost exactly the desired material prop-
erties from above. One such example is saline water, which has
εðξÞ ¼ εs þ iσ∕ξ, where εs ≈ 80 and σ ≈ 5 S∕m for relatively small
values of salt concentration (41). A calculation using these para-
meters, based on the geometry of Fig. 1, assuming object sizes and
separations at the centimeter to meter scale (we choose
d ¼ 0.3 m for the structure in Fig. 1, corresponding to a fre-

quency of 1 GHz), reveals that it is only required to integrate
the stress tensor up to small GHz frequencies ξ, which is well
within the reach of conventional antennas and electronics. This
idea is illustrated in Fig. 3 (Bottom), which plots the Gxx compo-
nent of the GF (Red Lines) as well as the partial force integrand
(Black Line), showing the high ξ < 1 GHz cancellations that oc-
cur once the ST is integrated along a surface (Inset). We note that
most salts exhibit additional dispersion for ξ > 10 GHz (41), but
we do not need to reach those frequency scales. (Nevertheless,
should there be substantial dispersion in the conducting fluid,
one could easily take it into account as a different complex-ω
contour.)

Some attention to detail is required in applying this correspon-
dence correctly. For instance, by using network analyzers, what is
measured in such an experiment is not the photon GF G but
rather the electric S matrix SE (the currents in a set of receiver
antennas due to currents in the source antennas), related to the
electric GF (the E-field response to an electric current J) by a
factor depending on the antenna geometry alone (relating J to E).
The electric GF will differ from the photon GF by a factor of the
real-frequency iξ. To summarize, the photon GF will be given in
terms of the measured SE byGijðωÞ ¼ ðα∕iξÞSEij ðξÞ, where α is the
antenna-dependent geometric factor (which can be measured
with high accuracy). To obtain the ST from Gij, one multiplies
by factors of ωðξÞ2 as in [3]. Fig. 3 (Bottom) illustrates the ex-
pected behavior of Sxx ∼Gxx∕ξ in a realistic system employing
a saline solution with d ¼ 30 cm.

We believe that such an experiment is feasible and capable of
yielding accurate Casimir forces. In particular, the accuracy of the
resulting force would only be limited by the magnitude of any
measurement error, because the remaining postprocessing steps
can be performed with very high accuracy using well known tech-
niques (14). With respect to measurement errors, we believe
these to be well within the bounds necessary to obtain forces with

Fx
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Fig. 3. (Top): Partial force integral ∫ ξ
0dFx , normalized by Fx, as a function of

ξ, for the various ωðξÞ-contours (equivalently, various εc ¼ ω2∕ξ2) shown in
Fig. 3. The solid green, red, and black lines correspond to conductive media
with σ ¼ 10, 102, and 103, respectively (σ has units of c∕d). The dashed gray
and solid blue lines correspond to ϕ ¼ π∕4 and ϕ ¼ π∕2 (Wick) rotations,
respectively. (Bottom): Illustration of the required frequency bandwidth
for a possible realization using saline solution at separation d ¼ 30 cm.
The red lines plot the xx component of the photon GF Gxx at a single location
on the surface contour (see Inset) as a function of ξ (GHz). The black line is the
corresponding partial force integrand.
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accuracies better than or similar to those of our previous (and
current) numerical experiments (14, 26, 28, 30, 31, 42). Some
of these may include: electronic noise, finite-size effects asso-
ciated with any measurement device (e.g., antenna width), and
surface roughness. It should be possible to make surface rough-
ness negligible at centimeter scales, and in any case roughness is
present in real Casimir experiments and is known to have a small
effect if the roughness amplitude is small compared to the surface
separations (43, 44) (although roughness could be intentionally
introduced in the microwave system to study its effect). Finite-
size effects are expected to be small because they are closely
analogous to the effect of discretization in our numerical simula-
tions (which give a finite size to current sources, among other ef-
fects), which do not contribute significantly to the force if the
finite size is small enough. Specifically, if a is a typical length scale
in the problem (here, centimeters), for resolutions ¼ 50 pixels∕a,
corresponding to a smallest representable length scale of 0.02a,
we obtain at least 1% accuracy in the force. For a tabletop experi-
ment with a around 10 cm, this corresponds to antenna sizes
<2 mm, which is easily achievable. One must also deal with elec-
tronic sources of noise in the microwave regime. These sources
include interference effects coming from sources in the vicinity of
the experiment as well as thermal noise, both of which become
significant at frequencies above 100 MHz (45). There are, how-
ever, many effective standard ways to reduce interference errors,
such as shielding and grounding of the entire apparatus (46). Fi-
nally, though insignificant in the microwave regime, one may en-
counter noise originating in the receiver circuit, e.g., shot and
pink noise. These absolute noise floors scale as the measurement
bandwidth and can therefore be reduced if these measurements
are performed over smaller frequency ranges (equivalent to aver-
aging) (45). Fortunately, both of these sources of noise are inde-
pendent of the power at which one operates the antenna
(measurement) device—therefore, because the GF measurement
upon which this experiment is based is independent of the source
amplitude (within the limits of the linear response of the materi-
als), it is possible to increase the source power in order to signif-
icantly reduce the signal-to-noise ratio. For example, typical
network analyzers can yield noise in the range (95, 120) dB at
these frequencies for powers in the milliwatts range (45), which
is negligible even when accumulated over hundreds of measure-
ments in a random walk. Moreover, numerical methods have the
same sort of noise in the form of accumulated round-off error,
which is also on the order of 10−9 or larger [proportional to
machine precision multiplied by the condition number of the
matrix (47)], and we have not observed any appreciable effect
of such round-off noise on the accuracy (which is mostly limited
by discretization/finite-size effects).

Conclusion
The calculation of Casimir forces and other fluctuation-induced
interactions presents a challenge for both theory and experiment
(3, 8, 48, 49). Especially for three-dimensional geometries, table-
top experiments offer an alternative route to rapidly exploring
many different geometric configurations that are only now starting
to become accessible to conventional numerical calculation
(although complex geometries involving many objects remain
challenging). Althoughmany details of such an experiment remain
to be developed, we believe that the basic ingredients are both
clear and feasible, at least when restricted to perfect-metal bodies.
The most difficult case to realize seems to be the force between
imperfect-metal or dielectric bodies with a permittivity εðωÞ,
because the corresponding tabletop system requires materials

with a specified dispersion relation εbodyc ðξÞ∕εfluidc ðξÞ ¼ εðωðξÞÞ
relative to the conducting fluid. This may be an opportunity for
specially designed metamaterials with the desired frequency
response. Analog computations at large length scales should also
enable scientists to study Casimir forces in geometries composed
of real dielectrics whose low-frequency response is of interest, such
as recent predictions of repulsive forces between dielectric and
magnetic (50–52) or magnetoelectric (53, 54) bodies which
currently only exist at long wavelengths (55).

The correspondence (developed here) between complex-
frequency deformations of the STand causal material transforma-
tions is an indispensable ingredient for the development of a CAC.
However, this equivalence is useful in at least twootherways: First,
it is being used to design numerical methods for Casimir-force
calculations based on the finite-difference time-domain method
(30, 31); second, it offers an alternative perspective on the Casimir
effect. Specifically, one of the difficulties involved in understand-
ing Casimir forces comes from the wide-bandwidth aspect of the
real-frequency domain, whichmakes it impossible to separate con-
tributions coming from individual electromagnetic modes and
therefore discourages the use of ideas from standard classical elec-
tromagnetism based on geometric or material resonances. For
example, electromagnetic metamaterials are commonly designed
to have effective materials properties that differ dramatically from
their constituent materials, but only over a narrow bandwidth
because they rely on strong resonant effects in subwavelength
structures (56). Physicists familiar with Casimir theory typically
consider the Casimir-force contributions decomposed along the
imaginary-frequency axis, where the contributions are exponen-
tially decaying and are mostly nonoscillatory because they are
far removed from the resonant modes (all of which lie below
the real-frequency axis) (3, 4, 14). However, this viewpoint is
foreign to most researchers from the classical electromagnetism
community, which focuses on real frequencies and is often
concerned with ideas based on geometric or material resonances
in narrow bandwidths. The imaginary-frequency viewpoint indi-
cates that resonant effects on Casimir phenomena are weak
and that broad real-ω bandwidths are important to Casimir inter-
actions, but this insight is far removed from the classical photonics
way of thinking. On the other hand, absorption loss is well under-
stood and familiar in classical electromagnetism, so our theoretical
framework may provide a gentler pathway into Casimir physics
from classical electromagnetics research: By realizing that Casimir
forces are determined by a narrow-bandwidth response to a system
with artificial dissipation added everywhere, it becomes immedi-
ately clear even from the classical-photonics viewpoint why strong
resonance effects are damped out. For example, although meta-
materials can be designed to have effective materials properties
that differ dramatically from their constituent materials over a
narrow bandwidth, the fact that these effects mostly disappear
at imaginary frequencies (57) can be difficult to convey to tradi-
tional metamaterials researchers. At the same time, it is a familiar
fact in the metamaterial community that useful metamaterial
properties are rapidly overwhelmed as strong dissipation is added
to the system, and by expressing Casimir interactions in these
terms more familiar classical analytical tools become applicable.
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