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Abstract. A key ingredient to searches for physics beyond the Standard Model
in B0

s mixing phenomena is the measurement of the B0
s – B

0
s oscillation frequency,

which is equivalent to the mass difference1ms of the B0
s mass eigenstates. Using

the world’s largest B0
s meson sample accumulated in a dataset, corresponding

to an integrated luminosity of 1.0 fb−1, collected by the LHCb experiment at
the CERN LHC in 2011, a measurement of 1ms is presented. A total of about
34 000 B0

s → D−

s π
+ signal decays are reconstructed, with an average decay time

resolution of 44 fs. The oscillation frequency is measured to be1ms = 17.768 ±

0.023 (stat) ± 0.006 (syst) ps−1, which is the most precise measurement to date.
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1. Introduction

The Standard Model (SM) of particle physics, despite its great success in describing
experimental data, is considered an effective theory valid only at low energies, below the TeV
scale. At higher energies, new physics phenomena are predicted to emerge. For analyses looking
for physics beyond the SM (BSM), there are two conceptually different approaches: direct and
indirect searches. Direct searches are performed at the highest available energies and aim at
producing and detecting new heavy particles. Indirect searches focus on precision measurements
of quantum-loop-induced processes. Accurate theoretical predictions are available for the heavy
quark sector in the SM. It is therefore an excellent place to search for new phenomena [1, 2],
since any deviation from these predictions can be attributed to contributions from BSM.

In the SM, transitions between quark families (flavours) are possible via the charged current
weak interaction. Flavour changing neutral currents (FCNC) are forbidden at lowest order,
but are allowed in higher order processes. Since new particles can contribute to these loop
diagrams, such processes are highly sensitive to contributions from BSM. An example FCNC
transition is neutral meson mixing, where neutral mesons can transform into their antiparticles.
Particle–antiparticle oscillations have been observed in the K0–K

0
system [3], the B0–B

0
system

[4], the B0
s –B

0
s system [5, 6] and the D0–D

0
system [7–10]. The frequency of B0

s – B
0
s oscillations

is the highest. On average, a B0
s meson changes its flavour nine times between production and

decay. This poses a challenge to the detector for the measurement of the decay time. Another key
ingredient of this measurement is the determination of the flavour of the B0

s meson at production,
which relies heavily on good particle identification and the separation of tracks from the primary
interaction point.

The observed particle and antiparticle states B0
s and B

0
s are linear combinations of the mass

eigenstates BH and BL with masses mH and mL and decay widths 0H and 0L, respectively [11].
The B0

s oscillation frequency is equivalent to the mass difference 1ms = mH − mL. The
parameter 1ms is an essential ingredient for all studies of time-dependent matter–antimatter
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asymmetries involving B0
s mesons, such as the B0

s mixing phase φs in the decay B0
s →

J/ψφ [12]. It was first observed by the Collider Detector at Fermilab (CDF) [6]. The Large
Hadron Collider beauty experiment (LHCb) published a measurement of this frequency using
a dataset, corresponding to an integrated luminosity of 37 pb−1, taken in 2010 [13]. This
analysis complements the previous result and is obtained in a similar way, using a data sample,
corresponding to an integrated luminosity of 1.0 fb−1, collected by LHCb in 2011.

2. The LHCb experiment

The LHCb experiment is designed for precision measurements in the beauty and charm hadron
systems. At a centre-of-mass energy of

√
s = 7 TeV, about 3 × 1011 bb pairs were produced in

2011. The LHCb detector [14] is a single-arm forward spectrometer covering the pseudorapidity
range from two to five. The excellent decay time resolution necessary to resolve the fast B0

s – B
0
s

oscillation is provided by a silicon-strip vertex detector surrounding the pp interaction region.
At nominal position, the sensitive region of the vertex detector is only 8 mm away from the
beam. An impact parameter (IP) resolution of 20µm for tracks with high transverse momentum
(pT) is achieved.

Charged particle momenta are measured with the LHCb tracking system consisting of the
aforementioned vertex detector, a large-area silicon-strip detector located upstream of a dipole
magnet with a bending power of about 4 T m, and three stations of silicon-strip detectors and
straw drift tubes placed downstream. The combined tracking system has momentum resolution
1p/p that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c.

Since this analysis is performed with decays involving only hadrons in the final state,
excellent particle identification is crucial to suppress background. Charged hadrons are
identified using two ring-imaging Cherenkov detectors [15]. Photon, electron and hadron
candidates are identified by a calorimeter system consisting of scintillating-pad and preshower
detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire proportional chambers.

The first stage of the trigger [16] is implemented in hardware, based on information
from the calorimeter and muon systems, and selects events that contain candidates with large
transverse energy and transverse momentum. This is followed by a software stage that applies
a full event reconstruction. The software trigger used in this analysis requires a two-, three-
or four-track secondary vertex with a significant displacement from the primary interaction, a
large sum of pT of the tracks, and at least one track with pT > 1.7 GeV/c. In addition, an IP χ2

with respect to the primary interaction greater than 16 and a track fit χ 2 per degree of freedom
<2 is required. The IP χ2 is defined as the difference between the χ2 of the primary vertex
reconstructed with and without the considered track. A multivariate algorithm is used for the
identification of the secondary vertices.

For the simulation, pp collisions are generated using Pythia 6.4 [17] with a specific LHCb
configuration [18]. Decays of hadronic particles are described by EvtGen [19], in which final
state radiation is generated using Photos [20]. The interaction of the generated particles with
the detector and its response are implemented using the Geant4 toolkit [21, 22], as described
in [23].
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3. Signal selection and analysis strategy

The analysis uses B0
s candidates reconstructed in the flavour-specific decay mode1 B0

s → D−

s π
+

in five D−

s decay modes, namely D−

s → φ(K+K−)π−, D−

s → K∗0(K+π−)K−, D−

s → K+K−π−

nonresonant, D−

s → K−π+π− and D−

s → π−π+π−. To avoid double counting, events that
contain a candidate passing the selection criteria of one mode are not considered for the
subsequent modes, using the order listed above. All reconstructed decays are flavour-specific
final states; thus the flavour of the B0

s candidate at the time of its decay is given by the charges of
the final state particles. A combination of tagging algorithms is used to identify the B0

s flavour at
production. The algorithms provide for each candidate a tagging decision as well as an estimate
of the probability that this decision is wrong (mistag probability). These algorithms have been
optimized using large event samples of flavour-specific decays [24, 25].

To be able to study the effect of selection criteria that influence the decay time spectrum,
we restrict the analysis to those events in which the signal candidate passed the requirements of
the software trigger algorithm used in this analysis. Specific features, such as the masses of the
intermediate φ and K∗0 resonances or the Dalitz structure of the D−

s → π−π+π− decay mode,
are exploited for the five decay modes. The most powerful quantity to separate signal from
background common to all decay modes is the output of a boosted decision tree (BDT) [26].
The BDT exploits the long B0

s lifetime by using as input the IP χ 2 of the daughter tracks, the
angle of the reconstructed B0

s momentum relative to the line between the reconstructed primary
vertex, and the B0

s vertex and the radial flight distance in the transverse plane of both the B0
s and

the D−

s mesons. Additional requirements are applied on the sum of the pT of the B0
s candidate’s

decay products as well as on particle identification variables, and on track and vertex quality.
The reconstructed D−

s mass is required to be consistent with the known value [27]. After this
selection, a total of about 47 800 candidates remain in the B0

s → D−

s π
+ invariant mass window

of 5.32–5.98 GeV/c2.
An unbinned likelihood method is employed to simultaneously fit the B0

s invariant mass
and decay time distributions of the five decay modes. The probability density functions (PDFs)
for signal and background in each of the five modes can be written as

P = Pm(m)Pt(t, q|σt , η)Pσt (σt)Pη(η), (1)

where m is the reconstructed invariant mass of the B0
s candidate, t is its reconstructed decay

time and σt is an event-by-event estimate of the decay time resolution. The tagging decision q
can be 0 if no tag is found, −1 for events with different flavour at production and decay (mixed)
or +1 for events with the same flavour at production and decay (unmixed). The predicted event-
by-event mistag probability η can take values between 0 and 0.5. The functions Pm and Pt

describe the invariant mass and the decay time probability distributions, respectively. Pt is a
conditional probability depending on σt and η. The functions Pσt and Pη are required to ensure
the proper relative normalization of Pt for signal and background [28]. The functions Pσt and
Pη are determined from data, using the measured distribution in the upper B0

s invariant mass
sideband for the background PDF and the sideband subtracted distribution in the invariant mass
signal region for the signal PDF.

This measurement has been performed ‘blinded’, meaning that during the analysis process
the fitted value of1ms was shifted by an unknown value, which was removed after the analysis
procedure had been finalized.

1 Unless explicitly stated, inclusion of charge-conjugated modes is implied.
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Figure 1. Invariant mass distributions for B0
s → D−

s π
+ candidates with the D−

s
meson decaying as (a) D−

s → φ(K+K−)π−, (b) D−

s → K∗0(K+π−)K−, (c) D−

s →

K+K−π− nonresonant, (d) D−

s → K−π+π− and (e) D−

s → π−π+π−. The fits
and the various background components are described in the text. Misidentified
backgrounds refer to background from B0 and 30

b decays with one misidentified
daughter particle.

4. Invariant mass description

The invariant mass of each B0
s candidate is determined in a vertex fit constraining the D−

s
invariant mass to its known value [27]. The invariant mass spectra for the five decay modes
after all the selection criteria are applied are shown in figure 1. The fit to the five distributions
takes into account contributions from signal, combinatorial background and b-hadron decay
backgrounds. The signal components are described by the sum of two Crystal Ball (CB)
functions [29], which are constrained to have the same peak parameter. The parameters of the
CB function describing the tails are fixed to values obtained from simulation, whereas the mean
and the two widths are allowed to vary. These are constrained to be the same for all five decay
modes. It has been checked on data that the mass resolution is compatible among all modes.

The b-hadron decay background includes B0 and 30
b decays with one misidentified

daughter particle. Their mass shapes are derived from simulated samples. The yields for the
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Table 1. Number of candidates and B0
s signal fractions in the mass range

5.32–5.98 GeV/c2.

Decay mode (D−
s π

+) candidates fB0
s →D−

s π+ fB0
s →D∓

s K±

D−
s → φ(K+K−)π− 14 691 0.834 ± 0.008

D−
s → K∗0(K+π−)K− 10 866 0.857 ± 0.009

D−
s → K+K−π− nonresonant 11 262 0.595 ± 0.009

D−
s → K−π+π− 4288 0.437 ± 0.014

D−
s → π−π+π− 6674 0.599 ± 0.008 0.019 ± 0.010

Total 47 781 0.714 ± 0.004 0.019 ± 0.010

different b-hadron decay backgrounds are allowed to vary individually for each of the five
decay modes. Another component originates from B0

s → D∓

s K± decays, in which the kaon is
misidentified as a pion. This contribution is treated as a signal in the decay time analysis.

The requirement that the invariant mass be larger than 5.32 GeV/c2 rejects background
candidates from B0

s decays with additional particles in the decay not reconstructed, such as
B0

s → D∗−

s π
+(D∗−

s → D−

s π
0 or D−

s γ ). The fitted number of signal candidates does not change
with respect to a fit in a larger mass window. The high mass sideband region 5.55–5.98 GeV/c2

provides a sample of mainly combinatorial background candidates. The mass distribution is
described by an exponential function, whose parameters are allowed to vary individually for the
five decay modes. By including this region in the fit, we are able to determine the decay time
distribution as well as the tagging behaviour of the combinatorial background.

The number of used candidates along with the signal fractions extracted from the two-
dimensional fit in mass and decay time are reported in table 1. One complication arises from
the fact that the shape of the invariant mass distribution of the B0

s → D∓

s K± events is very
similar to that of the B0 background. Therefore, the fraction of B0

s → D∓

s K± candidates has
been determined in a fit to the D−

s → π−π+π− mode only, in which no B0 background is present.
Subsequently this value is used for all the other modes.

5. Decay time description

The decay time of a particle is measured as

t =
Lm

p
, (2)

where L is the distance between the production vertex and the decay vertex of the particle,
m its reconstructed invariant mass and p its reconstructed momentum. We use the decay time
calculated without the D−

s mass constraint to avoid a systematic dependence of the B0
s decay time

on the reconstructed invariant mass. The theoretical distribution of the decay time, t , ignoring
the oscillation and any detector resolution, is

Pt ∝ 0s e−0st cosh

(
10s

2
t

)
θ(t), (3)
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where 0s is the B0
s decay width and 10s the decay width difference between the light and

heavy mass eigenstates2. The value for 10s is fixed to the latest value measured by LHCb [12]
10s = 0.106 ± 0.011 ± 0.007 ps−1. It is varied within its uncertainties to assess the systematic
effect on the measurement of1ms. The Heaviside step function θ(t) restricts the PDF to positive
decay times.

To account for detector resolution effects, the decay time PDF is convolved with a Gaussian
distribution. The width σt is taken from an event-by-event estimate returned by the fitting
algorithm that reconstructs the B0

s decay vertex. Due to tracking detector resolution effects, σt

needs to be calibrated. A data-driven method, combining prompt D−

s mesons from the primary
interaction with random π+ mesons, forms fake B0

s candidates. The decay time distribution of
these candidates, each divided by its event-by-event σt , is fitted with a Gaussian function. The
width provides a scale factor Sσt = 1.37, by which each σt is multiplied, such that it represents
the correct resolution. By inspecting different regions of phase space of the fake B0

s candidates,
the uncertainty range on this number is found to be 1.25< Sσt < 1.45. The variation is taken
into account as part of the 1ms systematic studies. The resulting average decay time resolution
is Sσt × 〈σt〉 = 44 fs.

Some of the selection criteria influence the shape of the decay time distribution, e.g. the
requirement of a large IP for B0

s daughter tracks. Thus, a decay time acceptance function Et(t)
has to be taken into account. Its parametrization is determined from simulated data and the
parameter describing its shape is allowed to vary in the fit to the data, while 0s is fixed to the
nominal value [27]. Taking into account resolution and decay time acceptance, the PDF given
in equation (3) is modified to

Pt(t |σt)∝

[
0s e−0s t cosh

(
10s

2
t

)
θ(t)

]
⊗ G(t; 0, Sσtσt)Et(t) (4)

with G(t; 0, Sσtσt) being the resolution function determined by the method mentioned above.
The decay time PDFs for the B0 and 30

b backgrounds are identical to the signal PDF, except for
10 being zero, and 0s being replaced by their respective decay widths [27]. The shape of the
decay time distribution of the combinatorial background is determined with high mass sideband
data. It is parametrized by the sum of two exponential functions multiplied by a second-order
polynomial distribution. The exponential and polynomial parameters are allowed to vary in the
fit and are constrained to be the same for the five decay modes.

6. Flavour tagging

To determine the flavour of the B0
s meson at production, both opposite-side (OST) and same-

side (SST) tagging algorithms are used. The OST exploits the fact that b quarks at the LHC
are predominantly produced in quark–antiquark pairs. By partially reconstructing the second
b hadron in the event, conclusions on the flavour at production of the signal B0

s candidate can
be drawn. The OST has been optimized on large samples of B+

→ J/ψK +, B → µ+D∗−X and
B0

→ D−π+ decays [24].
The SST takes advantage of the fact that the net strangeness of the pp collision is zero.

Therefore, the s quark needed for the hadronization of the B0
s meson must have been produced in

association with an s quark, which in about 50% of the cases hadronizes to form a charged kaon.

2 10s and 1ms are measured in units with h̄ = 1 throughout this paper.
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By identifying this kaon, the flavour at production of the signal B0
s candidate is determined. The

optimization of the SST was performed on a data sample of B0
s → D−

s π
+ decays, which has a

large overlap with the sample used in this analysis [25]. However, since the oscillation frequency
is not correlated with the parameters describing tagging performance, this does not bias the1ms

measurement.
The decisions given by both tagging algorithms have a probability ω to be incorrect. Each

tagging algorithm provides an estimate for the mistag probability η; which is the output of
a neural network combining various event properties. The true mistag probability ω can be
parametrized as a linear function of the estimate η [24, 25]:

ω = p0 + p1 × (η− 〈η〉) (5)

with 〈η〉 being the mean of the distribution of η. This parametrization is chosen to minimize the
correlations between p0 and p1. The calibration is performed separately for the OST and SST.

The sets of calibration parameters (p0, p1)OST and (p0, p1)SST are allowed to vary in the fit.
The figure of merit of these tagging algorithms is called the effective tagging efficiency εeff. It
gives the factor by which the statistical power of the sample is reduced due to imperfect tagging
decisions. In this analysis, εeff is found to be (2.6 ± 0.4)% for the OST and (1.2 ± 0.3)% for the
SST. Uncertainties are statistical only.

7. Measurement of 1ms

Adding the information of the flavour tagging algorithms, the decay time PDF for tagged signal
candidates is modified to

Pt(t |σt)∝

{
0s e−0s t 1

2

[
cosh

(
10s

2
t

)
+ q [1 − 2ω(ηOST, ηSST)] cos(1mst)

]
θ(t)

}
⊗ G(t, Sσtσt) Et(t) ε, (6)

where ε gives the fraction of candidates with a tagging decision. Signal candidates without a
tagging decision are still described by equation (4) multiplied by an additional factor (1 − ε) to
ensure relative normalization.

The information provided by the opposite-side and same-side taggers for the signal is
combined to a single tagging decision q and a single mistag probability ω(ηOST, ηSST) using their
respective calibration parameters p0OST/SST and p1OST/SST . The individual background components
show different tagging characteristics for candidates tagged by the OST or SST. The b hadron
backgrounds show the same opposite-side tagging behaviour (q and ω) as the signal, while
the combinatorial background shows random tagging behaviour. For same-side tagged events,
we assume random tagging behaviour for all background components. We introduce tagging
asymmetry parameters to allow for different numbers of candidates being tagged as mixed
or unmixed, and other parameters to describe the tagging efficiencies for these backgrounds.
As expected, the fitted values of these asymmetry parameters are consistent with zero within
uncertainties.

All tagging parameters, as well as the value for 1ms, are constrained to be the same for
the five decay modes. The result is 1ms = 17.768 ± 0.023 ps−1 (statistical uncertainty only).
The likelihood profile was examined and found to have a Gaussian shape up to nine standard
deviations. The decay time distributions for candidates tagged as mixed or unmixed are shown
in figure 2, together with the decay time projections of the PDF distributions resulting from the
fit.
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reconstructed B0

s mass of 5.32–5.55 GeV/c2.

8. Systematic uncertainties

With respect to the first measurement of 1ms at LHCb [13], all sources of systematic
uncertainties have been reevaluated.

The dominant source is related to the knowledge of the absolute value of the decay time.
This has two main contributions. First, the imperfect knowledge of the longitudinal (z) scale
of the detector contributes to the systematic uncertainty. It is obtained by comparing the track-
based alignment and survey data and evaluating the track distribution in the vertex detector.
This results in 0.02% uncertainty on the decay time scale and thus an absolute uncertainty of
±0.004 ps−1 on 1ms.

The second contribution to the uncertainty of the decay time scale comes from the
knowledge of the overall momentum scale. This has been evaluated by an independent study
using mass measurements of well-known resonances. Deviations from the reference values [27]
are measured to be within 0.15%. However, since both the measured invariant mass and
momentum enter the calculation of the decay time, this effect cancels to some extent. The
resulting systematic uncertainty on the decay time scale is evaluated from simulation to be
0.02%. This again translates to an absolute uncertainty of ±0.004 ps−1 on 1ms.

The next largest systematic uncertainty is due to a possible bias of the measured decay time
given by the track reconstruction and the selection procedure. This is estimated from simulated
data to be less than about 0.2 fs, and results in ±0.001 ps−1 systematic uncertainty on 1ms.

Various other sources contributing to the systematic uncertainty have been studied such
as the decay time acceptance, decay time resolution, variations of the value of 10s, different
signal models for the invariant mass and the decay time resolution, variations of the signal
fraction and the fraction of B0

s → D∓

s K± candidates. They are all found to be negligible. The
sources of systematic uncertainty on the measurement of 1ms are summarized in table 2.
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Table 2. Systematic uncertainties on the1ms measurement. The total systematic
uncertainty is calculated as the quadratic sum of the individual contributions.

Source Uncertainty (ps−1)

z-scale 0.004
Momentum scale 0.004
Decay time bias 0.001
Total systematic uncertainty 0.006

9. Conclusion

A measurement of the B0
s – B

0
s oscillation frequency 1ms is performed using B0

s → D−

s π
+

decays in five different D−

s decay channels. Using a data sample corresponding to an integrated
luminosity of 1.0 fb−1 collected by LHCb in 2011, the oscillation frequency is found to be

1ms = 17.768 ± 0.023 (stat)± 0.006 (syst) ps−1,

in good agreement with the first result reported by the LHCb experiment [13] and the current
world average, 17.69 ± 0.08 ps−1 [27]. This is the most precise measurement of 1ms to date,
and will be a crucial ingredient in future searches for BSM physics in B0

s oscillations.
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63 Università di Cagliari, Cagliari, Italy
64 Università di Ferrara, Ferrara, Italy
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