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Colloidal suspensions exhibit shear thinning and shear thickening.
The most common interpretation of these phenomena identifies
layering of the fluid perpendicular to the shear gradient as the
driver for the observed behavior. However, studies of the particle
configurations associated with shear thinning and thickening cast
doubt on that conclusion and leave unsettled whether these non-
equilibrium phenomena are caused primarily by correlated particle
motions or by changes in particle packing structure. We report the
results of Stokesian dynamics simulations of suspensions of hard
spheres that illuminate the relation among the suspension viscos-
ity, shear rate, and particle configuration. Using a recently in-
troduced sampling technique for nonequilibrium systems, we
show that shear thinning can be decoupled from layering, thereby
eliminating layering as the driver for shear thinning. In contrast,
we find that there is a strong correlation between shear thinning
and a two-particle measure of the shear stress. Our results are
consistent with a recent experimental study.

colloids | rare-event sampling | Nonequilibrium Umbrella Sampling |
rheology

lowing colloidal suspensions exhibit many nonlinear response

phenomena, prominent among which are shear thinning and
thickening, i.e., the decrease and increase, respectively, of the
suspension viscosity with increasing shear strength (1-5). In the
last four decades, many experimental studies and computer
simulations have attempted to identify changes in particle con-
figurations responsible for these phenomena (6-16), but no con-
clusive signature has yet been identified. In early experimental
studies of dense colloidal suspensions of hard spheres (8, 17)
(solid or glass at equilibrium) and of dilute charge-stabilized sus-
pensions that crystallize at equilibrium (18, 19), sliding layers were
observed when the systems were subjected to shear flow. This
layering structure, characterized by a nonuniform density distri-
bution along the shear gradient direction, was independently
predicted to occur by nonequilibrium molecular dynamics
(NEMD) simulations without hydrodynamic interactions (20,
21). The organization of the suspension into layers was thought
to explain the shear-thinning behavior observed, but later ex-
perimental studies of less dense systems (with liquid-like order at
equilibrium) using light scattering (22, 23) or small-angle neu-
tron scattering (24-27) yielded mixed signals relevant to the
existence of this layering structure in the shear-thinning regime,
thereby implying that layering might not be necessary for shear
thinning. This implication is supported by Stokesian dynamics
simulations (28, 29), which differ from earlier NEMD simu-
lations by incorporating hydrodynamic interactions between the
particles. The Stokesian dynamics simulations find no shear-in-
duced layering of hard spheres in the shear-thinning regime in bulk
systems that are liquid-like at equilibrium (9, 30).

It is certainly the case that diffraction from an assembly of
particles is sensitive to ordering and many body correlations
associated with complicated structures on many length scales.
Determination of the structure of the assembly on those many
length scales from diffraction data requires that the Fourier space
complementary to real space is adequately sampled. The scattering
studies of sheared colloidal systems that have been reported cover
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a small part of the Fourier space complementary to the real space
particle arrangement, and are determined by particle correlations
on the pair level only. In an equilibrium state of a fluid of particles
with pair interactions that depend only on the pair separation, the
pair correlation function determined from scattering measure-
ments adequately describes the structure. In a nonequilibrium
state of a fluid of particles, the statistical weight of each con-
figuration depends explicitly on the way the system is driven out
of equilibrium and cannot be obtained from the pair correlation
function alone. Thus, although the light scattering and small-
angle neutron scattering experiments hint that layering does
not drive shear thinning, they do not provide unique evidence
for that conclusion and the notion that shear thinning is associ-
ated with formation of particle layers persists (3, 14-16).

The experimental study of shear thinning has recently been
advanced via simultaneous rheological and structural measure-
ments on confined colloid suspensions, with single-particle res-
olution, using fast confocal microscopy (7). The results of this
experiment, unlike the results of previous Stokesian dynamics
simulations (9, 30), show simultaneous appearance of the layering
structural change and the shear thinning. The difference in results
with respect to the existence of layering in the fluid may be a
consequence of the difference in boundary conditions between
the experiment and the simulations. Specifically, confinement by
planar boundaries, as used in the experiments, enhances layer
formation in the dense colloidal suspension. However, the use of
a periodic boundary condition in the velocity gradient direction
[or the more elaborate Lees—Edwards boundary conditions (31)],
as used in the referred to Stokesian dynamics simulations of bulk
colloidal suspensions, can repress layering in the suspension be-
cause particles in the top layer of the simulation cell are in direct
contact with particles in the bottom layer of the simulation cell.

Although the experimental data imply that the simultaneous
appearance of layering and shear thinning is coincidental rather
than causal, they are not adequate to resolve this issue because
the shear strength and layering cannot be independently varied.
Advances in simulation algorithms now make resolution of the
relationship between shear thinning and layering in the suspension
possible. The Stokesian dynamics simulations (28, 29) we report
in this paper exploit the same methodology as used in previous
studies (9, 30) except that we use boundary conditions that are
consistent with those used in the experiment by Cheng et al. (7).
We furthermore use nonequilibrium umbrella sampling (32-34)
to observe otherwise rare configurations. Our results show that
shear thinning in a suspension of confined hard spheres is ac-
companied by other structural changes in addition to layering,
and in particular a two-particle measure of the shear stress is
demonstrated to be strongly correlated with shear thinning.
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Fig. 1. Characterization of shear thinning. (A) lllustration of the coordinate system. (B) Shear viscosity nyess as a function of Pe for suspensions with ¢=0.47,
showing strong shear-thinning behavior. (C) Shear viscosity as a function of Pe for suspensions with ¢ =0.37, showing moderate shear-thinning behavior.
Each data point shown in both B and C is the average of 100 independent simulations (Methods), and the bars show the SD.

Results and Discussion

Observations of Shear Thinning. Our Stokesian dynamics simu-
lations use the methodology developed by Brady and coworkers
with boundary conditions as detailed in Methods. The shear ap-
plied to the N hard spheres is in the x direction, the shear gra-
dient is in the y direction, and the vorticity is in the z direction
(Fig. 14). The sheared hard sphere fluid is characterized by the
sphere diameter 2a, the packing fraction ¢=N(4za®)/3V and
the Peclet number Pe = 6znya®y /kpT, where 7, is the viscosity of
the supporting liquid and 7 is the shear rate. The Peclet number
measures the magnitude of particle motion induced by shear
relative to that associated with thermal motion. Simulations were
carried out for packing fractions ¢ =0.37 and ¢ =0.47, similar to
the packing fractions used in the experiments of Cheng et al. (7)
These packing fractions lie below that at which the hard sphere
fluid crystallizes. The dependence of the steady-state shear vis-
cosity, nygss (NESS stands for nonequilibrium steady state) on
Pe over the range 0.1 <Pe <10 is displayed in Fig. 1 B and C.
These data clearly show that up to Pe =10 these suspensions are
shear thinning, and the simulations are in general agreement
with recent experimental data (7) for shear thinning and with the
results of earlier simulations of bulk suspensions (29). The
quantitative differences between our results and earlier results are
attributable to the different boundary conditions used.

Study of the Relation Between Shear Thinning and Layer Ordering.
Owing to the confinement, there is layering of the colloidal sus-
pension in the equilibrium state, and that layering is enhanced
with shear. Our simulations reproduce the enhanced layering

structure in the sheared fluid observed in recent experiments (7).
This layering structure can be characterized qualitatively by
the peaks in the density profile of the system along the shear
gradient direction y (Fig. 2 A and B). To quantitatively investi-
gate how the shear thinning depends on layering structure, we
quantify the strength of the layering by the scalar parameter
QL =N"! Zf\; 1cos(2xy; /L), where y; is the y-position of sphere i,
and L is the separation between two neighboring layers of par-
ticles (Fig. 2C). It is important to note that the increase in Q. is
much stronger for Pe > 1 than for Pe < 1, yet the rate of decrease
in suspension viscosity over the range 0.1 <Pe <1 is very close
to that over the range 1<Pe <10 (Fig. 1). This finding strongly
implies that enhancement of layering with increasing Pe is not
essential to shear thinning.

To strengthen the conclusion implied by the results just de-
scribed, we now demonstrate that the layer structure of a confined
colloidal suspension and the decrease in viscosity with increasing
Peclet number are uncorrelated. Using 100,000 steady-state colloid
configurations for the suspension with ¢ =0.47 and Pe =10, we
construct a histogram of values of Q;, (Fig. 34). The distribution
of values of Q;, delineates the amplitude of fluctuations, and it is
well represented by a Gaussian function with mean of 0.803 and
SD of 0.040. If we can harvest a sufficient number of config-
urations in the small Q; tail of this distribution, we can calculate
the viscosity associated with those configurations and compare
the values found with the values for 7y Obtained at smaller Pe.
Doing so is challenging because these configurations are rare.
Consequently, we use nonequilibrium umbrella sampling (32-34)
(Methods). This numerical technique preserves the dynamics of
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Fig. 2. Characterization of layer ordering. Density profiles of the suspension along the y direction with ¢ =0.47 (A) and ¢ =0.37 (B). Note the layer enhancement
due to increased shear. (C) Scalar parameter Q, as a function of Pe, normalized by its value at Pe =0.1 for suspensions with ¢ =0.37 (empty squares) and with

¢ =0.47 (black circles).
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Fig. 3. Viscosity-layer relation. (A) Histogram of Q; for 100,000 steady-state configurations of the suspension with ¢ =0.47 and Pe = 10 (bars), fitted to a Gaussian
function (line) with average value Q, =0.803 and SD ¢ = 0.040. (B) Dependence of (Q.) on Q; for the suspension with ¢ = 0.47 and Pe = 10 (empty squares) compared
with nyess, the average viscosity for the indicated Pe (Fig. 1B). Each data point shows the average of results from 100 independent simulations; the bars show the SD.

a system but allows sampling to be focused on low-probability
regions of a steady-state distribution by selectively branching and
pruning stochastic trajectories in an order parameter-dependent
fashion. Using this method, we can readily obtain configurations
with Q; values that we would normally associate with Pe < 1
while maintaining Pe = 10. In this way, we can independently
explore layering and shear strength. For each value of Q;, we
calculate the corresponding viscosity 7(Qy. ). If changes in layering
underlie shear thinning, we expect that the viscosity will be strongly
correlated with Q;,. However, we find that the dependence of
n(Qr) on Qr when Pe = 10 is weak, and the values of g
obtained from the simulations at small Pe are larger than
n(Qr) at the same Qy . This result leads us to the conclusion that,
at least for the model suspension studied, changes in viscosity
and layering are coincidental rather than causal.

Mechanism of Shear Thinning: Study of a Two-Particle Structure. What
then is the basis for the observed shear thinning? It is conventional
to represent the shear stress S in the complex colloidal fluid as the
sum of three contributions (28, 35): a thermodynamic component
associated with the stochastic motions of particles, called the
Brownian stress §%, an interaction component associated with the
particleparticle forces, called the interaction stress S¥, and a hy-
drodynamic component associated with the shear flow, called the
hydrodynamic stress $. The Brownian stress arises from the
fluctuations in position of a colloidal particle that induce flows
that interact with all other particles in the system, the spatial

configuration of which also fluctuates on the same timescale as
individual colloidal particle motion. Because of the many-particle
dependence of the hydrodynamic resistance on the configuration,
and the coupling of the fluctuation timescales, this contribution
has a nonzero value when averaged over a time long compared
with the Brownian relaxation time 3 =m/6nna, where m is the
mass of a colloidal particle. The interaction stress is zero for a
hard-sphere system (9). In general, shear thinning is a consequence
of the fact that the change in the thermodynamic component with
Peclet number is unable to keep up with the increase of shear
strain (9). Indeed, our Stokesian dynamics simulations reproduce
the earlier results (9, 35) that both % and $7 increase with in-
creasing Pe, but the rate of increase of §¥ cannot match the rate
of increase of S¥. As a result, the stochastic component of the
viscosity, #8, decreases as Pe increases and eventually becomes
negligible at large Pe, while the hydrodynamic component of the
viscosity, 77, stays almost constant up to Pe =10 (Fig. 44).
Brady (36) has shown that at large packing fraction the
Brownian stress is well approximated by the contact integral
—nkgTa [ _, rrg:(r)dS, where g;(r) is the pair correlation function.
We are concerned with the xy-component of the Brownian stress
and its dependence on g(r), or more specifically — [ _, xyg>(r)dS.
This integral is 0 for suspensions at equilibrium as a result
of system symmetry. As the colloidal suspension is subject to
simple shear motion, this symmetry is broken, and as a result
g2(r), when projected on the xy-plane, exhibits strong distortions
as the colloidal suspension shear thins (7, 9). This observation
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Fig. 4. Structural signature for shear thinning. (A) Pe dependence of the Brownian component (black squares) and the hydrodynamic component (empty
circles) of the viscosity of the suspension with ¢ =0.47. Angular probability distributions of contact pairs in the xy-plane P(y;r=2a) versus y for suspensions
with Pe=10 and ¢ =0.37 (B); and Pe=10 and ¢=0.47 (C). Inset in B defines the angle y for a contact pair when projected onto the xy-plane. Each data
point shown in A is the average of 100 independent simulations, and the bars show the SD.
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Fig. 5. Structural signature for shear thinning. (A) Histogram of Qp for
100,000 steady-state configurations of the suspension with ¢=0.47 and
Pe =10 (bars), fitted to a Gaussian function (line) with average value Qp =0.153
and SD ¢=0.043. (B) The xy component of the Brownian stress contribution
Efy(Op) as a function of Qp for suspensions with ¢=0.47 and Pe=10 (empty
squares), compared with X5 o =18 essPeks T /6710a°. (C) The layering of the
suspension as described by scalar Q, as a function of Qp for suspensions with
¢=0.47 and Pe =10 (empty squares), compared with Q;_ngss, the steady-state
average of Q, at different Pe. Each data point shown in B is the average of
100 independent simulations, and the bars show the SD.

is also reproduced in our simulations for steady states under
shear (Fig. 4 B and C). To quantitatively examine this
dependence, we introduce a scalar parameter defined as
Op= —N_lZﬁilzjﬁiﬂxzj)’ijexﬁ’[(rij/a —2)/Lau], where x;; =x; —x;,
Yii =Yi =Y, Ijj = |ri —rj| and the pair correlation function at contact
is approximately obtained by counting pairs at surface distance
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(rj — 2a) with a rapidly decaying weight exp[(#; /a — 2) /L], which
assures that the dynamics of Qp is smooth. When projected onto
the xy-plane, a pair at contact has a strong positive contribution
to Op when aligned along the 135° axis and a strong negative
contribution when aligned along the 45° axis (Fig. 4B, Inset). We
use L, =0.05 for the calculation shown, and find that the results
are insensitive to variations between 0.05 and 0.1.

As in the case of the analysis of Q;., we constructed a histogram
of values of Qp using 100,000 steady-state colloid configurations
for the suspension with ¢ =0.47 and Pe =10 (Fig. 54), and using
nonequilibrium umbrella sampling we sampled configurations
that are associated with different values of Qp. For each value
of Qp, the associated colloid configurations were analyzed to
obtain the xy component of the Brownian stress ny(Qp) =
n®(Qp)PekpT [6mnya®. A comparison of £ (Qp) with the values
of Qp calculated for the steady states of the same suspension
subject to different shear rates shows a strong correlation be-
tween Qp and the shear stress (Fig. 5B). We conclude that al-
teration of the pair structure, rather than the layering, in the
suspension is the dominant mechanism underlying shear thinning.
This interpretation is consistent with earlier suggestions that
“entropic” (i.e., Brownian) contributions to the stress become
small compared with hydrodynamic ones as the system is sheared
more strongly (7, 9).
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Fig. 6. Structures within each layer. The black squares show the angular
probability distribution of contact pairs in the xz-plane P(¢;r=2a) versus ¢
for suspensions with Pe=10 and ¢=0.37 (A); and Pe=10 and ¢=0.47 (B).
Inset in A defines the angle ¢ for a contact pair when projected onto the
xz-plane. P(6;r=2a) in B is also shown as a sum of a perfect hexatic phase
(circles) and a string phase (triangles).
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Given that the changes in the viscosity and layering are simul-
taneous, it is natural to ask whether they share the same origin: the
alteration of the pair structure as characterized by Qp. As we in-
crease Pe, the steady-state average of Qp increases as contact
particle pairs align along the 135° direction when projected onto
the xy-plane. However, as indicated by our nonequilibrium um-
brella sampling results, this structural change on the pair level has
very little correlation with the layering (Fig. 5C). The mechanism
that causes the enhancement of layering is of strong interest (37)
but is not resolved by the present study.

Conclusions

The use of nonequilibrium umbrella sampling for studying rare
events far from equilibrium allows us to decouple particle config-
urations from the shear strength. Our results have demonstrated
that, for hard-sphere colloidal suspensions, the dominant mecha-
nism underlying shear-thinning behavior is alteration of the pair
distribution function, rather than layering, which is a single-particle
measure. As also demonstrated from our results, the fact that
the structural change on the pair level has no correlation with
the layering is consistent with the observation that scattering
measurements only yield information about the system on the pair
level and make no prediction about the layering as the system
is driven far from equilibrium by shear flow. In fact, we see that
layering of the system can vary substantially with virtually no
changes in the pair structure (Fig. 3B), and the pair structure
of the system can vary substantially with almost no change in
layering (Fig. 5C).

The particle structure within each layer is another aspect of
the suspension that is of great interest. In our simulations, we
observed a rich variety of structures within each layer as we vary
the packing fraction and Pe. If we maintain Pe =10, at ¢=0.37
we observed a weak string configuration of particles (an aniso-
tropic distribution in favor of the vorticity direction, as illustrated
in Fig. 6A4), in qualitative agreement with our earlier results (38).
At higher density ¢ =0.47, which is very close to the bulk crys-
tallization density for hard spheres, we observed distorted hexatic
ordering (Fig. 6B). The existence of this hexatic ordering is in
qualitative agreement with the results of earlier studies of sus-
pensions that are solid at equilibrium. However, it is not clear to
us whether the patterns observed in our system arise solely from
shearing (30), or whether the strong confinement of the suspen-
sion plays a key role. The distortion of the hexatic ordering
observed can be written as a sum of a perfect hexatic part and
a string phase part (Fig. 6B). Clearly, determining the detailed
relationship between the particle structures within each layer
and system parameters such as Pe or packing fraction ¢ requires
more quantitative studies.

It is important to note that our simulation applies a boundary
condition, via an external potential, that confines only the colloidal
spheres in the shear gradient direction but not the solvent flow.
This boundary condition is not the same as that imposed by the
planar walls used in the experiment (7). It has been shown that,
for the systems we have studied, with moderate planar separa-
tions and high packing fractions, the behavior is dominated by
the sphere—sphere interactions and the effect of hydrodynamic
interactions between the spheres and the walls can be ignored
(39). However, in other situations, for example with dilute sus-
pension, the rheology of the system can be greatly influenced by
the sphere-wall interactions.

Despite the fact that confinement induces or enhances layering
within the suspension, we expect our conclusions to be generally
valid in the absence of additional sources of stress (e.g., strong
particle—particle magnetic repulsion) because we make compar-
isons between relative numbers for consistently defined systems.
We also note that our results are complementary to those obtained

Xu et al.

from earlier simulations of bulk colloidal suspensions (9) that
use periodic boundary conditions, which could repress layer
structures. Looking forward, we plan to build on the present
approach to address the broader problem of determining how to
attribute suspension properties to particle interactions and struc-
ture changes in situations with additional sources of stress (40).

Methods

Stokesian Dynamics Simulations. We use Stokesian dynamics to simulate
the dynamics of a monodisperse suspension of N hard spheres of unit radius.
The influence of hydrodynamic interactions on the particle motions is in-
corporated through the resistance tensor, which is evaluated based on the
configuration at the beginning of each time step of length At =4 x 107%. The
centers of the spheres are restricted to a rectangular box spanning 0 < x <
11.4,0 <z < 11.4, and -5.0 < y < 5.0. We apply periodic boundary conditions
in the x and z directions and an external potential along the y direction that
is 0 for |y|<yo=4.7 and U, =500ksT(|y| —yo)? otherwise. We have N = 130
and 167 for ¢»=0.37 and 0.47, respectively, as packing fraction ¢ = N(4za3)/3V
and volume V=11.4%11.4%(2*y,+2). Although this potential is meant
to mimic the confinement imposed by the shear cell used in ref. 7, it is im-
portant to note that the potential confines only the colloidal spheres and not
the solvent flow. The unit time of the simulation is defined in terms of the
characteristic timescales of the system: the diffusive timescale a?/D when
Pe <1 and the inverse shear rate 1/y when Pe> 1, where D is the short time
diffusion constant of an isolated colloidal particle in an infinite suspension.
Spatial configurations of the suspension at successive time steps are recorded
and used to compute structures and properties of the system. For example, the
viscosity of the suspension is evaluated using egs. 20 and 21 in ref. 28. To
compute the average properties for the nonequilibrium steady state for each
packing fraction and Pe, 100 independent simulation runs were initialized
using the Monte Carlo method. In each run, the system was equilibrated for
30,000 time steps of At = 4 x 10~ before applying shear. Another 50,000 time
steps were taken after the onset of the shear motion to allow the system to
settle into the nonequilibrium steady state, after which 100,000 time steps
were taken for analysis of averaged properties.

Nonequilibrium Umbrella Sampling. We use nonequilibrium umbrella sam-
pling for efficient sampling of rare configurations of our sheared system. In
this approach, a space of order parameters (here Q, and Qp) is divided into
a number of regions with arbitrarily chosen sizes, and a copy of the system is
simulated in each region. Simulations proceed independently according to
the original dynamics except when a step would take a copy out of its re-
gion. In such an event, a series of bookkeeping variables for determining the
physical weights of the copies are updated, the configuration is saved, and
the copy is reinitialized from a previously saved entry into its region [see the
study by Dickson et al. (34) for details]. In this way, the procedure enforces
uniform sampling over the regions regardless of the probabilities of the
ranges of order parameter values, without distorting the underlying dynamics.

We initialized the simulations for each order parameter from 100 in-
dependent configurations randomly chosen from the steady-state config-
urations of a Stokesian dynamics simulation with ¢ =0.47 and Pe =10. From
each of these configurations, we ran 100 independent nonequilibrium um-
brella sampling simulations. In each simulation, the one-dimensional pa-
rameter space is divided into 30 regions, where the sizes of the middle
regions range from 10 to 20% of the SD of the steady-state histogram of the
corresponding order parameter with ¢=0.47 and Pe =10 (Figs. 3A and 5A).
The regions without a copy initially were OFF and only turned ON once
a copy naturally crossed into them [the progressive activation scheme in the
study by Dickson et al. (34)]. The simulations run in terms of cycles. Within
each simulation cycle, we simulated the dynamics within each active region
for 40 time steps of At=4x 104, yielding on average about two crossings
per active region. After all of the desired regions were activated, which took
on average about 150 cycles, we ran an additional 100 cycles for viscosity
and stress analysis.
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