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Abstract: We present a new technique for the design of transformation-
optics devices based on large-scale optimization to achieve the optimal
effective isotropic dielectric materials within prescribed index bounds,
which is computationally cheap because transformation optics circumvents
the need to solve Maxwell’s equations at each step. We apply this technique
to the design of multimode waveguide bends (realized experimentally in a
previous paper) and mode squeezers, in which all modes are transported
equally without scattering. In addition to the optimization, a key point is
the identification of the correct boundary conditions to ensure reflectionless
coupling to untransformed regions while allowing maximum flexibility in
the optimization. Many previous authors in transformation optics used a
certain kind of quasiconformal map which overconstrained the problem
by requiring that the entire boundary shape be specified a priori while
at the same time underconstraining the problem by employing “slipping”
boundary conditions that permit unwanted interface reflections.

© 2013 Optical Society of America
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1. Introduction

In this work, we introduce the technique of transformation inverse design, which combines the
elegance of transformation optics [1–8] (TO) with the power of large-scale optimization (in-
verse design), enabling automatic discovery of the best possible transformation for given design
criteria and material constraints. We illustrate our technique by designing multimode waveguide
bends [9–21] and mode squeezers [20–24], then measuring their performance with finite ele-
ment method (FEM) simulations. Most designs in transformation optics use either hand-chosen
transformations [3, 14–17, 22, 25–32] (which often require nearly unattainable anisotropic ma-
terials), or quasiconformal and conformal maps [2, 9–13, 22, 33–51] which can automatically
generate nearly-isotropic transformations (either by solving partial differential equations or by
using grid generation techniques) but still require a priori specification of the entire bound-
ary shape of the transformation. Further, neither technique can directly incorporate refractive-
index bounds. On the other hand, most inverse design in photonics involves repeatedly solving
computationally expensive Maxwell equations for different designs [52–71]. Transformation
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inverse design combines elements of both transformation optics and inverse design while over-
coming their limitations. First, the use of optimization allows us to incorporate arbitrary fabrica-
tion constraints while at the same time searching the correct space of transformations without
unnecessarily underconstraining or overconstraining the problem. Second, instead of solving
Maxwell’s equations, we require only simple derivatives to be computed at each optimization
step. This is because transformation optics works by using a coordinate transformation x′(x)
that warps light in a desired way (e.g. mapping a straight waveguide to a bend, or mapping
an object to a point or the ground for cloaking applications [3, 4, 33, 40–43, 72, 73]) and then
employing transformed materials which are given in terms of the Jacobian J i j = ∂x′j/∂xi to
mathematically mimic the effect of the coordinate transformation. This transforms all solutions
of Maxwell’s equations in the same way (as opposed to non-TO multimode devices which often
have limited bandwidth and/or do not preserve relative phase between modes [60, 71, 76–84]),
and is therefore particularly attractive for designing multimode optical devices [20, 34, 85–87]
(such as mode squeezers, expanders, splitters, couplers, and multimode bends) with no inter-
modal scattering. (Similar ideas appeared even earlier in the context of electrostatic cloaking
by anisotropic conductivities [74, 75].) Examples of such transformations are shown in Fig. 1.

One major difficulty with transformation optics is that most functions x′(x) yield highly
anisotropic and magnetic materials. In principle, these transformed designs can be fabricated
with anisotropic microstructures [29, 88–90] or naturally birefringent materials [25, 30]. How-
ever, in the infrared regime (where metals are lossy) it is far easier to instead fabricate effec-
tively isotropic dielectric materials, provided that the refractive index falls within the given
bounds nmin and nmax of the fabrication process (for example, subwavelength nanostructures
[36,41–43,47,72,88,91–93] or waveguides with variable thickness [94–99]). This requirement
means that we would prefer to consider the subset of transformations that can be mapped to
approximately isotropic dielectric materials.

The theory of transformation optics with nearly isotropic materials is intimately connected
to the subjects of conformal maps (which are isotropic by definition [2, 100, 101]) and qua-
siconformal maps [which in mathematical analysis are defined as any orientation-preserving
transformation with bounded anisotropy (as quantified in Sec. 2.4)]. However, in transformation
optics the term “quasiconformal” has become confusingly associated with only a single choice
of quasiconformal map suggested by Li and Pendry [33]. In that work, Li and Pendry proposed
minimizing a mean anisotropy with “slipping” boundary conditions (defined in Sec. 2.4), which
turns out to yield a transformation that is essentially conformal up to a constant stretching (and
thus anisotropy) everywhere. This map, which also happens to minimize the peak anisotropy
given the slipping boundary conditions [33, 102], is sometimes confusingly called “the quasi-
conformal map” [9, 37, 39, 41, 43]. However, we point out in Sec. 2.4 that slipping boundary
conditions are not the correct choice if one wishes to ensure a reflectionless interface between
transformed and untransformed regions. Instead, for interfaces to be reflectionless requires at
least continuity of the transformation x′ at the interface [87, 103–105] and, as we show in
Sec. 2.3 for the case of isotropic dielectric media, continuity of the Jacobian J as well. If
one fixes the transformation on part or all of the boundary (instead of just the corners) and
minimizes the peak anisotropy, the result is called (in analysis) an extremal quasiconformal
map [106–111]. We point out in Sec. 2.2 that this extremal quasiconformal map can never
be conformal except in trivial cases. Additionally, previous work in quasiconformal transfor-
mation optics underconstrained the space of transformations in one way but overconstrained
it in another. Li and Pendry’s method, along with other work on extremal quasiconformal
maps in mathematical analysis, assumed that the entire boundary shape of the transformed
domain is specified a priori (even if the value of the transformation at the boundary is not
specified). In contrast, transformation inverse design allows parts of the boundary shape to be
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Fig. 1. Three possible applications of transformation optics for multimode waveguides:
squeezer, expander, and bend. Dark areas indicate higher refractive index.

freely chosen by the optimization, only fixing aspects of the boundary that are determined by
the underlying problem (e.g. the input/output facets of the boundary in Fig. 1) as explained
in Secs. 3.2, allowing a much larger space of transformations to be searched. Also, for such
stricter boundary conditions, minimizing the mean anisotropy is not equivalent to minimizing
the peak anisotropy [107, 112–114], and we argue below that the peak anisotropy is a better
figure of merit for transformation optics in general.

We solve all of these problems by using large-scale numerical optimization to find the trans-
formation with minimal peak anisotropy that exactly obeys continuity conditions at the bound-
ary with untransformed regions. This allows the input/output interfaces to transition smoothly
and continuously into untransformed devices while also satisfying fabrication constraints (e.g.
bounds on the attainable refractive indices and bend radiii). A large space of arbitrary smoothly
varying transformations (that satisfy the continuity conditions and fabrication constraints) is
explored quickly and efficiently by parametrizing in a “spectral” basis [115, 116] of Fourier
harmonics and Chebyshev polynomials. The optimized transformation is then scalarized (as in
the case of previous work on quasiconformal transformation optics) into an isotropic dielectric
material that guides modes with minimal intermodal scattering and loss. In the case of a multi-
mode bend, for which our design was recently fabricated and characterized [117], we achieve
intermodal scattering at least an order of magnitude smaller than a conventional non-TO bend.

In Sec. 2.1, we review the equations of transformation optics. In Sec. 2.2, we describe situa-
tions where the transformation-designed material can be mapped to isotropic media. In Sec. 2.3,
we point out that such isotropic transformations, due to their analyticity, always have undesir-
able interface discontinuities when coupled into untransformed regions. In Secs. 2.4 and 2.5,
we review the techniques of quasiconformal mapping (as used in both the transformation optics
and mathematical analysis literature) and scalarization of nearly isotropic transformations. We
show that the inherent restrictions of quasiconformal mapping can be circumvented by directly
optimizing the map using transformation inverse design. In Secs. 3.1 and 3.2, we design a nearly
isotropic transformation for a 90◦-bend by perturbing from the highly anisotropic circular bend
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transformation. In Secs. 3.3 and 3.4, we set up the bend optimization problem and the spec-
tral parameterization. In Sec. 4, we present the optimized structure, which reduces anisotropy
by several orders of magnitude compared to the circular TO bend. In Sec. 4.1, we present fi-
nite element simulation results comparing our optimized design to the conventional non-TO
bend and the circular TO bend. In Secs. 4.2 we show that minimizing the mean anisotropy can
lead to pockets of high anisotropy (which in turn leads to greater intermodal scattering) while
minimizing the peak does not. In Secs. 4.3, we discuss the tradeoff between the bend radius
and the optimized anisotropy. In Sec. 5 we briefly present methods and results for applying
transformation inverse design to optimize mode squeezers.

2. Mathematical preliminaries

2.1. Transformation optics

The frequency domain Maxwell equations (fields ∼ e−iωt ), without sources or currents, in linear
isotropic dielectric media [εεε = ε(x), μμμ = μ0] are

∇×H =−iωε(x)E
∇×E = iωμ0H. (1)

Consider a coordinate transformation x′ (x) with Jacobian Ji j =
∂x′j
∂xi

. We define the primed

gradient vector as ∇′ ≡
(

∂
∂x′ ,

∂
∂y′ ,

∂
∂ z′

)
= J−1∇ and the primed fields as E′ ≡ J −1E and H′ ≡

J −1H. One can then rewrite Eq. (1), after some rearrangement [1, 118], as

∇′ ×H′ =−iωεεε ′E′

∇′ ×E′ = iωμμμ ′H′, (2)

where the effects of the coordinate transformation have been mapped to the equivalent tensor
materials

μμμ ′ = μ0
J TJ
detJ εεε ′ = ε(x)

J TJ
detJ . (3)

This equivalence has become known as transformation optics (TO). It is actually the specific
case of a much more general result from general relativity [120]. For a further discussion of
space–time transformations and connections to negative refraction, see [4] and [121].

Most useful applications of TO require that the transformation be coupled to untransformed
regions (e.g. the input and output straight waveguides in the case of a bend transformation, or
the surrounding air region for the case of a ground-plane cloaking transformation). However, in
order for TO to guarantee that the interface between transformed and untransformed regions be
reflectionless, the transformation must be equivalent to a continuous transformation of all space
that is the identity x′(x) = x in the “untransformed” regions, as depicted in Fig. 2. More gen-
erally, the untransformed regions can be simple rotations or translations, but when examining
a particular interface, we can always choose the coordinates to be x′ = x at that interface. It is
clear by construction that continuous x′ is sufficient for reflectionless interfaces [87, 104, 105],
and this is in fact a necessary condition as well [103]. Although a general anisotropic trans-
formation need only have x′(x) continuous at the interface , we show below that an isotropic
transformation will also have a continuous J at the interface. These boundary conditions are
essential for designing useful transformations without interface reflections.

2.2. Transformations to isotropic dielectric materials

For the vast majority of transformations, the materials in Eq. (3) are anisotropic tensors. How-
ever, for certain transformations, the tensors are effectively scalar. Suppose that the transforma-
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Fig. 2. The interface between the transformed and untransformed region must have x′ con-
tinuous in order for there not to be any interface reflections.

tion x′(x) is 2D (z′ = z and ∂x′
∂ z = 0), making J block-diagonal (with the zz element independent

of the xy block). Then, the xy block of J TJ is isotropic if and only if the diagonal elements are
equal and the off-diagonal elements vanish:

∣∣∇x′
∣∣2 − ∣∣∇y′

∣∣2 = 0

∇x′ ·∇y′ = 0. (4)

In this case, the J part of Eq. (3) becomes

J TJ
detJ =

⎛
⎝

1
1

1
detJ

⎞
⎠ . (5)

This isotropy has different implications for transverse-magnetic (TM) polarized modes in
2D (which have E = Eẑ and H · ẑ = 0) versus transverse-electric (TE) polarized modes (which
have E · ẑ = 0 and H = Hẑ). For TM-polarized modes, the fields E′, H′ in the primed coordinate
system are also TM-polarized and Eq. (2) becomes

∇′ ×H′ =−iω
ε(x)
detJ E′ (6)

∇′ ×E′ = iωμ0H′. (7)

Hence, for TM modes, an isotropic transformation can be exactly mapped to an isotropic di-
electric material. Similarly, for TE-polarized modes the equivalent material is isotropic and
magnetic. However, if detJ varies slowly compared to the wavelengths of the fields, then the
transformation can approximately still be mapped to an isotropic dielectric material by making
an eikonal approximation (as in [119] Ch. 8.10) and commuting 1/μ ′ with one of the curls in
the Maxwell equations. In particular, Eq. (2) can be written:

∇′ ×∇′ ×E′ = ω2ε0μ0(detJ )E′+O(∇detJ ), (8)

where the last term can be neglected for slowly varying transformations. Because the TM case is
conceptually simpler and does not require this extra approximation, we work with it exclusively
for the rest of this paper. Also, because the non-trivial aspects of the transformation occur in
the xy plane, we hereafter use J to denote the xy block.
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2.3. Conformal maps and uniqueness

If a transformation has an isotropic J , then the transformation preserves angles in the xy plane.
Additionally, if detJ > 0, then the transformation also preserves handness and orientation.
The combination of these two properties is called a conformal map [100], and is the only case
where the situation in Sec. 2.2 can be realized. We only consider transformations with detJ > 0
in order to restrict ourselves to dielectric materials. Also, a detJ > 0 transformation coupled
continuously to an untransformed (detJ = 1) region would require singularities (detJ = 0)
at some points. Conformal maps are described by analytic functions, which are of the form
x′+ iy′ = w′(w) (where w ≡ x+ iy is the untransformed complex coordinate) and whose real
and imaginary parts satisfy the Cauchy–Riemann equations of complex analysis [100, 101].

However, true conformal maps cannot directly be used for transformation optics in typical
applications, because of the impossibility of coupling them to untransformed regions with the
boundary conditions discussed in Sec. 2.1. In particular, the uniqueness theorem of analytic
functions [101, Thm. 10.39] tells us that if w′(w) = w in some region, then w′(w) = w every-
where (similarly for a simple rotation or translation in some regions).

As a corollary, in the limit where a transformation becomes more and more isotropic in the
neighborhood of an interface, it must have a continuous J , not just a continuous x′(x). It is easy
to see this explicitly in the example of Fig. 2: continuity of x′(x) at the interface requires that
∂x′
∂x = (1, 0) on both sides of the interface, which determines the first row of J . The isotropy
of J TJ then forces J = I. Therefore, in the sections that follow (where we search for approxi-
mately isotropic maps), we will impose the condition of continuous J as a boundary condition
on our transformations. The resulting transformations are nearly isotropic in the interior and
exactly isotropic on the interfaces. This condition, discussed at the end of Sec. 2.5, also has the
useful consequence of producing a continuous refractive index n′ =

√
ε ′μ ′.

2.4. Quasiconformal maps and measures of anisotropy

Because true conformal maps cannot be used, one widely used alternative is to search for a
nearly isotropic transformation, which can be approximated by an isotropic material at the
cost of some scattering corrections to the exactly transformed modes of the nearly isotropic
material. To do this, one must first quantify the measure of anisotropy that is to be minimized.
The isotropy condition of Eq. (4) is equivalent to λ1 = λ2, where λ1(x, y) ≥ λ2(x, y) are the
two eigenvalues of J TJ . While λ1 −λ2 works as a measure of anisotropy, it is convenient for
optimization purposes to define differentiable measures that can be expressed directly in terms
of the trace and determinant of J , and precisely such quantities have been developed in the
literature on quasiconformal maps [106, 107, 111, 122, 123].

A general transformation is an arbitrary function of x and y or, equivalently, an arbitrary
function w′(w, w̄), of w and w̄ = x− iy, which may not be analytic in w. The anisotropy can be
related to the Beltrami coefficient [107, 111]

μB (w, w̄)≡
(

∂w′

∂ w̄

)(
∂w′

∂w

)−1

. (9)

The term quasiconformal map refers to any map that has bounded |μB| < 1, which includes
all non-singular sense preserving (detJ > 0) transformations. It can be shown that the linear
distortion K [106, 107] satisfies

K ≡ 1+ |μB|2
1−|μB|2

=

√
λ1

λ2
≥ 1. (10)
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Various other measures of anisotropy have been defined in the grid generation literature [124,
125], including the Winslow and Modified Liao functionals, which are given by Φ ≡ ´ d2x(K+
1
K ) and Φ ≡ ´ d2x(K2 + 1

K2 ), respectively. However, for the rest of this work we refer to the
quantity K− 1 ≥ 0 as the “anisotropy”, where K is the distortion function [106, 107], defined
as

K(x, y)≡ 1
2

(
K +

1
K

)
=

trJ TJ
2detJ ≥ 1. (11)

The tensor J TJ
detJ is known as the distortion tensor [107].

As mentioned in the introduction, an extremal quasiconformal map is one that minimizes
the peak anisotropy, given the shape of the transformed region and the values of the transfor-
mation on some or all of the boundary [106, 107, 111, 122]. Because K, K− 1, K, and |μB|
are all monotonic functions of one another, they are equivalent for the purpose of finding an
extremal quasiconformal map. However, K is numerically convenient because it is a differen-
tiable function of the entries of J . These quantities are not generally equivalent for minimizing
the mean anisotropy [107, 112–114], and we argue in Sec. 4.2 that the peak anisotropy is a
better figure of merit. However, in the special case where the value of the transformation is
only fixed at the corners of the domain and is allowed to vary freely in between (a “slipping”’
boundary condition), Li and Pendry showed that it is equivalent to minimize the mean (either
Winslow or modified-Liao) or the peak anisotropy, and that these yield a constant-anisotropy
map (a uniform scaling of a conformal map) [102] that they and other authors have used for
transformation optics [9, 22, 34–48]. However, the slipping boundary will generally lead to re-
flections at the interface between the transformed and untransformed regions because of the
resulting discontinuity in the transformation, which can only be reduced by making the trans-
formation domain very large in cases (e.g. cloaking) with localized deformations. In order to
design compact transformation-optics devices, especially for applications such as bends where
the deformation is nonlocalized, we will instead impose continuity of the transformation and/or
its Jacobian on the input/output facets of the domain, while at the same time allowing the shape
of some or all of the boundary to vary (unlike all previous work on quasiconformal maps, to
our knowledge).

2.5. Scalarization errors for nearly isotropic materials

The minimum-anisotropy quasiconformal map is then scalarized (as in [33]) by approximating
it with an isotropic dielectric material. As shown in Sec. 2.2, a perfectly isotropic 2D transfor-
mation of a geometry with an isotropic dielectric material that guides TM modes E0, H0 can be
mapped to a transformed material and geometry that is also isotropic dielectric and guides TM
modes E′

0, H′
0. This is exact for K = 1, but for a nearly isotropic transformation with K > 1,

the equivalent permeability is μμμ ′ = I+Δμμμ , where the anisotropic part Δμμμ is proportional to
K− 1 to lowest order. While Δμμμ ′ �= 0 cannot be fabricated using dielectric gradient index
processes, one can neglect this small correction so that the actual fabricated material has per-
meability μμμ ′

approx = I. In practice, we absorb any Δμμμ ′ into ε ′ by multiplying ε ′ by the average
eigenvalue of μμμ ′

〈
μμμ ′〉= λ1 +λ2

2
√

λ1λ2
=

trJ TJ
2detJ (12)

but this does not change the O (K−1) error.
A Born approximation [126–128] tells us that, given an exact transformation with no scatte-

ring, any small error of Δεεε and Δμμμ will generically lead to scattered fields with magnitudes of
O(|Δεεε |+ |Δμμμ |) and scattered power of O(|Δεεε |2+ |Δμμμ |2). The modes of the approximate scalar-
ized material μμμ ′

approx, ε ′approx are then the exact guided modes plus scattered power corrections
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of O(|Δμμμ|2) =O[(K−1)2].
A similar analysis explains why we must explicitly impose continuity of J at the input/output

facets of the domain. As explained in Sec. 2.3, a purely isotropic transformation in the neigh-
borhood of the interface, along with a continuity of x′, would automatically yield continuous
J , so one might hope that minimizing anisotropy would suffice to obtain a nearly continu-
ous J . Unfortunately, as we show in the Appendix, the resulting discontinuity in detJ (and
hence the discontinuity in the refractive index) is of order O(

√
K−1), which would lead to

O(K− 1) power loss due to reflections, much larger than the O[(K−1)2] power scattering
from anisotropy in the interior. This would make it pointless to minimize the anisotropy in the
interior, since the boundary reflections would dominate. In fact, our initial implementation of
the bend optimization in Sec. 3.4 did not enforce continuity of J , and we obtained a large 2%
index discontinuity at the endfacets for maxxK−1 ≈ 0.0005. Therefore, in Sec. 3.4 we impose
continuity of J explicitly.

2.6. General optimization of anisotropy

In this paper, we directly minimize K using large-scale numerical optimization while keeping
track of constraints on the transformation x′ and its Jacobian J , as well as the engineering fab-
rication bounds nmin and nmax. By using numerical optimization, we can in principle achieve
both a lower mean anisotropy and a lower peak anisotropy than by traditional quasiconformal
mapping, since the optimization is also free to vary the boundary shape (with at most the in-
put/output interfaces fixed, although in some cases their locations and shapes are allowed to
vary as well). The minimization problem can be written, for example, as

min
x′(x)

‖K(x)‖ subject to

{
x′, J continuousat input/output interfaces

nmin ≤ n′(x)≤ nmax
, (13)

where ‖K(x)‖ is a functional norm taken over the domain of x′(x). We consider two possible
norms: the L1 norm (the mean 〈K〉x), and the L∞ norm (maxxK). We show in Sec. 4.2 that
minimizing the mean can lead to pockets of high anisotropy which can cause increased scat-
tering. Directly optimizing the peak anisotropy on the other hand, avoids such pockets while
simultaneously keeping the mean nearly as low. The continuity of x′ and J at the input/output
interfaces, as well as other constraints on the interface locations, are imposed implicitly by the
parametrization of x′(x) (as explained in Sec. 3.4).

3. Multimode Bend design

In this section, we design a bend transformation (depicted in Fig. 3) using general methods to
(locally) solve the optimization problem of Eq. (13). In contrast, previous work on TO bend
design either utilized materials that were either anisotropic or consisted of multiple stacked
isotropic layers [14–18,20,21] or employed slipping boundary conditions [9–13] (which result
in endfacet reflections when coupled to untransformed waveguide).

3.1. Simple circular bends

First, we consider a simple circular bend transformation (which we refer to hereafter as the
circular TO bend) that maps a rectangular segment of length L and width unity (in arbitrary
distance units to be determined later) into a bend with inner radius R and outer radius R+1 (as
shown in Fig. 3). For convenience, we choose the untransformed coordinates to be R≤ x≤R+1
and −L

2 ≤ y ≤ L
2 , with the untransformed segment length L = πR

2 equal to the inner arclength
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Fig. 3. In the transformation process, the untransformed straight waveguide is bent, per-
turbed, and optimized. Darker regions indicate higher refractive index

of the bend. The transformation x′(x) can be written as

x′ = r cosθ
y′ = r sinθ
z′ = z, (14)

where r = x and θ = y
R . While x′ is continuous at the input/output interfaces y=±L

2 , one issue is
that J is not continuous there, which can be seen from detJ = x

R �= 1. Another issue is that μμμ ′ �=
μ0I is highly anisotropic. The anisotropy for this transformation is K(x, y)− 1 = x

2R + R
2x − 1,

which has a peak value maxxK−1 ≈ 1
2R2 for R � 1 at the outer radius x = R+1. Note that one

can instead choose r = exp(πx
2L ), which gives the conformal bend x′+ iy′ = exp[ π

2L (x+ iy)]. As
explained in Sec. 2.3, this map has zero anisotropy, but neither x′ nor J are continuous at the
input/output interfaces, leading to large reflections there.

3.2. Generalized bend transformations

In order to address the problems of the circular TO bend, we look for minimum anisotropy and
continuous-interface transformations of the form of Eq. (14), where the intermediate polar co-
ordinates are now arbitrary functions r(x, y) and θ(x, y). The ratio L/R is now an optimization
parameter. The Jacobian then satisfies

trJ TJ = |∇r|2 + |r∇θ |2 (15)

detJ = |∇r× r∇θ | . (16)

We find that the optimization always seems to prefer a symmetric bend (and if the optimum is
unique, it must be symmetric), so we impose a mirror symmetry in order to halve our search
space:

r(x, y) = r(x,−y)

θ(x, y) =−θ(x,−y). (17)
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We also require interface continuity of x′ and J (as discussed in Sec. 2.3), which give the
conditions at y =±L

2 :

r = x

θ =±π
4

∂ r
∂y

= 0

∂θ
∂y

=
1
x
. (18)

3.3. Numerical optimization problem

Besides minimizing the objective function K, the optimization must keep track of several con-
straints. First, any fabrication method will bound the overall refractive index n′ to lie between
some values nmin and nmax. We choose units so that the width of the transformed region is unity
(R ≤ x ≤ R+ 1), and consider transforming a straight waveguide of width Δw < 1. Δw should
be small enough so that the exponential tails of the waveguide modes are negligible outside
the transformed region. In the straight waveguide segment to be transformed (as well as the
straight waveguides to be coupled into the input and output interfaces of the bend), n(x) is high
in the core

∣∣x−R− 1
2

∣∣ < Δw
2 and low in the cladding

∣∣x−R− 1
2

∣∣ > Δw
2 . For convenience, we

write this refractive index as a product n(x) = n0 p(x) of an overall refractive index n0 and a
normalized profile p(x) that is unity in the cladding and some value greater than unity in the
core (determined by the ratio of the high and low index regions of the straight waveguide). The
transformed refractive index is given by

n′ (x) =
√

ε ′μ ′ = n0 p(x)

√
trJ TJ

2(detJ )2 (19)

where the average eigenvalue μ ′ of the magnetic permeability Eq. (12) has been absorbed into
the dielectric index. The overall refractive-index scaling n0 is then allowed to freely vary as
a parameter in the optimization. Second, like the circular TO bend, the optimum TO bend is
expected to have a tradeoff between the bend radius and anisotropy. Because of this expected
tradeoff, we can choose to either minimize R while keeping K fixed, or minimize K while
keeping R fixed. We focus on the latter choice, since the bend radius is the more intuitive target
quantity to know beforehand. Also, we find empirically that optimizing K converges much
faster than optimizing R while yielding the same local minima.

With these constraints, there are several ways to set up the optimization problem, depending
on which norm we are minimizing. One method is to minimize the peak anisotropy maxxK

with x ∈ G for some grid G of some points to be defined in Sec. 3.4. However, the peak (the
L∞ norm) is not a differentiable function of the design parameters, so it should not be directly
used as the objective function. Instead, we perform a standard transformation [116]: we intro-
duce a dummy variable t and indirectly minimize the peak K using a differentiable inequality
constraint between t and K(x) at all x ∈ G:

min
r(x),θ(x),n0,L, t

t subject to :

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

continuity conditions 17, 18

nmin ≤ n0 p(x)
√

trJ TJ
2(detJ )2 ≤ nmax forx ∈ G

R = R0

K(x)≤ t forx ∈ G

. (20)
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For comparison, we explain in Sec. 4.2 why the L∞ norm is better to minimize than the L1 norm
(the mean anisotropy).

The minimization of the L1 norm, 〈K〉x =
´
Kdxdy/area [which is differentiable in terms of

the parameters r(x), θ(x), n0, and L] is implemented as

min
r(x),θ(x),n0,L

〈K〉x subject to :

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

continuity conditions 17, 18

nmin ≤ n0 p(x)
√

trJ TJ
2(detJ )2 ≤ nmax forx ∈ G

R = R0

. (21)

We use the circular bend r = x, θ = πy
2L = y

R as a starting guess, and search the space of
general transformations r(x), θ(x) by perturbing from this base case. (We only perform local
optimization; not global optimization, but comment in Sec. 4.3 on a simple technique to avoid
being trapped in poor local minima.) As explained in Sec. 3.4, the perturbations will be param-
eterized such that the symmetry and continuity constraints are satisfied automatically. Figure 3
shows a schematic of the bend transformation optimization process. First, the straight region is
mapped to a circular bend. Then, the intermediate polar coordinates r and θ for every point x
are perturbed, using an optimization algorithm described at the end of Sec. 3.4, and the de-
sired norm (either L1 and L∞) of the anisotropy is computed. This process is repeated at each
optimization step until the structure converges to a local minimum in ‖K‖.

3.4. Spectral parameterization

To faciliate efficient computation of the objective and constraints, the functions r and θ can
be written as the circular bend transformation plus perturbations parametrized in the spectral
basis [115, 116]:

r (x, y) = x+
N�,Nm

∑
�,m

Cr
�mT�(2x−2R−1) cos

2mπy
L

θ (x, y) =
πy
2L

+
1
x

N�,Nm

∑
�,m

Cθ
�mT�(2x−2R−1) sin

2mπy
L

, (22)

where the coordinate 2x− 2R− 1 has been centered appropriately for the domain [−1, 1] of
degree-� Chebyshev polynomials T�. The sines and cosines have been chosen to satisfy the
mirror-symmetry conditions of Eq. (17). The sine series also automatically satisfies the second
continuity condition of Eq. (18). In order to satisfy the rest of the conditions, the following
constraints are also imposed:

Nm

∑
m

Cr
�m (−1)m = 0

Nm

∑
m

Cθ
�m (−1)m m =

⎧
⎪⎨
⎪⎩

L
8π − R

4 − 1
8 , �= 0

− 1
8 , �= 1

0, �≥ 2

. (23)

These equations are solved to simply eliminate the Cr,θ
�Nm

coefficients before optimization.
This spectral parametrization has several advantages over finite-element discretizations such

as the piecewise-linear parameterization of [106]. First, the spectral basis converges exponen-
tially for smooth functions [115]. We found that only a small number (N�×Nm < 100) of spec-
tral coefficients Cr,θ are needed to achieve very low-anisotropy (K−1≈ 10−4) transformations.
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Second, if the fabrication process favors slowly varying transformations (or if these are needed
to make the eikonal approximation for the TE polarization, as in Sec. 2.2), this constraint may
be imposed simply by using smaller N� and Nm.

With this spectral parameterization, the formulation of the optimization problem Eq. (20)
becomes

min{
Cr,θ
�m

}
,n0,L, t

t subject to :

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

constraint23

nmin ≤ n0 p(x)
√

trJ TJ
2(detJ )2 ≤ nmax forx ∈ G

R = R0

K(x)≤ t forx ∈ G

. (24)

The local optimization was performed using the derivative-free COBYLA non-linear op-
timization algorithm [129, 130] in the NLopt package [131]. In principle, we can make the
optimization faster by analytically computing the derivatives of the objective and constraints
with respect to the design parameters and using a gradient-based optimization algorithm, but
that is not necessary because both trJ TJ and detJ , which determine all the non-trivial objec-
tive and constraint functions in this optimization problem, are so computationally inexpensive
to evaluate that the convergence rate is not a practical concern.

4. Optimization results

4.1. Minimal peak anisotropy

A min‖K‖∞ design is shown in Fig. 4, along with the scalarized circular TO bend for compari-
son. The bend radius was R= 2 and the number of spectral coefficients was N� = 5, Nm = 8. The
objective and constraints were evaluated on a 100× 140 grid G in x (Chebyshev points in the
x direction and a uniform grid in the y direction). This design had maxxK− 1 ≈ 5 × 10−4

and mean 〈K〉 − 1 ≈ 10−4. In comparison, the circular TO bend of the same radius has
maxxK−1 ≈ 0.1 and 〈K〉−1 ≈ 10−2.

The R = 2 optimized design structure was compared in finite-element Maxwell simulations
(using the FEniCS code [132]), with the conventional non-TO bend [simply bending the waveg-
uide profile around a circular arc with n′(x′) = n(x)] and the scalarized circular TO bend. The
four lowest-frequency modes of a multimode straight waveguide were injected at the input in-
terface y = L

2 , and the scattered-power matrix T was computed using the measured fields at the
output interface y =−L

2 . The scattered-power matrix is defined as

Ti j =

∣∣∣∣∣∣

R+1ˆ

R

dx θ̂ · (E0
j ×Hi

)
∣∣∣∣∣∣

2

y=− L
2

, (25)

where −θ̂ is the propagation direction of the guided modes, E0
j is the normalized electric field

of the jth exactly guided mode of the non-scalarized material (μμμ ′, ε ′), and Hi is the actual mag-
netic field of the approximate scalarized material at the interface after injecting a normalized
mode E0

i at the input interface. This makes Ti j equal to the power scattered into the jth output
mode from the ith input mode. For a straight waveguide, which has no intermodal scattering,
T = I. Figure 4 shows a dramatically improved T for the scalarized and optimized TO bend
compared to the scalarized circular TO bend. [The rows and columns of T for the circular bend
add up to less than one because some power has either been scattered out of the waveguide en-
tirely, or some power has been scattered into fifth or higher-order modes. The rows and columns
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Fig. 4. Optimization decreases anisotropy by a factor of 10−4, while dramatically improv-
ing the scattered-power matrix.

of T for the optimized bend add up to nearly 1, with the small deficiency due to the O (K−1)
out-of-bend and higher-order intermodal scattering as well as mesh-descretization error.]

The electric-field profiles for the fundamental mode, displayed in Fig. 5, show a dramatic
difference in the performance of the optimized structure versus the other structures. Both the
conventional and circular TO bend show heavy intermodal scattering in the bend region, while
the optimized transformation displays very little scattering.

4.2. Minimizing max versus minimizing mean

We found a clear difference between minimizing the peak anisotropy versus minimizing the
mean. The results of an optimization run with R = 2.5, N� = 3, and Nm = 6 are shown in
Fig. 6. Both structures had very low mean anisotropy 〈K〉x − 1. The mean-minimized struc-
ture, at 〈K〉− 1 ≈ 10−5, had a slightly lower mean than the peak-minimized structure which
had 〈K〉 − 1 ≈ 1.5 × 10−5. However, in terms of the peak anisotropy, the peak-minimized
structure is the clear winner by a factor of 2.5, with maxxK− 1 ≈ 2× 10−4 as opposed to
maxxK− 1 ≈ 5× 10−4 for the mean-optimized structure. Both structures were scalarized and
tested in finite-element Maxwell simulations of the four lowest-frequency modes of the straight
waveguide. The scattered-power matrix shows that the difference in maxxK resulted in an order
of magnitude reduction in the intermodal scattering (as shown in the off-diagonal elements) and
noticeably improved transmission, (especially in the element T44 = 0.89 for the fourth mode).

4.3. Tradeoff between anisotropy and radius

In optimized structures, we found that maxxK for the optimized bend, similar to the circular
TO bend, decreases monotonically with R (as shown in Fig. 7). Unlike the circular bend, how-
ever, this tradeoff seems asymptotically exponential rather than O(R−2). In particular, there are
two clearly different regimes for this tradeoff: a power law K− 1 ∼ R−4 at small R � 3 and
an exponential decay K−1 ∼ exp(−0.34R), at larger R. The second regime was only attained
after using successive optimization, because with only one independent optimization run the
algorithm tended to get stuck in local minima. For successive optimization, the optimum struc-
ture is used as a starting guess for the next run, and the initial step size is set large enough so
that the algorithm can reach better local minima than the previous one.
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Fig. 5. FEM field profiles show heavy scattering in the conventional non-TO and scalarized
circular bends, but very little scattering in the optimized bend.

Fig. 6. Anisotropy profile and scattered-power matrices for optimized designs that mini-
mize the mean and the peak, with R = 2.5, N� = 3, and Nm = 6.

For R � 3, we found that there are multiple local minima and that independent optimiza-
tions for different R tend to be trapped in suboptimal local minima, as shown by the open dots
in Fig. 7. To avoid this problem, we used a “successive optimization” technique in which the
optimal structure for smaller R is rescaled as the starting guess for local optima at a larger R,
in order to stay along the exponential-tradeoff curve. (Another possible heuristic is “succes-
sive refinement” [133–136], in which optima for smaller N�,m are used as starting points for
optimizing using larger N�,m.)

5. Mode squeezer

We also applied transformation inverse design to another interesting geometry: a mode squeezer
that concentrates modes and their power in a small region in space, again with minimal
intermodal scattering (quite unlike a conventional lens, which is intrinsically angle/mode-
dependent), similar to the problem considered in [22] (which did not construct isotropic de-
signs). We choose the untransformed region to be −1 ≤ x ≤ 1 and 0 ≤ y ≤ L. The goal of this
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Fig. 7. Successive optimization with N� = 5, Nm = 8 results in a power law decaying trade-
off maxxK− 1 ∼ R−4 at low R and an exponentially decaying tradeoff at higher R. For
comparison, the unoptimized anisotropy for the circular TO bend is shown above.

transformation x′(x) is to focus the beam by minimizing the mid-beam width

W ≡
1ˆ

−1

dx

√(
∂x′

∂x

)2

+

(
∂y′

∂x

)2
∣∣∣∣∣∣
y= L

2

. (26)

As in Sec. 3.4, the transformation is written as a perturbation from the identity transformation
(which was used as the starting guess) and parameterized in the spectral basis

x′(x, y) = x+
N�,Nm

∑
�,m

Cx
�mT�(x) sin

(2m+1)πy
L

(27)

y′(x, y) = y+
N�,Nm

∑
�,m

Cy
�mT�(x) sin

(2m+1)πy
L

, (28)

The sine series automatically satisfies mirror symmetry about y = L
2 and continuity of x′ at the

input/output interfaces y = 0, L. However, we found that constraining the coefficients Cx,y to
enforce continuity of J (as in Sec. 3.4) was not necessary (although it might give a better result)
since the optimization algorithm only squeezed the center region while leaving the interfaces
and the regions around them relatively untouched. In this problem, we could either minimize K
for a fixed W or minimize W for a fixed K, and we happened to choose the latter.

Finite-element Maxwell simulations, shown in Fig. 8, demonstrate that the optimized design
is greatly superior to a simple Gaussian taper transformation designed by hand. The Gaus-
sian transformation was given by x′(x) = x−xα exp[−β (y− L

2 )
2], where β > 0 and 0 < α < 1.
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Superficially, the design seems similar to an “adiabatic” taper between a wide low-index waveg-
uide and a narrow high-index waveguide, and it is known that any sufficiently gradual taper of
this form would have low scattering due to the adiabatic theorem [137]. However, the optimized
TO design is much too short to be in this adiabatic regime. If it were in the adiabatic regime,
then taking the same design and simply stretching the index profile to be more gradual (a taper
twice as long) would reduce the scattering, but in Fig. 8 we perform precisely this experiment
and find that the stretched design increases the scattering.

6. Concluding remarks

The analytical simplicity of TO design—no Maxwell equations need be solved in order to warp
light in a prescribed way—paradoxically makes the application of computational techniques
more attractive in order to discover the best transformation by rapidly searching a large space
of possibilities. Previous work on TO design used optimization to some extent, but overcon-
strained the transformation by fixing the boundary shape while underconstraining the boundary
conditions required for reflectionless interfaces. In fact, even our present work imposes more
constraints than are strictly necessary—as long as we require continuous J at the input/output
interfaces, there is no conceptual reason why those interfaces need be flat. A better bend, for
example, might be designed by constraining the location of only two corners (to fix the bend ra-
dius) and constraining only J on other parts of the endfacets. However, we already achieve an
exponential tradeoff between radius and anisotropy, so we suspect that further relaxing the con-
straints would only gain a small constant factor rather than yielding an asymptotically faster
tradeoff. In the case of the mode squeezer, one could certainly achieve better results by im-
posing the proper J constraints at the endfacets. It would also be interesting to apply similar
techniques to ground-plane cloaking.

All TO techniques suffer from some limitations that should be kept in mind. First, TO seems
poorly suited for optical devices in which one wants to discriminate between modes (e.g. a
modal filter) or to scatter light between modes (e.g. a mode transformer). TO is ideal for devices
in which it is desirable that all modes be transported equally, with no scattering. Even for the
latter case (such as our multimode bend), however, TO designs almost certainly trade off com-
putational convenience for optimality, because they impose a stronger constraint than is strictly
required: TO is restricted to designs where the solutions at all points in the design are coordi-
nate transformations of the original system, whereas most devices are only concerned with the
solutions at the endfacets. For example, it is conceivable that a more compact multimode bend
could be designed by allowing intermodal scattering within the bend as long as the modes scat-
ter back to their original configurations by the endfacet; the interior of the bend might not even
be a waveguide, and instead might be a resonant cavity of some sort [58,77,78,138]. However,
optimizing over such structures seems to require solving Maxwell’s equations in some form at
each optimization step, which is far more computationally expensive than the TO design and,
unlike the TO design, must be repeated for different wavelengths and waveguide designs.

Appendix

In this Appendix, we briefly derive the fact, mentioned in Sec. 2.5, that the endfacet discon-
tinuity scales much worse with anisotropy than the scalarization errors in the transformation
interior, which leads us to impose an explicit continuity constraint on the Jacobian J . In par-
ticular, we examine the Jacobian J for nearly isotropic transformations (K≈ 1) that also have
x′ = x explicitly constrained at the interfaces. (The following analysis can also be straight-
fowardly extended to situations where x′ is a simple rotation of x on the interface, or where the
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Fig. 8. Optimized squeezer outperforms gaussian taper and stretched optimized squeezers
in finite element simulations.

interface has an arbitrary shape.) In this case, the Jacobian is

J =

(
1 0
δ 1+Δ

)
, (29)

where δ ≡ ∂x′
∂y and Δ ≡ ∂y′

∂y − 1 are small quantities (� 1) if J TJ is nearly isotropic. The
anisotropy Eq. (11) is then:

K−1 =
1+δ 2 +(1+Δ)2

2(1+Δ)
−1

=
1
2

(
δ 2 +Δ2)+O (

δ 2Δ+Δ3) . (30)

The determinant then satisfies

detJ −1 = Δ (31)

=
√

2(K−1)−δ 2 +O(δ 2Δ+Δ3) (32)

=O(
√
K−1). (33)

This square-root dependence is also reflected in the refractive index n′ =
√

ε ′μ ′ and leads to
O(K− 1) power loss due to interface reflections that overwhelm the O[(K−1)2] corrections
to scattered power due to the scalarization of nearly isotropic transformations (as explained in
Sec. 2.5). Hence, it becomes necessary to explicitly constrain J = I in addition to x′ = x.
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