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Abstract

This thesis describes an active wide-beam wide-band sonar system that mimics the

binaural configuration of an echolocation dolphin. The system is being developed for

testing new methods for underwater vehicle navigation and mapping. The system uses

three 500 KHz transducers, one as transmitter/receiver and the other two as receivers.
Simulations and experiments are performed in which a static point obstacle in a two-

dimensional environment is detected and localized using this system. The range and
azimuth of the object are determined based on the time-of-flight measurements of
binaural echoes. Two basic signal detection and estimation methods for echolocation
are evaluated. Amplitude threshold detection is simple but not robust and accurate
enough in situations with a low signal to noise ratio. Matched filter detection is more
accurate but also more computationally expensive. An improved matched method
that performs matched filtering locally is suggested. A method for using the system
to estimate the curvature of objects is also presented. Suggestions are made for future
research that uses the system to perform dynamic sonar mapping and navigation
experiments, in which the motion and scanning angle of the sonar are adaptively
controlled to classify and localize objects efficiently.
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Chapter 1

Introduction

1.1 Sonar data interpretation

The mobile robots used in industry today have very limited perception capabilities.

They can only perform very specific tasks in well-structured environments. In the

future, it is envisioned that mobile robots can be useful for many different types of

applications. Examples of such application environments include factories, house-

hold, office and hospital chores, transportation, security guarding, fire-fighting, as-

sembling structures in outer space,radioactive and other tasks dangerous for humans

to perform [15]. The realization of these systems will require that we solve many

challenging issues in sensor data interpretation. While the operation of mobile robot

systems presents great challenges in all types of environments, the issues faced are

particularly difficult for underwater robots.

Among all of these applications, extracting the information from the sensing data

correctly and efficiently is a key task, which is not easy to accomplish. The major

problem is how to deal with the uncertainty in the environment and how to understand

the data. The development of sensors for robot applications has been under research

for over twenty years, but robust and reliable interpretation of sensor data remains a

difficult issue for complex, unstructured and unknown environments.

The major sensor systems which has been used in robotics research include CCD

cameras, infrared ranging sensors, and acoustic transducer systems. Our motivation of
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using sonar system comes from the excellent performance of natural sonar sensing, as

exhibited by bats and dolphins. For land robots, acoustic sensors provide a convenient

and inexpensive means for determining the proximity of objects. Particularly in the

turbid and dark underwater environment, acoustic sensing becomes indispensable.

Many examples have demonstrated the successful use of such sensors for mobile robot

navigation, path planning, obstacle avoidance and sonar map building. However,

many difficult issues remain for future research.

The main problem with sonar systems is that the observed measurements require

interpretation to obtain reliable results [24]. Sensors become intelligent when ap-

propriate signal processing algorithms are used to interpret the collection data. One

consideration of interpretation is based on the physical principles of the sensor model,

sound propagation, reflections and the environment.

The slow speed of the sound waves makes it easy to use a sonar system to find the

travel distance of sound waves by time-of-flight (TOF) measurements. Hence, TOF

estimation has become a popular and simple way to extract range information from

sonar data. Different approaches have existed for TOF estimation. Among them,

the most simple one is the threshold method. By detecting the time at which the

amplitude of the received echo first exceeds the preset threshold level, the TOF value

is also determined. The travel distance associated with the TOF reading is obtained

by Equation (1.1):

D = C * TOF, (1.1)

where, C is the speed of sound.

Two main problems in the interpretation of the TOF values are:

1. Objects can not always been detected even if they are within the range of the

beam pattern due to noise and specular reflections.

2. The range estimate associated with the TOF value does not always correspond

to the line-to-sight range of objects [24].

Because the TOF value is determined by detecting the echo amplitude and finding the

first return that exceeds the threshold level, later echoes are ignored. This can be an

9



Figure 1-1: Single transducer sonar sensing system and plane reflector. In the figure,
the small triangle represents a robot equipped with a sonar sensing system. It projects
sound wave along the direction shown. R1 is the range value that one might expect to
receive if the transducer is pointed in the direction of robot. Yet the TOF estimation
of the range is R 2, because the detected echo comes from the perpendicular reflection
from the wall.

advantage, because multiple reflections from the same object are not necessary to be

considered. The multi-reflections from other obstacles that might lead to estimation

error can also be avoided. This is similar to an isolation effect caused by the first

echo. This is illustrated in Figure 1-1.

Sonar has often been considered a poor sensor due to the difficulty of interpretation

caused by poor directionality of beam pattern, noise and multiple reflections [26]. Due

to these these problems, many researchers tend to abandon sonar systems or added

additional sensing tools as we mentioned above, such as infrared sensors, laser ranging

systems or structured light and vision systems. Yet these systems have their severe

limitations for underwater robots and may be more expensive computationally and

time-consuming to operate. Inspired by the strength of natural sonar systems such

as bats and dolphins, our approach is to employ principles from biosonar to extend

the utility of sonar systems for underwater robot systems.

10



1.2 The biosonar capability of dolphins

Nature is always the mother of science. Many great innovations come from careful

observations of nature. It was Mcbridge who first noticed that dolphins might use

echolocation for orientation, navigation, or food finding in 1958 [1]. Kellogg and his

group provided the first experimental demonstration of echolocation in bottlenosed

dolphins [21]. Subsequently, many scientists and researchers have investigated ex-

tensively the biosonar capability of many different species of cetaceans [35]. In this

section, we will list just a few of the capabilities that have been documented. Au's

book provides the definitive summary of dolphin echolocation [1].

Busnel and Dziedzic [13] provided demonstrations that a harbor porpoise could

swim between 0.5 mm diameter wires without contacting them 90% of the time.

Large-sized objects were rarely touched. This is an impressive capability; it would be

highly desirable to provide underwater vehicles with similar capabilities.

The ability of dolphins to resolve size differences by echolocation had also been

studied by many researchers. For example, Turner and Norris found that a bot-

tlenosed dolphin, if trained in advance, could discriminate between steel ball bearings

6.35 cm and 5.08 cm in diameter, a diameter ratio of 1.25.

A basic standard in evaluating a sonar system is to determine the maximum

distance at which it can reliably detect an object. An experiment done by Murchison

and Penner showed that a bottlenosed dolphin could detect a water-filled 7.62 cm

diameter steel sphere, with a reflective strength of -23.8 dB, at about 70 meters

range. Au reports similar results [1].

Dolphins, beluga whales and false killer whales can perceive small targets as far

as 110 m far away. The can classify target shapes independent of internal target

reverberation. They can discriminate wall thickness differences in targets of less than

2 mm. They can operate in high noise environments [29] and [4]. And, they can

detect targets buried in sediments [33].

Dolphins are also very capable at detecting signals in noise. The ideal receiver is

referred to as a receiver that can yield the best detection performance in a white noise
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environment according to detection theory. No receiver could exceed the performance

of the ideal receiver, which generates the maximum signal to noise ratio (SNR).

The ideal receiver is an important standard for evaluating the receiving capability of

sonar. Au describes the comparison of a dolphin with an ideal receiver by detection

of electronic phantom targets in noise [1]. Results showed that an optimal receiver

would outperform the dolphin sonar by around 7.4 dB. However, other experiments

showed that cetacea can perform better than an optimal detector [1].

Most of our understanding of biosonar behavior comes from static experiments [1].

There is still much interest concerning biosonar in natural settings. For example, is

sonar used for large-scale navigation? How often is sonar utilized in the wild, and for

what purposes?

It is safe to say that at this time no man-made sonar system can fully match the

capabilities of the dolphin [28]. All of this evidence causes us to reflect: "can we

learn from dolphin sonar systems for enhancing the sonar capabilities of underwater

robots?"

1.3 Thesis road-map

In this chapter, some difficulties of sonar-based robotics were discussed. The capabil-

ities of biosonar systems, such as dolphin sonar, that provide the motivation for our

research were surveyed. The structure of the rest of the thesis is as follows:

Chapter Two provides a summary of previous similar research and some recent

progress. Different sonar systems used in underwater and land robots are summarized.

Notable custom sonar systems that have been created are reviewed.

Chapter Three presents the details of our biomimetic binaural sonar system. The

hardware, software, and signal processing aspects of the system are explained.

Chapter Four illustrates the performance of the system. Techniques from wave-

form analysis are used to discuss the resolution of the system. Different signal process-

ing methods for echo detection and TOF estimation will be compared. Simulations

and experimental results for localization of objects are presented. An improved data

12



post-processing method is proposed. The problem of estimating the curvature of

objects is investigated.

Finally, Chapter Five concludes the dissertation with a summary of our research.

Possible applications of this biomimetic binaural system and suggestions for future

research in this area are proposed.

13



Chapter 2

A Review of Previous Research

There has been a great deal of previous research in using sonar for robotics. This

chapter will briefly review some of the most notable sonar systems that have been

developed in the past that are related to our objectives. The pioneering work in this

area has been performed by Kuc and his associates at Yale.

2.1 Underwater and land sonar systems

There are many different types of underwater sonar systems [39], including side-scan

sonar systems, mechanically-scanned sonars, and electronically-scanned sonars. In

typical underwater sonar systems, a very narrow beam is used, to increase the image

quality. For example, Figure 2-1 shows a typical scan from a 675 kHz Imagenex

sector-scan sonar with a +0.5 degree beam. As can be seen from the Figure, with

a narrow beam, an "image" of an environment that is analogous to a visual image

can be obtained. The image takes a long time to acquire (about 20 seconds for this

sensor), and has limited spatial resolution.

Biosonar systems however, use wide beams. With a +5 degree beam, the corre-

sponding picture for Figure 2-1 would look very bad. However, as discussed in the

previous chapter, biosonar systems achieve very high resolution. How this exactly

occurs is unknown. However, it seems that a different type of interpretation than

visual image processing is being performed.

14
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Figure 2-1: A typical scan from the Imagenex 675 kHz sector-scan sonar. The figure
shows a horizontal scan of a 3 by 3 meter tank with four posts in the different
quadrants of the tank.
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Figure 2-2: Various acoustic transducers. The figure shows an Imagemenex 675 kHz
sector-scan sonar, several omnidirectional hydrophones, a linear array for a medical
imaging sonar, and several high frequency non-destructive testing transducers.

In contrast, land robot sonar systems use wide beams. This is because of the wide

availability of the Polaroid ranging system hardware. There are two typical systems:

(1) scanning of a single sensor, and (2) a ring of static transducers. These are shown

in Figure 2-2 and Figure 2-3.

2.2 Single sensor systems

Ultrasound mechanical scanning systems are commonly used in advanced robotics

applications to obtain information about the physical structure of the robotic opera-

tional environment [41]. A typical mechanical system uses electrical motors to drive a

single or a few ultrasound transducers to scan interesting regions of the environment

to detect potential targets.

Usually the transducer acts as both the transmitter and receiver. A modulated

pulse signal is first transmitted. When it hits an object, the echo signals will be

detected by the same transducer as a receiver. The spatial sensing resolution of such

a conventional ultrasound transducer is limited by the beam width associated with

the transducer.
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Figure 2-3: Robot equipped with a ring sonar and a scanning sonar.

For an expectation of high spatial resolution, a transducer with a narrower beam-

width is desired. However, in order to cover a specific space region we are interested,

more scanning steps will be required with such a transducer. This is not good for a

robot to implement a real-time task, since more scanning steps mean more acquisition

and processing time [7]. Hence there is a trade-off between a wide and a narrow beam.

Using a 3 dB beamwidth of about ± 5 degrees [26] seems to be a good compromise.

Leonard has used data from a single scanning sonar to demonstrate accurate

feature-based sonar mapping [26]. This work, however, assumed that accurate nav-

igation was available. Also, data acquisition to acquire detailed information was

very slow. By extracting the feature of RCDs (region of constant depth) from the

scannings of single sonar, Leonard proposed and implemented a unified approach

for sonar-based navigation, localization, obstacle detection and map building in a

multi-target environment.

2.3 Ring sensor systems

An alternative strategy is to mount the multiple transducers around the robot in a

ring array. A ring of 24 sonars is the most usually employed configuration [8]. In such

17



a ring, 24 transducers are employed with a 15 degree angular difference between the

orientation of adjacent transducers. Ring transducers improve time efficiency because

they save the need of rotation with the cost of the increase of number of transducers.

However in these system the robot still just processes the information coming from

individual sensor instead of integrating the information coming from all transducers

together. Individual echoes are only detected by the transmitting transducer.

Ring sonar sensors are primarily used for obstacle avoidance and grid-based map-

ping. In a grid-based method, a map of the environment is generated with an oc-

cupancy grid according to probability distribution information [37]. A grid is a rep-

resentation where the measurement comes from. Each grid in the map expresses

a probabilistic estimate of object occupancy. Every time when the echo signal is

detected, single or multiple grids in the map are updated. This method does not

require a priori information and was first proposed and investigated by Moravec [31].

Perhaps the most impressive grid-based obstacle avoidance has been performed by

Borenstein [9], using the Vector Field Histogram method.

While ring sonars have been used for grid-based mapping and obstacle avoidance

with success, they have not been successfully used for more detailed feature-based

modeling. For this, custom sonar arrays have been developed.

2.4 Multi-element widebeam array sensor systems

Compared with the slow dynamic response due to the mechanical inertial of a single

sensor system and the poor accuracy of a ring sensor system, a well known alternative

approach to object localization is the use of an array of sonars. Kuroda developed a

planar ultrasonic array that consisted of twenty-one transmitters, and demonstrated

that an ultrasonic phased array can be a substitute for an ultrasonic mechanical

scanning system [25].

Macovski studied several ultrasonic phased arrays for ultrasonic imaging used in

medical and underwater applications [27]. Higuchi presented a small size electrostatic

ultrasonic linear array which is composed of 32 elements. Linearly arranged on a

18



Figure 2-4: Sonar array

20 mm x 30 mm silicon wafer [19] using silicon IC fabrication technology, it has a high

electro-acoustical transformation efficiency. Munro built a multi-receiver ultrasonic

linear array, but did not propose an appropriate beam steering algorithm for source

object localization [32].

The pioneer in the area of the development of intelligent multi-element sonar ar-

rays in robotics has been Kuc. He advocates the use of a physically based sonar

model to aid interpretation [24]. Barshan and Kuc developed multiple transducer

arrays that can identify different object types, such as planes and corners [6]. Bozma

and Kuc investigated sonar mapping for both smooth and rough surfaces and in-

corporated the energy and duration of sonar signals [10, 12, 11]. Kleeman and Kuc

developed an optimal sonar array that could classify all three target types (corner,

plane, and edge) with one scan with high accuracy [22].

Most recently, Kuc developed a system that uses waveform template matching for

object recognition [23]. By mimicing the configuration of bats' sonar, Kuc built a

biological echo-location system with a center transmitter flanked by two adjustable

receivers. According to the echo information collected by the two receivers, the sonar

system can adaptively translate or rotate its transmitter and receivers to maximize

the echo intensity. At each given object pose, a corresponding echo vector is generated

19



associated with it. By comparing the binaural echo patterns with a data base that is

constructed during a learning phase, rubber O-rings with different sizes and the head

and tail sides of a coin were successfully recognized.

Peremans et al. [5, 34] have developed a tri-aural sonar sensor that can classify

different target types and localize multiple objects with high accuracy. The system

consists of three transducers lined up with a separation of d=15 cm. The center

transducer acted as both a transmitter and a receiver. The two side transducers are

used solely as receivers. Except that the center transmitter is also used as a receiver,

the sensor arrangement of Peremans' system is the same as that used by bats. They

implemented an approximate method for curvature estimation, but concluded that

it was too noise sensitive to give good curvature estimates with real data. However,

they used the curvature estimate for classification of objects into the categories of

point objects, line objects, or unknown objects.

2.5 Summary

This chapter has reviewed previous research in using sonar in robotics. The most

notable systems are those by Peremans et al. and by Kuc and associates, which

have demonstrated impressive capabilities to classify and localize objects using air

sonar. We now proceed to discuss the underwater system we have created in the next

chapter.
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Chapter 3

Sensing System Description

The previous chapter has reviewed previous research in sonar-based robotics and has

highlighted some characteristics of biosonar that would be excellent to copy for an

underwater sonar system. Based on this knowledge, this chapter describes the system

that we have created. We begin by discussing the hardware for our system, then we

describe the software and the signal processing system. We then proceed to describe

the sonar equation parameters of the system and to discuss a sonar signal model.

3.1 Hardware description

Figure 3-1 illustrates the different components of the system. A brief overview of

the operation is as follows: The pulser/receiver generates a high-voltage transmit

pulse and outputs it to the central sonar transducer of the array, which serves as

the transmitter. The transmitter projects the sound wave into the water. When it

encounters an object in the tank, an echo will be reflected back. The reflected echoes

are detected by all three receivers, two acting as the left and right receivers, and the

transmit transducer acting as the center receiver. The left and right received signals

are amplified by battery-powered Panametrics pre-amplifiers. The signal received by

the center transducer is amplified by the pulser-receiver. All three received signals are

passed to A/D data acquisition cards in a PC. The A/D boards convert the analog

signals into digital data and make it available to a matlab program running on the
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Figure 3-1: Configuration of biomimetic sonar system. The biomimetic sonar arrays
are mounted on the motion system. The blue line shows the direction of outbound
signal, while the red lines show the direction of the inbound signal. The A/D board
is plugged into on PC. The two computers communicate by the internet.
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PC. A second PC is used to control the motion system. Based on analysis of the data,

the motion system will be moved to a new location for acquisition of more acoustic

data. The process can be continued indefinitely, logging data to disk and processing

the data to realize closed-loop sensing and motion. Each part of this system will be

described in more detail below.

3.1.1 Testing tank and motion control system

Figure 3-2 illustrates the testing tank and the motion control system that was used

in our research. The tank is 9 meters long by 3 meters wide by 1 meter deep. The

motion system is manufactured by Parker-Hauser Corporation. It consists of a large

workspace, three degree-of-freedom robot system. The system was designed to provide

motion throughout the area of the tank, with two translational and one rotational

degrees of freedom.

The system uses a Compumotor AT6450 multi-processor-based, four-axis servo

controller which is plugged into the expansion slot of a PC. These servo controllers

provide sophisticated multi-axis control with 0.1 mm accuracy. The AT6450 utilizes

a dual processor approach. A microprocessor is responsible for executing high-level

motion programs and a digital signal processor (DSP) implements a high-speed servo

control algorithm. A separate auxiliary board simplifies connections with encoders,

motor drives, joystick, limits, and programmable I/O. The system is controlled using

the motion architect software package, with a program created by Feder [16].

This motion system has the following advantages that are good for underwater

vehicle modeling:

1. 1 to 4 axes of optically isolated servo control, which can reduce operation noise;

2. Update rates for the servo loop as fast as 200 microseconds for one axis, which

is useful for real-time control;

3. Home position limit switches and positive and negative end-of-travel limits for

each axis, which can avoid the damage of the motion system.
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Figure 3-2: Testing tank and motion control system.

4. High position accuracy (better than 1 millimeter repeatability).

5. Joystick motion mode for easy manual operation.

3.1.2 Sonar transducers

The biomimetic sonar arrays consist of three Panametrics immersion transducers,

which are specifically designed to transmit ultrasound in situations where the test part

is partially or wholly immersed in fresh water. The separation between transducers

is 6.5 mm.

The sonar transducers chosen for the system are the Panametrics V318 non-

destructive testing transducers. These transducers are very broadband with a center

frequency of about 500 kHz and a bandwidth of about 350 KHz. At this frequency,

the sonar wavelength is 3 mm. The system operates at about five times the frequency

of the dolphin sonar system. The 3 dB beamwidth of a circular piston transducer is

given by [39]:

OMdB = ±29.5A (3.1)
D

which for the V318 transducers gives us a value of ± 4.65 degrees. This compares
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Figure 3-3: Model of sound transmission (from [6]).

very well with an average value given by Au for the bottlenose dolphin of ± 5.0 for

the transmit beam pattern.

The dolphin's hearing is effectively omnidirectional. However, in our system we

use 2 V318 transducers as receivers, for three reasons: convenience, availability, and

simplicity. Experiments with omnidirectional hydrophones gave us poor signal levels

and increased noise. Using the same transducers for receive and transmit has been

very reliable. This is less "biomimetic" than with omnidirectional receivers, however,

the arrangement is similar to that used in robotics by Peremans [34], Kleeman and

Kuc [22], and Barshan and Kuc [6].

A physical model provided in [6] is used here to describe the sound transmission

of the transducer. When the radius of the transmitting aperture, a, is much larger

than the sound wavelength, A, a directional beam is formed. We can model this kind

of transmitter as a flat piston of radius a, enclosed in an infinitely large baffle, which

is vibrating at a frequency f . There are two distinct regions in the produced beam

pattern: the near zone (Fresnel zone) and the far zone (Fraunhofer zone).

The near zone is contained within a cylinder of diameter 2a, where a is the radius

of the transducer. The range of the near zone is approximately from the transmitter

to a distance of a2 /A.

The beam of the far zone of the transducer is limited to a beamwidth of ± 4.65
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Figure 3-4: Sound pressure of a point in free sound field.

degrees. In the far zone, the projecting sound wave can be considered as plane wave.

For continuous wave transmission, the sound pressure of the transmission trans-

ducer can be modeled as:

P(r,) = Po J1(Kasin0)
r Ka sin (

where r is radial distance from an object point to the transducer, P is the sound

pressure amplitude along the line of sight to the transducer at the axis range of ro (as

shown in Figure 3-4), 6 is angle of the object point with respect to the transducer,

K = 27r/A is the wave number, A = c/f is the wave length, and Ji is the Bessel

function of the first kind.

According to experimental results provided by Barshan and Kuc [6], equation

(3.2) can be simplified to:

P(r, 0) = 61 , (3.3)
r

where 60 is the half width angle of transducer. This is illustrated in Figure 3-4.
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3.1.3 Pulser-receiver and pre-amplifiers

The transmit signal is generated by the Panametrics model 5052PR, which is a high

voltage pulser-receiver. It is designed for ultrasonic test and measurement applica-

tions with a high material penetration capability. It can deliver up to 115 volts pulse

excitation to proper low frequency transducers. The receiver section provides 60 dB

RF gain. A full range of front panel controls permits convenient adjustments for all

important instrument functions. The receiver gain is selectable from 20 to 40 dB,

while the receiver attenuation is adjustable from 0 to 68 dB.

The typical features of this kind of amplifier are as following:

1. High voltage pulse, excitation up to 115 volts;

2. High gain, low noises broadband (10 MHz) receiver;

3. Pulse-echo transmission modes;

4. 40 dB RF Gain;

5. Receiver attenuation range of 0 to 68 dB;

6. Switchable high pass filters.

Model 5662 battery-powered preamplifiers provide good amplification to the left

and right channels with with low-noise.

3.1.4 Data acquisition cards

The data acquisition cards used in the system are made by Gage Applied Sciences,

Inc. The CompuScope 1012/PCI is a family of 20 MS/s, 12 bit IBM PC based data

acquisition cards. In our system, a set of four boards are used, in two master-slave

pairs. The boards are responsible for converting the analog echo signal into digital

data and passing these data to the host computer for post-processing.

It has the following key features which can satisfy the speed requirements for

ultrasonic signal acquisition:
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Panametrics Transducer V318

Figure 3-5: Connections between amplifier and transducer.

1. 20 MS/s, 12 Bit sampling;

2. 100 MB/s Bus throughput;

3. Flexible triggering;

4. Multiple record.

Actually, this A/D board consists of the two boards: one CS1012 analog board

and one X012PCI PC interface board. All signal conditioning and A/D conversion

work on the CS1012 analog board and all data storage and PCI bus interface are on

the X012PCI board. This structure greatly speeds up the data transfer and reduces

noise. Also, the CompuScope 1012 Data Acquisition Card provides a state-of-the-

art analog triggering feature. An analog triggering level on the analog board can be

easily controlled by an external signal or by software. The trigger level and slope are

selectable. These functions can help select a better echo triggering level for detection

according to different noise and signal conditions.

3.2 Software

The software is divided into three parts, running on two different PCs. One PC

handles the motion control, and the other PC performs the sonar processing. Two
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CS1012 Analog Board

Figure 3-6: Structure of CompuScope 1012 data acquisition card (from [14]).

programs control the motion system, one running in Visual C++ and one in Mat-

lab. The Visual C++ program is a generic interface to the motion control system,

using DLL's that are part of the motion architect software control library. For ease

of experimentation, the Visual C++ program is controlled indirectly using the file

system on the PC by a script executing under matlab. Matlab is also used to perform

the data acquisition on the sonar PC, using a DLL for the data acquisition system

provided by Gage. The overall software architecture was conceived and implemented

by Feder [16] and has proven very reliable and easy to use.

A block diagram for the signal processing for range and angle estimation is shown

in Figure 3-7. The flow of control through the various processing steps is simply

specified by a sequence of matlab commands.

Figure 3-8 shows a typical scan of the tank using data from the center channel of

the sonar system [16].
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Figure 3-7: Processing diagram for the system.
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Figure 3-8: Typical scan of the system, using data from just the center transducer [16].
The blue regions designate the walls of the tank. The triangle shows the location of
the sensor. The red circles show the location of 2 PVC cylinders. The black 'x' marks
designate the sonar returns.
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3.3 Sonar equation analysis

For a given object, a sonar system will have a maximum range at which it is able

to obtain a sufficiently strong echo to have a good detection. Sonar sensors are

designed to detect echoes that exceed a certain sound energy level. The sonar equation

provides a way to analyze a given situation [39]. The echo level is determined by the

characteristics of the equipment, the medium, and the target. The equipment consists

of the transducer, the amplifiers etc. The active sonar equation with noise background

for the signal to noise ratio (SNR) of an echo is:

SNR=SL-2TL+TS-NL+D I, (3.4)

where, SL: projector source level;

TL : Transmission Loss;

TS: Target Strength;

NL : Noise Level;

DI: Directivity Index.

The definition of the parameters in the above equation is shown in Table 3.1.

We use the term SNR here instead of DT as in Urick [39] because we consider

it more appropriate for the discussion of signal detection using different detection

methods. When two different transducers are used as transmitter and receiver, the

transmission loss should be separated into two terms, one the outbound loss and the

other the inbound loss. However, since our transmitter and receiver are close to one

another, the combination 2TL is used here for simplification.

For our system, it turns out that a sonar system analysis is not very useful. One

reason is noise (discussed below). Another reason the sonar equation analysis is

not useful is that the sonar equation analysis assumes steady-state, continuous wave

sound signals. However, our system uses very short, transient signals. Urick discusses

corrections to the sonar equations for transient effects, but these are difficult to apply
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Table 3.1: Definition of parameters in sonar equation (from [39])
Parameter Reference Definition

Symbol location
Source SL 1 yd from source

level on its acoustic 10 log intensity of sourceref erence intensity

axis
Transmis- TL 1 yd from source
sion loss and at target or 10 log signal intensity at 1 ydsignal intensity at target

receiver
Target TS 1 yd from

strength acoustic center 10 log echo intensity at 1 yd from target
incident intensity

of target
Noise NL At hydrophone 10 log nose tntenstyref erence intensity

level location
Receiving DI At hydrophone
directivity terminals 10 log nise power by an nondirection hydrophone

noise power by actual hydrophone

index

in our system. We can still calculate some of the other parameters, providing some

insights. The equation to calculate the projector source level is:

SL = 171.5 + 10 log P + DIT. (3.5)

In our sonar system, the energy of the pulse is 94 pJ, the duration of the pulse is

approximately 5 psec. Hence the acoustic power is approximately 19 watts, so,

SL = 178.2 + DIT . (3.6)

For a circular piston transducer like the V318 Panametrics transducer used in our

sonar system, the directivity index is calculated as:

DIT = 20 log(7r * D/A) = 20 log(7 * 0.019/0.003) = 26.0 dB , (3.7)

where 19 millimeters is is used for the diameter of the transducer. Hence, the source

level SL=220 dB re 1pPa.
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The principle losses of acoustic signal energy in the ocean medium are due to

spherical spreading, and absorption or attenuation. We can state this as:

Propagation loss = Spreading loss + Absorption loss . (3.8)

A simple example in usual life is that when we drop a stone in a pool, we can

observe that when the wave goes further from the source, it will eventually disappear

in the pool. This phenomena seems to suggest that the spherical spreading loss is

essentially a function of distance or range from the source and is not a function of any

other attribute of the wave such as frequency or wavelength. In a decibel expression,

the loss of signal level as a function of distance or range traveled is simply expressed

as:

Spreading Loss = 20 log R , (3.9)

where R is the range or distance from sound source. However, actually, the absorption

of the underwater channel does vary with the frequency of the sound energy being

transmitted. This absorption loss can be expressed as:

Absorption Loss = a x R x 10- , (3.10)

where a is the absorption coefficient in dB/kilometer, and R is the distance in meters.

From [39], we can determine that at 500 kHz, a is approximately 100 dB/kilometer.

The target strength depends strongly on the shape and material of the object, as

well as the angle at which the sonar is pointed at the object. In general, TS is only

know for relatively simple shapes. For example, for a sphere:

2

TS = 10 log , (3.11)
4

which means that a sphere of radius 2 meters has a 0 dB target strength. The objects

we have looked at in our research are much weaker targets. Hence, they will have

negative values for target strength.
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There is no absolutely quiet water. The major noise sources in the ocean are

thermal noise, water noise, cavitation noise, underwater animal noise, traffic noise

and electric noise. In our sonar system, due to the limited propagation power of

transducers and the tank environment in our laboratory, we think the electrical noise

is most important. The electrical noise could be reduced in the future by mounting

the power and pre-amplifiers as close as possible to the transducers. In addition, the

motion system appears to create acoustical noise that effects our system, this will be

more difficult to address.

In a typical oceanic sonar application, the noise is due to oceanic effects (waves

etc.) and distant shipping at low frequencies. At higher frequencies (such as 500 kHz

where our system operates), acoustic noise is usually accounted for by the thermal

noise equation:

NL = -15 + 20 logf = -15 + 20 log500 = 39 dB re 1 pPa . (3.12)

However, in our system there is a great deal of electrical noise coming from the

motion control system, the data acquisition PC, and other electrical equipment in the

building. The electrical noise level is many orders of magnitude larger than what we

would expect from purely acoustic considerations. Further, the electrical noise varies

with location in the tank, with time of day, etc. Hence, at present our conclusion is

that a useful sonar equation analysis for the system can not be performed.

3.4 Signal analysis

3.4.1 Signal observation model

Due to the rise and decay times of the circuits in the transducer, the filter and the

receiver, there is a limitation imposed the transmitted on pulse shape. For our system,

we can use Gaussian function exp[-13.8t2/T 2 ] as a simple approximation of the pulse

envelope shown as Figure 3-9, hence the outbound signal of the sonar system can be

expressed as:
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Figure 3-9: Signal observation model. The blue signal is the observed transmission
signal. The red dash line shows the estimated envelope of transmission signal as a
Gaussian function exp[-13.8t2 /T 2]

s(t) = k -e- - ej2rfot (3.13)

where T is the time duration of the signal, fo is the central frequency of the signal,

and k is an amplitude const.

3.4.2 Range and frequency resolution

The ambiguity function for a sonar system is the most important descriptor of the de-

tection and range/Doppler estimation properties of a system. It was first introduced

by Woodward and later developed in many references for evaluating the performance

of the sonar system. By analyzing the ambiguity function of the transmission sig-

nal, we can know the range and frequency resolution of the sonar system. For our
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simulation and experiment, the object is considered as static. The range resolution

is a more important issue. We do not need considered the frequency distortion of

wide-band signal caused by the motion of object.

The definition of the ambiguity function is:

x(r, p) 2 =J| s*(t)s(t + r)e-j27dt|2 = | S*(f)S(f + p)e-j 2 irt df1 2 , (3.14)

where T, o is the location in the range Doppler plane, and S(f) is the frequency

spectrum of signal s(t). If the energy of signal has been normalized, then,

E = J Is(t)| 2 dt = J S(f)| 2df = 1 . (3.15)

In our system, the signal is:

2
s(t) = k - e- -eft , (3.16)

as described in equation (3.13).

The substitution of s(t) into Equation (3.14) and the evaluation of the infinite

integral with the aid of an integral table, yields:

x( 12 = KOe -( 13 8t 2

|X(r, )|2 = Koexp[-( -+ 7r2 T 2 P2 )] (3.17)

where KO is a const. From this equation, we can get the time (range) resolution:

6(T) = 0.225 x T . (3.18)

In our system, T is about 0.005ms, so the resolution of the range is:

0.225 x T x c = 0.225 x 0.005 x 10-3 x 1500 = 1.69 (mm) . (3.19)

37



3.4.3 Range estimation accuracy analysis

When the underwater object is close to the sonar system, the process from the signal

transmission to reception can be modeled as a linear process. Assuming the trans-

mission signal is s(t), then the receiving signal will be r(t) = a x s(t - T) + n(t). The

receiving signal seems like a copy of the transmission signal with reduced amplitude

and added noise (as shown in Figure 3-10).

If we move the transmission signal along the time axis with parameter T, then the

squared error between the receiving signal and the moving transmission signal is:

E2 (J |s(t - T) - r(t12dt . (3.20)

It can be extended as:

E2 = K - 2Re] s(t - T) - r(t)dt , (3.21)

where, the K could be assumed as a constant and equal to the energy of transmission

signal plus the energy of receiving signal. By minimizing the squared error 62, we can

obtain an optimal estimate for the time delay, r. The standard deviation of the error

in estimating T can be obtained from [1] [40]:

o= = , (3.22)
27r#

where 3 is the bandwidth of transmission signal, E is the energy spectrum density

of the transmitted signal and N is the energy spectrum density of the noise. The

estimated range R = c x T. Correspondingly, the estimation error of range should be:

UrR = C -(3.23)

27rn # et

In our sonar system, the signal bandwidth is about 350 KHz. If we assume the
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Figure 3-10: Transmitted signal and echo. The echo seems like a copy of the trans-
mitted signal with reduced amplitude a and time delay t1

signal to noise ratio SNR = E/N is about 5 dB, then

1500
2R - 350 - - 2.158 x 10-4 (in)
27r x 350 x 103 X V 16

(3.24)

and there will be an uncertainty of 0.216 mm in range estimation.

3.4.4 Time-bandwidth product

Time-bandwidth product is another important item for evaluating the signal wave-

form. It seems like a kind of "uncertainty principle". The mean square bandwidth is

defined as:

02 f -fo)2S (f)1 2df
|j0IS (f)|12df

where the fo is the center frequency of the signal with definition:

_ f|IS(f)| 2df

f |S(f)| 2df

The mean square time duration of the signal can be expressed as:

(3.25)

(3.26)
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T2 f (t - to) 2 s(t)|2dt

T 0 fj |s(t)|2dt '(3.27)

where

= f-- tIs(t)|2dt (3.28)
f! sIO(t)|12dt

So, the time bandwidth product of a signal is:

T2 12 = fo 1t2 |s(t)| 2dt. f 2gf2 S(f) 2df|r . 022 =t . (3.29)
fZ ' Is(t)|2dt - f+ IS(f )I 2df

By appropriate derivation and normalization, using Rayleigh's theorem and Schwartz's

inequality, the equation (3.29) can produce the following inequality:

T > 1 . (3.30)

This inequality defines a constraint between the signal bandwidth and the signal

duration. The accuracy of range estimation is inversely proportional to the signal

bandwidth. If the time bandwidth product of a signal is larger than 1, then the

signal can thought as a "good" signal. In our sonar system, T is about 0.005 ms and

,3 is about 350 KHz, so the time bandwidth product is 1.75, which is larger than 1.

3.5 Summary

The outstanding performance of dolphin sonar inspires us to understand its physical

principles and to try to apply them for underwater robotic systems. This chapter

has described our system for trying to accomplish this. In the next chapter, we will

discuss the performance of the system.
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Chapter 4

Object Detection and Localization

Having described the binaural sonar sensing system in the previous chapter, we now

proceed to assess the performance of the system. We first consider the accuracy of

time-of-flight (TOF) estimation for individual sonar returns. Then, we assess the

performance of using TOF measurements to estimate the range and angle to point

objects. Finally, we consider the use of three TOF values to estimate object curvature.

4.1 Time of flight estimation

Echo detection plays a key role in the localization of objects. The time elapsed

between the transmission and reception of the echo is used to determine the distance

traveled by the sound wave. This enables us to estimate the position of an object.

Time-of-flight estimation is the foundation of estimating the range and angle to an

underwater object. We will discuss different detection methods in this section.

4.1.1 Simple threshold detector

In the simple threshold detection method, the amplitude of the detected signals is

compared against a pre-set threshold level. When the signal amplitude first exceeds

the threshold, the elapsed time from the transmission is recorded, which provides the

traveling time.
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Figure 4-1: Illustration of simple threshold detector. The horizontal dashed line shows
the amplitude threshold value (in this case, 0.04 volts). The vertical line shows the
TOF value (in this case, 1.3135 milliseconds).

This method may lead to some errors, which are a consequence of the rise time

of the waveform produced by the ultrasonic transducer. Actually, the received echo

reaches the threshold level some time later than the exact beginning time of the

echo, which creates an added delay. For the estimation of the range of a object,

this disadvantage makes the target appear slightly farther away than it actually is.

This error could be easily calibrated if the added delay is a constant. However, the

amplitude of the echo is nondeterministic. There are many causes of echo amplitude

variations which cannot be predicted, such as the size, the shape, the orientation and

the materials of the target. For this reason, it is impossible to get a very accurate

range estimate by a simple threshold method.
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4.1.2 Energy detector

The energy detection method is similar to the simple threshold detection method. The

difference is that the integrated energy is compared against the detection threshold,

instead of just the simple amplitude value. The human auditory system is considered

to use this kind of detector. Experiments have also indicated that the dolphin's inner

ear functions like an energy detector [1]. Au et al. designed an experiment in 1988 to

measure the integration time of the dolphin's energy detector for sonar pulses. They

used a phantom target with electronically simulated echoes that could be controlled

with high precision. Experiments showed that the integration time of the dolphin's

sonar is about 264 msec. In order to realize an energy detector, we need to design

a bank of contiguous filters and pass the echo signal through each filter bank. The

filtered signal will be used to compare with the detection threshold. We did try

this kind of energy detection method in our experiments. However, the detection

accuracy is even worse than the simple amplitude detection method. It is well known

that the dolphin's sonar has a high detection accuracy. So how the dolphin obtains

this accuracy using the energy detection method is still a mystery that is worthy of

future research.

4.1.3 Matched filter detector

The matched filter is an ideal receiver in the situation that the transmission signal

is known and the background noise is white. Because it can produce the maximum

SNR of the filter output, the matched filter is widely used and extremely important

in radar and sonar signal processing.

We would like to explain why it is an optimal detector in two different ways:

1. Maximum likelihood estimation norm;

2. Maximum signal to noise ratio norm.

e Maximum likelihood estimation

We express the event that the expected signal is present as:
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Hi :f=s+n, (4.1)

and the event that there is no signal is:

Ho : i = 5a, (4.2)

where the r and n are the signal and noise sampling vector, i and ii are their

complex envelope. So,

PT [ (t1), f (t2), ...,i f (tm)],

sT = = 9t) (2i . (m ]

iT = [5(ti),i (t 2 ), ..., i(tm)]. (4.3)

If we assume that i is Gaussian noise with zero mean and its covariance matrix

is Ra and i is a known signal, then the probability density distribution of the

event H1 is:

1- -=(i - )*T
P1(R) = 1 eXP[

(27r) 211Rals

2Ra-1(i - s)
2

Similarly, the probability density distribution of the event HO is:

1 -F*T Ra-1i
Po(F) = 1 exp[ ].

(27r)a|Ra 1- 2

The likelihood function is:

F*T Raj-I + s*T Ra 'F - s*TRa-ls
A(i) = exp[] 2

and

f(i) = ln A(i) = -s*T Rajls + 2F*T Rails + const .
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In the above equation, the first item s*TRa-s and the const is irrelevant to i,

so we don't need to consider it. The decision equation is:

(if H1 ) > (4.8)

(if Ho) <

where q is the decision threshold. If all the noise samples are uncorrelated and

their variances are equal, then can we normalize the covariance matrix Raj as a

unit matrix. So Equation (4.8) becomes:

-*T- M(if H1) >
e(tm) = *= (ti)(ti) H 7. (4.9)

=1 (if Ho) <

If we use the output of a filter to express Equation (4.9), that is,

m
e(tm) = h(tm - t)if*T (t,) , (4.10)

i=1

where tj = (i - 1)At and At is sampling rate comparing equation (4.9) with

equation (4.10), we get:

h(tm -ti) = s(ti) .(4.11)

That is,

h(t) = §(tm - t) . (4.12)

* Maximum signal to noise ratio receiver

The meaning of Maximum signal to noise ratio receiver is how to find out a

transfer function H(jw) to make the SNR of the output of transfer network

h(t) maximum when the receiving signal is passed through this transfer function

or filter. Assumed the background noise is white and its power spectrum density

is:

Pni(jw) = N0  (4.13)
2
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The frequency spectrum of input signal is:

S(jw) = J 9(t)e-3 dt
-oo0

(4.14)

The output signal of the transfer network is:

27r -o
S(jw)H(jw)e3'' t dw (4.15)

The average noise power at the output of the transfer network is:

IH(w)| 2dW (4.16)

So, at the time tm, the signal to noise ratio of the output of transfer network is:

f5o S(jw)H(j)e'wt dw12

+ofio |H(w)I2 dw

u(x)v(x)dx|2 < r (X)1 2dx . Iv(x)| 2dx

And we assume:

{ u(w)
v(w)

= 5(jw)ewtm

= H(jw)

We substitute Equation (4.19) into Equation (4.18) and get:

| J S(jw)H(jw)e' t dwl 2 < 2 H(w)I 2dw J 5(jL)| 2dw
2S c o 427 0

So combine the Equation (4.17) and Equation (4.20),
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(4.19)

(4.20)
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(S/N)j00 I -+Ho |(w)|2 do f_+ 0o1 |5(jo)|do
o"--Q f_+ooo |H (W)|2do

Or

-j- fo I5(joLt)|12do
(S|N)output <_ 27r -o

where E is the total energy of input signal, given by:

1 +oo 5
E - IS S(jw) 12dw
27r -oo

Equation (4.22) obtains its maximum value when

H(jw) = k5*(jw)e- t -,

or

h(t) = k(tm - t,

K is a constant and we can normalize it as 1, then

(4.26)

Equation (4.26) is the same as equation (4.12). This processing method is called

the matched filter. The matched filter is optimal when the detected signal is

known and the noise is assumed to be additive, zero-mean, white and Gaussian.

The details of implementing the matched filter are provided below.

4.1.4 Extended matched filter

The extended matched filter is a complement to the matched filter. It is used to

detect a known signal in a colored noise background [20]. It has the following form:

S*(w)e-3wT
H(jw) =

Sn(w)
(4.27)
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(4.23)
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(4.25)

h(t ) = s(tm - t0.



Where S*(w) is the conjugate of the frequency spectrum of the signal s(t) and

Sn(w) is the spectrum density of color noise n(t).

Comparing Equation (4.27) and Equation (4.24), we see that there is an additional

denominator S,(w) in equation (4.27). It can be proven that the term sZ~w) has the

effect to whiten the colored noise. In practical applications, if there is no large

variation in the noise frequency spectrum, the whitening process is not necessary.

For example, in the underwater noise environment with a decay slope of 5 to 6 dB

per octave, the whitening gain is less than 0.5 dB.

Figure 4-2 shows the frequency spectrum of the noise in our experiment tank

when the equipment is in operation. We think the matched filter is enough for echo

processing in our experiments.

4.1.5 Implementation of matched filter

Generally, there are three steps included in the implementation of the matched filter:

" Choosing a template representation

The matched filter assumes that the detected signal is known to implement the

matched filter we first have to choose a template for the echo signal. In the

situation that the object is close to the sonar system, the echo signal can be

assumed to be proportional to the transmitted signal as we have discussed in

Chapter 3. So we can choose the transmission signal as a template. However,

for our sonar system, the fixed transducer frequency response and the only

pulse modulation method in our power-amplifier impose a limit of this freedom.

Basically, a good transmission signal should have a sharp main lobe and low

side lobe. A sharp main lobe will increase range resolution and a low side lobe

can be helpful to decrease ambiguity. Another advantage of low side lobe is

that it can increase the detection accuracy in the multi-echoes situation.

* Calculating the matched filter

The matched filter calculation calculates the correlation between the template

signal and the received signal h(t) is described in this earlier section. We can
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Figure 4-2: The frequency spectrum of the noise in the tank. The dash lines show the
95% confidence interval of spectrum estimation. We can see that there is not much
variation in the spectrum. In consideration of the indetermination of the noise and
the less filtering gain at the expense of computation complexity of extended filter, we
think the matched filter is enough for echo detection in tank.
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conveniently utilize the matlab function xcorr to implement it while it may be

more complex if using other language.

* Peak detection

Determining the peak points in the signal at the output of the matched filter is

the final step to obtain a TOF estimate with the matched filter detector. If only

one object is present in the active operation region, signal echo will be acquired

at the receiver. We should only find out the global maximum point of the

filtered echo signal. If there are multi-objects located in the sonar operation

space, multi-echoes will be captured. They construct a linear combinations

in the receiving signal. To detect them, multiple local peak points should be

picked up. This cab be more complex with additional considerations of side-lobe

affect. In our experiment we will discuss later, there is only single point object or

curvature object assumed to contribute the echo in the receiving signal. When

the peak has been detected after matched filtering, the TOF value of the echo

will be determined in the receiving signal according to the time shift of the peak

at the output of the matched filter. This can be understood from Figure 4-3.

4.2 Localization of point objects

Having introduced the different signal detection methods and how to implement them,

in this section we will introduce how to use them in practical applications.

4.2.1 Methods

The beam angles of the transmitter and the receivers of the biomimetic sonar deter-

mine an active region. Only within the active region can an obstacle be detected.

We assume that there is a target in the active region with polar coordinates r and

6. The TOF information of the two receivers, TOF and TOF2, can be obtained by

properly detecting the echo signal with the simple amplitude detection method and

the matched filter detection method:
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Figure 4-3: Illustration of TOF estimation by using a matched filter.
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Left ellipse

Figure 4-4: Illustration of the intersection of two ellipses. A point object is at the
intersection of the two ellipses defined by the sound travel path.

R = c x TOF1 ,

R 2  c x TOF2 , (4.28)

where c is the underwater sound speed, R1 defines a possible target contour which is

an ellipse with foci on the transmitter and receiver 1, and R 2 defines a possible target

contour which is an ellipse with foci on the transmitter and receiver 2.

The intersection of the two ellipses determines the location of an underwater point

target, as shown in Figure 4-4.

The geometrical relation between the object and the biomimetic sonar is illus-
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Figure 4-5: Geometry of echolocation for a point target. The figure shows the trans-

mitter and two receivers at the left, which are separated by the distance d. The

measured travel times for the sound paths from the transmitter to the two receivers

are used to estimated the range and bearing to the target.

trated in Figure 4-5, from which we can obtain:

R1 = Nr 2 +d 2 +2rdsin6+r,

R 2 = +r2 + d2 - 2rdsinO + r. (4.29)

Solving Equation (4.29), we can get:

R2 + R2 - 2d 2

r = (4.30)
2(R1 + R2 ) '

and

(R 1R 2 + d2 )(R 1 - R2 )
9 = arcsin d(R1R2 - 2d 2) (4.31)

where r and 0 define the location of the object.
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4.2.2 Simulation

By using simulations, we hope to obtain a brief understanding of how well the matched

filter and simple threshold detector work by comparing their performance in localiza-

tion of a point object.

According to Barshan and Kuc [6], the sound pressure in the free sound field space

can be described as:

P22
P(r, 6) = - , (4.32)

r

where 0 is the half width angle of transducer.

According to Equation (4.32), we can simulate the sound pressure amplitude at the

receivers from the object with different r and 0 . In order to mimic the configuration of

dolphin's sonar, we consider the receiver as omni-directional receiver. In simulation,

the time delay of the echo can be obtained by calculating the real distance from the

transducers to the object. A random noise is added to the signal to simulate a noisy

environment.

All the simulation results are shown from Figures 4-6 to Figure 4-11. These results

illustrate the strength of the matched filter, especially when the echo signal has a low

SNR.

4.2.3 Experiment

Although the simulations have demonstrated the advantage of the matched filter

and we have made a comparison of the localization performance by using the two

detection methods, experiments are essential to verify our analysis. To determine the

performance of our biomimetic binaural sonar system, an experiment was set up in

the M.I.T. marine instrumentation and computation laboratory.

The sharp edge of a triangle was modeled as an point object in the experiment.

Although there may be a small difference between the echo signal between a sharp

edge and a point object, we assume that this difference can be neglected. First, we

fixed the angle and varied the range of the sonar system from 0.1 meters to 2.5 meters
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Figure 4-6: Transmitted and received signals for a situation with high SNR. The top
plot shows the transmitted signal. The bottom two plots show the received signals
for the left and right receiver transducers. For this scenario, the inclination angle
between the transmitter and object is about 2.2 degrees and the range is about 1.8
m.
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Figure 4-7: Matched filter outputs for the two echo signals shown in Figure 4-6.
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Figure 4-8: Illustration of detection results for a situation with high SNR. The esti-
mated locations of the objects from these two methods coincide.
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Figure 4-9: Transmitted and received signals for a situation with low SNR. The top
plot shows the transmitted signal. The bottom two plots show the received signals
for the left and right receiver transducers, with a very high noise level.
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Figure 4-10: Matched filter outputs for the two received signals shown in Figure 4-9.
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Figure 4-11: Detection results for a situation with low SNR. The object could not be

detected by the simple threshold detector, but the matched filter detector still works

well. The estimation location of the object is very close to the real location.
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Figure 4-12: Experiment setup.

in 0.1 meter increments. Second, we fixed the range and changed the angle of the

sonar from -12' to 120 in 1 increments. The object is assumed static.

For each transmitted pulse, the two receivers captured two echo signals. At every

location that the biomimetic sonar moves to, 50 sample echo signals were collected

and averaged. The two TOFs were obtained by employing a simple threshold detector

and a matched filter detector. Using Equation (4.30) and Equation (4.31), the range

and angle of the underwater point target have been estimated by employing both

methods of TOF estimation. The estimation results are shown in Figure 4-13 and

Figure 4-14.

In Figure 4-13, the angle of the biomimetic sonar was fixed, only the range of the

biomimetic sonar was changed and estimated, to determine the relationship between

the estimation error and range. From these results, we can determine:
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Figure 4-13: Range estimation error as a function of range. The
for threshold detection was 0.008 seconds at each position and the
for matched filtering was 0.866 seconds at each position.
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1. The estimation error of both the simple threshold method and matched filter

method increases as the range increases.

2. The maximum estimation error of the matched filter method is within 0.01

meters and the maximum estimation error of the simple threshold method is

within 0.08 meters.

3. When the biomimetic sonar is close to the underwater target (range < 1 m), the

echo signal has a better SNR, and the estimation effects of the simple threshold

detector and matched detector are very close. However, as the SNR decreases,

the matched filter does much better.

4. The average estimation time of the matched filter method is much larger than

the average estimation time of the simple threshold method.

In Figure 4-14, the range of the biomimetic sonar was fixed and the angle to the

target was estimated for different angles of the sonar. From these results, we can

determine:

1. The estimation error of both the simple threshold method and the matched

filter increase with angle of incidence.

2. The maximum estimation error of the matched filter method is within 0.2' and

the maximum estimation error of the threshold method is within 0.6'.

3. When the inclination angle between the biomimetic sonar and the underwater

point target is small (angle < 30), the echo signals have a better SNR, and the

estimation results of the threshold detector and the matched filter detector are

very close. However, when the inclination angle becomes large, the estimation

error of the threshold method increases, and at a certain point the object can

not even be detected. The angle estimation error is very sensitive to the angle

of incidence.

63



Matched filter method
Simple threshold method

0 .8 - - -.-.-.

0.6 - - - -

S 0 .4 - -... -... -.. .. .

E

0 .2 -.-.-..-.

0 -

-0.2'
-10 -8 -6 -4 -2 0 2 4 6 8 10

Angle (degrees)

Figure 4-14: Angle estimation error as a function of angle of incidence. The com-
putation time for threshold detection was 0.007 seconds at each position and the
computation time for matched filtering was 0.838 seconds at each position.
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4.2.4 Improved echo processing

This section describes some alternate processing techniques that were evaluated to

reduce the effects of noise and to save processing time. In the practical applications

of an underwater robot sonar system, the detection accuracy and detection time are

always two major considerations. Generally, the detection accuracy and the detection

time play two contradictory roles. That is, the improvement of detection is often at

the expense of detection time and vice versa. Besides the simple threshold detector

and matched filter we have mentioned before, other possible methods for data post-

processing are processing of averaged waveforms and band-pass filtering.

By processing the average of several different signals of the same scene, the effect

of white noise can be reduced dramatically. This can be described as:

N

X =E , (4.33)

where, xi is the i th echo signal sample collected at the same location by sonar and

N is the total number of signals.

A band-pass filter is designed according to the center frequency and the bandwidth

of the desired passing signal. It can increase the SNR by filtering unfavorable noise

that is out of the frequency band of the signal of interest.

In addition to the simple threshold detector and the matched filter detector, the

following combinations were experimented with:

1. simple threshold detection on a single waveform;

2. simple threshold detection on an average waveform;

3. matched filter detection on a single waveform;

4. matched filter detection on an average waveform;

5. simple threshold detection on a bandpass filtered single waveform;

6. simple threshold detection on a bandpass filtered average waveform;
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7. matched filter detection on a bandpass filtered single waveform;

8. matched filter detection on a bandpass filtered average waveform;

9. local matched processing method.

The last combination, referred to above as "local matched processing method", is

described in more detail below. To investigate the processing effect of these combi-

nations, we collected 68 pings of data captured using the binaural sonar at a range

from 2 m to 5 m. The processing time and correct detection rate for the different

scenarios are shown below. A detection is considered correct if the range estimation

error is less than 1 cm.

From Figure 4-15 through Figure 4-17, we can clearly see that a higher correct

detection rate means a greater detection time. No method can satisfy the require-

ments of saving processing time while keeping reasonable detection accuracy. Also,

the matched filter is the major factor in increasing both the detection accuracy and

time expense. The averaging process and the bandpass filter do not contribute much

in processing time but are beneficial for improvement of detection accuracy.

A natural thought is to ask, " can we reduce the matched filter processing time? ".

Noticing that a complete echo signal is required for matched processing, we propose a

local matched processing method. First, the peak point of the echo signal is detected.

Then, a local matching process is executed between a known template signal and

the partial echo signal which is around the detected peak point. The time duration

of the partial echo signal is about twice of that of the template signal. By finding

the peak of the output of the local matched filter and carefully calibrating the offset

caused by defining the partial echo signal, an accurate time-of-flight estimate can be

determined.

We call this method a local matched processing method. The comparison between

the methods is shown in Figures 4-15 to Figure 4-17. It can be easily seen that the

local matched processing method provides an improvement in detection rate with

much less computation time.
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Figure 4-15: A comparison of correct detection rate using the nine different detection
methods.
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Figure 4-17: A comparison of detection error using the nine different detection meth-

ods.
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4.3 Curvature estimation

4.3.1 Methods

In the underwater world, the objects and terrain can be very complex 3D shapes. The

development of methods to handle very complex objects is a critical area for future

research. Hence, we consider one small step in this direction by considering how to

localize 2D cylindrical objects. Plane objects and point object can also be modeled

as curved objects with a radius of Rpiane = oc and Rpi = 0.

Inspired by the idea that the center transmitter of our sonar system can also act

as a receiver, we rearrange the configuration of the sonar system as a tri-aural sen-

sor system as Peremans [34] has done. Three transducers are necessary to estimate

curvature from a single ping. We have implemented two methods for estimating cur-

vature. One is an approximate analytical solution, which was published by Peremans.

The other is a numerical solution, which to our knowledge has not been implemented

before.

Method 1: Approximate solution

According to the definition of an ellipse and the physics of sound transmission,

the problem of localizing a cylindrical underwater object is equivalent to determining

a circle which is tangent to two ellipses and one circle as shown in Figure 4-18.

The definitions in Figure 4-18 are:

_ 4 2

left ellipse2: ( 2) =1, (4.34)
left lli' (ML)2 + (-ML)2 - (4)2

center cycle : x2 + y2 m ) 2 , (4.35)
2

(X -2)2 y2right ellipse: )2 + (M)2 - (4)2 = 1, (4.36)
(2 M1 2 i ef

where, M is the estimated sound travel distance from the center transmitter to the left

receiver, M, is the estimated sound travel distance from the center transmitter to the
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right receiver, Mc is the estimated sound travel distance from the center transmitter

to the center receiver/transmitter, and d is the separation between the transmitter

and receivers.

The foci of these ellipses are located at the three transducers. The center of the

circle is at the transmitter. Directly finding out the location of the expected reflecting

object, for example, a tangent cylinder here, from the above Equations (4.34), (4.35),

and (4.36) is very difficult. When the measurements M, Mr are all much larger than

the separation d, we can assume the left ellipse and the right ellipse are circles with

radius:
|M2 - d2

RIeft rl = 2 (4.37)

and

Rright - ra = 2 (4.38)

This is illustrated in Figure 4-19.

From the geometric relationship shown in Figure 4-19, we have:

x2 + Y = (rc + r 2 )2, (4.39)

(c + -)2 + y2 = (rc + ri)2, (4.40)
2

and

(xc - )2 + Y2 = (rc + r3 )2. (4.41)
2

Solving Equations (4.37) to (4.41), we obtain [34]:

r 2 + r 2 - 2r? 2 d

rc = 1 3 2 , (4.42)
4r2 - 2r1 - 2r3

= (ri - r3 ) - (2rc + r1 + r 3 ) (4.43)
c- 2d

and

Yc = [(rc + r2 )2 - . (4.44)
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Figure 4-18: Illustration of ellipse and circle constraints. The reflecting object is
tangent to the ellipses and circles defined by sound travel path.
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Figure 4-19: Approximation of Figure 4-18. The left and the right ellipses can be

assumed as circles when the sound travel paths are much larger than the separation
between the transducers. The radius of the circles are equal to the minor axis of the
ellipses.
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Although the approximations above may be reasonable and the expression in

Equations (4.42), (4.43), and (4.44) is very simple, the approach has some difficulties.

As discussed by Peremans, noise sensitivity is a serious concern with this approach.

Method 2. Numerical solution incorporating elliptical constraints

Figure 4-20 shows a complete geometric relationship regarding the reflection be-

tween a tri-aural sonar and a cylinder reflector.

We have 4 known parameters, d, M1, M, and Mc. M, M, and Mc represent the

estimations of the sound travel distance at the three receivers and d is the separation

between transducers. The location and the radius of the cylinder reflector are given

by: xc, yc, and rc . The other unknown parameters are: xr, yr, Xm, Yim, X, Y1, di, and

d2 . The (xc, yc), (x,, yr) and (xi, yi) are the exact reflecting points at the cylinder

from the sound transmission to the center, right and left transducers, respectively.

The distances di and d2 are illustrated in Figure 4-20.

For the transmission from the center transmitter T to the receiver R1, a = 3, so

we have:

d1 - V(x d)2 +y= (d - d1 ) - 2y . (4.45)

Due to the straight line constraint [from (Xc, Yc) to (Xr, Yr) to (0, d1)], we have:

(xc - di) - yr = (Xr - di) yc (4.46)

Due to the circle constraint, we have:

(Xc - Xr)2 + (Yc - Yr)2 = r (4.47)

From the estimation of the sound travel distance, we have:

x2- y r+ (x d) 2 y = Mr. (4.48)

Similarly, for the transmission from the center transmitter T to the receiver R2,
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Figure 4-20: Sound travel path from cylinder reflector.
rameters used by Equations 4.45 to 4.55.

This figure defines the pa-
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we have:

d 2 - (xi + d)2 + y?2= (d - d2) -x. + y?, (4.49)

(xc + d2 ) -y, = (xi + d2 ) ye, (4.50)

(xc - x 1)2 + (Yc - yI) 2 = r, (4.51)

and

x- y' +V(xI + d) 2 + y 2 - MI. (4.52)

For the transmission from center transmitter to center receiver, we have:

2 x- y = Mc, (4.53)

(xc - Xm) 2 + (Yc - ym)2 = r 2 , (4.54)

and
X Xm (4.55)
Yc' Ym

Equations (4.45) to (4.55) represent a group of eleven simultaneous equations with

eleven unknowns. These cannot easily be solved analytically. For our results, we have

solved them using the function f solve() in the matlab optimization toolbox.

4.3.2 Simulation analysis

The goal of our simulation is to evaluate and compare the two curvature estimation

methods. The geometric relationship between the sonar system and the object is

similar to Figure 4-5 except that the object is different. This is shown in Figure 4-21.

The separation between transducers is set to be 4 cm.

The simulation is studied by three cases:

Case 1: The range and angle of the object are randomly selected. The radius of the

object is varied from 0.3 m to 1.5 m in 0.1 m increments. 10 trials are performed
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Figure 4-21: Geometry of echolocation for a curvature object

for each radius value. The measurement noise of the three sound travel paths

is assumed Gaussian with a standard deviation of 0.002 mm. The estimation

results for the two methods is shown in Figure 4-22.

Case 2: The radius and angle of the object are randomly selected. The range of the

object is varied from 1.5 m to 3 m in 0.1 m increments. 10 trials are performed

for each range value. The measurement noise of the three sound travel paths is

assumed Gaussian with a standard deviation 0.002 mm. The estimations result

for the two methods is shown in Figure 4-23.

Case 3: The radius and range of the object are randomly selected. The angle of

object is varied from 1 degree to 12 degrees in 1 degree increments. 10 trials

are performed for each angle value. The measurement noise of the three sound

travel paths is assumed Gaussian with a standard deviation of 0.002 mm. The

estimation results for the two methods is shown in Figure 4-24.

From Figures 4-22, 4-23, and 4-24, we can see that the radius estimation results

obtained by the numerical method are considerably better than those obtained with

the approximate method. The angle and range estimation performance of the two

methods is similar.
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Figure 4-22: A comparison of estimation error vs radius variation by the two local-
ization methods. The range of the object is 3.05 m, the angle of the object is 20.1

degrees.
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Figure 4-23: A comparison of estimation error vs range variation by the two local-
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Figure 4-24: A comparison of estimation error vs angle variation by the two local-
ization methods. The radius of the object is 0.66 m, the range of the object is 3.91
m.
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4.4 Summary

This chapter has summarized the performance of the system. We compared the per-

formance of matched filter and threshold detectors. We have assessed the accuracy

of point object localization. Finally the problem of estimating object curvature was

investigated. We have demonstrated with simulation results that a numerical ap-

proach performed better than an approximate solution for estimation of the range,

angle, and curvature of cylindrical objects. However, sensitivity to noise is still an

issue. Our hope is that future research can achieve better curvature information by

combining the data obtained by the sensor from different sensing locations.

81



Chapter 5

Conclusions

This thesis has investigated the use of an underwater biomimetic sonar system for

object localization and classification. This chapter concludes the thesis by summa-

rizing the contributions of the thesis research and by making suggestions for future

research.

5.1 Contributions

The contributions of the thesis have been the following:

" A wide-beam, wide-band biomimetic binaural sonar has been implemented and

tested.

" A variety of signal detection methods have been evaluated.

* The accuracy of object localization using the system has been assessed.

" The problem of estimating object curvature using the system has been investi-

gated.

5.2 Future research

We have many suggestions for improving the system and ideas to investigate in future

research. These can be divided into three categories: (1) improved signal detection,
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and (2) shape estimation for more complex objects, and (3) adaptive echolocation.

5.2.1 Improved signal detection

Improved signal detection can be achieved by employing more powerful detection tech-

niques and by obtaining a better understanding of the noise of the system. Matched

filters provide improved performance but require a detailed knowledge of the received

signals. However, for more complex objects, the received echoes can become very

complex. The matched filter performance will degrade when the template waveform

used does not match the actual object echoes. A simple threshold/energy detector

does not make explicit assumptions about the received echo structure, but as we have

seen in the previous chapter gives less accurate performance. It has been hypothe-

sized by biosonar researchers that the dolphin sonar system operates like an energy

detector [1], but it remains a mystery how the dolphin attains such good performance.

Two alternative ideas to try for improved signal detection are wavelets [38] and

neural networks [18]. Wavelets have recently become a popular tool for signal detec-

tion in many different application domains. For example, Rodenas and Garello have

used wavelets for oceanic synthetic aperture radar data [36]. The performance of a

detector strongly depends on the how to represent the signal. If a priori informa-

tion concerning the relative bandwidth and the time-bandwidth-product of the signal

is known, a wavelet representation has been proven efficient [17]. Zhang has com-

pared the performance of a discretized wavelet transform (DWT) detector, matched

filter detector, and an energy detector [42] for detection of transient ocean events.

The DWT detector achieves performance that is almost as good as a matched filter,

without requiring knowledge of the structure of the waveform.

There has been a strong interest in the investigation of neural network models for

dolphin echolocation. For example, Au and colleagues [2, 3] trained neural networks

to perform object recognition and compared the performance with actual dolphin

experiments. For our system, it is possible that a neural network detector could be

trained to recognize the echoes from different classes of objects, to yield improved

localization and classification.
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5.2.2 Shape estimation for more complex objects

To estimate the shape of complex objects, it will be necessary to integrate the data

obtained from different vantage points. Peremans et al. showed that it is difficult to

estimate object curvature accurately from a single location using a tri-aural sensor.

Hence, motion will be necessary, to collect sonar data from different positions. Moran

has investigated curved object shape reconstruction using a single scanning sonar

sensor, moved among multiple accurately known positions [30]. The binaural sonar

provides more information that can improve the speed and accuracy of such a process.

However, uncertain sensor motion add mores many difficulties. Concurrent mapping

and localization will be necessary. This has been the subject of Feder's thesis [16].

Future work will use the biomimetic sonar for concurrent mapping and localization

with more complex objects.

Reconstruction of objects in three dimensions will require that more degrees of

freedom be added to the robotic positioning system in our testing tank. Work is in

progress in our facility to add this capability.

5.2.3 Adaptive echolocation

Adaptive combining of sensing and motion can improve the system in two ways, by

getting better information and by increased the speed of operation. Sometimes, from

one position, the data is ambiguous and difficult to interpret. In adaptive echoloca-

tion, the system adaptively move itself according to the echo signals it receives to

get better information. In addition, our previous experiments with a single scanning

sonar have been very slow, because of the time necessary to take many returns at

small angle increments. By using the range, angle, and possibly curvature informa-

tion, the system can operate more quickly. The same results can be obtained with

much less data. It should be possible to track moving objects in real-time. Perhaps

one day, the system might even be used to track and catch a fish (just like a real

dolphin).
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