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Abstract

In this paper, we present a simple combinatorial algorithm that solves symmetric diagonally dominant
(SDD) linear systems in nearly-linear time. It uses very little of the machinery that previously appeared to
be necessary for a such an algorithm. It does not require recursive preconditioning, spectral sparsification,
or even the Chebyshev Method or Conjugate Gradient. After constructing a “nice” spanning tree of a
graph associated with the linear system, the entire algorithm consists of the repeated application of a
simple (non-recursive) update rule, which it implements using a lightweight data structure. The algorithm
is numerically stable and can be implemented without the increased bit-precision required by previous
solvers. As such, the algorithm has the fastest known running time under the standard unit-cost RAM
model. We hope that the simplicity of the algorithm and the insights yielded by its analysis will be useful
in both theory and practice.

1 Introduction

A matrix A ∈ Rn×n is symmetric diagonally dominant (SDD) if AT = A and Aii ≥
∑
j 6=i |Aij | for all

i ∈ [n]. While the best known algorithm for solving a general linear system takes time O(n2.373) [Wil12], a

seminal paper by Spieman and Teng [ST04] showed that when A is SDD one can solve A~x = ~b approximately
in nearly linear time. 1

Fast algorithms for solving SDD linear systems have found broad applications across both the theory and
practice of computer science. They have long been central to scientific computing, where solving SDD systems
is the main computational task in modeling of electrical networks of resistors and performing finite element
simulations of a wide range of physical systems (see, e.g., [BHV08]). Beyond this, SDD system solvers have
been applied to foundational problems in a wide range of other fields, including machine learning, random
processes, computer vision, image processing, network analysis, and computational biology (see, for example,
[LLDM08, KMT11, LLB+09, VTX09, HK11]).

More recently, SDD solvers have emerged as a powerful tool in the design of graph algorithms. To every
graph G, one can associate an SDD matrix L = LG called its Laplacian (defined in Section 2) such that there
are deep connections between the combinatorial properties of G and the linear algebraic properties of L. By
exploiting these connections, researchers have used nearly linear time algorithms for solving SDD systems to
break longstanding barriers and provide new algorithms for a wide and rapidly growing list of fundamental

1Throughout this paper we are primarily interested in approximate linear system solvers, that is algorithms that can compute
~x ∈ Rn such that ‖~x− ~xopt‖A ≤ ε‖~xopt‖A for any ε ∈ R > 0 where xopt ∈ Rn is a vector such that A~xopt = ~b. When we refer
to a nearly linear time SDD system solver we mean an an algorithm that computes such a x in time O(m logc n log ε−1) where
m is the number of nonzero entries in A and c ≥ 0 ∈ R is a fixed constant.
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graph problems, including maximum flow problems [CKM+11], multi-commodity flow problems [KMP12],
generating random spanning tree [KM09], graph sparsification [SS11], lossy flow problems [DS08], spars-
est cut [She09], distributed routing [KM11], and balanced separator [OSV12], as well as fundamental lin-
ear algebraic problems for SDD matrices, including computing the matrix exponential [OSV12] and the
largest eigenvalue and corresponding eigenvector [ST12]. For surveys of these solvers and their applications,
see [Spi12, Ten10, Vis].

1.1 Previous Nearly Linear Time Algorithms

The first nearly linear time algorithm for solving SDD systems was given by Spielman and Teng [ST04],
building on a long line of previous work (e.g., [Vai90, GMZ95, BGH+06, BH03, BCHT04]). Their algorithm
and its analysis is a technical tour-de-force that required multiple fundamental innovations in spectral and
combinatorial graph theory, graph algorithms, and computational linear algebra. Their work included the in-
vention of spectral sparsification and ultra-sparsifiers, better and faster constructions of low-stretch spanning
trees, and efficient local clustering algorithms, all of which was used to construct and analyze an intricate
recursively preconditioned iterative solver. They divided this work into three papers totaling over 130 pages
([ST08a, ST12, ST08b]), each of which has prompted a new line of inquiry and substantial follow-up work.
Their work was was followed by two beautifully insightful papers by Koutis, Miller, and Peng that simplified
the SDD system solver while improving its running time to O(m log n log log n log ε−1) [KMP10, KMP11].
For a more in-depth discussion of the history of this work see [ST12].

These algorithms all rely on the same general framework. They reduce solving general SDD systems to
solving systems in graph Laplacians. Given a graph, they show how to obtain a sequence of logarithmically
many successively sparser graphs that approximate it, which they construct by adding carefully chosen sets
of edges to a low-stretch spanning tree. They then show that the relationship between the combinatorial
properties of a graph and the spectral properties of its Laplacian enables them to use the Laplacian of each
graph in this sequence as a preconditioner for the one preceding it in a recursively applied iterative solver,
such as the Preconditioned Chebyshev Method or Preconditioned Conjugate Gradient.

We remark that multigrid methods (see, e.g., [BHM00]), which are widely used in practice on graphs
with sufficiently nice topologies, can be thought of as following a similar multilevel recursively preconditioned
iterative framework. Indeed, Koutis et al. have an algorithm and implementation based on related techniques
that they refer to as “combinatorial multigrid” [BKMT10].Even if one does not demand provable running
time bounds, we are not aware of any algorithm whose running time empirically scales nearly linearly on
large classes of input graphs that does not roughly follow this general structure.

1.2 Our Results

In this paper, we present a new, simple, combinatorial algorithm that solves SDD systems and has a running
time of O

(
m log2 n log log n log(ε−1)

)
. It uses very little of the machinery that previously appeared to be

necessary for a nearly linear time algorithm. It does not require spectral sparsifiers (or variants such as
ultra-sparsifiers or incremental sparsifiers), recursive preconditioning, or even the Chebyshev Method or
Conjugate Gradient.

To solve an SDD system all our solver requires is a single low-stretch spanning tree2 of G (not a recursive
collection of subgraphs), and a straightforward data structure. Given these, the algorithm can be described
in a few lines of pseudocode, and its analysis can be made to fit on a single blackboard.

Due to the complexity of previous nearly linear time solvers and the intricate and delicate nature of their
analyses, it was necessary to apply them as a black box. By providing a new, easy-to-understand algorithm,
it is our hope that algorithms that use SDD solvers can be improved by “opening up” this black box and
modifying it to take advantage of specific features of the problem, and that similar techniques can be applied

2This can be obtained in nearly-linear time by a simple ball-growing algorithm [AKPW95]; the constructions with the best
known parameters use a more intricate, but still nearly-linear-time, region growing technique [EEST05, ABN08, KMP10, AN12].
In Section 11 we discuss how even this requirement can be relaxed.
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to related problems (e.g., ones with additional constraints or slight deviations from linearity or diagonal
dominance).

Because of the lightweight nature of the algorithm and data structure, we expect it to be fast in practice.
Furthermore, the analysis is quite robust, and we believe that the algorithm can be readily adapted to work
in multicore, distributed, and even asynchronous settings. We hope to evaluate our algorithm empirically in
a follow-up paper.

Numerical Stability and Run-time Comparisons Existing algorithms relied on Preconditioned Cheby-
shev methods, whose numerical stability is quite difficult to analyze. At present, the best known results show
that they can be implemented with finite-precision arithmetic, but the number of bits of precision required is
log κ(L) logc n log ε−1, where κ(L) is the condition number of L, and c is some possibly large constant [ST12].
The stated running time of the best existing algorithm is O(m log n log ε−1) (ignoring O(poly(log log n)) terms
and using the analysis from [KMP11] and the best known low-stretch spanning tree algorithm [AN12]), but
this assumes arbitrary precision arithmetic. If one analyzes it in the more standard unit-cost RAM model,
where one can perform operations only on O(log n)-bit numbers in constant time, this introduces several
additional logarithmic factors in the running time.

In contrast, we show that our algorithm is numerically stable and does not require this additional overhead
in the bit precision. As such, our algorithm gives the fastest known algorithm for solving SDD systems in the
unit-cost RAM model. Our algorithm approximately solves both SDD systems and the dual electrical flow
problem in time O

(
m log2 n log log n log(ε−1)

)
. If one allows infinite precision arithmetic to be performed in

constant time, this is slower than [KMP11] by a factor of O(log n) for the SDD system problem and by a
factor of O(min{log(ε−1), log n}) for the electrical flow problem (ignoring O(poly(log log n)) terms).3

1.3 Overview of our approach

Using standard reductions techniques we reduce solving arbitrary SDD systems to solving L~v = ~χ, where
L ∈ Rn×n is the Laplacian of a weighted connected graph G = (V,E,W ) with n vertices and m edges and
~χ ∈ Rn, see Appendix A for details. To simplify this overview, suppose for now that ~χ = ~es − ~et and ~es and
~et are the unit basis vectors corresponding to two vertices in the graph, s and t respectively. (The general
case is similar and discussed in the following sections.)

Such Laplacian systems L~v = ~χ can be viewed as electrical flow problems: each edge e ∈ E can be viewed
as a resistor of resistance re = 1/we, where we is the weight of this edge, and one unit of electric current
needs to be sent from s to t. If ~v is a valid solution to L~v = ~χ, then the entries of ~v can be viewed as the
electrical potentials of this system, and the amount of electric current or flow ~f(e) on an edge e = (i, j) from
i to j is given by (~vi − ~vj)/re. The fact that electric flows are induced by vertex potential differences is a
crucial property of electrical systems that our algorithm is going to exploit.

While previous solvers worked with the potential vector ~v, our algorithm works with the flow vector ~f .
Our algorithm begins with any arbitrary unit s-t flow (e.g., a path from s to t) and maintains its feasibility

throughout the execution. If ~f were a valid electrical flow, then it would be induced by some potential vector
~v ∈ RV satisfying ~f(e) = (~vi − ~vj)/re for all edges e = (i, j) ∈ E, and in particular, for any cycle C in G,

we would have the potential drop
∑
e∈C

~f(e)re = 0. Exploiting this fact, our entire algorithm consists of
repeatedly doing the following:

- Randomly sample a cycle C from some probability distribution.

- Compute
∑
e∈C

~f(e)re and if it is non-zero then add a multiple of C to ~f to make it zero.

To turn this into an provably-correct and efficient algorithm we need to do the following:

• Specify the cycle distribution. The cycles are those found by adding edges to a low-stretch spanning
tree. They are sampled proportional to their stretch (See Section 2.2 and 3).

3To the best of our knowledge, to convert their SDD system solver to an ε′-approximate electrical flow solver, one needs to

pick ε = O( ε′

n
).
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• Bound the number of iterations. In Section 4, we will show that repeating this process a nearly
linear number of times suffices to yield an ε-approximate solution.

• Implement the iterations efficiently. Since a cycle may contain a large number of edges, we cannot
simply update the flow edge-by-edge. In Section 5, we give a data structure that allows each iteration
to take O(log n) time and we discuss further implementation details.

Interestingly, the algorithm and its analysis also have a geometric interpretation, based on the Kaczmarz
method [Kac37], which iteratively solves a linear system by alternately picking a constraint and projecting
the current solution onto its feasible set. In particular, the algorithm can be recast as an instance of the
randomized Kaczmarz method of Strohmer and Vershynin [SV09]. This geometric view is presented in
Section 9.

In addition, in Section 7 we show how to improve the running time of our algorithm, in Section 8 we
prove the numerical stability of our algorithm, in Section 10 we prove that our algorithm can be viewed as
a linear operator that spectrally approximates the Laplacian pseudoinverse, and in Section 11 we discuss
how to extend our algorithm to solve SDD systems without using low stretch spanning trees. For the reader
who simply wants a complete proof of how to solve SDD systems in nearly-linear time, Section 2 - 6 and
Appendix A suffice.

2 Preliminaries

Throughout the remainder of the paper let G = (V,E,w) be a weighted, connected, undirected graph with
n = |V | vertices, m = |E| edges and edge weights we > 0. We think of we as the conductance of e, and we

define the resistance of e by re
def
= 1/we. For notational convenience, we fix an orientation of the edges so

that for any vertices a and b connected by an edge, exactly one of (a, b) ∈ E or (b, a) ∈ E holds.
We make extensive use of the following matrices associated to G:

Definition 2.1 (Matrix Definitions). We define the incidence matrix, B ∈ RE×V , the resistance matrix,
R ∈ RE×E, and the Laplacian, L ∈ RV×V , for all (a, b), e1, e2 ∈ E, and a, b, c ∈ V , by

B(a,b),c =


1 a = c

−1 b = c

0 otherwise

, Re1,e2 =

{
re e = e1 = e2

0 otherwise
, La,b =


∑
{a,u}∈E wa,u a = b

−wa,b {a, b} ∈ E
0 otherwise

For a vector ~f ∈ RE and an edge e = (a, b) ∈ E, we write ~f(e) = ~f(a, b) for the coordinate of ~f

corresponding to e, and we adopt the convention that ~f(b, a) = −~f(a, b). This allows us to think of ~f as a

flow on the graph (not necessarily obeying any conservation constraints) that sends ~f(e) units of flow from

a to b, and thus −~f(e) units of flow from b to a.
The following facts follow by simple manipulations of the above definitions:

Claim 2.2. For all ~f ∈ RE, x ∈ RV , a ∈ V and (a, b) ∈ E:

•
[
BT ~f

]
a

=
∑

(b,a)∈E
~f(b, a)−

∑
(a,b)∈E

~f(a, b) ,

• L = BTR−1B ,

• [Bx](a,b) = x(a)− x(b) , and

• xTLx =
∑

(a,b)∈E
(xa−xb)2

ra,b
.

One can interpret the first assertion in Claim 2.2 as saying that BT ~f is a vector in RV whose a-th
coordinate indicates how much flow ~f leaves (or enters, if it is negative) the graph G at vertex a. We say

that ~f is a circulation if BT ~f = 0.
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2.1 Electrical Flow

For any vector ~f ∈ RE , we define its energy ξr
(
~f
)

by

ξr
(
~f
) def

=
∑
e∈E

re ~f(e)2 = ~fTR~f = ‖~f‖2R .

We fix a demand vector ~χ ∈ RV and we say a flow ~f ∈ RE is feasible (with respect to ~χ), or that it meets the

demands, if BT ~f = ~χ. Since G is connected it is straightforward to check that there exists a feasible flow
with respect to ~χ if and only if

∑
v∈V ~χ(v) = 0.

Definition 2.3 (Electrical Flow). For a demand vector ~χ ∈ RV satisfying
∑
a∈V ~χ(a) = 0, the electrical

flow satisfying ~χ is the unique minimizer to the following

~fopt
def
= arg min

~f∈RE : BT ~f=~χ

ξr
(
~f
)
. (1)

This quadratic program describes a natural physical problem. Given an electric circuit with nodes in V ,
for each undirected edge e = {a, b} ∈ E we connect nodes a and b with a resistor of resistance re. Next, we
fix the amount of current entering and leaving each node and denote this by demand vector ~χ. Recalling
from physics that the energy of sending i units of current over a resistor of resistance r is i2 · r the amount
of electric current on each resistor is given by ~fopt.

The central problem of this paper is to efficiently compute an ε-approximate electrical flow.

Definition 2.4 (ε-Approximate Electrical Flow). For any ε ∈ R≥0, we say ~f ∈ RE is an ε-approximate

electric flow satisfying ~χ if BT ~f = ~χ, and ξr
(
~f
)
≤ (1 + ε) · ξr

(
~fopt

)
.

2.1.1 Duality

The electric flow problem is dual to solving L~x = ~χ when L is the Laplacian for the same graph G. To see
this, we note that the Lagrangian dual of (1) is given by

max
~v∈RV

2~vT ~χ− ~vTL~v . (2)

For symmetry we define the (dual) energy of ~v ∈ RV as ζr
(
~v
) def

= 2~vT ~χ−~vTL~v. Setting the gradient of (2) to
0 we see that (2) is minimized by ~v ∈ RV satisfying L~v = ~χ . Let L† denote the Moore-Penrose pseduoinverse

of L and let ~vopt
def
= L†~χ denote a particular set of optimal voltages . Since the primal program (1) satisfies

Slater’s condition, we have strong duality, so for all ~v ∈ RV

ζr
(
~v
)
≤ ζr

(
~vopt

)
= ξr

(
~fopt

)
.

Therefore, for feasible ~f ∈ RE and ~v ∈ RV the duality gap, gap(~f,~v)
def
= ξr

(
~f
)
− ζr

(
~v
)

is an upper bound on

both ξr
(
~f
)
− ξr

(
~fopt

)
and ζr

(
~vopt

)
− ζr

(
~v
)
.

In keeping with the electrical circuit interpretation we refer to a candidate dual solution ~v ∈ RV as

voltages or vertex potentials and we define ∆~v (a, b)
def
= ~v(a)− ~v(b) to be the potential drop of ~v across (a, b).

By the KKT conditions we know that

~fopt = R−1B~vopt i.e. ∀e ∈ E : ~fopt(e) =
∆~vopt (e)

re
.

For e ∈ E we call ∆~v(e)
re

the flow induced by ~v across e and we call ~f(e)re the potential drop induced by ~f
across e.

The optimality conditions ~fopt = R−1B~vopt can be restated solely in terms of flows in a well known
variant of Kirchoff’s Potential Law (KPL) as follows

Lemma 2.5 (KPL). Feasible ~f ∈ RE is optimal if and only if ~fTR~c = 0 for all circulations ~c ∈ RE.
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2.2 Spanning Trees and Cycle Space

Let T ⊆ E be a spanning tree of G and let us call the edges in T the tree edges and the edges in E \ T the
off-tree edges. Now, by the fact that G is connected and T spans G we know that for every a, b ∈ V there is
a unique path connecting a and b using only tree edges.

Definition 2.6 (Tree Path). For a, b ∈ V , we define the tree path P(a,b) ⊆ V × V to be the unique path
from a to b using edges from T . 4 In vector form we let ~p(a,b) ∈ RE denote the unique flow sending 1 unit
of flow from a to b, that is nonzero only on T .

For the off-tree edges we similarly define tree cycles.

Definition 2.7 (Tree Cycle). For (a, b) ∈ E \ T , we define the tree cycle C(a,b)
def
= {(a, b)} ∪ P(b,a) to be the

unique cycle consisting of edge (a, b) and P(b,a). In vector form we let ~c(a,b) denote the unique circulation
sending 1 unit of flow on C(a,b).

2.2.1 Cycle Space

The tree cycles form a complete characterization of circulations in a graph. The set of all circulations
{~c ∈ RE |BT~c = 0} is a well-known subspace called cycle space [Bol98] and the tree cycles {~ce | e ∈ E \ T}
form a basis. This yields an even more succinct description of the KPL optimality condition (Lemma 2.5).

A feasible ~f ∈ RE is optimal if and only if ~fTR~ce = 0 for all e ∈ E \ T .
We can think of each tree cycle Ce as a long resistor consisting of its edges in series with total resistance∑
e∈Ce

re and flow induced potential drop of
∑
e∈Ce

~f(e)re. KPL optimality then states that ~f ∈ RE is
optimal if and only if the potential drop across each of these resistors is 0. Here we define two key quantities
relevant to this view.

Definition 2.8 (Cycle Quantities). For e ∈ E\T and ~f ∈ RE the resistance of Ce, Re, and the flow induced

potential across Ce, ∆ce(~f), are given by

Re
def
=
∑
e′∈Ce

re′ = ~cTe R~ce and ∆ce(~f)
def
=
∑
e∈Ce

re ~f(e) = ~fTR~ce .

2.2.2 Low-Stretch Spanning Trees

Starting with a feasible flow, our algorithm computes an approximate electrical flow by fixing violations of
KPL on randomly sampled tree cycles. How well this algorithm performs is determined by how well the
resistances of the off-tree edges are approximated by their corresponding cycle resistances. This quantity,
which we refer to as as the tree condition number, is in fact a certain condition number of a matrix whose
rows are properly normalized instances of ~ce (see Section 9).

Definition 2.9 (Tree Condition Number). The tree condition number of spanning tree T is given by τ(T )
def
=∑

e∈E\T
Re

re
, and we abbreviate it as τ when the underlying tree T is clear from context.

This is closely related to a common quantity associated with a spanning tree called stretch.

Definition 2.10 (Stretch). The stretch of e ∈ E, st (e), and the total stretch of T , st (T ), are

st (e)
def
=

∑
e′∈Pe

re′

re
and st (T )

def
=
∑
e∈E

st (e) .

4Note that the edges of P(a,b) are oriented with respect to the path, not the natural orientation of G.
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Since Re = re · (1 + st (e)) we see that these quantities are related by τ(T ) = st (T ) +m− 2n+ 2.
Efficient algorithms for computing spanning trees with low total or average stretch, i.e. low-stretch

spanning trees, have found numerous applications [AKPW95, EEST05] and all previous nearly-linear-time
SDD-system solvers [ST04, ST12, KMP10, KMP11], including the most efficient form of the SDD solver
presented in this paper, make use of such trees. There have been multiple breakthroughs in the efficient
construction of low-stretch spanning trees [AKPW95, EEST05, ABN08, KMP10, AN12] and the latest such
result is used in this paper and stated below.

Theorem 2.11 ([AN12]). In O(m log n log log n) time we can compute a spanning tree T with total stretch
st (T ) = O(m log n log log n).

3 A Simple Nearly-Linear Time SDD Solver

Given a SDD system A~x = ~b we wish to efficiently compute ~x such that ‖~x − A†~b‖A ≤ ε‖A†~b‖A. Using
standard reduction techniques (detailed in Appendix A) we can reduce solving such SDD systems to solving
Laplacian systems corresponding to connected graphs without a loss in asymptotic run time. Therefore it
suffices to solve L~v = ~χ in nearly-linear time when L is the Laplacian matrix for some connected graph G.
Here we provide an algorithm that both solves such systems and computes the corresponding ε-approximate
electric flows in O

(
m log2 n log log n log(ε−1n)

)
time.

3.1 A Simple Iterative Approach

Our algorithm focuses on the electric flow problem. First, we compute a low stretch spanning tree, T , and
a crude initial feasible ~f0 ∈ RE taken to be the unique ~f0 that meets the demands and is nonzero only on
tree edges. Next, for a fixed number of iterations, K, we perform simple iterative steps, referred to as cycle
updates, in which we compute a new feasible ~fi ∈ RE from the previous feasible ~fi−1 ∈ RE while attempting
to decrease energy. Each iteration, i, consists of sampling an e ∈ E \ T proportional to Re

re
, checking if

~fi−1 violates KPL on Ce (i.e. ∆ce(~fi) 6= 0) and adding a multiple of ~ce to make KPL hold on Ce (i.e.

~fi = ~fi−1 − ∆ce (~fi−1)
Re

~ce). Since, BT~ce = 0, this operation preserves feasibility. We show that in expectation

~fK is an ε-approximate electrical flow.
To solve L~v = ~χ we show how to use an ε-approximate electrical flow to derive a candidate solution to

L~v = ~χ of comparable quality. In particular, we use the fact that a vector ~f ∈ RE and a spanning tree T
induce a natural set of voltages, ~v ∈ RV which we call the tree induced voltages.

Definition 3.1 (Tree Induced Voltages). For ~f ∈ RE and an arbitrary (but fixed) s ∈ V ,5 we define the

tree induced voltages ~v ∈ RV by ~v(a)
def
=
∑
e∈P(a,s)

~f(e)re for ∀a ∈ V .

Our algorithm simply returns the tree induced voltages for ~fK , denoted ~vK , as the approximate solution
to L~v = ~χ. The full pseudocode for the algorithm is given in Algorithm 1.

3.2 Algorithm Guarantees

In the next few sections we prove that SimpleSolver both computes an ε-approximate electric flow and
solves the corresponding Laplacian system in nearly linear time:

Theorem 3.2 (SimpleSolver). The output of SimpleSolver satisfies 6

E
[
ξr
(
~f
)]
≤ (1 + ε) · ξr

(
~fopt

)
and E

∥∥~v − L†~χ
∥∥
L
≤
√
ε ·
∥∥L†~χ∥∥

L

and SimpleSolver can be implemented to run in time O
(
m log2 n log log n log(ε−1n)

)
.

5We are primarily concerned with difference between potentials which are invariant under the choice s ∈ V .
6Although the theorem is stated as an expected guarantee on ~f and ~v, one can easily use Markov bound and Chernoff bound

to provide a probabilistic but exact guarantee.
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Algorithm 1: SimpleSolver

Input : G = (V,E, r), ~χ ∈ RV , ε ∈ R+

Output: ~f ∈ RE and ~v ∈ RV

T := low-stretch spanning tree of G;
~f0 := unique flow on T such that BT ~f0 = ~χ;

~pe := 1
τ(T ) ·

Re

re
for all e ∈ E \ T ;

K =
⌈
τ log

( st(T )·τ(T )
ε

)⌉
;

for i = 1 to K do
Pick random ei ∈ E \ T by probability distribution ~p ;

~fi = ~fi−1 − ∆ce (~fi−1)
Re

~ce ;

end

return ~fK and its tree induced voltages ~vK

By construction SimpleSolver outputs a feasible flow and, by choosing T to be a low stretch spanning
tree with properties guaranteed by Theorem 2.11, we know that the number of iterations of simple solver
is bounded by O(m log n log log n log(ε−1n)). However, in order to prove the theorem we still need to show
that (1) each iteration makes significant progress, (2) each iteration can be implemented efficiently, and (3)

the starting flow and final voltages are appropriately related to ξr
(
~fopt

)
. In particular we show:

1. Each iteration of SimpleSolver decreases the energy of the current flow by at least an expected
(
1− 1

τ

)
fraction of the energy distance to optimality (see Section 4).

2. Each iteration of SimpleSolver can be implemented to take O(log n) time (see Section 5). 7

3. The energy of ~f0 is sufficiently bounded, the quality of tree voltages is sufficiently bounded, and all
other parts of the algorithm can be implemented efficiently (see Section 6).

4 Convergence Rate Analysis

In this section we analyze the convergence rate of SimpleSolver. The central result is as follows.

Theorem 4.1 (Convergence). Each iteration i of SimpleSolver computes feasible ~fi ∈ RE such that

E
[
ξr
(
~fi
)]
− ξr

(
~fopt

)
≤
(

1− 1

τ

)i (
ξr
(
~f0

)
− ξr

(
~fopt

))
.

Our proof is divided into three steps. In Section 4.1 we analyze the energy gain of a single algorithm
iteration, in Section 4.2 we bound the distance to optimality in a single algorithm iteration, and in Section 4.3
we connect these to prove the theorem.

4.1 Cycle Update Progress

For feasible ~f ∈ RE , we can decrease ξr
(
~f
)

while maintaining feasibility, by adding a multiple of a circulation

~c ∈ RE to ~f . In fact, we can easily optimize to pick the best multiple.

7Note that a näıve implementation of cycle updates does not necessarily run in sublinear time. In particular, updating

~fi := ~fi−1 −
∆ce (~fi−1)

Re
~ce by walking Ce and updating flow values one by one may take more than (even amortized) sublinear

time, even though T may be of low total stretch. Since st (T ) is defined with respect to cycle resistances but not with respect
to the number of edges in these cycles, it is possible to have a low-stretch tree where each tree cycle still has Ω(|V |) edges on
it. Furthermore, even if all edges have resistances 1 and therefore the average number of edges in a tree cycle is Õ(logn), since
SimpleSolver samples off-tree edges with higher stretch with higher probabilities, the expected number of edges in a tree cycle
may still be Ω(|V |).

8



Lemma 4.2 (Energy Improvement). For ~f ∈ RE, ~c ∈ RE, and α∗ = − ~fTR~c
~cTR~c

∈ R we have

arg min
α∈R

ξr
(
~f + α~c

)
= −

~fTR~c

~cTR~c
and ξr

(
~f + α∗~c

)
− ξr

(
~f
)

= −
(
~fTR~c

)2
~cTR~c

.

Proof. By definition of energy ξr
(
~f + α~c

)
= (~f + α~c)TR(~f + α~c) = ~fTR~f + 2α~fTR~c + α2~cTR~c . Setting

the derivative with respect to α to 0 and substituting in α = α∗ yields the results.

In the special case where ~c = ~ce is a tree cycle for some off-tree edge e ∈ E \ T , since Re = ~cTe R~ce and

∆ce(~f) = ~fTR~ce, this procedure is precisely the iterative step of SimpleSolver, i.e. a cycle update. The
following lemma follows immediately and states that the energy decrease of a cycle update is exactly the
energy of a resistor with resistance Re and potential drop ∆ce(~f).

Lemma 4.3 (Cycle Update). For feasible ~f ∈ RE and e ∈ E \ T we have

ξr

(
~f − ∆ce(~f)

Re
~ce

)
− ξr

(
~f
)

= −∆ce(~f)2

Re
.

4.2 Distance to Optimality

To bound how far ~fi in SimpleSolver is from optimality we use that the duality gap between ~fi and its tree
induced voltages ~vi is an upper bound on this distance. Here we derive a simple expression for this quantity
in terms of cycle potentials.

Lemma 4.4 (Tree Gap). For feasible ~f ∈ RE and tree induced voltages ~v ∈ RV we have

gap(~f,~v) =
∑

e∈E\T

∆ce(~f)2

re
.

Proof. By definition of primal and dual energy we have gap(~f,~v) = ~fTR~f − (2~vT ~χ − ~vTL~v). Using that

BT ~f = ~χ and L = BTR−1B we get

gap(~f,~v) = ~fTR~f − 2~vTBT ~f − ~vTBTR−1B~v =
(
R~f −B~v

)T
R−1

(
R~f −B~v

)
.

Therefore gap(~f,~v) =
∑
e∈E

1
re

(
~f(e)re −∆~v (e)

)2

. However, by the uniqueness of tree paths, the antisym-

metry of ~f ∈ RE , and the definition of tree voltages we have

∀a, b ∈ V : ∆~v (a, b) = ~v(a)− ~v(b) =
∑
e∈Pas

~f(e)re +
∑
e∈Psb

~f(e)re =
∑
e∈Pab

~f(e)re .

Therefore, e ∈ T ⇒ ~f(e)re −∆~v (e) = 0 and e ∈ E \ T ⇒ ~f(e)re −∆~v (e) = ∆ce(~f).

4.3 Convergence Proof

Here we connect the energy decrease of a cycle update given by Lemma 4.3 and the duality gap formula
given by Lemma 4.4 to bound the the convergence of SimpleSolver. Throughout this section we use ~vi to

denote the tree induced voltages for flow ~fi.
First, we show that in expectation each iteration i of SimpleSolver decreases ξr

(
~fi−1

)
by a 1

τ fraction
of the duality gap.
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Lemma 4.5 (Expected Progress). For iteration i of SimpleSolver we have

E
[
ξr
(
~fi
)
− ξr

(
~fi−1

)∣∣∣gap(~fi−1, ~vi−1)
]

= −gap(~fi−1, ~vi−1)

τ
.

Proof. In each iteration i, SimpleSolver picks a random ei ∈ E \T with probability pei and adds a multiple

of ~cei which by Lemma 4.3 decreases the energy by
∆ce (~fi−1)2

Re
. Therefore

E
[
ξr
(
~fi
)
− ξr

(
~fi−1

)∣∣∣gap(~fi−1, ~vi−1)
]

= E

 ∑
e∈E\T

pe

(
−∆ce(~fi−1)2

Re

)∣∣∣∣∣∣gap(~fi−1, ~vi−1)


Using that pe = 1

τ ·
Re

re
and applying Lemma 4.4 yields the result.

Next, we show that this implies that each iteration decreases the expected energy difference between the
current flow and the optimal flow by a multiplicative

(
1− 1

τ

)
.

Lemma 4.6 (Convergence Rate). For all i ≥ 0 let random variable Di
def
= ξr

(
~fi
)
− ξr

(
~fopt

)
. Then for all

iterations i ≥ 1 we have E[Di] ≤
(

1− 1
τ

)
E[Di−1] .

Proof. Since in each iteration of SimpleSolver one of a finite number of edges is chosen, clearly Di is a
discrete random variable and by law of total expectation we have

E[Di] =
∑
c

E[Di|Di−1 = c] Pr[Di−1 = c]

However, we know Di−1 ≤ gap(~fi−1, ~vi−1) so by Lemma 4.5, E [Di|Di−1 = c] ≤ c− c
τ . Therefore:

E[Di] ≤
∑
c

[(
1− 1

τ

)
c · Pr[Di−1 = c]

]
=

(
1− 1

τ

)
E[Di−1] .

Finally, by induction on Lemma 4.6 and the definition of Di we prove Theorem 4.1.

5 Cycle Update Data Structure

In this section we show how to implement each iteration (i.e. cycle update) of SimpleSolver in O(log n)
time. In Section 5.1 we formulate this as a data structure problem, in Section 5.2 we present a recursive
solution, and in Section 5.3 we provide a linear algebraic interpretation that may be useful in both theory
and practice.

5.1 The Data Structure Problem

In each iteration i of SimpleSolver we pick a random (a, b) ∈ E \ T and for feasible ~f ∈ RE compute

α∗ =
∆c(a,b)

(~f)

R(a,b)
=

~f(a, b)ra,b − (~v(a)− ~v(b))

R(a,b)
where ~v(a) =

∑
e∈P(a,s)

~f(e)re

and s is an arbitrary fixed vertex in V which we refer to as the root. Then α∗ is added to the flow on every
edge in the tree cycle C(a,b). By the antisymmetry of flows and the uniqueness of tree paths, this update is
equivalent to (1) adding α∗ to the flow on edge (a, b), (2) adding −α∗ to the flow on every edge in P(s,b) and
then (3) adding α∗ to the flow on every edge in P(s,a).

Therefore, to implement cycle updates it suffices to store the flow on off-tree edges in an array and
implement a data structure that supports the following operations.
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• init(T, s ∈ V ): initialize a data structure D given tree T and root s ∈ V .

• queryD(a ∈ V ): return ~v(a) =
∑
e∈P(s,a)

~f(e)re.

• updateD(a ∈ V, α ∈ R): set ~f(e) := ~f(e) + α for all e ∈ P(s,a).

5.2 Recursive Solution

While one could solve this data structure problem with a slight modification of link-cut trees [ST83], that
dynamic data structure is overqualified for our purpose. In contrast to the problems for which link-cut
trees were originally designed, in our setting the tree is static, so that much of the sophistication of link-cut
trees may be unnecessary. Here we develop a very simple separator decomposition tree based structure that
provides worst-case O(log n) operations that we believe sheds more light on the electric flow problem and
may be useful in practice.

Our solution is based on the well known fact that every tree has a good vertex separator, tracing back
to Jordan in 1869 [Jor69].

Lemma 5.1 (Tree Vertex Separator). For a spanning tree T rooted at s with n ≥ 2 vertices, in O(n) time
we can compute

(d, T0, . . . , Tk) = tree-decompose(T ) ,

such that the removal of d ∈ V (which might equal to s) disconnects T into subtrees T0, . . . , Tk, where T0

is rooted at s and contains d as a leaf, while other Ti’s are rooted at d. Furthermore, each Ti has at most
n/2 + 1 vertices.

 

  

𝑑 

𝑠 

𝑇0 

𝑇1 𝑇2 𝑇3 

(a)

 

  

𝑠 = 𝑑 

𝑇0 𝑇1 𝑇2 

(b)

 

  

𝑑 

𝑠 

4 

5 

height = 4 

height = 0 

height = 9 

height = 4 

height = 9 

(c)

 

𝑑 

𝑠 

4 

5 

update(𝑢, −1) 

update(𝑣, 2) 

d_ext = 2 

(d)

Figure 1: (a) and (b) are examples of tree decompositions when s 6= d and s = d, and
(c) and (d) are examples on computing height, d ext and d drop.

Proof. We start at root s, and at each step follow an edge to a child whose corresponding subtree is the
largest among all children. We continue this procedure until at some vertex d (which might be s itself) the
sizes of all its subtrees have no more than n

2 vertices. This vertex d is the desired vertex separator. Now if
s 6= d we let T0 be the subtree above d rooted at s with d being the leaf, and let each Ti be a sub-tree below
d and rooted at d, see Figure 1a; or when s = d we let T0, . . . , Tk each denote a subtree below d and rooted
at d, see Figure 1b. 8 By pre-computing subtree sizes tree-decompose(T ) runs in O(n) time.

Applying this lemma recursively induces a separator decomposition tree from which we build our data
structure. To execute init(T, s) we compute a vertex separator (d, T0, . . . , Tk) and recurse separately on
each subtree until we are left with a tree of only two vertices. In addition, we precompute the total weight

8For technical purposes, when V has only two vertices with s being the root, we always define d ∈ V such that d 6= s and
define tree-decompose(T ) to return no sub-trees, i.e., k = −1. By orienting the tree away from s and precomputing the number
of descendents of each node we can easily implement this in O(n) time.
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of the intersection of the root to d path P(s,d) and the root to a path P(s,a), denoted by height(a) for every
a ∈ V , by taking a walk over the tree. See Figure 1c and Algorithm 2 for details.

With this decomposition we can support query and update by maintaining just 2 values about the paths
P(s,d). For each subtree we maintain the following variables:

• d drop, the total potential drop induced on the the path P(s,d), and

• d ext, the total amount of flow that has been updated using the entire P(s,d) path, i.e. the contribution
to P(s,d) from vertices beyond d.

It is easy to see that these invariants can be maintained recursively and that they suffice to answer queries
and updates efficiently (see Algorithm 3 and Algorithm 4 for the implementations and Figure 1d for an
illustration). Furthermore, because the sizes of trees at least half at each recursion, init takes O(n log n)
while query and update each takes O(log n) time.

Algorithm 2: Recursive init(T, s ∈ V )

d ext := 0, d drop := 0 ;
(d, T0, . . . , Tk) := tree-decompose(T );
∀a ∈ V : height(a) :=

∑
e∈P(s,a)∩P(s,d)

re ;

if |V | > 2 then
∀i ∈ {0, 1, . . . , k} : Di := init(Ti, d);

end

Algorithm 3: Recursive query(a ∈ V )

if a = d then return d drop ;
else if |V | = 2 then return 0;
else if a ∈ T0 then

return d ext · height(a) + queryD0
(a) ;

else
let Ti be unique tree containing a;
return d drop + queryDi

(a) ;

end

Algorithm 4: Recursive update(a ∈ V, α ∈
R)

d drop := d drop + α · height(a) ;
if |V | = 2 then return;
if a /∈ T0 then d ext := d ext + α;
if a 6= d then

let Ti be unique tree containing a;
updateDi

(a, α);

end

5.3 Linear Algebra Solution

Here we unpack the recursion in the previous section to provide a linear algebraic view of our data structure
that may be useful in both theory and practice. We show that the init procedure in the previous section
computes for all a ∈ V a query vector ~q(a) and an update vector ~u(a) each of support size O(log |V |), such
that the entire state of the data structure is an O(|V |) dimensional vector ~x initialized to ~0 allowing query

and update to be as simple as the following,

query(a) : return ~q(a) · ~x
update(a, α) : ~x := ~x+ α~u(a) . (3)

To see this, first note that init recursively creates a total of N = O(|V |) subtrees T1, . . . , TN . Letting
d exti, d dropi, heighti denote d ext, d drop, and height associated with tree Ti, the state of the data
structure is completely represented by a vector ~x ∈ R{e,d}×N defined as follows

~xc,i
def
=

{
d exti if c = e;

d dropi if c = d.
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It is easy to see that given vertex a ∈ V , in order for query(a) or update(a, α) to affect tree Ti in the
decomposition, it is necessary that a is a vertex in Ti and a is not the root si of Ti. Accordingly, we let

T (a)
def
= {i ∈ [N ] | a ∈ Ti and a 6= si} be the indices of such trees that a may affect.

Next, in order to fully specify the query vector ~q(a) and the update vector ~u(a), we further refine T (a) by

defining T0(a)
def
= {i ∈ T (a) | a is in T0 of tree-decompose(Ti)} and T+(a)

def
= T (a) \ T0(a). Then, one can

carefully check that the following definitions of ~q(a), ~u(a) ∈ R{e,d}×N along with their query and update in
(3), exactly coincide with our recursive definitions in Algorithm 3 and Algorithm 4 respectively.

~q(a)(c,i)
def
=


heighti(a) c = e and i ∈ T0(a)

1 c = d and i ∈ T+(a)

0 otherwise

and ~u(a)(c,i)
def
=


1 c = e and i ∈ T+(a)

heighti(a) c = d and i ∈ T (a)

0 otherwise

Furthermore, the properties of init and tree-decompose immediately implies that each vertex a can appear
in at most O(log n) trees where it is not the root, so |T (a)| = O(log n). As a consequence, ~q(a) and ~u(a)
each has at most O(log n) non-zero entries. It is also not hard to see that we can pre-compute these vectors
in O(n log n) time using our recursive init.

Applying these insights to the definition of a cycle update we see that this data structure allows each
cycle update of SimpleSolver to be implemented as a single dot product and a single vector addition where
one vector in each operation has O(log n) non-zero entries. Since these vectors can be precomputed each
cycle update can be implemented by iterating over a fixed array of O(log n) pointers and performing simple
arithmetic operations. We hope this may be fast in practice.

6 Simple Algorithm Running-Time Analysis

Here we give the remaining analysis needed to prove the correctness of SimpleSolver and prove Theorem 3.2.

First we bound the energy of ~f0.

Lemma 6.1 (Initial Energy). 9 ξr
(
~f0

)
≤ st (T ) · ξr

(
~fopt

)
.

Proof. Recall that ~f0 ∈ RE is the unique vector that meets the demands and is nonzero only on T . Now,
if for every e ∈ E we sent ~fopt(e) units of flow along Pe we achieve a vector with the same properties.

Therefore, ~f0 =
∑
e∈E

~fopt(e)~pe and by applying the Cauchy-Schwarz inequality we get

ξr
(
~f0

)
=
∑
e∈T

re

( ∑
e′∈E|e∈Pe′

~fopt(e
′)

)2

≤
∑
e∈T

[( ∑
e′∈E|e∈Pe′

re
re′

)( ∑
e′∈E|e∈Pe′

re′ ~fopt(e
′)2

)]
.

Applying the crude bound that
∑
e′∈E|e∈Pe′

re′ ~fopt(e
′)2 ≤ ξr

(
~fopt

)
for all edges e ∈ E and noting that by the

definition of stretch
∑
e∈T

∑
e′∈E|e∈Te′

re
re′

=
∑
e′∈E

∑
e∈Te

re
re′

= st (T ) the result follows immediately.

Next, we show how approximate optimality is preserved within polynomial factors when rounding from
an ε-approximate electric flow to tree induced voltages.

Lemma 6.2 (Tree Voltage Rounding). Let ~f ∈ RE be a primal feasible flow with ξr
(
~f
)
≤ (1 + ε) · ξr

(
~fopt

)
for ε > 0 and let ~v ∈ RV be the tree induced voltages. Then the following holds∥∥~v − L†~χ

∥∥
L
≤
√
ε · τ

∥∥L†~χ∥∥
L
.

9This lemma follows immediately from the well known fact that T is a st (T )-spectral sparsifier of G, cf. [ST12, Lemma 9.2],
but a direct proof is included here for completeness.
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Proof. By Lemma 4.5 we know that one random cycle update from SimpleSolver is expected to decrease

ξr
(
~f
)

by gap(~f,~v)/τ . Therefore by the optimality of ~fopt we have

ξr
(
~f
)
− gap(~f,~v)

τ
≥ ξr

(
~fopt

)
and since ξr

(
~f
)
≤ (1 + ε) · ξr

(
~fopt

)
and ξr

(
~f
)
≤ ξr

(
~fopt

)
we have gap(~fopt, ~v) ≤ ε · τ · ξr

(
~fopt

)
. Finally, using

that ~vopt = L†~χ, ~fopt = R−1B~vopt, and L = BTR−1B it is straightforward to check

gap(~fopt, ~v) =
∥∥~v − L†~χ

∥∥2

L
and ξr

(
~fopt

)
=
∥∥L†~χ∥∥2

L
.

Finally, we have everything we need to prove the correctness of SimpleSolver.

Proof of Theorem 3.2. Applying Theorem 4.1, the definition of K, and Lemma 6.1 we get

E
[
ξr
(
~fK
)]
− ξr

(
~fopt

)
≤
(

1− 1

τ

)τ log(ε−1st(T )τ) (
st (T ) ξr

(
~fopt

)
− ξr

(
~fopt

))
.

Using several crude bounds and applying Lemma 6.2 we get

E
[
ξr
(
~fK
)]
≤
(

1 +
ε

τ

)
ξr
(
~fopt

)
and E

∥∥~vK − L†~χ
∥∥
L
≤
√
ε ·
∥∥L†~χ∥∥

L

which is stronger than what we need to prove for the theorem.
All that remains is to bound the running time. To do this, we implement SimpleSolver using the

latest low-stretch spanning tree construction (Theorem 2.11) and construct a spanning tree T of stretch
st(T ) = O(m log n log log n) in time O(m log n log log n) yielding τ = O(m log n log log n).

Next, to compute ~f0 we note that given any demand vector ~χ ∈ RV with
∑
i ~χi = 0, the quantity ~f0(e)

on a tree edge e ∈ T is uniquely determined by the summation of ~χv where v is over the vertices on one side
of e. Therefore, ~f0 can be computed via a DFS in O(n) time.

To compute Re for each off-tree edge e ∈ E\T we could either use Tarjan’s off-line LCA algorithm [Tar79]
that runs in a total of O(m) time, or simply use our own data structure in O(m log n) time. In fact, one can
initiate a different instance of our data structure on T , and for each off-tree edge (a, b) ∈ E \ T , one can call
update(b, 1) and update(a,−1), so that Re = query(b)− query(a) + re.

Finally, we can initialize our data structure in O(n log n) time, set the initial flow values in O(n log n)
time, perform each cycle update in O(log n) time, and compute all the tree voltages in O(n log n) time using
the work in section Section 5. Since the total number of iterations of our algorithm is easily seen to be
O(m log n log(nε−1) log log n) we get the desired total running time.

7 Improved Running Time

In this section we show how to improve our algorithm’s running time to O
(
m log2 n log log n log(ε−1)

)
(i.e.

improve our algorithm’s dependence on ε from O(log(ε−1n)) to O(log ε−1)). The improvement is gained by
careful application of two techniques to the standard SimpleSolver: (1) by changing the resistances of the

edges in the T and applying SimpleSolver, we can quickly compute an initial feasible ~f0 ∈ RE of better
quality, and (2) by changing the stopping criterion for cycle updates, we can achieve a stronger guarantee
on the quality of flow induced tree voltages.

In Section 7.1, we introduce these concepts by presenting a straightforward two-step algorithm that
improves the error dependence to log(ε−1 log n). In Section 7.2, we present the full algorithm that by
carefully applying these techniques recursively O(log∗ n) times obtains an improved error dependence of
O(log ε−1) and the best asymptotic running time proven in this paper.
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Algorithm 5: ExampleSolver

Input : G = (V,E, r), ~χ ∈ RV , ε ∈ R+

Output: ~f and ~v

1 T := low-stretch spanning tree of G;

2 (~f0, ?) := SimpleSolver(G− T + T
logn , ~χ, 1) ;

(the simple solver will use T ′ := T
logn as the spanning tree)

3 ~pe := 1
τ(T ) ·

Re

re
for all e ∈ E \ T ;

4 K :=
⌈
τ(T ) log

(
2 logn
ε

)⌉
;

5 K ′ := an integer chosen uniformly at random in {0, 1, . . . , dτ(T )e − 1};
6 for i = 1 to K +K ′ do
7 Pick random ei ∈ E \ T by probability distribution ~p ;

8 ~fi = ~fi−1 − ∆ce (~fi−1)
Re

~ce ;

9 end

10 return ~fK+K′ and its tree induced voltages ~vK+K′

7.1 An Example Algorithm with O
(
m log2 n log log n log(ε−1 log n)

)
Running Time

Here we present an ExampleSolver (see Algorithm 5), an algorithm that illustrates the techniques we will
use in Section 7.2 to obtain the fastest running times presented in this paper. This algorithm modifies the
resistances of tree edges and applies SimpleSolver once to compute feasible ~f0 that is O(log n) factor from

optimal (rather than an Õ(m) factor as in Lemma 6.1) and then uses this ~f0 as a warm start to perform
cycle updates. By also randomizing over the number of cycle updates to perform, we can show that we get
an improved running time as stated in the following theorem.

Theorem 7.1 (ExampleSolver). The output of ExampleSolver satisfies

E
[
ξr
(
~f
)]
≤ (1 + ε) · ξr

(
~fopt

)
and E

∥∥~v − L†~χ
∥∥
L
≤
√
ε ·
∥∥L†~χ∥∥

L

and ExampleSolver can be implemented to run in time O
(
m log2 n log log n log(ε−1 log n)

)
.

We prove the above theorem in two steps, introducing one new technique for each step.

Step #1: Tree Scaling. Given graph G, recall that by Theorem 2.11 one can obtain a spanning tree T
with condition number τ(T ) = O(m log n log log n). For κ ≥ 1 let T/κ denote T where every e ∈ T has its
resistance decreased by a multiplicative κ. Now replace T with T/κ and denote this new graph G′, the new
resistances by r′, and the new tree by T ′. This technique is similar to one used in [KMP10, KMP11], and
one can easily check that

τ(T ′) = τ(T )/κ+ (m− n+ 1) < τ(T )/κ+m ,

i.e., decreasing the resistances of T improves the tree condition number. Furthermore, since replacing T by
T/κ only changes resistances, ~f ∈ RE is feasible in G if and only if it is feasible in G′, and therefore one
could compute an approximate flow in G′ and then use the results in G. The following lemma bounds the
loss in approximation of such an operation.

Lemma 7.2 (Tree Scaling). Let G′ be graph G with T replaced by T/κ for κ ≥ 1, let ~f ′ be an ε-approximate

electrical flow in G′, and let ~fopt be the optimal electrical flow in G. Then,

ξr
(
~f ′
)
≤ κ(1 + ε)ξr

(
~fopt

)
.
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Proof. Since ~f ′ is feasible in G′ it is feasible in G. Letting ~f ′opt be the optimal electrical flow in G′ we can

then bound ξr
(
~f ′
)

as follows

ξr
(
~f ′
)
≤ κ · ξr′(~f ′) (Since re ≤ κ · r′e for any edge e)

≤ κ(1 + ε) · ξr′(~f ′opt) (Since ~f ′ is ε-approximate in G′)

≤ κ(1 + ε) · ξr′(~fopt) (By optimality of ~f ′opt in G′)

≤ κ(1 + ε) · ξr
(
~fopt

)
. (Since r′e ≤ re for any edge e)

We can apply Lemma 7.2 directly to the analysis of ExampleSolver. Choosing κ = log n in line 2, we see

that ExampleSolver first computes feasible ~f0 ∈ RE that is 1-approximate electric flow in G′. By having
the recursive SimpleSolver invocation in this line use spanning tree T ′ (which has τ(T ′) ≤ τ(T )/κ + m),

this step takes O
((

τ(T )
logn +m

)
log n log n

)
= O(m log2 n log log n) time and by Lemma 7.2 guarantees that

E
[
ξr
(
~f0

)]
= (1 + log n) · ξr

(
~fopt

)
≤ 2 log n · ξr

(
~fopt

)
.

This is an improvement compared to what was previously guaranteed by Lemma 6.1 and lets us apply The-
orem 4.1 with i = K =

⌈
τ(T ) log

(
2 logn
ε

)⌉
to conclude that:

E
[
ξr
(
~fK
)]
≤ (1 + ε)ξr

(
~fopt

)
. (4)

Step #2: Randomized Stopping Time. While (4) provides an (expected) guarantee on the primal

energy for ~fK , converting this to a dual guarantee on its tree induced voltage vector ~vK using Lemma 6.2
causes us to lose a factor of τ = Õ(m) on the dependency of ε, which translates into an extra factor of
O(logm) in the running time. This motivates us to study a more efficient conversion as follows.

Lemma 7.3. For feasible ~fK ∈ RE satisfying ξr
(
~fK
)
≤ (1 + ε)ξr

(
~fopt

)
, if one applies K ′ cycle updates,

where K ′ is an integer chosen uniformly at random from {0, 1, . . . , dτe − 1}, then we have

E
[
gap(~fK+K′ , ~vK+K′)

]
≤ ε · ξr

(
~fopt

)
.

Proof. Following the notation of Lemma 4.6, let random variable Di
def
= ξr

(
~fi
)
− ξr

(
~fopt

)
for i ∈ {K,K +

1, . . . ,K + dτe}. By Lemma 4.5 we have

∀i = K + 1, . . . ,K + dτe, E[Di −Di−1] = −1

τ
E[gap(~fi−1, ~vi−1)] .

Now, by assumption DK ≤ ε · ξr
(
~fopt

)
and since Di ≥ 0 we can also sum over the K ′ yielding

ε · ξr
(
~fopt

)
≥ E[DK ] ≥ E[DK −DK+dτe] ≥

1

τ
E

K+dτe−1∑
K′=K

gap(~fK′ , ~vK′)

 .

Therefore, if one picks K ′ ∈ {0, 1, . . . , dτe − 1} at random, the desired inequality is obtained.

Now in ExampleSolver, our output is ~f = ~fK+K′ and ~v = ~vK+K′ so combining (4) and Lemma 7.3, we

immediately have that E
[
gap(~f,~v)

]
≤ ε · ξr

(
~fopt

)
. This simultaneously implies the following

E[ξr
(
~f
)
− ξr

(
~fopt

)
] = E

[
gap(~f,~vopt)

]
≤ E

[
gap(~f,~v)

]
≤ ε · ξr

(
~fopt

)
, and

E
[
‖~v − L†~χ‖L

]2 ≤ E
[
‖~v − L†~χ‖2L

]
= E

[
gap(~fopt, ~v)

]
≤ E

[
gap(~f,~v)

]
≤ ε · ξr

(
~fopt

)
= ε‖L†~χ‖2L .

Here the second line has used the fact that gap(~fopt, ~v) = ‖~v − L†~χ‖2L and ξr
(
~fopt

)
= ‖L†~χ‖2L whose proof

can be found in the proof of Lemma 6.2. This finishes the proof of Theorem 7.1.
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7.2 The Full Algorithm With O
(
m log2 n log log n log(ε−1)

)
Running Time

Here we present FullSolver (see Algorithm 6), an algorithm that achieves the best asymptotic running
time presented this paper by recursively applying the tree scaling technique of the previous section log∗(n)
number of times with careful chosen scaling parameters.

Theorem 7.4 (FullSolver). The output of FullSolver satisfies

E
[
ξr
(
~f
)]
≤ (1 + ε) · ξr

(
~fopt

)
and E

∥∥~v − L†~χ
∥∥
L
≤
√
ε ·
∥∥L†~χ∥∥

L

and FullSolver can be implemented to run in time O
(
m log2 n log log n log(ε−1)

)
.

Algorithm 6: FullSolver

Input : G = (V,E, r), ~χ ∈ RV , ε ∈ R+

Output: ~f and ~v

1 T := low-stretch spanning tree of G;

2 ~f (0) := unique flow on T such that BT ~f0 = ~χ;

3 Define κ(i) and K(i) according to (5) and (6);
4 for i = 1 to c+ 1 do

5 ~f0 := ~f (i−1);

6 G(i) := G− T + T (i) where T (i) := T∏c
j=i κj

;

(the symbols Re, re,∆ce(·) below are with respect to this new graph G(i) and tree T (i))

7 ~pe := 1
τ(T (i))

· Re

re
for all e ∈ E \ T ;

8 for j = 1 to K(i) do
9 Pick random ei ∈ E \ T by probability distribution ~p ;

10 ~fi = ~fi−1 − ∆ce (~fi−1)
Re

~ce ;

11 end

12 ~f (i) := ~fK(i) ;

13 end

14 return ~f (c+1) and its tree induced voltages ~v(c+1)

We begin our proof of the above theorem by first making the parameters in FullSolver explicit. Again, T
is a low-stretch spanning tree of G with τ(T ) = O(m log n log log n). Let us define a sequence (κ1, . . . , κc)
where

κ1 = log n, κi = log κi−1, and c is chosen so that κc ≤ 2. (5)

For each i ∈ [c+1], we define T (i) to be the same spanning tree T but with resistances on each edge decreased
by a factor of

∏c
j=i κj , and let G(i) be the graph G with its spanning tree T replaced by T (i). Notice that

T (c+1) = T and G(c+1) = G. By a similar observation as in Section 7.1, we have that τ(T (i)) ≤ τ(T )∏c
j=i κj

+m

due to the scaling of the tree edges.
We now choose the number of iterations

K(i) =



⌈( τ(T )∏c
j=1 κj

+m
)

log(st(T (1)))
⌉
, i = 1;⌈( τ(T )∏c

j=i κj
+m

)
log(2κi−1 − 1)

⌉
, i = 2, 3, . . . , c;⌈(

τ(T ) +m
)

log( 2κc−1
ε )

⌉
+K ′, i = c+ 1.

(6)

where K ′ is chosen from {0, 1, . . . , dτe − 1} uniformly at random just like that in Section 7.1. Those choices

induce the following property on flow vectors ~f (i) constructed in FullSolver:
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Claim 7.5. For each i ∈ [c], ~f (i) is (in expectation) a 1-approximate electrical flow for G(i) with demand
vector ~χ, and also (in expectation) a (2κi − 1)-approximate electrical flow for G(i+1).

Proof. Let r(i) ∈ RE denote the resistance vector in graph G(i), and let ~f
(i)
opt ∈ RE denote the electrical flow

satisfying ~χ ∈ RV in graph G(i). We prove the claim by induction on i.
In the base case (i = 1), since ~f (0) is the unique flow on the tree meeting the demands Lemma 6.1 implies

that ξr(1)
(
~f (0)
)
≤ st(T (1))ξr(1)

(
~f

(1)
opt

)
. By our choice of K(1) ≥ τ(T (1)) log(st(T (1))) and Theorem 4.1, we then

see that E
[
ξr(1)

(
~f (1)
)]
≤ (1 + 1)ξr(1)

(
~f

(1)
opt

)
and therefore the computed ~f (1) is in expectation 1-approximate

for G(1). Furthermore, since the resistances in T (1) and T (2) are off by a multiplicative κ1 = log n, Lemma 7.2

implies that f (1) satisfies E
[
ξr(2)

(
~f (1)
)]
≤ 2κ1ξr(2)

(
~f

(2)
opt

)
so is in expectation (2κ1− 1)-approximate for G(2).

For i ∈ {2, 3, . . . , c}, we have by our inductive hypothesis that ~f (i−1) is in expectation (2κi−1 − 1)-
approximate for G(i). Therefore, by our choice of K(i) ≥ τ(T (i)) log(2κi−1 − 1) and Theorem 4.1, we

immediately see that the constructed ~f (i) satisfies E
[
ξr(i)

(
~f (i)
)]
≤ (1 + 1)ξr(i)

(
~f

(i)
opt

)
and is in expectation

a 1-approximate for G(i). Furthermore, since the resistances in T (i) and T (i+1) are off by a multiplicative

κi, Lemma 7.2 implies that f (i) satisfies E
[
ξr(i+1)

(
~f (i)
)]
≤ 2κiξr(i+1)

(
~f

(i+1)
opt

)
so is in expectation (2κi − 1)-

approximate for G(2).

As a direct consequence of the above lemma we see that in an execution of FullSolver, ~f (c) is in
expectation a (2κc − 1)-approximate electrical flow in graph G = G(c+1). Therefore, when ~f (c) is used as an

initial, ~f0, for the last iteration (i = c+ 1), after K := K(c+1)−K ′ ≥ τ(T ) log(2κc−1
ε ) cycle updates we have

E
[
ξr
(
~fK
)]
≤ (1 + ε)ξr

(
~fopt

)
. Therefore, by the same analysis of randomized stopping time as in Section 7.1,

after running the final K ′ cycle updates the final flow ~f (c+1) = ~fK+K′ and ~v(c+1) = ~vK+K′ satisfy the error
guarantee of Theorem 7.4.

E[ξr
(
~f (c+1)

)
] ≤ (1 + ε) · ξr

(
~fopt

)
and E‖~v(c+1) − L†~χ‖L ≤

√
ε · ‖L†~χ‖L

To prove Theorem 7.4 all that remains is to bound the running time of FullSolver. As in SimpleSolver

each cycle update takes O(log n) time so the total running time of FullSolver is

O

(
c+1∑
i=1

K(i) log n

)
= O

(
m log2 n log log n log(ε−1)

)
+O

(
c∑
i=2

K(i) log n

)
.

To upper bound the second term we note the following

O

(
c∑
i=2

K(i) log n

)
= O

(
c∑
i=2

( τ(T )∏c
j=i κj

+m
)

log(2κi−1 − 1) log n

)

= O

(
c∑
i=2

( τ(T )∏c
j=i κj

+m
)
κi log n

)
(using κi = log κi−1)

= O

(
c∑
i=2

τ(T )∏c
j=i+1 κj

log n+

c∑
i=2

mκi log n

)
= O (τ(T ) log n+mκ2 log n) = O(m log2 n log log n) .

The last step used that all κj ≥ 2 so
∑c
i=2

1∏c
j=i+1 κj

≤ 1 + 1
2 + 1

4 + · · · = O(1) and
∑
i≥2 κi = O(κ2). This

ends the proof of Theorem 7.4 with the desired running time O
(
m log2 n log log n log(ε−1)

)
.
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8 Numerical Stability

Up until this point our analysis has assumed that all arithmetic operations are exact. In this section, we show
that our algorithm is numerically stable and achieves the same convergence guarantees when implemented
with finite-precision arithmetic. We start with the analysis of SimpleSolver.

For simplicity of exposition, we assume that the resistances re and the coordinates of the demand vector
~χ are all represented as b-bit integers with absolute values bounded by N = 2b. We show that SimpleSolver
works when arithmetic operations are implemented with O(max(b, log n, log 1/ε)) bits of precision (which is
necessary simply to guarantee we can represent an answer meeting the required error bound). In particular,
if the entries of the input and ε can be stored in log n-bit words, our running time guarantees hold in the
standard unit cost RAM model, which only allows arithmetic operations on O(log n)-bit numbers to be done
in constant time.

We start our algorithm by multiplying the demand vector ~χ by d4mN2/εe, to ensure that in ~fopt there
exist at least d4mN2/εe total units of flow on the edges. Since the resistances are at least 1, this guarantees

that ξr
(
~fopt

)
≥ d4mN2/εe. Next, we ensure that throughout our algorithm all flow vectors ~fi are integer

vectors. At each iteration of SimpleSolver, when we are given a primal feasible flow ~f and want to compute

the optimal cycle update α∗
def
=

~fTR~ce
~cTe R~ce

, we round this fraction to the nearest integer and suppose we pick

some α̃ ∈ Z such that |α∗ − α̃| ≤ 1
2 .

Based on the modifications above, it is easy to see that our algorithm can be run on a RAM machine with
word size O(max(b, log n, log 1/ε)), since all flow values are integers bounded above by O(poly(N,n, 1/ε)).
All we have left to show is the convergence analysis for such integral updates.

We do so by strengthening our cycle update lemma, Lemma 4.3. For each cycle update, if we add
α̃ = α∗(1 + δ) units of flow on the cycle instead of α∗, the corresponding energy decrease is

ξr
(
~f − α∗(1 + δ)~ce

)
− ξr

(
~f
)

= (~f − α∗(1 + δ)~ce)
TR(~f − α∗(1 + δ)~ce)− ~fTR~f

= −2α∗(1 + δ)~fTR~ce + (α∗(1 + δ))
2
~cTe R~ce = −∆ce(~f)2

Re
(1− δ2) ,

where the last equality has used the fact that Re = ~cTe R~ce. We have |δ| ≤ 1
2α∗ , so, as long as α∗ ≥ 1, the

decrease in the energy decrease is at least 3
4 of what it would be for δ = 0. We call an off-tree edge “good”

if its α∗ ≥ 1, and “bad” otherwise. We can rewrite the duality gap as

gap(~f,~v) =
∑

e∈E\T

∆ce(~f)2

re
=

∑
e∈E\T

∆ce(~f)2

Re

Re
re

=
∑

e∈E\T
e is bad

∆ce(~f)2

R2
e

R2
e

re
+

∑
e∈E\T
e is good

∆ce(~f)2

Re

Re
re

≤ mN2 +
∑

e∈E\T
e is good

∆ce(~f)2

Re

Re
re

.

As a consequence, if one samples10 each tree cycle ~ce with probability to Re

reτ
, then the expected energy

decrease is at least:

E
[
ξr
(
~fi
)
− ξr

(
~fi−1

)∣∣∣gap(~fi−1, ~vi−1)
]
≤

∑
e∈E\T
e is good

(
Re
reτ

)(
−∆ce(~f)2

Re

3

4

)

≤−

(
gap(~fi−1, ~vi−1)−mN2

)
4τ/3

≤ −

(
ξr
(
~fi−1

)
− ξr

(
~fopt

)
−mN2

)
4τ/3

.

10Recall that exact sampling can be done in expected constant time on a machine with O(logn)-sized words.
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If one defines a random variable Di
def
= ξr

(
~fi
)
− ξr

(
~fopt

)
−mN2, then

E[Di|Di−1] ≤
(

1− 1

4τ/3

)
Di−1 .

Therefore, using the same analysis as before, after K = 4τ
3 log 2st(T )

ε·p , we have with probability at least 1− p
that:

ξr
(
~fK
)
≤
(

1 +
ε

2

)(
ξr
(
~fopt

)
+mN2

)
≤ (1 + ε)ξr

(
~fopt

)
.

We note that the above analysis extends to ExampleSolver and FullSolver. In fact, one can always
round those scaling factor κ’s to their nearest integers and verify that the same analysis for running time and
convergence holds. This ensures that throughout our algorithm each graph G(i) has its edge resistances all
being rational numbers with the same integer denominator that is bounded above by Õ(log n). Therefore,
when solving the approximate electrical flow for each graph G(i), we can simply scale up all resistances
by their common denominator, and this reduces the analysis on numerical stability to the earlier case of
SimpleSolver.

9 A Geometric Interpretation via Alternating Projections

In this section, we present a geometric interpretation of our algorithm and provide an alternative analysis
of its convergence based on the Method of Alternating Projections [BV04, ER11]. This method provides a
generic framework for iteratively finding a point in the intersection of a number of convex constraint sets
by sequentially projecting the current solution onto a set at the time. The specialization of this method to
systems of linear equations is known as the Kaczmarz method [Kac37] and is commonly used in practice,
especially in the field of Computerized Tomography [Nat01] to solve large linear systems efficiently.

An important contribution towards a better understanding of the Kaczmarz method was given by
Strohmer and Vershynin [SV09], who showed that a randomized version of such method converges expo-
nentially with a rate equal to the scaled condition number of the system. We remark that SimpleSolver

can be interpreted as applying this randomized Kaczmarz method to the scaled system of KPL equations:

∀e ∈ E \ T ,
1
√
re
~fTR~ce = 0 .

Our analysis effectively shows that the tree condition number τ plays exactly the role of the scaled condition
number of the system in the randomized Kaczmarz method.

9.1 Geometric View

Given the low-stretch spanning tree T and the corresponding basis {~ce}e∈E\T of the cycle space of G, let

Pe
def
= {~f ∈ RE : ~fTR~ce = 0} be the hyperplane of flows ~f respecting the KPL condition over circulation ~ce.

Then, the optimality condition with respect to a basis of the cycle space can be viewed as requiring the flow
~f to be in the intersection of the (m− n+ 1) hyperplanes {Pe}e∈E\T .

From this geometric perspective, at every iteration, our algorithm picks a hyperplane Pe associated with
a basis vector ~ce, and projects the current flow ~fi onto Pe. Formally, we can check that, at iteration i, our
algorithms applies to the current flow the projection Πei onto Pei :

Πei
~fi =

(
I−

~cei~c
T
eiR

‖~cei‖2R

)
~fi = ~fi −

~fTi R~cei
‖~cei‖2R

~cei = ~fi+1 . (7)

Notice that, as this update adds a circulation to ~fi, the resulting flow ~fi+1 meets the demands ~χ.

Our analysis shows that by iteratively projecting ~fi onto different hyperplanes in {Pe}e∈E\T , the final
flow can be made arbitrarily close to the intersection

⋂
e∈E\T Pe, i.e. the unique electrical flow.
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9.2 Alternating Projections

The geometric interpretation above casts our algorithm as an instance of the Method of Alternating Projec-
tions [BV04, ER11]. This method is an algorithmic paradigm used to solve the following generic problem.

Given k constraints in the form of convex sets S1, . . . , Sk ∈ Rn such that
⋂k
i=1 Si is non-empty, and we have

the ability to project onto each individual Si, i.e. given x ∈ Rn we can efficiently compute the projected
point Πi(x) ∈ Si that is closest to x. The goal is to find (or come arbitrarily close to) a point in

⋂k
i=1 Si.

A generic alternating-projection algorithm solves this problem by iteratively applying a sequence of
projections Πi1 ,Πi2 , . . . to a starting point x0 ∈ Rn. Given the current solution xt, the next iterate is defined
as xt+1 = Πit(xt). In the case of our electrical-flow algorithm, the convex sets {Si} consist of the hyperplanes

{Pe}e∈E\T and the notion of distance is given by the resistance norm ‖x‖R =
√
xTRx.

The analysis of the convergence of alternating-projection algorithms exploits the convexity of the sets to
argue that, at each iteration t, for any x∗ in the target set

⋂n
i=1 Si,

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − ‖xt+1 − xt‖2 . (8)

In words, the additive progress in the direction of x∗ in one iteration is at least the squared distance between
xt+1 and xt, i.e. the amount our solution has moved as a result of the projection. Hence, the convergence is
fastest when we are able to pick the next projection to be onto a constraint that is substantially violated.

9.3 A Randomized Kaczmarz Algorithm

When the convex sets are hyperplanes, the alternating-projection algorithm specializes to the Kaczmarz
method [Kac37]. Different variants of this method have proved effective at solving systems of sparse linear
equations in computerized tomography [Nat01] and image reconstruction [Her09].

The convergence analysis still relies on (8). For all e ∈ E \ T, define the normalized vector ĉe
def
= ~ce
‖~ce‖R .

For the specific case of our algorithm, (8) yields

‖~ft − ~fopt‖2R − ‖~ft+1 − ~fopt‖2R ≥ ‖~ft+1 − ~ft‖2R = (~fTt Rĉet)
2 . (9)

Equivalently, we make fast progress at iteration t if we project over Pet such that (~fTt Rĉet)
2 is large with

respect to our current distance from optimal.
Recalling that, by Lemma 2.5 at optimality ~fToptR~c = 0 for all circulations ~c, we can also rephrase our

task as finding a basis direction ĉe, e ∈ E \T , such that
(
(~ft− ~fopt)

TRĉe
)2

is a large fraction of ‖~ft− ~fopt‖2R,
i.e. ĉe captures a large component of the current error ~ft − ~fopt.

This observation raises two main challenges. First, there may be no basis direction ĉe that is well
correlated with the error. Second, even if such a basis direction exists, the computation required to find it
may be too slow for our purposes, e.g. it might require looking at ~ce for all e ∈ E \ T .

Our algorithm solves both these issues by a randomized approach, that is to sample a direction ĉe for
e ∈ E \T with probability pe proportional to Re

re
, and then apply the corresponding projection Πe. We prove

that this makes sufficient progress in expectation by exploiting the fact that the basis {~ce}e∈E\T comes from
a low-stretch spanning tree. In particular, the following property of the basis {~ce}e∈E\T is crucial to our
argument, and its proof is similar to that of Lemma 4.5.

Lemma 9.1. For any circulation ~g, we have∑
e∈E\T

pe(~g
TRĉe)

2 ≥ ‖~g‖
2
R

τ
. (10)

Proof. Recall that, for e = (a, b) ∈ E \ T , ~pe ∈ RE is the vector corresponding to the unique path from a to
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b by T . By the definition of ~ce, we have:

∑
e∈E\T

pe(~g
TR~ce)

2 =
1

τ

∑
e∈E\T

(
gere + ~gTR(−~pe)

)2
re

≥ 1

τ

 ∑
e∈E\T

reg
2
e − 2

∑
e∈E\T

ge · (~gTR~pe)

 =
1

τ

 ∑
e∈E\T

reg
2
e + 2~gTR

(
−
∑

e∈E\T

ge~pe

) .

Since ~g is a circulation, its values on the off-tree edges determines its values on the tree edges. Consequently,

∀e′ ∈ E :

− ∑
e∈E\T

ge~pe


e′

=

{
ge′ e′ ∈ T
0 e′ /∈ T

.

This yields: ∑
e∈E\T

pe(~g
TRĉe)

2 ≥ 1

τ

 ∑
e∈E\T

reg
2
e + 2

∑
e∈T

reg
2
e

 ≥ ‖~g‖2R
τ

.

The geometric meaning of this lemma is that, in expectation under distribution ~p, any circulation ~c has
correlation at least 1

τ with the basis directions {~ce}e∈E\T . We remark here that the uniform distribution
over an arbitrary orthonormal basis of the cycle space would satisfy (10) with τ replaced by the number of
dimensions (m− n+ 1), and would yield the best possible correlation bound for our randomized approach.
However, it is not known how to produce such a basis efficiently enough. Moreover, we also rely on the
compact representation of our basis {~ce}e∈E\T as a spanning tree to design our data structure in Section 5.
By Lemma 9.1, we obtain that our expected progress is

Eet←~p
[(

(~ft − ~fopt)
TRĉet

)2]
=

∑
e∈E\T

pe
(
(~ft − ~fopt)

TRĉe
)2 ≥ 1

τ
· ‖~ft − ~fopt‖2R .

Hence, by (9), the expected distance of our current solution from optimal decreases as

E
[
‖~ft − ~fopt‖2R

]
≤
(

1− 1

τ

)t
‖~f0 − ~fopt‖2R . (11)

To bound our initial distance from optimum, we we note that for any feasible ~f ∈ RE the optimality of ~fopt

implies
‖~f‖2R = ‖~fopt‖2R + ‖~f − ~fopt‖2R .

Then, by Lemma 6.1, it must be the case that ‖~f0 − ~fopt‖2R ≤ st (T ) · ‖~fopt‖2R. Combined with (11), this

shows that after K = τ log st(T )
ε iterations, E

[
‖~fK − ~fopt‖2R

]
≤ ε‖~fopt‖2R.

10 An Operator View: Linearity and Approximating L†

In this section, we depart from the electrical perspective of Section 3 and the geometric one of Section 9 to
present an interpretation of the SimpleSolver algorithm as a composition of simple linear operators. The
main results of this section are Theorem 10.1, which shows the linearity of SimpleSolver, and Theorem 10.2
and its corollaries, which prove that the linear operator corresponding to an execution of SimpleSolver is
an approximation of the Laplacian pseudoinverse with large probability.
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10.1 Linearity of SimpleSolver

In Section 9 we showed that each cycle update of SimpleSolver is the application of projector Πei to ~fi
where ei is the off-tree edge sample in iteration i and the projectors are defined by

∀e ∈ E \ T : Πe
def
=

(
I− ~ce~c

T
e R

‖~ce‖2R

)
.

The projectors {Πe}e⊂E\T as well as the incidence matrix for the spanning tree T , denoted BT ∈ RE×V ,

and the Laplacian of T , denoted LT
def
= BT

TR−1BT , give us the necessary building blocks to describe
SimpleSolver as a linear operator.

Theorem 10.1. Consider an execution of SimpleSolver on demand vector ~χ for K iterations of cycle
updates. Let e1, . . . , eK be the random off-tree edges picked from the probability distribution {pe} by the

algorithm. Then, the final flow ~fK and tree induced voltages ~vK are given by

~fK = FK~χ , ~vK = VK~χ,

where the flow operator FK and the voltage operator VK are defined as:

FK
def
=

 K∏
j=1

Πej

R−1BTLT
† , VK

def
= LT

†BT
T

 K∏
j=1

Πej

R−1BTLT
†.

Proof. The initial flow ~f0 is the electrical flow over the tree T and therefore ~f0 = R−1BTLT
†~χ. Since

applying Πe corresponds to a cycle update we have ~fK =
(∏K

j=1 Πej

)
f0. Furthermore, we see that the final

tree induced voltages for ~fK can be obtained by ~vK = L†BT
T
~fK . Combining these facts yields the result.

The ideas of Theorem 10.1 apply to FullSolver and one can show that for a fixed choice of sampled
edges FullSolver is also linear operator. Furthermore, for SimpleSolver we see that we could make the
flow and voltage operators symmetric without a loss in asymptotic running time or error guarantees by
simply applying the projections a second time in reverse.

10.2 Approximation of Laplacian Pseudoinverse

In this section, we show that the flow and voltage operators FK and VK arising from SimpleSolver yield an
approximate representation of the pseudoinverse L† and related operators as the composition of a number
of simple linear operators. Our notion of approximation will be with respect to the Frobenius norm. We

denote the Frobenius norm of a matrix X by ||X||F and recall that ||X||2F
def
= Tr(XTX).

For the purpose of this section, the natural notion of inner product in RE is given by the resistance
operator R. To make the proof simpler to follow, we scale some of the operators defined so far as to be able
to use the standard notion of inner product. We define

∀e ∈ E \ T : Π̃e
def
= R1/2ΠeR

−1/2 =

(
I− R1/2~ce~c

T
e R1/2

‖~ce‖2R

)
.

This shows that Π̃e is an orthogonal projection. Equivalently, before the scaling, the operator Πe is an
orthogonal projection with respect to the inner product defined by R.

The main theorem of this section involves showing a relation between the operator
(∏K

j=1 Π̃ej

)
, which

describes the cycle updates performed by SimpleSolver, and the projection operator ΠG ∈ RE×E , defined
as:

ΠG
def
= R−1/2BL†BTR−1/2 .
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The projection ΠG takes any flow R1/2 ~f and projects it orthogonally onto the subspace of KPL-respecting
flows, i.e. electrical flows. The operator ΠG plays an important role in the spectral study of graphs and is
the main object of study in spectral sparsification [SS11].

Theorem 10.2. Let e1, . . . , eK be random off-tree edges picked independently from the {pe} probability
distribution. Let K = dτ log n

εpe. Then, with probability at least 1− p,∣∣∣∣∣∣
∣∣∣∣∣∣
 K∏
j=1

Π̃ej

−ΠG

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

≤ ε .

We defer the proof to the end of this section and first show how two useful bounds involving the flow
and voltage operators follow directly from Theorem 10.2.

Theorem 10.3. Let e1, . . . , eK be random off-tree edges picked independently from the {pe} probability
distribution. Let K = dτ log n

εpe. Then, with probability at least 1− p,

(FK −R−1BL†)TR(FK −R−1BL†) � εLT † � εst (T ) L† (12)

and
(VK − L†)TL(VK − L†) � ε(st (T ))2L† .

In particular, the first equation implies that, for δ > 0 with probability at least 1− p, a random sequence

of K ′ = dτ log n·st(T )
δp e cycle updates yield a flow operator FK′ which is a multiplicative δ-approximation

to the electrical-flow operator R−1BL†. In practice, this means that, if we choose K ′ cycles at random
according to {pe}, the resulting sequence of updates will yield a flow whose energy is at most a factor of
(1 + δ) away from optimum, for all possible initial demand vectors ~χ.

Similarly, the second equation implies that K ′ = dτ log n·st(T )2

δp e randomly selected cycle updates yields

with probability at least 1 − p a voltage operator that when applied to any demand ~χ results in a
√
δ-

approximate solution to L~~v = ~χ.

Proof of Theorem 10.3. Theorem 10.2 implies: K∏
j=1

Π̃ej

−ΠG

T  K∏
j=1

Π̃ej

−ΠG

 � εI .

It suffices to left- and right-multiply this inequality by R−1/2BT
TLT

† to obtain:

(FK −R−1BL†)TR(FK −R−1BL†) � εLT †

as required. To obtain the inequality involving L†, we can directly apply the fact that L � st (T ) LT (cf.
[ST12, Lemma 9.2]).

We now derive the bound for the voltage operator. This requires the following chain of inequalities:

R � R1/2(R−1/2BTLT
†BT

TR−1/2)R1/2 = BTLT
†BT

T �
1

st (T )
BTLT

†LLT
†BT

T .

The first inequality follows as R−1/2BTLT
†BT

TR−1/2 is an orthogonal projection. The second one is again

a consequence of the fact that L � st (T ) LT . It now suffices to replace R by 1
st(T )BTLT

†LLT
†BT

T in (12)

to obtain the required bound.

The rest of the section is dedicated to proving Theorem 10.2. This could be achieved by slightly modifying
the proof of Section 4. However, in the following, we prefer to briefly give an operator-based proof of the
theorem. We believe that this complements the view of Section 4 and helps to convey its geometric flavor.
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10.2.1 Proof of Theorem 10.2

The spanning tree T allows us to construct a projector ΠT that can be used to relate ΠG and
(∏K

j=1 Π̃ej

)
.

The projector ΠT is defined as

ΠT
def
= R−1/2BLT

†BT
TR−1/2 .

Here, it is important to notice that ΠT is not symmetric, i.e. it is not an orthogonal projector, but an oblique
one. The range of ΠT is the range of R−1/2BT i.e. the space of KPL-respecting flows. The following lemma
relates ΠT to the tree cycle vectors {~ce}e∈E\T .

Lemma 10.4. Let ~1e ∈ RE be the standard unit vector associated to e ∈ E. Then:

(I−ΠT )TR1/2~1e =

{
R1/2~ce, e ∈ E \ T ,

0, e ∈ T .

Proof. For e ∈ T, we have:

(I−ΠT )TR1/2~1e = R1/2~1e −R−1/2BTLT
†BT

~1e = R1/2(~1e −~1e) = 0 .

For e ∈ E \ T :

(I−ΠT )TR1/2~1e = R1/2~1e −R−1/2BTLT
†BT

~1e = R1/2(~1e − ~pe) = R1/2~ce .

In words, the rows corresponding to off-tree edges in the matrix representation of R1/2(I−ΠT )R−1/2 in
the standard basis are exactly the tree cycle vectors {~ce}e∈E\T . The remaining rows are 0.

In the next lemma, we relate ΠT to the cycle projections {Π̃e}e∈E\T used in SimpleSolver.

Lemma 10.5. Let e ∈ E \ T be sampled according to probability {pe}, as in SimpleSolver. Then:

E[Π̃e] = I− 1

τ
(I−ΠT )T (I−ΠT ) .

Proof. This follows from the definition of {pe} and Lemma 10.4:

E[Π̃e] = I− 1

τ

∑
e∈E\T

R1/2~ce~c
T
e R1/2

re
= I− 1

τ
(I−ΠT )T (I−ΠT ) .

Next, we show how to relate (I − ΠT )T (I − ΠT ) to I − ΠG. We will show that, for any flow R1/2 ~f, the

distance
∥∥R1/2 ~f − ΠGR1/2 ~f

∥∥
2

to its ΠG-projection is smaller than
∥∥R1/2 ~f − ΠTR1/2 ~f

∥∥
2
, the distance to

its ΠT -projection. It is easy to see that this should be the case, because ΠG and ΠT project onto the same
subspace and ΠG is an orthogonal projection. We prove it formally here. This is analogous to Lemma 9.1.

Lemma 10.6.
(I−ΠT )T (I−ΠT ) � (I−ΠG)T (I−ΠG) = I−ΠG .

Proof. Algebraically, we can check that

(ΠG −ΠT )T (ΠG −ΠT ) + (I−ΠG) = ΠG −ΠT
TΠG −ΠGΠT + ΠT

TΠT + I−ΠG =

I−ΠT
T −ΠT + ΠT

TΠT = (I−ΠT )T (I−ΠT ) .

In the second equality, we used the fact that ΠGΠT = ΠT as ΠG and ΠT project onto the same subspace.
As (ΠG −ΠT )T (ΠG −ΠT ) � 0, the lemma follows.
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We are now ready to prove Theorem 10.2.

Proof of Theorem 10.2. For any iteration t, 0 ≤ t ≤ K, let

Φt
def
=

∣∣∣∣∣∣
∣∣∣∣∣∣
 t∏
j=1

Π̃ej

−ΠG

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

.

We will show that ΦK ≤ ε with probability at least 1−p, by bounding the expected reduction in Φt at every
iteration. Notice that for any e ∈ E \ T, we have ΠGΠ̃e = Π̃eΠG = ΠG, as ΠG and Π̃e are both orthogonal
projectors and the range of ΠG is contained into that of Π̃e. Hence, we can simplify the expression for Φt as

Φt = Tr


 t∏
j=1

Π̃ej

T  t∏
j=1

Π̃ej

−ΠG

 .

Now, we are ready to bound the change in Φt in one iteration. For any t, t ≤ 0 ≤ K − 1, assume that
e1, · · · , et have been fixed and notice:

E[Φt+1] = E

Tr


t+1∏
j=1

Π̃ej

T t+1∏
j=1

Π̃ej

−ΠG


 = Tr


 t∏
j=1

Π̃ej

T

E[Π̃et+1
]

 t∏
j=1

Π̃ej

−ΠG

 .

By Lemma 10.5, we obtain:

E[Φt+1] = Φt −
1

τ
Tr


 t∏
j=1

Π̃ej

T

(I−ΠT )T (I−ΠT )

 t∏
j=1

Π̃ej


 .

We now apply Lemma 10.6:

E[Φt+1] ≤ Φt −
1

τ
Tr


 t∏
j=1

Π̃ej

T

(I−ΠG)

 t∏
j=1

Π̃ej


 .

This yields that E[Φt+1] ≤
(
1− 1

τ

)
Φt and by taking expectation over all the choices of sampled edges, we

have E[ΦK ] ≤
(
1− 1

τ

)K
Φ0. Now, by definition, Φ0 = ||ΠG||2F and because ΠG is a projector onto an (n− 1)

dimensional space, we have Φ0 = n− 1. Hence, for our choice of K = dτ log n
εpe, we have:

E[ΦK ] ≤
(

1− 1

τ

)K
(n− 1) ≤ εp .

By Markov’s Inequality, with probability at least 1− p, it must be the case that ΦK ≤ ε.

11 Solving without Low Stretch Spanning Trees

In the algorithms presented in this paper the spanning tree, T , provides two essential functions. (1) The T
induces a well conditioned basis for cycle space and (2) the spanning tree allows for a compact representation
of cycles that allow efficient querying and updating. It is natural to ask, can a combinatorial object other than
a low-stretch spanning subgraph be used to achieve these goals? To the best of our knowledge all previous
nearly-linear-time SDD-system solvers use such low-stretch spanning trees; can a nearly-linear running time
be achieved without them?

26



All these questions can be answered in the affirmative and in fact a particular decomposition tree (low-
stretch tree approximation of G that are not necessarily subgraphs)[Bar96, Bar98, FRT03] construction of
Bartal can used precisely for this purpose. Several steps are needed. First, we need to show how decompo-
sition trees in general can be used to satisfy property (1). Next we need to show how we can replicate edges
to create an equivalent problem without hurting the property (1) too much. Finally, we need to show how
this replication can be done to achieve just enough path disjointness that we can apply the data structure
from Section 5 and achieve property (2). Ultimately, this can all be accomplished while only losing several
log factors in the run time (as compared to the most efficient algorithm presented in this paper). (We plan
on including the details in a later version of this paper.)
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A Reduction from SDD Systems to Laplacian Systems

Reductions from SDD system solving to Laplacian system solving can be traced back to [Gre96] where the
problem of solving a linear system in a symmetric diagonally dominant (SDD) matrix of dimension n was
reduced to that of solving a Laplacian matrix of dimension 2n+ 1. This reduction contains two steps. First,
a SDD matrix is reduced to a SDDM matrix of dimension 2n, where a SDDM matrix is an SDD matrix with
non-positive off-diagonals.11. Second, this SDDM matrix is augmented with an extra dimension yielding a
Laplacian matrix of dimension 2n + 1. Following the interpretation of a Laplacian system as an electrical
circuit system (see Section 2.1.1) this second step can also be viewed as adding an extra ground vertex with
fixed zero voltage, and connecting it to all other vertices whose corresponding rows do not sum up to zero.

The first step of the above reduction is often referred to as Gremban’s reduction, and has been used in
previous nearly-linear-time SDD system solvers (see for instance [ST12]). Although this reduction is stated
for exact solutions, it also carries approximate solutions from one to the other [ST12].

Below we present a variant of Gremban’s reduction, that in a single step reduces from a linear system of
a SDD matrix directly to that of a Laplacian matrix and we prove that this reduction preserves approximate
solutions. Since for Laplacians of disconnected graphs each component can be solved independently we see
that it suffices to study Laplacian matrices for connected graphs in the main body of our paper.

A.1 Our Reduction

Given an arbitrary SDD matrix A, we can always decompose it into A = D1 + Ap + An + D2, where
• Ap is the matrix containing all positive off-diagonal entries of A,
• An is the matrix containing all negative off-diagonal entries of A,

• D1 is the diagonal matrix where D1(i, i)
def
=
∑n
j=1 |A(i, j)|, and

• D2 = A−Ap −An −D1 is the excess diagonal matrix.
Given that A is SDD it is a simple exercise to check that D1 + An −Ap is Laplacian and the entries of D2

are non-negative. Now, consider the following linear system

Ã

(
x1

x2

)
=

(
b
−b

)
where Ã =

(
D1 + D2/2 + An −D2/2−Ap

−D2/2−Ap D1 + D2/2 + An

)
.

It is not hard to verify that Ã is Laplacian and that given an exact solution (x1, x2) to the above linear
system (and notice that there may be many such solutions) we have

(D1 + D2/2 + An)x1 + (−D2/2−Ap)x2 = b
(−D2/2−Ap)x1 + (D1 + D2/2 + An)x2 = −b

}
implies A

(
x1 − x2

2

)
= b .

So x = x1−x2

2 is also an exact solution to the original linear system Ax = b.
Now let us verify that this reduction also holds for approximate solutions. Let (x̂1, x̂2) denote an arbitrary

ε-approximate solution to the new Laplacian system, and let ê1
def
= x̂1 − x1 and ê2

def
= x̂2 − x2. By definition

we have: ∥∥∥∥(ê1

ê2

)∥∥∥∥
Ã

=

∥∥∥∥(x̂1

x̂2

)
−
(
x1

x2

)∥∥∥∥
Ã

≤ ε
∥∥∥∥(x1

x2

)∥∥∥∥
Ã

and by expanding it out we have:

(
ê1

ê2

)T
Ã

(
ê1

ê2

)
≤ ε2

(
x1

x2

)T
Ã

(
x1

x2

)
⇔

(
ê1

ê2

)T (
D1 + D2/2 + An −D2/2−Ap

−D2/2−Ap D1 + D2/2 + An

)(
ê1

ê2

)
≤ ε2

(
x1

x2

)T (
b
−b

)
= 2ε2xT b (13)

11An SDDM matrix is not necessarily Laplacian since its rows (or columns) may not sum up to zeros. For historical reasons,
Gremban [Gre96] uses the notion “generalized Laplacian matrix” for SDD matrix, and the notion “Laplacian matrix” for SDDM
matrix.
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Now, because D1 + An −Ap is Lapacian (and therefore positive semidefinite) we have(
D1 + An −Ap D1 + An −Ap

D1 + An −Ap D1 + An −Ap

)
� 0

⇔
(

D1 + An −Ap D1 + An −Ap

D1 + An −Ap D1 + An −Ap

)
+

(
A −A
−A A

)
�
(

A −A
−A A

)
⇔ 2

(
D1 + D2/2 + An −D2/2−Ap

−D2/2−Ap D1 + D2/2 + An

)
�
(

A −A
−A A

)
and as a consequence we deduce from (13) that (by defining x̂ = x̂1−x̂2

2 )

1

2

(
ê1

ê2

)T (
A −A
−A A

)(
ê1

ê2

)
≤ 2ε2xT b ⇔ 2

(
ê1 − ê2

2

)T
A

(
ê1 − ê2

2

)
≤ 2ε2xT b

⇔ 2(x̂− x)TA(x̂− x) ≤ 2ε2xT b

⇔ ‖x̂− x‖A ≤ ε‖x‖A .

Therefore, we have shown that x̂ = x̂1−x̂2

2 is also an ε approximate solution to Ax = b.
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