
Investigation of Efficient Geometric Shape Algorithms for
Numerical Simulation of Discrete Particle Systems

by

Scott M. Johnson

B.S. Civil Engineering

Washington University in St. Louis, 2001

Submitted to the Department of Civil and Environmental Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Civil and Environment Engineering

at the

Massachusetts Institute of Technology

June 2003

© 2003 Massachusetts Institute of Technology. All rights reserved.
/1

Signature of Author: _ _ _

Department of Civil and Environmental Engineering

/f / A .YMay 9, 2003

Certified by:
77 John R. Williams

Profe V&of Cvil and Environmental Engineering
Thesis Supervisor

Accepted by: _

K/ Oral Buyokozturk
Professor of Civil and Environmental Engineering

Chairman, Committee for Graduate Studies

BARKER

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 0 2 2003

LIBRARIES



Investigation of Efficient Geometric Shape Algorithms for
Numerical Simulation of Discrete Particle Systems

by

Scott M. Johnson

Submitted to the Department of Civil and Environmental Engineering
on May 9, 2003 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in
Civil and Environment Engineering

ABSTRACT

The efficiency of a discrete particle simulation implementation relies on several factors,
including the geometric representation, contact resolution, and neighbor-sorting algorithm used.
The focus here is on the first two of this list: the geometric representation and the corresponding
contact resolution. An argument is developed to advocate the use of geometric representations
with inconstant radius based on results of a numerical study of angles of repose for deposited
grains. The equivalent spheres method is then developed as a potential cure for the problems
arising from constant radius geometric representations. A coherent approach to utilizing this
geometry in discrete element modeling is developed. This includes the proposal of an accurate,
robust contact resolution algorithm and explicit functions to describe moments of inertia.
Considerations for numerical modeling are also addressed, including numerical integration,
formulation of rotation transformations, and resolution of forces and motions in the context of
rigid body motions. The details of a generalized computational implementation of the
representation are also given, and empirical convergence properties are compared with a
different method for detecting contact between ellipsoidal approximations.
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Introduction

The capability of discrete element modeling (DEM) to model physics at the grain scale has made it a

leading computational method for modeling complex phenomena exhibited by particulate systems in

applications as diverse as the manufacture of pharmaceuticals and borehole flow simulation in the

petrochemical industry. Three-dimensional DEM simulation at scales on the order of typically performed

field tests requires computational resources (in terms of CPU time and memory) that are far in excess of

those available to most researchers. These requirements are highly dependent on the geometrical

representation, contact resolution, and the contact detection algorithm used in the implementation. This

thesis will address the first two topics in this list.

There are advantages and disadvantages to every geometrical representation that makes it

amenable to a certain application or not. Several available geometries that have been proposed for

modeling of discrete body systems will be compared for their relative merits. The goal of this thesis is to

identify a suitable 3-D geometry for use in modeling large numbers of fluid-solid interactions in fluidized

sand beds. A recently proposed ellipsoid approximating geometry will be developed and redefined to

view the geometry as an assembly of constrained spheres - here called the Equivalent Spheres Method.

The equivalent spheres ellipsoid is shown to be suitable, in terms of computational resource requirements

and geometric compactness, for use in discrete element modeling. The specific geometric properties of

the geometry, including moments of inertia and explicit surface description, for the equivalent spheres

ellipsoid is developed, and a formulation of force resolution on such a shape is also given. This also

includes proposing a fast, robust contact resolution algorithm that compares favorably with the memory

and CPU requirements of other contact resolution algorithms for ellipsoidal representations. Specifically,

this proposed contact resolution algorithm is shown to exhibit promising results versus another algorithm

in offering faster, more accurate identification of the point of contact between two ellipsoidal geometries.

The development of the contact resolution here also decouples the algorithm used for ellipsoid-ellipsoid

contact from that used for ellipsoid-sphere and ellipsoid-polyhedron contact, which has the effect of

streamlining the algorithm.

Sphere-based DEM implementations remain the most common for 3-D modeling, since they are

simple and compact and hence are fast computationally. This is the basis for the popular codes TRUBAL

(Cundall, 1987), PFC3D (Cundall, 1996), and DMC (Taylor and Preece, 1992) as well as the application

developed by Cleary (1998). Spheres, however, have several drawbacks that hinder their ability to capture

key behaviors of real particle systems that contain non-spherical particles. Spheres tend to roll excessively

when subjected to small perturbations because the normal forces at contact always pass through the

centroid and cannot exert a resistive couple on the body. Some numerical implementations address this
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shortfall by introducing couples artificially by either perturbing the normal force direction so that it does

not pass through the centroid or by adding a "rolling friction" factor (Vu-Quoc, 1999).

Spheres are unable to capture interlocking phenomena exhibited by real granular systems. They

also tend to organize into dense, ordered packings as the coefficient of friction decreases (Grest, 2001),

which is not representative of most naturally-occurring materials. In highly dynamic systems, such as

seismically excited soils and mixed particulate matter found in the pharmaceutical and mining industries,

the particles tend to segregate into mono-sized regions due to free surface segregation (in surface

cascades), interparticle percolation (in failure zones), and particle migration (high strain rate regions),

according to Bridgewater (2002). Regions of mono-sized spheres are especially vulnerable to

organization into densely packed regions.

Some of these problems have been overcome by clustering a number spheres together to form a

non-spherical shape. Some implementations (Favier 1999, Vu-Quoc 2000, Mustoe 2001) represent

ellipsoids in this manner. Typically the discretization is coarse (7 spheres or less) in order to achieve fast

execution times. However, the clustering is only C0 continuous and, therefore, introduces discontinuous

surface normals that lead to computational problems especially in contact resolution with polyhedral

elements. Favier (2001) also notes that frictional behavior induced by the C0 continuity of the surface can

reach as high as 0.4 between such clustered sphere particles, restricting the types of materials such

particles can accurately represent.

Analytical representations of 3-D ellipsoids have been proposed and implemented by Ting

(1993), by Ng and Fang (1995), and by Lin and Ng (1997). More generalized representations using

superquadrics for DEM are proposed in Williams and Pentland (1992). A compact approach to

representing and performing contact detection between discretizations of arbitrarily-shaped particles

(discrete function representation) is presented in Williams and O'Connor (1995). The greatest drawback

of contact resolution between such representations is that they require significantly more computation

time than that for spheres.

The ellipsoidal representation investigated in this thesis takes advantage of the simplicity of

spheres while overcoming the problems of clustering. In particular, they possess a smooth representation

with C1 continuity that can accurately represent non-spherical bodies, such as ellipsoids. This improves on

the sphere by providing interlocking, resistance to rolling, and realistic statistics of orientation for all

friction regimes. The geometry is also convex, eliminating the need for multiple surface contact checking.

An improvement is discussed for the four-arc ellipsoid approximation detailed in Wang (1999), called

here the Equivalent Contact Sphere Method as used in Johnson et. al. (2003). It is a hybrid representation

that provides favorable contact detection properties as well as flexibility in representing non-spherical

particle shapes. For completeness, the development of the four-arc approximation in 2-D (Wang, 1997)
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and its development into 3-D (Wang, 1999) will be followed. Then, the development of a new contact

resolution algorithm for the four-arc approximation is illustrated, which exploits the implicit geometric

properties to identify the point of contact on the surfaces of the ellipsoids. The contact point is defined as

a point coincident to potential surfaces of the contacting ellipsoids where the surface normals for the two

ellipsoids are parallel. The geometric properties necessary for implementation of the ellipsoid into a DEM

implementation are also developed. Finally, details of the computational implementation are shown.

Results of the implementation of this new algorithm are presented, including convergence

properties and increases in efficiency. An overview of a developed computational implementation of the

algorithm is given along with results of simulations using the methods described in the first sections.

Pathological Behavior in Constant Radius Shape Representations

Zhou (2002) has shown agreement between empirical and numerical results for piling of spherical

glass beads. Several studies have investgated this phenomenon, though, it is debatable whether this is

directly applicable to DEM modeling of geotechnically realistic systems, since it does not address the

influence of dense packing configurations that emerge in systems of perfectly rounded particles. Behavior

at the microscale is important in determining behavior at several length scales above, making it important

to accurately capture the dominant forces and behavior at the microscale.

In Johnson and Williams (2002), the phenomenon of spontaneous regular packing configurations

is investigated through the performance of a simulated standard angle or repose field test. The simulation

discussed involves 6624 circular-shaped polygon particles (in the equilibrium configuration) studied

using the MIMES DEM simulation package. All particles are represented in the simulation by 16-sided

polygons. The field test is carried out by randomly placing disk source particles above the opening to a

vertical container, and disks are allowed to fall and settle under gravity. Once settlement has occurred and

the kinetic energy of the system is near zero, the sides of the vessel are removed and the particles are

allowed to slump. Particles that fall off of the edge of the settlement plate are eliminated from the

simulation. The experimental setup is shown in Figure 1. Material data for the particles is taken

from physical data given by Watanabe (1999).

The final configuration of the pile is shown in Figure 2. Light gray lines follow the slope of the

dense packed structure, which forms in the center of the system. The full view shows that the piling is

roughly conical with concave slopes; whereas, the closer view reveals two distinctly different pile

structures, an inner hexagonal packing bordered by a more random packing on the outer slopes.
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Figure 1: Numerical experiment setup for study of roughly circular polygons; (top) close view of source
particle configuration.

/

Figure 2. Close view of dense packing in pile of roughly circular polygons with internal friction coefficient of
0.25.

The addition of an aspect ratio of 1.5 yields ellipse-shaped, 16-sided polygonal particles. It is
observed that this eliminates the close packing configuration as shown in Figure 3. Trials using the same
procedure have been conducted for both the circular and elliptical polygons for a friction coefficients of
0.25 and 0.5. Results obtained for the circular-shaped polygon particles indicate an increase of between

33.2% and 69.1% when the full data set is used as opposed to only that part unsupported by a hexagonal
packing.
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Figure 3. Close and far view of the pile of elliptical, polygonal particles with aspect ratio of 1.5 and internal
friction coefficient of 0.25.

Figure 4 shows the angles of repose for the full data sets of the circular and ellipsoidal polygonal

particles, as indicated by the legend. Also shown, are the angles of repose for the circular polygon data

set truncated to remove the hexagonal packing in the middle of the pile from the calculation of angle of

repose. The angle of repose for each trial was acquired by performing a least squares fit on those particles

lying on the pile surface to derive an estimate of the slope.

It can immediately be noted that the use of the full data set of surface particles in the circular

polygon trials results in angles of repose in excess of those for the ellipsoidal polygon particles under all

of the internal friction coefficients investigated. This contradicts empirical research that has generally

shown angle of repose to increase with deviation from circular cross-section. However, when the circular

data is truncated to remove that part of the pile supported by a hexagonally packed structure, the angle of

repose is, as empirically verified, less than those of the ellipsoidal particles.
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Figure 4. Angles of repose for superquadric ellipsoids and disks for friction coefficients of 0.25 and 0.5.

The study has presently shown that a hexagonal packing structure readily forms in DEM systems

using circular polygon elements and that ellipsoidal polygon elements can eliminate this hexagonal

packing phenomenon. A relationship between friction coefficient and slope is also illustrated for both the

ellipsoidal and circular polygon particle systems.

Existing 3-D Geometric Representations

Several 3-D representations of closed surfaces are discussed in the literature. These can be

organized into 3 general categories: discrete, analytical, and hybrid. Discrete representations discretize a

shape to a given coarseness. Analytical representations can be described by an explicit or implicit

algebraic equation. Hybrid representations usually use analytically-defined surface patches forced to

conform to a surface through enforcing compatibility conditions.

The simplest convex analytical representation is the sphere, which uses only four floating point

numbers to describe the geometry and requires a trivial contact resolution algorithm (if the difference

between the distance between the centroids of the spheres and the sum of the spheres' radii is negative or

zero, there is contact). Prolate spheroids have been proposed by Lin (1997) for use in discrete element
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modeling; the original algorithm for contact detection relies on a geometric potential algorithm to identify

a unique point of contact. Ouadfel (1999) presents a more robust contact detection scheme for prolate

spheroids that is also formulated to handle memory contact effects and store geometrical data about the

contact.

Most other common analytical representations tend to be quadrics, such as tori (Hopkins, 1997

and 1999), ellipsoids (Ting, 1993; Ng and Fang, 1995; and Lin and Ng, 1997), though, more complex

shapes such as cardioids (Tijskens, 2002) have also been implemented in 2-D DEM. Development of fast

and efficient contact resolution algorithms have met with considerable problems, and most

implementations require a costly numerical method to converge to a contact point between two such

geometries. The reliance on solving complex expressions in transcendental functions is also a

computationally intensive task, though, some of this can be relieved through clever use of memory tables

for previous contacts.

An analytical representation that has gained much interest in a wide range of graphics areas, such

as computer graphics, camera-aided 3-D modeling, and virtual surgery, is the parent geometry of

quadrics, the superquadric. The use of superquadrics in DEM was first proposed in Williams and Pentland

(1992). General discussions of the superquadric geometry can be found in Barr (1981), Pentland (1986),

and Peter (2000). Superquadrics allow for complex analytical constructions based on an n-power explicit

equation of the form:( )N, + 2 +L = 1. Solution of the superquadric, especially at low
a1  a 2  a 3

values of Ni, has been reported to converge quickly (4-6 iterations) due to good conditioning. A ray

rejection method is also reported in the source as a method of contact detection. Determining whether a

point lies within the 3-D superquadric, on the surface, or outside the surface can be easily determined by

solving the equation and evaluating whether the result is less than, greater than, or equal to zero. This is

also commonly known as the inside-out function. Unfortunately, in the general case, solution of the

equation could require evaluation of arbitrary powers of x, y, and z, and contact detection also typically

requires evaluation of several points on the surface. This has necessitated other methods of quickly

evaluating the geometry, including the use of discrete methods.

The discrete function representation discussed in Williams and O'Connor (1995) divides a

convex shape into two shells along a cutting plane, and then discretizes each half shell into a uniform grid

projected onto the cutting plane. Associated with each grid point is a height function for the surface. The

method is well suited for coarse contact detection through the use of bounding boxes. Efficient contact

resolution is achieved through projection of each body's grid onto the grid of the other body and taking

the union of the unions of the projections to reduce the possible contact zone to a small enough area that

point-wise distance comparisons can be carried out.
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Simple polyhedral surfaces are also utilized in DEM. Several researchers have investigated

polyhedral surfaces, including Dobkin (1990), and such surfaces are common in computer graphics.

Polyhedral elements are easily meshed for use in combined DEM/FEM formulations where the grains are

individually treated as elasto-plastic bodies with internal deformation and fracturing. This is discussed in

Munjiza (1995, 2002a, 2002b).

Voxels are another type of discretized representations that are commonly used in virtual surgery

and organ modeling. These applications are well-suited to voxels, as model information is typically

retrieved from scanning instruments (such as CT, CAT, MR, and MRI scans) of a certain resolution and

uncertainty that can be captured well by the resolution of the voxel graph. These are often analyzed

through some type of binning scheme or binary space partitioning (BSP) trees to decrease contact

detection time between a surgical instrument and the tissue. In 3-D, the BSP-tree is called the octtree (i.e.,

2 voxels in each of 3 orthogonal directions is 23 = 8). Voxels have also been implemented without BSP

trees (Sramek, 2001). Voxels are easily used in a hierarchical representation, since smaller voxels are

easily encapsulated by larger (coarser) voxels. Voxelization is also a key concept used in the extended

discrete function representation for general (concave or convex) 3-D objects (O'Connor, 1996). Wavelet-

based hierarchical representations have also been proposed (Williams and Amaratunga, 1993). In the

general case, the hierarchical wavelet approach utilizes a special set of orthogonal basis functions that

apply a hierarchy of analytical patches as the surface, making the approach a hybrid approach.

Hybrid approaches are common in the computer gaming and graphics and CAD/CAM industries

as well as in the calculation of robot movement and part machining. The most common hybrid

representation for closed surfaces is the non-uniform rational b-spline (NURBS), which consists of a non-

rational expression for the b-spline, a carefully constructed polynomial typically of degree 3, though,

there is no restriction on the degree that may be used. NURBS have become common and are, for

instance, included in the OpenGL Utility Library (GLU). Bezier surface patches are also common and are

a subset of NURBS defined by the Bernstein basis functions of the form I u i - u)"- where
n

{u I 0 ! u 1}. The NURBS set has a convex hull property that allows for rejection of a contact at

iteratively more refined levels, using the de Castlejau algorithm for Bdzier curves and a similar algorithm

in the general case of the non-uniform rational b-spline. Once a certain level of refinement has been

reached with the convex hulls of two objects remaining overlapping, the objects are considered in contact.

Jing (2000) describes the application of homeomorphisms to topologically equivalent objects,

including conditions for topological equivalence as well as the invariant relationship between such

polyhedra under topological transformations (homeomorphisms). These are complex and convex, often

requiring expensive transformations and numerical methods to perform contact resolution.
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In discrete element modeling, the most popular method for modeling non-spherical or fracturing

grains is the multi-sphere cluster. The spheres can be rigidly locked together or bound by certain bonding

properties and conditions that allow strain, shear strain, or fracturing within the grain. Sphere-clustering

is the basis for the commercial code TRUBAL. The inherent simplicity of the approach, fast contact

detection, and compact representation make it preferable for DEM. It is also a straightforward extension

of previously developed sphere particle codes. A sphere-clustering approach to approximate ellipsoids is

given in Vu-Quoc et. al. (2000), and a general implementation of clustering is given in del Pobil (1996).

Kuhn (1993) uses an irregular 3-D polygon chair mesh with vertices as the centroids of spherical elements

to represent the space boundary for far-field effects in DEM.

For large-scale simulation of sand transportation in a fluidized bed, a shape representation is

desired that will execute quickly as a sphere or sphere cluster approach would provide. However, it

should also be characterized by a C1 continuous surface to ease contact with polyhedral surfaces (as

would likely be the model for far field boundaries to be modeled using continuum methods). The C1

continuity condition would also ease fluid flow calculations, which can be complicated in the region of

tangent discontinuities. For this reason a third hybrid representation, the 4-arc approximation, is

investigated in this thesis.

Discrete Element Modeling

Before delving into the mechanics of the ellipsoidal representation, a short background on the discrete

element method will be presented. A poor understanding of soil behavior compelled Charles Terzaghi to

revolutionize soil mechanics in the first part of the 20' Century by developing and applying continuum

methods to the study of soil and geotechnical systems. Again these foundations are being driven deeper

by not just understanding systems that behave as a continuum but also those that exhibit behavior

emergent from the micromechanics of the grains in that system. Discrete element modeling was first

formally introduced in Cundall and Strack (1979) as an attempt to address such systems of granular

materials where the behavior is driven by grain-scale interactions - behaviors that a continuum method

cannot currently replicate without significant effort and empirically derived formulations.

The fundamental difference between continuum and discrete methods is that the continuum

method views a system from the whole and attempts to narrow down to micromechanical behaviors. The

discrete method looks at the individual particle and tries to pan out to replicate larger systems. If a

disturbance of the system at a length scale smaller than that represented by a continuum does not manifest

in the length scale of interest, then a continuum approach is valid. However, if the system is characterized

by behavior emergent from smaller length scales, a discrete method is more useful. This points to an

important subtlety of the discrete element method; it is not always necessary to attempt to model the
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actual natural system, but rather to use enough particles to capture the behavior of the system at the length

scale of interest.

Discrete element methods share the commonality of representing a system as an assembly of

discrete bodies interacting through surface contact or indirectly through fluid perturbation. The objects are

allowed to rotate and displace, and the method dynamically detects contacts as they occur between

bodies. Currently, commercial codes exist for DEM, that represent systems in both 2-D and 3-D.

Depending on the application of interest either one of these approaches may be more efficient. For

instance, in some fluidized systems there is very little movement of material or change in interaction force

in the out-of-plane direction, so it is more efficient to employ a 2-D approach, which can generally

simulate more particles and execute algorithms for contact detection more quickly than a 3-D method

using similar geometries given that the same computing equipment is used. However, if one was

attempting to describe the behavior of a rock slide cascading through a specific value where the surface

topology of the slope controls the behavior of the rock slide, it would be inaccurate to employ a 2-D

method. The focus of this thesis is on a 3-D approach for modeling particles.
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The 4-Arc Approximation

In two dimensions the four-arc approximation for an ellipsoid is defined by the planar region

enclosed by four arcs illustrated in Figure 5. The top arc and the side arcs are selected such that there

exists a point on the top arc tangent and coincident to a point on each of the side arcs. The bottom arc is

the mirror image of the top arc about the horizontal axis. Similarly, the left side arc is the mirror image of

the right arc about the vertical axis. The equations for these arcs, which ensure C0 and C1 continuity just

described, are given by Wang (1999) as:

AC=CB=a (EQ 1)

DC=CE=b (EQ 2)

CG=(a2 -b2)c +(a2 + b2)d Q3CG = (EQ 3)
2ac

(a 2 - b 2)c +(a2 + b2 )dCF = 2b(EQ 4)
2bc

where

c= a2 +b 2  (EQ 5)
d = a-b (EQ 6)

The four-arc approximation for a three-dimensional ellipsoid refers to the volume enclosed by the

four arcs shown in Figure 5 rotated about a centerline. In Figure 5, the centerline is the x-axis. The

generated surface has the following properties:

" The surface has no singularities or non-differentiable points (i.e., C0 and C1 continuity satisfied)

to cause contact resolution problems.

* The representation is compact, requiring 10 floating point numbers (2 radii, 1 axial distance of

end spheres, 1 transverse distance of arc of rotation vertex, 1 translational position vector, and 1

rotational position vector).

" The curvature, and hence normal, of the surface is known at every point on the three-dimensional

surface, which are associated with a set of orthogonal arcs of a circle.
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Contact Detection

Contact detection typically consists of two distinctly separate operations: neighbor-sorting and detailed
contact checking and resolution. Neighbor sorting focuses on reducing the number of candidate pairs of
particles to be used Neighbor sorting algorithms are discussed in O'Connor and Williams (1996);
Munjiza, Bicanic, and Owen (1993); Wensel and Bicanic (1993); Munjiza and Andrews (1998); and
Perkins and Williams (2001). The reader is directed to these references for more information on the
neighbor-sorting algorithms available for use in discrete element modeling. This thesis will instead focus
on the detailed contact checking and resolution phase of contact detection.

Contact Resolution: Method of Equivalent Spheres

Contact resolution between three-dimensional shapes is rarely intuitive. Decomposing a shape
into geometric primitives can significantly decrease the complexity of the algorithm required for contact
resolution. The geometry of the four-arc approximation is unique, in that the curvature of the ellipsoid is
constant in the radial and longitudinal directions. The case of the ends is simpler. Because the curvature is
constant, the ends are spherical caps. The end can therefore be replaced by a complete sphere for contact
resolution purposes, since the particle can be viewed as the intersection of the end spheres and the volume
enclosed by the rotation of Arc 1 in Figure 5.
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The main effort of an algorithm to detect contact between such bodies then must concentrate on

the volume enclosed by the rotation of Arc 1 (called the arc body). As shown later, contact between the

arc body and the end spheres is trivial. Contact between two arc bodies is not trivial.

If the bodies are hard, then the contact is at the intersection of a specific arc from each of the

particles. Once these arcs of contact are identified, the point of contact is then easily determined along the

line segment connecting the vertices of the arcs of contact (termed here the vector of contact). Note that

the distance between the arcs of contact is the sum of their radii. In determining contact, the arc of contact

is equivalent to a sphere of the arc's of contact radius centered at the arc's of contact vertex in three-

space.

If the bodies are soft, and it is assumed that local plastic deformation occurs, then the arcs of

contact can be determined as in the hard case. The location of the contact point along vector of contact

must be determined through a specific law, such as a simple scaling of the distance between the vertices

of the arcs of contact.

In both the hard and soft cases, the arcs of contact can be replaced by equivalent spheres. These

equivalent spheres are virtual objects that are a useful tool in evaluating arc body to arc body contact and

are unique to each contact pair at each time step. Before giving a formal proof of this method, the

determination of regions in contact will first be discussed followed by the development of contact

detection involving the end regions and then concluding with a formal proof of the method in the context

of arc-body to arc-body contact.

Identifying Region of Contact between Ellipsoids

Figure 6 illustrates the various way in which contact may occur in one of three cases: end sphere to end

sphere, end sphere to arc, and arc to arc, as shown in Figure 6. A method of using the angles between the

vectors and the positions of the ellipsoids' centroids to identify which of these 3 cases applies is discussed

in Wang (1999). However, this operation can be made more computationally efficient by eliminating the

evaluation of transcendental functions. This can be achieved by using the inequality in Equation 1.
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Figure 6: Contact cases: a) end sphere to end sphere, b) arc to arc, c) end sphere to arc

Crac (-P) > '
arc -- rarc 2

where,

F
Ci-the centroid-to-centroid vector from ellipsoid i to ellipsoid].

- P candidate normal of contact for ellipsoid i, omitting the component of the normal parallel to

the axis of rotation for the arcs.

rarci is the radius of Arc 1 and rarc2 = rarc3 for ellipsoid i.

CV is the length of the line segment connecting the centroid of the ellipsoid with the vertex of Arc 1,

and it is defined as:

- (a 2 -b 2 )c+(a2 +b 2 )d

2bc

(a 2 -b 2 )+

(a 2 -b 2 )+c-d

2b

a2 +b 2 -(a-b)
2b

(EQ 8)

where,

a is the major length of the ellipsoid, and b is the minor length; d = a - b and

c= a2 +b 2 .

14
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By using a dot product in Equation 7 instead of the evaluation of transcendental functions, the

cost of left-hand side evaluation of Equation 7 falls to 5 floating point operations. It is important to note

that Equation 7 not only eliminates the need for evaluating a transcendental function, but it also requires

that the right-hand side quantity in Equation 7 need only be calculated once for each ellipsoid, eliminating

the overhead of calculating Equation 8 repeatedly during the simulation.

Connection to the Equivalent Contact Spheres Method

If Equation 7 returns false, then for ellipsoid i the equivalent contact sphere will be the end sphere

for ellipsoid i. The centroid of the equivalent contact sphere associated with ellipsoid i is at the centroid of

the arc (Arc 2 or Arc 3) for ellipsoid i. This simply indicates that if the ellipsoids under consideration are

found to be in contact, the contact point on ellipsoid i will lie on the surface formed by the rotation of Arc

2 or Arc 3 for ellipsoid i. A secondary procedure can then be conducted if an end sphere is identified in

order to discover which end sphere (the rotation of Arc 2 or the rotation of Arc 3 for ellipsoid i) is the

equivalent contact sphere. The radius is derived from the definition of the ellipsoid geometry.

If Equation 1 returns true, then the rotated Arc 1 of ellipsoid i will determine the equivalent

contact sphere for ellipsoid i. This simply indicates that if the ellipsoids under consideration are found to

be in contact, the contact point on ellipsoid i will lie on the surface formed by the rotation of Arc 1 for

ellipsoid i. The identification of Pi in Equation 7 forms the basis in determining the centroid of the

equivalent contact sphere for ellipsoid i.

- A is, by definition, the component of the normal to the surface of ellipsoid i, along the local y

and z directions, where the local x, y and z are a Cartesian coordinate system centered about the ellipsoid's

centroid and with the local x axis along the axis of rotation (also referred to here as the centerline or major

axis). Therefore, Pi will define the direction of the vertex of Arc 1, when Arc 1 is positioned such that it

is coincident with the arc passing through the point of contact. That is, the centroid of the equivalent

sphere of contact for ellipsoid i is coincident with the vertex of the arc of contact for ellipsoid i. This is

not intuitively obvious, and this statement is formally proven in the following sections which detail the

various types of possible contact.
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Framework for Contact Detection and Resolution

This section details a new analytical scheme to detect and localize contact. To achieve this, we need to

consider the contact detection between geometric primitives, which results in the following five cases:

sphere-sphere, sphere-plane, sphere-arc body, arc body-plane, and arc body-arc body.

Sphere-to-Sphere Contact Detection

z

*+..I

y

C c

Figure 6: Sphere-Sphere Contact

geometry:

Sphere1: x 2 +y2+Z2 =r 2

Sphere 2: (x +a) 2 + y2 + z 2 = r 2
2

The contact normals to both lie along the x-axis:

Sphere 1: (1 0 0)

Sphere 2: (-1 0 0)

22
Solving for y2 in Equation 10:

y2 = r2 2 - (x+ a)2 z2

Using Equation 9 and Equation 11:

Sphere to sphere contact detection and

resolution is trivial. Contact detection tests

whether the sum of the sphere radii exceeds the

distance between the sphere centroids, a 39 flop

and 1 test operation for the pair (15 flops of

which are for the global-local transform on each

sphere). The following develops expressions for

the surface of contact, the volumetric overlap,

and the point of contact.

Let 2 spheres be defined in the

orthogonal Cartesian coordinate space xyz, such

that the following equations define their

(EQ 9)

(EQ 10)

(EQ 11)
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x2 +(r 2
2 -(x+a)2 _ z2)+ z2 = r 2

r2 -r =2ox+a2

r22 2 2 2

x =  = $ (EQ 12)
2a

From Equation 12, it is noted that the surface of contact lies in a plane parallel to the y-z plane, and its

equation is given by Equation 13.

y2 + z2 = 2 _ =R 2 EQ13)

2 r22 2 2 x 2
R= r R (EQ 14)r,-(_ 2a E 14

The volume of this contact is the familiar 3-D lens, whose volume is given by Equation 15.

-1 I((r2 + r - a)2(a 2 +2a(r 2 2 +5r)+6r2 r)) (EQ 15)V=12aI+ ar r)-3 1) rr E 15

Sphere-to-Plane Contact Detection

Sphere to plane contact detection and

+ Y resolution is also trivial. Contact detection

tests whether the normal distance between the

plane and the centroid is greater than thea
sphere radius. The following develops

expressions for the surface of contact, the

Figure 7: Sphere-Plane Contact volumetric overlap, and the point of contact.

Let a sphere and plane be defined in

the orthogonal Cartesian coordinate space xyz, such that the following equations define their geometry:

Sphere: x2 + + Z2 = (EQ 16)

Plane: x = a (EQ 17)

17



Normals:

Sphere: (1 0 0)

Plane: (-1 0 0)

Replacing x in Equation 16, the surface of contact lies in the plane defined in Equation 18.

y 2 +z 2 =r 2  a 2  (EQ18)

The volume of this contact is the familiar 3-D spherical cap, whose volume is given Equation 19.

a+h a+h _ 3 - a+h

V= fr-R(x)2dx=r J(R 2 _2)dx -z R 2 x
a a . 3  a

(3(a+h)R 2 - a 3 - h3 - 3aR2 + a3_
3

'T (3hR2 - h3) (3R2 -h2) (EQ 19)
3 3

h=R-a (EQ 20)

Sphere-to-Arc Body Contact Detection

Sphere to arc body contact detection and resolution requires minimal development. Contact detection tests

whether the sum of the sphere radius and arc radius exceeds the distance between the sphere and arc

centroids. It is first necessary to outline why this test is necessary and sufficient to detect contact.

1. Contact is defined as occurring between bodies at a point where the normals of both bodies at that

point are opposite and parallel.

2. The rotational symmetry of the pseudo-ellipsoid geometry about the major axis requires that all

normals to the body pass through the major axis.

3. The symmetry of the sphere about the centroid requires that all normals to the surface pass through the

centroid.

4. The common normal to the pseudo-ellipsoid and sphere, therefore, must lie in the plane defined by the

normal en where (, Je = , x8) ,where e, is the unit vector along the major axis of the

18



pseudo-ellipsoid and e, is the vector between the pseudo-ellipsoid's centroid and the centroid of the

sphere.

Let a sphere and rotated arc be defined in the orthogonal Cartesian coordinate space xyz, such that e,

lies along the z-axis, and the following equations define their geometry:

Arc body: y2 + z 2 = r(y,z) 2

(r(y, z) + a)2 + X2 = R

y( +z2 +aj

Sphere:

+x 2 = RA 2

(x -ai) 2 +(y-a 2)2 + z2 = Rs 2

z 2 = Rs 2 - (x-a 1)2 -(y -a2 )2

(EQ 21)

(EQ 22)

(EQ 23)

(EQ 24)

(EQ 25)

Arc body: (a
a 2 + (a2 +a 2

Sphere: 2-al

Va 2 + (a 2 +a 2

Substitute Equation 25 into Equation 23:

a 2 + a 0)

-(a 2 +a) 0)

y +Rs 2 - x-a,) 2-y a 2 +a +X2 =RA2

Y2+X2+ Rs2 - -a,) 2 -(y-a 2)
2 +a 2 +2a4y 2 +Rs2 -(x-a)2

Rs 2 +2a1x-a +2a2y -a22+a2+2a 2+ Rs 2 -(x-a1)2_ a2  = RA

Gives the surface of contact, as shown in Equation 26.

2 S2a 2 2_a 2
aix+a 2 y+avy2 +Rs 2 - (x-a) 2 -(y -a 2)

2 _ R-Rs 2 +aA +a 2 -a
2

(EQ 26)
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Arc body-to-Plane Contact Detection

Lx

-b/m

a b

Figure 8: Arc body - Plane

Arc body to plane contact detection and

resolution requires minimal development.

Contact detection tests whether the boundary of

the arc of contact overlaps the plane.

It is first necessary to outline why this test is

necessary and sufficient to detect contact.

1. Contact is defined as occurring between bodies at a point where the normals of both bodies at that

point are opposite and parallel.

2. The rotational symmetry of the pseudo-ellipsoid geometry about the major axis requires that all

normals to the body pass through the major axis.

3. For any line, L, and any plane, P, there exists exactly 1 plane, N, that contains L and passes

perpendicular to P, or:

Let e, be the unit vector in the direction of L, e, be the unit vector perpendicular to P, and e8

be the unit vector perpendicular to N, then:

*n2, en = e, xe =, > e, -en = 0Ae P, . en = 0)

Let a sphere and rotated arc be defined in the orthogonal Cartesian coordinate space xyz, such that

en lies along the z-axis, and the following equations define their geometry. The arc body geometry is

defined in Equation 21-23, and repeated here.

Arc body:

Plane:

y 2 + z 2 2

(r(y,z)+a)2 +x 2 = RA2

Sy2 + z2+a +x2 = RA2

y = mx +b (EQ 27)
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Normals:

Arc body: -1 0

1+ -
m

1 1

Plane: 1 0
2 In

1+ -
m

Substitute Equation 27 into Equation 23:

(mx+b)2+z2+a)2 X2 = RA2

(mx+b)2 +z 2 + 2a (mx+b)2 + z 2 + x 2 = R|

m2x2 + 2bmx+b 2 +z2 + 2a (mx+b)2 + Z 2 + 2 + x2 =RA2

Gives the surface of contact as in Equation 28.

(1+m 2)X2 +2bmx+z 2 +2a(mx+b)2 +z 2 =RA2 (b2+a2) (EQ 28)

Arc body-to-Arc body Contact Detection

Arc body to arc body contact detection and resolution will now require the majority of the development in

this paper. Contact detection is considerably more complex, requiring the solution of a nonlinear set of

equations. This nonlinear set of equations, as outlined in Wang (1999), is ill-suited to direct solution,

requiring the evaluation of several transcendental functions. Such function calls are computationally

expensive. For practicality of the algorithm for implementation, it is necessary to use a less costly

numerical method to determine the point of contact.
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z

Figure 9: Arc body - Arc body

Initially, the constraints on the domain of possible arcs of contact will be developed. It will be
shown that the constraints lead to the definition of a unique pair of arcs of contact. Secondly, the current
algorithm to identify the point of contact will be presented and critiqued. Finally, an improved algorithm
will be presented that converges to the unique answer, using the geometric properties of the pseudo-
ellipsoid to aid in convergence.

The physical constraints of contact:

1. When in contact, the contact points on the two bodies are coincident.

2. Contact forces act normal and tangential to the surface of the bodies at the point of contact.

3. Newton's 3 rd Law of Motion stipulates that every force is balanced by an equal and opposite force, so
the normal and tangential forces on one body are resisted by equal and opposite normal and tangential

forces on the other body.
I + 2 2

F'+F,2 =0 A F,+F,2 = 0, where the superscript identifies the body, the subscript n denotes

normal force and the subscript t denotes tangential force.

The geometric constraints for contact:

1. The geometry of the pseudo-ellipsoid can be characterized in the orthogonal cylindrical space (rx, 6)

as r(x,9)= R 2 -x 2 -a.

2. This yields the normal space along the surface, S, of the pseudo-ellipsoid (transformed to the
orthogonal rectangular coordinates x,y,z) as:

N(x, y, z) = sin(O) cos()- fnoraizing
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where fnormalizing = 1 + 2

Let N(x, y, z) be a parallel vector space to N(x, y, z), such that

x
N(x, y, z) = - sin(O) cos(9)

3. This indicates that N, and NZ are independent of NR.

4. From 4 we decouple the parallel normal space equation:

S sn(9)
~y = -> all vectors N(x, y, z) pass through the x-axis.

5. By defining the geometry of the arc with a vertex at a distance from the centroid rotated about e,,

where 1 lies along the major axis (here defined arbitrarily as the x-axis), we find that, by definition, all

normals pass through the path formed by the vertex rotated about e, -> r(0, 0) = a .

6. From 4, 5, and 2, we have the constraints for the contact vector: there exists a unique line segment, L,

with terminal points along [r(O, 9) =a]oca and [r(0, 0) = a]2cai intersecting the lines

[y = 0 A z= ]ocai and [y =0AZ =0]ca2 and passing through the unknown coincident contact

point p. The contact vectors for the ellipsoids lie parallel to L.

Special Cases ofArc-Body to Arc-Body Contact

Arc body to arc body contact detection is a complex problem for most cases. There are, however, two

special cases where the problem reduces to a simple evaluation. The first is for the case where the major

axes of the pair of bodies are coplanar. The second is where the centroids of the pair of bodies lie along a

line that is orthogonal to the major axes of both bodies.

For the case of coplanar major axes, the identification of the line of contact is simple. From the

development of the geometrical constraints in the previous section, the line containing the contact point

and both vertices of the bodies' arcs of contact must lie in the plane containing both major axes. This line

must pass through a point that is along a path perpendicular to the body's major axis. For each body, this

leaves two possible points to either side of the major axis in the major axes' common plane. Together, the

points offer four possible point pairs. To satisfy that the normals be parallel and opposite, only two of

these point pairs are valid. The correct point pair corresponding to the exact vertices of the arcs of contact

23



for the two bodies can then be easily identified by a triple vector product of the directional vector

corresponding to the line segment between the centroids of the bodies.

For case of centroids lying on a line perpendicular to the plane defined by the directional vectors

of the bodies' respective major axes, the identification of the line of contact is likewise simple. Consider

the paths along which the vertices of the respective arcs of contact must lie as discs in space. If there

exists a line that passes through the centers of both discs and is also a common line to the planes

containing both discs, then the line of contact must be collinear with this common line. This ensures that

all constraints are satisfied.

Current Algorithm

The cases of contact outside of generalized arc body to arc body contact are relatively straightforward, as

has been shown in the analytical solutions offered in the previous sections. To evaluate the case of general

arc body to arc body contact it is best to use an iterative method. One such method is proposed in Wang

(1999), which uses the geometry of the circular cross-section to detect whether a pair of ellipsoids is in

contact (contact detection) and where on their surfaces they are in contact (contact resolution). It views

the pseudo-ellipsoid as being composed of an infinite number of arcs at different rotations about the major

axis. The vertices of these arcs are located along a circular path of radius CV (see Equation 2)

perpendicular to the major axis and centered at the ellipsoid's centroid.

Because of this constraint, Wang (1999) views this as an energy minimization problem: the arc

surfaces of the two pseudo-ellipsoids will be most in contact when their respective vertices are farthest

apart - their energy is minimized. It is implemented as the iterative method illustrated in Figure 10.

a b c

d e

Figure 10: Previous Detailed Contact Detection Algorithm
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There are two substantial drawbacks to this approach:

1. The numerical method does not utilize properties of the geometry to aid in convergence, relying

instead on a generally convergent algorithm to come to a solution.

2. As implied in the previous section, there is no constraint in the solution to passing through the lines

[y =0 AZ = O]0,ca and [y =0 AZ = 0]2 . This is a necessary condition for identifying the common

normal vector. The constraint that the common normal vector passes through the major axes is not

necessarily satisfied through this method.

Application of Vector Scaling to Critiquing Current Method

From case 1 and 2 in the previous section, it can be generalized that for the pseudo-ellipsoid pair there

exists e^1 and e 2 parallel to the major axes of pseudo-ellipsoids 1 and 2, respectively, and a centroid-to-

centroid vector ec1c2' such that if e,1, e,, and ec1 c 2 are coplanar, the method described in Wang (1999)

will converge on the correct solution. Also, if no dilation is required (that is, if the centroid of the disk lies

on the projection of the contact point onto the major axis), then the method will converge to the exact

solution. This paraphrases the special cases described in arc body to arc body contact, so the current

method only converges to the exact solution for the special cases in arc body to arc body contact.

For most applications, this restriction is unacceptable. The improved algorithm discussed next

focuses on the positioning of equivalent contact spheres to ensure an equivalent representation (used only

for purposes of contact detection) to the pseudo-ellipsoidal geometry. The method used to position these

equivalent spheres improves on the current method by accounting for all constraints on the geometry of

the pseudo-ellipsoid. The iterative refinement method proposed later is also shown to converge to the

exact solution.
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Improved Algorithm

A sufficient algorithm for contact detection would identify a candidate point of contact by identifying the

candidate arc of contact on each pseudo-ellipsoid - that is, a pair of candidate arcs of contact. A simple

test for contact is then possible by comparing the sum of the radii of the candidate arcs of contact versus

the distance between the vertices of those candidate arcs of contact.

Identifying the unique candidate pair of arcs can be separated into 2 parts: identifying the rotation

of the contact point about the major axis and translational position along the major axis.

Identifying Rotational Position of Contact Point

If the translational position of the contact point along the major axis is identified (the projection of the

contact point onto the major axis), then the rotational position about the major axis can be determined

using either the procedure introduced by Wang (1999) modified to be centered on the major axis at the

translational position or by the following algorithm.

CL1

N') = (C2x CL2)

CL2
P2 (C2 1x CL2,)x CL2

Figure 11: Initial Estimate for Improved Contact Resolution

The algorithm proposed in this section and illustrated in Figure 11 offers an alternative method to

the current method. This algorithm utilizes the geometric properties of the pseudo-ellipsoid for an

increased rate of convergence and a more efficient (computationally less costly) evaluation per iteration.
r

The vector, C,, between the centroids of the ellipsoids in the ellipsoid pair is found,

r
SC..

Cii = Ri - ( , (EQ 29)

26



r
where Ri is the global-to-local rotation matrix for ellipsoid i, Cj is the vector between the centroids of

ellipsoids i and j. The usefulness of working in local coordinates becomes apparent, since cross products

with the major axis must be computed, and the major axis in local coordinates is represented by the vector

(100).
r

Next the normal, N,, to the centroid-centroid vector and the major axis of ellipsoid i is found.

The normal represents the plane formed by the two vectors.
r r

Ni = Ci x (1 0 0) (EQ 30)
r r r

Then the normal, P, to the major axis of the ellipsoid and N is found. P is a unit vector in the

plane formed by the centroid-centroid vector and the major axis of ellipsoid i. It is also orthogonal to the

major axis of ellipsoid i.
r r
P = Ni x (1 0 0) (EQ 31)

The location of the vertex of the arc of contact can now be specified in local coordinates as:
r _
P -CF (EQ 32)

To complete the procedure, the spatial bounds of the arc contact surface must be tested, as

detailed in Equation 1.

Approximation for Identifying Translational and Rotational Position of Contact Point

When the location of contact along the major axis is unknown, the relationship of the limiting

cases can be exploited to provide an approximation of the position of the contact point. There are two

extreme cases in the formulation of a contact detection scheme between these pseudo-ellipsoids: those

with aspect ratio near 1 and those with high aspect ratios, as shown in Figure 12.

a) b)

Figure 12: Limiting cases of the initial estimate method
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As the aspect ratio diverges from 1, the centroid-to-centroid vector approximation of the contact

normal direction begins to degrade in accuracy. A quick linear interpolation based on a metric of the side

arc curvature could be used to improve the initial guess. A graphical representation of the procedure is

shown in Figure 13.

Ci]

a)

Figure 13:

Pi

Q il

b) c)
Refining Algorithm for Initial Estimate

r
The procedure would proceed as follows. Let Ci1 be the unit vector from the centroid of ellipsoid

i towards the centroid of ellipsoidj. Let CL be the unit vector along the major axis of ellipsoid i. Let Qj
be a unit vector normal to the plane formed by CL and CLj.

r CL x CLj

CLi X CLj

r
The angle between Q,1 and C,1 is then found:

9 = acos(dot(Qi,,C))

A linear scale factor to quantify curvature is then given by:

k= FH - FG
FH

A new angle is calculated using the scale factor.

9 = k9

r
Let the updated guess, Pi, be the unit vector in the direction of Q rotated through 0 towards Cij about

r
the normal to the plane formed by Q0 and Cij.
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Convergent Method for Identifying Position of Contact Point

Without a priori knowledge of the translational position of the contact point along the major axis or the

rotational position of the contact point about the major axis, it is necessary to employ an iterative scheme

to ensure convergence to the exact solution. If the approximations detailed above do not provide the

required precision, the following method will identify the candidate pair of arcs of contact exactly.

When the axes of the bodies in question are both coplanar with the vector between the centroids
r

of the ellipsoids, it has been shown in previous sections that the direction vector, P,, will point towards

the vertex of the arc of contact. This is only a specialized case. It works well for the case of a sphere to

sphere or sphere to arc contact because the axis of a sphere whose centroid is fixed in space will be

arbitrary and, therefore, can be oriented to be parallel with the major axis of the ellipsoid or with an

arbitrary major axis of another sphere with known centroid.

When the major axes of the ellipsoids are not oriented parallel, it becomes necessary to

approximate, as in the previous section, or iterate to converge to an exact answer. Iterating Equation 33-
r

34, using an initial guess of P1 found in Equation 31, the method will converge rapidly. The procedure

for 1 iteration is shown graphically in Figure 14.

r ((CGi +Pj)x(1 0 0))x(1 0 0) (EQ 33)
Pi- -

((CG j + P )x (1 0 0)) x (1 0 0)

r
P =

((CGi +J)x (1 0 0))x (1 0 0)

0 0)) x (1 0
(EQ 34)

0)

To complete the

of contact for ellipsoid i.

procedure, Equation 33 is applied to identify the location of the vertex of the arc

Then the spatial bounds of the contact surface are test with Equation 1.

a) b) c)

Figure 14: Convergent Iterative Refinement of Initial Estimate
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Dynamics in 3-D

Mass of the Geometry

dm = por 2dx

r(x) = 2 _2 -a,

r~) r,2 - (X -- XCG )2
(EQ 35)

,{x 0 x x 1 }'

where r = the radius of the end sphere, R = the radius of the body arc. The value of xCG is defined in

the geometry and x0 and x, can be determined from xCG and other parameters in the geometry (shown in

R +r
Figure 1) as xO =XCG R and x 1  XCG +sr,

R

x1 x1 xO x1

M = Jdm= px r2dx = 2 rr2dx = 2 fr2dX±+ r2dX
-xI 0 0 xO

=2p{(R2 _x2 -2arR 2 -x 2 +a2 + r2
0 xO

2p;x 0 (R2
3

+ a2 )_ xO -a
3

2 2 2
0 R - x0.

S(X X 2dX

tanj-

(x1 - CG) 3 -0 - CG)3
wr x - x1-CG

where r, x - -
1 3 - xO -CG

3

Moment of Inertia for the Equivalent Spheres

From the development in Beer and Johnston (1996), the moments of inertia for a body of rotation can be

derived from the following relationships:

2

dI, dm

dl Y rU+X2jdm

(EQ 36)

(EQ 37)
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r(x)

x -

XO -*

x

Figure 15: Integration regions on 4-arc approximation.

Moment of Inertia about the Central Axis

Starting with the relationship above and simplifying:

dI= pr2dx= dx
2 2

X, 4 X, XOx1

I,= f dx =pr rdx = p0C rdx+ r4dx
-x1 0 0 xO

px (VR2_-x2 -a) dx + rj -(x-xCGY2
0 xo

=pT (R2 _x 2 -2.a. R2 2
_ 2)a dx+ f(r,2 -(x-xCG)2 2dX

0 xO

=p/T(A+B)

A= 2 _2-a-R 2 -x 2 -a)dx
0

=[a+6a R2±R4) (a+2x+f+ R2x _- (a +5R )x+ax +
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aR2(4a2 +3R2 )ta ( x 0

2 tank 2x,]
2 NR2 _X2 )-0

=(a +6a2 R2 +R xo2(3a 2 + R 2) s + 2_ a(4 2 2 33 5 2

aR2(4a2 + 3R 2

2 R 2 _2

X1

B= (r2 -(X -X )2 Ydx

Substituting x = x - XCG and dx dx into the preceding equation yields a more manageable equation:

X1-XCG Xi -X 3 2 ~-5 x1 IXCG

B= _V 4- i r -22r 2+i d 4 rx25 r x

X -XCG X0 -X C G -JXO-XCG

=r 4(X, -xo)-2rs2 ((X1 _ XCG) (X 0  XCG )3 x XCG ) 5 -(X 0 -XCG ) 5

3 5

IX = p.T(A A+ B)

Inspecting the equation for A, one can see that as R -- oo, the term R 4x, increases at the fastest rate of

any of the terms in A. Moreover, after examining the equations for B and (as developed next) IY, this

term increases at the fastest rate of any other term in the equations for IX and I . This term acts to limit

the ellipsoids that can be represented in a computer using floating point arithmetic. The relationship

between the R 4x, term and the maximum representable double floating point number can be

approximated through:

O(R 4x1 ) < O(max(double _floating _ pt)).

This is the most computationally intense step in modeling of the ellipsoidal representation. It need only be

performed once for each ellipsoidal particle (when it is initialized) and then the value can be stored in the

data structure representing the ellipsoid. Other methods of approximating the moment of inertia are

available and could be employed to avoid the constraints of the quadric term.
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Moment of Inertia about the Axes Orthogonal to the Central Axis

Proceeding from the definition of the moment of inertia given at the beginning of this section:

I + 2(x)2d
+X)d = x+f~~ = pr

-r(x) 2 dx= x2 (R2 _x2-a

0
C= fx2

0
dx+ Jx 2

xO

= (R2X2 _X 4 -2x 2 a[R 2 _X 2 +a2 2 x+ rs2x2
0 xo-CG

C = (R2X2 _ x4-2x2a R2 _X2+a2x 2x

0

-(x-xCG)2 dx

_4x4)X= C1 +C 2

(R2+a2)X3

3

- (R2 +a 2 0 3

3

5 (
5 2a R2 -X2 .

5 4

5 (3
2 a R xo2 . X

5 4

R2 jRX+

-8 )

R8xo

tan
8 )1tR2_x2jj]0

+ tan
8

xo

X 0

X1
C2 -- 2(rS2

xO

3 ( 5 4 2 3

X -X CG )2 Xx rs x XCG +X CG 2 ' ,JJ

3 5 2

(X13 X0 2 _XCG2 5 _X5 _ CG(X14 0

3 5 2

I,= +2pr-(C1 +C 2 )S2
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Force Resolution

Given a rotational velocity vector, w>1 , and a translational velocity vector, v1 , in local

coordinates S1, the velocity at the contact point, c1 , in SI will be:

vC, = (C. x W, )+ V, (EQ 38)

The velocity of body 1 with respect to 2 at the contact point, c , in the global coordinate system,

S , will therefore be:

vC1 = R, -((c, x 0)+ v,)- R2 -((c2 XW)2 )+v 2 ) (EQ 39)

Correspondingly, the velocity of body 2 with respect to 1 at the contact point, c , in the global

coordinate system, S , is:

Ve = -VoVC
21  _VC

12

This allows for the application of contact damping (coefficient of resolution) and friction. Using

the equations developed for determining the normal at the contact point and the equations for

determining the contact point, the normal force due to local plastic deformation can be specified

as a penalty force. In this implementation the penalty force is based on Hertzian contact theory:

r -- r --
'F,,iess = p01 + 021- R1 -P, -CFi -R 2 - P2 CF2 - 1 2 - N ,where p, is the local

curvature at the contact point in coordinate space Si . The other forces can be resolved as:

Fcontact -damping = Cn (Vc -Ni ) -N

The equivalent normal contact damping in terms of coefficient of restitution can be given by:

2knm -ln( )
Cn = , where e is the coefficient of restitution.

T3 + (In~y

Fcoiomb - friction (ti+1) = FCf n '" (EQ 40)
11 x nx V 9
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where FCf = min FCoulomb _ friction(ti) +k (X Vci)1 At and ^ is the unit normal vector
elastic _lm it

to the surface, p is the coefficient of friction, and Feastic limit is the elastic limit normal to

the surface. FCf enforces a Coulomb limit.

kr -kT
k, = 2 , where kT is the stiffness tangent to the surface of object i.

kT, +kT2

Condensing the forces as moments and forces about the center of gravity gives:

MCoG I(c X F )

0(ti)= I 'MCoG ,where I =
L
0

0

0

I

0

01
0

Iz

I-1

0

FcOG = I F

F
U(t =FCoG

m

From Rege (1996), a suitable explicit numerical integration method is given by:

a=1-a -dt
2

b= 
2

2+ a- dt

u(ti+ ) = (au(ti)+u(ti ) -dtb

O(t) = (a6(ti )+9(ti) -dt where O(t =(tru
r
u(ti+ ) = u(ti) + u(ti ) -dt

0(tie ) = O(ti) + 0(ti+ ) -dt
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Quaternions and Rotation

Quaternions were first discussed in Hamilton (1844) as a successor to the complex number. Quaternions

are vectors with a real component and 3 orthogonal complex components. The complex space is defined

along the three coordinate axes designated here as LI i k]. Typically, quaternions are written in one of

the following forms:

q = w+xi + yj + z0 = (s, v)

According to Shoemake (1985), a natural extension of quaternions to the rotation of rigid bodies exists

and is readily achieved by setting:

r
q =cos -) +co C(-- -tu,l,jY)+ uzk)= (s,v )

2 2

where a = [ux u, uz ]is a unit vector in the direction of the axis of rotation and 0 is the angle of

rotation about a . The rotation of a point, P , can then be calculated as:

rotated =q.p.qT

where q is a unit quaternion. Carrying out the multiplication leads to the rotation matrix:

3 2 +v-2 - 2 -2-+1) -v - V

2 -(vrv + v, )'

0

2. -(vxv, + WvF)
-2 _ 2+ 2 - 2- V

2 -(iiv - W )
0

2. -( x, - 3v, )

S2 -2 -2 - 2
SV - V +V

0

0

0

0
2 +-2 + 2

Because q is a unit quaternion, R 3,3=1 . This allows R to be written as:

1-2-(v 2

R(~ ~) = 2(, - v)

0

2 -( + W z)0
1-2.-( r +i 2

2. -(v,0F - W x)

0

2- (Fx v -37y,)

2.-(FYF +37x,)

1-2 . (-2 + I2

0

Note: Also, because rotation is a dot product and cross product preserving operation, R can be proven to

belong to the special class of orthogonal matrices, an implication of which is R-' = RT .
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Application to Rigid Body Motion

In the simulation environment, it is important to resolve rotations accurately. This can be accomplished

through the use of the aforementioned quatemion approach or through the use of Euler angles. The

difficulty with Euler angles is the order of application of rotations about coordinate axes. Is the i, j, or k

rotation applied first? The error introduced by order of application using Euler angles is small at the scale

of rotations under discussion. That is, the value of the timestep, dt, is relatively small due to the

constraints placed on it for the accuracy of the explicit numerical integration scheme.

It would, however, be best if we could both reduce the number of operations while

simultaneously representing rotations of the rigid body in a time step more accurately. In the quaternion

approach, only one transcendental function needs to be evaluated, versus two for Euler angles. Also,

instead of producing the final rotation matrix through multiplication of three coordinate axis rotation

matrices, the quaternion rotation matrix is formed at once without triple multiplication of 3x3 matrices.

For this reason, the quatemion approach has been selected. Using the quaternion rotation equation above,

the rotations can be applied as follows:

(9= a dtAr A (
q = 0s-+ cos( - '-:'~i+u, j+uzk = (,),where 0 =1101.-dt and u =

RGtoL (ti+l) = RGtoL (ti) -R(3r, v), RLtoG (ti+ 1) = [RGtoL (ti+1

However, the elegance in the quaternion approach derives from the properties of the quaternion

laid out in Shoemake (1985). By storing the quaternion instead of the rotation matrix and performing

operations on the quaternions with the rotation matrix as a derived quantity generated only for contact

resolution steps, the number of operations is reduced, the storage requirements for rotation are

reduced, and the numerical accuracy of the resulting rotation after multiple rotations is improved.

Let

qi = (sl, v,) and q 2 = (s2,v2 )

Then, q, * q 2 =(s * S2 -vI -v2,sIv2 + s 2v1 +v 2 xv 2)

q(ti, 1) = qincremental (ti+1) - q(t.)

RGtoL (ti+1 ) = R(q(ti+1 ))

37



Implementation

Program execution can be broken into several main functional parts:

Model Contact Force Visualization
Generation Detection Resolution

Figure 16: Program flow diagram

Model Generation can be accomplished in a variety of ways. The protype implementation

described later uses a batch list approach with a proprietary data format for convenience of

programming. However, other approaches include the use of proprietary graphical interfaces

(Rege, 1996). In the final version of this design, off-the-shelf 3-D design formats will be used to

describe the boundary and interaction surfaces. This will allow for the design of the model space

through CAD software such as AutoCadTM and SolidWorksTM.

Contact detection is involved in the determination of a contact between particles,

including all aspects of the optimization of detecting contacts and restricting the number of detail

checks executed during a timestep. Force resolution determines the dynamic behavior of each

particle due to the forces applied during contact detection.

Visualization can be separated from the main time loop or it can be incorporated into it.

This allows for flexible visualization intervals ranging from never visualize to visualize every

timestep. This helps in the identification of trends in the simulation as the simulation progresses

and also allows for the researcher to discover problems in the model without the necessity of

progressing through an entire simulation.

Internal Data Schema

Several data structures have been determined for use in a simulation package. The main

structures are identified here as:
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Root Classes:

* Material(double density, double viscous-damping, double contactdamping[3], double

stiffness[6]);

* Shape(double volume, double CoG[3], double K energy, double Penergy, double I[3],

double v[3], double w[3])

* Force(string function);

" Contact(Shape* objecti, Shape* object2, force, timestamp);

" Continuum(integer* boundary_list);

Derived Classes:

* ISParticle: interface instituting SetKineticEnergy, SetMomentOfinertia,

SetPotentialEnergy;

* Boundary(VertexList* vertices, EdgeList* edges): Shape, Particle

Derived Shape Classes:

In this context, geometries and particle types can easily be added. The specification for the

ellipsoid, sphere, and discretized surface particles can be given as:

* Ellipsoid(Quaternion quat, double length, double width): Shape

* EllipsoidParticle: Ellipsoid, ISParticle

* Sphere(double radius): Shape

" SphereParticle: Sphere, ISParticle

* Polyhedron(Quaternion quat, VertexList* vertices, EdgeList* edges): Shape

" PolyhedronParticle: Polyhedron, ISParticle

* DiscreteFunctionRepresentation(Quaternion quat, HeightFunction[2*nx,ny]): Shape

* DFRParticle: DiscreteFunctionRepresentation, ISParticle

Contact detection is described in earlier sections. The general contact detection element

would act to determine contact between two generalized entities. This would require a specific

contact detection module for each type of contact, (e.g., a separate contact detection module

would be required for sphere-sphere contact and ellipsoid-sphere contact). The necessary contact

algorithms for the ellipsoid are described in this thesis in previous sections; however, other

contact algorithms are beyond the scope of this thesis.
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The persistent contact is necessary for calculation of Coulomb damping and other forces

dependent on memory effects. The list records all contact forces applied at a certain time. The

persistent contact is a database table with a primary key of: entity1, entity2, and timestamp. For

simple Coulomb damping, the database entries with a timestamp of earlier than tcurrentdt could be

dropped at the beginning of timestep tcu,,en,. This approach is implemented in the Matlab

prototype developed in this thesis. The timestep allows this data structure to be more flexible in

retaining entries for 0 or more timesteps.

External Data Representation

Particular attention is given to the way the different entities in the model will be represented. To

make this implementation flexible and interoperable with other engineering software packages,

there is a need to attempt to standardize as much as possible the data schema used.

The first step in this is to adopt extensible markup language (XML) in describing the data

schema. XML is a text-based format for generic data. XML itself does not provide a specific

structure for data; rather, it provides a framework that one may use to structure data. XML is

well-supported by libraries in Java, C++, and Microsoft's .NET framework, making it especially

attractive for cross-application integration, which would allow for the DEM model to be imported

to and exported from a variety of FEM, CAD, and CAM packages. XML is also well adapted to

web service communication, since its text-based format can pass through the HTTP port (ports 80

and 8080). The text-only format precludes direct execution or insertion of malicious code to the

host computer, allowing the administrator an interface to limit/filter the traffic entering the port.

XML would be well-suited as a way of representing DEM data structures, offering a way to share

DEM models between different DEM implementations.

<?xml version="1.0" standalone="yes" ?>
<NewDataSet>
<xs:schema id="NewDataSet" xmlns=""

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xmi-msdata">

<xs:element name="NewDataSet" msdata: IsDataSet="true">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="Materials">
<xs:complexType>
<xs:sequence>
<xs:element name="density" type="xs:double" minOccurs="O" />
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<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element

name="viscousdampingx" type="xs:double" minOccurs="0" />
name ="viscousdampingy" type="xs:double" minOccurs="O" />
name="viscous dampingz" type="xs:double" minOccurs="O" />
name="contact dampingx" type="xs:double" minOccurs="O" />
name="contactdampingy" type="xs:double" minOccurs="O" />
name="contactdampingz" type="xs:double" minOccurs="O" />
name="tensilestiffnessx" type="xs:double" minOccurs="O" />
name="tensilestiffnessy" type="xs:double" minOccurs="O" />
name="tensilestiffnessz" type="xs:double" minOccurs="O" />
name="compressivestiffnessx" type="xs:double" minOccurs="O" />
name="compressive stiffnessy" type="xs:double" minOccurs="O" />
name="compressivestiffnessz" type="xs:double" minOccurs="O" />
name="frictioncoefficientx" type="xs:double" minOccurs="O" />
name="frictioncoefficienty" type="xs:double" minOccurs="O" />
name="frictioncoefficientz" type="xs:double" minOccurs="O" />

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="Spheres">
<xs:complexType>
<xs:sequence>
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element

name="radius" type="xs:double" minOccurs="O" />
name="CoGx" type="xs:double" minOccurs="O" />
name="CoGy" type="xs:double" minOccurs="O" />
name="CoGz" type= "xs:double" minOccurs="O" />
name="velocityx" type="xs:double" minOccurs="O" />
name="velocityy" type="xs:double" minOccurs="O" />
name="velocityz" type="xs:double" minOccurs="O" />
name="rotationVelocityx" type="xs:double" minOccurs="O" />
name= "rotationVelocityy" type= "xs:double" minOccurs="O" />
name="rotationVelocityz" type="xs:double" minOccurs="O" />
name="forcex" type="xs:double" minOccurs="O" />
name="forcey" type="xs:double" minOccurs="O" />
name="forcez" type="xs:double" minOccurs="O" />
name="momentx" type="xs:double" minOccurs="O" />
name="momenty" type="xs:double" minOccurs="O" />
name="momentz" type="xs:double" minOccurs="O" />
name="matptr" type="xs:int" minOccurs="O" />
name="sphereResolution" type="xs:int" minOccurs="O" />

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="Ellipsoids">
<xs:complexType>
<xs:sequence>
<xs:element name="a" type="xs:double" minOccurs="0" />
<xs:element name="b" type="xs:double" minOccurs="O" />
<xs:element name="CoGx" type="xs:double" minOccurs="O" />
<xs:element name="CoGy" type="xs:double" minOccurs="O" />
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<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element

name="CoGz" type="xs:double" minOccurs="O" />
name="rotationw" type="xs:double" minOccurs="O" />
name="rotationx" type="xs:double" minOccurs="O" />
name="rotationy" type="xs:double" minOccurs="O" />
name="rotationz" type="xs:double" minOccurs="O" />
name="velocityx" type="xs:double" minOccurs="0" />
name="velocityy" type="xs:double" minOccurs="O" />
name="velocityz" type="xs:double" minOccurs="O" />
name= "rotationVelocityx" type= "xs:double" minOccurs="O" />
name= "rotationVelocityy" type= "xs:double" minOccurs="O" />
name="rotationVelocityz" type="xs:double" minOccurs="O" />
name="forcex" type="xs:double" minOccurs="O" />
name="forcey" type="xs:double" minOccurs="O" />
name="forcez" type="xs:double" minOccurs="O" />
name="momentx" type="xs:double" minOccurs="O" />
name="momenty" type="xs:double" minOccurs="O" />
name="momentz" type= "xs:double" minOccurs="O" />
name="matptr" type="xs:int" minOccurs="O" />
name="ellipsoidResolutionx" type="xs:int" minOccurs="O" />
name="ellipsoidResolutiont" type="xs:int" minOccurs="O" />

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="Planes">
<xs:complexType>
<xs:sequence>
<xs:element name="CoGx" type="xs:double" minOccurs="O" />
<xs:element name="CoGy" type="xs:double" minOccurs="O" />
<xs:element name="CoGz" type="xs:double" minOccurs="O" />
<xs:element name="rotationw" type="xs:double" minOccurs="O" />
<xs:element name="rotationx" type="xs:double" minOccurs="O" />
<xs:element name="rotationy" type="xs:double" minOccurs="O" />
<xs:element name="rotationz" type="xs:double" minOccurs="O" />
<xs:element name="velocityx" type="xs:double" minOccurs="O" />
<xs:element name="velocityy" type="xs:double" minOccurs="0" />
<xs:element name="velocityz" type="xs:double" minOccurs="O" />
<xs:element name="rotationVelocityx" type="xs:double" minOccurs="O" />
<xs:element name="rotationVelocityy" type="xs:double" minOccurs="O" />
<xs:element name="rotationVelocityz" type="xs:double" minOccurs="O" />
<xs:element name="forcex" type="xs:double" minOccurs="O" />
<xs:element name="forcey" type="xs:double" minOccurs="O" />
<xs:element name="forcez" type="xs:double" minOccurs="O" />
<xs:element name="momentx" type="xs:double" minOccurs="O" />
<xs:element name="momenty" type="xs:double" minOccurs="O" />
<xs:element name="momentz" type= "xs:double" minOccurs="O" />
<xs:element name="matptr" type="xs:int" minOccurs="O" />

</xs:sequence>
</xs:complexType>
</xs:element>
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</xs: choice>
</xs: complexType>
</xs:element>
</xs:schema>

Due to the transience of schema standards (e.g., the lack of agreement on the X3D

standard) and the lack of consistency between competing standards, the schema

developed here has been kept purposefully high-level. This allows for ease of context

mediation between this schema and other 3-D schemas being forwarded as standards. The

richness of a general 3-D schema is unnecessary for the purposes of a particle simulation,

and it is beneficial to avoid such unnecessary attributes in our representation. By using a

less rich schema, translation to other schemas is made much simpler.

Prototype

A prototype system has been developed using Matlab v6.5 to test the operation of the

ellipsoidal representation. The implementation consists of three separate modules: model

generation, contact detection, numerical simulation, and visualization.

These 3 modules have been used to test the robustness of the contact detection

algorithm and verify the numerical integration techniques by observing momentum

transfer between two particles. The results of these simulations are given in the following

sections.
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Validation of Normal Resolution

The algorithm computes a contact normal for each body. When converged, these normals should

be coincident and parallel. The error in the algorithm is defined as the angle between these

normals. In empirical tests, the rate of convergence is exponential, such that:

{A e (0 0.4928)1 error = A" (initial _ guess)} (EQ 42)

where the normals are defined by Equation 45.

error = cos-1(-INI global eN global (EQ 43)

1
(N 0 0 P)-P CF

Ni local ~ '_(EQ 44)

- -Ilocal

NI global = R (Ni, local) (EQ 45)

where R, is the global-to-local rotation matrix for ellipsoid i. Note that R is an orthogonal matrix,

so the Ri- = R1 . ?i is the point along the ellipsoid's major axis through which the line of contact

passes. By applying the constraint that the normal pass through the major axis and that the line

pass through the path traced by [r(O,9)= aOCl, which is enforced through Equation 44, a valid

evaluation of contact is achieved.

For all trials, convergence is achieved, and rate of convergence within each contact

detection step remained constant to within ±0.5%. Assuming worst case convergence of 0.493

(based on empirical studies) and a worst case algorithm starting point (11.5 degrees error in the

normal vector skew), then convergence would be bounded by error,,or, = 0.493" (11.5). Best

case algorithm starting point (0.00031 degrees error in the normal vector skew) and best case

convergence of 0 (based on empirical studies), then the convergence would be bounded by

errore,, =0"(0.00031)=0. For example, applying 5 iterations would be bounded by

{error I error e (0 0.335)}, where error is in units of degrees and represents the skew of the

calculated normals given in Equation 45.
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Conclusion

DEM methods provide a micro-mechanical basis for evaluating large, complex systems of

particles, capturing the emergent macro behavior of such systems. This is especially of interest to

the mining, petroleum, and pharmaceutical industries. The mining industry routinely encounters

particulate matter generated in the production of usable ores. In the petroleum industry, local

failure of the sand in the near well-bore region can and often does lead to a phenomenon known

as "sanding" where the initiated failure of the well-bore spreads outward, causing catastrophic

collapse of the hole and possibly destroying the usefulness of the well and damage drilling

machinery. In the pharmaceutical industry, a poor understanding of powder mixing has led to

costly quality control problems, where incompletely mixed pharmaceuticals have caused

individual doses to exceed tolerances set by federal regulation, resulting in costly fines.

These costly and important problems give discrete element modeling a high degree of

relevance for research. Unfortunately, DEM methods have been plagued by insufficient

computing resources available for the types of problems being investigated. Much research has

been invested in streamiining discrete element methods and in offering implementations that are

both accurate at the scale of interest and computationally efficient enough to be run on PCs. The

ellipsoidal geometry described here attempts to achieve both efficiency and accuracy by capturing

basic interlocking and resistance to rotation that deeply affect the micromechanical behavior of

real materials.

This thesis also describes a new contact detection algorithm for DEM analysis that

approximates ellipsoids as partial spheres that are oriented such that in the plane of contact the

spheres are matched to maintain C' continuity - this is called here the Method of Equivalent

Spheres. The representation maintains the simplicity of clustered spheres without the drawback of

discontinuous normals. The algorithm for determining the contact point and the unique normal is

described and empirical convergence properties demonstrated. The Equivalent Sphere Ellipsoid is

implemented alongside planes (including planar regions such as polyhedral facets) and spheres to

allow a deeper richness to a particulate system model than ellipsoids alone can afford.
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