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Abstract

We study the computational complexity of approximating the2-to-qnorm of linear
operators (defined as‖A‖2→q = maxv,0‖Av‖q/‖v‖2) for q > 2, as well as connections
between this question and issues arising in quantum information theory and the study
of Khot’s Unique Games Conjecture (UGC). We show the following:

1. For any constant even integerq > 4, a graphG is a small-set expanderif and
only if the projector into the span of the top eigenvectors ofG’s adjacency matrix
has bounded 2→ q norm. As a corollary, a good approximation to the 2→ q
norm will refute theSmall-Set Expansion Conjecture— a close variant of the
UGC. We also show that such a good approximation can be obtained in exp(n2/q)
time, thus obtaining a different proof of the known subexponential algorithm for
Small-Set Expansion.

2. Constant rounds of the “Sum of Squares” semidefinite programing hierarchy
certify an upper bound on the 2→ 4 norm of the projector to low-degree poly-
nomials over the Boolean cube, as well certify the unsatisfiability of the “noisy
cube” and “short code” based instances of Unique Games considered by prior
works. This improves on the previous upper bound of exp(logO(1) n) rounds (for
the “short code”), as well as separates the “Sum of Squares”/“Lasserre” hierar-
chy from weaker hierarchies that were known to requireω(1) rounds.

3. We show reductions between computing the 2→ 4 norm and computing the
injective tensor normof a tensor, a problem with connections to quantum infor-
mation theory. Three corollaries are:(i) the 2→ 4 norm is NP-hard to approx-
imate to precision inverse-polynomial in the dimension,(ii) the 2→ 4 norm
does not have a good approximation (in the sense above) unless 3-SAT can be
solved in time exp(

√
npoly log(n)), and(iii) known algorithms for the quantum

separability problem imply a non-trivial additive approximation for the 2→ 4
norm.
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1 Introduction

For a functionf : Ω→ � on a (finite) probability spaceΩ, thep-normis defined as‖ f ‖p =
(�Ω f p)1/p.1 The p → q norm ‖A‖p→q of a linear operatorA between vector spaces of
such functions is the smallest numberc > 0 such that‖A f‖q 6 c‖ f ‖p for all functions f
in the domain ofA. We also define thep → q normof a subspace Vto be the maximum
of ‖ f ‖q/‖ f ‖p for f ∈ V; note that forp = 2 this is the same as the norm of the projector
operator intoV.

In this work, we are interested in the casep < q and we will call suchp → q norms
hypercontractive.2 Roughly speaking, forp < q, a function f with large‖ f ‖q compared
to ‖ f ‖p can be thought of as “spiky” or somewhat sparse (i.e., much ofthe mass concen-
trated in small portion of the entries). Hence finding a function f in a linear subspaceV
maximizing ‖ f ‖q/‖ f ‖2 for someq > 2 can be thought of as a geometric analogue of the
problem finding the shortest word in a linear code. This problem is equivalent to computing
the 2→ q norm of the projectorP into V (since‖P f‖2 6 ‖ f ‖2). Also whenA is a nor-
malized adjacency matrix of a graph (or more generally a Markov operator), upper bounds
on thep → q norm are known asmixed-norm, Nashor hypercontractive inequalitiesand
can be used to show rapid mixing of the corresponding random walk (e.g., see the surveys
[Gro75, SC97]). Such bounds also have many applications to theoretical computer science,
which are described in the survey [Bis11].

However, very little is known about the complexity of computing these norms. This is
in contrast to the case ofp→ q norms forp > q, where much more is known both in terms
of algorithms and lower bounds, see [Ste05, KNS08, BV11].

2 Our Results

We initiate a study of the computational complexity of approximating the 2→ 4 (and
more generally 2→ q for q > 2) norm. While there are still many more questions than
answers on this topic, we are able to show some new algorithmic and hardness results, as
well as connections to both Khot’s unique games conjecture [Kho02] (UGC) and questions
from quantum information theory. In particular our paper gives some conflicting evidence
regarding the validity of the UGC and its close variant— the small set expansion hypothesis
(SSEH) of [RS10]. (See also our conclusions section.)

First, we show in Theorem2.5that approximating the 2→ 4 problem to within any con-
stant factor cannot be done in polynomial time (unless SAT can be solved in exp(o(n)) time)
but yet this problem is seemingly related to the Unique Games and Small-Set Expansion
problems. In particular, we show that approximating the 2→ 4 norm is Small-Set Ex-
pansion- hard but yet has a subexponential algorithm which closely related to the [ABS10]
algorithm for Unique Games and Small-Set Expansion. Thus the computational difficulty
of this problem can be considered as some indirect evidencesupportingthe validity of the
UGC (or perhaps some weaker variants of it). To our knowledge, this is the first evidence
of this kind for the UGC.

On the other hand, we show that a natural polynomial-time algorithm (based on an
SDP hierarchy) that solves the previously proposed hard instances for Unique Games.

1 We follow the convention to useexpectationnorms forfunctions(on probability spaces) andcounting
norms, denoted as‖‖‖v‖‖‖p = (

∑n
i=1 |vi |p)1/p, for vectorsv ∈ �m. All normed spaces here will be finite dimensional.

We distinguish between expectation and counting norms to avoid recurrent normalization factors.
2We use this name because a bound of the form‖A‖p→q 6 1 for p < q is often called ahypercontractive

inequality.
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The previous best algorithms for some of these instances took almost exponential (
exp(exp(logΩ(1) n)) ) time, and in fact they were shown to require super-polynomial time
for some hierarchies. Thus this result suggests that this algorithm could potentially refute
the UGC, and hence can be construed as evidenceopposingthe UGC’s validity.

2.1 Algorithms

We show several algorithmic results for the 2→ 4 (and more generally 2→ q) norm.

2.1.1 Subexponential algorithm for “good” approximation

For q > 2, we say that an algorithm provides a (c,C)-approximationfor the 2→ q norm if
on input an operatorA, the algorithm can distinguish between the case that‖A‖2→q 6 cσ
and the case that‖A‖2→q > Cσ, whereσ = σmin(A) is the minimum nonzero singular value
of A. (Note that since we use the expectation norm,‖A f‖q > ‖A f‖2 > σ‖ f ‖2 for every
function f orthogonal to the Kernel ofA.) We say that an algorithm provides agood ap-
proximationfor the 2→ q norm if it provides a (c,C)-approximation for some (dimension
independent) constantsc < C. The motivation behind this definition is to capture the notion
of a dimension independentapproximation factor, and is also motivated by Theorem2.4
below, that relates a good approximation for the 2→ q norm to solving the Small-Set
Expansion problem.

We show the following:

Theorem 2.1. For every1 < c < C, there is apoly(n) exp(n2/q)-time algorithm that com-
putes a(c,C)-approximation for the2 → q norm of any linear operator whose range is
�

n.

Combining this with our results below, we get as a corollary asubexponential algorithm
for the Small-Set Expansion problem matching the parameters of [ABS10]’s algorithm. We
note that this algorithm can be achieved by the “Sum of Squares” SDP hierarchy described
below (and probably weaker hierarchies as well, although wedid not verify this).

2.1.2 Polynomial algorithm for specific instances

We study a natural semidefinite programming (SDP) relaxation for computing the 2→ 4
norm of a given linear operator which we callTensor-SDP.3 While Tensor-SDP is very
unlikely to provide a poly-time constant-factor approximation for the 2→ 4 norm in general
(see Theorem2.5 below), we do show that it provides such approximation on twovery
different types of instances:

– We show that Tensor-SDP certifies a constant upper bound on the ratio
‖A‖2→4/‖A‖2→2 whereA : �n → �m is a random linear operator(e.g., obtained
by a matrix with entries chosen as i.i.d Bernoulli variables) andm > Ω(n2 logn). In
contrast, ifm = o(n2) then this ratio isω(1), and hence this result is almost tight in
the sense of obtaining “good approximation” in the sense mentioned above. We find
this interesting, since random matrices seem like natural instances; indeed for super-
ficially similar problems such shortest codeword, shortestlattice vector (or even the
1→ 2 norm), it seems hard to efficiently certify bounds on random operators.

3We use the nameTensor-SDP for this program since it will be a canonical relaxation of the polynomial
program max‖x‖2=1 〈T, x⊗4〉 whereT is the 4-tensor such that〈T, x⊗4〉 = ‖Ax‖44. See Section4.5for more details.
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– We show thatTensor-SDP gives a good approximation of the 2→ 4 norm of the
operator projecting a functionf : {±1}n→ � into its low-degree component:

Theorem 2.2.LetPd be the liner operator that maps a function f: {±1}n→ � of the
form f =

∑

α⊆[n] f̂αχα to its low-degree part f′ =
∑

|α|6d f̂αχα (whereχα(x) =
∏

i∈α xi).
ThenTensor-SDP(Pd) 6 9d.

The fact thatPd has bounded 2→ 4 norm is widely used in the literature relating to
the UGC. Previously, no general-purpose algorithm was known to efficiently certify
this fact.

2.1.3 Quasipolynomial algorithm for additive approximation

We also consider the generalization ofTensor-SDP to a natural SDPhierarchy. This is
a convex relaxation that starts from an initial SDP and tightens it by adding additional
constraints. Such hierarchies are generally paramaterized by a numberr (often called the
number of rounds), where the 1st round corresponds to the initial SDP, and thenth round (for
discrete problems wheren is the instance size) corresponds to the exponential brute force
algorithm that outputs an optimal answer. Generally, ther th-round of each such hierarchy
can be evaluated innO(r) time (though in some casesnO(1)2O(r) time suffices [BRS11]). See
Section3, as well as the surveys [CT10, Lau03] and the papers [SA90, LS91, RS09, KPS10]
for more information about these hierarchies.

We call the hierarchy we consider here theSum of Squares(SoS) hierarchy. It is
not novel but rather a variant of the hierarchies studied by several authors including
Shor [Sho87], Parrilo [Par00, Par03], Nesterov [Nes00] and Lasserre [Las01]. (Generally
in our context these hierarchies can be made equivalent in power, though there are some
subtleties involved; see [Lau09] and AppendixC for more details.) We describe the SoS
hierarchy formally in Section3. We show thatTensor-SDP’s extension to several rounds
of the SoS hierarchy gives a non-trivialadditiveapproximation:

Theorem 2.3. Let Tensor-SDP(d) denote the nO(d)-time algorithm by extendingTensor-
SDP to d rounds of the Sum-of-Squares hierarchy. Then for allε, there is d= O(log(n)/ε2)
such that

‖A‖42→4 6 Tensor-SDP(d)(A) 6 ‖A‖42→4 + ε‖A‖22→2‖A‖22→∞ .

The term‖A‖22→2‖A‖22→∞ is a natural upper bound on‖A‖42→4 obtained using Hölder’s
inequality. Since‖A‖2→2 is the largest singular value ofA, and‖A‖2→∞ is the largest 2-norm
of any row ofA, they can be computed quickly. Theorem2.3 shows that one can improve
this upper bound by a factor ofε using run time exp(log2(n)/ε2)). Note however that in the
special case (relevant to the UGC) thatA is a projector to a subspaceV, ‖A‖2→2 = 1 and
‖A‖2→∞ >

√
dim(V) (see Lemma10.1), which unfortunately means that Theorem2.3does

not give any new algorithms in that setting.
Despite Theorem2.3 being a non-quantum algorithm for for an ostensibly non-

quantum problem, we actually achieve it using the results ofBrandão, Christiandl and
Yard [BaCY11] about the quantum separability problem. In fact, it turns out that the SoS hi-
erarchy extension ofTensor-SDP is equivalent to techniques that have been used to approx-
imate separable states [DPS04]. We find this interesting both because there are few positive
general results about the convergence rate of SDP hierarchies, and because the techniques
of [BaCY11], based on entanglement measures of quantum states, are different from typical
ways of proving correctness of semidefinite programs, and inparticular different techniques

3



from the ones we use to analyzeTensor-SDP in other settings. This connection also means
that integrality gaps forTensor-SDP would imply new types of separable states that pass
most of the known tests for entanglement.

2.2 Reductions

We relate the question of computing the hypercontractive norm with two other problems
considered in the literature: thesmall set expansionproblem [RS10, RST10a], and the
injective tensor normquestion studied in the context of quantum information theory [HM10,
BaCY11].

2.2.1 Hypercontractivity and small set expansion

Khot’s Unique Games Conjecture[Kho02] (UGC) has been the focus of intense research
effort in the last few years. The conjecture posits the hardnessof approximation for a
certain constraint-satisfaction problem, and shows promise to settle many open questions
in the theory of approximation algorithms. Many works have been devoted to studying the
plausibility of the UGC, as well as exploring its implications and obtaining unconditional
results inspired or motivated by this effort. Tantalizingly, at the moment we have very
little insight on whether this conjecture is actually true,and thus producing evidence on
the UGC’s truth or falsity is a central effort in computational complexity. Raghavendra
and Steurer [RS10] proposed a hypothesis closely related to the UGC called theSmall-
Set Expansionhypothesis (SSEH). Loosely speaking, the SSEH states that it is NP-hard
to certify that a given graphG = (V,E) is a small-set expanderin the sense that subsets
with sizeo(|V|) vertices have almost all their neighbors outside the set. [RS10] showed that
SSEH implies UGC. While a reduction in the other direction isnot known, all currently
known algorithmic and integrality gap results apply to bothproblems equally well (e.g.,
[ABS10, RST10b]), and thus the two conjectures are likely to be equivalent.

We show, loosely speaking, that a graph is a small-set expander if and only if the pro-
jection operator to the span of its top eigenvectors has bounded 2→ 4 norm. To make this
precise, ifG = (V,E) is a regular graph, then letP>λ(G) be the projection operator into the
span of the eigenvectors ofG’s normalized adjacency matrix with eigenvalue at leastλ, and
ΦG(δ) be minS⊆V,|S|6δ|V| �(u,v)∈E[v < S|u ∈ S].

Then we relate small-set expansion to the 2→ 4 norm (indeed the 2→ q norm for even
q > 4) as follows:

Theorem 2.4. For every regular graph G,λ > 0 and even q,

1. (Norm bound implies expansion)For all δ > 0, ε > 0, ‖P>λ(G)‖2→q 6 ε/δ(q−2)/2q

implies thatΦG(δ) > 1− λ − ε2.

2. (Expansion implies norm bound)There is a constant c such that for allδ > 0,ΦG(δ) >
1− λ2−cq implies‖P>λ(G)‖2→q 6 2/

√
δ.

While one direction (bounded hypercontractive norm implies small-set expansion) was
already known,4 to our knowledge the other direction is novel. As a corollarywe show that
the SSEH implies that there is no good approximation for the 2→ 4 norm.

4While we do not know who was the first to point out this fact explicitly, within theoretical CS it was
implicitly used in several results relating the Bonami-Beckner-Gross hypercontractivity of the Boolean noise
operator to isoperimetric properties, with one example being O’Donnell’s proof of the soundness of [KV05]’s
integrality gap (see [KV05, Sec 9.1]).
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2.2.2 Hypercontractivity and the injective tensor norm

We are able to make progress in understanding both the complexity of the 2→ 4 norm and
the quality of our SDP relaxation by relating the 2→ 4 norm to several natural questions
about tensors. Anr-tensor can be thought of as anr-linear form on�n, and theinjective
tensor norm‖ · ‖inj of a tensor is given by maximizing this form over all unit vector inputs.
See Section9 for a precise definition. Whenr = 1, this norm is the 2-norm of a vector and
whenr = 2, it is the operator norm (or 2→ 2-norm) of a matrix, but forr = 3 it becomes
NP-hard to calculate. One motivation to study this norm comes from quantum mechanics,
where computing it is equivalent to a number of long-studiedproblems concerning entan-
glement and many-body physics [HM10]. More generally, tensors arise in a vast range of
practical problems involving multidimensional data [vL09] for which the injective tensor
norm is both of direct interest and can be used as a subroutinefor other tasks, such as tensor
decomposition [dlVKKV05].

It is not hard to show that‖A‖42→4 is actually equal to‖T‖inj for some 4-tensorT = TA.
Not all 4-tensors can arise this way, but we show that the injective tensor norm problem for
general tensors can be reduced to those of the formTA. Combined with known results about
the hardness of tensor computations, this reduction implies the following hardness result. To
formulate the theorem, recall that the Exponential Time Hypothesis (ETH) [IPZ98] states
that 3-SAT instances of lengthn require time exp(Ω(n)) to solve.

Theorem 2.5(informal version). Assuming ETH, then for anyε, δ satisfying2ε + δ < 1,
the 2 → 4 norm of an m× m matrix A cannot be approximated to within aexp(logε(m))
multiplicative factor in time less than mlogδ(m) time. This hardness result holds even with A
is a projector.

While we are primarily concerned with the case ofΩ(1) approximation factor, we note
that poly-time approximations to within multiplicative factor 1+ 1/n1.01 are not possible
unlessP = NP. This, along with Theorem2.5, is restated more formally as Theorem9.4
in Section9.2 . We also whose there that Theorem2.5yields as a corollary that, assuming
ETH, there is no polynomial-time algorithm obtaining a goodapproximation for the 2→
4 norm. We note that these results hold under weaker assumptions than the ETH; see
Section9.2as well.

Previously no hardness results were known for the 2→ 4 norm, or anyp→ qnorm with
p < q, even for calculating the norms exactly. However, hardnessof approximation results
for 1+ 1/poly(n) multiplicative error have been proved for other polynomial optimization
problems [BTN98].

2.3 Relation to the Unique Games Conjecture

Our results and techniques have some relevance to the uniquegames conjecture. Theo-
rem 2.4 shows that obtaining a good approximation for the 2→ q norm is Small-Set
Expansion hard, but Theorem2.1 shows that this problem is not “that much harder” than
Unique Games and Small-Set Expansion since it too has a subexponential algorithm. Thus,
the 2→ q problem is in some informal sense “of similar flavor” to the Unique Games/
Small-Set Expansion. On the other hand, we actually are able to show in Theorem2.5
hardness(even if only quasipolynomial) to this problem, whereas a similar result for Unique
Games or Small-Set Expansion would be a major breakthrough. So there is a sense in which
these results can be thought of as some “positive evidence” in favor of at least weak variants
of the UGC. (We emphasize however that there are inherent difficulties in extending these
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results for Unique Games, and it may very well be that obtaining a multiplicative approxi-
mation to the 2→ 4 of an operator is significantly harder problem than Unique Games or
Small-Set Expansion.) In contrast, our positive algorithmic results show that perhaps the
2 → q norm can be thought of as a path to refuting the UGC. In particular we are able to
extend our techniques to show a polynomial time algorithm can approximate the canonical
hard instances for Unique Games considered in prior works.

Theorem 2.6. (Informal) Eight rounds of the SoS relaxation certifies thatit is possible to
satisfy at most1/100fraction of the constraints ofUniqueGames instances of the “quotient
noisy cube” and “short code” types considered in [RS09, KS09, KPS10, BGH+11]

These instances are the same ones for which previous works showed that weaker hier-
archies such as “SDP+Sherali Adams” and “Approximate Lasserre” requireω(1) rounds to
certify that one cannot satisfy almost all the constraints [KV05, RS10, KS09, BGH+11]. In
fact, for the “short code” based instances of [BGH+11] there was no upper bound known
better than exp(logΩ(1) n) on the number of rounds required to certify that they are notal-
most satisfiable, regardless of the power of the hierarchy used.

This is significant since the current best known algorithms for Unique Games utilize
SDP hierarchies [BRS11, GS11],5 and the instances above were the only known evidence
that polynomial time versions of these algorithms do not refute the unique games con-
jecture. Our work also show that strong “basis independent”hierarchies such as Sum of
Squares [Par00, Par03] and Lasserre [Las01] can in fact do better than the seemingly only
slightly weaker variants.6

3 The SoS hierarchy

For our algorithmic results in this paper we consider a semidefinite programming (SDP)
hierarchy that we call theSum of Squares(SoS) hierarchy. We call the hierarchy we consider
here theSum of Squares(SoS) hierarchy. This is not a novel algorithm and essentially
the same hierarchies were considered by many other researchers (see the survey [Lau09]).
Because different works sometimes used slightly different definitions, in this section we
formally define the hierarchy we use as well as explain the intuition behind it. While there
are some subtleties involved, one can think of this hierarchy as equivalent in power to the
programs considered by Parrilo, Lasserre and others, whilestronger than hierarchies such
“SDP+Sherali-Adams” and “Approximate Lasserre” considered in [RS09, KPS10, BRS11].

The SoS SDP is a relaxation for polynomial equations. That is, we consider a system
of the following form: maximizeP0(x) over x ∈ �n subject toP2

i (x) = 0 for i = 1 . . .mand
P0, . . . ,Pm polynomials of degree at mostd.7 For r > 2d, ther-round SoS SDPoptimizes
over x1, . . . , xn that can be thought of as formal variables rather than actualnumbers. For
these formal variables, expressions of the formP(x) are well defined and correspond to a

5Both these works showed SDP-hierarchy-based algorithms matching the performance of the subexponen-
tial algorithm of [ABS10]. [GS11] used the Lasserre hierarchy, while [BRS11] used the weaker “SDP+Sherali-
Adams” hierarchy.

6The only other result of this kind we are aware of is [KMN11], that show that Lasserre gives a better
approximation ratio than the linear programming Sherali-Adams hierarchy for the knapsack problem. We do
not know if weaker semidefinite hierarchies match this ratio, although knapsack of course has a simple dynamic
programming based PTAS.

7This form is without loss of generality, as one can translatean inequality constraint of the formPi(x) > 0
into the equality constraint (Pi(x) − y2)2 = 0 wherey is some new auxiliary variable. It is useful to show
equivalences between various hierarchy formulations; seealso AppendixC.
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real number (which can be computed from the SDP solution) as long asP is a polynomial of
degree at mostr. These numbers obey thelinearity property which is that (P+Q)(x) = P(x)+
Q(x), and, most importantly, thepositivityproperty thatP2(x) > 0 for every polynomialP
of degree at mostr/2. These expressions satisfy all initial constraints (i.e., P2

i (x) = 0 for
i = 1 . . .m) and thevalueof the SDP is set to be the expressionP0(x). The above means
that to show that the SoS relaxation has value at mostv it is sufficient to give any proof that
derives from the constraints{P2

i (x) = 0}i=1..m the conclusion thatP0(x) 6 v using only the
linearity and positivity properties, without using any polynomials of degree larger thanr in
the intermediate steps. In fact, such a proof always has the form

v − P0(x) =
k∑

i=1

Ri(x)2 +

m∑

i=1

Pi(x)Qi(x), (3.1)

whereR1, . . . ,Rk,Q1, . . . ,Qm are arbitrary polynomials satisfying degRi 6 r/2, degPiQi 6

r. The polynomial
∑

i Ri(x)2 is a SoS (sum of squares) and optimizing over such polynomi-
als (along with theQ1, . . . ,Qm) can be achieved with a semi-definite program.

Pseudo-expectation view. For more intuition about the SoS hierarchy, one can imagine
that instead of being formal variables,x1, . . . , xn actually correspond to correlated random
variablesX1, . . . ,Xn over�n, and the expressionP(x) is set to equal the expectation�[P(X)].
In this case, the linearity and positivity properties are obviously satisfied by these expres-
sions, although other properties that would be obtained ifx1, . . . , xn were simply numbers
might not hold. For example, the property thatR(x) = P(x)Q(x) if R = P · Q does not
necessarily hold, since its not always the case thatE[XY] = E[X]E[Y] for every three ran-
dom variablesX,Y,Z. So, another way to describe ther-round SoS hierarchy is that the
expressionsP(x) (for P of degree at mostr) satisfy some of the constraints that would have
been satisfied if these expressions corresponded to expectations over some correlated ran-
dom variablesX1, . . . ,XN. For this reason, we will use the notation�̃x P(x) instead ofP(x)
where we refer to the functional�̃ as a level-r pseudo-expectation functional(or r-p.e.f. for
short). Also, rather than describingx1, . . . , xn as formal variables, we will refer to them as
level-r fictitious random variables(or r-f.r.v. for short) since in some sense they look like
true correlated random variables up to theirr th moment.

We can now present our formal definition of pseudo-expectation and the SoS hierarchy:8

Definition 3.1. Let �̃ be a functional that maps polynomialP over�n of degree at mostr
into a real number which we denote by�̃x P(x) or �̃P for short. We say that̃� is a level-r
pseudo-expectation functional(r-p.e.f. for short) if it satisfies:

Linearity For every polynomialsP,Q of degree at mostr andα, β ∈ �, �̃(αP + βQ) =
α �̃P+ β �̃Q.

Positivity For every polynomialP of degree at mostr/2, �̃P2
> 0.

Normalization �̃ 1 = 1 where on the RHS, 1 denotes the degree-0 polynomial that is the
constant 1.

Definition 3.2. Let P0, . . . ,Pm be polynomials over�n of degree at mostd, and letr >
2d. The value of ther-round SoS SDP for the program “maxP0 subject toP2

i = 0 for

8We use the name “Sum of Squares” since the positivity condition below is the most important constraint
of this program. However, some prior works used this name forthedual of the program we define here. As we
show in AppendixC, in many cases of interest to us there is no duality gap.
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i = 1 . . .m”, is equal to the maximum of̃�P0 where�̃ ranges over all levelr pseudo-
expectation functionals satisfying̃�P2

i = 0 for i = 1 . . .m.

The functional�̃ can be represented by a table of sizenO(r) containing the pseudo-
expectations of every monomial of degree at mostr (or some other linear basis for polyno-
mials of degree at mostr). For a linear functional̃�, the mapP 7→ �̃P2 is a quadratic form.
Hence,�̃ satisfies the positivity condition if and only if the corresponding quadratic form is
positive semidefinite. It follows that the convex set of level-r pseudo-expectation function-
als over�n admits annO(r)-time separation oracle, and hence ther-round SoS relaxation
can be solved up to accuracyε in time (mn· log(1/ε))O(r).

As noted above, for every random variableX over�n, the functional�̃P := �P(X) is
a level-r pseudo-expectation functional for everyr. As r → ∞, this hierarchy of pseudo-
expectations will converge to the expectations of a true random variable [Las01], but the
convergence is in general not guaranteed to happen in a finitenumber of steps [dKL11].

Whenever there can be ambiguity about what are the variablesof the polynomialP
inside anr-p.e.f.�̃, we will use the notatioñ�x P(x) (e.g.,�̃x x2

3 is the same as̃�P where
P is the polynomialx 7→ x2

3). As mentioned above, we call the inputsx to the polynomial
level-r fictitious random variablesor r-f.r.v. for short.

Remark 3.3. The main difference between the SoS hierarchy and weaker SDP hierarchies
considered in the literature such as SDP+Sherali Adams and the Approximate Lasserre
hierarchies [RS09, KPS10] is that the SoS hierarchy treats all polynomials equally and
hence is agnostic to the choice of basis. For example, the approximate Lasserre hierarchy
can also be described in terms of pseudo-expectations, but these pseudo-expectations are
only defined for monomials, and are allowed some small error.While they can be extended
linearly to other polynomials, for non-sparse polynomialsthat error can greatly accumulate.

3.1 Basic properties of pseudo-expectation

For two polynomialsP andQ, we writeP � Q if Q = P +
∑m

i=1 R2
i for some polynomials

R1, . . . ,Rm.
If P andQ have degree at mostr, thenP � Q implies that�̃P 6 �̃Q everyr-p.e.f.�̃.

This follows using linearity and positivity, as well as the (not too hard to verify) observation
that if Q− P =

∑

i R2
i then it must hold that deg(Ri) 6 max{deg(P), deg(Q)}/2 for everyi.

We would like to understand how polynomials behave on linearsubspaces of�n. A
mapP: �n → � is polynomialover a linear subspaceV ⊆ �n if P restricted toV agrees
with a polynomial in the coefficients for some basis ofV. Concretely, ifg1, . . . , gm is an
(orthonormal) basis ofV, thenP is polynomialoverV if P( f ) agrees with a polynomial in
〈 f , g1〉, . . . , 〈 f , gm〉. We say thatP � Q holds over a subspaceV if P − Q, as a polynomial
overV, is a sum of squares.

Lemma 3.4. Let P and Q be two polynomials over�n of degree at most r, and let B: �n→
�

k be a linear operator. Suppose that P� Q holds over the kernel of B. Then,�̃P 6 �̃Q
holds for any r-p.e.f.̃� over�n that satisfies̃� f ‖B f‖2 = 0.

Proof. Since P � Q over the kernel ofB, we can writeQ( f ) = P( f ) +
∑m

i=1 R2
i ( f ) +

∑k
j=1(B f) jS j( f ) for polynomials R1, . . . ,Rm and S1, . . . ,Sk over �n. By positivity,

�̃ f R2
i ( f ) > 0 for all i ∈ [m]. We claim that�̃ f (B f) jS j( f ) = 0 for all j ∈ [k] (which

would finish the proof). This claim follows from the fact that�̃ f (B f)2
j = 0 for all j ∈ [k]

andLemma 3.5below. �
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Lemma 3.5(Pseudo Cauchy-Schwarz). Let P and Q be two polynomials of degree at most
r. Then,�̃PQ6

√
�̃P2 ·

√

�̃Q2 for any degree-2r pseudo-expectation functional�̃.

Proof. We first consider the casẽ�P2, �̃Q2 > 0. Then, by linearity of̃�, we may assume
that�̃P2 = �̃Q2 = 1. Since 2PQ� P2+Q2 (by expanding the square (P−Q)2), it follows
that �̃PQ 6 1

2 �̃P2 + 1
2 �̃Q2 = 1 as desired. It remains to consider the case�̃P2 = 0. In

this case, 2αPQ� P2+α2Q2 implies that�̃PQ6 α · 1
2 �̃Q2 for all α > 0. Thus�̃PQ= 0,

as desired. �

Lemma3.5 also explains why our SDP in Definition3.2 is dual to the one in (3.1). If
�̃ is a level-r pseudo-expectation functional satisfying�̃[P2

i ] = 0, then Lemma3.5implies
that�̃[PiQi ] = 0 for all Qi with degPiQi 6 r.

Appendix A contains some additional useful facts about pseudo-expectation func-
tionals. In particular, we will make repeated use of the factthat they satisfy another
Cauchy-Schwarz analogue: namely, for any level-2 f.r.v.’sf , g, we have�̃ f ,g〈 f , g〉 6
√

�̃ f ‖ f ‖2
√

�̃g‖g‖2. This is proven in LemmaA.4.

3.2 Why is this SoS hierarchy useful?

Consider the following example. It is known that iff : {±1}ℓ → � is a degree-d polynomial
then

9d
(

�
w∈{±1}ℓ

f (w)2
)2

> �
w∈{±1}n

f (w)4 , (3.2)

(see e.g. [O’D07]). Equivalently, the linear operatorPd on�{±1}ℓ that projects a function
into the degreed polynomials satisfies‖Pd‖2→4 6 9d/4. This fact is known as the hypercon-
tractivity of low-degree polynomials, and was used in several integrality gaps results such
as [KV05]. By following the proof of (3.2) we show in Lemma5.1that a stronger statement
is true:

9d
(

�
w∈{±1}ℓ

f (w)2
)2

= �
w∈{±1}ℓ

f (w)4 +

m∑

i=1

Qi( f )2 , (3.3)

where theQi ’s are polynomials of degree6 2 in the
(
ℓ
d

)

variables{ f̂ (α)}α∈([ℓ]
d ) specifying

the coefficients of the polynomialf . By using the positivity constraints, (3.3) implies that
(3.2) holds even in the 4-round SoS relaxation where we consider the coefficients of f to
be given by 4-f.r.v. This proves Theorem2.2, showing that the SoS relaxation certifies that
‖Pd‖2→4 6 9d/4.

Remark 3.6. Unfortunately to describe the result above, we needed to usethe term “degree”
in two different contexts. The SDP relaxation considers polynomial expressions of degree
at most 4in the coefficients of f. This is a different notion of degree than the degree
d of f itself as a polynomial over�ℓ. In particular the variables of this SoS program
are the

(
ℓ
d

)

coefficients { f̂ (α)}α∈([ℓ]
d ). Note that for every fixedw, the expressionf (w) is

a linear polynomial over these variables, and hence the expressions
(

�w∈{±1}ℓ f (w)2
)2

and

�w∈{±1}ℓ f (w)4 are degree 4 polynomials over the variables.

While the proof of (3.3) is fairly simple, we find the result— that hypercontractivity
of polynomials is efficiently certifiable—somewhat surprising. The reason is that hyper-
contractivity serves as the basis of the integrality gaps results which are exactly instances
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of maximization problems where the objective value is low but this is supposedly hard
to certify. In particular, we consider integrality gaps forUnique Games considered be-
fore in the literature. All of these instances follow the framework initiated by Khot and
Vishnoi [KV05]. Their idea was inspired by Unique Games hardness proofs, with the inte-
grality gap obtained by composing an initial instance with agadget. The proof that these
instances have “cheating” SDP solutions is obtained by “lifting” the completeness proof
of the gadget. On the other hand, the soundness property of the gadget, combined with
some isoperimetric results, showed that the instances do not have real solutions. This ap-
proach of lifting completeness proofs of reductions was used to get other integrality gap
results as well [Tul09]. We show that the SoS hierarchy allows us to lift a certainsoundness
proof for these instances, which includes a (variant of) theinvariance principle of [MOO05],
influence-decoding a la [KKMO04], and hypercontractivity of low-degree polynomials. It
turns out all these results can be proven via sum-of-squarestype arguments and hence lifted
to the SoS hierarchy.

4 Overview of proofs

We now give a very high level overview of the tools we use to obtain our results, leaving
details to the later sections and appendices.

4.1 Subexponential algorithm for the 2-to-q norm

Our subexponential algorithm for obtaining a good approximation for the 2→ q norm is
extremely simple. It is based on the observation that a subspaceV ⊆ �n of too large a dimen-
sion must contain a functionf such that‖ f ‖q ≫ ‖ f ‖2. For example, if dim(V) ≫

√
n, then

there must bef such that‖ f ‖4 ≫ ‖ f ‖2. This means that if we want to distinguish between,
say, the case that‖V‖2→4 6 2 and‖V‖2→4 > 3, then we can assume without loss of general-
ity that dim(V) = O(

√
n) in which case we can solve the problem in exp(O(

√
n)) time. To

get intuition, consider the case thatV is spanned by an orthonormal basisf 1, . . . , f d of func-
tions whose entries are all in±1. Then clearly we can find coefficientsa1, . . . , ad ∈ {±1}
such that the first coordinate ofg =

∑
a j f j is equal tod, which means that its 4-norm is at

least (d4/n)1/4 = d/n1/4. On the other hand, since the basis is orthonormal, the 2-norm of g
equals

√
d which is≪ d/n1/4 for d≫

√
n.

Note the similarity between this algorithm and [ABS10]’s algorithm for Small-Set Ex-
pansion, that also worked by showing that if the dimension of the top eigenspace of a graph
is too large then it cannot be a small-set expander. Indeed, using our reduction of Small-Set
Expansion to the 2→ q norm, we can reproduce a similar result to [ABS10].

4.2 Bounding the value of SoS relaxations

We show that in several cases, the SoS SDP hierarchy gives strong bounds on various in-
stances. At the heart of these results is a general approach of “lifting” proofs about one-
dimensional objects into the SoS relaxation domain. Thus wetransform the prior proofs
that these instances have small objective value, into a proof that the SoS relaxation also
has a small objective The crucial observation is that many proofs boil down to the simple
fact that a sum of squares of numbers is always non-negative.It turns out that this “sum of
squares” axiom is surprisingly powerful (e.g. implying a version of the Cauchy–Schwarz
inequality given by LemmaA.4), and many proofs boil down to essentially this principle.
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4.3 The 2-to-4 norm and small-set expansion

Bounds on thep→ q norm of operators forp < q have been used to show fast convergence
of Markov chains. In particular, it is known that if the projector to the top eigenspace of
a graphG has bounded 2→ 4 norm, then that graph is asmall-set expanderin the sense
that sets ofo(1) fraction of the vertices have most of their edges exit theset. In this work
we show a converse to this statement, proving that ifG is a small-set expander, then the
corresponding projector has bounded 2→ 4 norm. As mentioned above, one corollary of
this result is that a good (i.e., dimension-independent) approximation to the 2→ 4 norm
will refute the Small-Set Expansion hypothesis of [RS10].

We give a rough sketch of the proof. Suppose thatG is a sufficiently strong small-set
expander, in the sense that every setS with |S| 6 δ|V(G)| has all but a tiny fraction of
the edges (u, v) with u ∈ S satisfyingv < S. Let f be a function in the eigenspace ofG
corresponding to eigenvalues larger than, say 0.99. Sincef is in the top eigenspace, for the
purposes of this sketch let’s imagine that it satisfies

∀x ∈ V, �
y∼x

f (y) > 0.9 f (x), (4.1)

where the expectation is over a random neighbory of x. Now, suppose that� f (x)2 = 1
but � f (x)4 = C for someC ≫ poly(1/δ). That means that most of the contribution to
the 4-norm comes from the setS of verticesx such that f (x) > (1/2)C1/4, but |S| ≪
δ|V(G)|. Moreover, suppose for simplicity thatf (x) ∈ ((1/2)C1/4, 2C1/4), in which case
the condition(*) together with the small-set expansion condition that for most verticesy in
Γ(S) (the neighborhood ofS) satisfy f (y) > C1/4/3, but the small-set expansion condition,
together with the regularity of the graph imply that|Γ(S)| > 200|S| (say), which implies
that� f (x)4

> 2C—a contradiction.
The actual proof is more complicated, since we can’t assume the condition (4.1). In-

stead we will approximate it it by assuming thatf is the function in the top eigenspace that
maximizesthe ratio‖ f ‖4/‖ f ‖2. See Section8 for the details.

4.4 The 2-to-4 norm and the injective tensor norm

To relate the 2→ 4 norm to the injective tensor norm, we start by establishingequivalences
between the 2→ 4 norm and a variety of different tensor problems. Some of these are
straightforward exercises in linear algebra, analogous toproving that the largest eigenvalue
of MT M equals the square of the operator norm ofM.

One technically challenging reduction is between the problem of optimizing a general
degree-4 polynomialf (x) for x ∈ �n and a polynomial that can be written as the sum
of fourth powers of linear functions ofx. Straightforward approaches will magnify errors
by poly(n) factors, which would make it impossible to rule out a PTAS for the 2→ 4
norm. This would still be enough to prove that a 1/poly(n) additive approximation isNP-
hard. However, to handle constant-factor approximations,we will instead use a variant of
a reduction in [HM10]. This will allow us to map a general tensor optimization problem
(corresponding to a general degree-4 polynomial) to a 2→ 4 norm calculation without
losing very much precision.

To understand this reduction, we first introduce then2 × n2 matrix A2,2 (defined in
Section9) with the property that‖A‖42→4 = maxzTA2,2z, where the maximum is taken
over unit vectorsz that can be written in the formx ⊗ y. Without this last restriction, the
maximum would simply be the operator norm ofA2,2. Operationally, we can think ofA2,2

as a quantum measurement operator, and vectors of the formx ⊗ y as unentangled states
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(equivalently we say that vectors in this form are tensor product states, or simply “product
states”). Thus the difference between‖A‖42→4 and‖A2,2‖2→2 can be thought of as the extent
to which the measurementA2,2 can notice the difference between product states and (some)
entangled state.

Next, we define a matrixA′ whose rows are of the form (x′ ⊗ y′)∗
√

A2,2, wherex′, y′ ∈
�

n range over a distribution that approximates the uniform distribution. If A′ acts on a
vector of the formx ⊗ y, then the maximum output 4-norm (overL2-unit vectorsx, y) is
precisely‖A‖2→4. Intuitively, if A′ acts on a highly “entangled” vectorz, meaning that
〈z, x ⊗ y〉 is small for all unit vectorsx, y, then‖A′z‖4 should be small. This is becausez
will have small overlap withx′ ⊗ y′, andA2,2 is positive semi-definite, so its off-diagonal
entries can be upper-bounded in terms of its operator norm. These arguments (detailed
in Section9.2) lead to only modest bounds onA′, but then we can use an amplification
argument to make the 2→ 4 norm ofA′ depend more sensitively on that ofA, at the cost
of blowing up the dimension by a polynomial factor.

The reductions we achieve also permit us, in Section9.3, to relate ourTensor-SDP algo-
rithm with the sum-of-squares relaxation used by Doherty, Parrilo, and Spedalieri [DPS04]
(henceforth DPS). We show the two relaxations are essentially equivalent, allowing us to
import results proved, in some cases, with techniques from quantum information theory.
One such result, from [BaCY11], requires relatingA2,2 to a quantum measurement of the 1-
LOCC form. This means that there are twon-dimensional subsystems, combined via tensor
products, andA2,2 can be implemented as a measurement on the first subsystem followed by
a measurement on the second subsystem that is chosen conditioned on the results of the first
measurement. The main result of [BaCY11] proved that such LOCC measurements exhibit
much better behavior under DPS, and they obtain nontrivial approximation guarantees with
only O(log(n)/ε2) rounds. Since this is achieved by DPS, it also implies an upper bound
on the error ofTensor-SDP. This upper bound isεZ, whereZ is the smallest number for
which A2,2 6 ZM for some 1-LOCC measurementM. While Z is not believed to be effi-
ciently computable, it is at least‖A2,2‖2→2, since any measurementM has‖M‖2→2 6 1. To
upper boundZ, we can explicitly constructA2,2 as a quantum measurement. This is done by
the following protocol. Leta1, . . . , am be the rows ofA. One party performs the quantum
measurement with outcomes{αaiaT

i }mi=1 (whereα is a normalization factor) and transmits
the outcomei to the other party. Upon receiving messagei, the second party does the two
outcome measurement{βaiaT

i , I − βaiaT
i } and outputs 0 or 1 accordingly, whereβ is another

normalization factor. The measurementA2,2 corresponds to the “0” outcomes. For this to
be a physically realizable 1-LOCC measurement, we needα 6 ‖ATA‖2→2 andβ 6 ‖A‖22→∞.
Combining these ingredients, we obtain the approximation guarantee in Theorem2.3. More
details on this argument are in Section9.3.1.

4.5 Definitions and Notation

LetU be some finite set. For concreteness, and without loss of generality, we can letU be
the set{1, . . . , n}, wheren is some positive integer. We write�U f to denote the average
value of a functionf : U → � over a random point inU (omitting the subscriptU when
it is clear from the context). We letL2(U) denote the space of functionsf : U → �
endowed with the inner product〈 f , g〉 = �U fg and its induced norm‖ f ‖ = 〈 f , f 〉1/2.
For p > 1, the p-norm of a function f ∈ L2(U) is defined as‖ f ‖p := (� | f |p)1/p. A
convexity argument shows‖ f ‖p 6 ‖ f ‖q for p 6 q. If A is a linear operator mapping
functions fromL2(U) to L2(V), and p, q > 1, then thep-to-q norm of A is defined as
‖A‖p→q = max0, f∈L2(U)‖A f‖q/‖ f ‖p. If V ⊆ L2(U) is a linear subspace, then we denote
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‖V‖p→q = maxf∈V‖ f ‖q/‖ f ‖p.

Counting norms. In most of this paper we useexpectation normsdefined as above, but in
some contexts thecounting normswill be more convenient. We will stick to the convention
that functionsuse expectation norms whilevectorsuse the counting norms. For a vector
v ∈ �U andp > 1, thep counting normof v, denoted‖‖‖v‖‖‖p, is defined to be

(∑

i∈U |vi |p
)1/p.

The counting inner productof two vectorsu, v ∈ �U, denoted as〈〈〈u, v〉〉〉, is defined to be
∑

i∈U uiv
∗
i .

5 The Tensor-SDP algorithm

There is a very natural SoS program for the 2→ 4 norm for a given linear operator
A: L2(U)→ L2(V):

Algorithm Tensor-SDP(d)(A):

Maximize�̃ f ‖A f‖44 subject to

– f is ad-f.r.v. overL2(U),

– �̃ f (‖ f ‖2 − 1)2 = 0.

Note that‖A f‖44 is indeed a degree 4 polynomial in the variables{ f (u)}u∈U . The
Tensor-SDP(d) algorithm makes sense ford > 4, and we denote byTensor-SDP its most
basic version whered = 4. TheTensor-SDP algorithm applies not just to the 2→ 4 norm,
but to optimizing general polynomials over the unit ball ofL2(U) by replacing‖A f‖44 with
an arbitrary polynomialP.

While we do not know the worst-case performance of theTensor-SDP algorithm, we do
know that it performs well on random instances (see Section7), and (perhaps more relevant
to the UGC) on the projector to low-degree polynomials (see Theorem2.2). The latter is a
corollary of the following result:

Lemma 5.1. Over the space of n-variate Fourier polynomials9 f with degree at most d,

� f 4 � 9d
(

� f 2
)2
,

where the expectations are over{±1}n.

Proof. The result is proven by a careful variant of the standard inductive proof of the hy-
percontractivity for low-degree polynomials (see e.g. [O’D07]). We include it in this part
of the paper since it is the simplest example of how to “lift” known proofs about functions
over the reals into proofs about the fictitious random variables that arise in semidefinite
programming hierarchies. To strengthen the inductive hypothesis, we will prove the more
general statement that forf andg beingn-variate Fourier polynomials with degrees at most
d ande, it holds that� f 2g2 � 9

d+e
2

(

� f 2
) (

� g2
)

. (Formally, this polynomial relation is
over the linear space of pairs ofn-variate Fourier polynomials (f , g), where f has degree at
mostd andg has degree at moste.) The proof is by induction on the number of variables.

If one of the functions is constant (so thatd = 0 or e = 0), then� f 2g2 =

(� f 2)(� g2), as desired. Otherwise, letf0, f1, g0, g1 be Fourier polynomials depending only

9An n-variate Fourier polynomial with degree at mostd is a function f : {±1}n → � of the form f =
∑

α⊆[n],|α|6d f̂αχα whereχα(x) =
∏

i∈α xi .
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on x1, . . . , xn−1 such thatf (x) = f0(x) + xn f1(x) andg(x) = g0(x) + xng1(x). The Fourier
polynomials f0, f1, g0, g1 depend linearly onf andg (becausef0(x) = 1

2 f (x1, . . . , xn−1, 1)+
1
2 f (x1, . . . , xn−1,−1) and f1(x) = 1

2 f (x1, . . . , xn−1, 1) − 1
2 f (x1, . . . , xn−1,−1)). Furthermore,

the degrees off0, f1, g0, andg1 are at mostd, d − 1, e, ande− 1, respectively.
Since� xn = � x3

n = 0, if we expand� f 2g2 = �( f0+ xn f1)2(g0+ xng1)2 then the terms
wherexn appears in an odd power vanish, and we obtain

� f 2g2 = � f 2
0 g

2
0 + f 2

1g
2
1 + f 2

0 g
2
1 + f 2

1g
2
0 + 4 f0 f1g0g1

By expanding the square expression 2�( f0 f1 − g0g1)2, we get 4� f0 f1g0g1 � 2� f 2
0 g

2
1 +

f 2
1 g

2
0 and thus

� f 2g2 � � f 2
0 g

2
0 + � f 2

1g
2
1 + 3� f 2

0g
2
1 + 3� f 2

1g
2
0 . (5.1)

Applying the induction hypothesis to all four terms on the right-hand side of(5.1) (using
for the last two terms that the degree off1 andg1 is at mostd − 1 ande− 1),

� f 2g2 � 9
d+e

2

(

� f 2
0

) (

� g2
0

)

+ 9
d+e

2

(

� f 2
1

) (

� g2
1

)

+ 3 · 9d+e
2 −1/2

(

� f 2
0

) (

� g2
1

)

+ 3 · 9d+e
2 −1/2

(

� f 2
1

) (

� g2
0

)

= 9
d+e

2

(

� f 2
0 + � f 2

1

) (

� g2
0 + � g

2
1

)

.

Since� f 2
0 +� f 2

1 = �( f0+xn f1)2 = � f 2 (using� xn = 0) and similarly� g2
0+� g

2
1 = � g

2,

we derive the desired relation� f 2g2 � 9
d+e

2

(

� f 2
) (

� g2
)

. �

6 SoS succeeds on Unique Games integrality gaps

In this section we prove Theorem2.6, showing that 8 rounds of the SoS hierarchy can beat
the Basic SDP program on the canonical integrality gaps considered in the literature.

Theorem 6.1(Theorem2.6, restated). For sufficiently smallε and large k, and every n∈ �,
letW be an n-variable k-alphabetUnique Games instance of the type considered in [RS09,
KS09, KPS10] obtained by composing the “quotient noisy cube” instance of [KV05] with
the long-code alphabet reduction of [KKMO04] so that the best assignment toW’s variable
satisfies at most anε fraction of the constraints. Then, on inputW, eight rounds of the SoS
relaxation outputs at most1/100.

6.1 Proof sketch of Theorem6.1

The proof is very technical, as it is obtained by taking the already rather technical proofs of
soundness for these instances, and “lifting” each step intothe SoS hierarchy, a procedure
that causes additional difficulties. The high level structure of all integrality gap instances
constructed in the literature was the following: Start witha basic integrality gap instance
of Unique Games where the Basic SDP outputs 1− o(1) but the true optimum iso(1), the
alphabet sizeof U is (necessarily)R = ω(1). Then, apply analphabet-reduction gadget
(such as the long code, or in the recent work [BGH+11] the so called “short code”) to
transformU into an instanceW with some constant alphabet sizek. The soundness proof
of the gadget guarantees that the true optimum ofU is small, while the analysis of previous
works managed to “lift” the completeness proofs, and argue that the instanceU survives a
number of rounds that tends to infinity asε tends to zero, where (1− ε) is the completeness
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value in the gap constructions, and exact tradeoff between number of rounds andε depends
on the paper and hierarchy.

The fact that the basic instanceU has small integral value can be shown by appealing to
hypercontractivity of low-degree polynomials, and hence can be “lifted” to the SoS world
via Lemma5.1. The bulk of the technical work is in lifting the soundness proof of the
gadget. On a high level this proof involves the following components:(1) The invariance
principle of [MOO05], saying that low influence functions cannot distinguish between the
cube and the sphere; this allows us to argue that functions that perform well on the gadget
must have an influential variable, and(2) the influence decodingprocedure of [KKMO04]
that maps these influential functions on each local gadget into a good global assignment for
the original instanceU.

The invariance principle poses a special challenge, since the proof of [MOO05] uses so
called “bump” functions which are not at all low-degree polynomials.10 We use a weaker
invariance principle, only showing that the 4 norm of a low influence function remains the
same between two probability spaces that agree on the first 2 moments. Unlike the usual
invariance principle, we do not move between Bernoulli variables and Gaussian space, but
rather between two different distributions on the discrete cube. It turns out that for the
purposes of these Unique Games integrality gaps, the above suffices. The lifted invariance
principle is proven via a “hybrid” argument similar to the argument of [MOO05], where
hypercontractivity of low-degree polynomials again playsan important role.

The soundness analysis of [KKMO04] is obtained by replacing each local function with
an average over its neighbors, and then choosing a random influential coordinate from the
new local function as an assignment for the original uniquegames instance. We follow the
same approach, though even simple tasks such as independentrandomized rounding turn
out to be much subtler in the lifted setting. However, it turns out that by making appropriate
modification to the analysis, it can be lifted to complete theproof of Theorem2.6.

In the following, we give a more technical description of theproof. Let T1−η be
the η-noise graph on{±1}R. Khot and Vishnoi [KV05] constructed a unique gameU
with label-extended graphT1−η. A solution to the level-4 SoS relaxation ofU is 4-
f.r.v. h over L2({±1}R). This variable satisfiesh(x)2 ≡h h(x) for all x ∈ {±1}R and also
�̃h(� h)2

6 1/R2. (The variableh encodes a 0/1 assignment to the vertices of the label-
extended graph. A proper assignment assigns 1 only to a 1/R fraction of these vertices.)
Lemma 6.7allows us to bound the objective value of the solutionh in terms of the fourth
moment�̃h�(P>λh)4, whereP>λ is the projector into the span of the eigenfunctions of
T1−η with eigenvalue larger thanλ ≈ 1/Rη. (Note that�(P>λh)4 is a degree-4 polyno-
mial in h.) For the graphT1−η, we can bound the degree ofP>λh as a Fourier polyno-
mial (by about log(R)). Hence, the hypercontractivity bound (Lemma 5.1) allows us to
bound the fourth moment̃�h�(P>λh)4

6 �̃h(� h2)2. By our assumptions onh, we have
�̃h(� h2)2 = �̃h(� h)2

6 1/R2. Plugging these bounds into the bound ofLemma 6.7demon-
strates that the objective value ofh is bounded by 1/RΩ(η) (seeTheorem 6.11).

Next, we consider a unique gameW obtained by composing the unique gameU with
the alphabet reduction of [KKMO04]. Suppose thatW has alphabetΩ = {0, . . . , k−1}. The
vertex set ofW is V ×ΩR (with V being the vertex set ofU). Let f = { fu}u∈V be a solution
to the level-8 SoS relaxation ofW. To bound the objective value off , we derive from it
a level-4 random variableh over L2(V × [R]). (Encoding a function on the label-extended
graph of the unique gameU.) We defineh(u, r) = Inf (6ℓ)

r f̄u, whereℓ ≈ logk and f̄u is

10A similar, though not identical, challenge arises in [BGH+11] where they need to extend the invariance
principle to the “short code” setting. However, their solution does not seem to apply in our case, and we use a
different approach.
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a variable ofL2(ΩR) obtained by averaging certain values offu (“folding”). It is easy to
show thath2 � h (usingLemma A.1) and �̃h(� h)2

6 ℓ/R (bound on the total influence
of low-degree Fourier polynomials).Theorem 6.9(influence decoding) allows us to bound
the objective value off in terms of the correlation ofh with the label-extended graph ofU
(in our case,T1−η). Here, we can use againTheorem 6.11to show that the correlation ofh
with the graphT1−η is very small. (An additional challenge arises becauseh does not satisfy
h2 ≡h h, but only the weaker conditionh2 � h. Corollary 6.5fixes this issue by simulating
independent rounding for fictitious random variables.) To prove Theorem 6.9(influence
decoding), we analyze the behavior of fictitious random variables on the alphabet-reduction
gadget of [KKMO04]. This alphabet-reduction gadget essentially corresponds to theε-
noise graphT1−ε onΩR. Supposeg is a fictitious random variables overL2(ΩR) satisfying
g2 � g. By Lemma 6.7, we can bound the correlation ofg with the graphT1−ε in terms
of the fourth moment ofP>λg. At this point, the hypercontractivity bound (Lemma 5.1)
is too weak to be helpful. Instead we show an “invariance principle” result (Theorem 6.2),
which allows us to relate the fourth moment ofP>λg to the fourth moment of a nicer random
variable and the influences ofg.

Organization of the proof. We now turn to the actual proof of Theorem6.1. The proof
consists of lifting to the SoS hierarchy all the steps used inthe analysis of previous in-
tegrality gaps, which themselves arise from hardness reductions. We start in Section6.2
by showing a sum-of-squares proof for a weaker version of [MOO05]’s invariance princi-
ple. Then in Section6.3 we show how one can perform independent rounding in the SoS
world (this is a trivial step in proofs involving true randomvariables, but becomes much
more subtle when dealing with SoS solutions). In Sections6.4 and6.5 we lift variants of
the [KKMO04] dictatorship test. The proof uses a SoS variant of influencedecoding, which
is covered in Section6.6. Together all these sections establish SoS analogs of the soundness
properties of the hardness reduction used in the previous results. Then, in Section6.7 we
show that analysis of the basic instance has a sum of squares proof (since it is based on
hypercontractivity of low-degree polynomials). Finally in Section6.8we combine all these
tools to conclude the proof. In Section6.9 we discuss why this proof applies (with some
modifications) also to the “short-code” based instances of [BGH+11].

6.2 Invariance Principle for Fourth Moment

In this section, we will give a sum-of-squares proof for a variant of the invariance principle
of [MOO05]. Instead of for general smooth functionals (usually constructed from “bump
functions”), we show invariance only for the fourth moment.It turns out that invariance of
the fourth moment is enough for our applications.

Let k = 2t for t ∈ � and letX = (X1, . . . ,XR) be an independent sequence11 of or-
thonormal ensemblesXr = (Xr,0, . . . ,Xr,k−1). Concretely, we chooseXr,i = χi(xr ), where
χ0, . . . , χk−1 is the set of characters of�t

2 andx is sampled uniformly from (�t
2)R. Every

random variable over (�t
2)R can be expressed as a multilinear polynomial over the sequence

X. In this sense,X is maximally dependent. On the other hand, letY = (Y1, . . . ,YR) be a
sequence of ensemblesYr = (Yr,0, . . . ,Yr,k−1), whereYr,0 ≡ 1 andYr, j are independent, un-
biased{±1} Bernoulli variables. The sequenceY is maximally independent since it consists

11An orthonormal ensembleis a collection of orthonormal real-valued random variables, one being the con-
stant 1. A sequence of such ensembles isindependentif each ensemble is defined over an independent proba-
bility space. (See [MOO05] for details.)
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of completely independent random variables.
Let f be a 4-f.r.v. over the space of multilinear polynomials withdegree at mostℓ and

monomials indexed by [k]R. Suppose�̃ f ‖ f ‖4 6 1. (In the following, we mildly overload
notation and use [k] to denote the set{0, . . . , k − 1}.) Concretely, we can specifyf by the
set of monomial coefficients{ f̂α}α∈[k]R, |α|6ℓ, where|α| is the number of non-zero entries in
α. As usual, we define Infr f =

∑

α∈[k]R, αr,0 f̂ 2
α . Note that Infr f is a degree-2 polynomial

in f . (Hence, the pseudo-expectation of (Infr f )2 is defined.)

Theorem 6.2(Invariance Principle for Fourth Moment). For τ = �̃ f
∑

r (Inf r f )2,

�̃
f
�
X

f 4 = �̃
f
�
Y

f 4 ± kO(ℓ)√τ .

(Since the expressions�X f 4 and �Y f 4 are degree-4 polynomials inf , their pseudo-
expectations are defined.)

Using the SoS proof for hypercontractivity of low-degree polynomials (over the en-
sembleY), the fourth moment�̃ f �Y f 4 is bounded in terms of the second moment
�̃ f �Y f 2. Since the first two moments of the ensemblesX and Y match, we have
�̃ f �Y f 2 = �̃ f �X f 2. Hence, we can bound the fourth moment off overX in terms
of the its second moment andτ.

Corollary 6.3.
�̃
f
�
X

f 4 = 2O(ℓ)
�̃
f
(�
X

f 2)2 ± kO(ℓ)√τ .

(The corollary shows that for small enoughτ, the 4-norm and 2-norm off are within a
factor of 2O(ℓ). This bound is useful because the worst-case ratio of these norms iskO(ℓ) ≫
2O(ℓ).)

Proof ofTheorem 6.2. We consider the following intermediate sequences of ensembles
Z(r) = (X1, . . . ,Xr ,Yr+1, . . . ,YR). Note thatZ(0) = Y andZ(R) = X. For r ∈ �, we
write f = Er f + Dr f , whereEr f is the part off that does not dependent on coordinater
andDr f = f −Er f . For allr ∈ �, the following identities (between polynomials inf ) hold

�
Z(r)

f 4 − �
Z(r−1)

f 4 = �
Z(r)

(Er f + Dr f )4 − �
Z(r−1)

(Er f + Dr f )4

= �
Z(r)

4(Er f )(Dr f )3 + (Dr f )4 − �
Z(r−1)

4(Er f )(Dr f )3 + (Dr f )4 .

The last step uses that the first two moments of the ensemblesXr andYr match and that
Er f does not dependent on coordinater.

Hence,

�
X

f 4 − �
Y

f 4 =
∑

r

�
Z(r)

4(Er f )(Dr f )3 + (Dr f )4 − �
Z(r−1)

4(Er f )(Dr f )3 + (Dr f )4

It remains to bound the pseudo-expectation of the right-hand side. First, we consider
the term

∑

r �Z(r)(Dr f )4. The expression�Z(r)(Dr f )4 is the fourth moment of a Fourier-
polynomial with degree at mostt · ℓ. (Here, we use that the ensembles in the sequenceY
consist of characters of�t

2, which are Fourier polynomials of degree at mostt.) Furthermore,
Inf r f = �Z(r) (Dr f )2 is the second moment of the this Fourier-polynomial. Hence,by hy-
percontractivity of low-degree Fourier-polynomials,

∑

r �Z(r)(Dr f )4 � ∑

r 2O(t·ℓ)(Inf r f )2.
Thus, the pseudo-expectation is at most�̃ f

∑

r �Z(r)(Dr f )4
6 2O(t·ℓ)τ = kO(ℓ)τ.
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Next, we consider the term
∑

r �Z(r)(Er f )(Dr f )3. (The remaining two terms are analo-
gous.) To bound its pseudo-expectation, we apply Cauchy-Schwarz,

�̃
f

∑

r

�
Z(r)

(Er f )(Dr f )3
6



�̃
f

∑

r

�
Z(r)

(Er f )2(Dr f )2





1/2

·


�̃
f

∑

r

�
Z(r)

(Dr f )4





1/2

(6.1)

Using hypercontractivity of low-degree Fourier-polynomials, we can bound the second fac-
tor of (6.1) by �̃ f

∑

r �Z(r)(Dr f )4 = kO(ℓ)τ. It remains to bound the first factor of(6.1).
Again by hypercontractivity,�Z(r) (Er f )2(Dr f )2 � kO(ℓ) ·‖Er f ‖2·‖Dr f ‖2 � kO(ℓ)‖ f ‖2·‖Dr f ‖2.
By the total influence bound for low-degree polynomials, we have

∑

r‖Dr f ‖2 � ℓ‖ f ‖2. Thus
∑

r �Z(r)(Er f )2(Dr f )2 � kO(ℓ)‖ f ‖4. Using the assumptioñ� f ‖ f ‖4 6 1, we can bound the
first factor of(6.1)by kO(ℓ).

We conclude as desired that
∣
∣
∣
∣
∣
∣
�̃
f
�
X

f 4 − �
Y

f 4

∣
∣
∣
∣
∣
∣
6 kO(ℓ)√τ .

�

6.3 Interlude: Independent Rounding

In this section, we will show how to convert variables that satisfy f 2 � f to variablesf̄ satis-
fying f̄ 2 = f̄ . The derived variables̄f will inherit several properties of the original variables
f (in particular, multilinear expectations). This construction corresponds to the standard in-
dependent rounding for variables with values between 0 and 1. The main challenge is that
our random variables are fictitious.

Let f be a 4-f.r.v. over�n. Supposef 2
i � fi (in terms of an unspecified jointly-

distributed 4-f.r.v.). Note that for real numbersx, the conditionx2
6 x is equivalent to

x ∈ [0, 1].

Lemma 6.4. Let f be a4-f.r.v. over�n and let i∈ [n] such that f2i � fi. Then, there exists
an 4-f.r.v. ( f , f̄i) over�n+1 such that�̃ f , f̄i ( f̄ 2

i − f̄i)2 = 0 and for every polynomial P which
is linear in f̄i and has degree at most4,

�̃
f , f̄i

P( f , f̄i) = �̃
f

P( f , fi) .

Proof. We define the pseudo-expectation functional�̃ f , f̄i as follows: For every polynomial
P in ( f , f̄i) of degree at most 4, letP′ be the polynomial obtained by replacinḡf 2

i by f̄i until
P′ is (at most) linear inf̄i . (In other words, we reduceP modulo the relationf̄ 2

i = f̄i .) We
define�̃ f , f̄i P( f , f̄i) = �̃ f P′( f , fi). With this definition,�̃ f , f̄i ( f̄ 2

i − f̄i)2 = 0. The operator
�̃ f , f̄i is clearly linear (since (P + Q)′ = P′ + Q′). It remains to verify positivity. LetP
be a polynomial of degree at most 4. We will show� f , f̄i P2( f , f̄i) > 0. Without loss of
generalityP is linear in f̄i . We expressP = Q + f̄iR, whereQ andR are polynomials in
f . Then, (P2)′ = Q2 + 2 f̄iQR+ f̄iR2. Using our assumptionf 2

i � fi, we get (P2)′( f , fi) =
Q2 + 2 fiQR+ fiR2 � Q2 + 2 fiQR+ f 2

i R2 = P2( f , fi). It follows as desired that

�̃
f , f̄i

P2 = �̃
f
(P2)′( f , fi) > �̃

f
P2( f , fi) > 0 .

�
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Corollary 6.5. Let f be a4-f.r.v. over�n and let I ⊆ [n] such that f2i � fi for all i ∈ I.
Then, there exists an4-f.r.v. ( f , f̄I ) over�n+|I | such that�̃ f , f̄I ( f̄ 2

i − f̄i)2 = 0 for all i ∈ I and
for every polynomial P which is multilinear in the variables{ f̄i}i∈I and has degree at most
4,

�̃
f , f̄I

P( f , f̄I ) = �̃
f

P( f , fI ) .

6.4 Dictatorship Test for Small-Set Expansion

LetΩ = {0, . . . , k− 1} and letT1−ε be the noise graph onΩR with second largest eigenvalue
1 − ε. Let f be a 4-f.r.v. overL2(ΩR). Supposef 2 � f (in terms of an unspecified jointly-
distributed 4-f.r.v.). Note that for real numbersx, the conditionx2

6 x is equivalent to
x ∈ [0, 1].

The following theorem is an analog of the “Majority is Stablest” result [MOO05].

Theorem 6.6. Suppose�̃ f (� f )2
6 δ2. Let τ = �̃ f

∑

r (Inf (6ℓ)
r f )2 for ℓ = Ω(log(1/δ)).

Then,
�̃
f
〈 f ,T1−ε f 〉 6 δ1+Ω(ε) + kO(log(1/δ)) · τ1/8 .

(Here, we assume thatε, δ andτ are sufficiently small.)

The previous theorem is about graph expansion (measured by the quadratic form
〈 f ,T1−ε f 〉). The following lemma allows us to relate graph expansion tothe 4-norm of
the projection off into the span of the eigenfunctions ofT1−ε with significant eigenvalue.
We will be able to bound this 4-norm in terms of the influences of f (using the invariance
principle in the previous section).

Lemma 6.7. Let f be a4-f.r.v. over L2(ΩR). Suppose f2 � f (in terms of unspecified
jointly-distributed4-f.r.v. s). Then for allλ > 0,

�̃
f
〈 f ,T1−ε f 〉 6 (�̃

f
� f )3/4(�̃

f
�(P>λ f )4)1/4 + λ �̃

f
� f .

Here, P>λ is the projector into the span of the eigenfunctions of T1−ε with eigenvalue larger
thanλ.

Proof. The following relation between polynomials holds

〈 f ,T1−ε f 〉 � � f · (P>λ f ) + λ� f 2 .

By Corollary 6.5, there exists a 4-f.r.v. (f , f̄ ) overL2(ΩR)×L2(ΩR) such thatf̄ 2 ≡ f̄ f̄ . Then,

�̃
f
� f · (P>λ f ) = �̃

f , f̄
� f̄ · (P>λ f ) (using linearity in f̄ )

= �̃
f , f̄
� f̄ 3 · (P>λ f ) (using f̄ 2 ≡ f̄ f̄ )

6

(

�̃ f̄ � f̄ 4
)3/4 ·

(

�̃ f �(P>λ f )4
)1/4

(usingLemma A.5(Hölder))

=
(

�̃ f̄ � f̄
)3/4 ·

(

�̃ f �(P>λ f )4
)1/4

(using f̄ 2 ≡ f̄ f̄ )

=
(

�̃ f � f
)3/4 ·

(

�̃ f �(P>λ f )4
)1/4

(using linearity in f̄ ) �
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Proof ofTheorem 6.6. By Lemma 6.7,

�̃
f
〈 f ,T1−ε f 〉 6 (�̃

f
� f )3/4(�̃

f
�(P>λ f )4)1/4 + λ �̃

f
� f 2 .

UsingCorollary 6.3,

�̃
f
〈 f ,T1−ε f 〉 6 2O(ℓ) · (�̃

f
� f )3/4(�̃

f
(� f 2)2 +

√
τ · kO(ℓ))1/4 + λ �̃

f
� f 2 .

Here,ℓ = log(1/λ)/ε. Using the relationf 2 � f and our assumptioñ� f (� f )2
6 δ2, we get

�̃ f � f 2
6 �̃ f � f 6 (�̃ f (� f )2)1/2

6 δ (by Cauchy–Schwarz). Hence,

�̃
f
〈 f ,T1−ε f 〉 6 (1/λ)O(1/ε)δ3/4(δ2 +

√
τ · (1/λ)O(logk)/ε)1/4 + λδ

6 (1/λ)O(1/ε)δ5/4 + (1/λ)O(logk)/εδ3/4τ1/8 + λ · δ .

To balance the terms (1/λ)O(1/ε)δ5/4 andλδ, we chooseλ = δΩ(ε). We conclude the desired
bound,

�̃
f
〈 f ,T1−ε f 〉 6 δ1+Ω(ε) + kO(log(1/δ)) · τ1/8 . �

6.5 Dictatorship Test for Unique Games

LetΩ = �k (cyclic group of orderk) and let f be a 4-f.r.v. overL2(Ω × ΩR). Here, f (a, x)
is intended to be 0/1 variable indicating whether symbola is assigned to the pointx.

The following graphT′1−ε onΩ × ΩR corresponds to the 2-query dictatorship test for
Unique Games [KKMO04],

T′1−ε f (a, x) = �
c∈Ω

�
y∼1−εx

f (a+ c, y − c · �) .

Here,y ∼1−ε x means thaty is a random neighbor ofx in the graphT1−ε (theε-noise graph
onΩR).

We definef̄ (x) := �c∈Ω f (c, x− c · �). (We think of f̄ as a variable overL2(ΩR).) Then,
the following polynomial identity (inf ) holds

〈 f ,T′1−ε f 〉 = 〈 f̄ ,T1−ε f̄ 〉.

Theorem 6.8. Suppose f2 � f and �̃ f (� f )2
6 δ2. Let τ = �̃ f

∑

r(Inf (6ℓ)
r f̄ )2 for ℓ =

Ω(log(1/δ)). Then,
�̃
f
〈 f ,T′1−ε f 〉 6 δ1+Ω(ε) + kO(log(1/δ)) · τ1/8 .

(Here, we assume thatε, δ andτ are sufficiently small.)

Proof. Apply Theorem 6.6to bound�̃ f 〈 f̄ ,T1−ε f̄ 〉. Use that fact that� f = � f̄ (as polyno-
mials in f ). �

6.6 Influence Decoding

LetU be a unique game with vertex setV and alphabet [R]. Recall that we representU as
a distribution over triples (u, v, π) whereu, v ∈ V andπ is a permutation of [R]. The triples
encode the constraints ofU. We assume that the unique gameU is regular in the same that
every vertex participates in the same fraction of constraints.
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Let Ω = �k (cyclic group of orderk). We reduceU to a unique gameW =Wε,k(U)
with vertex setV × ΩR and alphabetΩ. Let f = { fu}u∈V be a variable overL2(Ω × ΩR)V.
The unique gameW corresponds to the following quadratic form inf ,

〈 f ,W f 〉 := �
u∈V

�
(u,v,π)∼U|u

(u,v′,π′)∼U|u

〈 f (π)
v ,T′1−ε f (π′)

v′ 〉 .

Here, (u, v, π) ∼ U | u denotes a random constraint ofU incident to vertexu, the graphT′1−ε
corresponds to the dictatorship test of UniqueGames defined inSection 6.5, and f (π)

v (a, x) =
fv(a, π.x) is the function obtained by permuting the lastRcoordinates according toπ (where
π.x(i) = xπ(i)).

We definegu = �(u,v,π)∼U|u f (π)
v . Then,

〈 f ,W f 〉 = �
u∈V
〈gu,T

′
1−εgu〉 . (6.2)

Bounding the value of SoS solutions. Let f = { fu}u∈V be a solution to the level-d SoS re-
laxation for the unique gameW. In particular,f is ad-f.r.v. overL2(Ω×ΩR)V. Furthermore,
�̃ f (� fu)2

6 1/k2 for all verticesu ∈ V.
By applyingTheorem 6.8to (6.2), we can bound the objective value off

�̃
f
〈 f ,W f 〉 6 1/k1+Ω(ε) + kO(logk)

(

�̃
f
�

u∈V
τu

)1/8

,

whereτu =
∑

r(Inf (6ℓ)
r ḡu)2, ḡu(x) = �(u,v,π)∼U|u f̄ (π)

v , and f̄v(x) = �c∈Ω fv(c, x− c · �).
Since Inf(6ℓ)r is a positive semidefinite form,

τu �
∑

r

(

�
(u,v,π)∼U|u

Inf (6ℓ)
r f̄ (π)

v

)2

=
∑

r

(

�
(u,v,π)∼U|u

Inf (6ℓ)
π(r) f̄v

)2

.

Let h be the level-d/2 fictitious random variable overL2(V × [R]) with h(u, r) = Inf (6ℓ)
r f̄u.

Let GU be the label-extended graph of the unique gameU. Then, the previous bound
on τu shows that�u∈V τu � R · ‖GUh‖2 . Lemma A.1shows thath2 � h. On the other
hand,

∑

r h(u, r) � ℓ‖ f̄u‖2 � ℓ‖ fu‖2 (bound on the total influence of low-degree Fourier
polynomials). In particular,�h � ℓ�u∈V‖ fu‖2/R. Since f is a valid SoS solution for the
unique gameW, we have�̃ f ‖ fu‖d 6 1/kd/2 for all u ∈ V. (Here, we assume thatd is even.)
It follows that�̃h(� h)d/2

6 ( ℓ
k·R)d/2.

The arguments in this subsection imply the following theorem.

Theorem 6.9. The optimal value of the level-d SoS relaxation for the unique gameW =

Wε,k(U) is bounded from above by

1/kΩ(ε) + kO(logk)
(

R ·max
h
�̃
h
‖GUh‖2

)1/8
,

where the maximum is over all level-d/2 fictitious random variables h over L2(V × [R])
satisfying h2 � h and�̃h(� h)d/2

6 ℓ/Rd/2.

Remark 6.10. Since the quadratic form‖GUh‖2 has only nonnegative coefficients (in the
standard basis), we can useCorollary 6.5to ensure that the level-d/2 random variableh
satisfies in additionh2 ≡h h.
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6.7 Certifying Small-Set Expansion

Let T1−ε be a the noise graph on{±1}R with second largest eigenvalue 1− ε.

Theorem 6.11. Let f be level-4 fictitious random variables over L2({±1}R). Suppose that
f 2 � f (in terms of unspecified jointly-distributed level-4 fictitious random variables) and
that �̃ f (� f )2

6 δ2. Then,
�̃
f
〈 f ,T1−ε f 〉 6 δ1+Ω(ε) .

Proof. By Lemma 6.7(applying it for the caseΩ = {0, 1}), for everyλ > 0,

�̃
f
〈 f ,T1−ε f 〉 6 (�̃

f
� f )3/4(�̃

f
�(P>λ f )4)1/4 + λ �̃

f
� f .

For the graphT1−ε, the eigenfunctions with eigenvalue larger thanλ are characters with
degree at most log(1/λ)/ε. Hence,Lemma 5.1implies�(P>λ f )4 � (1/λ)O(1/ε)‖ f ‖4. Since
f 2 � f , we have‖ f ‖4 � (� f )2. Hence,�̃ f �(P>λ f )4

6 (1/λ)O(1/ε)δ2. Plugging in, we get

�̃
f
〈 f ,T1−ε f 〉 6 (1/λ)O(1/ε)δ5/4 + λ · δ .

To balance the terms, we chooseλ = δΩ(ε), which gives the desired bound. �

6.8 Putting Things Together

LetT1−η be a the noise graph on{±1}R with second largest eigenvalue 1−η. LetU = Uη,R be
an instance of Unique Games with label-extended graphGU = T1−η (e.g., the construction
in [KV05]).

CombiningTheorem 6.9(with d = 4) andTheorem 6.11gives the following result.

Theorem 6.12.The optimal value of the level-8 SoS relaxation for the unique gameW =

Wε,k(Uη,R) is bounded from above by

1/kΩ(ε) + kO(logk) · R−Ω(η) .

In particular, the optimal value of the relaxation is close to 1/kΩ(ε) if logR≫ (logk)2/η.

6.9 Refuting Instances based on Short Code

Let U′ = U′η,R be an instance of Unique Games according to the basic construction in
[BGH+11]. (The label-extended graph ofU will be a subgraph ofT1−ε induced by the
subset of{±1}R corresponding to a Reed–Muller code, that is, evaluations of low-degree
�2-polynomials.)

LetW′ =W′
ε,k(U′η,R) be the unique game obtained by applying the short-code alphabet

reduction of [BGH+11].
The following analog ofTheorem 6.12holds.

Theorem 6.13.The optimal value of the level-8 SoS relaxation for the unique gameW′ =
W′

ε,k(U′η,R) is bounded from above by

1/kΩ(ε) + kO(logk) · R−Ω(η) .

In particular, the optimal value of the relaxation is close to 1/kΩ(ε) if logR≫ (logk)2/η.
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The proof ofTheorem 6.13is almost literally the same as the proof ofTheorem 6.12.
In the following, we sketch the main arguments why the proof doesn’t have to change.
First, several of the results of the previous sections applyto general graphs and instances
of Unique Games. In particular,Lemma 6.7applies to general graphs andTheorem 6.9
applies to general gadget-composed instances of unique games assuming a “Majority is
Stablest” result for the gadget. In fact, the only parts thatrequire further justification are
the invariance principle (Theorem 6.2) and hypercontractivity bound (Lemma 5.1). Both
the invariance principle and the hypercontractivity boundare about the fourth moment of
a low-degree Fourier polynomial (whose coefficients are fictitious random variables). For
the construction of [BGH+11], we need to argue about the fourth moment with respect to a
different distribution over inputs. (Instead of the uniform distribution, [BGH+11] considers
a distribution over inputs related to the Reed–Muller code.) However, this distribution
happens to bek-wise independent fork/4 larger than the degree of our Fourier polynomial.
Hence, as a degree-4 polynomial in Fourier coefficients, the fourth moment with respect
to the [BGH+11]-input distribution is the same as with respect to the uniform distribution,
which considered here.

7 Hypercontractivity of random operators

We already saw that theTensor-SDP algorithm provides non-trivial guarantees on the 2→
4 norms of the projector to low-degree polynomials. In this section we show that it also
works for a natural but very different class of instances, namely random linear operators.

Let A =
∑m

i=1 eiaT
i /
√

n, whereei is the vector with a 1 in theith position, and eachai is
chosen i.i.d. from a distributionD on�n. Three natural possibilities are

1. Dsign: the uniform distribution over{−1, 1}n

2. DGaussian: a vector ofn independent Gaussians with mean zero and variance 1

3. Dunit: a uniformly random unit vector on�n.

Our arguments will apply to any of these cases, or even to moregeneral nearly-unit vectors
with bounded sub-Gaussian moment (details below).

Before discussing the performance ofTensor-SDP, we will discuss how the 2→ 4-
norm of A behaves as a function ofn andm. We can gain intuition by considering two
limits in the case ofDGaussian. If n = 1, then‖A‖2→4 = ‖a‖4, for a random Gaussian vector
a. For largem, ‖a‖4 is likely to be close to 31/4, which is the fourth moment of a mean-zero
unit-variance Gaussian. By Dvoretzky’s theorem [Pis99], this behavior can be shown to
extend to higher values ofn. Indeed, there is a universalc > 0 such that ifn 6 c

√
mε2,

then w.h.p.‖A‖2→4 6 31/4 + ε. In this case, the maximum value of‖Ax‖4 looks roughly the
same as the average or the minimum value, and we also have‖Ax‖4 > (31/4 − ε)‖x‖2 for all
x ∈ �n. In the cases ofDsign andDunit, the situation is somewhat more complicated, but
for largen, their behavior becomes similar to the Gaussian case.

On the other hand a simple argument (a variant of Corollary10.2) shows that‖A‖2→4 >

n1/2/m1/4 for any(not only random)m×n matrix with all±1/
√

n entries. A nearly identical
bound applies for the case when theai are arbitrary unit or near-unit vectors. Thus, in the
regime wheren > ω(

√
m), we always have‖A‖2→4 > ω(1).

The following theorem shows thatTensor-SDP achieves approximately the correct an-
swer in both regimes.
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Theorem 7.1. Let a1, . . . , am be drawn i.i.d. from a distributionD on �n with D ∈
{DGaussian,Dsign,Dunit}, and let A =

∑m
i=1 eiaT

i /
√

n. Then w.h.p. Tensor-SDP(A) 6

3+ cmax( n√
m
, n2

m ) for some constant c> 0.

From Theorem7.1and the fact that‖A‖42→4 6 Tensor-SDP(A), we obtain:

Corollary 7.2. Let A be as in Theorem7.1. Then∃c > 0 such that w.h.p.

‖A‖2→4 6






31/4 + c n√
m

if n 6
√

m

c n1/2

m1/4 if n >
√

m
(7.1)

Before proving Theorem7.1, we introduce some more notation. This will in fact imply
that Theorem7.1 applies to a broader class of distributions. For a distribution D on�N,
define theψp norm‖D‖ψp to be the smallestC > 0 such that

max
v∈S(�N)

�
a∼D

e
|〈v,a〉|pNp/2

Cp 6 2, (7.2)

or∞ if no finite suchC exists. We depart from the normal convention by including a factor
of Np/2 in the definition, to match the scale of [ALPTJ11]. The ψ2 norm (technically a
seminorm) is also called the sub-Gaussian norm of the distribution. One can verify that for
each of the above examples (sign, unit and Gaussian vectors), ψ2(D) 6 O(1).

We also require thatD satisfies aboundednesscondition with constantK > 1, defined
as

�

[

max
i∈[m]
‖ai‖2 > K max(1, (m/N)1/4)

]

6 e−
√

N. (7.3)

Similarly, K can be taken to beO(1) in each case that we consider.
We will require a following result of [ALPTJ10, ALPTJ11] about the convergence of

sums of i.i.d rank-one matrices.

Lemma 7.3 ([ALPTJ11]). Let D′ be a distribution on�N such that�v∼D′ vvT = I,
‖D′‖ψ1 6 ψ and (7.3) holds forD′ with constant K. Letv1, . . . , vm be drawn i.i.d. from
D′. Then with probability> 1− 2 exp(−c

√
N), we have

(1− ε)I 6 1
m

m∑

i=1

viv
T
i 6 (1+ ε)I , (7.4)

whereε = C(ψ + K)2 max(N/m,
√

N/m) with c,C > 0 universal constants.

The N 6 m case (when the
√

N/m term is applicable) was proven in Theorem 1 of
[ALPTJ11], and theN > m case (i.e. when the max is achieved byN/m) was proven in
Theorem 2 of [ALPTJ11] (see also Theorem 3.13 of [ALPTJ10]).

Proof of Theorem7.1. DefineA2,2 =
1
m

∑m
i=1 aiaT

i ⊗ aiaT
i . For n2 × n2 real matricesX,Y,

define〈X,Y〉 := Tr XTY/n2 = �i, j∈[n] Xi, jYi, j. Additionally define the convex setX to be
the set ofn2 × n2 real matricesX = (X(i1,i2),(i3,i4))i1,i2,i3,i4∈[n] with X � 0,�i, j∈[n] X(i, j),(i, j) = 1
and X(i1,i2),(i3,i4) = X(iπ(1),iπ(2)),(iπ(3),iπ(4)) for any permutationπ ∈ S4. Finally, let hX(Y) :=
maxX∈X〈X,Y〉. It is straightforward to show (c.f. Lemma9.3) that

Tensor-SDP(A) = hX(A2,2) = max
X∈X
〈X,A2,2〉. (7.5)
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We note that ifX were defined without the symmetry constraint, it would simply be the
convex hull of xxT for unit vectorsx ∈ �n2

and Tensor-SDP(A) would simply be the
largest eigenvalue ofA2,2. However, we will later see that the symmetry constraint is crucial
to Tensor-SDP(A) beingO(1).

Our strategy will be to analyzeA2,2 by applying Lemma7.3 to the vectorsvi :=
Σ−1/2(ai ⊗ ai), whereΣ = � aiaT

i ⊗ aiaT
i , and−1/2 denotes the pseudo-inverse. First, ob-

serve that, just as theψ2 norm of the distribution overai is constant, a similar calculation
can verify that theψ1 norm of the distribution overai ⊗ ai is also constant. Next, we have
to argue thatΣ−1/2 does not increase the norm by too much.

To do so, we computeΣ for each distribution overai that we have considered. LetF be
the operator satisfyingF(x ⊗ y) = y ⊗ x for any x, y ∈ �n; explicitly F = Pn((1, 2)) from
(9.9). Define

Φ :=
n∑

i=1

ei ⊗ ei (7.6)

∆ :=
n∑

i=1

eie
T
i ⊗ eie

T
i (7.7)

Direct calculations (omitted) can verify that the cases of random Gaussian vectors, random
unit vectors and random±1 vectors yield respectively

ΣGaussian= I + F + ΦΦT (7.8a)

Σunit =
n

n+ 1
ΣGaussian (7.8b)

Σsign = ΣGaussian− 2∆ (7.8c)

In each case, the smallest nonzero eigenvalue ofΣ is Ω(1), sovi = Σ−1/2(ai ⊗ ai) has
ψ1 6 O(1) and satisfies the boundedness condition (7.3) with K 6 O(1).

Thus, we can apply Lemma7.3 (with N = rankΣ 6 n2 andε := cmax(n/
√

m, n2/m))
and find that in each case w.h.p.

A2,2 =
1
m

m∑

i=1

aia
T
i ⊗ aia

T
i � (1+ ε))Σ � (1+ ε) (I + F + ΦΦT ) (7.9)

SincehX(Y) > 0 wheneverY � 0, we havehX(A2,2) 6 (1 + ε)hX(Σ). Additionally,
hX(I+F+ΦΦT ) 6 hX(I )+hX(F)+hXΦΦT ), so we can bound each of three terms separately.
Observe thatI andF each have largest eigenvalue equal to 1, and sohX(I ) 6 1 andhX(F) 6
1. (In fact, these are both equalities.)

However, the single nonzero eigenvalue ofΦΦT is equal ton. Here we will need to use
the symmetry constraint onX. Let XΓ be the matrix with entriesXΓ(i1,i2),(i3,i4) := X(i1,i4),(i3,i2).

If X ∈ X thenX = XΓ. Additionally, 〈X,Y〉 = 〈XΓ,YΓ〉. Thus

hX(ΦΦT ) = hX((ΦΦT )Γ) 6 ‖(ΦΦT )Γ‖2→2 = 1.

This last equality follows from the fact that (ΦΦT )Γ = F.
Putting together these ingredients, we obtain the proof of the theorem. �

It may seem surprising that the factor of 31/4 emerges even for matrices with, say,±1
entries. An intuitive justification for this is that even if the columns ofA are not Gaussian
vectors, most linear combinations of them resemble Gaussians. The following Lemma
shows that this behavior begins as soon asn isω(1).
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Lemma 7.4. Let A=
∑m

i=1 eiaT
i /
√

n with�i ‖ai‖42 > 1. Then‖A‖2→4 > (3/(1+ 2/n))1/4.

To see that the denominator cannot be improved in general, observe that whenn = 1 a
random sign matrix will have 2→ 4 norm equal to 1.

Proof. Choosex ∈ �n to be a random Gaussian vector such that�x ‖x‖22 = 1. Then

�
x
‖Ax‖44 = �i �x n−2(aT

i x)4 = n2
�
i
�
x
〈ai , x〉4 = 3�

i
‖ai‖42 > 3. (7.10)

The last equality comes from the fact that〈ai , x〉 is a Gaussian random variable with mean
zero and variance‖ai‖22/n. On the other hand,�x ‖x‖42 = 1+ 2/n. Thus, there must exist an
x for which ‖Ax‖44/‖x‖42 > 3/(1+ 2/n). �

Remark 7.5. It is instructive to consider a variant of the above argument. A simpler upper
bound on the value ofTensor-SDP(A) is given simply by‖A2,2‖. However, the presence
of theΦΦT term means that this bound will be off by an n-dependent factor. Thus we
observe that the symmetry constraints ofTensor-SDP(4) provide a crucial advantage over
the simpler bound using eigenvalues. In the language of quantum information (see Sec-
tion 9.3), this means that the PPT constraint is necessary for the approximation to succeed.
See Section9.3.2 for an example of this that applies to higher levels of the hierarchy as
well.

On the other hand, when theai are chosen to be randomcomplexGaussian vectors, we
simply have� aia∗i ⊗aia∗i = I +F. In this case, the upper boundTensor-SDP(A) 6 ‖A2,2‖ is
already sufficient. Thus, only real random vectors demonstrate a separation between these
two bounds.

8 The 2-to-q norm and small-set expansion

In this section we show that a graph is asmall-set expanderif and only if the projector
to the subspace of its adjacency matrix’s top eigenvalues has a bounded 2→ q norm for
evenq > 4. While the “if” part was known before, the “only if” part is novel. This
characterization of small-set expanders is of general interest, and also leads to a reduction
from the Small-Set Expansion problem considered in [RS10] to the problem of obtaining a
good approximation for the 2→ q norms.

Notation. For a regular graphG = (V,E) and a subsetS ⊆ V, we define themeasure
of S to beµ(S) = |S|/|V| and we defineG(S) to be the distribution obtained by picking a
randomx ∈ S and then outputting a random neighbory of x. We define theexpansionof
S, to beΦG(S) = �y∈G(S)[y < S], wherey is a random neighbor ofx. For δ ∈ (0, 1), we
defineΦG(δ) = minS⊆V:µ(S)6δΦG(S). We often drop the subscriptG from ΦG when it is
clear from context. We identifyG with its normalized adjacency (i.e., random walk) matrix.
For everyλ ∈ [−1, 1], we denote byV>λ(G) the subspace spanned by the eigenvectors of
G with eigenvalue at leastλ. The projector into this subspace is denotedP>λ(G). For a
distributionD, we letcp(D) denote the collision probability ofD (the probability that two
independent samples fromD are identical).

Our main theorem of this section is the following:

Theorem (Restatement ofTheorem 2.4). For every regular graph G,λ > 0 and even q,

1. (Norm bound implies expansion)For all δ > 0, ε > 0, ‖P>λ(G)‖2→q 6 ε/δ(q−2)/2q

implies thatΦG(δ) > 1− λ − ε2.
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2. (Expansion implies norm bound)There is a constant c such that for allδ > 0,ΦG(δ) >
1− λ2−cq implies‖P>λ(G)‖2→q 6 2/

√
δ.

One corollary of Theorem2.4 is that a good approximation to the 2→ 4 norm implies
an approximation ofΦδ(G) 12.

Corollary 8.1. If there is a polynomial-time computable relaxationR yielding good approx-
imation for the2→ q, then theSmall-Set Expansion Hypothesisof [RS10] is false.

Proof. Using [RST10a], to refute the small-set expansion hypothesis it is enoughto come
up with an efficient algorithm that given an input graphG and sufficiently smallδ > 0, can
distinguish between theYescase:ΦG(δ) < 0.1 and theNo caseΦG(δ′) > 1 − 2−c log(1/δ′)

for anyδ′ > δ and some constantc. In particular for allη > 0 and constantd, if δ is small
enough then in theNocaseΦG(δ0.4) > 1− η. Using Theorem2.4, in theYescase we know
‖V1/2(G)‖2→4 > 1/(10δ1/4), while in theNo case, if we chooseη to be smaller thenη(1/2)
in the Theorem, then we know that‖V1/2(G)‖2→4 6 2/

√
δ0.2. Clearly, if we have a good

approximation for the 2→ 4 norm then, for sufficiently smallδ we can distinguish between
these two cases. �

The first part of Theorem2.4 follows from previous work (e.g., see [KV05]). For com-
pleteness, we include a proof in AppendixB. The second part will follow from the following
lemma:

Lemma 8.2. Set e= e(λ, q) := 2cq/λ, with a constant c6 100. Then for everyλ > 0 and
1 > δ > 0, if G is a graph that satisfiescp(G(S)) 6 1/(e|S|) for all S withµ(S) 6 δ, then
‖ f ‖q 6 2‖ f ‖2/

√
δ for all f ∈ V>λ(G).

Proving the second part of Theorem2.4 from Lemma 8.2. We use the variant of the
local Cheeger bound obtained in [Ste10, Theorem 2.1], stating that ifΦG(δ) > 1−η then for
every f ∈ L2(V) satisfying‖ f ‖21 6 δ‖ f ‖22, ‖G f‖22 6 c

√
η‖ f ‖22. The proof follows by noting

that for every setS, if f is the characteristic function ofS then‖ f ‖1 = ‖ f ‖22 = µ(S), and
cp(G(S)) = ‖G f‖22/(µ(S)|S|). �

Proof of Lemma8.2. Fix λ > 0. We assume that the graph satisfies the condition of the
Lemma withe= 2cq/λ, for a constantc that we’ll set later. LetG = (V,E) be such a graph,
and f be function inV>λ(G) with ‖ f ‖2 = 1 that maximizes‖ f ‖q. We write f =

∑m
i=1αiχi

whereχ1, . . . , χm denote the eigenfunctions ofG with valuesλ1, . . . , λm that are at leastλ.
Assume towards a contradiction that‖ f ‖q > 2/

√
δ. We’ll prove thatg =

∑m
i=1(αi/λi)χi

satisfies‖g‖q > 10‖ f ‖q/λ. This is a contradiction since (usingλi ∈ [λ, 1]) ‖g‖2 6 ‖ f ‖2/λ,
and we assumedf is a function inV>λ(G) with a maximal ratio of‖ f ‖q/‖ f ‖2.

Let U ⊆ V be the set of vertices such that| f (x)| > 1/
√
δ for all x ∈ U. Using Markov

and the fact that�x∈V[ f (x)2] = 1, we know thatµ(U) = |U |/|V| 6 δ, meaning that under our
assumptions any subsetS ⊆ U satisfiescp(G(S)) 6 1/(e|S|). On the other hand, because
‖ f ‖qq > 2q/δq/2, we know thatU contributes at least half of the term‖ f ‖qq = �x∈V f (x)q.
That is, if we defineα to beµ(U)�x∈U f (x)q thenα > ‖ f ‖qq/2. We’ll prove the lemma by
showing that‖g‖qq > 10α/λ.

Let c be a sufficiently large constant (c = 100 will do). We defineUi to be the set
{x ∈ U : f (x) ∈ [ci/

√
δ, ci+1/

√
δ)}, and letI be the maximali such thatUi is non-empty.

12Note that although we use the 2→ 4 norm for simplicity, a similar result holds for the 2→ q norm for
every constant evenq.
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Thus, the setsU0, . . . ,UI form a partition ofU (where some of these sets may be empty).
We letαi be the contribution ofUi to α. That is,αi = µi �x∈Ui f (x)q, whereµi = µ(Ui).
Note thatα = α0 + · · · + αI . We’ll show that there are some indicesi1, . . . , iJ such that:

(i) αi1 + · · · + αiJ > α/(2c10).

(ii) For all j ∈ [J], there is a non-negative functiong j : V → � such that�x∈V g j(x)q
>

eαi j /(10c2)q/2.

(iii) For everyx ∈ V, g1(x) + · · · + gJ(x) 6 |g(x)|.

Showing these will complete the proof, since it is easy to seethat for two non-negative
functions and evenq, g′, g′′, �(g′(x) + g′′(x))q

> � g′(x)q + � g′′(x)q, and hence(ii) and
(iii) imply that

‖g‖44 = � g(x)4
> (e/(10c2)q/2)

∑

j

αi j . (8.1)

Using(i) we conclude that fore> (10c)q/λ, the right-hand side of (8.1) will be larger than
10α/λ.

We find the indicesi1, . . . , iJ iteratively. We letI be initially the set{0..I } of all indices.
For j = 1, 2, ... we do the following as long asI is not empty:

1. Let i j be the largest index inI.

2. Remove fromI every indexi such thatαi 6 c10αi j/2
i−i j .

We let J denote the step when we stop. Note that our indicesi1, . . . , iJ are sorted in
descending order. For every stepj, the total of theαi ’s for all indices we removed is less
thanc10αi j and hence we satisfy(i). The crux of our argument will be to show(ii) and(iii) .
They will follow from the following claim:

Claim 8.3. Let S ⊆ V andβ > 0 be such that|S| 6 δ and | f (x)| > β for all x ∈ S . Then
there is a set T of size at least e|S| such that�x∈T g(x)2

> β2/4.

The claim will follow from the following lemma:

Lemma 8.4. Let D be a distribution withcp(D) 6 1/N andg be some function. Then there
is a set T of size N such that�x∈T g(x)2

> (� g(D))2/4.

Proof. Identify the support ofD with the set [M] for someM, we letpi denote the probabil-
ity that D outputsi, and sort thepi ’s such thatp1 > p2 · · · pM . We letβ′ denote� g(D); that
is, β′ =

∑M
i=1 pig(i). We separate to two cases. If

∑

i>N pig(i) > β′/2, we define the distribu-
tion D′ as follows: we set�[D′ = i] to be pi for i > N, and we let alli 6 N be equiprobable
(that is be output with probability (

∑N
i=1 pi)/N). Clearly,� |g(D′)| > ∑

i>N pig(i) > β′/2, but
on the other hand, since the maximum probability of any element in D′ is at most 1/N, it
can be expressed as a convex combination of flat distributions over sets of sizeN, implying
that one of these setsT satisfies�x∈T |g(x)| > β′/2, and hence�x∈T g(x)2

> β′2/4.
The other case is that

∑N
i=1 pig(i) > β′/2. In this case we use Cauchy-Schwarz and argue

that

β′2/4 6





N∑

i=1

p2
i









N∑

i=1

g(i)2




. (8.2)

But using our bound on the collision probability, the right-hand side of (8.2) is upper
bounded by1

N

∑N
i=1 g(i)

2 = �x∈[N] g(x)2. �
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Proof of Claim8.3 from Lemma8.4. By constructionf = Gg, and hence we know that for
everyx, f (x) = �y∼x g(y). This means that if we letD be the distributionG(S) then

� |g(D)| = �
x∈S
�
y∼x
|g(y)| > �

x∈S
| �
y∼x

g(y)| = �
x∈S
| f (x)| > β .

By the expansion property ofG, cp(D) 6 1/(e|S|) and thus by Lemma8.4 there is a setT
of sizee|S| satisfying�x∈T g(x)2

> β2/4. �

We will construct the functionsg1, . . . , gJ by applying iteratively Claim8.3. We do the
following for j = 1, . . . , J:

1. LetT j be the set of sizee|Ui j | that is obtained by applying Claim8.3 to the function

f and the setUi j . Note that�x∈T j g(x)2
> β2

i j
/4, where we letβi = ci/

√
δ (and hence

for everyx ∈ Ui , βi 6 | f (x)| 6 cβi).

2. Letg′j be the function on inputx that outputsγ · |g(x)| if x ∈ T j and 0 otherwise, where

γ 6 1 is a scaling factor that ensures that�x∈T j g
′(x)2 equals exactlyβ2

i j
/4.

3. We defineg j(x) = max{0, g′j (x) −∑

k< j gk(x)}.

Note that the second step ensures thatg′j(x) 6 |g(x)|, while the third step ensures that
g1(x) + · · · + g j(x) 6 g′j(x) for all j, and in particularg1(x) + · · · + gJ(x) 6 |g(x)|. Hence the
only thing left to prove is the following:

Claim 8.5. �x∈V g j(x)q
> eαi j/(10c)q/2

Proof. Recall that for everyi, αi = µi �x∈Ui f (x)q, and hence (usingf (x) ∈ [βi , cβi) for
x ∈ Ui):

µiβ
q
i 6 αi 6 µic

qβ
q
i . (8.3)

Now fix T = T j . Since�x∈V g j(x)q is at least (in fact equal)µ(T)�x∈T g j(x)q and
µ(T) = eµ(Ui j ), we can use (8.3) and�x∈T g j(x)q

> (Ex∈Tg j(x)2)q/2, to reduce proving the
claim to showing the following:

�
x∈T

g j(x)2
> (cβi j )

2/(10c2) = β2
i j
/10 . (8.4)

We know that�x∈T g′j(x)2 = β2
i j
/4. We claim that (8.4) will follow by showing that for

everyk < j,
�

x∈T
g′k(x)2

6 100−i′ · β2
i j
/4 , (8.5)

wherei′ = ik − i j. (Note thati′ > 0 since in our construction the indicesi1, . . . , iJ are sorted
in descending order.)

Indeed, (8.5) means that if we let momentarily‖g j‖ denote
√

�x∈T g j(x)2 then

‖g j‖ > ‖g′j‖ − ‖
∑

k< j gk‖ > ‖g′j‖ −
∑

k< j

‖gk‖ > ‖g′j‖(1−
∞∑

i′=1

10−i′ ) > 0.8‖g′j‖ . (8.6)

The first inequality holds because we can writeg j asg′j − h j , whereh j = min{g′j ,
∑

k< j gk}.
Then, on the one hand,‖g j‖ > ‖g′j‖ − ‖h j‖, and on the other hand,‖h j‖ 6 ‖

∑

k< j gk‖ since
g′j > 0. The second inequality holds because‖gk‖ 6 ‖g′k‖. By squaring (8.6) and plugging

in the value of‖g′j‖2 we get (8.4).
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Proof of (8.5). By our construction, it must hold that

c10αik/2
i′
6 αi j , (8.7)

since otherwise the indexi j would have been removed from theI at thekth step. Since
βik = βi j c

i′ , we can plug (8.3) in (8.7) to get

µikc
10+4i′/2i′

6 c4µi j

or
µik 6 µi j (2/c)4i′c−6 .

Since|Ti | = e|Ui | for all i, it follows that |Tk|/|T | 6 (2/c)4i′c−6. On the other hand, we
know that�x∈Tk g

′
k(x)2 = β2

ik
/4 = c2i′β2

i j
/4. Thus,

�
x∈T

g′k(x)2
6 24i′c2i′−4i′−6β2

i j
/4 6 (24/c2)i′β2

i j
/4 ,

and now we just choosec sufficiently large so thatc2/24 > 100. �

�

9 Relating the 2-to-4 norm and the injective tensor norm

In this section, we present several equivalent formulations of the 2-to-4 norm: 1) as the
injective tensor norm of a 4-tensor, 2) as the injective tensor norm of a 3-tensor, and 3) as
the maximum of a linear function over a convex set, albeit a set where the weak membership
problem is hard. Additionally, we can consider maximizations over real or complex vectors.
These equivalent formulations are discussed in Section9.1.

We use this to show hardness of approximation (Theorem2.5) for the 2-to-4 norm
in Section9.2, and then show positive algorithmic results (Theorem2.3) in Section9.3.
Somewhat surprisingly, many of the key arguments in these sections are imported from the
quantum information literature, even though no quantum algorithms are involved. It is an
interesting question to find a more elementary proof of the result in Section9.3.

We will generally work with the counting norms‖‖‖.‖‖‖, defined as‖‖‖x‖‖‖p := (
∑

i |xi |p)1/p,
and the counting inner product, defined by〈〈〈x, y〉〉〉 := x∗y, where∗ denotes the conjugate
transpose.

9.1 Equivalent maximizations

9.1.1 Injective tensor norm and separable states

Recall from the introduction the definition of the injectivetensor norm: ifV1, . . . ,Vr are
vector spaces withT ∈ V1 ⊗ · · · ⊗ Vr , then‖‖‖T‖‖‖inj = max{|〈〈〈T, (x1 ⊗ · · · ⊗ xr )〉〉〉| : x1 ∈
S(V1), . . . , xr ∈ S(Vr)}, whereS(V) denotes theL2-unit vectors in a vector spaceV. In
this paper we use the term “injective tensor norm” to mean theinjective tensor norm of
ℓ2 spaces, and we caution the reader that in other contexts it has a more general meaning.
These norms were introduced by Grothendieck, and they are further discussed in [Rya02].

We will also need the definition of separable states from quantum information. For a
vector spaceV, defineL(V) to be the linear operators onV, and defineD(V) := {ρ ∈ L(V) :
ρ � 0,Tr ρ = 1} = conv{vv∗ : v ∈ S(V)} to be thedensity operatorsonV. The trace induces
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an inner product on operators:〈〈〈X,Y〉〉〉 := Tr X∗Y. An important class of density operators
are theseparable density operators. For vector spacesV1, . . . ,Vr , these are

Sep(V1, . . . ,Vr) := conv
{

v1v
∗
1 ⊗ · · · ⊗ vrv∗r : ∀i, vi ∈ S(Vi)

}

.

If V = V1 = · · · = Vr , then let Sepr (V) denote Sep(V1, . . . ,Vr). Physically, density opera-
tors are the quantum analogues of probability distributions, and separable density operators
describe unentangled quantum states; conversely, entangled states are defined to be the set
of density operators that are not separable. For readers familiar with quantum information,
we point out that our treatment differs principally in its use of the expectation for norms and
inner products, rather than the sum.

For any bounded convex setK, define thesupport functionof K to be

hK(x) := max
y∈K
|〈〈〈x, y〉〉〉|.

Defineei ∈ �n to be the vector with 1 in theith position. Now we can give the convex-
optimization formulation of the injective tensor norm.

Lemma 9.1. Let V1, . . . ,Vr be vector spaces with ni := dimVi, and T ∈ V1 ⊗ · · · ⊗ Vr .
Choose an orthonormal basis e1, . . . , enr for Vr . Define T1, . . . ,Tnr ∈ V1 ⊗ · · · ⊗ Vr1 by
T =

∑nr
i=1 Ti ⊗ ei and define M∈ L(V1 ⊗ · · · ⊗ Vr−1) by M =

∑nr
i=1 TiT∗i . Then

‖‖‖T‖‖‖2inj = hSep(V1,...,Vr−1)(M). (9.1)

Observe that anyM � 0 can be expressed in this form, possibly by paddingnr to be
at least rankM. Thus calculating‖‖‖ · ‖‖‖inj for r-tensors is equivalent in difficulty to comput-
ing hSepr−1 for p.s.d. arguments. This argument appeared before in [HM10], where it was
explained using quantum information terminology.

It is instructive to consider ther = 2 case. In this case,T is equivalent to a matrix̂T and
‖‖‖T‖‖‖inj = ‖‖‖T̂‖‖‖2→2. Moreover Sep1(�n1) = D(�n1) is simply the convex hull ofvv∗ for unit
vectorsv. ThushSep1(�n1)(M) is simply the maximum eigenvalue ofM = TT∗. In this case,

Lemma9.1 merely states that the square of the largest singular value of T̂ is the largest
eigenvalue ofT̂T̂∗. The general proof follows this framework.

Proof of Lemma9.1.

‖‖‖T‖‖‖inj = max
x1∈S(V1),...,xr∈S(Vr )

|〈〈〈T, x1 ⊗ · · · ⊗ xr〉〉〉| (9.2)

= max
x1∈S(V1),...,xr−1∈S(Vr−1)

max
xr∈S(Vr )

∣
∣
∣
∣
∣
∣
∣

n∑

i=1

〈〈〈Ti , x1 ⊗ · · · ⊗ xr−1〉〉〉 · 〈〈〈ei , xr〉〉〉
∣
∣
∣
∣
∣
∣
∣

(9.3)

= max
x1∈S(V1),...,xr−1∈S(Vr−1)

‖‖‖
n∑

i=1

〈〈〈Ti , x1 ⊗ · · · ⊗ xr−1〉〉〉ei‖‖‖2 (9.4)

Therefore

‖‖‖T‖‖‖2inj = max
x1∈S(V1),...,xr−1∈S(Vr−1)

‖‖‖
nr∑

i=1

〈〈〈Ti , x1 ⊗ · · · ⊗ xr−1〉〉〉ei‖‖‖22 (9.5)

= max
x1∈S(V1),...,xr−1∈S(Vr−1)

nr∑

i=1

|〈〈〈Ti , x1 ⊗ · · · ⊗ xr−1〉〉〉|22 (9.6)
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= max
x1∈S(V1),...,xr−1∈S(Vr−1)

〈〈〈
nr∑

i=1

TiT
∗
i , x1x∗1 ⊗ · · · ⊗ xr x∗r〉〉〉 (9.7)

= hSep(V1,...,Vr1)





nr∑

i=1

TiT
∗
i



 (9.8)

�

In what follows, we will also need to make use of some properties of symmetric tensors.
DefineSk to be the group of permutations of [k] and definePn(π) ∈ L((�n)⊗k) to be the
operator that permutesk tensor copies of�n according toπ. Formally,

Pn(π) :=
∑

i1,...,ir∈[d]

r⊗

k=1

eike
T
iπ(k)
. (9.9)

Then define∨k
�

n to be the subspace of vectors in (�n)⊗r that are unchanged by eachPn(π).
This space is called thesymmetric subspace.A classic result in symmetric polynomials
states that∨r

�
n is spanned by the vectors{v⊗r : v ∈ �n}.13

One important fact about symmetric tensors is that for injective tensor norm, the vectors
in the maximization can be taken to be equal. Formally,

Fact 9.2. If T ∈ ∨r
�

n then
‖‖‖T‖‖‖inj = max

x∈S(�n)
|〈〈〈T, x⊗r〉〉〉|. (9.10)

This has been proven in several different works; see the paragraph above Eq. (3.1) of
[CKP00] for references.

9.1.2 Connection to the 2-to-4 norm

Let A =
∑m

i=1 eiaT
i , so thata1, . . . , am ∈ �n are the rows ofA. Define

A4 =

m∑

i=1

a⊗4
i ∈ (�n)⊗4 (9.11)

A3 =

m∑

i=1

ai ⊗ ai ⊗ ei ∈ �n ⊗�n ⊗�m (9.12)

A2,2 =

m∑

i=1

aia
T
i ⊗ aia

T
i ∈ L((�n)⊗2) (9.13)

The subscripts indicate that thatAr is an r-tensor, andAr,s is a map fromr-tensors tos-
tensors.

Further, for a real tensorT ∈ (�n)⊗r , define‖‖‖T‖‖‖inj[�] to be the injective tensor norm that
results from treatingT as a complex tensor; that is, max{|〈〈〈T, x1 ⊗ · · · ⊗ xr〉〉〉| : x1, . . . , xr ∈
S(�n)}. For r > 3, ‖‖‖T‖‖‖inj[�] can be larger than‖‖‖T‖‖‖inj by as much as

√
2 [CKP00].

Our main result on equivalent forms of the 2→ 4 norm is the following.

Lemma 9.3.

‖‖‖A‖‖‖42→4 = ‖‖‖A4‖‖‖inj = ‖‖‖A3‖‖‖2inj = ‖‖‖A4‖‖‖inj[�] = ‖‖‖A3‖‖‖2inj[�] = hSep2(�n)(A2,2) = hSep2(�n)(A2,2)

13For the proof, observe thatv⊗r ∈ ∨r
�

n for anyv ∈ �n. To construct a basis for∨r
�

n out of linear combina-
tions of differentv⊗r , let z1, . . . , zn be indeterminates and evaluate ther-fold derivatives of (z1e1 + · · · + znen)⊗r

at z1 = · · · = zn = 0.
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Proof.

‖‖‖A‖‖‖42→4 = max
x∈S(�n)

m∑

i=1

〈〈〈ai , x〉〉〉4 (9.14)

= max
x∈S(�n)

〈〈〈A4, x
⊗4〉〉〉 (9.15)

= max
x1,x2,x3,x4∈S(�n)

|〈〈〈A4, x1 ⊗ x2 ⊗ x3 ⊗ x4〉〉〉| (9.16)

= ‖‖‖A4‖‖‖inj (9.17)

Here (9.16) follows from Fact9.2.
Next one can verify with direct calculation (and using maxz∈S(�n) 〈〈〈v, z〉〉〉 = ‖‖‖v‖‖‖2) that

max
x∈S(�n)

〈〈〈A4, x
⊗4〉〉〉 = max

x∈S(�n)
〈〈〈A2,2, xxT ⊗ xxT〉〉〉 = max

x∈S(�n)
max

z∈S(�m)
〈〈〈A3, x⊗ x⊗ z〉〉〉2. (9.18)

Now definez(i) := 〈〈〈ei , z〉〉〉 and continue.

max
x∈S(�n)

max
z∈S(�m)

|〈〈〈A3, x⊗ x⊗ z〉〉〉| = max
x∈S(�n)

max
z∈S(�m)

Re
m∑

i=1

z(i)〈〈〈ai , x〉〉〉2 (9.19)

= max
x∈S(�n)

max
z∈S(�m)

Re
m∑

i=1

z(i)〈〈〈ai , x〉〉〉2 (9.20)

= max
z∈S(�m)

‖‖‖
m∑

i=1

z(i)aia
T
i ‖‖‖2→2 (9.21)

= max
z∈S(�m)

max
x,y∈S(�n)

Re
m∑

i=1

z(i)〈〈〈x∗, ai〉〉〉〈〈〈ai , y〉〉〉 (9.22)

= ‖‖‖A3‖‖‖inj[�] = ‖‖‖A3‖‖‖inj (9.23)

From Lemma9.1, we thus have‖‖‖A‖‖‖42→4 = hSep2(�n)(A2,2) = hSep2(�n)(A2,2).
To justify (9.22), we argue that the maximum in (9.21) is achieved by taking all thez(i)

real (and indeed nonnegative). The resulting matrix
∑

i z(i)aiaT
i is real and symmetric, so

its operator norm is achieved by takingx = y to be real vectors. Thus, the maximum in
‖‖‖A3‖‖‖inj[�] is achieved for realx, y, zand as a result‖‖‖A3‖‖‖inj[�] = ‖‖‖A3‖‖‖inj .

Having now made the bridge to complex vectors, we can work backwards to establish
the last equivalence:‖A4‖inj[�] . Repeating the argument that led to (9.17) will establish that
‖‖‖A4‖‖‖inj[�] = maxx∈S(�n) maxz∈S(�m) |〈〈〈A3, x⊗ x⊗ z〉〉〉|2 = ‖‖‖A3‖‖‖2inj[�] . �

9.2 Hardness of approximation for the 2-to-4 norm

This section is devoted to the proof of Theorem2.5, establishing hardness of approximation
for the 2-to-4 norm.

First, we restate Theorem2.5 more precisely. We omit the reduction to whenA is a
projector, deferring this argument to Corollary9.9, where we will further use a randomized
reduction.

Theorem 9.4. (restatement of Theorem2.5) Letφ be a 3-SAT instance with n variables and
O(n) clauses. Determining whetherφ is satisfiable can be reduced in polynomial time to
determining whether‖A‖2→4 > C or ‖A‖2→4 6 c where0 6 c < C and A is an m×m matrix.
This is possible for two choices of parameters:
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1. m= poly(n), and C/c > 1+ 1/npoly log(n); or,

2. m= exp(
√

npoly log(n) log(C/c)).

The key challenge is establishing the following reduction.

Lemma 9.5. Let M ∈ L(�n ⊗ �n) satisfy 0 6 M 6 I. Assume that either (case Y)
hSep(n,n)(M) = 1 or (case N)hSep(n,n)(M) 6 1 − δ. Let k be a positive integer. Then
there exists a matrix A of size n4k × n2k such that in case Y,‖A‖2→4 = 1, and in case N,
‖A‖2→4 = (1− δ/2)k. Moreover, A can be constructed efficiently from M.

Proof of Theorem9.4. Once Lemma9.5 is proved, Theorem2.5 follows from previously
known results about the hardness of approximatinghSep). Letφ be a 3-SAT instance withn
variables andO(n) clauses. In Theorem 4 of [GNN] (improving on earlier work of [Gur03]),
it was proved thatφ can be reduced to determining whetherhSep(nc,nc)(M) is equal to 1
(“case Y”) or6 1− 1/n logc(n) (“case N”), wherec > 0 is a universal constant, andM is an
efficiently constructible matrix with 06 M 6 I . Now we apply Lemma9.5 with k = 1 to
find that exists a matrixA of dimension poly(n) such that in case Y,‖‖‖A‖‖‖2→4 = 1, and in case
N, ‖‖‖A‖‖‖2→4 6 1− 1/2n logc(n). Thus, distinguishing these cases would determine whether φ
is satisfiable. This establishes part (1) of Theorem2.5.

For part (2), we start with Corollary 14 of [HM10], which gives a reduction from de-
termining the satisfiability ofφ to distinguishing between (“case Y”)hSep(m,m)(M) = 1 and
(“case N”)hSep(m,m)(M) 6 1/2. Again 06 M 6 I , andM can be constructed in time poly(m)
from φ, but this timem = exp(

√
npoly log(n)). Applying Lemma9.5 in a similar fashion

completes the proof. �

Proof of Lemma9.5. The previous section shows that computing‖‖‖A‖‖‖2→4 is equivalent to
computinghSep(n,n)(A2,2), for A2,2 defined as in (9.13). However, the hardness results of
[Gur03, GNN, HM10] produce matricesM that are not in the form ofA2,2. The reduction
of [HM10] comes closest, by producing a matrix that is a sum of terms ofthe formxx∗⊗yy∗.
However, we need a sum of terms of the formxx∗ ⊗ xx∗. This will be achieved by a variant
of the protocol used in [HM10].

Let M0 ∈ L(�n⊗�n) satisfy 06 M 6 I . Consider the promise problem of distinguishing
the caseshSep(n,n)(M0) = 1 (called “case Y”) fromhSep(n,n)(M0) 6 1/2 (called “case N”). We
show that this reduces to finding a multiplicative approximation for ‖‖‖A‖‖‖2→4 for some realA
of dimensionnα for a constantα > 0. Combined with known hardness-of-approximation
results (Corollary 15 of [HM10]), this will imply Theorem2.5.

DefineP to be the projector onto the subspace of (�
n)⊗4 that is invariant underPn((1, 3))

andPn((2, 4)) (see Section9.1 for definitions). This can be obtained by applyingPn((2, 3))
to ∨2

�
n ⊗ ∨2

�
n, where we recall that∨2

�
n is the symmetric subspace of (�n)⊗2. SinceP

projects onto the vectors invariant under the 4-element group generated byPn((1, 3)) and
Pn((2, 4)), we can write it as

P =
I + Pn((1, 3))

2
· I + Pn((2, 4))

2
. (9.24)

An alternate definition ofP is due to Wick’s theorem:

P = �
a,b

[aa∗ ⊗ bb∗⊗̂ aa∗ ⊗ bb∗], (9.25)

where the expectation is taken over complex-Gaussian-distributed vectorsa, b ∈ �n normal-
ized so that� ‖a‖22 = � ‖b‖22 = n/

√
2. Here we use the notation̂⊗ to mark the separation
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between systems that we will use to define the separable states Sep(n2, n2). We could equiv-
alently write P = �a,b[(aa∗ ⊗ bb∗)⊗̂2]. We will find that (9.24) is more useful for doing
calculations, while (9.25) is helpful for convertingM0 into a form that resemblesA2,2 for
some matrixA.

Define M1 = (
√

M0 ⊗̂
√

M0)P (
√

M0 ⊗̂
√

M0), where
√

M0 is taken to be the unique
positive-semidefinite square root ofM0. Observe that

M1 = �
a,b

[va,bv
∗
a,b⊗̂ va,bv∗a,b] = �

a,b
[V⊗̂2

a,b], (9.26)

where we defineva,b :=
√

M0(a ⊗ b) andVa,b := va,bv∗a,b. We claim thathSep(M1) gives a
reasonable proxy forhSep(M0) in the following sense.

Lemma 9.6.

hSep(n2,n2)(M1)






= 1 in case Y

6 1− δ/2 in case N.
(9.27)

The proof of Lemma9.6 is deferred to the end of this section. The analysis is very
similar to Theorem 13 of [HM10], but the analysis here is much simpler becauseM0 acts
on only two systems. However, it is strictly speaking not a consequence of the results in
[HM10], because that paper considered a slightly different choice ofM1.

The advantage of replacingM0 with M1 is that (thanks to (9.25)) we now have a matrix
with the same form asA2,2 in (9.13), allowing us to make use of Lemma9.3. However, we
first need to amplify the separation between cases Y and N. This is achieved by the matrix
M2 := M⊗k

1 . This tensor product isnot across the cut we use to define separable states; in
other words:

M2 = �
a1,...,ak
b1,...,bk

[(Va1,b1 ⊗ · · · ⊗ Vak,bk)
⊗̂2]. (9.28)

Now Lemma 12 from [HM10] implies thathSep(n2k,n2k)(M2) = hSep(n2,n2)(M1)k. This is either
1 or6 (3/4)k, depending on whether we have case Y or N.

Finally, we would like to relate this to the 2→ 4 norm of a matrix. It will be more con-
venient to work withM1, and then take tensor powers of the corresponding matrix. Naively
applying Lemma9.3 would relatehSep(M1) to ‖‖‖A‖‖‖2→4 for an infinite-dimensionalA. In-
stead, we first replace the continuous distribution ona (resp. b) with a finitely-supported
distribution in a way that does not change�a aa∗ ⊗ aa∗ (resp.�b bb∗ ⊗ bb∗). Such distri-
butions are called complex-projective (2,2)-designs or quantum (state) 2-designs, and can
be constructed from spherical 4-designs on�2n [AE07]. Finding these designs is chal-
lenging when each vector needs to have the same weight, but for our purposes we can use
Carathéodory’s theorem to show that there exist vectorsz1, . . . , zm with m= n2 such that

�
a
[aa∗ ⊗ aa∗] =

∑

i∈[m]

ziz
∗
i ⊗ ziz

∗
i . (9.29)

In what follows, assume that the average overa, b used in the definitions ofP,M1,M2 is
replaced by the sum overz1, . . . , zm. By (9.29) this change does not affect the values of
P,M1,M2.

For i, j ∈ [m], definewi, j :=
√

M0(zi ⊗ zj), and letei, j := ei ⊗ ej . Now we can apply
Lemma9.3 to find thathSep(M1) = ‖‖‖A1‖‖‖42→4, where

A1 =
∑

i, j∈[m]

ei, jw
∗
i, j .
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The amplified matrixM2 similarly satisfieshSep(n2k,n2k)(M2) = ‖‖‖A2‖‖‖42→4, where

A2 := A⊗k
1 =

∑

i1,...,ik, j1,..., jk∈[m]

(ei1, j1 ⊗ eik, jk)(wi1. j1 ⊗ · · · ⊗ wik, jk)
∗.

The last step is to relate the complex matrixA2 to a real matrixA3 with the same 2→ 4
norm once we restrict to real inputs. This can be achieved by replacing a single complex
entryα + iβ with the 6× 2 real matrix

1
√

2





1 1
1 −1

21/4 0
21/4 0
0 21/4

0 21/4





·
(

α −β
β α

)

A complex inputx + iy is represented by the column vector

(

x
y

)

. The initial 2× 2 matrix

maps this to the real representation of (α+ iβ)(x+ iy), and then the fixed 6× 2 matrix maps
this to a vector whose 4-norm equals|(α + iβ)(x+ iy)|4.

�

We conclude with the proof of Lemma9.6, mostly following [HM10].

Proof. Case Y is simplest, and also provides intuition for the choices of theM1 construction.
Since the extreme points of Sep(n, n) are of the formxx∗ ⊗ yy∗ for x, y ∈ S(�n), it follows
that there existsx, y ∈ S(�n) with 〈〈〈x ⊗ y,M(x ⊗ y)〉〉〉 = 1. SinceM 6 I , this implies that
M(x⊗ y) = (x⊗ y). Thus

√
M0(x⊗ y) = (x⊗ y). Let

z= x⊗ y ⊗ x⊗ y.

Thenz is an eigenvector of both
√

M0 ⊗
√

M0 andP, with eigenvalue 1 in each case. To
see this forP, we use the definition in (9.24). Thus〈〈〈z,M1z〉〉〉 = 1, and it follows that
hSep(n2,n2)(M1) > 1. On the other hand,M1 6 I , implying thathSep(n2,n2)(M1) 6 1. This
establishes case Y.

For case N, we assume thathSep(n,n)(M0) 6 1 − δ for any x, y ∈ S(�n). The idea of

the proof is that for anyx, y ∈ S(�n2
), we must either havex, y close to a product state, in

which case the
√

M0 step will shrink the vector, or if they are far from a product state and
preserved by

√
M0 ⊗

√
M0, then theP step will shrink the vector. In either case, the length

will be reduced by a dimension-independent factor.
We now spell this argument out in detail. Choosex, y ∈ S(�n2

) to achieve

s := 〈〈〈x⊗ y,M1(x⊗ y)〉〉〉 = hSep(n2,n2)(M1). (9.30)

Let X,Y ∈ L(�n) be defined by
√

M0x =:
∑

i, j∈[n]

Xi, jei ⊗ ej and
√

M0y =:
∑

i, j∈[n]

Yi, jei ⊗ ej (9.31)

Note that〈〈〈X,X〉〉〉 = 〈〈〈x,M0x〉〉〉 6 1 and similarly for〈〈〈Y,Y〉〉〉. We wish to estimate

s=
∑

i, j,k,l,i′ , j′,k′,l′∈[n]

X̄i′, j′Ȳk′,l′Xi, jYk,l〈〈〈ei′ ⊗ ej′ ⊗ ek′ ⊗ el′ ,P(ei ⊗ ej ⊗ ek ⊗ el)〉〉〉 (9.32)
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Using (9.24) we see that the expression inside the〈〈〈 · 〉〉〉 is

δi,i′δ j, j′δk,k′δl,l′ + δi,k′δ j, j′δk,i′δl,l′ + δi,i′δ j,l′δk,k′δl, j′ + δi,k′δ j,l′δk,i′δl, j′

4
(9.33)

Rearranging, we find

s=
〈〈〈X,X〉〉〉〈〈〈Y,Y〉〉〉 + 〈〈〈X,Y〉〉〉〈〈〈X,Y〉〉〉 + 〈〈〈YY∗,XX∗〉〉〉 + 〈〈〈Y∗Y,X∗X〉〉〉

4
. (9.34)

Using the AM-GM inequality we see that the maximum of this expression is achieved when
X = Y, in which case we have

s=
〈〈〈X,X〉〉〉2 + 〈〈〈X∗X,X∗X〉〉〉

2
6

1+ 〈〈〈X∗X,X∗X〉〉〉
2

. (9.35)

Let the singular values ofX beσ1 > · · · > σn. Observe that‖‖‖σ‖‖‖22 = 〈〈〈X,X〉〉〉 6 1, and thus
‖‖‖σ‖‖‖44 = 〈〈〈X∗X,X∗X〉〉〉 6 σ2

1. On the other hand,

σ2
1 = max

a,b∈S(�n)
|〈〈〈a,Xb〉〉〉|2 (9.36)

= max
a,b∈S(�n)

|〈〈〈a⊗ b,
√

M0x〉〉〉|2 (9.37)

= max
a,b∈S(�n)

|〈〈〈
√

M0(a⊗ b), x〉〉〉|2 (9.38)

= max
a,b∈S(�n)

〈〈〈
√

M0(a⊗ b),
√

M0(a⊗ b)〉〉〉 (9.39)

= max
a,b∈S(�n)

〈〈〈a⊗ b,M0(a⊗ b)〉〉〉 (9.40)

= hSep(n,n)(M0) 6 1− δ (9.41)

�

Remark: It is possible to extend Lemma9.5 to the situation when case Y has
hS ep(M) > 1 − δ′ for some constantδ′ < δ. Since the details are somewhat tedious, and
repeat arguments in [HM10], we omit them here.

9.2.1 Hardness of approximation for projectors

Can Theorem2.5give any super-polynomial lower bound for the SSE problem ifwe assume
the Exponential-Time Hypothesis for 3-SAT? To resolve thisquestion using our techniques,
we would like to reduce 3-SAT to estimating the 2→ 4 norm of the projector onto the
eigenvectors of a graph that have large eigenvalue. We do notknow how to do this. However,
instead, we show that the matrixA constructed in Theorem2.5can be taken to be a projector.
This is almost WLOG, except that the resulting 2→ 4 norm will be at least 31/4.

Lemma 9.7. Let A be a linear map from�k to �n and0 < c < C , ε > 0 some numbers.
Then there is m= O(n2/ε2) and a map A′ from�k to�m such thatσmin(A′) > 1− ε and(i)
if ‖A‖2→4 6 c then‖A′‖2→4 6 31/4 + ε, (ii) ‖A‖2→4 > C then‖A′‖2→4 > Ω(εC/c).

Proof. We letB be a random map from�k to�O(n2/δ2) with entries that are i.i.d. Gaussians
with mean zero and variance 1/

√
k. Then Dvoretzky’s theorem [Pis99] implies that for

every f ∈ �k, ‖B f‖4 ∈ 31/4(1± δ)‖ f ‖2. Consider the operatorA′ =

(

A
B

)

that mapsf into the
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concatenation ofA f andB f . Moreover we take multiple copies of each coordinate so that
the measure of output coordinates ofA′ corresponding toA is α = δ/c4, while the measure
of coordinates corresponding toB is 1− α.

Now for every functionf , we get that‖A′ f ‖44 = α‖A f‖44 + (1 − α)‖B f‖44. In particular,
since‖B f‖44 ∈ 3(1± δ)‖ f ‖42, we get that iff is a unit vector and‖A f‖44 6 c4 then‖A′ f ‖44 6
δ1/4 + 3(1+ δ), while if ‖A f‖44 > C4, then‖A′ f ‖44 > δ(C/c)4.

Also note that the random operatorB will satisfy that for every functionf , ‖B f‖2 >
(1−δ)‖ f ‖2, and hence‖A′ f ‖ > (1−α)(1−δ)‖ f ‖. Choosingδ = ε/2 concludes the proof.�

It turns out that for the purposes of hardness of good approximation, the case thatA is
a projector is almost without loss of generality.

Lemma 9.8. Suppose that for someε > 0,C > 1 + ε there is apoly(n) algorithm that on
input a subspace V⊆ �n can distinguish between the case(Y) ‖ΠV‖2→4 > C and the case
(N) ‖ΠV‖2→4 6 31/4 + ε, whereΠV denotes the projector onto V. Then there isδ = Ω(ε)
and apoly(n) algorithm that on input an operator A: �k → �n with σmin(A) > 1− δ can
distinguish between the case(Y) ‖A‖2→4 > C(1+ δ) and(N) ‖A‖2→4 6 31/4(1+ δ).

Proof. First we can assume without loss of generality that‖A‖2→2 = σmax(A) 6 1+δ, since
otherwise we could rule out case(N). Now we letV be the image ofA. In the case(N) we
get that that for everyf ∈ �k

‖A f‖4 6 31/4(1+ δ)‖ f ‖2 6 31/4(1+ δ)‖A f‖2/σmin(A) 6 31/4(1+O(δ))‖A f‖2 ,

implying ‖ΠV‖2→4 6 31/4 + O(δ). In the case(Y) we get that there is somef such that
‖A f‖4 > C(1 + δ)‖ f ‖2, but since‖A f‖2 6 σmax(A)‖ f ‖2, we get that‖A f‖4 > C, implying
‖ΠV‖2→4 > C. �

Together these two lemmas effectively extend Theorem2.5 to the case whenA is a
projector. We focus on the hardness of approximating to within a constant factor.

Corollary 9.9. For any ℓ, ε > 0, if φ is a 3-SAT instance with n variables and O(n)
clauses, then determining satisfiability ofφ can be reduced to distinguishing between
the cases‖A‖2→4 6 31/4 + ε and ‖A‖2→4 > ℓ), where A is a projector acting on
m= exp(

√
npoly log(n) log(ℓ/ε)) dimensions.

Proof. Start as in the proof of Theorem2.5, but in the application of Lemma9.5, take
k = O(log(ℓ/ε)). This will allow us to takeC/c = Ω(ℓ/ε) in Lemma9.7. Translating into a
projector with Lemma9.8, we obtain the desired result. �

9.3 Algorithmic applications of equivalent formulations

In this section we discuss the positive algorithmic resultsthat come from the equivalences
in Section9.1. Since entanglement plays such a central role in quantum mechanics, the
set Sep2(�n) has been extensively studied. However, because its hardness has long been
informally recognized (and more recently has been explicitly established [Gur03, Liu07,
HM10, GNN]), various relaxations have been proposed for the set. These relaxations are
generally efficiently computable, but also have limited accuracy; see [BS10] for a review.

Two of the most important relaxations are the PPT condition and k-extendability. For
an operatorX ∈ L((�n)⊗r ) and a setS ⊆ [r], define thepartial transpose XTS to be the result
of applying the transpose map to the systemsS. Formally, we define

(X1 ⊗ · · · ⊗ Xr )
TS :=

r⊗

k=1

fk(Xk)
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fk(M) :=






M if k < S

MT if k ∈ S

and extendTS linearly to all ofL((�n)⊗r ). One can verify that ifX ∈ Sepr(�n) thenXTS � 0
for all S ⊆ [r]. In this case we say thatX is PPT, meaning that it has Positive Partial
Transposes. However, the converse is not always true. Ifn > 2 or r > 2, then there are
states which are PPT but not in Sep [HHH96].

The second important relaxation of Sep is calledr-extendability. To define this, we need
to introduce the partial trace. ForS ⊆ [r], we define TrS to be the map fromL((�n)⊗r ) to
L((�n)⊗r−|S|) that results from applying Tr to the systems inS. Formally

TrS
r⊗

k=1

Xk =
∏

k∈S
Tr Xk

⊗

k<S

Xk,

and TrS extends by linearity to all ofL((�n)⊗r ).
To obtain our relaxation of Sep, we say thatρ ∈ D(�n ⊗ �n) is r-extendable if there

exists asymmetric extensionσ ∈ D(�n ⊗ ∨r
�

n) such that Tr{3,...,r+1} σ = ρ. Observe that
if ρ ∈ Sep2(�n), then we can writeρ =

∑

i xi x∗i ⊗ yiy
∗
i , and soσ =

∑

i xi x∗i ⊗ (yiy
∗
i )
⊗r is a

valid symmetric extension. Thus the set ofk-extendable states contains the set of separable
states, but again the inclusion is strict. Indeed, increasing k gives an infinite hierarchy of
strictly tighter approximations of Sep2(�n). This hierarchy ultimately converges [DPS04],
although not always at a useful rate (see Example IV.1 of [CKMR07]). Interestingly this
relaxation is known to completely fail as a method of approximating Sep2(�n) [CFS02], but
our Lemma9.3 is evidence that those difficulties do not arise in the 2→4-norm problem.

These two relaxations can be combined to optimize over symmetric extensions that
have positive partial transposes [DPS04]. Call this thelevel-r DPS relaxation. It is known
to converge in some cases more rapidly thanr-extendability alone [NOP09], but also is
never exact for any finiter [DPS04]. Like SoS, this relaxation is an SDP with sizenO(r). In
fact, for the case of the 2→ 4 norm, the relaxations are equivalent.

Lemma 9.10. When the level-r DPS relaxation is applied to A2,2, the resulting approxima-
tion is equivalent toTensor-SDP(2r+2)

Proof. Suppose we are given an optimal solution to the level-r DPS relaxation. This can
be thought of as a density operatorσ ∈ D(�n ⊗ ∨r

�
n) whose objective value isλ :=

〈〈〈A2,2,Tr{3,...,r+1} σ〉〉〉 = 〈〈〈A2,2 ⊗ I⊗r−1
n , σ〉〉〉. Let Π(2)

sym := (I + Pn((1, 2)))/2 be the orthogonal

projector onto∨2
�

n. ThenA2,2 = Π
(2)
symA2,2Π

(2)
sym. Thus, we can replaceσ byσ′ := (Π(2)

sym⊗
I⊗r−1
n )σ(Π(2)

sym ⊗ I⊗r−1
n ) without changing the objective function. However, unlessσ′ = σ,

we will have Trσ′ < 1. In this case, eitherσ′ = 0 andλ = 0, orσ′/Trσ′ is a solution
of the DPS relaxation with a higher objective value. In either case, this contradicts the
assumption thatλ is the optimal value. Thus, we must haveσ = σ′, and in particular
suppσ ⊆ ∨2

�
n ⊗ (�n)⊗r−1. Since we had suppσ ⊆ �n ⊗ ∨r

�
n by assumption, it follows

that
suppσ ⊆ (∨2

�
n ⊗ (�n)⊗r−1) ∩ (�n ⊗ ∨r

�
n) = ∨r+1

�
n

Observe next thatσT is also a valid and optimal solution to the DPS relaxation, and so
σ′ = (σ + σT)/2 is as well. Sinceσ′ is both symmetric and Hermitian, it must be a real
matrix. Replacingσ with σ′, we see that we can assume WLOG thatσ is real.

Similarly, the PPT condition implies thatσTA > 0. (Recall that the first system is
A and the rest areB1, . . . , Bk.) Since the partial transpose doesn’t change the objective
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function,σ′ = (σ + σTA)/2 is also an optimal solution. Replacingσ with σ′, we see that
we can assume WLOG thatσ = σTA. Let ~σ ∈ (�n)⊗2r+2 denote the flattening ofσ; i.e.
〈〈〈x ⊗ y, ~σ〉〉〉 = 〈〈〈x, σy〉〉〉 for all x, y ∈ (�n)r+1. Then the fact thatσ = σTA means that~σ is
invariant under the action ofPn((1, r +1)). Similarly, the fact that suppσ ⊆ ∨r+1

�
n implies

that~σ ∈ ∨r+1
�

n ⊗ ∨r+1
�

n. Combining these two facts we find that~σ ∈ ∨2r+2
�

n.
Now that~σ is fully symmetric under exchange of all 2r + 2 indices, we can interpret it

as a real-valued pseudo-expectation�̃σ for polynomials of degree 2r + 2. More precisely,
we can define the linear mapcoeff that sends homogeneous degree-2r + 2 polynomials to
∨2r+2

�
n by its action on monomials:

coeff ( f α1
1 · · · f

αn
n ) := Π(2r+2)

sym (e⊗α1
1 ⊗ · · · ⊗ e⊗αn

n ), (9.42)

whereΠ(2r+2)
sym := 1

2r+2!

∑

π∈S2r+2
Pn(π). For a homogenous polynomialQ( f ) of even degree

2r′ 6 2r + 2 we definecoeff by

coeff (Q( f )) := coeff (Q( f ) · ‖‖‖ f‖‖‖2r+2−2r ′
2 ).

For a homogenous polynomialQ( f ) of odd degree, we setcoeff (Q) := 0. Then we can
extendcoeff by linearity to all polynomials of degree6 2r + 2. Now define

�̃
σ

[Q] := 〈〈〈 coeff (Q), ~σ〉〉〉.

We claim that this is a valid pseudo-expectation. For normalization, observe that̃�[1] =
〈〈〈 coeff (‖‖‖ f‖‖‖2r+2

2 ), ~σ〉〉〉 = Trσ = 1. Similarly, theTensor-SDP constraint of�̃[(‖‖‖ f‖‖‖22−1)2] = 0
is satisfied by our definition ofcoeff . Linearity follows from the linearity ofcoeff and
the inner product. For positivity, consider a polynomialQ( f ) of degree6 r + 1. Write
Q = Qo+Qe, whereQo collects all monomials of odd degree andQe collects all monomials
of even degree (i.e.Qe,Qo = (Q( f ) ± Q(− f ))/2). Then�̃[Q2] = �̃[Q2

o] + �̃[Q2
e], using the

property that the pseudo-expectation of a monomial of odd degree is zero.
Consider first�̃[Q2

e]. Let r′ = 2⌊ r+1
2 ⌋ (i.e. r′ is r + 1 rounded down to the nearest

even number), so thatQe =
∑r ′/2

i=0 Q2i , whereQ2i is homogenous of degree 2i. Define

Q′e :=
∑r ′/2

i=0 Q2i‖ f ‖r
′−2i

2 . Observe thatQ′e is homogenous of degreer′ 6 r + 1, and that
�̃[Q2

e] = �̃[(Q′e)
2]. Next, definecoeff ′ to map homogenous polynomials of degreer′ into

∨r ′
�

n by replacing 2r + 2 in (9.42) with r′. If r′ = r + 1 then defineσ′ = σ, or if r′ = r
then defineσ′ = TrAσ. Thusσ′ acts onr′ systems. Define~σ′ ∈ ∨2r ′

�
n to be the flattened

version ofσ′. Finally we can calculate

�̃[Q2
e] = �̃[(Q′e)

2] = 〈〈〈 coeff ′(Q′e) ⊗ coeff ′(Q′e), ~σ
′〉〉〉 = 〈〈〈 coeff ′Q′e, σ

′ coeff ′ Q′e〉〉〉 > 0.

A similar argument establishes that�̃[Q2
o] > 0 as well. This establishes that any optimal

solution to the DPS relaxation translates into a solution oftheTensor-SDP relaxation.
To translate aTensor-SDP solution into a DPS solution, we run this construction in

reverse. The arguments are essentially the same, except that we no longer need to establish
symmetry across all 2r + 2 indices. �

9.3.1 Approximation guarantees and the proof of Theorem2.3

Many approximation guarantees for thek-extendable relaxation (with or without the addi-
tional PPT constraints) required thatk be poly(n), and thus do not lead to useful algorithms.
Recently, [BaCY11] showed that in some cases it sufficed to takek = O(logn), leading
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to quasi-polynomial algorithms. It is far from obvious thattheir proof translates into our
sum-of-squares framework, but nevertheless Lemma9.10implies thatTensor-SDP can take
advantage of their analysis.

To apply the algorithm of [BaCY11], we need to upper-boundA2,2 by an 1-LOCC mea-
surement operator. That is, a quantum measurement that can be implemented by one-way
Local Operations and Classical Communication (LOCC). Sucha measurement should have
a decomposition of the form

∑

i Vi ⊗Wi where eachVi ,Wi � 0,
∑

i Vi � In and eachWi � In.
Thus, for complex vectorsv1, . . . , vm, w1, . . . , wm satisfying

∑

i viv
∗
i � In and∀i, wiw

∗
i � In,

the operator
∑

i viv
∗
i ⊗ wiw

∗
i is a 1-LOCC measurement.

To upper-boundA2,2 by a 1-LOCC measurement, we note thataiaT
i � ‖‖‖ai‖‖‖22In. Thus, if

we defineZ := ‖‖‖∑i aiaT
i ‖‖‖2→2 maxi ‖‖‖ai‖‖‖2, thenA2,2/Z is a 1-LOCC measurement. Note that

this is a stricter requirement than merely requiringA2,2/Z � In2. On the other hand, in some
cases (e.g.ai all orthogonal), it may be too pessimistic.

In terms of the original matrixA =
∑

i eiaT
i , we have maxi ‖‖‖ai‖‖‖2 = ‖‖‖A‖‖‖2→∞. Also

‖‖‖∑i aiaT
i ‖‖‖2→2 = ‖‖‖ATA‖‖‖2→2 = ‖‖‖A‖‖‖22→2. Thus

Z = ‖‖‖A‖‖‖22→2‖‖‖A‖‖‖22→∞.

Recall from the introduction thatZ is an upper bound on‖‖‖A‖‖‖42→4, based on the fact
that ‖‖‖x‖‖‖4 6

√

‖‖‖x‖‖‖2‖‖‖x‖‖‖∞ for any x. (This bound also arises from using interpolation of
norms [Ste56].)

We can now apply the argument of [BaCY11] and show that optimizing overO(r)-

extendable states will approximate‖‖‖A‖‖‖42→4 up to additive error
√

log(n)
r Z. Equivalently, we

can obtain additive errorεZ usingO(log(n)/ε2)-roundTensor-SDP. Whether the relaxation
used is the DPS relaxation or our SoS-basedTensor-SDP algorithm, the resulting runtime
is exp(O(log2(n)/ε2)).

9.3.2 Gap instances

SinceTensor-SDP is equivalent than the DPS relaxation for separable states,any gap in-
stance forTensor-SDP would translate into a gap instance for the DPS relaxation. This
would mean the existence of a state that passes thek-extendability and PPT test, but never-
theless is far from separable, withA2,2 serving as the entanglement witness demonstrating
this. While such states are already known [DPS04, BS10], it would be of interest to find
new such families of states, possibly with different scaling ofr andn.

Our results, though, can be used to give an asymptotic separation of the DPS hierarchy
from ther-extendability hierarchy. (As a reminder, the DPS hierarchy demands that a state
not only have an extension tor+1 parties, but also that the extension be PPT across any cut.)
To state this more precisely, we introduce some notation. Define DPSr to be the set of states
ρAB for which there exists an extension ˜ρAB1···Br with support in�n⊗∨r

�
n (i.e. a symmetric

extension) such that ˜ρ is invariant under taking the partial transpose of any system. Define
Extr to be the set of states onAB with symmetric extensions toAB1 . . . Br but without any
requirement about the partial transpose. BothhDPSr andhExtr can be computed in timenO(r),
although in practicehExtr (M) is easier to work with, since it only requires computing the
top eigenvalue ofM ⊗ I⊗r−1

n restricted to�n ⊗ ∨r
�

n and does not require solving an SDP.
Many of the results about the convergence of DPSr to Sep (such as [DPS04, CKMR07,

KM09, BaCY11]) use only the fact that DPSr ⊂ Extr . A rare exception is [NOP09], which
shows that DPSr is at least quadratically closer to Sep than Extr is, in the regime where
r ≫ n. Another simple example comes fromM = ΦΦ∗, whereΦ is the maximally entangled
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staten−1/2 ∑n
i=1 ei⊗ei. Then one can readily compute thathSep(M) = hDPS1(M) = 1/n, while

ther-extendible state

ρ̃AB1...Br =
1
r

r∑

i=1

(ΦΦ∗)ABi ⊗
⊗

j∈[r ]\{i}

( I
n

)B j

(9.43)

achieveshExtr (M) > 1/r. (In words, (9.43) describes a state whereA and a randomly
chosenBi share the stateΦΦ∗, while the otherB j systems are described by maximally mixed
states.) This proves that ther-extendable hierarchy cannot achieve a good multiplicative
approximation ofhSep(M) for all M without takingr > Ω(n).

Can we improve this whenM is in a restricted class, such as 1-LOCC? Here
[BRSdW11] show that the Khot-Vishnoi integrality construction can yield an n2-
dimensionalM for which hSep(M) 6 O(1/n), but TrMΦ > Ω(1/ log2(n)). Combined with
(9.43) this implies thathExtr (M) > Ω(1/r log2(n)). On the other hand, Theorem6.12and
Lemma9.10implies thathDPS3(M) 6 O(1/n). Additionally, theM from Ref. [BRSdW11]
belongs to the class BELL, a subset of 1-LOCC, given by measurements of the form
∑

i, j pi, jAi ⊗ B j, with 0 6 pi, j 6 1 and
∑

i Ai =
∑

j B j = I . As a result, we obtain the
following corollary.

Corollary 9.11. There exists an n2 dimensional M∈ BELL such that

hExtr (M)

hDPS3(M)
6 O

(

r log2(n)
n

)

10 Subexponential algorithm for the 2-to-q norm

In this section we prove Theorem2.1:

Theorem (Restatement ofTheorem 2.1). For every1 < c < C, there is apoly(n) exp(n2/q)-
time algorithm that computes a(c,C)-approximation for the2 → q norm of any linear
operator whose range is�n.

and obtain as a corollary a subexponential algorithm for Small-Set Expansion. The
algorithm roughly matches the performance of [ABS10]’s for the same problem, and in
fact is a very close variant of it. The proof is obtained by simply noticing that a subspace
V cannot have too large of a dimension without containing a vector v (that can be easily
found) such that‖v‖q ≫ ‖v‖2, while of course it is always possible to find such a vector
(if it exists) in time exponential in dim(V). The key observation is the following basic fact
(whose proof we include here for completeness):

Lemma 10.1. For every subspace V⊆ �n, ‖V‖2→∞ >
√

dim(V).

Proof. Let f 1, . . . , f d be an orthonormal basis forV, whered = dim(V). For everyi ∈ [n],
let gi be the function

∑d
j=1 f j

i f i. Note that theith coordinate ofgi is equal to
∑d

j=1( f j
i )2 (*)

which also equals‖gi‖22 since thef j ’s are an orthonormal basis. Also the expectation of(*)
over i is

∑d
j=1�i∈[n]( f j

i )2 =
∑d

j=1‖ f j‖22 = d since these are unit vectors. Thus we get that

�i‖gi‖∞ > �i g
i
i = d = �i‖g‖22. We claim that one of thegi ’s must satisfy‖gi‖∞ >

√
d‖gi‖2.

Indeed, suppose otherwise, then we’d get that

d = �
i
‖gi‖22 > Ei‖gi‖2∞/d

meaningEi‖gi‖2∞ < d2, but Ei‖gi‖2∞ >
(

�i‖gi‖∞
)2
= d2— a contradiction. �
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Corollary 10.2. For every subspace V⊆ �n, ‖V‖2→q >
√

dim(V)/n1/q

Proof. By looking at the contribution to theqth-norm of just one coordinate one can see
that for every functionf , ‖ f ‖q > (‖ f ‖q∞/n)1/q = ‖ f ‖∞/n1/q. �

Proof of Theorem 2.1 from Corollary 10.2. Let A : �m → �n be an operator, and let
1 < c < C be some constants andσ = σmin(A) be such that‖A f‖2 > σ‖ f ‖2 for every f
orthogonal to the kernel ofA. We want to distinguish between the case that‖A‖2→q 6 c and
the case that‖A‖2→q > C. If σ > c then clearly we are not in the first case, and so we are
done. LetV be the image ofA. If dim(V) 6 C2n2/q then we can use brute force enumeration
to find out if suchv exists in the space. Otherwise, by Corollary10.2we must be in the
second case. �

Note that by applying Theorem2.3we can replace the brute force enumeration step by
the SoS hierarchy, since‖V‖2→2 6 1 automatically, and unless‖V‖2→∞ 6 Cn1/q we will be
in the second case.

A corollary of Theorem2.1is a subexponential algorithm for Small-Set Expansion

Corollary 10.3. For every0.4 > ν > 0 there is anexp(n1/O(log(1/ν))) time algorithm that
given a graph with the promise that either (i)ΦG(δ) > 1 − ν or (ii) ΦG(δ2) 6 0.5 decides
which is the case.

Proof. For q = O(log(1/ν)) we find from Theorem2.4 that in case (i),‖V>0.4‖2→q 6 2/
√
δ,

while in case (ii)‖V>0.4‖2→q > 0.1/δ1−2/q. Thus it sufficies to obtain a (2/
√
δ, 0.1/δ1−2/q)-

approximation for the 2→ q norm to solve the problem, and by Theorem2.1 this can be
achieved in time exp(nO(log(1/ν))) for sufficiently smallδ. �

Conclusions

This work motivates further study of the complexity of approximating hypercontractive
norms such as the 2→ 4 norm. A particulary interesting question is what is the complexity
of obtaining a good approximation for the 2→ 4 norm and what’s the relation of this prob-
lem to the Small-Set Expansion problem. Our work leaves possible at least the following
three scenarios:(i) both these problems can be solved in quasipolynomial time, but not
faster, which would mean that the UGC as stated is essentially false but a weaker variant
of it is true, (ii) both these problems areNP-hard to solve (via a reduction with polyno-
mial blowup) meaning that the UGC is true, and(iii) the Small-Set Expansion and Unique
Games problems are significantly easier than the 2→ 4 problem with the most extreme
case being that the former two problems can be solved in polynomial time and the latter
is NP-hard and hence cannot be done faster than subexponential time. This last scenario
would mean that one can improve on the subexponential algorithm for the 2→ 4 norm for
general instances by using the structure of instances arising from the Small-Set Expansion
reduction of Theorem2.4 (which indeed seem quite different from the instances arising
from the hardness reduction of Theorem2.5). In any case we hope that further study of the
complexity of computing hypercontractive norms can lead toa better understanding of the
boundary between hardness and easiness for Unique Games and related problems.

Acknowledgments. We thank Pablo Parrilo for useful discussions, and the anonymous
STOC referees for numerous comments that greatly improved the presentation of this pa-
per. Aram Harrow was funded by NSF grants 0916400, 0829937, 0803478 and DARPA

43



QuEST contract FA9550-09-1-0044. Jonathan Kelner was partially supported by NSF
awards 1111109 and 0843915.

References

[ABS10] Sanjeev Arora, Boaz Barak, and David Steurer,Subexponential algorithms
for unique games and related problems, FOCS, 2010, pp. 563–572.1, 2, 4,
6, 10, 42

[AE07] Andris Ambainis and Joseph Emerson,Quantum t-designs: t-wise indepen-
dence in the quantum world, IEEE Conference on Computational Complex-
ity 2007 (2007), 129–140, arXiv:quant-ph/0701126v2.35

[ALPTJ10] Radosław Adamczak, Alexander E. Litvak, Alain Pajor, and Nicole
Tomczak-Jaegermann,Quantitative estimates of the convergence of the em-
pirical covariance matrix in log-concave ensembles, J. Amer. Math. Soc.23
(2010), 535–561, arXiv:0903.2323.24

[ALPTJ11] , Sharp bounds on the rate of convergence of the empirical covari-
ance matrix, Comptes Rendus Mathematique349 (2011), no. 3-4, 195–200,
arXiv:1012.0294.24

[BaCY11] Fernando G.S.L. Brandão, Matthias Christandl, and Jon Yard, A
quasipolynomial-time algorithm for the quantum separability problem, Pro-
ceedings of the 43rd annual ACM symposium on Theory of computing,
STOC ’11, 2011, arXiv:1011.2751, pp. 343–352.3, 4, 12, 40, 41

[BGH+11] Boaz Barak, Parikshit Gopalan, Johan Håstad, Raghu Meka, Prasad
Raghavendra, and David Steurer,Making the long code shorter, with appli-
cations to the unique games conjecture, 2011, Manuscript.6, 14, 15, 16, 22,
23, 49

[Bis11] Punyashloka Biswal,Hypercontractivity and its applications, Manuscript.
Available as eprintarXiv:1101.2913v1, 2011.1

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer,Rounding semidefinite
programming hierarchies via global correlation, FOCS, 2011, To appear.
arXiv:1104.4680v1. 3, 6

[BRSdW11] Harry Buhrman, Oded Regev, Giannicola Scarpa, and Ronald de Wolf,Near-
optimal and explicit bell inequality violations, Proceedings of the 2011 IEEE
26th Annual Conference on Computational Complexity, CCC ’11, 2011,
arXiv:1012.5043, pp. 157–166.42

[BS10] Salman Beigi and Peter W. Shor,Approximating the set of separable states
using the positive partial transpose test, J. Math. Phys.51 (2010), no. 4,
042202, arXiv:0902.1806.38, 41

[BTN98] Aharon Ben-Tal and Arkadi Nemirovski,Robust convex optimization, Math-
ematics of Operations Research23 (1998), no. 4, 769–805.5

[BV11] Aditya Bhaskara and Aravindan Vijayaraghavan,Approximating matrix p-
norms, SODA, 2011, pp. 497–511.1

44

http://arxiv.org/abs/1101.2913
http://arxiv.org/abs/1104.4680


[CFS02] Carlton M. Caves, Christopher A. Fuchs, and Rdiger Schack,Unknown quan-
tum states: The quantum de finetti representation, J. Math. Phys.43 (2002),
no. 9, 4537–4559, arXiv:quant-ph/0104088.39

[CKMR07] Matthias Christandl, Robert König, Graeme Mitchison, and Renato Ren-
ner,One-and-a-half quantum de finetti theorems, Commun. Math. Phys.273
(2007), 473–498, arXiv:quant-ph/0602130.39, 41
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A More facts about pseudo-expectation

In this section we note some additional facts about pseudo-expectation functionals that are
useful in this paper.

Lemma A.1. The relation P2 � P holds if and only if0 � P � 1. Furthermore, if P2 � P
and0 � Q � P, then Q2 � Q.

Proof. If P � 0, thenP � 1 impliesP2 � P. (Multiplying both sides with a sum of squares
preserves the order.) On the other hand, supposeP2 � P. SinceP2 � 0, we also haveP � 0.
Since 1− P = P− P2 + (1− P)2, the relationP2 � P also impliesP � 1.

For the second part of the lemma, supposeP2 � P and 0� Q � P. Using the first part
of the lemma, we haveP � 1. It follows that 0� Q � 1, which in turn impliesQ2 � Q
(using the other direction of the first part of the lemma). �

Fact A.2. If f is a d-f.r.v. over�U and {Pv}v∈U are polynomials of degree at most k,
theng with g(v) = Pv( f ) is a level-(d/k) fictitious random variable over�U. (For a poly-
nomial Q of degree at most d/k, the pseudo-expectation is defined as�̃g Q({g(v)}v∈U) :=
�̃ f Q({Pv( f )}v∈U) .)

Lemma A.3. For f , g ∈ L2(U),

〈 f , g〉 � 1
2‖ f ‖

2 + 1
2‖g‖

2 .

Proof. The right-hand side minus the LHS equals the square polynomial 1
2〈 f −g, f −g〉 �

Lemma A.4 (Cauchy-Schwarz inequality). If ( f , g) is a level-2 fictitious random variable
over�U ×�U, then

�̃
f ,g
〈 f , g〉 6

√

�̃
f
‖ f ‖2 ·

√

�̃
g
‖g‖2 .

Proof. Let f̄ = f /
√

�̃ f ‖ f ‖2 and ḡ = g/
√

�̃g‖g‖2. Note �̃ f̄ ‖ f̄ ‖2 = �̃ḡ‖ḡ‖2 = 1. Since by

LemmaA.3, 〈 f̄ , ḡ〉 � 1/2‖ f̄ ‖2 + 1/2‖ḡ‖2, we can conclude the desired inequality,

�̃
f ,g
〈 f , g〉 =

√

�̃
f
‖ f ‖2 ·

√

�̃
g
‖g‖2 �̃

f̄ ,ḡ
〈 f̄ , ḡ〉 6

√

�̃
f
‖ f ‖2 ·

√

�̃
g
‖g‖2 ·

(

1
2 �̃

f̄
‖ f̄ ‖2 + 1

2 �ḡ
‖ḡ‖2

)

︸                    ︷︷                    ︸

=1

. �
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Corollary A.5 (Hölder’s inequality). If ( f , g) is a4-f.r.v. over�U ×�U, then

�̃
f ,g
�

u∈U
f (u)g(u)3

6

(

�̃
f
‖ f ‖44

)1/4 (

�̃
g
‖g‖44

)3/4

.

Proof. UsingLemma A.4twice, we have

�̃
f ,g
�

u∈U
f (u)g(u)3

6

(

�̃
f ,g
�

u∈U
f (u)2g(u)2

)1/2 (

�̃
g
‖g‖44

)1/2

6

(

�̃
f
‖ f ‖44

)1/4 (

�̃
g
‖g‖44

)3/4

.

�

B Norm bound implies small-set expansion

In this section, we show that an upper bound on 2→ q norm of the projector to the top
eigenspace of a graph implies that the graph is a small-set expander. This proof appeared
elsewhere implicitly [KV05, O’D07] or explicitly [BGH+11] and is presented here only for
completeness. We use the same notation from Section8. Fix a graphG (identified with its
normalized adjacency matrix), andλ ∈ (0, 1), lettingV>λ denote the subspace spanned by
eigenfunctions with eigenvalue at leastλ.

If p, q satisfy 1/p+ 1/q = 1 then‖x‖p = maxy:‖y‖q61 |〈x, y〉|. Indeed,|〈x, y〉| 6 ‖x‖p‖y‖q
by Hölder’s inequality, and by choosingyi = sign(xi)|xi |p−1 and normalizing one can see
this equality is tight. In particular, for everyx ∈ L(U), ‖x‖q = maxy:‖y‖q/(q−1)61 |〈x, y〉| and
‖y‖q/(q−1) = max‖x‖q61 |〈x, y〉|. As a consequence

‖A‖2→q = max
‖x‖261

‖Ax‖q = max
‖x‖261,‖y‖q/(q−1)61

|〈Ax, y〉| = max
‖y‖q/(q−1)61

|〈ATy, x〉| = ‖AT‖q/(q−1)→2

Note that ifA is a projection operator,A = AT. Thus, part 1 of Theorem2.4 follows
from the following lemma:

Lemma B.1. Let G= (V,E) be regular graph andλ ∈ (0, 1). Then, for every S⊆ V,

Φ(S) > 1− λ − ‖Vλ‖2q/(q−1)→2µ(S)(q−2)/q

Proof. Let f be the characteristic function ofS, and write f = f ′ + f ′′ where f ′ ∈ Vλ and
f ′′ = f − f ′ is the projection to the eigenvectors with value less thanλ. Let µ = µ(S). We
know that

Φ(S) = 1− 〈 f ,G f〉/‖ f ‖22 = 1− 〈 f ,G f〉/µ , (B.1)

And ‖ f ‖q/(q−1) =
(

� f (x)q/(q−1)
)(q−1)/q

= µ(q−1)/q, meaning that‖ f ′‖ 6 ‖Vλ‖q/(q−1)→2µ
(q−1)/q.

We now write

〈 f ,G f〉 = 〈 f ′,G f ′〉 + 〈 f ′′,G f ′′〉 6 ‖ f ′‖22 + λ‖ f ′′‖22 6 ‖V‖2q/(q−1)→2‖ f ‖2q/(q−1) + λµ

6 ‖V‖22→qµ
2(q−1)/q + λµ . (B.2)

Plugging this into (B.1) yields the result. �

C Semidefinite Programming Hierarchies

In this section, we compare different SDP hierarchies and discuss some of their properties.
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C.1 Example of Max Cut

In this section, we compare the SoS hierarchy and Lasserre hierarchy at the example of Max
Cut. (We use a formulation of Lasserre’s hierarchy similar to the one in [Sch08].) It will
turn out that these different formulations are equivalent up to (small) constant factors in the
number of levels. We remark that the same proof with syntactic modifications shows that
our SoS relaxation of Unique Games is equivalent to the corresponding Lasserre relaxation.

Let G be a graph (an instance of Max Cut) with vertex setV = {1, . . . , n}. The level-
d Lasserre relaxation forG, denoted lassd(G), is the following semidefinite program over
vectors{vS}S⊆[n], |S|6d,

lassd(G) : maximize
∑

(i, j)∈G
‖‖‖vi − v j‖‖‖2

subject to 〈〈〈vS, vT〉〉〉 = 〈〈〈vS′ , vT′〉〉〉 for all sets withS∆T = S′∆T′ ,

‖‖‖v∅‖‖‖2 = 1 .

The level-d SoS relaxation forG, denoted sosd(G), is the following semidefinite pro-
gram overd-p.e.f.�̃ (andd-f.r.v. x over�V),

sosd(G) : maximize �̃
x

∑

(i, j)∈G
(xi − x j)

2

subject to �̃
x
(x2

i − 1)2 = 0 for all i ∈ V .

From Lasserre to SoS. Suppose{vS} is a solution to lassd(G). For a polynomialP over
�

V, we obtain a multilinear polynomialP′ by successively replacing squaresx2
i by 1. (In

other words, we reduceP modulo the ideal generated by the polynomialsx2
i −1 with i ∈ V.)

We define ad-p.e.f.�̃ by setting�̃P =
∑

|S|6d cS〈v∅, vS〉, where{cS}|S|6d are the coefficients
of the polynomialP′ =

∑

|S|6d cS
∏

i∈S xi obtained by makingP multilinear. The functional
�̃ is linear (using (P + Q)′ = P′ + Q′) and satisfies the normalization condition. We also
have�̃(x2

i −1)2 = 0 since (x2
i −1)2 = 0 modulox2

i −1. Since�̃x(xi − x j)2 = ‖‖‖vi − v j‖‖‖2 for all
i, j ∈ V (using〈v∅, vi j 〉 = 〈vi , v j〉), our solution for sosd(G) has the same objective value as
our solution for lassd(G). It remains to verify positivity. LetP2 be a polynomial of degree
at mostd. We may assume thatP is multilinear, so thatP =

∑

|S|6d cSxS ThereforeP2 =
∑

S,T cScT xSxT and�̃P2 =
∑

S,T cScT〈v∅, vS∆T〉. Using the property〈〈〈v∅, vS∆T〉〉〉 = 〈〈〈vS, vT〉〉〉,
we conclude�̃P2 =

∑

S,T cScT〈vS, vT〉 = ‖‖‖
∑

S cSvS‖‖‖2 > 0.

From SoS to Lasserre. Let �̃ be a solution to sosd(G). We will construct a solution for
lassd/2(G) (assumingd is even). Letd′ = d/2. Forα ∈ �n, let xα be the monomial

∏

i∈[n] xαi
i .

The polynomials{xα}|α|6d′ form a basis of the space of degree-d′ polynomials over�n.
Since�̃P2

> 0 for all polynomialsP of degree at mostd′, the matrix (̃� xαxβ)|α|,|β|6d′ is
positive semidefinite. Hence, there exists vectorsvα for α with |α| 6 d′ such that�̃ xαxβ =
〈vα, vβ〉. We claim that the vectorsvα with α ∈ {0, 1}n and |α| 6 d form a solution for
lassd(G). The main step is to show that〈vα, vβ〉 depends only onα + β mod 2. Since
〈vα, vβ〉 = �̃ xα+β, it is enough to show that̃� satisfies�̃ xγ = �̃ xγ mod 2. Hence, we want
to show�̃ x2P = �̃P for all polynomials (with appropriate degree). Indeed, byLemma 3.5,
�̃(x2 − 1) · P 6

√

�̃(x2 − 1)2
√
�̃P2 = 0.
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