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GENETIC AND PHYSICAL STUDIES OF BACTERIOPHAGE P22 GENOMES CONTAINING

TRANSLOCATABLE DRUG RESISTANCE ELEMENTS.

by George Matthew Weinstock

Submitted to the Department of Biology on June 20, 1977 in partial fulfill-

ment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

Translocatable elements are defined segments of DNA with the capacity

to integrate into DNA molecules in the absence of any obvious sequence

homology. In this thesis the translocatable element Tnl is studied.

Tnl contains a gene specifying ampicillin resistance (amp R). 187

derivatives of the temperate bacteriophage P22, each containing an inser-

tion of Tnl, were identified on the basis of their ability to transduce

ampR at high frequency. 76 of these phages were studied further.

The Tnl insertions in these phages were not distributed randomly in

the genome but tended to cluster in the vicinity of the ant gene. However,

insertions occurred at many sites within ant. Thus, Tnl integration is

regionally, but not locally, specific.

The Tnl insertions were found to be about 4800 base pairs in length

and their terminal 100 bases were identical in sequence but opposite in

orientation. Tnl insertions in structural genes caused irreversible

mutations. In one case a deletion was found near the insertion but all

other insertions examined appeared to have integrated precisely.

Tnl insertions also caused polar mutations. The degree of polarity

was determined using phages with insertions which were polar on gene 9,

which codes for the phage tail protein. It was found that some insertions

reduce gene expression by about 2-fold, while the other reduce expression

20-fold. It was found that the degree of polarity depends on the orienta-

tion of the insertion.

Deletions isolated in P22Ap phage genomes were found by genetic map-

ping to frequently end at the Tnl insertion. Examination of 5 of these

genomes in the electron microscope revealed that 4 contained an intact

Tnl element with an adjacent deletion while the deletion in the fifth,

which was isolated by a different procedure, extended into Tnl. The

deletions extended from Tnl to non-random positions in the genome, ending

either in the vicinity of gene 12 or ant. However, there were many sites
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at which the deletions ended in these regions. Thus, deletion formation

by Tnl, like integration, is regionally, but not locally, specific. This

type of site specificity has not been observed for integration or excision

of other translocatable elements.

The fact that Tnl insertions and deletions exhibit the same form of

sequence specificity implies these events occur by related mechanisms.

It is proposed that a Tnl determinant recognizes a rare site in the DNA

and then causes the insertion or deletion event to occur at a non-specific,

but nearby site.

The Tnl insertions are also used to study P22. From the phenotypes

of polar insertions, evidence is found for the existence of an operon of

late phage genes, and it is shown that gene 9 is a member of this operon.

This latter finding implies that a) for gene 9 to be expressed transcrip-

tion may proceed through a 3000 bp region containing genes whose function

and regulation is unrelated to the other genes in the late operon,

b) there is probably a transcription termination signal between ant and 9,

and c) expression of the ant gene may be subject to post-transcriptional

control late in infection.

Lastly, by heteroduplex and restriction enzyme analysis, the inser-

tions and deletions in P22 are used to extend the physical map of the P22

genome.

Thesis Supervisor: Dr. David Botstein
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CHAPTER I: INTRODUCTION

I. Translocatable Elements

A. Overview

A translocatable element is a segment of DNA which can integrate as

a unit into an unrelated DNA sequence. Translocatable elements are

natural constituents of phage, plasmid, and bacterial chromosomes and

comprise a diverse group of genetic entities. They range in size from

the IS sequences, which can be as short at 800 base pairs, to temperate

phages such as Mu or A (more than 40,000 base pairs). Some elements

contain antibiotic resistance genes and play a key role in the evolution

of R factors. These transposable antibiotic resistance units often have

inverted or direct repeats of their terminal sequences. In some cases

the repetitious termini are IS sequences.

Besides their capacity for transposition, translocatable elements

stimulate the formation of deletions and inversions, Thus, transloca-

table elements are capable of a number of illegitimate recombination

events.

Translocatable elements can also affect gene expression. Integra-

tion within a gene is invariably mutagenic and in an operon can be polar.

The IS2 element may contain a promoter capable of transcribing external

genes. Thus, translocatable elements affect gene expression as well as

chromosome structure. The properties of translocatable elements are

reviewed by Cohen (1976), Starlinger and Saedler (1976), and Kleckner

(1977) and in a monograph (Bukhari et al., 1977).
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B. Translocatable Elements Conferring Ampicillin Resistance

(i) Introduction

Plasmid-specified ampicillin resistance is usually due to the pro-

duction of a -lactamase, an enzyme which hydrolyzes penicillins and

cephalosporins. On the basis of their activities, two classes of

S-lactamases have been defined, types 0 and TEM (Dale and Smith, 1974;

Hedges et al., 1974). TEM is far more common and is made by many

different R factors from a variety of bacteria. These enzymes form a

remarkably homogeneous group and only two types, TEM-1 and TEM-2, are

distinguishable by isoelectric focusing (Matthew and Hedges, 1976). This

uniformity is reflected in the DNA sequences specifying TEM enzymes. R

factors producing a TEM enzyme contain a common DNA segment (Heffron et

al., 1975a) which is translocatable and contains the -lactamase gene

(Hedges and Jacob, 1974; Heffron et al., 1975b; Bennett and Richmond,

1976). The translocatability of the S-lactamase gene explains how it

can be highly conserved yet widely distributed in nature.

(ii) Structure

The translocatable S-lactamase gene resides in a 4900 base pair

(3.2 x 10 6d) segment of DNA whose terminal 140 base pairs are identical

in sequence but opposite in orientation (Heffron et al., 1975b; Rubens

et al., 1976). The -lactamase gene is located near one end of this

element (Heffron et al., 1977). Since the TEM enzyme is about 22,000d

in molecular weight (Heffron et al., 1975a) its gene need occupy only a

small part of the element.

Translocatable sequences coding for the two different TEM enzymes

are the same size and contain identical inverted repeats as judged by

electron microscopy of heteroduplexes (Rubens et al., 1976). DNA-DNA
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hybridization, however, showed that about 15 percent of their sequences

are non-homologous and restriction enzyme analysis also revealed minor

differences.

In accordance with the nomenclature proposed for translocatable

elements (Bukhari et al., 1977) the TEM-2 coding sequence is called Tnl

and the TEM-1 coding sequence is called Tn2.

(iii) Translocation

Translocation of amp icillin resistance between plasmids and from

plasmids into bacterial chromosomes has been demonstrated in a number of

investigations. Heffron et al., (1975b) identified translocations from

large R factors into a small plasmid by virtue of the increase in size

of the plasmid after insertion of Tnl or Tn2. The inserts all had the

characteristic structure, without permutation, of Tnl and Tn2, but could

occur in either orientation. Insertions were found at many sites within

the plasmid. The distribution of insertions was the same for Tnl or Tn2

but was not random. Because of this it was concluded that Tnl and Tn2

insert at a short, specific sequence. The frequency, structure,, and

distribution of Tnl and Tn2 insertions were found to be independent of

the recA gene (Rubens et al., 1976).

Several studies have shown that a recipient of Tnl or Tn2 may act as

a donor in a subsequent translocation event (Hedges and Jacob, 1974;

Bennett and Richmond, 1976; Heffron et al., 1977). This suggests that

translocation determinants are present in the element. To study these

determinants, Heffron et al., (1977) enzymatically created deletions in

Tn2 which impaired translocation. They found that small deletions

removing little more than one of the terminal inverted repeats or lying

within the central region of the element reduced translocation at least
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a thousand-fold. This shows that both terminal and internal sequences

are essential for translocation. In complementation tests, the terminal

deletions were cis-dominant while internal deletions were recessive.

This suggests the simple model that the terminus contains a site recog-

nized in translocation while internal sequences code for one or more

diffusible products necessary for translocation. This is formally analo-

gous to the integration/excision system of bacteriophage Xwhich requires

a site (att) as well as nearby genes (mit and xis)(Weisberg et al., 1977).

This analogy may be artificial, however: although Tnl inserts at many

sites in a small plasmid, the frequency of Tnl integration into other

plasmids varies over four orders of magnitude (Bennett and Richmond, 1976).

Furthermore, Tnl is reported not to integrate into a plasmid already con-

taining a Tnl sequence except by homologous, recA-dependent recombination

(Robinson et al., 1977). These results are not readily explainable by a

mechanisms requiring only a short, relatively common sequence in the

recipient DNA and genes coding for integration functions in the element.

Thus, other factors must influence Tnl translocation.

(iv) Effects on Gene Expression

Rubens et al., (1976) described Tnl and Tn2 insertions in a plasmid

conferring resistance to streptomycin and sulfonamide. From the mutant

resistance phenotypes caused by these insertions, they concluded that

1) insertion in a gene is mutagenic and 2) insertions are strongly polar

in one orientation but weakly polar in the other orientation. The

mechanism of this polarity is not known. However, a small deletion

within Tnl largely relieves polarity and it has been suggested that a

transcription termination signal is deleted. A similar effect of orien-

tation on gene expression has been proposed for IS2 insertions in the gal
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operon of E. coli (Saedler et al., 1974). Under certain circumstances,

gal genes may be expressed from a promoter within IS2. Promotion of

external gene expression from within Tnl or Tn2 has also been invoked to

explain certain complex phenotypes (Rubens et al., 1976; Inselburg, 1977)

but no definitive experimental support for this possibility exists.

C. Deletion Generation by Translocatable Elements

Several observations imply that translocatable elements can generate

deletions. Inserted elements increase the frequency of deletion of

adjacent material (Chan and Botstein, 1972; Reif and Saedler, 1975).

These deletions have a characteristic structure. One endpoint is located

by genetic criteria at the site of insertion and physical mapping shows

the deletions are very near the terminus of the element (Davis and

Parkinson, 1971; Hu et al., 1975; Ahmed and Johansen, 1975), implying the

ends of translocatable elements are important for deletion generation.

The other endpoint is more randomly located outside of the insertion but

can have preferred sites (Davis and Parkinson, 1971; Chan, 1974; Reif

and Saedler, 1975). In one case, these endpoints are more randomly dis-

tributed than the sites of insertion of the element (Kleckner et al.,

1977).

The ability of translocatable elements to both insert and form

deletions in DNA and the probable importance of their termini in these

processes suggests related mechanisms. However, distinctions must exist

since the frequency and sequence specificity of these events can be

different.

D. Aim and Significance of Thesis

Translocatable elements are biologically significant because of

their role in evolution and, possibly, modulation of gene expression.
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In addition, they are useful tools for genetic analysis. This is true

of Tnl whose source, the R factor RP4, has a broad host range, allowing

Tnl to be introduced into many interesting bacterial genera. Thus, one

object of this thesis, the study of Tnl, is of practical and theoretical

significance.

Previous work with Tnl lacked a well-developed genetic system. In

contrast, this thesis describes the solution and characterization of Tnl

insertions in the genome of bacteriophage P22. The processes of integra-

tion, excision, deletion generation, and polarity are examined by gener-

ally applicable methods.

The other focus of this thesis is the study of P22. Tnl insertions

are used to construct physical and fine structure genetic maps and to

deduce the organization of operons. The use of Tnl to obtain this kind

of information, necessary for understanding any genome, provides a pre-

cedent for this kind of use of translocatable elements in genetic analysis.

II. Bacteriophage P22

A. Overview

P22 is a temperate, generalized transducing phage of Salmonella

typhimurium. Its chromosome is a 27 x 106 dalton, linear, double-stranded

DNA molecule with short terminal repetition and limited circular permuta-

tion. Following injection, the chromosome circularizes by a homologous

recombination event between its repetitious ends. This circular inter-

mediate is essential in either the lytic or lysogenic cycle (Botstein

and Matz, 1970; figure 1).

To lysogenize, the circular DNA molecule integrates at a unique

site in the host chromosome, producing a linear, non-permuted prophage.

Repression of lytic genes requires two repressors, the product of the c2
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Figure 1. Life Cycle of P22 DNA

Infection by P22 phage produces circular DNA molecules formed by

recombination. The circles either replicate to produce concatemers or

integrate in the host chromosome to produce a prophage. When the prophage

is induced a circular molecule is produced which replicates to produce

concatemers. The concatemers are cut and packaged in phage particles

to produce a population of terminally repetitious, circularly permuted

molecules.
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and mnt genes. Upon induction, the prophage excises in a manner which

reproduces the essential circular chromosome structure.

During lytic growth the circular DNA replicates to produce molecules

which are larger than mature chromosomes (Botstein, 1968); these are

called concatemers. Concatemers are thought to contain multiple P22

genomes tandemly repeated in the same orientation. These are converted

to mature phage chromosomes by the headful packaging mechanism. General-

ized transducing particles are thought to be produced when this mechanism

packages host or plasmid DNA instead of phage DNA concatemers.

B. The Headful Packaging Mechanism

The terminally repetitious, circularly permuted structure of mature
AT7Loa.,6

P22 DNA reflects the mechanism of encapsulation (Tyeetel,figure 1). The
A

DNA is cut from long concatemers of P22 genomes. Each head packages a

piece of DNA which is about two per cent longer than the P22 genome, thus

producing terminally repetitious molecules. The first cut occurs at a

unique site, pac, and packaging is sequential so the origin of each head-

ful is displaced two percent from its predecessor. This generates a

circularly permuted population of molecules. pac has been mappped gene-

tically in the vicinity of genes 19 and 3 (Chan, 1974; figure 2).

Physical mapping of P22 DNA (Jackson, 1977) as well as genetic experiments

(Smith, 1968) demonstrate the direction of packaging to be from pac toward

gene 2.

C. Lytic Genes

The genes of P22 are arranged into operons which are analogous in

function to those of bacteriophage A (Botstein and Herskowitz, 1974;

Hilliker and Botstein, 1977; figure 2). P22 has two operons of early

genes. One is transcribed from the 2 L promoter and contains gene 24, a
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positive regulator of early genes analogous to X's N gene (Hilliker and

Botstein, 1975). The other early operon is transcribed from the 2 pro-

moter and includes genes 18 and 12, required for DNA replication, and

gene 23, a positive regulator of late genes analogous to A's Q gene. The

genes 13 to 16 are thought to constitute an operon of late genes tran-

scribed from a promoter, 2LATE, located between genes 23 and 13 (Roberts

et al., 1976). Genes 13 and 19 are required for cell lysis while the

other genes are involved in head morphogenesis (Botstein et al., 1973;

Poteete and King, 1977). Genes 3, 2, 1, 8, and 5 are required to cut

DNA concatemers to phage size, genes 8 and 5 being the major proteins

of the prohead, the structural precursor to DNA-containing heads. Genes

4, 10, and 26 are not required for DNA encapsulation but in their absence

the head is unstable and loses its DNA. Mutants in genes 7, 20, or 16

produce stable, DNA-containing particles which are not infections since

these functions are necessary for injection of DNA into the cell. Gene 9,

which codes for the baseplate (tail) protein, is also expressed at late

times but is physically separated from the other late genes (See Ch 1.

Section IIG). Gene 23 is required for expression of all late genes

including gene 9 (Bostein et al., 1973; Lew and Casjens, 1975).

D. Transduction by P22

There are two ways P22 can introduce host genes into a cell. The

genes may become packaged in a particle lacking any phage DNA (generalized

transduction) or the genes may become inserted in the phage genome and

packaged with phage DNA (specialized transduction). Generalized trans-

ducing particles are formed by the action of the headful packaging

mechanism on a bacterial or plasmid chromosome. For bacterial genes to

be transduced, they must recombine with the chromosome of the recipient.
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When plasmid genes are packaged, they will be efficiently transduced

only if the plasmid is smaller than a headful in size so a complete

genome can be packaged. If the plasmid is larger than a headful, most

transductants are abortive and the stable transductants that do appear

contained shortened derivatives of the plasmid.

Specialized transducing particles produce transductants by inserting

their DNA into the recipient's chromosome via the phage integration system.

The transductant consists of a lysogen whose prophage contains an insertion.

Thus, a requirement for specialized transduction is that the tranducing

genome lysogenize.

Generalized and specialized transductants may be distinguished by

the frequency with which they produce transducing particles. A specialized

transductant produces particles, all of which contain the transduced gene,

and thus, transmits it at a high frequency. In contrast, generalized

transductants produce a low frequency of transducing particles.

E. P22TclO: A P22 Derivative Containing the TnlO Translocatable Element

TnlO is a 9300 base pair translocatable element which is found in

certain R factors and contains a tetracycline resistance gene (tet ).

Dubnau and Stocker (1964) were the first to describe P22-mediated trans-

RR
duction of tet . Watanabe et al., (1972) used P22 to transduce this tet

gene and isolated a transductant which produced high frequency transducing

(HFT) lysates. The phage in these lysates is a derivative of P22, called

TclO, which contains a TnlO insertion in the al region (Chan and Botstein,

1976; figure 2).

The TnlO insertion makes P22TclO's genome larger than the length

of DNA packaged in a phage head. Consequently, P22TclO particles contain

incomplete, circularly permuted chromosomes which are defective because
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they lack terminal redundancy (Tye et al., 1974a; figure 3). When

P22TclO particles singly infect cells they neither grow nor lysogenize

because their DNA is unable to circularize. However, an induced lysogen

of P22TclO produces a normal burst of particles because prophage excision

yields a circular molecule without requiring terminal repetition. Upon

multiple infection or infection with helper phage, the permuted chromo-

somes can recombine with each other to reconstruct a complete circular

R
genome which may either lysogenize to produce a tet transductant or grow

lytically to produce more P22TclO particles (Chan et al., 1972). Similarly,

if P22TclO particles singly infect cells containing a prophage deletion,

many of them can recombine with the prophage to reconstruct a complete

circular genome and grow normally. This property is used to titer

P22TclO particles since P22TclO plates as a linear function of concentra-

tion on prophage deletion strains.

Because of the defectiveness of the particles, it is possible to

select deletions in the P22TclO genome. When P22TclO is plated, the

rare, plaque-forming derivatives which appear contain deletions (Chan,

1974). Some of these have lost the TnlO element while others have deleted

non-essential phage DNA and part of TnlO (Tye et al., 1974a). These de-

letions shorten the genome so that it can fit completely in a phage head

and produce terminally repetitious chromosomes.

A second class of deletions can be isolated when P22TclO is used to

transduce tetR at low multiplicities of infection. Transduction is rare

because most chromosomes fail to circularize. Transductants that do

occur have prophages containing a deletion (Chan et al., 1972) which

presumably allowed circularization. These deletions have one endpoint

at the TnlO insertion and extend beyond the sieA gene to between genes 20
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Figure 3. Life Cycle of TclO DNA

Infection by TclO particles will not be productive unless the incom-

plete chromosomes can circularize. This can be achieved by recombination

with another genome, present either as a non-immune prophage deletion or

as an infecting phage. Unlike wild type, however, circularization cannot

occur by self-recombination. The circular, complete genome may lysogenize

to produce a tetR transductant or replicate to produce concatemers. Since

the genome of TclO is longer than the molecules cut from concatemers, the

chromosomes which are packaged form a population of circularly permuted,

incomplete genomes.
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and c2 (Chan and Botstein, 1972). The deletions end at a number of sites

in this region but there is a bias to the vicinity of genes 5 and 10

(Chan, 1974).

Thus, deletions can be selected in P22TclO, in contrast to wild type

P22 where a shorter genome offers no selective advantage. Although both

of these selections require restoration of terminal repetition, the

selection for plaque-formers requires intact essential genes while the

selection for low multiplicity transduction demands the tetR gene and

genes for lysogeny to be expressed.

F. Lysogeny and the ant Gene

When P22 infects a cell, it may lysogenize by integrating at a

unique site in the bacterial chromosome and turning off its lytic genes.

The turn-off of lytic genes requires two repressors, the products of the

c2 and mnt genes (Chan and Botstein, 1972; Levine and Smith, 1964; Gough,

1968).

The c2 repressor acts at the operators o and o to directly repress

the expression of lytic genes from the promoters p and p respectively

(Botstein et al., 1975; Levine et al., 1975). These sites of action are

defined genetically by the mutations Vx (oL2L) and K5 (Bronson and

Levine, 1971). The double mutant Vx K5, called virB3, is able to grow in

lysogens (virulent) since the mutations make it insensitive to c2

repression.

P22 has a gene, ant, which codes for an antirepressor, a protein

able to inactivate the c2 repressor (Botstein et al., 1975; Levine et al.,

1975; Susskind and Botstein, 1975). In order for the c2 gene to effect

repression, ant must be turned off. This is accomplished by the mnt gene,

which produces a repressor of ant. The mnt repressor prevents expression
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from a promoter, -ANT, defined genetically by Yy mutations. Vy mutations

allow constitutive expression of ant, independent of mnt. Vy phages are

virulent because they can produce antirepressor in a lysogen and remove

c2 repression.

The ant gene is dispensable in a non-lysogenic cell as wild type

and ant phages grow and lysogenize equally well. ant is essential for

growth in a lysogen whose prophage contains an intact c2 gene but is

deleted for mnt. In this cell ant phages are able to make antirepressor,

inactivate c2 repressor, and grow,while ant phages are repressed by c2.

Such a prophage deletion strain is used to distinguish between wild type

and ant phages.

G. Gene 9 and the Expression of Late Genes

Gene 9 codes for a protein, p9, of molecular weight 76,000d, which

is the major structural component of the phage baseplate or tail (Botstein

et al., 1973). 9 mutants produce normal numbers of phage heads which

can be quantitatively converted to infectious phage by incubation in

vitro with p9 (Israel et al., 1967). The stoichiometry of this reaction

is approximately three tails per head, in accord with the observation

that phage particles contain more than one molecule of p9 (Botstein et al.,

1973). This stoichiometry makes the in vitro reaction an extremely sensi-

tive assay for p9 since the number of infectious phage produced is

approximately proportional to the cube of the p9 concentration.

Since the tailing reaction is very efficient, it is possible to

plate 9 phages with high efficiency on non-permissive strains by

adding p9 to the plate. In this sense, 9 may be regarded as a non-

essential gene.

The expression of gene 9 poses a problem not associated with other
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late genes. As described earlier (Ch 1., section IIC), genes 13 through

16 are thought to constitute an operon whose promoter, PLATE' lies between

genes 23 and 13. Genes 1 and 5 are translated in a direction consistent

with this view (Lew, 1974) and expression of this operon requires gene 23

(Botstein et al., 1973; Lew and Casjens, 1975). Similarly, gene 9 is

translated in this direction (Lew, 1974) and requires gene 23 for

expression (Botstein et al., 1973; Lew and Casjens, 1975). However, gene

9 is separated from the other lates by a number of genes, including sieA,

mnt, and ant (figure 2). These genes are regulated differently than 9

since none require 23, sieA and mnt are expressed in lysogens (Susskind

et al., 1971; see section 1. IF), and ant is made early in infection (M.

Susskind, personal communication). Thus, it is unclear whether 9 belongs

to the late operon or a different transcriptional unit.

An observation relevant to this issue is that mnt can affect 9

expression. Under some conditions of prophage induction, the c2 repressor

is inactivated while the mnt repressor is intact (Lew, 1974). The parti-

cles produced by this procedure are tail deficient (Israel, 1967), imply-

ing underproduction of p9. However, if mnt is also inactivated, tail

production appears to be normal (Lew, 1974), showing that mnt affects 9

expression. Assuming that the only site at which mnt repressor acts to

block transcription is Vy, this result implies that 9 belongs to a tran-

scriptional unit which includes Vy. Thus, 9 could be expressed from

-LATE or -ANT, but it is unlikely that a major promoter for 9 exists

between ant and 9

H. Use of P22 to Study Translocatable Elements

P22 is a useful organism. to use for the study of translocatable

drug resistance elements. Insertions into P22 are recognizable as
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specialized transducing phages. Since the packaging mechanism can tolerate

large insertions, transducing phage DNA can be purified from particles

and studied by physical methods. The defectiveness of the chromosomes

of these phages allows deletions to be selected, useful for genetic mapping

of insertions. Insertions in the non-essential genes, ant and 9, can be

used to study the processes of integration and excision. Lastly, the

quantitative assay for p9 allows polar effects of insertions to be

assessed.
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CHAPTER II: CHARACTERIZATION OF P22 GENOMES CONTAINING Tnl INSERTIONS

I. Materials and Methods

A. Bacteria

The bacterial strains used are listed in table 1. Salmonella

typhimurium strains are derivatives of LT2. DB21, DB7000, and DB7136 are

the standard Su strains and DB7004 is the standard Su strain used in this

work. The source of Tnl was RP4 (Datta et al., 1971), a 34 x 10 6d (Meyers

et al., 1976) self-transmissible R factor conferring resistance to tetra-

cycline, ampicillin, kanamycin, and neomycin. RP4 was transferred from

its original host, the E. coli strain DB6292, to DB7011, or a lysogenic

derivative of DB7011, to produce DB7189, DB7222, and DB7226.

All lysogens used in superinfection experiments were sieA (by point

mutation or deletion) to prevent exclusion (Susskind et al., 1971).

DB5057 and DB7283, which contain c2 mnt prophage deletions, were used to

test for ant (Ch. 1, section II-F). DB147 contains a short (c2 mnt )

prophage deletion and was used to titer P22Ap phages (see Ch.1, section

II-E). DB47 is recA~ and was used to test for erf. DB5000 was the source

of P22TclO phage. DB7273 is the strain from which the prophage deletions

described in Chapter 2, Section II-J were isolated. DB5411, a lac+ F~

E. coli strain, was used as a recipient in tests for mating transfer of

R
amp from Salmonella (Ch.2, section I-D). The other prophage deletions

were used for mapping.

B. Phage

The following derivatives of P22 were used: P22 sieA-44: The parent

of most P22Ap phages. The sieA-44 mutation eliminates the A supeinfection

exclusion system of prophages, allowing superinfecting phage DNA to enter

lysogenic cells (Susskind et al., 1971; 1974). The presence of the sieA-44



Table 1. Bacterial Strains

Strain Genotype

Salmonella typhimurium:

DB21 su prototroph

DB47 su recA prototroph

DB53 su his C-am527 cysA-am1348

DB5000 DB21 (P22TclO)

DB7000 su leuA-am414

DB7004 su2 leuA-am414

DB70ll su leuA-am4l4 r m

DB7136 su leuA-am414 hisC-am527

DB7189 DB7011 (P22)/RP4

DB7222 DB70ll/RP4

DB7226 DB70ll (P22 sieA-44)/RP4

DB7273 DB7000 (P22Ap2 sieA-44 mnt-tsl)

Prophage

DB136

DB147

DB5057

DB7177

DB7241

DB7282

DB7283

DB7293

DB7449

Deletions:

DB53 (P22)A see table 6

DB53 (P22)A [proA-cl]

DB21 (P22TclO A) see table 6

DB7000 (P22Tc221 A) see table 6

DB7000 (P22Ap4 A) see figures 5 and 8

DB7000 (P22Ap2 sieA-44 mnt-tsl A) see fig. 5 and 10, plate 1

DB7000 (P22Ap2 sieA-44 mnt-tsl A) see fig. 5 and 10, plate 1

DB7000 (P22Ap9 A) see figures 5 and 8

DB7000 (P22Afl8 A) see figures 5 and 8

Source/Reference

Botstein and Matz (1970)

Botstein and Matz (1970)

Botstein and Matz (1970)

Watanabe et al. (1972)

Susskind et al. (1974)

Susskind et al. (1974)

D. Botstein

D. Botstein

this work

this work

this work

this work

Chan and Botstein (1972)

Chan and Botstein (1972)

Chan and Botstein (1972)

D. Botstein

this work

this work

this work

this work

this work



Table 1. Continued

(P22Ap32 A) see figures 5 and 8

(P22Ap37 A) see figures 5 and 8

(P22Ap48 A) see figures 5 and 8

(P22Ap49 A) see figures 5 and 8

(P22Ap73 A) see figures 5 and 8

(P22Ap2 sieA-44 mnt-tsl A) see fig. 5 and 10, plate 1

(P22Ap2 sieA-44 mnt-tsl A) see fig. 5 and 10, plate 1

(P22Ap63 A) see figure 5

(PFR-1) see figure 5

(PFR-6) see figure 5

(TDR-3) see figure 5, plate 1

Escherichia coli:

YMEL suIII T7R

J53 F pro met (A)/RP4

E. Signer

Hedges and Jacob (1974), E. Signer

DB7451

DB7452

DB7453

DB7455

DB7457

DB7461

DB7464

DB7472

DB7473

DB7477

DB7480

DB7000

DB7000

DB7000

DB7000

DB7000

DB7000

DB7000

DB7000

DB7000

DB7000

DB7000

this work

this work

this work

this work

this work

this work

this work

this work

this work

this work

this work

DB5411

DB6292
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mutation in P22Ap phages was necessary in order to map lysogens and prophage

deletions by superinfection with amber mutants. P22Ap2,4,5,7, and 9 were

isolated from wild type P22 and sieA-44 was introduced by crossing (Ch. 2,

section I-H).

P22 virB-3: a double mutant (Vx and K5) which is insensitive to c2

repression (Bronson and Levine, 1971). Phages containing virB-3 and two

amber mutations (virB am am phages) were constructed by sequential crosses

between virB-3 and P22 amber mutants and identified by spot complementation

(Ch. 2, section I-D) against the parents. These phages were used to map

Tnl insertions (Ch. 2, section II-C).

P22Ap2 sieA-44 mnt-tsl: Constructed from P22Ap2 sieA-44 and P22

mnt-tsl (Ch. 2, section I-H). The mnt-tsl mutation makes the mnt gene

thermolabile (Gough, 1968). Lysogens of this phage were used to select

prophage deletions as survivors of mnt induction (Ch. 2, section II-J).

P22TclO: A specialized transducing phage for tetracycline resistance

containing a TnlO insertion (Chan, 1974). DNA from this phage was used

as a standard in heteroduplex analysis of P22Ap phages because of the

lariat structure of TnlO in single strands (Tye et al., 1974a).

The amber mutations used in this work are described in Botstein et al.,

(1972) and Poteete and King (1977), the ant mutations in Botstein et al.

(1975), and the frameshift mutation in Uomini and Roth (1974).

C. Media and Solutions

Phages were diluted in buffered saline (BS) or dilution fluid (DF)

and plated in soft agar on A plates. Plating cultures were grown in LB

broth. These solutions are described in Ebel-Tsipis and Botstein (1971).

M9CAA (Smith and Levine, 1964) is a phosphate buffered mineral medium

(M9) containing glucose and a charcoal-clarified amino acid mixture. M9CAA
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was used for crosses and complementation tests and for procedures involving

UV-irradiation of lysogens. Lysogens can be induced with relatively low

doses of UV light in M9CAA since UV-absorbing material has been removed

from the medium by adsorption to charcoal.

Green indicator plates (Chan et al., 1972) were used for single colony

isolation of bacteria as well as for streak tests for immunity, exclusion,

and other prophage markers (See below). Green/amp plates, containing

20 yg/ml of ampicillin trihydrate (generously donated by Bristol Labora-

tories, Syracuse, New York), were used to select ampicillin resistant cells.

Green/amp/EGTA plates contain, in addition, 10 miN [Ethylenebis(oxyethylene-

nitrilo)]tetraacetic acid (Eastman). EGTA interferes with P22 infection,

and this medium was used when ampR survivors of mnt induction were selected

(Ch. 2, section II-J) in order to prevent phage on the plate from killing

non-immune cells. Tetracycline was added to green plates to 25 pg/ml

and kanamycin to 50 pg/ml to test cells for resistance to these drugs.

M9 plates contain M9 mineral medium, MgSO 4(lmM), a carbon source

(0.2% w/v), and 1.5% agar.

Super broth is described in Susskind and Botstein (1975) and allows

exponential growth of bacteria to about a ten-fold higher concentration of

cells than does M9CAA or LB broth.

D. General Methods

Concentrated phage stocks were prepared by infection (Botstein and

Matz, 1970) or, for phages containing an insertion, by UV-induction of

lysogens (Chan and Botstein, 1972). Lysates made by induction are tail

deficient (Israel, 1967) and were treated with at least 1 x 1010 phage

equivalents/ml of p9 at 37* for 1 hour prior to concentration. Phages were

purified in either discontinuous CsCl gradients (Botstein, 1967) or equili-
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brium CsCl gradients consisting of 9 parts phage stock layered on 11 parts

65% CsCl (in 10 mM Tris buffer, pH = 8) and centrifuged at least 12 hours

at 22,000 rpm, 20*C in an SW50.1 rotor.

UV irradiation to destroy immunity of lysogens, either in liquid

culture or on plates, was performed at a dose of 200 ergs/mm2

Phage crosses and complementation tests were performed in M9CAA at 25*C

by the method of Botstein et al. (1972).

Spot tests, for mapping insertions with P22 virB am am phages or pro-

phage deletions with P22am phages, and spot complementation tests, used to

identify P22 virB am am phages, were performed as described in Botstein et

al. (1972).

Streak tests were performed on green indicator plates according to

Susskind et al., (1971). When immunity of sieA~ lysogens was tested, the

tester phages were P22 virB-3, P22 c2-amO8, and P22 cl-7 ant-aml6. Immune

(c2 +mnt +) lysogens only permit growth of virB-3 phage, c2 +mnt non-immune

lysogens allow growth of both virB-3 and c2-amO8 phage, and c2 non-immune

lysogens allow all three testers to grow. Lysogens of sieA phage do not

allow any of the testers to grow. Lysogens were purified from the centers

of phage spots on plates.

Int and erf function was tested by the methods of Chan (1974).

To plate 9 phages on hosts which were non-permissive for the 9 muta-

tion, 10 phage equivalents of p9 were added to the top agar. The 9

phage plaques observed under these conditions were slightly smaller and

clearer than those of wild type P22, but the efficiency of plating was

close to 100 per cent.

Mating of RP4 was accomplished by making intersecting lines of donor

and recipient cells on a A plate and incubating this overnight at 37*C.
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Cells from the point of intersection were streaked directly on selective

medium. To test whether any of the ampR transductants described in Ch. 2,

section II-A could transfer resistance by mating, the recipient used was

DB5411, a lac+ E. coli strain. This recipient was chosen because it cannot

R+
be transduced to amp by P22 and because its Lac phenotype allows selection

against the Lac Salmonella donors. Mating was performed as described

above and exconjugants were selected on M9 lactose plates containing ampi-

cillin (20 pg/ml).

E. Isolation of Insertions

Transducing lysates were prepared by UV induction of DB7189 or DB7226

or single cycle infection of DB7222. For induced lysates made with helper,

P22 sieA-44 was added to a multiplicity of 10 immediately after irradi ation.

These lysates were used to infect DB7000 or DB7136 at high multiplicity

(>5). About 109 infected cells were spread on a green/amp plate and incu-

bated at 30*C. Under these conditions, most cells become lysogens.

The ampR transductants were screened for production of HFT lysates

by the method of Kaye et al. (1974). Unpurified transductants were trans-

ferred to a X plate and a master green/amp plate with a sterile wooden dowel

and incubated until patches of cells were visible. Then the X plate was

UV irradiated and incubated at 30*C for 5 hours. Cells were lysed by

irnverting the plate over a planchet containing CHCl3 for 20 minutes.

DB7000 and p9 were spread on a green/amp plate and the lysed cells were

immediately replicated onto this lawn. After overnight incubation, an

HFT lysate produces a heavy patch of ampR transductants while generalized

transduction usually produces no ampR cells.

Several precautions are necessary in this protocol: 1) transduction

for ampR is most reliably accomplished on green/amp plates; LB/amp plates
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allow many ampR cells to survive; 2) it is important that transducing ly-

sates be made at 30*C or lower temperatures; lysates made at 37*C mainly

yield transductants which do not produce HFT lysates (table 3); 3) it is

important to perform the HFT screening on unpurified transductants since

contaminating wild type phage help defective phages to transduce.

F. Phenotypes of P22Ap Phages

Each colony which produced an HFT lysate was purified and picked

onto four A plates with a sterile wooden dowel. The plates were incubated

until patches of cells were visible. The plates were then UV irradiated

and each patch overlayed with a drop of either DB7000, DB147 + DB53,

DB147 + DB53 plus 4 x 10 e /ml of p9, or DB5057 plus p9. After over-

night incubation the spots were scored as ++, +, or - depending on the

degree of clearing. The phenotypes observed are shown in table 2 and

described in section II-B of this Chapter.

G. Mapping Insertions with P22 virB am am Phages

A set of phages containing virB-3 and two linked amber mutations

(virB am am phages) were used to map insertions in P22Ap phages (Ch. 2,

section II-C). The amber alleles 12-amNll, 23-amH316, 13-amH715, 19-amNlll,

3-amN6, 2-amH200, 1-amNlO, 8-amH202, 5-amNlI4, 10-amNl07, 26-amH204,

20-amN20, 16-amNl2l, and 9-amN9 were used to construct the following

double amber mutant virB-3 phages: 12~23, 2313, 13~19, 193, 3 2,

2 1, 18, 85, 5~10 2620, 2016, and 169. To map Tnl insertions,

these phages were spotted on lysogens of sieA P22Ap phages. Failure of a

virB am am phage to grow indicated the Tnl insertion in the prophage

affected the region of the genome spanned by the two amber mutations.
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Table 2. Scheme for Classification of P22Ap Phage Phenotypes

Lysogens of P22Ap phages were induced on plates, then overlayed with

various indicators as described in Methods, section F.

++ means a large spot of clearing occurred

+ means a small spot of clearing occurred

- means 0 to a few single plaques were seen.

DB147 DB5057
Phenotype DB7000 DB147 +p9

wild type ++ ++ ++ -+-

mutation in non-essential gene + ++ ++ ++

mutation in essential gene - - - -

ant + ++ ++

9 - - ++ ++

ant and 9 - - -++
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H. Manipulations with P22Ap Phages

(i) Growth and Titering

Stocks of P22Ap phages were prepared by UV-induction of lysogens

and titered on a mixture of DB147 and DB53 by the method of Chan et al.

(1972). The ratio of titer on DB147 to particle titer, estimated from

absorbance at 260nm (A2 6 0 = 1 = 5 x 1011 particles/ml) for P22Ap2, Ap4,

Ap5, Ap7, and Ap9 (purified in discontinuous CsCl gradients) was 1/4, 1/8,

1/7, 1/7, 1/9, and 1/5 respectively. Thus, to approximate the number of

particles, observed titers on DB147 were multiplied by 7.

(ii) Introduction of Point Mutations by Crossing

In general, to cross point mutations into P22Ap phages, DB7000 was

transduced to ampR with a low multiplicity (<.01) of P22Ap phage in the

presence of a high multiplicity (>10) of helper phage carrying the desired

mutation. By this method the sieA-44 mutation was crossed into P22Ap2,

Ap4, Ap5, Ap7, and Ap9 (Ch. 2, section I-B) and the mnt-tsl mutation

into P22Ap2 sieA-44 (Ch. 2, section II-J). Lysogens of P22Ap sieA-44

recombinants were identified by their sensitivity to P22 virB-3 in a

streak test (Ch. 2, section I-D). Lysogens of the P22Ap2 sieA-44 mnt-tsl

recombinant were identified by their sensitivity to P22 virB-3 and their

temperature-sensitive phenotype.

To construct lysogens of P22Ap4, Ap9, Apl2, Ap27, Ap3l, Ap34, Ap46,

and Ap48 containing a mutation in gene 5, used in Ch. 2, section II-G to

measure tail production by P22Ap phages, a modification of this method

was used since P22Ap12, Ap27, Ap34, and Ap48 contain insertions in

essential genes and will not make infectious particles. Lysogens of

these P22Ap sieA-44 phages were induced by UV irradiation, then super-

infected with P22 5~amNll4 and grown at 30*C until lysis. The phage in
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these lysates, produced by complementation between the 5 and P22Ap

R
phages, were used to transduce DB7000 to ampR. The transductants were

streak tested for the sieA phenotype, using P22 virB-3, and for the

5 amNll4 allele using P22 virB-3 5 amNll4.

(iii) Crosses between Different P22Ap Phages

Crosses between different ant P22Ap phages, performed to determine

if the Tnl insertions were separable by recombination (Ch. 2, section II-F),

were done by the standard method used for phages with normal-sized genomes

(Botstein et al., 1972). The titer of infectious particles of each

parental phage was estimated from its titer on DB147 (see above). The

progeny of the cross were plated on DB147 to titer total particles and

DB5057 to titer ant+ recombinants.

I. Complementation of Insertions in Essential Genes

P22Ap phages containing insertions in essential genes do not produce

infectious particles and are maintained as prophages. To perform comple-

mentation tests with these phages (Ch. 2, section II-D), lysogens of the

P22Ap phage were grown in M9CAA to early exponential phase and UV-induced.

Immediately after irradiation, P22 amber phages were absorbed to the

lysogen for 10 minutes at a multiplicity of 0.1. The cells were diluted

10~4 into M9CAA and incubated 2 hours at 37*C. After lysis by CHCl3 and

treatment with p9, the lysates were plated on DB7004 to titer total phage

and DB7000 to titer wild type recombinants. The P22 amber mutant phage

used were cl-7 4-amH1368, cl-7 l0-amN107, cl-7 26-amH204, cl-7 7-amH1375,

cl-7 20-amN20, cl-7 16-amNl2l, and cl-7 9-amN110. When the 9 amber phage

was used, the infections were done at 30*C for 3 hours (to minimize tail

deficiency caused by mnt) and treatment in vitro with p9 was omitted.

It was observed that with wild type (cl-7) phage, the phage yield
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by this method is low, between 1 and 10 (see table 5), with lysogens of

phages containing Tnl in the late genes. This effect is independent of

multiplicity of infection (data not shown). However, with lysogens of

P22Ap2 sieA-44 (insertion in the al region), yields of 100 to 200 were

observed (data not shown) implying that the cause of the low yields is

neither the conditions of infection nor the Tnl insertion but is some

other aspect of the prophage's genotype.

J. Preparation of Heads and Tails

Tail deficient particles (heads) were prepared from infection of

DB7000 with P22 9-amN110 at a multiplicity of at least 5. Heads were

purified from lysates in the same manner as phage.

High titer preparations of p9 were made by infection of DB7000 with

P22 c2-amO8 13-amHlOl 8-amH202 5-amNll4 mnt-1 in super broth for 3 hours

at 37*C. Cells were then concentrated 40-fold and lysed with CHCl 3 '

After removing debris by centrifugation (10 minutes; 10,000 rpm; SS-34

Sorvall rotor), any phage present were pelleted (70 minutes; 16,000 rpm;

SS-34 Sorvall rotor) and the supernatant used as crude p9. The defects

in the quintuply mutant phage cause overproduction of p9 and minimize

background phage.

Highly purified heads and tails were generously supplied by Mr.

Anthony Poteete.

Head and tail activities were determined according to Israel et al.

(1967).

K. Quantitation of p9 Production by P22Ap Phages

A rapid, indirect way to assess tail production is to determine the

tail deficiency of particles in a lysate. This was done by titering the

lysates before and after tailing. The amount of p9 produced was calculated
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from the tailing equation (Israel et al., 1967) log P = 3.3 log T-2.3

log H using P = titer before tailing and H = titer after tailing. This

value for T was normalized to the number of heads produced (H) to allow

comparis ons between lysates. This method is indirect because it assumes

that all tails produced in vivo become bound to heads.

Tails were directly assayed in lysates by using them to convert

heads to phage in vitro. Since any heads produced by the tail donor will

interfere with the assay, the phage to be tested carried the 5.amNll4

mutation which eliminates the major capsid protein. Lysates were made by

UV-induction of lysogens at 30*C. Each tailing reaction consisted of a

mixture of 0.5 ml of a known amount of heads (usually about 2 x 10 8) and

0.5 ml of a dilution of the lysate, both in M9 buffer, which was incubated

at room temperature until tailing was completed as indicated by a constant

titer. The tail concentration in each reaction was calculated from the

tailing equation using the known value of H and the measured value of P.

At least four serial dilutions of each lysate were assayed and a concen-

tration curve (tailing activity vs added lysate) was constructed and used

to derive the tailing activity of the lysate. This activity was normalized

to the viable count of the original culture.

The tailing equation was empirically derived. During the course of

this work, it was observed that purified tails behaved according to this

equation but crude lysates followed the empirical curve logP=2.6logT-l.6

logH. The difference between these equations was observed to be small

under the conditions used.

L. Deletions

Deletions were selected in P22Ap phage genomes by requiring that

terminal repetition be restored. Plaque forming revertants were isolated
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by plating P22Ap phages for single plaques on DB7000, either in the pre-

sence or absence of p9 . Some of these plaques are formed by multiple

infection, but these do not produce plaques when they are streaked out.

This selection requires essential genes to be functional.

Deletions selected as restoring terminal repetition without requiring

function from essential genes were obtained as ampR transductants from

low multiplicity infections as described in Chan and Botstein (1972) and

Chan et al. (1972).

Deletions obtained without requiring restoration of terminal repeti-

tion were selected as survivors of heat induction of DB7273, a lysogen of

P22Ap2 sieA-44 mnt-tsl. From 106 to 10 cells were spread on green/amp/

EGTA plates and incubated at 420 overnight. Colonies which appeared were

purified once on green/amp/EGTA plates, then streak-tested for gene 9

against P22 virB-3 9-amN9. Only cells lacking the 9 allele were further

characterized.

Mapping of non-immune prophage deletions by spot tests or efficiency

of plating was as described in Chan and Botstein (1972). For fine

structure mapping of gene 12, the criterion for rescue was at least a

three-fold increase in efficiency of plating over that on the non-lyso-

genic strain, DB7000. Mapping of immune prophage deletions was performed

with virulent phages. To map immune deletions in ant, the prophage was

induced with UV, the tester phage adsorbed for 10 minutes, and then the

infected cells plated with DB7283 to assay selectively for any ant

recombinants which might have been formed.

M. Physical Analysis of DNA

(i) Heteroduplex Analysis

Electron microscopy of heteroduplexes was performed by a modification
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of the method of Tye et al. (1974a). Purified phages in CsC1 were

incubated in 0.1M NaOH, 10 mM Tris (pH 8.5 at 1M), 5 mM EDTA for 1 hour

at 370, then neutralized, renatured in 50% formamide, and processed

further according to Tye et al. (1974a). Lengths are expressed as

(mean)±(standard error) where mean = x = (Ex)/n and the standard error

is (E(x-x)2l/2/(n-1) when x represents one set of measurements or

- 2 /12
(E(x-x) /(m-1)/ when x is taken from m sets of measurements. For

heteroduplexes involving TclO DNA, the double stranded standard was the

TnlO stem (1390 base pairs) and the single stranded standard was the TnlO

loop (6560 bases)(D. Ross, personal communication). These values for the

stem and loop were obtained by comparison with double and single stranded

$xl74 DNA. For the Apl2/Ap3O heteroduplex, used to map Ap30, the double-

stranded interval between the Tnl insertions was calculated with reference

to the single-stranded Tnl loops. The conversion factor between single

and double strand lengths was derived from the loop/stem ratio of 60 TnlO

insertions. This ratio was found to be 4.37 ± 0.09 and the conversion

used was double strand lengths = 1.08 x single strand lengths. The mol-

molecular weight of P22 DNA was taken as 27.45 x 10 6d (Jackson, 1977) or

42.2 kb.

(ii) Analysis with Restriction Enzymes

DNA was prepared from purified phages by either phenol extraction

(Botstein, 1968) or SDS-high salt extraction: sodium dodecyl sulfate

(SDS) was added to 0.5 per cent to phages in 10 mM Tris (pH = 8), 5 mM

EDTA and the mixture was heated at 65*C for 15 minutes; KCl was then

added to 0.25 M and the mixture chilled at 0*C for 15 minutes; the pre-

cipitate was removed by centrifugation (10,000 rpm, 20 minutes, in an

SS-34 Sorvall rotor) and DNA in the supernatant concentrated by precipi-
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tation with at least two volumes of 95 per cent ethanol and resuspension

in 10 mM Tris (pH = 8), 5 mM EDTA.

DNA was digested with restriction enzymes according to the manufac-

turer's (New England Biolabs, Beverly, Mass.) specifications. The frag-

ments were analyzed by agarose gel electrophoresis in E buffer (40 mM Tris,

5 mM sodium acetate, pH = 7.8; 1 mM EDTA). Gels were stained in 0.5 Vg/ml

ethidium bromide for 15 minutes, then photographed with a Polaroid MP-4

camera under illumination by an ultraviolet light source (mineralight,

Ultraviolet Products San Gabrial, Calif.) using a red filter.

To determine the molecular weights of restriction fragments, plots

of log (molecular weight) versus distance migrated were constructed using

the EcoRI fragments of P22 DNA as markers. The sizes of these fragments,

determined by Jackson (1977), are A = 19.9 kb, B = 9.4 kb, C = 7.3 kb,

D = 4.1 kb, E = 2.4 kb, F = 1.2 kb, G = 1.1 kb, and H = 0.9 kb.
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II. RESULTS

A. Transduction of ampR from RP4

P22 is able to transduce drug resistances from strains harboring R

factors by either generalized or specialized transduction. To isolate

insertions of Tnl into P22 DNA, advantage was taken of the fact that the

source of Tnl, the R factor RP4, is larger (52 kb; Meyers et al., 1976)

than the P22 headful (43 kb; Tye et al., 1974a). Thus, P22-mediated gen-

eralized transduction of ampR from RP4 is rare and transductants containing

a specialized transducing phage can be identified by their ability to

produce high frequency transducing (HFT) lysates.

Table 3 shows the results of transduction of ampR from RP4 by 25

independent P22 lysates prepared by a variety of methods. Transduction

was observed by either infection or induction at low frequency. When

lysates were made by induction, about half the transductants produced HFT

lysates. Lysates made by infection transduced ampR at higher frequency

but a lower proportion of the transductants produced HFT lysates. In

general, transductants which produced HFT lysates (i.e. putative insertions

of Tnl into P22) were recovered at about one per 1010 phages, regardless

of the method of preparation.

Transductants which failed to give HFT lysates were of three types,

each containing a wild type prophage. One type had the same resistances

as RP4 (ampR tetR kan R) while a second was sensitive to only kanamycin

R R
(amp tetR). Both of these types could transfer their resistance together

to DB5411 showing the resistances are genetically linked. Since P22 is

unable to adsorb to E. coli, this transfer cannot be due to transduction

but is probably by conjugation. Further evidence for linkage of markers

is the observation that ampR tetR cells occasionally lose both resistances



Table 3. Ampicillin Resistant Transductants

Lysate

Lysates made by

1

92

93

94

95

96

97

98

99

100

101

Lysates made by

79

80

81

82

107

108

109

Comment

UV induction at

DB7189

DB7189

DB7226

DB7226

DB7226

DB7226

DB7226

DB7226 + helper

DB7226 + helper

DB7226 + helper

DB7226 + helper

infection of DB7222

370 infection

37* infection

37* infection

370 infection

37* infection

37* infection

37* infection

Frequency of
Transduction

AmpR cells/pfu

X10 10

30*C:

2.5

2.0

1.5

2.2

1.0

1.2

1.5

1.5

0.9

1.4

1.3

with

45

40

37

33

>1000

>1000

>1000

P22 sieA-44:

Phenotypes of Transductants

Non-Producers of HFT lysates HFT-lysate

mR R TetR R TetR KanR Producers

0/7

2/10

3/7

5/28

5/10

1/14

5/20

14/70

8/35

12/48

12/44

83/99

79/96

70/82

66/81

-100%

-100%

-100%

2/7 0/7

6/10*

3/7*

7/28

0/10

1/14

1/20

6/70

3/48

3/48

5/44

2/28

0/10

2/14

0/20

18/70

5/48

5/48

5/44

16/99*

17/96*

12/82*

15/81*

~13/3000*

~7/3000*

~14/3000*

5/7

2/10

1/7

14/28

5/10

10/14

14/20

32/70

28/48

28/48

22/44

0/99

0/96

0/82

0/81

0/3000

0/3000

0/3000

U.)



30* infection

30* infection

30* infection

27* infection

20* infection

200 infection

20* infection

>700

380

440

18

50

63

55

Table 3. Continued

-100%

-100%

-100%

36/52

-100%

-100%

-100%

* KanR not tested

Transduction of ampR and identification of HFT producers

was as described in Methods (section E). Amp = ampicillin,

Tet = tetracycline, Kan = kanamycin.

a'

110

111

112

87

113

114

115

~6/3000*

~3/1500*

~2/2000*

5/52*

0/1800*

1/1800*

3/1800*

8/3000

0/1500

0/2000

11/52

6/1800

4/1800

5/1800
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simultaneously. Because the resistances are linked and transmissible,

these transductants probably contain shortened derivations of RP4 and were

formed by generalized transduction. Shipley and Olsen (1975) obtained

a short derivative of a related plasmid, RP1, using a similar procedure.

The third type of transductants which failed to produce HFT lysates

was resistant only to ampicillin and could not transfer the ampR to E. coli.

The frequency of these transductants was higher when lysates were prepared

by infection and it is possible that ultraviolet radiation interferes with

its formation. These transductants could contain shortened R factors or

Tnl insertions in the bacterial chromosome.

B. Phenotypes of P22Ap Phages

Transductants which produce HFT lysates are presumed to be lysogens

of specialized transducing phages (P22Ap phages) consisting of Tnl inserted

into P22 DNA. These lysogens should produce particles which are defective

because the insertion inactivates a gene and/or their DNA lacks terminal

repetition. This prediction was tested by analyzing the growth properties

of particles produced by HFT lysate-yielding ampR transductants (table 4).

Using different indicators, the Tnl insertions were classified accord-

ing to the following rationale (Ch. 2, section I-F):

1) Insertion in a non-essential region of the genome: The particles

lack terminal repetition and their growth in a non-lysogen (DB7000) re-

quires multiple infection and biparental recombination during each cycle.

Growth is therefore less efficient than wild type. However, in a non-

immune prophage deletion (DB147 or DB5057) recombination with the prophage

usually permits growth. Thus, these particles grow poorly in a non-lysogen

but grow quite well in a prophage deletion strain.

2) Insertion inactivating essential gene: The lysogens do not produce
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Table 4. Phenotypes of P22Ap Phages

Phenotypes of

lysate

1

92

93

94

95

96

97

98

99

100

101

110

87

113

114

115

Comment NE

UV induction, 300 1

UV induction, 300 2

UV induction, 30* 1

UV induction, 30* 2

UV induction, 30* 3

UV induction, 30* 4

UV induction, 30* 7

induction + helper 19

induction + helper 7

induction + helper 17

induction + helper 8

infection, 30* 2

infection, 27* 8

infection, 200 2

infection, 200 3

infection, 20* 2

E

0

0

0

2

0

2

0

5

0

2

4

2

1

1

0

1

A

0

0

0

2

0

0

2

1

1

1

3

1

0

0

0

0

T

2

0

0

4

1

3

2

4

9

5

6

3

2

2

1

2

Totals: Induction 39%

Induction + helper 50%

Infection 50%

All methods 47%

8%

11%

15%

11%

8%

6%

3%

6%

Phenotypes of purified transductants

in Methods (section F).

24%

24%

29%

25%

12%

7%

3%

7%

10%

3%

4%

51 transductants

102 transductants

34 transductants

187 transductants

were determined as

NE = insertion in non-essential gene

E = insertion in essential gene

A = ant phenotype

T = 9 phenotype

AT = ant and 9 phenotype

WT = wild type

Prophages

AT WT

2 0

0 0

0 0

3 1

0 1

1 0

0 3

1 2

3 0

2 1

1 0

0 0

0 0

1 0

0 0

0 0

Total

5

2

1

14

5

10

14

32

20

28

22

8

11

6

4

5
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infectious particles and thus there is no growth on any indicator.

3) Insertions inactivating gene 9: The particles grow on any indica-

tor as long as tails are added in vitro.

4) Insertions inactivating ant: The particles do not grow in DB5057,

a prophage deletion strain lacking mnt but retaining c2.

The results of this analysis are shown in table 4. Virtually all

(96%) of the ampR transductants which produced HFT lysates contained a

mutant prophage. Those few (4%) transductants with a wild type prophage

could be double lysogens containing a wild type and a P22Ap prophage. Few

(11%) of the mutations affect essential genes. Most mutations affect

ant (13%), 9 (32%), or other non-essential regions (47%). This distribu-

tion is essentially the same with lysates made by induction (with or with-

out helper) or infection. Some mutations affect ant and 9 concomitantly.

As shown later, these are insertions in ant which are polar on 9.

Thus, the distribution of Tnl insertions in P22, as judged by the

phenotypes of P22Ap phages, is non-random since a disproportionate number

of insertions affect the ant and 9 genes.

The P22Ap phages described in this thesis were chosen from those

ampR transductants which produced HFT lysates and contained a mutant pro-

phage. All phages with an insertion in ant or essential genes and one or

two phages with an insertion in 9 or non-essential regions were picked

from each lysate. In all, 76 phages were analysed. Their properties are

summarized in Appendix 1.

C. Mapping Insertions with P22 virB am am Phages

Mapping of Tnl insertions in prophages was accomplished by superin-

fecting with phages carrying two linked mutations. Rescue of both wild

type alleles by recombination with the prophage is reduced if the prophage
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contains a mutation located between those of the infecting phage.

To this end, pairs of linked amber mutations were crossed into

P22 virB-3 to create a set of P22 virB am am phages. Each of these

phages contains two amber mutations, in nearby genes, defining an interval

of P22's genetic map. The intervals defined by the set of P22 virB am am

phages span much of the P22 genetic map. Each of these phages was spotted

on a lysogen of a P22Ap phage to determine which interval contained the

Tnl insertion. Since the phages were virulent, then growth was limited

only by the amber mutations. Failure to grow thus indicated failure to

rescue the wild type alleles, due to the presence of an intervening

insertion.

The results of this mapping are shown in figure 4. 76 lysogens were

tested and 57 showed altered growth of at least one P22 virB am am phage.

In general, agreements were found between the locations of the insertions

and the phenotypes of the P22Ap phages. Thus, all ( 25/25) ant~ P22Ap

phages and most (13/17) 9 P22Ap phages have mutations between genes 16

and 9. The 9 P22Ap phages not mutant in this interval could have inser-

tions in gene 9 but to the right of the allele used in the virB 16~9

phage. Of the 14 insertions in non-essential regions, 12 fall outside

of the intervals tested, one maps between genes 1 and 8, and one between

genes 16 and 9. Lastly, of the 20 insertions affecting essential genes,

one maps between genes 12 and 23, four between 26 and 20, seven between

20 and 16, five between 16 and 9, and three outside the tested intervals.

Some insertions affecting essential genes gave anomalous results in

that they reduced rescue from more than one interval. Thus, the insertion

in P22Ap27 only affected the 26-20 interval, while that of P22Ap34 affected

26-20, 20-16, and 16-9. Where anomalous rescue occurred, it always
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Figure 4. Mapping Insertions with P22 virB am am Phages

P22 virB am am phages were spotted on lysogens of P22Ap phages as

described in Methods (section G). Since some insertions were from the

same lysate, the numbers of independent insertions in a particular inter-

val are shown in parentheses.
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affected a set of contiguous intervals. It will be shown later that

these insertions are polar, indicating that complementation, as well as

recombination, is important in the virB am am test. Accordingly, inser-

tions affecting multiple intervals have been placed in the promoter

proximal interval affected. It should be noted that polar insertions in

the 26-20 interval could, in fact, be in the 10-26 region which was not

tested.

Thus, the virB am am mapping results are completely consistent with

the phenotypes of the P22Ap phages described in the previous section.

Furthermore, the distribution of insertions affecting essential genes is

noteworthy. These insertions are mainly in those genes at the right of

the prophage map, although they can occur in other regions. These results

strengthen the conclusion of the previous section that the distribution

of Tnl insertions in P22 is non-random.

D. Complementation of Insertions in Essential Genes

To verify and extend the mapping of insertions, several insertions

in essential genes were complemented against amber mutations. The results

are shown in table 5. DB7354 shows reduced growth of 16 phage, and this

is taken to indicate that the Tnl insertion in P22Ap38 is in gene 16.

Similarly, DB7364 shows reduced growth of 20 phage and DB7343 of 26

phage, indicating the Tnl insertion of P22Ap48 is in gene 20 and that of

P22Ap27 in gene 26. For DB7328, both 20 and 16 phage grow poorly, and

this is attributed to a Tnl insertion in gene 20 of P22Apl2 which is polar

on gene 16. By the same reasoning, P22Ap34 is concluded to have a polar

insertion in gene 7.

The low yields of phage in this experiment are unexplained (see Ch. 2,

section I-I) and make the results less clear-cut than standard P22 comple-



Table 5. Complementation of Insertions in Essential Genes

Insertion
Location by
vir am am Yield upon infection with:

Test 4 10 26 7 20 16 9 cl

* * * *
16-9 - - - - 1.3 0.41 1.9 4.1

20-16 - - - 2.3 .38 .28 - 7

20-16 - - - 1.5 ~.04 6 - 10

26-20 2.0 0.9 1.6 0.24 0.67 0.64 - 1.3

26-20 5.0 3.9 0.37 2.1 2.7 3.6 - 7.0

*
- <0.8 <.3 <.12 .02 .1 .06 .15 1000

Conclusion

16 , non-polar

20~, polar

20~, non-polar

7 , polar

26~, non-polar

*
Test performed at 30* without tailing

Lysogens of P22Ap phages were induced, then superinfected

with amber mutant phage at a multiplicity of 0.1 as described

in Methods, section I.

Yield = output phage titer on DB7004
input phage titer on DB7004

lysogen

DB7354

DB7328

DB7364

DB7350

DB7343

DB7000

Prophage

P22Ap38

P22Ap12

P22Ap48

P22Ap34

P22Ap27
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mentation tests (compare with table 10). Nevertheless, the conclusions

bolster the virB am am mapping results of the previous section. Thus,

both P22Ap27 and P22Ap34 mapped in the 26-20 interval but P22Ap34 also

affected the 20-16 and 16-9 intervals whereas P22Ap27 did not. Analogous

results were found with P22Apl2 and P22Ap48. In section G it will be

shown that the polarity of these insertions also affects gene 9.

E. P22Ap2: Insertion in the al Region

The P22Ap2 genome contains an insertion in a non-essential region

mapping outside of the intervals tested with virB am am phages. When

P22Ap2 particles are plated on a non-lysogen, two types of plaques appear.

Most plaques are small and semi-clear while, at most, two per cent of the

plaques are large and turbid. The titer of small plaques does not dilute

linearly whereas the big plaque titer does. This indicates that small

plaques are formed by multiple infections while big plaques are formed by

single infection, probably by revertants which have recovered terminal

repetition (Chan, 1974). This interpretation is supported by the obser-

vation that phages in a small plaque produce both small and large plaques

while phages in a large plaque breed true.

Since plaque size and morphology revert together, they must both

be caused by the insertion. This deduction formed the rationale for

mapping the insertion. P22Ap~was plated on a number of prophage deletions

at low multiplicity of infection so that growth depended on recombination

with the prophage (Ch. 1 section II-E). If the site of insertion was

deleted in the prophage, the plaques formed by recombinants would still

be semi-clear, while if the site was present in the prophage, some recom-

binants would reconstruct a wild type genome and form turbid plaques. The

results (table 6) show that all genes to the left of ant can be deleted



Table 6. Mapping the Insertion in P22Ap2

Extent of Deletion

att 19 20 16 ant al att proC

Relative
Plating
Efficiency

(7x10-4 )

1.0

0.11

0.36

P22Ap2 was plated on the various prophage deletion strains

and the relative number of semi-clear and turbid plaques measured.

The horizontal bar represents deleted material: DB136 deletes

from the left on proA (outside the prophage) to gene 16; DB7177

(derived from a TnlO insertion between genes 19 and 3) deletes

from the right of gene 19 to ant; DB5057 (derived from P22TclO)

deletes from gene 20 to the al region.

_rs
t-n

proAHost

DB7000

DB136

DB7177

DB5057

semi-
clear

47/48

0/672

0/77

228/243

turbid

1/48

672/672

77/77

15/243
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in the prophage (DB136, DB7177) and rescue of turbid morphology is still

efficient. With DB5057, plating efficiency is still high, and rescue

still occurs, but at a reduced frequency. This indicates that the site

of insertion is present in DB5057 but is near the deletion endpoint. The

deletion in DB5057, derived from P22TclO (Chan and Botstein, 1972), is

believed to end at or near the TnlO insertion, which is located in the

al region. Thus, the Tnl insertion in P22Ap2 most probably lies in the

al region, to the right of the TnlO insertion in P22TclO. This conclusion

is supported by the genetic and physical evidence presented in later

sections.

F. Insertions in the ant Gene

ant is a pivotal gene in this study. Since it is conditionally

essential, mutations are easily detected and analyzed, while because it

is one of the genes separating 9 from the other late genes, insertions

in ant can be used to study 9 expression.

(i) Mapping

Intergration of a translocatable element within a gene creates a

mutation genetically located at the site of insertion. Furthermore, since

translocatable elements stimulate deletion generation, insertions within

a gene can be used to obtain partial deletions of the gene. Thus, from

a set of insertions within a gene it is possible to construct a deletion

map of the gene which can be used to order the insertions. Such a self-

generating approach was used to map ant insertions.

When an ant phage infects a lysogen whose prophage lacks mnt, the

infecting phage produces antirepressor which inactivates c2 repressor and

allows phage growth. When an ant phage infects such a lysogen, growth

will occur if the infecting phage can recombine with the prophage to
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construct an ant gene. If the ant allele is deleted in the prophage,

however, the infecting ant phage will become repressed. With this ration-

ale, ant~ phages were plated on c2 mnt prophage deletions, and the mu-

tations mapped within the ant gene.

From ant insertions and one insertion (P22Ap2) to the right of ant,

deletions were generated entering ant from either side (Ch. 2, sections

II-I and J). The deletions were oriented with the P22 map by scoring

for markers outside of ant (16 or mnnt to the left; 9 to the right). To

order ant mutations, their efficiency of plating, which should reflect

rescue of the ant+ alleles, was measured on these deletions. This infor-

mation was sufficient to construct a self-consistent map of ant (figure 5).

The 21 insertions analyzed map at at least 13 different positions.

12 map between ant~ base change (point) mutations and thus must be within

the structural gene. The seven insertions mapping to the right of all

point mutations are most likely within the gene since none revert to ant

(see Ch. 2, section II-H). P22Ap29's insertion maps to the left of all

mutations and also does not revert to ant . It could be within the

structural gene or possibly the promoter.

Crosses between ant P22Ap phages were performed as a second method

of demonstrating that these insertions were at different sites. The

results (table 7) show that the ant phages P22Ap4, Ap32, Ap49, and 63 all

produce ant recombinants when crossed with each other, and wild type

recombinants when crossed with P22Ap7 (insertion in 9). The frequency

of ant recombinants varies from 0.4% (P22Ap4 x P22Ap32) to several per

cent in crosses with P22Ap49. These frequencies are, in general, consis-

tent with the deletion map of figure 5.

One phage, P22Ap14, was found to contain a deletion. P22Ap14 does
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Figure 5. Fine Structure Map of the ant Gene

ant mutations were mapped by spot tests and efficiency of plating

as described in Methods, sections D and L. All deletions were derived

from P22Ap phages.

Tnl insertions which are polar on gene 9 are represented by

non-polar insertions by 9 , point mutations by a vertical line I, and

deleted material by a solid bar = . The allele number of each

mutation is given above or below its symbol.

Some data on P22Ap14, Ap29, Ap50, and Ap53 and the point mutations

3, 13, 14, 15, and 20 were personal communications from Dr. M. Susskind.

Parent insertions of deletions isolated as low multiplicity trans-

ductants (Ch. 2, section I) have been placed at the endpoint of the

deletion.

The point mutants 18 and 16 are tentatively ordered on the basis

of their recombination frequencies with DB7449.

P22Ap60 and Ap62 are omitted since they appear to be identical to

P22Ap63; P22Apll is omitted since it appears to be identical to P22Apl4;

P22Ap42 is not included.

The map is not intended to display physical distance, only topology.
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Table 7. Crosses between P22Ap Phages

% Recombination

P22Ap7 P22Ap14 P22Ap32 P22Ap49

<1x10 4

P22Ap14 <1x10

P22Ap32

P22Ap49

0.4

4

P22Ap63 >0.3

Ap63
9

Ap4
It

>0.3

8

7

9

6

<1x10 4

<1x10 4

3

<lx10 4

<lx10~4

3

>0.3

(ant)
Ap32
9p

0.4

<lx10~4

2

Ap49

3

<lx10 4

(Gene 9)
Ap 7

9

3

Ap14

P22Ap phages were crossed as described in Methods, section H. Polar insertions

are represented by T, non-polar insertions by 9, and the deletion in P22Ap14 by

P22Ap7 has an insertion in gene 9, the other phage have insertions in

ant.

% Recombination = titer on DB7 100

P22Ap4

P22Ap4

P22Ap7

<lxlO 4

6

P22Ap63

Ce



50

not produce ant recombinants (less than 10~4 per cent) with P22Ap4, Ap32,

or Ap63, although these phages recombine with each other to produce at

0.3 per cent ant recombinants. P22Apl4 does recombine normally with

P22Ap49 and Ap7. P22Apl4 also fails to produce ant recombinants in

crosses with phages containing the ant point mutations 3, 7, 13, 14, 15,

and 20 but recombines with other point mutations (data not shown). The

simplest explanation for this behavior is that P22Apl4 contains a deletion.

Since lysogens of P22Apl4 are immune, the deletion must not affect mnt.

(ii) Tail Deficiency of ant P22Ap Phages

In section II-B, some ant P22Ap phages were found to be phenotypi-

cally 9. To quantitate this deficiency, lysates of ant P22Ap phages

were prepared by UV-induction and the tail deficiency of the particles

determined by titering before and after incubation in vitro with p9. The

results shown in table 8 corroborate the earlier finding. The tail defi-

cient phages make a normal burst of particles (column(b)) very few of

which are infectious (column(a)). These phages produce about 3 per cent

as much p9 as is needed to tail all the particles they produce (column c).

In contrast, the 9+ phages produce the same number of heads but make about

17 times as much p9. Since phages produced by UV-induction of a wild

type lysogen are slightly tail deficient (Israel, 1967) it is not possible

to determine whether the tail deficiency of the 9 phages is in part due

to the Tnl insertion.

This analysis assumes the tail deficiency of particles quantitatively

reflects the production of p9 in the cell. The results of a direct

measurement of p9 production (see next section) verify this assumption.

It will also be shown that the polarity of Tnl insertions on gene 9

depends on their orientation.



Phage W

ant 9 Phenotypic Class

Ap4

Ap9

Apll

Ap 14

Ap 19

Ap24

Ap32

Ap42

Ap44

Ap45

Ap49

Ap50

Ap57

Ap73

Table 8. Tail Deficiency of ant P22Ap Phages

PFU/CELL (
(a) (b) Tail Pr

ithout Tailing With Tailing [Tails(pEqu

8x10-5

1x10~4

5x10~4

6x10~4

7x10-6

3x10 5

lx10-5

4x10-5

4x10-5

2x10-5

1x10-5

2x10-5

4x10-5

lx10-5

12.8

16.

4.2

10.

4.0

3.8

3.3

2.6

7.3

4.2

2.1

5.7

6.5

1.9

c)
oduction
iv. ) /Head]x100

3.1

2.5

7.1

5.0

1.8

2.6

2.1

3.8

2.7

2.4

2.9

1. 8

3.1

2.6

ant~ 9+ Phenotypic Class:

Ap16

Ap18

Ap29

Ap31

0.4

1.0

0.3

0.5

2.7

11.

2.2

4.0

56

48

50

52

U,
H-



Ap37 0.5 2.8 61

Ap46 0.6 8.0 45

Ap53 0.3 3.0 50

Ap62 0.2 2.1 47

Ap63 1.0 11. 48

Ap67 0.2 2.3 43

Averages:

ant~ 9 1x10 4  4.6 3.1

ant 9+ 0.5 5.0 50

Lysates of Ap phages were prepared and tail deficiency determined as described in Methods,

section K. The titers and bursts are not corrected for the plating efficiency of P22 Ap phages

on DB147. Thus the actual numbers of particles produced are 7 times the values in the table.

* The tail deficiency of P22Ap4 and Ap9 was measured in separate experiments. The rest of

the phages were tested in a single experiment.

U1
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Several other points are noteworthy. First, about one half of the

insertions analyzed are polar and one half non-polar on 9, and both types

of insertions map throughout the ant gene (figure 5). Thus there is no

apparent site or orientation specificity among Tnl insertions in ant.

Secondly, P22Apll and P22Apl4 appear to produce about four times as much

p9 as the other polar insertions. These phages are not independent and

are apparently identical since both contain a similar deletion (data not

shown). It is not known if this increase in p9 synthesis is due to the

deletion.

G. Polar Effects on Gene 9

(i) Tail Production by P22Ap Phages

The observation that some insertions in ant cause tail deficiency is

consistent with either ANT or PLATE being the promoter for gene 9 tran-

scription (Ch. 1, section II-G; figure 6). To distinguish between these

possibilities, tail production by P22Ap phages with insertions in essential

genes (26, 7, and 20) in the late phage operon was measured. If gene 9

is promoted from ANT , none of these insertions should affect tail pro-

duction, but if 9 is promoted from PLATE, a polar insertion in the late

operon will cause tail deficiency.

Tail production by P22Ap phages was measured in this experiment by

using lysates from induced lysogens to convert P22 heads to phage in vitro

(Methods, section J). To prevent tails from becoming bound to defective

heads produced by the P22Ap phage, and thus being undetectable, P22Ap pro-

phages carried an amber mutation in gene 5, which codes for the phage's

major capsid protein. Dilutions of the lysates were added to a known

number of heads and the phage produced were measured. From this, the

number of tails present in each dilution was calculated.
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Figure 6. Models for Transcription of Gene 9

Illustration of the two models for transcribing gene 9. Insertions

in ant affect gene 9 transcription by either model, while insertions in

genes 26, 7, or 20 only affect transcription of gene 9 from iRLATE'
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Figure 7 shows the results for 5 phages with no insertion or

insertions in ant or 20. The calculated amounts of tails are plotted

against the corresponding amount of lysate present in each reaction.

Since the calculated tail concentration is found to be proportional to

the amount of lysate used, these dilution curves can be used to quanti-

tate the tails present in each lysate. Figure 7 shows that all the

P22Ap phages produced fewer tails than a phage without an insertion, but

P22Ap9 and P22Ap12 were more reduced than P22Ap31 and 48.

These and other results are summarized in table 9. The P22Ap phages

fall into two classes, either strongly polar, producing a few per cent of

the wild type level of tails (P22Ap4, 9, 12, and 34), or weakly polar,

producing about half as many tails as wild type (P22Ap31, 46, 48, and 27).

There are strongly polar insertions in ant, 20, and 7 and weakly polar

insertions in ant, 20, and 26. Thus, the degree of polarity of these

insertions is not due to their location but, as will be shown later, is

due to their orientation.

The strongly polar insertions in P22Ap12 (gene 20) and P22Ap34 (gene

7) were previously found to reduce expression of other late genes located

promoter-distal to the insertions (table 5). Since Tnl insertions in the

late operon are polar on late genes, including 9, gene 9 expression must

use 2LATE and be a member of the late operon. Furthermore, since strongly

polar insertions reduce 9 activity by at least 95%, no more than 5% of 9

expression can occur from other promoters. Thus PLATE is the major pro-

moter for gene 9.

Thoughout this thesis, strongly polar insertion s are referred to

as "polar" and weakly polar insertions as "non-polar".
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Figure 7. Assay for Tails Produced by P22Ap Phages

Assays were performed by mixing dilutions of lysates of P22Ap 5-am

phages with phage heads as described in Methods, section K. Insertions in

ant 0-6; insertions in 20 0-0; 5-am without an insertion-0 .
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Prophage

P22 5-am("wild

P22Ap4 5-am

P22Ap9 5-am

P22Ap31 5-am

P22Ap46 5-am

P22Ap12 5-am

P22Ap48 5-am

P22Ap34 5-am

P22Ap27 5-am

Table 9. Tail Production by P22Ap Phages

Site of Tnl Relative Amount
Insertion of Tails Produced

type") - 100

ant 4.5

ant 1.5

ant 54

ant 56

20 2.3

20 51

7 5.4

26 53

Tails were assayed as described in Methods, section K

and dilution curves (see figure 7) were constructed. The

amount of tails produced was determined from these dilution

curves. The absolute amount of tails produced by P22 5-am

was about 9 phage equivalents/cell.

57
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(ii) Complementation Test of Tail Deficiency

Insertions in ant which affect the expression of gene 9 could be

polar on 9 or could affect a diffusible regulator of 9. To distinguish

between these possibilities, complementation tests were performed between

P22Ap4, containing a polar insertion in ant, and phages containing amber

mutations.

The results of this experiment (table 10) show that P22Ap4 does not

complement P22 9 am (burst = 0.4) although normal amounts of 9 particles

are produced (burst = 129). Both of these phages, however, complement

P22 16~am phage (bursts of 8.1 and 15). The fact that P22Ap4 complements

P22 16 am shows that the tail deficiency of P22Ap4 is recessive in trans

since it does not cause P22 16~am to become tail deficient, and thus is

not due to the production of a diffusible negative regulator of 9. The

failure of P22Ap4 to complement P22 9~am shows that the tail deficiency of

P22Ap4 is dominant in cis since P22 9~am cannot induce the good copy of

gene 9 in P22Ap4 to be expressed. Thus the tail deficiency of P22Ap4 is

not due to the failure to produce a diffusible activator of gene 9. More-

over, the Tnl insertion of P22Ap4 does not affect a diffusible regulator

of gene 9 and most likely is directly polar on gene 9.

H. Reversion of Mutations Caused by Tnl Insertions

As discussed in section E, the phenotypes caused by the Tnl insertion

in P22Ap2 are capable of reverting. However, when 11 independent plaque

forming revertants (PFRs) were isolated from P22Ap2, none were wild type

since, unlike P22Ap2 they could not stably lysogenize. In fact, none of

the 25 ant insertions revert to ant and neither of two 9~ insertions

(P22Ap5 and Ap7) revert to 9 . These experiments were capable of detecting

one revertant in 1010 phages, as judged by reconstruction experiments in
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Table 10. Complementation Test of

Infection

P22Ap4

9-am

16-am

P22Ap4 + 16-am

9-am + 16-am

P22Ap4 + 9-am

Untailed

(0. 2

40. 2

(0. 2

8.1

15

0.4

P22Ap4's Tail Deficiency

Burst
Tailed in vitro

77

81

1

10

22

129

DB7000 was infected with phages at a multiplicity of 5 and the

standard procedure for P22 complementation tests was followed (Methods,

section D). The infection by P22Ap4 was titered on DB147 and the

titer multiplied by seven; the other infections were titered on

DB7004 and hence the bursts only reflect the amber mutant phages.
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which a few wild type phages were plated in the presence of large numbers

of P22Ap phages. Thus, Tnl integration within a gene causes irreversible

loss of function.

I. Deletions which Restore Terminal Repetition

The DNA in P22Ap phage particles is not terminally repetitious because

the Tnl insertion makes the phage's genome too large to fit completely

into a phage head. Consequently, any process which requires circulari-

zation of P22Ap phage DNA by self-recombination will select for those

genomes which have acquired enough terminal repetition to allow recombina-

tion to occur. These terminally repetitious P22Ap phage derivatives

contain deletions which shorten the genome size. In this section the

results from different selections for terminal repetition are described.

(i) Plaque Forming Revertants

When P22Ap phages are plated at low multiplicity of infection on a

non-lysogenic strain, only those phages with terminally repetitious DNA

and intact essential genes (PFRs) will make plaques. In section H, PFRs

isolated from P22Ap2 were described. These phages have lost the ampR gene

and do not form stable lysogens and thus probably contain deletions.

The nature of PFRs was investigated in more detail with P22Ap4,

which contains a polar insertion in ant. Twelve independent PFRs were

isolated by plating P22Ap4 on the non-lysogen DB7000. This selects for

deletions which restore terminal repetition and relieve polarity on gene 9.

The frequency of these PFRs was about one per 106 particles. Their proper-

ties are summarized in table 11.

All of these PFRs have lost the ampR gene, but only 7 could stably

lysogenize. The defect in lysogenization has not been characterized.

Two of the PFRs capable of lysogenization (DB7473 and DB7477 in figure 5)
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Table 11.

amp = ampicillin

res = resistant

sens = sensitive

stable lysogeny = tested by streaking from the center of a phage spot

and testing the colonies obtained for immunity;

immune colonies were restreaked and tested for

immunity.

ant = growth on DB7283 was tested

9 = growth on DB7000 ± p9 was tested

mnt = identified by streak tests (Methods, section D)

ND = not determined



P22Ap4
parent

PFRs isolated
on DB7000

PFRs isolated
on DB7000 + p9

Res

Sens

S ens

Sens

S ens

Sens

Res

Res

S ens

Sens

Sens

Table 11. Plaque Forming Revertants of P22Ap4 sieA-44

Plaque Stable
Size Lysogeny ant 9 mnt _

Medium + - - +

Large

Large

Large

Small

Very small

Medium

Medium

Medium

Medium

Medium

+

+

- +

- +

- +

- +

- +

+

+

+ +

+

ND

ND

ND

+

ND

ND

ND

ND

2

5

2

1

2
12

1

8

16

1

12
38

Strain
Number

DB7473, DB7477

DB7480

H
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contain deletions extending from within ant to between 16 and mnt. The

endpoint in ant of DB7473 is near the site of the Tnl insertion in the

P22Ap4 parent while the DB7477 deletion is farther away. The other five

PFRs capable of lysogenization retained the wild type alleles of all

ant~ point mutations but none would revert to ant . Thus, these contain

deletions which remove amp , relieve polarity, and restore terminal

repetition.

When plaque forming revertants of P22Ap4 are selected on DB7000 in

the presence of p9, the requirement for relief of polarity is removed.

Out of 38 revertants so selected (table 11), 26 were still tail deficient.

Of these tail deficient revertants, 24 formed unstable lysogens, 8 of

which were amp . One of the tail deficient revertants able to form stable

lysogens also retained the ampR gene, and contained a deletion extending

from the Tnl insertion to the al region (DB7480 in figure 5). It is shown

later that this deletion starts within the Tnl insertion (section K).

The fact that many of the PFRs have lost the ampR gene suggests that

deletions in PFRs occur in the vicinity of the Tnl insertion but do not

leave it intact. The deletions in DB7477 (figure 5) and DB7480 (see

section K) are examples of this. Thus some deletions in P22Ap phages do

not end at the terminus of the Tnl insertion.

(ii) Low Multiplicity Transductants

Chan et al (1972) have shown that transduction of tetR by P22TclO,

whose DNA lacks terminal repetition, requires double infection to construct

a circular genome capable of lysogenization (see Ch. 1, section II-E).

However at very low multiplicities, when double infection is rare, the

transductants obtained do not contain complete genomes but are prophage

deletions. These shortened genomes were able to circularize and lysogen-
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ize in single infection but occur at a low frequency in the phage stock

and are only detectable when transduction by double infection is rare.

Such prophage deletions have been isolated from P22Ap phages after

low multiplicity transduction for ampicillin resistance. The transductants

were screened for immunity and those lacking either mnt or c2 were analyzed

further. The results of mapping the prophage deletions in 43 independent

transductants obtained from 15 P22Ap phages are shown in figure 8. In

general, the frequency at which these deletions were recovered was about

one in 105 particles.

Two types of deletions were found. One class, shown in figure 8a,

are tightly linked genetically to the site of the Tnl insertion in the

parent phage. Thus, deletions in P22Ap2 have an endpoint in the al region,

while deletions from 10 ant P22Ap phages all have an endpoint in ant. In

figure 5, the fine structure of this endpoint is shown for 9 of the ant

P22Ap phages. In no case is the deletion separable from the site of inser-

tion. Thus, these deletions have an endpoint at or within the Tnl inser-

tion, suggesting their formation involves Tnl functions.

The other endpoint of insertion-linked deletions is not randomly

located, but is limited to the vicinity of gene 12. This is true of

deletions generated from insertions at many sites and in either orientation.

A number of the endpoints in gene 12 have been mapped with respect to 42

amber mutations and one frameshift mutation within this gene. The results,

shown in figure 9, shows that the 14 deletions mapped have at least 8

different endpoints. These are apparently broadly distributed across the

gene, although there may be a preferred region. The fact that these dele-

tions end in the same region, around gene 12, is an example of long range

specificity, but since there are many different endpoints w ithin gene 12
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Figure 8. Prophage Deletions in Low Multiplicity Transductants

Deletions were isolated and mapped as described in Methods, section L.

p = polar insertion; np = non-polar insertion. Deleted material is

indicated by a horizontal line ; a broken horizontal line ----- ,

indicates uncertainty as to the endpoint.
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Figure 9. Distribution of Deletion Endpoints in Gene 12

Fine structure mapping of deletion endpoints in gene 12 was done by

measuring efficiencies of plating of 12 mutants as described in Methods,

section L. The horizontal bar at the top of the figure represents gene 12

and the vertical lines indicate the positions of mutations. All mutations

were amber except for one frameshift mutation indicated by (fs). Deleted

material is indicated by a horizontal bar.
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there is also local non-specificity.

A second class of deletions obtained from the low multiplicity trans-

duction selection is shown in figure 8b. These deletions are not limited

to the site of Tnl insertion of the parent phage. Some of these deletions

were mapped with the virB am am phages and found to contain a mutation in

the same interval as the parent phage, suggesting the Tnl insertion had

not moved. These deletions all have one endpoint to the left of gene 24

and extend beyond c2 to at least 7 sites in the late operon, with a

possible preference for the region between genes 1 and 10. It is possible

these deletions are generated by phage functions since they are linked to

the region containing the phage attachment site, but if they delete the

int gene, they should not be able to intergrate. Thus their origin is

unknown.

J. Prophage Deletions Allowing Survival from mnt Induction

Because the non-randomness of the deletion endpoints described in the

previous section could have resulted from the selection procedure, a second,

unrelated method was used to obtain deletions from P22Ap phages. From

DB7273, a lysogen of P22Ap2 sieA-44 mnt-tsl (containing an insertion in

the al region), temperature-resistant, ampR survivors were selected.

Lysogens of this phage are temperature-sensitive since at high temperature

mnt repressor is inactivated, allowing ant to be expressed which induces

the prophage and kills the cell. Thus, temperature resistant survivors

are ant mutants, mnt+ revertants or deletions removing the killing func-

tions near c2. The survivors were screened for the presence of gene 9

and only 9~ prophages were characterized. Deletions which are associated

with the P22Ap2 insertion must extend from the al region to ant and will
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thus be 9~ whereas ant- point mutants, mnt revertants, or deletions not

linked to the insertion will be 9

- - R
The ant 9 amp prophage deletions were recovered at a frequency

of about one per 10 induced cells. The results of genetic mapping are

shown in figure 10. All deletions have an endpoint in the al region, as

demanded by the selection procedure. The other endpoint is distributed

more randomly than in the previous selection. Nevertheless, there is a

bias to the vicinity of gene 12, supporting the notion that the long-

range site specificity of deletion formation is not an artifact of the

selection procedure. Deletions also appear to frequently end in the

mnt-ant region, which was previously shown to be a preferred location

for Tnl integration (Ch. 2, section II-C). Most deletions in this region

would have been missed in the selection for low multiplicity transductants

since they would have been immune (c2 mnt ) and possibly not removed

enough DNA to restore terminal repetition to the genome. Three of these

deletions end in ant (DB7282, DB7461, and DB7464) and their endpoints are

mapped at different positions in figure 5. Thus, like the deletions in

gene 12, these also may be locally non-specific. The correlation between

preferred regions for Tnl integration and deletion formation suggests a

common mechanism for these processes.

Those deletions with an endpoint in the central region of the prophage,

between genes 12 and ant, were not observed in the low multiplicity selec-

tion and appear to be randomly distributed. Since they occur at about one

per cent of the frequency of low multiplicity transductants, it is possible

they could have been missed previously.
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Figure 10. Prophage Deletions in Survivors of mnt Induction

Isolation and mapping of deletions was as described in Methods,

section L.
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K. Physical Structure of Genomes Containing Deletions

Some of the deletions described previously do not affect phage genes

which are essential for particle formation. When lysogens of these

genomes are induced, they produce particles which can be purified and

their DNA analyzed. In this section, the structure of the genomes of

DB7480, a tail-deficient plaque forming revertant of P22Ap4 (Ch. 2, section

II-I), and DB7282, DB7283, DB7461, and DB7464, deletions in P22Ap2 ob-

tained by the mnt-ts selection (Ch. 2, section II-J) are described.

Heteroduplexes were prepared between these DNAs and P22TclO and

studied by electron microscopy. Such heteroduplexes should be double

stranded except for two non-homologous single strand regions (figure lla)

one consisting of Tnl DNA in the deletion genome which is not present in

P22TclO, and the other consisting of P22 material present in P22TclO but

removed by the deletion. Each of the deletions spans the region of P22TclO

which contains the TnlO insertion, thus these two single strand regions

are distinguishable since the strand corresponding to the deleted P22

material contains TnlO, which forms a characteristic lariat-shaped structure

in single strands due to its terminal inverted repeats (Tye et al., 1974a).

Representative heteroduplexes are shown in plate 1 and measurements

are summarized in table 12. The heteroduplex between DB7480 and P22TclO

DNAs (plate le, figure lla) contains a deletion/substitution loop, one

strand of which contains the TnlO lariat. The ampR insertion in DB7480

is about 2960 bp and, thus, about 1800 bp have been deleted from the

original Tnl insertion. A total of 5560 bp of P22 DNA have been deleted.

Thus, the total deletion in DB7480 is 7360 bp or about 17.4 per cent of

the P22 genome. Since the Tnl insertion amounts to 11.3 per cent of the

P22 genome (see next section), the genome of DB7480 is about 94 per cent
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Figure 11. Idealized Representations of Heteroduplexes

At the top of the figure, the physical structure of the genomes

which were studied is shown.

The heteroduplexes shown in a), b), c), d), and e) are circular

because the single strands are circularly permuted. Each line represents

a single strand; thick lines represent the inverted repeat region of the

insertions.
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Plate 1. Heteroduplexes between P22TclO and P22Ap Genomes Containing

Deletions

a) P22TclO/DB7283 (closed single strand loops)

b) P22TclO/DB7282 (closed single strand loops)

c) P22TclO/DB7464 (closed single strand loops)

d) P22TclO/DB7283 (open single strands)

e) P22TclO/DB7480 (open single strands)

The interpretation of these structures is shown in figure 11.
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Table 12. Heteroduplex Analysis of Genomes

Isolation
Selection

PFR

mnt-ts

mnt-ts

mnt-ts

mnt-ts

Tnl Material
Remaining Deleted

(bp) (bp)

2960±79 1800

4970±361 %0Q

4970±504 A0

4780±118 %O

4440±213 %0Q

Containing Deletions

proA c2 TnlO proC
L R

P22 Material Deleted
Total L-Tn10 Tn10-R

(bp) (bp) (bp)

5560 3110±26 2450±105

3260 3020±92 240±28

4780 4570±282 200±58

3550 3360±295 190±20

3120 2880±92 240±29

* size of Tnl = 4760 bp (Table 13)

Summary of results from the heteroduplexes illustrated in figure 11 and plate 1.

The deletions were isolated as either plaque forming revertants (PFR) or survivors

of mnt induction (mnt-ts). The results are based on 5 heteroduplexes of DB7282, 5

heteroduplexes of DB7283, 5 heteroduplexes of DB7461, 6 heteroduplexes of DB7464,

and 3 heteroduplexes of DB7480.

bp = base pairs

Del etion

DB7480

DB7282

DB7283

DB7461

DB7464
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of P22, thus accounting for its restored terminal repetition.

Since DB7480 was derived from P22Ap4, the interval from TnlO to one

end of the single strand region in which it is found represents the dis-

tance from TnlO to the site of Tnl insertion in P22Ap4, while the interval

from TnlO to the other end of this single strand region represents the

distance the deletion extends beyond TnlO toward the attachment site.

In the next section, the Tnl-TnlO interval in P22Ap4 is found to be 3390

bp from heteroduplexes between P22Ap4 and P22TclO. Thus, I take the 3110

bp interval in the DB7480/P22TclO heteroduplex (table 12) to be the Tnl-

TnlO interval and the 2450 bp distance to be the extent of the deletion

beyond TnlO toward the attachment site. This latter distance corresponds to

5.8 per cent of P22's genome. Chan and Botstein (1976) found the TnlO inser-

tion in P22TclO to be 6.0 per cent from the attachment site. Thus, the

deletion in DB7480 ends very near the attachment site. Since DB7480 is

able to lysogenize, no functions essential to P22 integration are located

in this deleted region.

In summary, the deletion in DB7480, which was selected as a plaque

forming revertant)extends from within the Tnl insertion to a point near

the attachment site. This structure is similar to plaque forming rever-

tants of P22TclO (Tye et al., 1974a) whose deletions also remove part of

the TnlO insertion.

In contrast to DB7480, the deletions of DB7282, DB7283, DB7461, and

DB7464, isolated as survivors of induction of mnt-ts, appear to end very

near the terminus of the Tnl insertion. Several observations support this

view. First, the Tnl segment remaining in these strains is similar in

size to the insertion in the P22Ap2 parent (table 12), indicating that

the deletion removes little, if any, Tnl DNA. Second, the ends of the
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single strands in deletion/substitution loops were usually adjoiningresul-

ting in the appearance of two closed single strand loops (figure 11c),

suggesting that the terminal inverted repeats of Tnl are still present

in these strains. In plate la,b, and c are shown examples of such struc-

tures from heteroduplexes between P22TclO DNA and DB7283, DB7282, and

DB7464 respectively. It is apparent that the ends of the single strand

regions are adjacent, unlike the P22TclO/DB7480 heteroduplex of panel e,

in which the ends are separated and the two single strands are open.

Structures with closed single strand regions were seen in 4/5 heteroduplex-

es of P22TclO DNA with DB7282, 3/5 with DB7283, 3/5 with DB7461, and 6/6

with DB7464, but were not observed (0/3) in heteroduplexes with DB7480.

An example of a P22TclO/DB7283 heteroduplex with open single strand regions

(figure llb) is shown in plate ld. Since the stem formed by the inverted

repeats of Tnl is small (estimated to be 140 bp by Heffron et al., 1975b)

it is not unexpected that the stem is relatively unstable; thus the

structure of plate ld could be generated by denaturation of the stem.

The closed structures could also occur if the deletion in P22Ap genomes

ended outside of the Tnl insertion (figure lld) leaving a short stretch of

P22 DNA between the deletion and the TnlO insertion. Measurements of the

distance from the ends of these deletions to the TnlO insertion show one

end of each deletion to be about 200 bp from TnlO (table 12) which is close

to the Tnl-TnlO distance observed for P22Ap2 in the next section, indicating

again that the deletion endsvery near the Tnl insertion. Furthermore, in

all heteroduplexes examined, the Tnl insertion does not appear to be dis-

placed from the deletion. Thus, the deletions in DB7282, DB7283, DB7461,

and DB7464 all appear to end at or very near the Tnl insertion of P22Ap2.

The deletions DB7282, DB7461, and DB7464 delete similar amounts of P22
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material (table 12) which is consistent with the fact that they all end

in the ant gene (figure 5). DB7282 is longer than DB7461 by genetic map-

ping, and the fact that the opposite result is obtained from physical

measurements is most probably a reflection of the poor resolution of the

heteroduplex technique relative to genetic mapping. DB7283 was found by

genetic mapping to extend beyond ant and mnt, and the physical size of

this deletion is seen to be larger than the deletions ending in ant. The

deletion in DB7283 removes about 11.3 per cent of the P22 genome and thus

should compensate for the 11.3 per cent Tnl insertion. This has been

verified since particles from DB7283 plate with high efficiency on DB7000

in the presence of p9 (data not shown), indicating that DNA in DB7283

particles has terminal repetition.

L. Physical Mapping of P22Ap Genomes by Heteroduplex Analysis

Heteroduplexes between DNAs of P22TclO and either P22Ap2 (insertion

in the al region), P22Ap4 (ant), P22Ap7 (9), P22Apl2 (20), or P22Ap38 (16)

were prepared and analyzed by electron microscopy. Representative hetero-

duplexes of P22TclO and P22Ap7 or P22Ap38 are shown in plate 2 and dia-

grammed in figure lle. The measurements of heteroduplexes (table 13)

were derived using the TnlO stem as a double strand standard and the TnlO

loop as a single strand standard.

In the molecules shown in plate 2, the single stranded Tnl loop is

connected to P22 duplex DNA by a short stem which results from intramolec-

ular annealing of Tnl's terminal inverted repeats. This stem was visible

in only half of the heteroduplexes examined. The size of the stem given

in table 12, 101 ± 58 bp, does not include those molecules where the stem

was not visible and is thus a maximum estimate. By examining single

stranded molecules in which the inverted repeats had annealed, Heffron et
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Plate 2. Heteroduplexes between P22TclO and P22Ap Genomes

A = P22TclO/P22Ap38 (insertion in 16)

B = P22TclO/P22Ap7 (insertion in 9)

The interpretation of these heteroduplexes is shown in figure 11.
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Heteroduplex Analysis of P22Ap Phage Genomes

Site of Tnl
Insertion

al region

9

ant

16

20

Size of Thi * Size of Tnl Short Tnl-TnlO

Size of Tnl ,
Insertion (bp)

4720±212

4610±138

4770±140

4680±172

5030±228

Size of Tnl
stem(bp)**_

93±13

42±13

160±68

160±82

48

Short Tnl-Tn10
bp

160±29

510±38

3390±110

5880±155

7480±167

means values 4760±160 100±58

* Size of Tnl Insertion = (Loop)+ 2x(Stem)

** Does not include molecules where no stem was visible

The number of molecules measured was 5 for P22Ap2, 12 for P22Ap4, 4 for P22Ap7, 6 for

P22Ap12, and 6 for P22Ap38. The standard error for each P22Ap phage was calculated as

--21/2S.E. = (Z(x-x) )1/(n-1) where x = a particular measurement

x = the mean value = (Ex)/n

n = number of measurements.

The standard deviation of the mean values was calculated as S.D. = (E (x-x) 2 1/2

where x = the individual mean value

x = the mean value of the means = ( )/m

m = the number of means.
*-1-1

Phage

P22Ap2

P22Ap7

P22Ap4

P22Ap38

P22Ap12

Distance

% P22

0.4

1.2

8.0

13.9

30.6

Table 13.
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al. (1975b) estimated the maximum size of the repeat to be 140 ± 39 bp.

Because this stem is not reproducibly seen, it would appear that a DNA

segment of this size is near the limit of resolution of the heteroduplex

method.

The size of the Tnl insertion in each P22Ap phage was calculated as

the sum of the length of the single stranded loop plus twice the length

of the double strand stem. The values for the five phages listed in table

13 do not differ greatly from each other and give a mean value of 4760 ±

160 bp (3.09 x 10 6d or 11.3% of the P22 genome). This value agrees the

value of 4800 ± 450 bp reported by Rubens et al. (1976).

The P22TclO/Ap heteroduplexes studied did not show deletion loops.

Thus, if Tnl integration caused deletion of P22 material (i.e. is not

precise), the deletion must be less than 100 bp long.

The distances from the TnlO insertion in P22TclO to the Tnl insertions

in 9, ant, 16, 20, and the al region are given in table 13. The Tnl inser-

tion in P22Ap2 is found to lie very near TnlO (160 bp away) as predicted

by genetic mapping (Ch. 2, section II-E). It is noteworthy that recombin-

ation between two large non-homologies (TnlO = 9.3 kb; Tnl = 4.8 kb)

separated by only 160 bp is readily detectable. The locations of the

other P22Ap Tnl insertions are discussed in more detail in later sections.

M. Physical Mapping of P22 Genomes with Restriction Enzymes

(i) Digestions with EcoRI:

Jackson (1977) has shown that EcoRI cleaves linear, mature P22 DNA

at 7 sites to produce 8 fragments and has ordered these fragments with

respect to each other as shown in figure 12. The D fragment results from

EcoRI cleavage of a molecule which was packaged into a phage head from

pac, the origin of packaging (see Ch. 1, section B) and thus has pac at
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Figure 12. Assignment of P22 Genes and Tnl Insertions to EcoRI Fragments

The locations of P22 genes and Tnl insertions in P22Ap phage relative

to the eight EcoRI fragments of P22 and the theoretical locations of

packaging cuts in wild type P22 and P22Ap phage DNA are shown.

kb = kilobases
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one terminus. However, since P22 chromosomes are circularly permuted,

not all molecules have pac at their terminus, and consequently the D

fragment is present in lesser amounts than other fragments. Since pack-

aging is sequential, and the DNA is believed to enter the head starting

from pac and proceeding counter-clockwise around the map shown in figure

12, the subsequent cuts in wild type genomes occur within the D region

since each headful is about two per cent larger than a complete genome

(see figure 12). Eventually, a complete A fragment can be produced, but

since the previous fragments are only slightly smaller than A, and molecu-

lar weights of this size are poorly resolved on agarose gels, these frag-

ments produce a diffuse band at the position of A. A representative gel

of an EcoRI digest of P22 is shown in plate 3. In this gel the dispersion

of the A fragment is less apparent because of the poor resolution of high

molecular weight DNAs, but the non-stoichiometric D fragment is clear.

When mature DNA from an oversized genome, such as a P22Ap phage, is

digested with EcoRI, a different pattern is found (plate 3; figure 13).

The non-stoichiometric D fragment is still produced since the first cut

is fixed at pac, but because the genome is larger than a headful, the

subsequent cuts occur within the A fragment as shown in figure 12. This

generates a series of fragments which are present in non-stoichiometric

amounts and which are sufficiently different in size to be resolved in

the gel. Some of these fragments are plainly seen in the gel of plate 3.

Given this expectation for the EcoRI digestion pattern of P22Ap phage

DNA, it was possible to determine which fragment contained the Tnl inser-

tion in each genome. Since there is no EcoRI cleavage site in Tnl (Heffron

et al., 1975b), the fragment containing the insertion will be absent from

the digestion pattern and a new fragment will appear whose molecular length
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Plate 3. Agarose Gel of Digestions of P22, P22Ap2, Ap4, Ap7, Ap9, and

Ap63 DNAs with EcoRI, BamHl, and EcoRI+BamHl

A = BamHl digestion of P22Ap9 DNA

B = EcoRI/BamHl digestion of P22Ap9 DNA

C = EcoRI/BamHl digestion of P22Ap9 DNA

D = Bamlil digestion of P22Ap7 DNA

E = EcoRI/BamHl digestion of P22Ap7 DNA

F = EcoRI digestion of P22Ap7 DNA

G = BamHl digestion of P22Ap63 DNA

H = EcoRI/BamHl digestion of P22Ap63 DNA

I = EcoRI digestion of P22Ap63 DNA

J = BamHl digestion of P22 DNA

K = EcoRI/BamHl digestion of P22 DNA

L = EcoRI digestion of P22 DNA

M = BamHl digestion of P22Ap4 DNA

N = EcoRI/BamHl digestion of P22Ap4 DNA

0 = EcoRI digestion of P22Ap4 DNA

P = BamHl digestion of P22Ap2 DNA

Q = EcoRI/BamH1 digestion of P22Ap2 DNA

R = EcoRI digestion of P22Ap2 DNA

1% agarose gel
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Figure 13. Representation of the EcoRI Digestion Pattern of Plate 3

C = P22Ap9 DNA

F = P22Ap7 DNA

I = P22Ap63 DNA

L = P22 DNA

0 = P22Ap4 DNA

R = P22Ap2 DNA
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equals the sum of Tnl and the missing fragment. The patterns from several

P22Ap phages are shown in plate 3 and diagrammed in figure 13. The EcoRI

pattern of P22Ap2 or Ap7 DNA lacks the C fragment and contains a new

fragment about 12.4 kb in size. Since the C fragment is 7.3 kb, the

Tnl insertion must be 5.1 kb. The patterns from P22Ap4, Ap9, or Ap63

lack the E fragment but no new fragment appears. This is because the

composite Tnl + E fragment of these genomes is not resolved from the C

fragment. Using the 5.1 kb value for Tnl deduced above, the new fragment

would be 7.5 kb (since the E fragment is 2.4 kb in size) which would not

be resolved from the 7.3 kb C fragment. It can be seen in plate 3 that

the C fragment of these patterns is more intense than the nearby B fragment.

Thus the insertion in P22Ap2 and Ap7 is in C while that of P22Ap4, Ap9,

and Ap63 is in E.

The location of the insertions in a number of Ap phages is summarized

in figure 12. Since the genetic location of these insertions is known,

the EcoRI map can be oriented to the genetic map of P22. The C fragment

contains the insertions in P22Ap5, 7, and 25 which are 9 and that of

P22Ap2, in the al region. Jackson (1977) showed this fragment contained

the TnlO insertion in P22TclO as well as the attachment site. The E

fragment contains the insertions in P22Ap4, Ap9, and Ap63 which are ant

In addition, the EcoRI pattern of DB7283 DNA (containing a deletion which

is mnt~) lacks E and C, but not B. Thus, the mnt and ant genes are in E.

The 16~ phages P22Ap38 and Ap74 and the 20 phages P22Ap12 and Ap48 have

insertions in the B fragment while P22Ap30, whose insertion maps in a non-

essential region between genes 1 and 8, removes the D fragment. Lastly,

two phages with insertions in non-essential regions, P22Ap15 and Ap20,

lack the H fragment, which is in the vicinity of the erf gene (Jackson,
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1977).

The molecular length of the Tnl element derived from these and

subsequent digestions was found to be 5.1 ± 0.1 kb, about 7 per cent

larger than the value found from heteroduplex analysis. Consequently,

in the subsequent restriction enzyme analyses the 5.1 kb value is used

in calculations. This lack of agreement between the two methods of

analysis may reflect a discrepancy between the standards used.

(ii) Digestion with BamHl

When P22 DNA is digested with BamHl, two bands are seen in agarose

gels (plate 3). One band (the A fragment) is large (>20 kb) and diffuse

while the other (the B fragment) is 2.6 kb in size. This is interpreted

to mean that BamHl cuts P22 DNA at two sites, 2.6 kb apart, generating

a small fragment and two large, poorly resolved, fragments whose sizes

are variable due to the permuted ends of the chromosome. Rubens et al.

(1976) showed that BamHl cuts Tnl at a single site located asymmetrically

within the element. Thus, P22Ap phage genomes contain three BamHl sites

and digestions will produce three fragments whose sizes reflect the

orientation and position of the Tnl insertion relative to the BamHl sites

in P22 DNA.

Plates 3 and 4 (represented diagramatically in figures 14 and 15)

show the results of digesting P22Ap phage DNAs with BamHl. The sizes

of the fragments present in these digests are listed in table 14. The

2.6 kb B fragments found in wild type DNA is absent from digests of P22Ap2

and Ap7 DNAs and two new larger bands appear in each of these digests.

This is taken to mean that the Tnl insertions in these phages lie within

the B fragment region of the genome. This conclusion is supported by the

fact that the sum of the sizes of the new fragments is 7.8 kb in each case,
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Plate 4. Agarose Gel of Digestions of P22Apl2, Ap38, and Ap48 DNAs

with BamHl

A = EcoRI digest of P22 DNA

B = BamHl digest of P22Ap12 DNA (polar insertion in 20)

C = BamHl digest of P22Ap48 DNA (non-polar insertion in 20)

D = BamHl digest of P22Ap38 DNA (non-polar insertion in 16)

1.4% agarose gel
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Figure 14. Representation of the BamHl Digestion Pattern of Plate 3

A = P22Ap9 DNA

D = P22Ap7 DNA

G = P22Ap63 DNA

J - P22 DNA

M = P22Ap4 DNA

P = P22Ap2 DNA
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Figure 15. Representation of the BamHl Digestion Pattern of Plate 4

A = EcoRi digest of P22 DNA

B = BamHl digest of P22Ap12 DNA

C = BamHl digest of P22Ap48 DNA

D = BamHl digest of P22Ap38 DNA



F16UQE 15

L:<7 7,--

K t
I--

ReEPRSTATi 0F
.l:~ ---. / l

AeIz ApL3S

b~I L~- -t

T-1-

I-C-------

t I I -

t - -- - -- -

-l - -t - -

LI - - - ~ - - - - -

tV---

-z-- - -- -- - -

T .I i:.

S - } : -t
- I I

---- - * 1 - ---- 4-- ------ - - - -- T -

~ ~ t~1~ - I -V- .
t -

I 1 - -

t - - -

- i 1 - -

87

.



Source
of DNA

wild type

P22Ap2

P22Ap4

P22Ap7

P22Ap9

P22Ap12

P22Ap38

P22Ap48

P22Ap63

Table 14. Fragments Produced by BamHl Digestion of P22Ap DNA

Site of Polar(P) or Size of

Tnl Insertion Non-polar(NP) Fragments (kb)

>13, 2.6

al region >13, 4.8, 3.0

ant P >13, 6.2 2.6

9 >13, 4.1, 3.7

ant P >13, 5.5 2.6

20 P >13, 12.3, 2.6

16 NP >13, 6.2, 2.6

20 NP >13, 8.9, 2.6

ant NP >13, 3.8, 2.6

Summary of the results shown in plates 3 and 4.
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which is close to the value of 7.7 kb expected for the sum of the B frag-

ment and Tnl. Since the insertion in P22Ap2 is in the al region and that

of P22Ap is in 9, the Bam-B fragment must span this region of the genome.

All the other P22Ap phage DNAs have an intact B fragment (table 14)

and thus their Tnl insertions probably lie outside of this region. These

digests contain, in addition to the A and B fragments, a fragment whose

size is different for each phage. It can be seen that the size of this

fragment is considerably different in P22Ap4 and Ap63 DNAs, although the

Tnl insertions in these genomes are near each other in ant (figure 5).

Thus, the difference in size of this fragment between these phages reflects

the different orientations, rather than positions, of these insertions.

Rubens et al. (1976) found that polar and non-polar Tnl insertions are

in opposite orientation and, in accord with this, in section F it was

shown that P22Ap4 contains an insertion which is polar on 9, while P22Ap63's

insertion is non-polar. Assuming the insertion to be at the same position

in these two phages, I calculate that the BamHl site in Tnl is 1.3 kb from

the terminus and when Tnl is in the polar orientation, this 1.3 kb segment

is on the promoter proximal side of the element. This location of the

BamHl site within Tnl is close to that (1.4 kb from the terminus) reported

by Rubens et al. (1976).

A second example of the relationship between polarity and orientation

is seen in plate 4 (represented in figure 15) with P22Ap12, containing

a polar insertion in 20, and P22Ap48, containing a non-polar insertion

in 20 (sections D and G). The variable third fragments of these digestions

differ in size by 3.4 kb (table 14) which is much larger than the size

of gene 20 (1.4 kb) as calculated from the apparent molecular weight of

the gene 20 protein (50,000d)(Botstein et al., 1973). Thus, the difference
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in size of the new BamHl band must again reflect the different orientation

of Tnl in these genomes. When the position of the BamHl site in Tnl

derived above is taken into account, these-insertions are found to be

0.9 kb apart, which is within the extent of gene 20.

Because the orientation of Tnl insertions on the promoter proximal

side of gene 9 can be deduced from their polar properties (Ch. 2, section

G), and their genetic location from complementation tests (section D), it

was possible to construct a physical map of this region of the genome

(figure 16) from the BamHl digestion data. To locate the insertions in

P22Ap2 and Ap7, which are on the promoter distal side of gene 9 and whose

orientations cannot be determined from polar effects, the BamHl data was

combined with the results from heteroduplex analysis and fitted to the

four possible models for the orientations of these insertions. The only

model which agreed was when the insertions were in the same orientation

as in P22Ap63 (non-polar).

The relative positions of insertions, as derived from heteroduplex

analysis, are included in figure 16 for comparison. In general there is

good agreement between the BamHl and heteroduplex methods. The worst case

occurs with P22Apl2, whose insertion is found to be 7.5 kb from TnlO by

heteroduplex analysis but 9.3 kb from TnlO by BamHl digestion, a discrep-

ancy of 20 to 25 per cent. Since the Tnl insertion in P22Ap12 is farther

than the other insertions from both the Bam-B fragment and TnlO, it is

expected to be subject to the greatest error.

(iii) Double Digestions with EcoRI and BamHl

To combine the results of heteroduplex, EcoRI, and BamHl analyses,

double digestions with EcoRI and Baml were performed on several P22Ap

phage DNAs (plate 3, figure 17). The double digest of P22 DNA lacks the
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Figure 16. Physical Map of P22 from BamH1 Digestions of P22Ap Phage DNAs

Summary of the BamH1 digestions shown in plates 3 and 4 and the

heteroduplex data of table 13.
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Figure 17. Representation of the EcoRI/BamHl Double Digestion Patterns

of Plate 3.

B = P22Ap9 DNA

E = P22Ap7 DNA

H = P22Ap63 DNA

K = P22 DNA

N = P22Ap4 DNA

Q = P22Ap2 DNA
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EcoRI-C fragment and contains two new fragments, one slightly larger (2.8

kb) than the Bam-B fragment and the other (1.8 kb) smaller than the EcoRI-E

fragment. This shows that the two BamHl sites in P22 DNA lie within the

EcoRI-C fragment since the sum of the sizes of the new fragments and Bam-B

(7.2 kb) is close to the size of the EcoRI-C fragment (7.3 kb). Since

the two new fragments are also found in double digests of P22Ap and P22Ap7

DNAs, which lack the Bam-B fragment, these new fragments flank the Bam-B

fragment within the EcoRI-C fragment.

When the sizes of the new P22Ap4 fragments (4.0 and 3.5 kb) and

P22Ap63 fragments (5.6 and 1.8 kb) found in these double digests were used

to compute the location of the BamH1 site in Tnl, as was done in the pre-

vious section, the Bam site is found to be 1.5 kb from the Tnl terminus,

and this segment to lie promoter proximal in the polar orientation, con-

firming the results of the previous section. Using this value for the

location of the BamH1 cut in Tnl, and combing the data of previous sections,

the physical map of P22 shown in figure 18 was constructed. This is

discussed at length in the discussion section.
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Figure 18. Physical Map of P22

The data from heteroduplex and restriction enzyme analyses have been

combined with the data of Jackson (1977) to construct this map. The size

of the Tnl element is also shown for reference.
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CHAPTER 3. DISCUSSION

I. Summary of Results

In chapter 2, the isolation and characterization of 76 insertions of

the translocatable element Tnl into bacteriophage P22 was described. The

major results relating to Tnl are:

(1) Insertions of Tnl into P22 are rare (1010 /phage) and are non-

randomly distributed in the genome, being found mainly in the vicinity of

the ant gene.

(2) Insertions of Tnl within the ant gene are found at many (at least

13) sites and cause irreversible loss of ant function.

(3) Deletions generated by Tnl have non-randomly distributed endpoints.

Prophage deletions isolated as ampR transductants after low multiplicity

infections by P22Ap phages extend from a point at or near the Tnl insertion

to the vicinity of gene 12. These deletions can end at many (at least

eight) sites within gene 12. Prophage deletions in P22Ap2, isolated as

survivors of mnt induction, extend from the terminus of the Tnl insertion

to various positions in the genome, but tend to occur in the neighborhoods

of either gene 12 or ant.

(4) Tnl insertions can be strongly or weakly polar, depending on

their orientation.

The major results relating to P22 are:

(1) Evidence supporting the existence of an operon of late genes has

been obtained using polar Tnl insertions.

(2) Insertions of Tnl in either the phage's late operon or the ant

gene can be polar on gene 9, implying gene 9 is a member of the operon of

late genes.

(3) A physical map of the P22 genome has been constructed using P22Ap
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phages.

II. Characteristics of Tnl Translocation

A. Frequency of Translocation

Translocationsof Tnl from the plasmid RP4 into P22 DNA were recovered

at a frequency of about 1010 /phage (table 3). This was not affected by

temperature or irradiation of the cells with ultraviolet light. This

contrasts sharply with the frequency of Tnl translocation betweeen plasmids,

which varies from 10-6 to 10-2 /plasmid (Bennett and Richmond, 1976; Rubens

et al., 1976). This difference in frequency is not understood but might

reflect a requirement for supercoil ed recipient DNA. Mizuuchi and Nash

(1976) found that bacteriophage A will integrate only into supercoiled

chromosomes. If this were also true for Tnl integration, P22 DNA would be

a poor recipient since there is little supercoiled P22 DNA present during

lytic growth (Botstein, 1968; Weaver and Levine, 1977).

B. Sites of Insertion

The locations of Tnl insertions in the P22 genome were inferred from

the phenotypes of P22Ap phages (table 4), mapping with virB am am phages

(figure 4) and prophage deletions (table 6, figure 5), and complementation

tests with P22 amber mutants (table 5). Out of a total sample of 187

insertions, from 16 different lysates, 13 per cent of the insertions

were found to map in the ant gene, which spans about 1.7 per cent of the

genome (based on the apparent molecular weight of the antirepressor protein;

Susskind, personal communication), while about 40 per cent of the inser-

tions lie between gene 16 and the al region, an interval I estimate to be

about 13 per cent of the P22 chromosome from the physical map. In contrast,

only about 15 per cent of the insertions map in the essential region

between gene 12 and 16, which encompasses about 50 per cent of the chromo-
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some. Thus, the Tnl insertions are not randomly distributed throughout the

P22 genome, but are concentrated in the region around genes 9 and ant.

A priori, there is reason to expect that the procedure used to

isolate P22Ap phages will select against phages with insertions in some

regions of the genome. Thus, phages with insertions which inactivate the

c2 or mnt genes will not be able to lysogenize and form ampR transductants,

while insertions in the vicinity of genes 18 and 12; by analogy with

bacteriophage X , might cause a cis-dominant defect by interfering with

the transcription required for initiation of replication (Dove et al., 1971).

Thus, phages with insertions in these regions might not be recovered by

the procedure employed.

On the other hand, insertions in the other essential genes should

cause recessive mutations which can be complemented by wild type genomes.

Nevertheless, these phages might also be underrepresented since complemen-

tation is usually not completely efficient. Thus, if Tnl integrates at

random sites in P22 DNA, it is reasonable to expect that insertions in

essential genes will be less frequent than insertions in non-essential

regions. However, in this case the distribution of insertions should be

random among essential genes, and this was not found. Rather, insertions

occurred mainly in those essential genes nearest the ant-9 region (figure

4). Thus, I conclude that the non-random distribution of the Tnl inser-

tions in P22's genome is not an artifact of the procedure used to obtain

these insertions. It is possible, however, that insertions in the vicinity

of either genes 18 and 12, c2, or mnt would not have been recovered.

In contrast to the regional specificity described above, insertions

within the ant gene (estimated to be 700-800 bp in size) were found at

at least 13 different sites (figure 5). It is not known how these inser-
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tions are distributed throughout the gene, but the fact that they are

interspersed among the ant point mutations suggests they are not tightly

clustered. These insertions occur in either orientation with equal fre-

quency, which may reflect the symmetry of the terminal inverted repeats,

as these sequences are important for translocation (Heffron et al., 1977).

Thus, on a more local level, Tnl integration into P22 DNA is non-specific

with respect to both location and orientation.

These results are similar to those reported by Rubens et al. (1976)

for Tnl translocation between plasmids. However, the type of distribution

of insertion sites seen for Tnl is fundamentally different from that seen

for the temperate phages A and P22, or another translocatable drug resis-

tance element, TnlO. Kleckner et al. (1977) isolated a number of Tn1O

translocations from P22TclO into the histidine operon (10 kb) of Salmonella

typhimurium and found that about half of the insertions were at the same

site and the remainder were distributed among several other discrete sites.

Similarly, bacteriophage A and P22 integrate almost exclusively at a single

site in the bacterial chromosome, although A can integrate at lower fre-

quency into other sites when its hot spot is absent (Shimadeet al., 1972).

Thus, whereas A , P22, or TnlO integration occurs frequently at a hot spot

(local specificity), Tnl integration occurs at many sites (local non-

specificity) in a hot region (regional specificity).

C. Mechanisms of Translocation

There are 2 general types of explanations for the non-random distri-

bution of insertions in P22: either this distribution reflects an inherent

characteristic of Tnl translocation or else the distribution results from

some constraint imposed by P22's physiology. Perhaps it is not possible

to recover insertions in most essential genes because the structure of
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the P22 chromosome, as a "folded chromosome", membrane complex, transcrip-

tion complex, replication complex, or possibly a complex with packaging

proteins, may make only certain regions of the DNA accessible for trans-

location. This particular model would require further assumptions since

all regions of P22 DNA are available for genetic recombination, an exchange

reaction analogous to translocation. However, this certainly does not

rule out the idea that selection could be imposed by P22's physiology.

On the other hand, the distribution of insertions may reflect some

inherent aspect of the Tnl translocation mechanism. In this case it is

necessary to resolve the paradox that insertion sites are randomly distri-

buted within a small region (for instance, the ant gene) but much more

non-random over the larger region of P22's chromosome. A plausible

mechanism resolving these observations is provided by the restriction

enzyme of E. coli K (Murray et al., 1973). This enzyme recognizes a

specific, relatively rare, DNA sequence which is the only site at which

it can bind to the DNA. The sequences at which it cleaves DNA, however,

are non-specific and occur frequently near the binding site but less

frequently farther away, as if once bound, the K restriction enzyme

travels along the DNA for a (normally distributed?) distance before it

cleaves. This generates a high frequency of cuts in the region near the

binding site and a low frequency in regions farther away. DNA cleavage

must also occur during Tnl integration and it is possible the cleavage

determinant operates in an analogous manner to the E. coli K restriction

nuclease. P22 DNA would then have a site, in the vicinity of the ant

gene, at which the translocation determinants can recognize the DNA, but

there would be no sites in the late genes. These determinants would

travel along the DNA before integrating Tnl, thus accounting for the high
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concentration of insertions in ant, the low concentration in the nearby

essential genes 16 and 20, and the extreme scarcity in essential genes

even more removed from ant. Heffron et al. (1975b) remarked on the fact

that Tnl insertions seemed to occur more frequently in an AT-rich region

of a small plasmid. The partial denaturation map of P22 (Tye et al., 1974b)

is consistent with the notion that the ant and al regions of P22 DNA are

the AT-rich regions of the molecule. Perhaps the sequence recognized by

Tnl is more apt to occur in these regions.

The experiments presented in this thesis do not allow a conclusive

choice to be made between these explanations. However, I prefer the second

explanation for several reasons. The restriction enzyme model has prece-

dent, and offers insights into several observations about Tnl. Heffron

et al. (1975b) also observed the non-random insertion specificity of Tnl

into a small plasmid and suggested that Tnl inserts at a short, specific

sequence which occurred frequently in the DNA. Bennett and Richmond (1976),

however, observed large variations in the frequency of translocation of

Tnl into various large plasmids, including one where translocation was

not detectable. This variation is not consistent with integration at a

widespread sequence, since one would expect uniformly higher frequencies

of translocation into larger plasmids. However, these observations may

both be explained by a model invoking rare binding sites and frequent,

nearby, integration sites. Thus, the small plasmid of Heffron et al.

would contain one or more clustered sites, analogous to P22, while the

plasmids of Bennett and Richmond would contain varying numbers of binding

sites, perhaps some in regions essential for the maintenance of the

plasmid, and thus the different frequencies of translocation would reflect

the number and location of the binding sites in different plasmids.
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A final reason for preferring the restriction enzyme model is that

deletion generation by Tnl exhibits a similar site specificity. This is

discussed more fully below, but the tendency for deletions to end in or

near gene 12, yet at many sites within gene 12, is analogous to the inser-

tion specificity. As discussed in the introduction, insertion and deletion

generation by translocatable elements probably occur by related mechanisms.

Thus the sequence specificity exhibited by deletion endpoints probably

reflects a general characteristic of illegitimate recombination events

catalyzed by Tnl.

III. Characteristics of Tnl Insertions

A. Structure of Insertions

Tnl insertions in P22 DNA were found to be about 4.8 kb in size and

are flanked by short (about 100 bp) inverted repetitions (table 13). Al-

though one phage, P22Ap14 with an insertion in ant, was found to contain

a deletion of P22 DNA (figure 5), no further evidence for imprecise inser-

tion was found among the six insertions analyzed by electron microscopy.

B. Polarity of Tnl

Tnl insertions in the P22 genome were found to be polar on late genes

by complementation tests (table 5). This phenotype was quantitated by

directly measuring the production of p9, the product of gene 9 (table 9).

It was found that Tnl insertions reduced p9 production by either about

two-fold or twenty-fold, depending on their orientation (Ch. 2, section M;

Rubens et al., 1976).

The degree of polarity shown by Tnl in the weakly polar orientation

is in the range shown by nonsense mutations (Newton et al., 1965). However,

the degree of polarity of nonsense mutations is dependent on their location

within an operon and this is not true of Tnl in the weakly polar orienta-
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tion.

Polar mutations caused by insertions of IS sequences are reported to

reduce gene expression at least 100-fold (Saedler et al., 1972). Thus,

in the strongly polar orientation, although Tnl is more polar than nonsense

mutations, it may be less so than IS sequences. It should be noted that

insertions of IS sequences were selected on the basis of strong polarity.

Both nonsense - and IS-mediated polarity is suppressed by mutants of

the transcription termination factor rho (Das et al., 1976). Thus these

types of polarity involve transcription termination by rho factor. P22's

gene 23 appears to code for a protein whose function is to act at a term-

ination signal to allow transcription to proceed into the late operon

(Roberts et al., 1976). Thus, Tnl causes polarity in the presence of the

antiterminator produced by gene 23. If, by analogy with nonsense mutations

and IS sequences, the mechanism of Tnl-mediated polarity involves trans-

cription termination, either gene 23 product has no effect on this termin-

ation or, if gene 23 product does affect it, the polarity would be much

greater in the absence of gene 23 product. Thus, because of the possibility

of antitermination by gene 23 product, it is not possible to interpret

clearly the degrees of polarity observed with Tnl. However, the difference

between orientations remains a striking feature as observed in the present

case as well as in the plasmid experiments of Rubens et al. (1976) where,

presumably, no 23-like product is involved.

C. Reversion

Insertions of Tnl in the ant gene were found to cause non-reverting

mutations of ant (Ch. 2, section II-H). This provides a convenient cri-

terion for determining whether a mutation caused by Tnl is due to integra-

tion within a structural gene or polarity since phenotypes caused solely
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by the polarity of Tnl revert readily (Ch. 2, section II-I).

Failure to revert to wild type, i.e. reconstruct an intact gene,

could be due to either imprecise integration or excision. Although Tnl

insertions examined with the electron microscope appeared to have integra-

ted without causing deletion of any P22 material (Ch. 2, section II-L),

P22Apl4 (which was not examined by electron microscopy) was found by

genetic criteria to contain a deletion (Ch. 2, section II-F). If all Tnl

insertions caused small deletions upon integration, they would not revert

to wild type. However, except for P22Ap14, there is no evidence that this

occurs in P22Ap phages.

On the other hand, integration could be precise but excision of Tnl

could be imprecise, leaving a small insertion, deletion, or both. Among

plaque forming revertants of P22Ap4 (Ch. 2, II-I, K), ant phages were

found which, by genetic criteria, had lost the ampR phenotype but no ant

markers (putative small insertions), had a deletion removing Tnl and ant

material on either side of the insertion (small deletions), or, by physical

mapping, contained a deletion starting within Tnl and extending into P22,

thereby leaving a part of the insertion while also deleting some P22

material. Thus, it seems that all possible types of imprecise excisions

can occur. Kleckner et al. (1977) have shown that no more than 1 in 10,000

excisions of TnlO from within the histidine operon of Salmonella typhimurium

are precise, and thus, if precise excision of Tnl does occur, it may

simply be too rare to detect.

Insertion mutations caused by bacteriophage Mu also do not revert to

wild type (Bukhari, 1975). However, certain derivatives of Mu, containing

mutations, do revert to wild type. Thus, failure to revert does not

necessarily imply an inability to integrate or excise precisely.
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IV. Deletion Generation by Tnl

A. Deletions in Transductants Isolated from Low Multiplicity Infec-

Infections

Two types of deletions were found in transductants isolated from low

multiplicity infections (figure 8). The minority class extended from a

point near the phage attachment site to a variety of positions in the

genome. These deletions did not appear to be linked to a Tnl insertion

and it is not known if their formation required Tnl or was due solely

to phage and bacterial functions.

The major (75-80 per cent) class of deletions all ended at a point

that was, by genetic criteria, at or very near to a Tnl insertion. For

this reason the formation of these deletions is believed to involve Tnl

functions. These deletions always extended to the region of the genome

around gene 12; thus both endpoints are non-randomly located. However,

although one endpoint is limited to the region of gene 12, it can be at

many sites within 12 (figure 9).

Deletions isolated by the same technique in P22TclO (containing a

TnlO insertion) also had one endpoint fixed at the insertion, while the

other endpoint was much more randomly distributed throughout the genome

(Chan and Botstein, 1972). This shows that the deletion specificity

observed with P22Ap phages is due to the Tnl insertion and is not a

procedural artifact.

The observation that Tnl seems to show regional (but not local)

specificity both in translocation and deletion formation fortifies the

notion that these two processes are related mechanistically.

B. Deletions in Survivors of mnt Induction

Deletions isolated in P22Ap2 (insertion in the al region) as survivors
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of mnt induction were required to be ant~ and 9~ (Ch. 2, section II-J).

Thus, the fact that these deletions all have an endpoint near the Tnl

insertion could be an artifact of this procedure and need not imply that

the deletions were generated by Tnl functions. However, when four of

these genomes were analyzed with the electron microscope (Ch. 2, section

II-K), in each case the deletion was found to end at the terminus of an

intact Tnl element. Since there is about 700 bp between gene 9 and the

Tnl insertion in P22Ap2 (table 12), and the resolution of the heteroduplex

methods is at least 100 bp, if the deletions had ended at random sites

between 9 and Tnl they would have been clearly resolved. Thus, at least

four of these deletions end at the Tnl terminus, strongly implying that

Tnl functions were involved in their formation. Furthermore, these four

deletions extend to the ant region and consititute a significant fraction

(4/12) of the deletions isolated. Thus it appears that both Tnl translo-

cation and deletion generation have a tendency to occur in this region.

The deletions, like the insertions, occur at locally different sites (fig-

ure 5), showing that this specificity cannot be accounted for by a single

hot spot.

In addition to the deletions which end in the ant region, a signifi-

cant fraction (5/12) end near gene 12. These deletions also have an end-

point at or near the Tnl insertion but, as discussed above, this was

demanded by the selection. Nevertheless, I conclude that these deletions

are formed by Tnl functions since the tendency for deletions to end pre-

ferentially around gene 12 was shown above to be a characteristic of Tnl

generated deletions.

Thus, by this selection it is shown that Tnl generated deletions

frequently contain an intact insertion and extend from the terminus of
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Tnl to either the region around ant or 12. This selection is less demand-

ing than that of the previous section since it does not require deletions

to be long enough to restore terminal repetition. Because of this length

requirement, deletions ending in the ant region would have been missed

by the procedure of the previous section.

Three deletions were also found by the mnt-ts selection which ended

at different positions in the late genes. It is not possible to tell if

formation of these deletions required Tnl functions since genetic linkage

to Tnl was demanded by the selection. Deletions isolated by this procedure

occur at about one per cent of the frequency of the deletions isolated as

low multiplicity transductants. This decreased frequency of deletions

could be related to the observation that UV irradiation of P22TclO stimu-

lates the formation of deletions (Chan, 1974). In any case, it is possible

that these three deletions are not generated by Tnl but are the background

level of spontaneous deletions which are seen because the frequency of

Tnl generated deletions is so low.

C. Relation of Deletion Formation to Translocation

The fact that deletions end at the terminus of an intact Tnl element

suggests that these termini are important in deletion formation. Heffron

et al. (1976) presented evidence that the terminus contains a site recog-

nized in translocation. By analogy with bacteriophage A integration, this

site might determine the integration site specificity of Tnl. Thus, the

fact that Tnl deletions show a tendency to end in the ant region, which

is also a preferred region for insertion, indicates that the same site is

recognized in deletion formation and translocation. A further similarity

between these processes is that, although in each case this is a hot region,

it does not contain a hot spot for either insertion or deletion end points.
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Thus both insertions and deletions could be generated by a mechanisms like

that of the E. coli K restriction enzyme.

The Tnl generated deletions also show a striking tendency to end in

the region of gene 12 and, since this is a hot region without a hot spot,

the same type of mechanism may be operating. However, only one out of 76

insertions mapped in this region and thus translocation does not appear

to reflect this specificity. One explanation for this is that insertions

in this region are rarely recovered because they cause a defect in repli-

cation which cannot be complemented (see Ch. 3, section II-B). Thus, if

this is a hot region for translocation, the procedure employed for isola-

ting insertions could miss it.

On the other hand, insertions may not occur in this region. This

would imply that the mechanisms of translocation and deletion generation

have different site specificities although they are otherwise related,

(i.e. regional specificity, local non-specificity, and an essential role

for the Tnl termini).

One speculative way to account for this assumes the site specificities

for deletion and insertion formation are truly different. Then, deletions

ending in ant would be generated by translocation of Tnl from its location

in the parent into a new site, followed by recombination between an inser-

tion in another phage, located at the parental site, and the newly located

Tnl, to generate the deletion. Deletions ending in 12 would be generated

by a mechanism independent of translocation with a different site specificity.

Alternatively, the specificity of translocation may derive from a sequence

formed when the termini are adjacent while that of deletion generation

derives from a sequence at the terminus when termini are apart, i.e. "half-

site specificity". In this case the deletion mechanism might be expected
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to recognize the translocation sites as well as some additional half-sites,

not recognized in translocation.

In conclusion, deletions generated by Tnl are formed by a mechanism

similar to translocation but possibly differing somewhat in site specifi-

city. Kleckner et al. (1977) have shown that deletion generation by TnlO

appears to have a different specificity than TnlO translocation but in

this case, insertion specificity (which shows hot spots) is less random

than deletion specificity, where strong hot spots have not been observed

(Chan, 1974).

V. Further Discussion Regarding Tnl

As discussed previously, the non-random distribution of Tnl insertions

and deletion endpoints (regionally specific but locally non-specific)

contrasts with the non-random distributions seen with TnlO or bacteriophage

A (locally specific). Furthermore, other translocatable elements, such as

bacteriophage Mu or Tn5 (kanamycin resistance), integrate with little or

no site specificity (regionally and locally non-specific) (Bukhari and

Zipser, 1972; Berg, 1977). Thus, the mode of site specificity of Tnl

is unique among the translocatable elements studied to date.

The fact that this same type of non-random distribution occurs for

both deletions and insertions of Tnl implies that a similar mechanism

operates in these two processes. This contrasts with TnlO, whose inser-

tions, but not deletions, occur at a restricted number of sites. In

addition, I have shown by heteroduplex analysis and genetic mapping that

deletions are often located adjacent to an intact Tnl insertion. This

strongly suggest that the terminus of Tnl plays a role in deletion

generation-Heffron et al. (1977) presented evidence which implied that

the Tnl terminus contains a site which is recognized during translocation,
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and it is probable that this site has a similar function during deletion

formation.

To reconcile the regional specificity with the local non-specificity

of Tnl integration and deletion generation, I have suggested a model

based on the properties of the E. coli K restriction enzyme. This model

asserts that Tnl determinants recognize a few specific sites in DNA and

cause insertions or deletions to occur at non-specific sites nearby.

However, during translocation or deletion formation, cleavage of DNA must

also occur at the Tnl element. Since the element is found to be intact

following integration or deletion, and since deletions lie adjacent to

the element, these cuts must occur at specific sites at the Tnl termini.

Thus, both site specific and non-specific cleavages occur during translo-

cation or deletion formation by Tnl.

Another property of Tnl insertions which may be unique is their

failure to produce wild type revertants. Among most other translocatable

elements, at least 98 per cent of the insertions can produce wild type

revertants (Kleckner, 1977). An exception is bacteriophage Mu, which

normally causes an irrversible mutation upon integration. However, there

is a class of mutants of Mu which can integrate and excise precisely

(Bukhari, 1975) and thus resemble other translocatable elements.

Lastly, one P22Ap phage was found to contain a deletion. It is

possible the formation of this deletion was related to the integration of

Tnl. As many as 25 per cent of the insertions of Mu have associated

deletions (Kleckner, 1977) and, thus, this may be a more general property

of Tnl.
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VI. An Operon of Late Genes in P22

The late genes of bacteriophage A constitute an operon whose transcrip-

tion requires the product of the Q gene (Herskowitz and Signer, 1970a;

Skalka et al., 1967). It is believed that the Q gene product is an anti-

terminator which allows a short leader transcript to be extended into the

late operon (Roberts et al., 1976). Similarly, the late genes of phage

P22 are coordinately controlled by gene 23 (Lew and Casjens, 1975).

Hilliker (1974) showed that genes 23 and Q are functionally, if not struc-

turally, equivalent since they can complement and recombine with each

other. Moreover, Roberts et al. (1976) presented evidence for a leader

RNA and suggested that gene 23 allows this transcript to be extended into

the P22 late genes. Thus, by analogy with X , these results strongly

suggest that the P22 late genes are organized in an operon.

Using polar insertions, I have found direct evidence for the existence

of this operon of late genes. Complementation tests (table 5) show that

a polar insertion in gene 7 reduces expression of genes 20 and 16 while a

polar insertion in gene 20 affects 16. In addition, insertions in genes

26, 7 or 20 reduce gene 9 expression (table 9). These results show that

genes 26, _7, 20, 16, and 9 are coordinately transcribed and provide further

evidence for a single operon of late genes.

VII. The Expression of Gene 9

The fact that polar insertions in the late operon can reduce expres-

sion of gene 9 by at least 95 per cent (table 9) shows that PLATE is the

major, if not only, promoter for gene 9 transcription. This result has

interesting implications for the expression of the ant and 9 genes.

Since antirepressor is produced early in infection (M. Susskind,

personal communication) it might be expected that transcription from AN



111

could extend into gene 9. However, since p9 is not seen until late in

infection (Botstein et al., 1973) and polar insertions in late genes

prevent essentially all expression of gene 9, transcription of gene 9

from PANT must not occur to a significant extent. One explanation for

this is that there is a transcription termination site between genes ant

and 9. Since this site must be overcome in order for transcription of

gene 9 from PLATE to occur, it might be sensitive to antitermination by

gene 23 product. In this case, the structure of the late operon of P22

can be thought of as being analogous to the rightward early operon of

bacteriophage A (Herskowitz and Signer, 1970b). In each case there are

two termination signals within the operon, and the promoter-distal signal

occurs at a region of DNA which is unrelated to the function of the operon

(the P-2 region in A; the sieA-mnt-ant region in P22).

In order for gene 9 to express from ELATE' RNA polymerase must

traverse the sieA-mnt-ant region and thus it might be expected that ant

is expressed from PLATE at late times during infection. However, this is

not true because ant is turned off late in infection (M. Susskind, personal

communication). Nevertheless, since insertions in ant are polar on gene

9, and polarity is thought to involve transcription termination (see Ch. 3,

section II-B), it is probable that ant is transcribed, though not expressed.

This suggests that the turn-off of ant at late times occurs through a

post-transcriptional control mechanism.

VIII. Physical Map of the P22 Genome

The physical map shown in figure 18 was constructed from the data

in this thesis, the EcoRI map of Jackson (1977), and the apparent molecular

weights of P22 proteins as judged by acrylamide gel electrophoresis

(Botstein et al., 1973; Poteete and King, 1977).
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The only genes whose positions are known with any certainty are

those between gene 7 and att. The insertion in P22Ap30, which mapped

between genes 1 and 8, was found to be 8.1 kb from the insertion in

P22Ap12 by heteroduplex analysis (data not shown) but this is probably too

large a distance to be reliably measured (see Ch. 2, section II-M).

Several other points are worthy of note:

(1) The late operon: The interval from pac (between genes 19 and 3)

to the end of gene 9 is about 43 per cent of the P22 chromosome. Since

the late operon begins between genes 23 and 13, the size of the late

operon (and its transcript) is probably about 50 per cent of the chromosome

(21 kb).

(2) The sieA-mnt-ant region: This region is about 7 per cent of the

chromosome (3 kb). The deletion in DB7283 ends about 800 bp from the end

of the EcoRI-E fragment and, since this strain is mnt~, mnt must lie in

this fragment.

(3) The ant gene: This gene is at the end of the EcoRI-E fragment.

The insertion in P22Ap9, which maps at the end of the ant gene, is located

in the E-fragment but is very close to the end and its distance from this

EcoRI site cannot be determined precisely. It is possible that this EcoRI

site lies within the ant gene.

(4) Gene 9: The distance from P22Ap9's insertion in ant to the inser-

tion of P22Ap7, at the C-terminal side of gene 9, is about 5 per cent of

the chromosome. This is approximately the size of gene 9, hence there is

not a large space between ant and 9. In addition, since the P22Ap7 inser-

tion is within the Bam-B fragment, but very near the end, it is likely

that BamHl cuts within gene 9.

(5) The phage attachment site (att): Based on the fact that the TnlO
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insertion in P22TclO is 6 per cent from att (Chan and Botstein, 1976), I

calculate that att is within the EcoRI-C fragment, in accord within

Jackson (1977), and outside of the Bam-B fragment.

IX. Use of P22 to Study Translocatable Elements

The experiments of this thesis show that P22 is a useful vehicle for

studying translocatable drug resistance elements. The isolation of large

numbers of insertions is reliably achieved with the HFT test and the size

of the element is not a Varrier since insertions of large elements can be

readily accommodated by the headful packaging mechanisms.

Once integrated, the insertion can be treated like a point mutation

and crosses and complementation tests performed. Mapping of large numbers

of insertions can be reliably accomplished with virB am am phages and

the phenotype test. Further fine structure mapping is possible with the

large number of mutants and prophage deletions of P22. The fine structure

map of ant is an example of this procedure.

Polar effects of insertions can be determined by complementation tests

and quantitation of the production of p9. The p9 assay is extremely sen-

sitive, being reliable at least to the femptomolar range. The possibility

of antitermination effects by genes 23 or 24 could obscure polarity but,

if this can be proved, it would give an insight into the mechanism of

polarity.

Insertions in ant and 9 are useful for studying reversion and

imprecise excision. Several selections exist for the isolation of dele-

tions in P22 transducing phages and mapping of deletions can be performed

by the methods mentioned above. Furthermore, since the regions adjacent

to ant or 9 are not essential for particle formation, genomes containing

deletions within this interval can be purified in large quantities for
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physical analysis. These physical studies can be performed by either

heteroduplex or restriction enzyme analysis.

Because of the importance of translocatable elements in the evolution

of bacterial genomes, particularly antibiotic resistance plasmids, and as

models for the regulation of gene expression, the development of the

bacteriophage P22 system as a vehicle for studying translocatable elements

adds a significant tool to the store of molecular genetics.
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Appendix I: Summary of P22Ap Phages and their Properties

Phage

Ap2

Ap4

Ap5

Ap 7

Ap9

AplO

Apll

Apl2

Apl3

Apl4

Ap15

Ap16

Ap17
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Apl9
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1

1

1

1

1

94
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Location

E. 0. P. or
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9

9

ant

9
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ant
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9

9

ant 9

9

ant 9

essential

9

ant 9
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ant

essential

ant

ant 9
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9

9

non-essential t~3
HA

virB am am

outside

16-9

outside

outside

16-9

16-9

16-9

20-16

16-9

16-9

outside

16-9

16-9

16-9

16-9

outside

16-9

16-9

outside

9

9

Conclusion Orientation

al region

ant P

9

9

ant P

9

aalso has
ant, eletion

20 or between P

9 7 and 20

ant also has
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ant NP

ant NP

ant P



Ap24

Ap25

Ap26

Ap27

Ap28

Ap29

Ap 30

Ap31

Ap32

Ap33

Ap34

Ap35

Ap36

Ap37

Ap38

Ap39

Ap40

Ap4l
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Ap45

Ap46
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Ap47 7363 100 9~ outside 9
Ap48 7364 100 essential 20-16 20 20 NP

Ap49 7365 100 ant 9 16-9 ant ant P

Ap50 7366 100 ant 9 16-9 ant ant P

Ap51 7367 100 non-essential outside

Ap52 7368 100 essential 20-16 p

Ap53 7369 100 ant- 16-9 ant ant NP

Ap54 7370 101 essential outside

Ap55 7371 101 essential outside

Ap56 7372 101 essential 10-20 p

Ap57 7373 101 ant 9 16-9 ant ant P

Ap58 7374 101 essential 20-16 p

Ap59 7375 101 non-essential outside

Ap60 7376 101 ant 16-9 ant ant NP

Ap6l 7377 101 9 16-9 9
Ap62 7378 101 ant~ 16-9 ant ant NP

Ap63 7379 101 ant~ 16-9 ant ant NP

Ap64 7383 87 essential 16-9

Ap65 7384 87 9 16-9 9
Ap66 7385 87 non-essential outside

Ap67 7411 110 ant- 16-9 ant ant NP

Ap68 7412 110 9 16-9 9
Ap69 7413 110 non-essential 16-9 NP

Ap70 7414 110 essential 20-16 NP



Ap7l 7415 110 essential outside

Ap72 7416 113 9~ 16-9 9

Ap73 7417 113 ant 9~ 16-9 ant ant P

Ap74 7418 113 essential 16-9 NP

Ap75 7419 113 non-essential outside

Ap76 7420 114 9 outside 9

Ap77 7421 114 non-essential outside

Ap78 7422 115 non-essential outside

Ap79 7423 115 9 16-9 9

Ap80 7424 115 essential 12-23
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Appendix II: Fine Structure Map of Gene 12

The fine structure map of gene 12 is presented in figure 19. This

map is based on the efficiencies of plating on prophage deletions of 42

amber mutant and one frameshift mutant phage (see Methods, section L). The

amber mutations are all independently derived but do not necessarily

represent different mutations. The prophage deletions DB5209 and DB5210

(Chan and Botstein, 1972) were isolated as low multiplicity tetR trans-

ductants from P22Tc1O. The deletion is DB5521 (Chan, 1974) was derived,

by a different procedure, from a lysogen of P22TclO and extends into the

bacterial chromosome to the left of the prophage. The other deletions are

described in chapter 2, section II-I.

The deletions of DB7259 and DB7243 gave ambiguous results for rescue

of those alleles in the region indicated by the dotted line; thus the

precise endpoints of these deletions cannot be determined. These ambiguous

results could occur if the mutations are very near to the deletion endpoint

or if some further chromosome aberration (a small inversion for example)

were present in this region.



Figure 19. Fine Structure Map of Gene 12
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Appendix III: Results of Digestions of P22 DNA

with Various Restriction Enzymes

The results of restriction enzyme digestions of P22 DNAs are summari-

zed in table 15. The enzymes Bgl II, Kpn I, Xba I, and Xho I do not appear

to cleave P22 DNA since only a large (> 20kb) band appears in gels of

these digests.

Digestion by Sal I produces one large (> 20kb) band and one smaller

(7.5kb) band which appears to be non-stoichiometric. In double digests of

Sal I and EcoRI, both the 7.5kb Sal I band and the EcoRI-B band, (see

figure 12) are missing. Thus it appears that Sal I cleaves P22 DNA at one

site, 7.5kb (counterclockwise in figure 12) from the pac site.

BamHl digestion is described in chapter 2, section II-M.

Sma I produces a large (> 20kb) and a small (2.1kb) fragment which

has not been mapped.

Bgl I produces two or three large (10-15kb) pieces and a small (0.8kb)

piece. In double digests by Bgl I and EcoRI, the RI-A,E,F, and H bands

(see figure 12) as well as the small Bgl I band are missing. Thus, Bgl I

cleaves within each of these EcoRI fragments and EcoRI cleaves within the

small Bgl I fragment. In addition, Bgl I cuts at three sites within Tnl

to produce a 1.5kb and 1.0kb fragment of Tnl DNA.

The EcoRI digest is described in chapter 2, section II-M.

The Pst I digest contains one fragment of 15-20kb and 7 fragments

ranging in size from about 4kb to less than 0.9kb.

The Hpa I digest contains fragments from 10kb to about lkb in size.

The largest (~~ 10kb) fragment spans the region of P22 containing the BamHl

cleavage sites.



Restriction
Enzyme

Bgl II

Kpn I

Xba I

Xho I

Sal I

BamHl

Sma I

Bgl I

EcoRI

Pst I

Hpa I

Table 15. Action of Restriction Enzyme

Number of Bands Number of
Seen on Gel Cuts in P22

1

1

1

0

0

0

1

2

2-3

2

3-4

8

8

12

0

1

2

1-2

4

7

7

11

3 on P22 DNA

Number of

Cuts in Tnl

ND

0

ND

ND

0

1

0

3

0

ND

0

ND = not determined
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