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ABSTRACT

Data were obtained on the yields, compositions, and
rates of evolution of major products from the fast pyrolysis
of sweet gum hardwood and sweet gum milled wood lignin in a
capitve sample apparatus.

The wood and lignin samples were heated at rates of
1000 K/s to peak temperatures of between 600 and 1400K in a
5 psig helium atmosphere. Samples were cooled at an average
nominal rate of 200K/s after zero residence time at the maxi-
mum temperature. Gaseous and light liquid products were ana-
lyzed by gas chromatography. Tar (heavy liquid) and char
yields were determined gravimetrically and characterized by
elemental analysis.

High ultimate yields of volatile material were obtained
from both the wood and lignin pyrolyses. The overall weight
loss achieved from wood pyrolysis was 93 wt. % while the
yield of volatiles from lignin pyrolysis was 86 wt. %. The
major constituent of the volatile material was a heavy liquid
product (tar), which reached a maximum yield of 55 percent by
weight of original material from wood pyrolysis and 53 per-
cent by weight from lignin pyrolysis. Secondary cracking of
this heavy liquid material contributed significantly to the
total gas yield at temperatures above 950K.

On a weight basis, carbon monoxide was the dominant
gaseous product above 850K, reaching ultimate yields of 17 wt.
% and 19 wt. %, respectively, from wood and lignin pyrolysis.
On an energy basis, ultimate CH yields approached those of
CO (75-95%), despite much smallar methane yields (2-3 wt. %).
Carbon dioxide and chemical water were the other major pro-
ducts from both materials, having ultimate yields of 4-6 wt.
% for CO and 4-5 wt. % for water. Total hydrocarbons (CH ,
C H , C 6, C H ) amounted to 4-5 wt. % of the pyrolysis mit-
e i l afd ligit6 oxygenated liquids, such as formaldehyde,
methanol, and acetaldehyde, accounted for 9 wt. % from wood
pyrolysis and 5 wt. % from lignin pyrolysis.
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A single-step, first-order reaction model was used to
obtain kinetic parameters for the formation of the individual
pyrolysis products, with good results.

The weight loss behavior of sweet gum wood was well
simulated from the corresponding weight loss of milled wood
lignin and filter paper cellulose (from a previous study)
weighted, respectively, by the fraction of lignin and of holo-
cellulose (cellulose + hemicellulose) in the whole wood.
Yields of individual products, however, could not be predicted
by this approach.

Thesis supervisors: Jack B. Howard, Professor of Chemical
Engineering

John P. Longwell, Professor of Chemical
Engineering

William A. Peters, Principal Research
Engineer, Energy Laboratory.
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1.0 Introduction

The years since the 1973 Arab oil embargo have witnessed

a rapid increase in United States research and development on

alternative fuels to take the place of petroleum and natural

gas. It is hoped that liquid and gaseous fuels and feedstocks

from domestic sources of coal, oil shale, tar sands, and bio-

mass will greatly contribute to our national goal of energy

self-sufficiency.

Unlike coal and oil shale, biomass offers the particu-

larly attractive advantage of being a renewable energy resource

and the potential to therefore provide high quality fuels and

chemical feedstocks long after the world's fossil fuel reserves

have been depleted to economically unrecoverable levels.

Of the many different materials defined as biomass, wood

is of particular national interest as a nonfossil fuel resource

because of the already existing and substantial U.S. forest

industry. Although this industry exists primarily for the

production of paper and building materials, there has been in-

creasing interest in expanding the use of raw forestry materials

for the production of valuable fuels and chemicals.

The use of wood as a fuel and chemical feedstock is not a

new concept. Prehistoric cavemen burned wood to heat their

caves and cook their food. Ancient Chinese and Egyptians

heated wood in limited amounts of air to supply charcoal for

metallurgical purposes as well as liquids for use as embalming

fluids. The process of hardwood distillation was developed

during the eighteenth century for the production of charcoal and

the valuable by-products methanol, acetone, formaldehyde, and
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acetic acid.

More recent technologies have been aimed at converting the

solid biomass into higher quality liquid and gasepus products.

Some conversion processes utilize biological pathways such as

fermentation, which can reduce solid biomass materials to

liquids such as ethanol via enzymatic digestion. Other pro-

cesses involve the application of heat to the biomass in order

to decompose the solid structure into the desired liquid and

gaseous materials. The thermal processes have the advantage of

being able to convert larger quantities of material per unit

time for a given reactor volume.

One thermal conversion process which has received concen-

trated attention is pyrolysis. Pyrolysis, (from the Greek

"pyro," meaning fire, and "lysis," meaning cleavage), is the

thermal degradation of a material in an inert or oxygen

deficient atmosphere. The pyrolysis process is known to pre-

cede or accompany other thermal processes such as combustion

and gasification and, as such, a detailed knowledge of the

pyrolysis mechanism is a necessary first step in the under-

standing of any biomass thermal conversion reaction.

Many investigators have studied the pyrolysis of cellu-

lose, the main constituent of wood, while relatively few have

examined the pyrolysis of wood and the other wood constituents,

lignin and hemicellulose. Even fewer investigations are report-

ed where the individual wood components have been pyrolyzed in

order to gain a better understanding of and possibly simulate

the pyrolysis behavior of the parent wood substrate. It has

been qualitatively observed that wood thermal behavior can be
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approximated by the sum of the individual constituents' thermal

responses, although this postulate has yet to be reinforced by

a rigid quantitative analysis (Shafizadeh and Chin, 1977).

Hajaligol (1980) has systematically examined the effects

of various operating conditions on the rates and extents of

conversion of cellulose pyrolysis to specific products. The

present work examined the pyrolysis behavior of wood and lignin

with the objective of obtaining an increased understanding of

how the individual wood constituents influence the behavior of

the wood during thermal processing.
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2.0 Background

2.1 Wood Chemistry

Wood is made up of three principal chemical materials:

cellulose, hemicellulose, and lignin. Wood also contains

extraneous substances known as "extractives," which include

turpenes, fatty acids, aromatics, resins, and essential oils.

Typical distributions of these four constituents in softwoods

and hardwoods are given in Table 2.1-1. Detailed discussions

of the chemistry of wood and wood constituents are available

in the literature (Wenzl, 1970; Pearl, 1967; Kollman and Cote,

1968; Sarkanen and Ludwig, 1971; Brauns, 1952).

Of the three major wood constituents, cellulose has by

far been the most extensively studied due to its importance in

the forest product industries and because it is the chief

component of wood. Cellulose is a linear macromolecule of

anhydro-6-glucopyranose units combined by ether-type linkages,

known as glycosidic bonds, as shown in Figure 2.1-1. It is

this important linear cellulosic structure which contributes

high tensile strength to the parent wood.

Hemicellulose is a more complex cross-linked polymer com-

posed of several monomer units, which is what helps to dis-

tinguish it from cellulose. Hemicelluloses are built up of

D-xylose, D-mannose, D-glucose, D-galactose, L-arabinose, 4-0-

methyl-D-glucuronic acid and, to a lesser extent, D-galactur-

onic acid and D-glucuronic acid as shown in Figure 2.1-2.

Hemicelluloses have relatively few sugar units (50 to 200) as

compared to native cellulose (7000 to 10,000), and exhibit

a more branched molecular structure.
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Table 2.1-1 Average Chemical Composition of Softwoods
and Hardwoods (wt. %)*

Constituent Softwoods Hardwoods

Cellulose 42 + 2 45 + 2

Hemicellulose 27 + 2 30 + 5

Lignin 28 + 3 20 + 4

Extractives 3 + 2 5 + 3

*Taken from Thomas (1977)

CHOH CHsOH

The Cellulose Molecule (SERI,1979).Figure 2. 1-1
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COOH

(SERIrl979).
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Hardwoods contain two principal types of hemicellulose:

O-Acetyl-4-0-methylglucurono-xylan and Glucomannan. Xylan is

the predominant hemicellulose of all hardwoods, accounting for

25 to 35 wt. % with glucomannan forming 5 to 6 wt. % of the

wood. Xylan is a polymer of the pentose sugar, D-xylose, and

can contain some carboxylic acid and methyl-ether groups.

Glucomannan is made up of randomly distributed D-mannose and

D-glucose residues in a ratio of roughly 2:1.

Lignin is a three-dimensional polymer of phenylpropane

units and acts as a cementing agent for the cellulose and hemi-

cellulose fibers in wood. The complex chemical structure of

lignin has been the subject of many investigations, and the

classical structural representation determined by Freudenberg

(1968) is shown in Figure 2.1-3.

2.2 Previous Work on Pyrolysis

Many investigations into the pyrolysis (also known as

"thermal degradation" or "destructive distillation") of bio-

mass materials are described in the literature, with the

emphasis being on the study of cellulose pyrolysis. Among

the most recent literature reviews are works by Molton (1977),

Peters (1978), SERI (1979), Hajaligol (1980), and Klein (1981).

Other classical discussions are presented by Wenzl (1970) on

wood pyrolysis and by Allan and Mattila (1971) on the high

energy degradation of lignin. Roberts (1970) presents an

excellent review of the literature on the kinetics of biomass

pyrolysis.

In an early review of the biomass pyrolysis, Brauns (1952)

compared the products obtained by different investigators and
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compiled the data shown in Table 2.2-1. The dry distillation

of biomass is seen to produce char as the major product. Lig-

nin produces higher ultimate yields of char (44-50 wt. %) than

either wood (29-38 wt. %) or cellulose (28-35 wt. %) and also

produced much less methanol than their corresponding woods, in

spite of the higher methoxyl content of the lignin. The lower

yield of methanol from lignin was thought to be caused by a

change in the lignin during its isolation from the parent wood.

The variations in the spruce lignin data are attributed to dif-

fering conditions of pyrolysis (Brauns, 1952).

The literature results reported for various biomass pyro-

lysis investigations are subject to differences arising from

variations in experimental operating conditions. The operating

conditions in different works are often poorly documented,

which makes comparisons even more difficult. It is well known

that slight variations in operating conditions can greatly

affect the pyrolysis product distribution (Probstein and Hicks,

1981). Also, lignin pyrolysis results from different studies

sometimes exhibit extremely large variations in product dis-

tributions which may be the result of the use of different

types of lignin, a specification which is often omitted from

the technical description. For example, Kraft lignin, obtained

as a by-product of the Kraft pulping process, undergoes much

more chemical modification during preparation than does milled

wood (Bj'6rkman) lignin. The latter is extracted from the

parent wood in an essentially unaltered chemical state (Pearl,

1967; Kollmann and Cote, 1968).

Iatridis and Gavalas (1979) investigated the pyrolysis of



Table 2.2-1 Products of the Dry Distillation of Wood, Cellulose, and Lignin*(%)

Wood Cellulose Hydrochloric Acid Lignin

Product Spruce Aspen Spruce Aspen Spruce Spruce Aspen

Char 37.81 29.45 34.86 28.08 50.64 45.0 44.30

Tar 8.08 9.83 6.28 4.27 13.00 9.6 14.25

Methanol 0.96 1.48 0.07 0.00 0.90 0.7 0.87

Acetone 0.20 0.79 0.13 0.20 0.19 0.1 0.22

Acetic Acid 3.19 7.37 2.79 2.66 1.09 0.6 1.28

Carbon Dioxide 50.50 -- 62.90 -- 9.60 -- --

Carbon Monoxide 32.55 -- 32.42 -- 50.90 -- --

Methane 9.23 -- 3.12 -- 37.50 -- --

Ethane 1.72 -- 1.56 -- 2.00 -- --

*Data are from Brauns (1952).
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Kraft lignin under constant temperature conditions for different

solids residence times in a captive sample reactor similar to

the one used in the present study. They report an ultimate char

yield of less than 35 weight percent at 750 deg. C, which is

somewhat less than the 44-50 wt. % char yield reported by

Brauns (1952) for hydrochloric acid lignin. Different reactor

configurations and operating conditions as well as different

types of lignin were used in the separate studies, and this may

account for the variations in char yields.

A recent investigation of Kraft lignin pyrolysis in a heli-

um plasma was carried out by Graef et al. (1981). These invest-

igators achieved high heating rates (actual values not reported)

and obtained the narrow distribution of pyrolysis products shown

in Table 2.2-2. The char yield of 33 wt. % reported by Graef

et al. compares favorably to the yield of 35 wt. % presented by

Iatridis and Gavalas (1979). The microwave plasma pyrolysis

apparatus used by Graef et al. caused very severe degradation

of the lignin sample, as is evidenced by the high yields of hy-

drogen, carbon monoxide, and acetylene (Table 2.2-2).

Shafizadeh and Chin (1977) examined the thermal decompo-

sition of wood and its constituents using thermal gravimetric

techniques and concluded that the pyrolysis behavior of whole

wood reflects the sum of the thermal responses of its three

major components. They also discuss the chemical reactions

that take place during biomass pyrolyses and used electron

spin resonance (ESR) to study the temperature dependence of

free radical formation from wood and its components. Their

ESR data showed that the free radical formation in wood is
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Table 2.2-2 Overall Product Distribution in the

Microwave Plasma Pyrolysis of Kraft

Lignin*

Product Yield (wt.%)

Char 33

Volatile Fraction** 10

Gases 54

Individual Gases(Vol.%)

Carbon Monoxide 44

Carbon Dioxide 2

Hydrogen 43

Methane 2

Ethane Trace

Acetylene 14

Higher Hydrocarbons Trace

*From Graef et al.(1981)

**Includes water, methanol, acetone, acetic acid, and
phenolic compounds.
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roughly the summation of that for its three principal constituents.

Wenzl (1970) presents a detailed review of the pyrolysis

behavior of wood constituents as well as a discussion of the pro-

duct distributions from the pyrolysis of different wood species.

Very little was mentioned about the relative thermal reactivity

of the individual wood constituents, although it was made clear

that hemicellulose is the most reactive component of wood, while

lignin is more thermally stable.

The overall rate and kinetics of the thermal decomposition

of wood have been investigated in several works. A good review

on wood pyrolysis kinetics is that of Roberts (1970) which

covers a wide variety of experimental investigations.

Most investigators have correlated the overall pyrolysis

rates using a single step, first-order expression with an

Arrenhius rate constant equation, as in equation 2.2-1.

dV _ *
- k(V -V) (2.2-1)

dt

where k = k exp (-E/RT) = Arrenhius rate constant

V = fractional weight loss for the overall reaction

V = ultimate value of V (i.e., at long times)

k = Arrenhius frequency factor

E = apparent Arrenhius activation energy

R = gas constant

T = absolute temperature.

Equation 2.2-1 can be integrated and fitted to laboratory

data to provide best fit values for the empirical parameters

k, E, and V



- 28 -

Stamm (1956) reports values for E and k0 of 29.8 kcal/

mole and 2.8 x 107 sec~1, respectively, for the pyrolysis of

Sitka spruce veneer under molten metal over a temperature

range of 167-3000C and residence times of 1 min. to 60 days.

Roberts and Clough (1963) found that values of 15 kcal/mole

for E and 1.5 x 103 sec 1 for k0 fit their weight loss data

for the pyrolysis of beech wood dowels over a temperature

range of 350-435 0C.

Roberts (1970) concluded that values of 30 kcal/mole and

7 x 107 sec 1 for E and k0 , respectively, well represented

the literature data for the pyrolysis of small wood samples

over a temperature range of 230-400 0C. In the most recent

kinetic investigation of wood pyrolysis, Thurner and Mann (1981)

found an activation energy of 25.5 kcal/mole and a frequency

factor of 7.4 x 105 sec to describe the kinetics of their

wood pyrolysis over a temperature range of 300-400 0C.

An Arrenhius plot of the above literature values for the

single step, first-order reaction model for overall wood pyro-

lysis weight loss is shown in Figure 2.2-1. This plot of the

reaction rate constant, k in equation 2.2-1, versus recipro-

cal absolute temperature shows how the reaction rates can vary

between the different investigations.

Much less is known about the kinetics of lignin pyrolysis.

Domburg and Sergeeva (1969) analyzed the thermal behavior of

sulphuric acid lignins using a derivatographic technique to

obtain activation energies for lignin pyrolysis weight loss in

the range of 17-38 kcal/mole over temperatures of 200-400 
0C for

lignin samples from different wood species. Wenzl (1970) reports
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an overall activation energy of 23.4 kcal/mole for lignin

pyrolysis and Tang (1967) obtained Arrenhius parameters of

9 kcal/mole for activation energy and 0.93 sec~
1 for frequency

factor.

The kinetic investigations discussed above provide a good

basis for further investigations of biomass pyrolysis kinetics.

Much more work is needed in the area of modelling the pyrolysis

reactions, especially in the area of lignin pyrolysis, where

very little kinetic information is available.
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3.0 Apparatus and Procedure

3.1 Sample Preparation

The sweet gum hardwood and milled wood lignin samples used

in this work were supplied by Professor H.-M. Chang at the

Department of Wood and Paper Science at North Carolina State

University. The chemical composition of the wood is shown in

Table 3.1-1 and the elemental compositions of both the wood and

lignin are included in Table 3.1-2.

The wood powder was sieved to a size range of 45-88 micron

particles. The lower limit was restricted by the captive sam-

ple screen size and the upper limit was chosen to eliminate

heat and mass transfer effects (see Appendix A-1). Great care

was taken to assure that particles below 45 micron were not

collected, because such particles would fall through openings

in the captive sample screen. This material was then dried

over silica gel dessicant for at least one month prior to use.

The milled wood lignin preparation posed a more difficult

problem, in that only a small quantity of feedstock (approxi-

mately 40 gm) was available. Attempts were made to sieve this

feedstock to obtain a 45-88 micron size fraction, as in the

analysis for wood. The lignin adhered to the sides of the

sieves and appeared to be clogging the sieve openings. This

was totally unacceptable because a major portion of the expen-

sive lignin powder would be rendered unavailable for experi-

mental runs.

The next idea was to try to approach Hajaligol's (1980)

technique of using strip forms of cellulose. A small, hand

operated catalyst pelletizing press was acquired along with
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Table 3.1-1 Chemical Composition of Sweet Gum Hardwood*
(wt. % of extractive free wood)**

Cellulose 43.2

Hemicellulose 31.1
(Xylan + Glucomannan)

Lignin (Kraft analysis) 27.3

*From Chang(1981)
**The components total slightly more than 100 percent
because the analytical methods used somewhat over-
determine the individual percentages (Andrews,1980).

Table 3.1-2 Elemental Compositions of Sweet Gum Hardwood

and Milled Wood Lignin*
(wt. % of dry material)

Carbon Hydrogen Oxygen

Sweet Gum Hardwood 49.46 6.13 44.64

Milled Wood Lignin 59.11 6.01 32.02

*Analysis performed by Huffman Laboratories, Inc.,
Wheat Ridge, Colorado.
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two 1 x 6 inch parallel plates for use in preparing flakes

from the powdered lignin. Approximately 20 mg of lignin was

placed between the plates, pressure was applied, and the

powdered lignin emerged in the form of small, thin flakes

(less than 0.1 mm thick). The lignin flakes adhered to the

parallel plates and had to be chipped off with a microspatu-

la. During this chipping process, most of the 10 mm diameter

flakes broke up into even smaller fragments; these fragments

being unacceptable for pyrolysis experiments. Thus, several

lignin pressings were needed before enough good-size flakes

were obtained to carry out a 100 mg pyrolysis run. The lignin

flakes, in spite of the problems mentioned, allowed more effi-

cient utilization of the sample than the sieving approach, and

were thus chosen as the sample configuration for the lignin

pyrolysis experiments. These flakes were dried over dessicant

prior to use.

Although the lignin flakes gave reasonable pyrolysis data,

and were not believed to cause mass and heat transfer limita-

tions, this situation is far from optimal in terms of reproduci-

bility of sample distribution on the screen and further work is

needed in this area.

3.2 Apparatus Description

The pyrolysis apparatus used in this work was a scaled-up

version of the captive sample reactor first built by Anthony

(1974) for coal pyrolysis studies. A glass version of the

original reactor design was used by Lewellen et al. (1977) to

investigate cellulose pyrolysis and was later modified by
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Suuberg (1977) to permit the determination of product distri-

butions in coal pyrolysis and hydropyrolysis studies. This

apparatus has also been used by Franklin (1980) and Cosway

(1981) for coal pyrolysis experiments. These investigations

showed that good kinetic data could be obtained for the total

weight loss and yields of individual products from coal and

cellulose pyrolysis.

The captive sample apparatus allows for the independent

control of such reaction conditions as heating rate, peak

temperature, holding time at peak temperature, and reactor

pressure over the range of operations shown in Table 3.2-1.

This reactor has the additional advantage of allowing

good thermal contact between the sample and the heating medium,

accurate measurement of the sample time-temperature history,

and near zero volatiles residence time at high temperatures and

rapid quenching of volatile products. This reactor design thus

minimizes, (but does not totally eliminate) the effects of

secondary reactions of volatile compounds and hence allows the

primary decompositions of organic materials to be more reliably

studied.

A disadvantage of Anthony's system was that it could accom-

odate only a very small quantity of pyrolysis material (on the

order of 15 mg), which resulted in even smaller amounts of pro-

ducts available for analysis. This problem was circumvented for

biomass studies by the design and construction of a large-scale

reactor (Caron, 1979) which could handle a sample size 10 times

larger than that for the previous investigations. This larger

reactor was used by Hajaligol (1980) for the pyrolysis of cellulose.
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Table 3.2-1 Variability of Pyrolysis Reaction

Conditions

Operating Parameter

Heating Rate

Peak Temperature

Holding Time at the

Peak Temperature

Pressure

Range of Control

50 to 100,000 K/s

400 to 1500 K

0 to infinity sec

0.0001 to 4.0 atm*

*A separate reactor is available for experiments at
up to 100 atm pressure.
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A schematic of the reactor system is shown in Figure 3.2-1.

The reactor is a nine inch by nine inch Corning Pyrex cylindri-

cal pipe sealed on each end by stainless steel plate flanges.

Inside the reactor are two large brass electrodes between which

a 325-mesh (45 micron) stainless steel screen containing the

sample is placed. A chromel-alumel thermocouple (0.001 inch

diameter wire, 0.003 inch diameter bead) is placed between the

folds of the screen and connected to a fast response Hewlett-

Packard 680M strip chart recorder.

The screen is heated by the circuit shown in Figure 3.2-2.

In the present study, this circuit is set to heat the screen

at a rate of 1000K/s to a desired peak temperature (up to

1500K) and immediately cooling begins. The average cooling

rate is 200K/s by natural convection and radiation.

The pyrolysis products (except hydrogen) are collected

follows. Char remains on the screen and its yield is deter-

mined gravimetrically. Tar is collected on an aluminum foil

on the bottom of the reactor, on a filter paper secured at

the reactor exit, and on the various exposed surfaces of the

reactor. The reactor surfaces are washed with preweighed

tissues soaked in a 2:1 (v:v) methanol: acetone solvent.

Some of the more volatile tar leaves the reactor with

the product gases and is condensed in the first gas trap. This

trap is a 14-inch long 3/8-inch U-shaped stainless steel tube

packed with glasswool and immersed in a bath of dry ice and

methanol at 195K. The gaseous products are recovered from the

trap by heating it to 373K and the light tars are subsequently

recovered by extraction of the glasswool with the methanol:
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Figure 3.2-1 Schematic of Captive Sample Apparatus (Hajaligol,1980)



Captive Sample Reactor Wiring Diagram (Caron, 1979).
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acetone solvent.

A second downstream trap is identical in dimensions to

the glasswool trap except that it is packed with 50/80 mesh

Porapak QS and is immersed in a liquid nitrogen bath at 75K.

This lipophilic trap collects the lighter gases (except hydro-

gen) and any liquid material not captured by the glasswool

trap.

The gases are analyzed on a Perkin Elmer Model 3920B gas

chromatograph with dual flame ionization/thermal conductivity

detectors. The trap contents were analyzed on a 12 foot by

1/4 inch, 50/80 mesh Porapak QS column temperature programmed

from 195 to 513K at a rate of 16K/min with an initial holding

time of 2 minutes. Response factors and retention times for

these conditions and a helium carrier gas flow rate of 60 cc/

min are reported in Appendix A-2.

A few runs were made to analyze the effect of peak temp-

erature on yields of hydrogen. Because hydrogen and helium

have very similar thermal conductivities, nitrogen gas had to

be used in the reactor and as the GC carrier gas in order to

detect a hydrogen signal. The other run procedures were fol-

lowed as described previously except that, instead of purging

the gaseous products from the reactor, gas samples were re-

moved through a septum at the top of the reactor with a pre-

cision syringe. These samples were injected directly into the

GC, operating isothermally at 303K with a Spherocarb 80/100

mesh, 10 foot by 1/8 inch column and a nitrogen carrier gas

flow rate of 60 cc/min. The nitrogen carrier gas gave a much

noisier GC baseline than did helium, and it was thus difficult
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to quantify the small amounts of hydrogen produced.

3.3 Run Procedure

The 325-mesh stainless steel screens were cut into 14 x

15 cm rectangular strips and folded over twice. The result

(after trimming) was a 4.5 x 14 cm screen with three layers

of stainless steel mesh. Each screen was prefired in a heli-

um atmosphere at 1300K for a few seconds to clean off any

residual cutting oil.

Approximately 100 mg of sample (45-88 micron particles

for wood runs and 5-10 mm flakes for lignin runs) were spread

evenly on the bottom layer of a preweighed screen and stored

overnight in a petri dish full of silica gel dessicant. The

screen was then weighed several times until an equilibrium

weight was reached. This degree of care was also taken with

the aluminum foil and the reactor exit filter and nut. Satis-

factory equilibrium weight was achieved when successive

weighings differed by less than 0.1 mg.

The aluminum foil, filter and nut were secured on the

bottom of the reactor and the screen was carefully clamped

between the two electrodes by tightening the wing nuts which

forced the two electrode pieces together. The thermocouple

was carefully placed between the top two layers of the screen

and the reactor vessel was bolted shut. The reactor was then

evacuated to 0.1 mm Hg and flushed 4 or 5 times with helium

gas. The helium was prepurified by passing it through a lipo-

philic trap at 75K. The reactor pressure was then brought to

5 psig, the temperature recorder was turned on, and the screen
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was heated to the desired peak temperature and immediately

allowed to begin cooling.

The reactor atmosphere was allowed to become stagnant

for up to 10 minutes after the reaction so that most of the

tar produced would settle on the aluminum foil. After this

settling period, the reactor was gently pressurized to its

maximum allowable pressure of 15 psig and the gases were

purged from the reactor through the traps at a flow rate of

15 cc/min for at least one hour. Running the purge cycle at

15 psig inhibited air leakage into the system, which could

create problems in the GC analysis if not controlled.

The screen, foil, and filter paper were weighed to get

the char yield and some of the tar weight. Additional tar

was obtained by wiping the reactor surfaces with two pre-

weighed, predried Kimwipe tissues soaked in a 2:1 (v:v) meth-

anol:acetone solvent. The tissues were predried in small

petri dish dessicators in order to limit the effects of

atmospheric moisture and two tissues were used because it was

found that not all of the wood and lignin pyrolysis tars were

collected with just one tissue. These tissues were placed in

a fume hood for one hour to evaporate the solvent and were

then placed back in the petri dish dessicators until an equili-

brium weight was reached.

A control tissue was used with the run tissues to monitor

the effectiveness of the tissue weighing procedure. The tis-

sue weights rarely changed by more than ±0.5 percent by weight

of tissue (±2 mg). However, it is important that the dessi-

cant be changed every 2-3 days for effective moisture control.
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The contents of the two traps were analyzed by gas chromato-

graphy. The glasswool trap was also extracted with about 10

ml of methanol:acetone solvent to collect light tars that may

have condensed there and not been injected into the GC.

Samples of lignin, wood, and selected tars and chars were

sent to Huffman Laboratories, Inc., Wheat Ridge, Colorado for

C, H, and 0 elemental analysis. Some elemental analysis was

also performed in-house by Rau (1981).

3.4 Experimental Error Analysis

Each weighing had associated with it a maximum probable

uncertainty of 0.1 mg. According to Shoemaker et al. (1974),

the limit of error in the difference between two weighings is

equal to T times the limit of the error in a single weighing.

Thus, the error in the weight of a wood or lignin sample is

approximately ±0.14 mg. This error is propagated to the char

analysis, giving an uncertainty in char yield of ±0.14 per-

cent by weight of wood or lignin when 100 mg samples are

pyrolyzed.

Assuming an error of 0.1 mg in each weighing for tar

analysis and a 2 mg uncertainty in weight for each tissue weigh-

ing due to moisture effects, a random error analysis (see Appen-

dix A-3) leads to an error in tar yield of ±3 to 5 percent by

weight of wood or lignin. While the present tar data showed

reasonable precision, it is obvious that there is still room

for improvement in the tar collection procedure. This error is

believed to account for some of the low material balances in the

wood runs.
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The products that are analyzed by gas chromatography are

subject to calibration uncertainties of 1 to 3 percent by

weight of component being measured. In addition, tailing of

the water peak is thought to yield errors of up to 30% by

weight of each component which is analyzed after water. How-

ever, the collective weight of these components is so small

that the error in percent by weight of wood or lignin is less

than 4%.

Some amount of air leaks into the system and thus creates

an uncertainty in the carbon monoxide GC analysis due to the

fact that oxygen and CO have similar retention times on the

Porapak QS GC column. This interference was minimized by

increasing the system pressure during purging to reduce the

amount of air leakage and by slightly altering the GC analysis

temperature program to allow better resolution between oxygen

and carbon monoxide peaks. The amounts of oxygen correspond-

ing to typical air leaks would cause an error of approximately

3 percent by weight of carbon monoxide or about 0.5 wt. % of

wood or lignin.

The uncertainty of the thermocouple readings was found

by Hajaligol (1980) to be ±15K in the range of interest of this

work.
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4.0 Results and Discussion

4.1 Sweet Gum Hardwood

The data reported in this section are for the pyrolysis

of 45-88 micron-sized particles of sweet aum wood. Data on

the yields and compositions of the products of sweet gum

wood pyrolysis were obtained under the reaction conditions

specified in Table 4.1-1. These data are presented in Figures

4.1-1 and 4.1-3 through 4.1-16 with all yields being expressed

as a percent by weight of dry wood. The curves in Figures

4.1-1 through 4.1-16 were drawn by hand in order to illustrate

the trends in the data.

Figure 4.1-1 presents the results for the yields of char,

tar, and gas (including water). Under the conditions of Table

4.1-1, decomposition of the wood is first observed at about

600K and increases with temperature until 93 percent of the

wood is converted to volatile material at 950K. Above this

temperature, the char yield remains constant at 7 wt. %. It

is apparent that most of the sample weight loss occurs between

700 and 900K.

Tar and gas products are formed at the same initial rate

starting at 600K but the production of tar becomes much great-

er as the peak temperature is increased above 700K. The tar

yield goes through a maximum of about 55 wt. % at 850-950K and

approaches an asymptotic yield of 46 wt. % as temperature in-

creases. The decrease in tar yield at temperatures above 950K

is believed to arise from secondary cracking reactions of the

tar to yield light volatiles.

The secondary cracking of biomass tars to form light vola-
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Table 4.1-1 Reaction Conditions for Sweet Gum

Hardwood Pyrolysis

Heating Rate 1000 K/s

Peak Temperature 600 - 1520 K

Holding Time at the O s

Peak Temperature

Reactor Pressure 5 psig

Reactor Environment Helium
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tiles was also observed in Hajaligol's cellulose pyrolysis

studies (Hajaligol, 1980). Figure 4.1-2 includes Hajaligol's

results for the pyrolysis of cellulose filter paper strips

under conditions similar to those of this work.

The reason for the termination of the tar secondary

cracking reactions above 1200K is not altogether clear. It is

possible that biomass pyrolyses produce two distinct kinds of

tar, one that is reactive and one that is unreactive. As temp-

erature increases above 950K, the reactive tar cracks to yield

light volatiles while the unreactive tar remains intact. Most

of the reactive tar is converted to either light volatiles or

unreactive tar by 1200K. This phenomenon of the formation of

two different kinds of tars has been seen in other biomass py-

rolysis studies (Hajaligol, 1980; Wenzl, 1970; Stamm and Harris,

1953).

Tars produced from biomass pyrolyses are known to be

highly aromatic in nature, and it is possible that the tars

formed below 900K are highly substituted aromatic compounds

that undergo cleavage reactions at higher temperatures. Once

all of the available side chains have been removed by 1.200K,

the tars will not undergo further reactions. The validity of

this explanation for the tar yield behavior will be borne out

in future work on the qualitative and quantitative understand-

ing of biomass pyrolysis tar chemistry.

The effects of peak temperature on the yields of individ-

ual gaseous products from wood pyrolysis are shown in Figures

4.1-3 through 4.1-16. These data are presented in the order

in which the corresponding compounds elute from the gas
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chromatograph. The ultimate yields of these products and the

corresponding peak temperatures at which these yields occur

are summarized in Table 4.1-2.

Figure 4.1-3 shows the yield of carbon monoxide as a

function of peak temperature. Carbon monoxide first appears

at about 800K and reaches its asymptotic value of 17 wt. %

near 1200K. Since significant additional amounts of CO are

produced at temperatures above 950K (the temperature at which

the char weight becomes constant), it is concluded that car-

bon monoxide is a major product of the secondary cracking

reactions of the tar. The amount of CO produced above 950K

(about 8 wt. %) accounts for a good deal of the 9 wt. % de-

crease in tar yield beyond 950K. At temperatures greater than

900K, Co is by far the most abundant gaseous product from

sweet gum hardwood pyrolysis under the present conditions.

The effect of peak temperature on the yield of methane is

shown in Figure 4.1-4. As with CO, methane production starts

at BOOK and increases rapidly with temperature. Methane yield

also continues to increase at temperatures above 950K, indicat-

ing that it is a product of secondary tar cracking, and accounts

for another 1 wt. % of the tar consumed above 950K. However,

unlike Co, methane yield continues to increase with increasing

temperature even above 1200K. The maximum measured yield of

methane was 2.3 wt. % at 1520K.

The stainless steel screen used to contain the pyrolysis

sample limits the maximum peak temperature to not more than

1550K. Above this temperature, the screen begins to degrade.

It would be useful to obtain higher peak pyrolysis temperatures
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Table 4.1-2 Yields of Individual Gaseous Products From

Sweet Gum Hardwood Pyrolysis

Estimated
Ultimate Yield Approximate Peak

Product (wt.% of dry wood) Temperature (K)t

Carbon Monoxide 17.0 1200

Methane 2.3* 1520*

Carbon Dioxide 6.1 950

Ethylene 1.3* 1520*

Ethane 0.17 950

Water 5.1 900

Formaldehyde 2.0 900

Propylene 0.42 950

Methanol 1.0-2.0 **

Acetaldehyde 1.4 900

Butene + Ethanol 0.4-0.8 **

Acetone + Furan 0.7-1.1 **

Acetic Acid 1.0-2.0 **

Misc. Oxygenates 0.5-0.9 **

Hydrogen < 1.0 **

t Approximate temperature at which the product yield becomes
constant.

* Yield still increasing as temperature increases.

** Insufficient data to determine.
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in order to establish whether or not the yield of methane

reaches a plateau. This may be made possible by using higher

melting point metals (such as tungsten or molybdenum) as the

screen material in future studies.

Figure 4.1-5 illustrates the yield of carbon dioxide.

Measurable quantities of carbon dioxide are found at tempera-

tures as low as 600K. The carbon dioxide yield levels off at

6 wt. % near 950K, suggesting that it is probably produced

mainly from the direct degradation of the wood particles and

that the secondary cracking reactions contributing to CO and

methane yields do not furnish much of the produced carbon

dioxide.

Figure 4.1-6 shows the yield of ethylene as a function of

peak temperature. Its behavior is very similar to methane.

Ethylene is produced starting at 800K and increases steadily

with temperature. At 950K there is an abrupt change in the

slope of the ethylene curve, and its yield increases more

slowly with further temperature increases. The maximum yield

measured for ethylene was 1.4 wt. % at 1520K, but this does

not appear to be an asymptotic value. This behavior indicates

that the reactions that produce increasing amounts of methane

above 950K may also be responsible for the increasing yields

of ethylene.

The production of ethane is illustrated in Figure 4.1-7.

Measurable ethane yield is seen at 800K, and a plateau of 0.17

wt. % is reached at 950K. Although ethane is not evolved

until 800K, its behavior is similar to that of carbon dioxide

in that the yield has just about levelled off at the tempera-

ture where the asymptotic char yield is first attained (950K).
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This suggests that ethane is also formed primarily by the

pyrolysis of wood, although it may be evolved via different

chemical pathways than the carbon dioxide.

The yields of chemical (non-moisture) water are shown

in Figure 4.1-8. The water data exhibit somewhat more scatter

than the previous components, and this has been attributed by

Cosway (1981) to the fact that the water peak exhibits severe

tailing during the GC analysis. Even with this scatter the

trend of the data is fairly certain. Water is evolved immedi-

ately after decomposition starts. This observation supports

the postulate that the major pathways for water formation are

dehydration and depolymerization reactions, which can occur

at low temperatures (Hajaligol, 1980). The water yield pla-

teau of 5.0 wt. % is reached at 900K. This behavior is simi-

lar to that of carbon dioxide which is also believed to be a

primary product.

Figure 4.1-9 displays the formaldehyde data. The data

scatter for this and other light oxygenated compounds is more

pronounced because these products elute from the GC detector

in the tail of the water peak. The HCHO data level off at a

yield of 2 wt. % near 900K and are very similar to the water

data.

Propylene is evolved in a manner that closely parallels

the yield behavior of ethane. Figure 4.1-10 shows that pro-

pylene production begins at a peak temperature near 800K,

rises extremely rapidly between 850 and 900K, and levels off

at its ultimate yield of 0.42 wt. % near 950K. The propylene

data exhibit some scatter, which is probably the consequence
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of occasional water interference on the GC. However, the

overall precision in these data is generally quite good and

may be attributed to the fact that propylene is collected

and analyzed in the downstream lipophilic trap, while most

of the water is collected in the upstream glasswool/dry ice/

methanol trap and is analyzed separately.

Figures 4.1-11 through 4.1-16 (with the exception of

Figure 4.1-12) have such a high degree of data scatter that

it is difficult to ascertain what trends, if any, are followed.

In addition to the uncertainty created by the tailing of the

water peak in the GC analysis, minute amounts of residual

methanol/acetone solvent in the system can cause extremely

large errors in the measured yields of methanol and acetone/

furan. A residual quantity of acetone on the order of 0.001

ml would create an uncertainty of 100%. These data for meth-

anol (Figure 4.1-11), butene and ethanol (Figure 4.1-13),

acetone and furan (Figure 4.1-14), acetic acid (Figure 4.1-15),

and miscellaneous oxygenated compounds (Figure 4.1-16) are

included for the sake of completeness and to show the degree

of uncertainty with these compounds. Some of the high temp-

erature runs have a higher degree of reliability than others,

which allows the ultimate yields to be estimated. These

estimates are included in Table 4.1-2.

The acetaldehyde data of Figure 4.1-12, while fluctuating

about the average by about 30 percent by weight of acetal-

dehyde at higher temperatures, still exhibit a discernible

trend. Evolution begins at 700K and levels off to a yield of
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1.4 wt. % near 900K.

The fact that, unlike many of the light oxygenated com-

pounds, most of the acetaldehyde produced (up to 85 percent)

is collected in the downstream lipophilic trap, and is thus

relatively shielded from the water tailing GC phenomenon,

gives further credence to the explanation given above for the

good precision of the propylene data.

A brief investigation of the effects of peak temperature

on the yield of hydrogen from wood pyrolysis ran into several

problems, mainly with the gas chromatograph. The ultimate

yield of hydrogen is believed to be not more than 1.0 wt. %,

but this value could be somewhat lower.

4.2 Milled Wood Lignin

Data on the effect of peak temperature on the yields of

individual components from milled wood lignin flakes are

presented in this section. The data were obtained under con-

ditions similar to those for sweet gum hardwood pyrolysis

presented in the previous section. The lignin pyrolysis data

are displayed in Figures 4.2-1 through 4.2-15 with all yields

being expressed in percent by weight of dry lignin. The

curves in these figures were drawn by hand to represent trends

in the data.

Figure 4.2-1 presents the effect of peak temperature on

the yields of char, tar, and gas (including water), from

milled wood lignin pyrolysis. As with wood pyrolysis, deco-

sition of the lignin begins near 600K. The char yield

reaches an asymptote of 14 wt. % at about 1000K with most of
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the weight loss occurring between 700 and 900K.

Between 600 and 700K, the yields of tar and gaseous prod-

ucts increase with temperature at about the same rate. At

peak temperatures greater than 700K, the tar yield becomes

increasingly greater than the gas yield until about 950K when

the tar yield begins to decrease. As with the wood pyrolysis

behavior, this decrease in tar yield at 950K is accompanied

by an increase in gas yield without further decrease in char

yield, indicating that the lignin pyrolysis tars are cracked

to light volatile compounds.

The lignin tar maximum yield is approximately 53 wt. %

and occurs over the peak temperature range of 850-950K. The

lignin tar asymptotic yield is achieved near 1150K and is

about 47 wt. %. When comparing the tar maxima of the wood,

cellulose, and lignin pyrolysis experiments, the lignin tar

maximum appears to be somewhat broader and flatter than

either the wood or cellulose maxima. This may be indicative

of the fact that lignin is a more thermally stable compound

than either wood or cellulose (Pearl, 1967), and that lignin

tars may be more resistant to secondary cracking reactions.

However, scatter in the tar data makes it difficult to formu-

late any rigid statements concerning the relative thermal

degradation behavior of tars from the pyrolysis of wood and

wood constituents.

The lignin pyrolysis gas yield reaches a plateau near

1150K at a value of approximately 36 wt. %. The gas yield

increases smoothly with temperature to this plateau without

the abrupt increase in yield corresponding to secondary tar
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cracking that was witnessed for both the wood and the cellulose

pyrolysis gas yields. This may be further indication of the

relative thermal stability of lignin pyrolysis tars.

The individual gas product yields obtained from the pyro-

lysis of lignin flakes at peak temperatures ranging from 600K

to 1450K are included in Figures 4.2-2 through 4.2-15. Table

4.2-1 contains the ultimate yields of the individual gas

components along with the approximate peak temperatures at

which these yields are achieved.

Figure 4.2-2 presents the effect of peak temperature on

the yield of carbon monoxide from lignin pyrolysis. Carbon

monoxide is first produced at about 750K and its yield in-

creases rapidly with peak temperature to 16 wt. % at about

1100K. Above this peak temperature, the CO yield rises more

slowly with increasing temperature, attaining a yield of about

19 wt. %, but no plateau, at 1440K. Since total weight loss

from lignin seems to be constant above 1100K, these observa-

tions suggest that CO is evolved from both the primary decom-

position of lignin and from secondary cracking of its pyro-

lysis tars. The CO formed from 950 to 1100K, the temperature

range over which most of the tar decrease occurs, amounts to

about 7 wt. %. The decrease in tar over this range is

approximately 8 wt. %, which is consistent with the picture

that much of the decomposing tar goes into CO.

The pyrolysis yield data for methane production are in-

cluded in Figure 4.2-3. The shape of the methane yield curve

is almost identical to the CO yield curve, although on a

somewhat smaller scale. Methane production begins near 750K,
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Table 4.2-1 Yields of Individual Gaseous Products From

Milled Wood Lignin Pyrolysis

Estimated
Ultimate Yield Approximate Peak

Product (wt.% of dry lignin) Temperature (K)t

Carbon Monoxide 19.0* 1440*

Methane 3.2* 1440*

Carbon Dioxide 4.1* 1440*

Ethylene 0-9* 1440*

Ethane 0.29 1100

Water 3.8 900

Formaldehyde 1.4 900

Propylene 0.27 1100

Methanol 1.7 900

Acetaldehyde 0.85 900

Butene + Ethanol 0.3-0.8 **

Acetone + Furan 0.2-0.4 **

Acetic Acid 0.1-0.3 **

Misc. Oxygenates 0.1-0.3 **

t Approximate temperature at which the product yield becomes

constant.

* Yield still increasing as temperature increases.

** Insufficient data to determine.
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increases steadily to 1000K, and begins to level off but does

not reach a constant value. The methane yield at 1000K is

about 2.7 wt. % while at 1440K is close to 3.2 wt. %. This

0.5 percent by weight of lignin increase in yield from 1000K

to 1440K is approximately a 19 wt. % increase based on the

methane yield, almost exactly the same weight percentage in-

crease as for CO over the same temperature range. On a molar

basis, the increase corresponds to approximately two (1.7)

moles of methane per mole of CO.

The effect of peak temperature on the yield of carbon

dioxide is shown in Figure 4.2-4. As with wood, carbon diox-

ide elution from lignin pyrolysis occurs at temperatures much

lower than for either methane or carbon monoxide. However,

unlike wood pyrolysis, where the yield of carbon dioxide be-

comes asymptotic when there is no further weight loss, the

behavior of the carbon dioxide yield from lignin pyrolysis

above 1000K is very similar to that of methane and CO. Carbon

dioxide yield increases from 3.6 wt. % at 1000K to 4.1 wt. %

at 1440K, an increase of 17% by weight of carbon dioxide (0.3

percent on a molar basis). This corresponds roughly to half

a mole of incremental carbon dioxide formed for each incre-

mental mole of CO formed over this temperature range.

Figure 4.2-5 presents the data for ethylene production

from lignin pyrolysis. These data are similar in behavior to

those of CO and methane in that ethylene is first detected

near 750K and increases steadily with increasing temperature

while exhibiting a noticable change in rate at about 1000K.

Although the ethylene data are somewhat scattered due to the
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small absolute quantities produced, there still appears to

be an increase in ethylene yield from 1000K to 1440K on the

order of 20 percent based on ethylene yield; from 0.75 wt. %

at 1000K to 0.9 wt. % at 1440K.

Ethane yield from lignin pyrolysis as a function of

peak temperature is displayed in Figure 4.2-6. This yield

curve is similar in behavior to the curve for ethane pro-

duction from wood pyrolysis in the sense that measurable

amounts of ethane are first detected at 750-800K and an appar-

ent asymptote is reached near 1000K. The approximate asym-

totic yield of 0.29 wt. % for ethane from lignin pyrolysis is

somewhat greater than that from wood pyrolysis, which was 0.17

wt. %.

Figure 4.2-7 presents the yields of chemical water. As

with the water data from wood pyrolysis, there is a large

amount of experimental scatter; approximately 25 percent based

on water yield. Lack of data at temperatures below 600K pre-

cludes identification of the threshold temperature for water

production from lignin under the present reaction conditions.

The water yield plateau of 3.8 wt. % is reached by around 900K,

which is well below the temperature where secondary reactions

influence tar production. This suggests that water is formed

mainly as a primary product of lignin thermal degradation.

Klein and Virk (1981) have predicted an ultimate water yield

of 6 wt. % from lignin pyrolysis based on model compound

studies. The differences may be attributed to the fact that

their studies were carried out under different reaction con-

ditions than those of this work.



- 79 -

1000 1200 1400
PEAK TEMPERATURE (K)

Figure 4.2-6 Ethane Yield Fran Milled Wood Lignin

Pyrolysis.

0.40

0.35

0.30

0.25

0.20

z
z
CD
*-*6

0-'

I I I I I

0

m m

0 .15

0.10

0.05

0.00
600 800



- 80 -

PEAK TEMPERATURE (K)
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Figure 4.2-8 shows the yield of formaldehyde from lignin

pyrolysis. The yield behavior with increasing temperature is

similar to that of formaldehyde from wood pyrolysis. Formal-

dehyde is evolved below 600K and reaches an asymptotic yield

of 1.4 wt. % by 900K.

The lignin pyrolysis yield of propylene is shown in Figure

4.2-9. Propylene production begins at a peak temperature near

800K and exhibits a rapid increase in the temperature range

between 850 and 950K. The ultimate yield of propylene is

approximately 0.27 wt. %, and is achieved by 1100K.

The highly scattered yield data for the oxygenated com-

pounds from wood pyrolysis illustrated the need for improve-

ments in the experimental procedure. As was pointed out

previously, residual amounts of methanol/acetone solvent in

the system could cause major experimental uncertainties in

the yield data of these two compounds. With this in mind,

extreme care was taken to clean the reactor vessel and gas

phase product traps to a higher degree than obtained previously.

One modification to the cleaning procedure between runs was to

place the gas traps in an oil bath maintained at 425K rather

than using a boiling water bath at 373K. Purified helium was

then passed through the traps at a flow rate of 15 cc/min for

up to 3 hours.

The above alteration in the trap cleaning procedure

appears to have been successful. This is evidenced by the

methanol yield data presented in Figure 4.2-10. While some

degree of scatter is observed, the data behave much more

uniformly than the methanol data from wood pyrolysis (Figure
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4.1-11). The data trend is very similar to that of formalde-

hyde, with methanol production starting below 600K and reach-

ing a plateau of 1.7 wt. % near 900K. Iatridis and Gavalas

(1979) obtained an ultimate methanol yield of 2 wt. % from

their studies of Kraft lignin pyrolysis in a reactor of simi-

lar configuration to the present one. The close correlation

with these results is encouraging. The differences are prob-

ably within the combined experimental uncertainties of the

two studies although they could also be attributed to the

fact that Iatridis and Gavalas pyrolyzed Kraft lignin rather

than milled wood lignin.

Figure 4.2-11 presents the data on acetaldehyde yields

from lignin pyrolysis. Acetaldehyde production begins at

about 700K and levels off at 0.85 wt. % near 900K. This

behavior is characteristic of both formaldehyde and methanol

as well as acetaldehyde which may indicate that these oxygen-

ated compounds are formed in lignin pyrolysis via similar

chemical pathways.

The data presented in Figures 4.2-12 through 4.2-15 for

butene plus ethanol, acetone plus furan, acetic acid, and

miscellaneous light oxygenated compounds, respectively, exhibit

scatter on the order of the scatter observed in the wood pyro-

lysis data for these same components. Even with the great care

taken to remove residual methanol/acetone solvent from the

system, the acetone and furan data in Figure 4.2-13 exhibit

sufficient scatter to make the discernment of any definitive

data trend very difficult. Still, the sum of the ultimate

yields of these components is at most 2 wt. % and with this

fact in mind, coupled with the water tailing CG phenomenon,
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the level of data scatter is not surprising.

4.3 Material and Energy Balances

The results from the elemental analyses performed by

Huffman Laboratories, Inc. are shown in Table 4.3-1. High

temperature char elemental analyses were not obtained because

not enough material could be scraped off of the captive sam-

ple screens. The personnel at Huffman Labs attempted to

analyze the char elemental content by inserting a complete

screen into their apparatus, but analytical difficulties were

encountered and little information was obtained.

The results in Table 4.3-1 are expressed graphically in

Figures 4.3-1 through 4.3-4 as the percent of element present

in wood or lignin retained in the tar or char. The elemental

retentior behavior for char is similar for both the wood and

lignin; about 50% of the carbon in wood (Figure 4.3-2), and

lignin (Figure 4.3-4) is volatilized by 800K. The tar elemnental

retention curves show maxima for both wood (Figure 4.3-1) and

lignin (Figure 4.3-3) which reflect the maxima in tar yields

for these two materials.

Table 4.3-2 presents an elemental, total mass, and energy

balance for sweet gum wood pyrolysis. Since some of the light

volatile data are highly scattered, this analysis was per-

formed by considering the asymptotic yield data rather than

the data from a specific experimental run. For the purposes

of this rough analysis the butene and ethanol, acetone and

furan, and miscellaneous oxygenated compound fractions were
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Table 4.3-1 Elemental Compositions of Sweet Gum Wood,

Milled Wood Lignin

Tars and Chars

and Selected Pyrolysis

Sweet Gum Wood

Tar

Tar

Tar

Char

Char

Milled Wood Lignin

Tar

Tar

Tar

Tar

Char

Char

Char

97

99

85

100

88

93+97

84

770

970

1020

1440

580

800

1350

34.4

52.6

51.4

43.1

96.9

50

14.5

59.1 6.0 32.0

54.2

59.9

62.0

62.1

59.8

62.1

91.3

5.4

5.5

5.2

5.4

5.8

5.5

30.5

21.9

24.0

29.4

29.0

Run

32

78

64

36

73

Temp
(K)

770

895

1355

610

810

Yield
(wt.%)

22.9

52.5

50.2

91.0

53.2

C

49.5

52.6

53.9

55.0

50.1

51.5

H

6.1

6.1

5.9

6.2

6.2

6.1

0*

44.6

32.3

37.1

32.3

42.2

39.7

* Oxygen elemental analysis obtained from a Coulometrics

carbon dioxide coulometer (Raines,1981).
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Table 4.3-2 Elemental, Total Mass, and Energy Balances For

Sweet Gum Wood Pyrolysis

Approx.
Ultimate

Yield
Component (wt. %)

Heat of
Combustion

C H 0 (Btu/lb)*

% of Wood
Energy in
Component

Wood

Char

Tar

CO

CH 
4

CO
2

C2 Hg

C2H6
HO2H20
HCHO

C3H6
CH 3OH

CH3 CHO

Butene+
Ethanol

Acetone
+Furan

Acetic
Acid

Misc.
C.H.O.

Total

Closure

- 49.5 6.1 44.6

7.0 7.0 - -

46.0 26.0 3.7 16.3

17.0

2.3

6.1

1.3

0.2

5.1

2.0

0.4

1.5

1.4

0.6

0.9

1.5

0.7

94.0

94%

7.3 - 9.7

1.7 0.6

1.7 - 4.4

1.1 0.2 -

0.16 0.04 -

- 0.6 4.5

0.8 0.1 1.1

0.3 0.1 -

0.6 0.2 0.7

0.8 0.1 0.5

0.3 0.1 0.2

0.6 0.1 0.2

0.6 0.1 0.8

0.6 0.1 -

49.5 5.9 38.6

100% 97% 86%

8450

14660

11470

4340

23860

21630

22300

8190

21000

9770

11400

12780

13280

6270

18020

100.0

12.1

62.4

8.7

6.5

3.3

0.5

1.9

1.0

1.7

1.9

0.9

1.4

1.1

1.4

104.8

105%

* All heats of combustion are from the "Handbook of Chemistry
and Physics" (1976), except for wood, char, and tar which
are calculated from equation 4.3-1.
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assumed to be ethanol, acetone, and benzene, respectively.

Also, since no high temperature char analysis was available,

the char was assumed to be 100% carbon. Heats of combustion

for the individual gas products were extracted from the "CRC

Handbook of Chemistry and Physics" (1976) and the values for

wood, char, and tar were calculated from (Mason and Gandhi,

1980),

Q = 146.58(C) + 568.78(H) - 51.53(0) (4.3-1)

where Q is the gross heating value in Btu/lb on a dry basis

and (C), (H), and (0) are the respective contents of carbon,

hydrogen, and oxygen in weight present.

The balances for total mass, carbon, and hydrogen from

wood pyrolysis are excellent while the oxygen balance is

somewhat low. The low oxygen balance may be due to the assump-

tions that the char and miscellaneous oxygenated compounds con-

tain no oxygen, or may be a result of errors in the elemental

analysis of char, tar, and wood.

The asymptotic yield energy balance is quite revealing in

that only 12.1% of the wood energy content is retained in the

char, while tar accounts for over 62% of the wood energy con-

tent. The product gases account for another 30%. Carbon

monoxide and methane together contain more than half of the

gaseous heating value. Although the asymptotic CO yield is

over seven times greater than that of methane, methane accounts

for almost as much of the energy of the wood as does CO.

The fact that the energy content of the individual pro-

ducts accounts for more energy than was present in the original

wood is not surprising given the experimental errors and
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assumptions made in this analysis. However, it should be

noted that the energy content of the products could be either

greater or lower than that of the wood depending on whether

the pyrolysis reaction is endothermic or exothermic. In any

case, the heat of pyrolysis is thought to contribute very

little to the energy balance, and the results reported in

Table 4.3-2 support this postulate.

Similar elemental, total mass, and energy balances were

applied to milled wood lignin pyrolysis, and the results are

shown in Table 4.3-3. The heating values for lignin, tar,

and char were calculated from Equation 4.3-1. The total mass,

carbon, hydrogen, and oxygen balances are excellent. In lig-

nin pyrolysis, it is seen that about 20% of the lignin energy

content remains in the char, which reflects the lower degree

of lignin volatilization. About 57% of the lignin energy is

contained in the pyrolysis tars and 23% is contained in the

gases. As with the wood, carbon monoxide and methane account

for about 15% of the lignin energy. The methane fraction

again accounts for almost as much energy as does CO, even

though the CO yield is almost six times greater than the

methane yield.

4.4 Modelling of Pyrolysis Kinetics

An important tool used for describing the behavior of

organic material under pyrolysis conditions is the kinetic

model. Modelling efforts in coal and biomass pyrolysis studies

have produced schemes that vary in sophistication from simple

models for overall material weightloss to models which incor-
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Table 4.3-3 Elemental, Total Mass, and Energy Balances For

Milled Wood Lignin Pyrolysis

Component

Approx.
Ultimate

Yield
(wt. %) C H 0

Heat of
Combustion
(Btu/lb)

% of Lignin
Energy in
Component

Lignin

Char

Tar

CO

CH 
4

CO
2

C2Hg

C2H6

H20
HCHO

C3 H6
CH3 OH

CH3 CHO

Butene+
Ethanol

Acetone
+Furan

Acetic
Acid

Misc.
C.H.O.

Total

Closure

14

47

- 59.1 6.0 32.0

.0 13.3 0.3 0.4

.0 31.1 3.5 12.4

19.0

3.2

4.1

0.9

0.3

3.8

1.4

0.3

1.7

0.9

0.6

0.3

0.2

0.2

97.9

98%

8.1 - 10.9

2.4 0.8

1.1 - 3.0

0.8 0.1 -

0.2 0.1 -

- 0.4 3.4

0.8 0.1 0.5

0.26 0.04 -

0.6 0.2 0.9

0.5 0.1 0.3

0.3 0.1 0.2

0.2

0.1

- 0.1

- 0.1

0.18 0.02

60.0 5.8 32.2

101% 96% 101%

10430

15000

12580

4340

23860

21630

22300

8190

21000

9770

11400

12780

13280

6270

18020

* All heats of combustion are from the "Handbook of Chemistry

and Physics" (1976), except for lignin, char, and tar which

are calculated from equation 4.3-1.

100.0

20.1

56.7

7.9

7.3

1.9

0.6

1.1

0.6

1.6

1.0

0.7

0.4

0.1

0.3

100.3

100%
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porate complex physical and chemical mechanisms.

The data obtained in this study were correlated using

a single-step, first order reaction model for the yield of

each individual product. This model was chosen for its

simplicity, its usefulness in engineering calculations, and

its history of successful utilization in other studies of

this nature (Hajaligol, 1980; Franklin, 1980; Suuberg, 1977;

Thurner and Mann, 1981). A non-linear least squares program

was used to fit the parameters to the experimental data. For

the ith component,

dVi= (V *_V ) k9 exp -h) (4.4-1)

where k . is the pre-exponential factor and Ei is the apparent

activation energy for component i. In integrated form, the

model becomes

* t
V. -V./

In = - k .exp - dt (4.4-2)

V. ~~

Data for the yield, Vi, and the time-temperature history,

T = f(t), are fed to the computer which then integrates the

data over each time-temperature history using initial guesses

for the three unknown parameters k9 , E, and V . Optimum

parameters (i.e. those that minimize the sum of squared errors

between calculated and observed yields) are then obtained by

a non-linear least squares regression procedure.

The parameters obtained from the first order reaction

model for the wood and lignin pyrolysis data are included in
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Tables 4.4-1 and 4.4-2 along with a statistical parameter

known as the standard error of the estimate in the fitting

procedure. Even though it is obvious that some of the py-

rolysis products are not formed by simple reactions, the

single-step, first order kinetic model provides a good basis

for comparison of the different data.

A kinetic analysis as described above was also performed

on Hajaligol's (1980) cellulose pyrolysis data taken from the

pyrolysis of cellulose filter paper under conditions similar

to those of this work, and the results are included in Table

4.4-3. The cellulose pyrolysis kinetic parameters in Table

4.4-3 are somewhat different than those reported by Hajaligol

(1980), which may be a result of the different data reduction

techniques used by the different investigators. The computer

code used to generate kinetic parameters in the current work

was a modified version of a non-linear least squares regression

program, named POWELL, in the library of the M.I.T. Department

of Chemical Engineering computer (Franklin, 1980). This pro-

gram is an updated version of the program thought to have been

used by Hajaligol (1980) on the same computer system. As a

criterion for determining the goodness of the fit of the model

to the data, the standard error of the estimate indicates that

the POWELL data fitting procedure produces a fit to the experi-

mental data which is superior to the fit generated by the pro-

gram used by Hajaligol for all but one component analyzed (see

Appendix A-4). The kinetic parameters in Table 4.4-3 were

used in the present work because of the improved fit to the

data and for the sake of being consistent within the context
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Table 4.4-1

Kinetic Parameters for Sweet Gum Wood Pyrolysis

E (kcal/mole) logl
0k0

V* (wt.%)

standard
error of

estimate *(wt.%)

Weight Loss

Total Gases

CO

CH
4

CO
2

C2H4

C2H6

H20

HCHO

H 2O+HCHO

C3H6 O

CHI3CHO

* defined as
n

=1/~ Vj,mode1lVj exper. )2 3

where n is the number of data points

Product

16.5

11.8

14.6

16.6

14.3

19.2

23.7

11.5

12.9

11.5

42.8

21.3

4.53

2.88

3.36

3.79

3.77

4.41

5.87

3.35

3.51

3.26

11.20

5.80

92.97

41.01

17.05

1.91

5.97

1.17

0.17

5.14

1.99

7.13

0.41

1.40

7.66

2.54

2.15

0.21

0.51

0.12

0.02

0.65

0.27

0.74

0.06

0.34
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Table 4.4-2

Kinetic Parameters for Milled Wood Lignin Pyrolysis

standard
error of

Product E (kcal/mole) logl0 k0  V* (wt.%) estimate (wt.%)

Weight Loss 19.6 5.53 84.35 5.76

Total Gases 9.6 2.17 36.54 1.85

CO 16.0 3.66 18.24 1.00

CH 4  17.8 4.16 3.07 0.18

CO 2  9.7 2.23 4.01 0.26

C2 H4  20.2 4.64 0.86 0.07

C2H 6  20.7 5.03 0.29 0.03

H 20 5.8 1.59 3.74 0.31

HCHO 12.5 3.91 1.46 0.21

H 2O+HCHO 7.1 2.07 5.18 0.39

C3 H6 20.9 5.21 0.26 0.03
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Table 4.4-3

Kinetic Parameters for Filter Paper Cellulose Pyrolysis*

standard
error of

Product E (kcal/mole) log, k V*(wt.%) estimate (wt.%)

Weight Loss 25.0 6.54 95.78 4.91

Total Gases 17.6 3.97 42.22 3.02

CO 27.3 6.07 21.69 1.64

CH4  24.1 5.06 2.59 0.16

CO 2  11.8 2.35 3.76 0.23

C2H4  30.7 6.61 2.10 0.13

C2 H6  35.2 7.65 0.25 0.03

H2 0+HCHO 11.3 2.90 8.22 1.21

C3 H6 29.8 7.14 0.70 0.14
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of this report.

Some of the pyrolysis products were not analyzed with

the single-step first order kinetic model due to the degree

of uncertainty in the data. The tar yields were not analyzed

because single-reaction first order kinetics cannot predict a

maximum in yield.

The kinetic parameters were used to fit curves to the

experimental data. The modelled curves for the components

listed in Tables 4.4-1, 4.4-2, and 4.4-3 are included in Fig-

ures 4.4-1 through 4.4-9 along with the pyrolysis data. The

plots are arranged to allow comparison of the kinetic behavior

of the three materials studied with respect to generation of

each of the products analyzed.

The overall weightloss data for cellulose, lignin, and

wood pyrolyses are presented in Figure 4.4-1 along with the

curves fitted by the first order kinetic model. Cellulose is

seen to be the ultimately most volatile of the three materials,

achieving an ultimate weight loss of 96 wt. % with wood and

lignin reaching 93 and 84 wt. % respectively.

All three curves fit the corresponding data points ex-

tremely well. However, care must be taken in drawing any in-

ferences about the mechanistic meaning of this, such as con-

cluding that the reactions involved in the initial pyrolyses

of these biomass materials may be of a simple nature. This is

because the values of the activation energies for all three

materials (see Tables 4.4-1, 4.4-2, and 4.4-3) are much lower

than those generally expected for unimolecular thermal decom-

position reactions (typically 30-70 kcal/mole (Suuberg et al.,
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1978).

It is interesting to note that at temperatures below

900K, lignin and wood exhibit similar weight loss reactivity

and both exceed cellulose. Above this temperature, the

cellulose weight loss curve exceeds wood modestly and both

exceed lignin. The former behavior is contrary to the expect-

ed order of thermal reactivity for wood components, which

would be (Wenzl, 1970; Roberts, 1970)

hemicellulose > cellulose > lignin (reactivity).

The slightly lower reactivity of cellulose, as indicated

by its higher activation energy (Table 4.4-3) may be due to

the fact that a filter paper cellulose rather than natural

cellulose was pyrolyzed. Wenzl (1970) points out that dif-

ferences in the cellulose structure, characterized by the

degree of hydrolyzability of the cellulose, can influence the

product distribution in cellulose pyrolysis. It is also

known that the degree of polymerization (DP) of cellulose

varies from up to 10,000 for natural cellulose fibers to 400

for bond paper. Basch and Lewin (1973) have shown that many

of the reported literature differences in the behavior of

cellulose in vacuum pyrolysis may be attributed to differ-

ences in crystal structure and orientation as well as to vari-

ations in the degree of polymerization.

Figure 4.4-2 presents the first order kinetic models for

total gas production. Cellulose produces the most total

gases, yielding 42 wt. %. Again it is seen that the models

fit the corresponding data fairly well, even thought the gas

production above 1000K is due solely to secondary tar cracking
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reactions, and not primary degradation of the biomass (see

sections 4.1 and 4.2). It is also apparent that the wood

behavior at lower temperatures is somewhat more closely

matched by the lignin, although the lignin rises more slowly

with increasing temperature. At temperatures above 1000K,

the cellulose curve very closely approaches the wood curve.

With most of the individual gas components in Figures 4.4-3

through 4.4-9, as well as with weight loss and total gas

production, it appears that the low temperature wood pyro-

lysis behavior can be modelled by the lignin pyrolysis kine-

tics, while higher temperature behavior resembles the cellu-

lose pyrolysis results. This may be due to the cellulose

structural differences explained previously, but it may also

be an indication that the wood pyrolysis kinetics change as

temperature is increased. The phenomenon of wood pyrolysis

kinetics changing with progression of reaction has been

observed in other biomass pyrolysis studies (Roberts, 1970).

Shafizadeh and Chin (1977) report that there is no sig-

nificant interaction among the three major components during

the thermal degradation of wood. Therefore, it would not be

surprising for the wood pyrolysis behavior to vary as the

hemicellulose, lignin and cellulose fractions become active

at different temperatures. The low temperature wood pyrolysis

could resemble hemicellulose and lignin decomposition and the

high temperature wood pyrolysis could resemble cellulose de-

composition, with intermediate temperature pyrolysis behavior

being controlled by some combination of the three components.

An investigation of the hemicellulose pyrolysis behavior under
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the conditions of this study would shed light on the validity

of this argument.

Figure 4.4-3 shows the modelled and experimental yields

of carbon monoxide as a function of peak temperature. The

first-order kinetic models do not follow the data as well in

this case as for the previous two figures, especially for lig-

nin and cellulose at higher temperatures. Apart from experi-

mental error, this is most probably due to the fact that the

single-step, first-order model is trying to fit a set of data

that is obviously the result of a more complex kinetic scheme

that includes high temperature contributions from secondary

cracking of tar. Nevertheless, the data trends are followed

fairly well and it is interesting to see that both lignin and

cellulose produce more CO than wood at higher temperatures.

The ultimate (modelled) CO yields are 18.2, 21.7, and 17.1

wt. %, respectively, for lignin, cellulose, and wood. Using

the fact that this sweet gum hardwood contains about 42.5 wt.

% cellulose, 30.6 wt. % hemicellulose, and 26.9 wt. % lignin,

the limiting yield of CO from hemicellulose would therefore

not be expected to exceed 10 wt. % if additivity rules are

valid (that is, if the wood pyrolysis behavior can be simu-

lated by the weighted sum of the pyrolysis results of the

individual wood constituents).

The modelled curves for the yields of methane from lig-

nin, wood, and cellulose are given in Figure 4.4-4. Again,

the model fittings leave something to be desired, for the

reasons explained previously for CO. Lignin produced the most

methane, yielding about 3.1 wt. % while cellulose and wood

produced 2.6 and 1.9 wt %, respectively. Again assuming
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additivity, hemicellulose pyrolysis would be expected to

produce negligible amounts of methane.

Figure 4.4-5 presents the results of applying this model

to carbon dioxide yield. An interesting point is that much

more carbon dioxide is produced from wood than can be accounted

for from the weighted lignin and cellulose yields. The yields

from cellulose and lignin pyrolysis are about 3.8 and 4.0 wt. %,

respectively, and the yield from wood is 6.0 wt. %. Using the

weighted fractions from sweet gum hardwood components and

assuming additivity, a carbon dioxide yield of over 11 wt. %

would be predicted from pyrolysis of hemicellulose. This is an

extremely large percentage and it would be informative to

determine if such a yield is found experimentally. If this

experiment proves negative, and if the structural effects of

cellulose pyrolysis turn out to be minor, there may be inter-

active effects between the wood components that exert a major

effect on carbon dioxide production.

Figure 4.4-6 displays the experimental and modelled data

for ethylene production. Given the small quantities of ethyl-

ene produced for each compound, the theoretical curves fit the

data fairly well. Still, especially with the wood pyrolysis

data, reactions more complex than the first order reactions are

evidenced by the increasing yields of ethylene above 1100K.

The ultimate yields of ethylene from pyrolysis of wood, lignin,

and cellulose are approximately 1.2, 0.9, and 2.1 wt. %, re-

spectively. The predicted yield of ethylene from hemicellulose

pyrolysis would therefore be 0.2 wt. % based on additivity.

This would be ten times less than from cellulose and is surpris-
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ing since these two wood constituents are much more similar

in structure than are cellulose and lignin.

The modelled curves for ethane production fit the experi-

mental data much better than would be expected given the small

yields of ethane (Figure 4.4-7). The ethane yields from lig-

nin and cellulose pyrolysis (0.29 and 0.25 wt. %, respectively)

are both somewhat greater than the yield from wood (0.17 wt. %)

leading to a prediction that hemicellulose pyrolysis would pro-

duce very little, if any, ethane.

The first-order model curves for water plus formaldehyde

in Figure 4.4-8 are all very similar and appear to fit the

data well, in spite of the uncertainties due tothe water tail-

ing GC phenomenon (the data reported by Hajaligol [1980] are

labelled as water but are actually water plus formaldehyde due

to the inability of the GC to resolve the formaldehyde and

water peaks in a reproducible manner). The modelled activation

energies and frequency factors are all about the same for the

three materials pyrolyzed, indicating similar water formation

mechanisms. The yield of water and formaldehyde from wood

pyrolysis is 7.1 wt. % while the yields from lignin and cellu-

lose pyrolysis are 5.2 and 8.2 wt. %, respectively. Again

assuming additivity, a predicted value of 7.2 wt. % is obtained

for water and formaldehyde from hemicellulose pyrolysis, which

is not unreasonable.

The propylene data are shown in Figure 4.4-9. Cellulose

produces the highest ultimate yield, 0.7 wt. %, which is more

than twice the ultimate yield of propylene from lignin. From

an additivity calculation, the predicted yield of propylene
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from lignin. From an additivity calculation, the predicted

yield of propylene from hemicellulose would be 0.24, a yield

which is closer to that of lignin than that of cellulose.

The wood data exhibit a much sharper increase in yield with

increasing temperature than do either lignin or cellulose,

which may indicate something about the relative reactivities

of these compounds, but is difficult to interpret given the

amount of scatter in the data.

Most of the values for E and logl0 k09 in Tables 4.4-1,

4.4-2, and 4.4-3 are much lower than would be expected for

organic bond breaking reactions, but are typical of attempts

to fit single-step, first-order kinetic models to pyrolysis

data on solid organic materials of modestly complex molecular

structure. It is quite possible that higher values for each

of the parameters could fit the data just as well, as is

evidenced by the comparison of the two sets of parameters in-

cluded in Appendix A-4 for the cellulose pyrolysis models.

The approximate ultimate yields taken at around 1400K

for products from wood, lignin, and cellulose pyrolysis are

included for comparison in Table 4.4-4. Also included are

the predicted yields for sweet gum hemicellulose pyrolysis,

which are obtained from the additivity equation

V. = (V. - 0.425 V. - 0.269 V. ) / 0.306 (4.4-3)

where

Vi,H = yield of product i from sweet gum hemicellulose

pyrolysis;
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Table 4.4-4 Approximate Ultimate Yields of Individual

Products from Biomass Pyrolysis @1400K (wt.%)

Product

Char

Tar

Total Gases

CO

CH
4

CO
2

C2Hg

C2H6

H20
HCHO

H 2O+HCHO

C3 H6
CH3 OH

CH 3 CHO

Butene+
Ethanol

Acetone
+Furan

Acetic Acid

Misc. C.H.O.

Acetic Acid
+ C.H.O.

H
2

Wood

7.0

46.0

42.0

17.0

2.3

6.1

1.3

0.17

5.1

2.0

7.1

0.42

1.5

1.4

0.6

0.9

1.5

0.7

2.2

<1.0

Lignin

14.0

47.0

36.0

18.5

3.2

3.8

0.9

0.29

3.8

1.4

5.2

0.27

1.7

0.9

0.5

0.3

0.2

0.2

0.4

T**

Hemicellulose
Cellulose* (predicted)

5.0

50.0

43.0

21.7

2.5

3.4

2.1

0.26

8.1

0.66

0.92

1.5

0.3

0.8

1.2

4.0

40.0

46.0

9.2

1.2

11.9

0.54

T**

7.4

0.22

2.1

1.7

1.1

1.6

5.2

1.0

* Data from Hajaligol (1980).

** T=trace amounts expected.
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Viw = yield of product i from sweet gum wood pyrolysis;

Vilc = yield of product i from filter paper cellulose

pyrolysis;

and Vi,L = yield of product i from sweet gum milled wood

lignin pyrolysis.

The constants in equation 4.4-3 are the weight fractions of

the corresponding components in sweet gum hardwood, normalized

to 1.0. Equation 4.4-3 is based on the assumption that the

components of wood behave independently under the conditions

of wood pyrolysis. Note that the predicted yields for hemi-

cellulose pyrolysis are subject to verification of the validi-

ty of using filter paper cellulose pyrolysis product yields in

the place of yields from native cellulose pyrolysis.

The interesting points from Table 4.4-4 are the relatively

small predicted yields from CO, methane, ethylene, and ethane,

and the rather large predicted yields of carbon dioxide and

oxygenated compounds from hemicellulose pyrolysis.

The distributed activation energy model is another method

of analysis which can be used to correlate the overall pyro-

lysis weight loss data. This model assumed that the process

kinetics are described by a number of independent parallel

rate processes which have identical frequency factors but a

continuous distribution of activation energies. Anthony and

Howard (1976) assumed a Gaussian distribution of activation

energies and obtained a good correlation with their experimental

weight loss data from the pyrolysis of Montana lignite and

Pittsburgh No. 8 bituminous coal.
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Suuberg (1978) plotted the cumulative ultimate yields

for the individual products from pyrolysis of the same type

of lignite as that used by Anthony and Howard against increas-

ing activation energy obtained from the single-step, first-

order reaction model for each of the products. The slope of

the curve drawn through these points gave a distribution of

activation energies which was similar to that obtained by

Anthony and Howard (1976).

A preliminary attempt to apply Suuberg's method of

analysis to the wood pyrolysis data obtained in the present

study showed that a fairly narrow distribution of activation

energies for the total weight loss from wood pyrolysis would

be derived from the activation energies and yield data for

the individual products. Further work on applying this model

to biomass pyrolysis could be useful in understanding the

underlying phenomena contributing to the distribution of acti-

vation energies for total weight loss.

4.5 Simulation of Wood Pyrolysis

In this section, an attempt is made to simulate the wood

pyrolysis results by combining the laboratory data from the

lignin and cellulose pyrolyses. Since no data are available

on the pyrolysis of hemicellulose, it has been assumed for

this modelling study that the pyrolysis behavior of hemicell-

ulose would be similar to that of cellulose under the present

reaction conditions. This is not an unreasonable assumption

given the fact that cellulose and hemicellulose have similar

chemical structures, but is somewhat contradictory to the ob-
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servation in the previous section that the predicted ultimate

yields from hemicellulose pyrolysis based on additivity are,

in some cases, drastically different than the yields from

cellulose pyrolysis. The chemical composition of the simu-

lated wood would then be 26.9 wt % lignin and 73.1 wt. %

cellulose.

The above weight percentages were used as multiplying

factors for the lignin and cellulose modelled curves presented

in the previous section. These weighted data were added to-

gether to generate simulated yield data which were in turn

fitted with a single-step, first-order kinetic analysis using

idealized time-temperature histories (Franklin, 1980) to

obtain the rate parameters shown in Table 4.5-1 and the simu-

lated curves of Figure 4.5-1 through 4.5-9. Also included in

Figures 4.5-1 through 4.5-9 are the experimental wood pyrolysis

data and the wood pyrolysis modelled curves obtained previously.

Figure 4.5-1 shows the simulated wood weight loss results

along with those of the actual wood pyrolysis. The similarity

between the two first-order kinetic model curves is remarkable.

The simulated curve fits the experimental data almost as well

as the curve based on the experimental data itself, and the

experimental asymptotic weight loss of 93 wt. % is well matched

by the simulation, both in absolute quantity and in the temp-

erature at which the asymptote is reached. The slight dif-

ferences between simulation and experiment at temperatures

below 950K may be attributed to: 1) the assumption that hemi-

cellulose behaves as cellulose and/or 2) differences between

native cellulose and filter paper cellulose. However, the
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Table 4.5-1 Kinetic Parameters for Simulated Wood

Pyrolysis

Product

Weight Loss

Total Gases

CO

CH
4

CO
2

C2 H4

C2H6

H 2O+HCHO

C3H6

E (kcal/mole)

21.7

15.0

23.0

19.0

10.2

30.3

24.4

9.5

27.5

logl
0 k0 i

5.77

3.39

5.15

4.09

2.09

6.54

5.45

2.46

6.60

V* (wt. %)

92.75

40.67

20.78

2.72

3.83

1.17

0.26

7.41

0.58
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deviations are minor in the case of total weight loss, indi-

cating that weight loss behavior lends itself well to modelling

by this simulation method.

Explanation (1) above would seem quite logical in light of

the information reported in the literature on hemicellulose

pyrolysis. Stamm (1956) reports that Douglas Fir hemicellulose

degrades about four times as fast as the cellulose. This

higher degree of reactivity for hemicellulose would have the

effect of shifting the simulated curve to the left so that the

simulation would more closely agree with the experimental data.

The effect that the cellulose structural differences would have

on the simulated wood behavior is more difficult to assess.

Basch and Lewin (1973) point out that cellulose structures of

high crystallinity and low degrees of orientation are more

stable towards vacuum pyrolysis. They also conclude that the

rate of devolatilization of cellulose bears an inverse rela-

tionship to the square root of the cellulosic degree of poly-

merization (DP). The extent to which these properties - DP,

crystallinity, and orientation - affect the pyrolysis of

natural and filter paper cellulose under conditions pertinent

to the present study is unknown. Pyrolysis of native cellulose

in the captive sample apparatus, along with an investigation of the

cellulose structural properties, is needed.

Figure 4.5-2 shows the results of the simulation of total

gas production from sweet gum wood pyrolysis. Again it is

seen that the simulated curve underestimates the wood pyrolysis

curve across the entire temperature range of interest, although

in this case the differences between the experimental and simu-
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lated data are greater than those observed with the total

weight loss curves in Figure 4.5-1. The same explanations

given above for the deviations between experimental and simu-

lated curves for total weight loss are valid here. The

slightly larger discrepancies may be indicative of the fact

that gas yields are influenced by secondary tar cracking re-

actions at higher temperatures. Primary tars from the different

wood constituents may be affected differently by the secondary

reactions due to suspected structural differences, especially

between cellulose and lignin tars, and this effect would not

be accounted for in the additivity simulation.

Figures 4.5-3 through 4.5-9 present the simulated wood

pyrolysis results for carbon monoxide, methane, carbon dioxide,

ethylene, ethane, water plus formaldehyde, and propylene, re-

spectively. Except for the carbon dioxide behavior in Figure

4.5-5, production simulations for the individual components

from wood pyrolysis exhibit similar deviations from the experi-

mental data. At peak temperatures below about 1000K, the simu-

lated curves underestimate the product yields. Above 1000K,

the simulated curves overestimate the product yields. The

relative behavior of the simulated and experimental curves is

so simular for these six products that one is led to believe

that there is something fundamentally erroneous with one or

more of the assumptions made in the simulation of carbon monox-

ide, methane, ethylene, water plus formaldehyde, and propylene

production from wood pyrolysis.

The expected higher reactivity of hemicellulose would have

the effect of shifting the simulated curves to the left,

yielding a better comparison with the experimental data at low
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temperatures. The high temperature discrepancies could in turn

be compensated for by lower ultimate yields of the products in

question from hemicellulose pyrolysis. The fact that native

cellulose has a higher DP than filter paper cellulose could

also lower the high temperature simulation yield. Native

cellulose would have fewer end sites available per unit mass

and, if cellulose pyrolysis is more active at the ends of the

polymer, would therefore be expected to produce fewer light

volatiles.

The water plus formaldehyde simulation in Figure 4.5-8,

while demonstrating the same general trends as mentioned

above, shows a closer correlation with the experimental first-

order model than did the other individual gas products. In

sections 4.1 and 4.2, water was seen to be one of the products

that was least influenced by secondary tar cracking reactions

at high temperatures. The relatively close agreement between

experiment and simulation in Figure 4.5-8 suggests that the

simulations for the other five products (CO, methane, ethane,

ethylene, and propylene) are more strongly influenced by the

secondary tar cracking reactions and could also explain the

high temperature discrepancies between simulation and experi-

ment for these products.

The carbon dioxide modelled curves in Figure 4.5-5 bear

little resemblance to the relative trends seen between the

experimental and simulated first-order reaction model curves

for the other individual gas products. The simulated curve

grossly underestimates the experimental wood pyrolysis data

in both reactivity and ultimate yield. Hemicellulose pyrolysis
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would have to produce much larger quantities of carbon dioxide

than cellulose to compensate for the simulated yield discrep-

ancy and, while this is inconsistent with the assumption that

hemicellulose and cellulose behave similarly under pyrolysis

conditions, this would not be totally unexpected given the

structural characteristics of hemicellulose. Some hemicellu-

loses are known to contain carboxylic acid and methyl-ether

groups (SERI, 1979), which could produce substantial quanti-

ties of carbon dioxide upon thermal degradation.

An Arrenhius plot for total weight loss from wood pyro-

lysis is included in Figure 4.5-10. This figure presents the

data obtained in this work for both the experimental and simu-

lated single-step, first-order reaction models, as well as

some of the data reported in the literature. Table 4.5-2 sum-

marizes the corresponding Arrenhius parameters. The Arrenhius

plot again shows the close correlation between the wood pyro-

lysis weight loss kinetics and the weight loss kinetics pre-

dicted by the weighted sums of the lignin and cellulose

pyrolyses. The reaction rates from this work are also seen to

fall within the range of the literature data although it is

apparent that erroneous predictions can be made when attempting

to extrapolate the data of one investigation into the range of

operating conditions of a different study.
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Table 4.5-2 Single-Step, First-Order Kinetic

for Wood Pyrolysis Weight Loss

Parameters

E
(kcal/mole)

Stamm (1956)

Roberts & Clough (1963)

Roberts (1970)

Thurner & Mann (1981)

Current Work:

Experimental

Simulation

29.8

15

30

25.5

16.5

21.7

7.44

3.18

7.85

5.87

4.53

5.77

12 440-573

72 553-708

* 503-673

70 573-673

93

93

573-1373

573-1373

* Data not reported.

Temp
(K)

V*
(wt. %)log10ko
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5.0 Conclusions and Recommendations

The main conclusions of this thesis are:

1) The captive sample apparatus provides excellent data

for product distributions from the rapid pyrolysis of sweet

gum wood and milled wood lignin for conditions of atmospheric

pressure, 1000K/s heating rate, zero holding time at the peak

temperature, and peak temperatures ranging 600-1500K.

2) High degrees of devolatilization can be achieved

from the pyrolysis of sweet gum wood and milled wood lignin at

temperatures above 900K (93% weight loss for wood and 86%

weight loss for lignin).

3) Tar is the major product from the pyrolysis of sweet

gum wood and milled wood lignin at temperatures above 800K,

achieving maximum yields of 55 wt. % and 53 wt. %, respectively.

The tar fraction also accounts for most of the heating value of

the pyrolysis products (62% for wood pyrolysis and 57% for lig-

nin pyrolysis).

4) Secondary cracking of the pyrolysis tars contributes

significantly to the yields of the individual gaseous products

at temperatures above 900-950K for both sweet gum wood amd

milled wood lignin pyrolysis. Lignin pyrolysis tars are some-

what more resistant to secondary cracking than are wood

pyrolysis tars.

5) Carbon dioxide and chemical water are the major gas

phase products from sweet gum wood and milled wood lignin py-

rolysis below 850K. Above this temperature, carbon monoxide

is by far the most abundant gaseous product.

6) Gaseous pyrolysis products account for a substantial
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amount of the sample heating value (30% in the case of wood

pyrolysis and 24% for lignin pyrolysis). Carbon monoxide

and methane account for over 50% of the total gaseous product

heating value from both wood and lignin pyrolysis.

7) The kinetics for overall pyrolysis weight loss and

for the yields of several individual products from sweet gum

wood and milled wood lignin pyrolysis are well fitted by a

single-step, first-order reaction model.

8) Total weight loss from pyrolysis of sweet gum hard-

wood under the above experimental conditions can be predicted

from the corresponding weight loss of milled wood lignin and

filter paper cellulose weighted, respectively, by the fraction

of lignin and of holocellulose (cellulose plus hemicellulose)

in the whole wood. Lack of data on the pyrolysis behavior of

hemicellulose and other forms of whole biomass under the present

conditions prevents one from drawing conclusions on the suit-

ability of this simulation method for predicting the pyrolysis

behavior of biomass in general.

Recommendations for further study include:

A) Obtaining pyrolysis data for sweet gum hemicellulose

under conditions similar to those used in this study.

B) Obtaining pyrolysis data for sweet gum cellulose

under conditions similar to those used in this study and in-

vestigating the fine structure chemistry of filter paper cellu-

lose and sweet gum cellulose.

C) Performing a base case pyrolysis study for a different

wood species (such as loblolly pine) to check the overall wood

pyrolysis simulation developed in this work.
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D) Examining the effects of other operating conditions

such as pressure, heating rate, and solids residence time, on

the product distributions from sweet gum wood and milled wood

lignin pyrolysis.

E) Modifying the volatile liquid collection/analysis

procedure in order to reduce the amount of data scatter for

light oxygenated compounds.

F) Investigating the structural chemistry of the pyro-

lysis tars, possibly through the use of nuclear magnetic

resonance (NMR) spectroscopy.

G) Obtaining higher temperature (greater than 1600K)

yield data for sweet gum wood and milled wood lignin pyrolysis

by using higher melting point metals for the captive sample

screen material.

H) Improving on the pyrolysis modelling efforts to in-

clude treatment of secondary reactions and the effects of phys-

ical transport within and around the decomposing sample, with

the objective of eliminating apparatus effects and obtaining

more meaningful empirical parameters.

I) Systematically studying secondary reactions in bio-

mass pyrolysis.

J) Investigating the pyrolysis behavior of other types

of lignin (i.e. Kraft lignin) in the captive sample apparatus.
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A.l Heat Transfer Calculations

In order to analyze the true kinetic behavior in any

pyrolysis study, the pyrolysis sample dimensions must be such

that heat transfer limitations are insignificant. It would

therefore be important to know how small a particle would

have to be so that the temperature gradient within the parti-

cle is negligible.

The sweet gum wood particles were assumed to be spherical

and that all of the resistance to heat transfer was within the

sample; i.e. that the Biot number is much greater than unity.

The Fourier equation for transient one-dimensional heat con-

duction in a sphere can then be used in the form

DT k 1 a 2 DT a _ 2 9T
2 pC ~2 r (r ) (A.1-l)

p r r

if it is assumed that k, p, and Cp are independent of time and

temperature. The appropriate boundary conditions are:

T (r,O) = i

T (R,t) = s
aT

and 2 (O,t) = 0 or T(Ot) = Tc (t) = finite

Solutions to this equation are presented graphically by

Carslaw and Jaeger (1959) in terms of a non-dimensional para-

meter, NF = ath/ 12 , the Fourier number. From their calcula-

tions, which assume that a and 1 are independent of time and

temperature, the center temperature of a sphere of diameter

21 will be within 95% of the surface temperature, Ts, when

the Fourier number is approximately 0.38.
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The thermo-physical properties represented by a must be

obtained before a relationship between th and 1 can be found

given the above value of NF* The density of sweet gum wood

is reported in the literature as 0.54 gm/cc (Kollmann and

Cote, 1968). The specific heat of wood, as given by Wenzl

(1970), follows the temperature relationship

C = 0.266 + 0.00116T cal
gp C

with T in degrees centrigrade. Stamm and Harris (1953) pro-

vide the thermal conductivity for wood as

k = 1.72 p + 0.205 cal0
cm hr C

Values of a are then calculated for temperatures of 300

and 1000 deg C, which essentially covers the range of temper-

atures studied in this program. At 300 deg C,

p = 0.54 gm/cc

k = 1.13 cal/cm hr0C

Cp = 0.614 cal/gm0C -4 cm2
or a = 9.6 x 10~ cmsec

and at 1000 deg C,

p = 0.54 gm/cc

k = 1.13 cal/cm hr0C

Cp = 1.43 cal/gm0C -4 cm2
or a = 4.1 x~ 104 cmsec.

Using these values of a and N F = 0.38, the relationships

th = 99.0 dp 2  @ 300 0 C

2 0
and th = 232.0 dp @ 1000 C

are obtained where th is the time in seconds that it would take
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for the centerline temperature of a particle of diameter dp

(cm) to reach 95% of the surface temperature. These rela-

tionships are plotted in Figure A.l-1.

During heat up at 100OK/s, the surface temperature,

T s, would be 1000K/s * th degrees ahead of the centerline

temperature, Tc. With the specification that Tc be 95 per-

cent of Ts, and with Ts increasing at a rate of 1000K/s, we

have

Tc = 0.95 (Ts - 1000th) (A.1-2)

That is, if we allow th to be 0.020 sec (20 msec), Tc will be

95% of the value of Ts at a time 0.020 sec earlier. If Ts =

1020 deg C, and th = 0.020, then Tc will be 0.95 (1020-20) =

950 deg C. This difference of approximately 7% is deemed

reasonable so that, from Figure A.l-1, the maximum allowable

particle diameter would be about 95 microns.

Based on these calculations, the upper dimensional limit

for the wood particle diameter was set at 88 microns.
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T
I
M 2 

0
E T =1000 C

S
E
C 10 T =300 0 C

S

S

s3 125 ISO

PARTICLE DIAMETEP (MICRONS)

HEAT TRANSFER CALCULATION

Figure A-1.1 Effect of diameter on the time for
the increase in the centerline temperature of an
initially isothermal spherical particle to
reach 95% of an instantaneous increase in its
surface temperature.



- 154

A.2 Chromatographic Response Factors and Retention Times

Component
Thermal Conductivity
Response Factor

Retention Time
'(minutes)

N
2

02
CO

CH
4

CO
2

C2 H
C2 H6

H20
HCHO

C3H6

CH 3OH

CH3 CHO

Butene + Ethanol

Acetone + Furan

Acetic Acid

Misc. Oxygenates

0.702

0.562

1.000 (ref)

0.706

0.722

0.695

0.695

0.827

0.753

0.753

0.869

0.827

1.071

1.200

6.8

7.4

7.7

10.7

13.6

15.7

16.7

17.3

18.1 - 19.0

19.7

20.0

21.2

22.1 - 22.6

24.1 - 24.5

24.7 - 25.0

26.0 - 40.0

based on oven temperature programmed from 195K to 513K with

a two-minute initial hold, a heatup rate of 16K/min and held

indefinitely at the final temperature.

The number of milligrams of component i is given by:

A.R.
1 1

mg CO2 mgCO
(A. 2-1)

where A is the area of the peak produced by component i, R.

is the response factor of i, and ACO2 is the area of the peak

produced by mgCO2 milligrams of CO 2.

The response factors, Ri, are found by injecting known



- 155 -

quantities of each component, obtaining the A. for different

mg.. Rearranging equation (A.2-1) gives

mg. A. R.
A (A.2-2)

mgCO2 CO2

A plot of the mass ratios versus the area ratios will yield

a straight line of slope Ri going through the origin.
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A.3 Error Analysis

The error analysis calculations follow the methods

presented by Shoemaker et al. [11].

Let x = weight of sample + screen

y = weight of screen alone

F= weight of sample

F =x -y

(F)= error in weight of sample

X(x) = X(y) = error in weight of x or y = 0.1 mg

From Shoemaker et al.

x2 (F 1 ) = X2 x) + 2(y) = 2X2(x) = 0.02

Therefore, X(F 1 ) = 0.14 mg

Let z = weight of char + screen

F2 = weight of char

F2 z y

x 2(F 2  X2 (Z) + 2(y) = 0.02 or X(F2 I = 0.14

F 2
Let F3 - F2  fractional yield of char

x2 (F3) 2 (F2  2 (F 1 )
then 2 2 + 2

F 3  F2 F

Let F1 = 100 mg, F2 = 10 mg, F3 = 0.10

then X(F3) = 0.0014

or, on a percentage basis,

F 3 = 10 ± 0.14%

Similarly, let F4 = weight of tar on foil

F5 = weight of tar on filter + nut

F6 weight of tar in glasswool trap
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then X(F4 ) = X(F5 ) = X(F6 ) = 0.14 mg

If F7 = weight of tar on each tissue, and if the error due to

moisture in each tissue weighing is about 2 mg

then X(F7 ) = 2.83 mg

Let F8 total weight of tar collected = F + F5 + F6 + 2F7

then F2 F8 _ 2(F) + x2 (F5 ) + X2 (F6 ) + 2X2 (F7 )

or X(F8 ) = 4.1 mg = error in total tar weight

F 8

Let F = F = fractional yield of tar

x2 (F X2 (F8 ) x2 (F1 )
then = +

FF F
F 9  8 1

Choosing F8 = 50 mg, F1 = 100 mg, and F9 = 0.5

then X(F9 ) = 0.041

or, on a percentage basis,

F = 50 ± 4.1%.
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A.4 Comparison of Cellulose Kinetic Parameters

The best fit kinetic parameters obtained by Hajaligol (1980)

for filter paper pyrolysis are included in Table A.4-1. These

parameters are believed to have been produced by a program known

as CLFIT in the computer library at the MIT Department of Chem-

ical Engineering. The CLFIT program provided, as an indication of

the goodness of the non-linear least squares fit, a quantity

called the sum-of-the-squared-errors (SSE). From this quantity,

it was possible to determine the standard error of the estimate

(SEE) from

SEE = V SSE/(n-p) (A.4-l)

where SSE = sum of the squared errors
n 

2

j=1 j,model j,exper.'

n = the number of data points

p = the number of parameters used in the fitting

procedure (p=3 in this analysis).

The V. are the modelled and experimental pyrolysis yields.
3
The POWELL non-linear least squares program, an updated

version of CLFIT, was used to reanalyze the raw cellulose data

reported by Hajaligol (1980) and a different set of best fit

kinetic parameters was obtained. These parameters are shown in

Table A.4-2 along with the standard error of the estimate, which

was also provided by POWELL. Hajaligol's time-temperature history

format had to be slightly modified in order to be used in POWELL,

but the changes were insignificant as far as the fitting proce-

dure was concerned.
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Table A.4-1 Best Fit Kinetic Parameters for Cellulose

Filter Paper Pyrolysis*(from program CLFIT)

Product

Weight Loss

Total Gases

CO

CH
4

CO
2

C2 H4
C2 H6
H 2 0(+HCHO)

C 3H6

E (kcal/mole) logl 0ko

31.8

32.3

52.7

60.0

23.4

49.8

41.6

24.6

60.7

8.30

7.49

11.75

13.00

5.39

10.82

9.06

6.71

14.93

V*(wt. %)

94.08

42.17

21.64

2.41

3.08

2.07

0.26

8.04

0.67

standard
error of

estimate (wt.%)

7.05

4.71

1.97

0.25

0.33

0.14

0.027

1.36

0.12

* Kinetic parameters from Hajaligol (1980).
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Table A.4-2 Best Fit Kinetic Parameters for Cellulose

Filter Paper Pyrolysis(from program POWELL)

Product E (kcal/mole) log1 0 k0 i

Weight Loss

Total Gases

Co

CO 2CH4

CO2
C2Hg

C2H6
H 2 0(+HCHO)

C 3H6

25.0

17.6

27.3

24.1

11.8

30.7

35.2

11.3

29.8

6.54

3.97

6.07

5.06

2.35

6.61

7.65

2.90

7.14

i(wt. %)

95.78

42.22

21.69

2.59

3.76

2.10

0.25

8.22

0.70

standard
error of

estimate (wt.%)

4.91

3.02

1.64

0.16

0.23

0.13

0.026

1.21

0.14
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A comparison between the kinetic parameters in Tables

A.4-l and A.4-2 shows that the parameters obtained from POWELL

are somewhat lower than the values produced by CLFIT, extremely

so in some cases. This is not altogether suprising given the

wide range of activation energies and frequency factors that

can be used to fit the data (Franklin, 1981). Satterfield (1980)

discusses the problems encountered when trying to fit data such

as these and points out that there is a compensation effect by

which it is possible for a high activation energy to be countered

by a high collision factor, thus producing an apparently ade-

quate fit to the data.

By comparing the standard error of the estimate in Tables

A.4-1 and A.4-2, it is seen that the POWELL program provides

a better fit to the experimental data than does CLFIT in all

cases except propylene.
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A.5 Experimental Data Base



Sweet Gum Wood Runs with Zero Holding Time

at 5 psig He and 1000 K/s Heating Rate

Rua Temp. Butene+ Acetone Acetic Misc. Material
(K) Char Tar CO C C2H4 C2H6 U20 UCHO C3H CH3ON CH3CHO Ethanol + Furan Acid C.H.O. Balance

81 598 96.82 3.06 0 0 0.27 0 0 2.21 0.40 0 0.97 0.02- 0.02- 0.49 0.71 0.23 105.2
36 611 91.02 4.23 0.18 0 0.61 0 0 1.10 0.28 0 1.22 0.04 0 0.37 0.38 0.07 99.5
35 660 90.19 7.31 0 0 0.70 0 - 1.69 0.33 - 1.86 0.05 0.01 0.46 0.66 0.07 103.4
74 766 45.02 42.09 - 0.11 2.96 0.05 0.01 4.00 1.22 0.06 1.82 0.50 0.05 0.29 0.83 0.22 99.2
32 770 68.68 22.86 1.65 0.10 1.95 0.05 0.01 3.86 0.79 0.05 1.40 0.24 0.01 0.40 1.18 0.18 103.5
72 783 71.38 19.90 1.28 0.03 1.69 0.01 0 4.42 1.31 0.03 1.36 0.59 0.69 0.25 0.80 0.13 103.9
79 793 18.76 49.57 7.93 0.55 4.62 0.27 0.07 4.65 1.76 0.20 1.14 0.89 0.14 0.45 1.04 0.62 92.6
73 811 53.19 26.29 6.48 0.07 2.53 0.03 0.01 4.18 1.07 0.03 2.36 0.64 0.69 0.67 0.81 0.13 99.2
31 838 28.39 42.06 3.36 0.27 3.84 0.13 0.03 5.15 1.08 0.10 3.32 0.78 0.16 0.66 1.59 0.27 91.9
77 839 17.24 53.47 5.57 0.44 4.49 0.21 0.05 4.26 1.52 0.17 2.68 1.22 0.79 1.34 1.17 0.58 95.2
34 841 49.43 26.41 0 0.12 2.87 0.05 0.01 5.12 0.97 0.05 2.66 0.42 0.20 0.91 1.77 0.24 91.3
75 861 21.47 49.75 5.86 0.40 4.14 0.19 0.05 3.76 1.55 0.13 1.69 1.08 0.77 0.68 1.03 0.40 89.6
80 862 13.06 55.27 4.61 0.87 4.96 0.47 0.11 5.46 2.23 0.34 1.58 1.65 1.11 0.91 1.45 0.80 94.9
78 896 18.50 52.46 7.66 0.46 5.50 0.26 0.06 5.31 1.35 0.46 1.64 1.01 0.13 0.67 1.33 0.81 97.6
71 911 7.57 59.19 7.65 0.77 4.75 0.38 0.09 4.41 1.87 0.29 2.34 1.60 0.97 1.02 0.95 0.41 94.3
30 971 10.81 45.68 12.38 1.31 5.55 0.81 0.17 5.48 2.13 0.42 2.37 1.27 0.29 0.95 0.32 1.29 91.2
68 994 6.18 46.29 15.76 1.62 5.87 1.02 0.18 4.57 1.68 0.44 2.40 1.48 0.52 0.94 3.28 0.58 94.6
28 1018 7.55 44.22 11.53 1.25 5.52 0.76 0.15 6.69 1.73 0.30 4.02 1.18 0.27 1.55 2.26 0.39 89.4
25 1058 6.01 48.75 13.32 1.44 5.71 0.87 0.15 4.97 2.17 0.38 2.78 1.23 0.24 1.01 0.22 0.24 89.5
27 1067 11.19 43.15 12.48 1.38 5.44 0.88 0.17 5.47 2.42 0.44 5.29 1.19 0.29 0.93 0.99 0.21 91.9
24 1108 6.48 43.83 15.41 1.83 5.86 1.17 0.20 5.46 2.27 0.45 2.38 1.82 0.90 1.31 0.08 0.65 90.1
19 1235 6.60 45.10 18.32 1.31 5.91 0.95 0.15 5.23 1.81 0.44 4.06 1.14 0.22 0.66 0.45 0.50 92.8
18 1261 6.14 45.45 15.80 1.88 5.92 1.12 0.16 4.85 2.24 0.43 1.58 1.23 0.26 0.71 0.83 0.60 89.3
66 1293 8.50 44.89 16.96 1.75 5.95 1.04 0.16 4.62 1.86 0.40 1.14 1.10 0.30 0.65 1.90 0.51 91.8
67 1333 6.87 46.07 16.87 1.93 6.45 1.16 0.17 4.63 1.72 0.43 2.36 1.52 1.02 1.19 2.03 0.48 95.1
64 1355 6.72 50.15 16.87 1.99 6.10 1.17 0.17 4.53 1.71 0.39 1.77 1.45 0.53 0.81 1.21 1.70 100.8
40 1357 7.16 41.88 17.96 2.14 6.52 1.29 0.18 4.77 2.20 0.43 1.73 1.59 0.49 0.70 0.13 0.93 90.0
62 1518 7.44 52.63 16.78 2.27 6.27 1.44 0.22 6.21 1.72 0.46 2.59 1.63 1.11 1.05 - 1.04 102.8



Milled Wood Lignin Runs With Zero Holding Time

at 5 psig and 1000 K/s Heating Rate

Char Tar CO CO C C2H H 0 HCHO C H CH OH CH CHO Butene+ Acetone Acetic Misc. Material
CH4 2 2 4 2 3 6 3 3 Ethanol + Furan Acid C.H.O. Balance

0
0

0.92
1.16
3.37
2.80
6.94

10.24
7.07

11.14
15.64
16.29
16.66
16.21
17.62
17.23
18.49
19.24
19.14

0 0.13 0
0 0.25 0

0.01 0.69 0
0.09 1.53 0.04
0.27 1.93 0.04
0.46(4.02)*0.07
1.44 2.77 0.27
1.73 2.64 0.45
1.37 2.74 0.27
2.16 3.23 0.47
2.55 3.22 0.76
2.79 3.63 0.73
2.91 3.73 0.78
3.00 3.71 0.86
3.06 3.79 0.92
2.91 3.67 0.77
3.05 4.03 0.77
3.11 4.14 0.85
3.31 4.14 1.02

0 2.02
0 2.86
0 2.90

0.01(4.27)
0.01 3.37
0.04(4.24)
0.15 4.13
0.22 3.52
0.15 4.04
0.24 3.37
0.26 3.76
0.28 3.56
0.28 4.04
0.35 3.33
0.29 3.68
0.26 4.26
0.26 3.60
0.29 3.85
0.32 3.49

0.30 0
0.63 0
1.03 0

(1.95) (0.03)
1.51 0.02
1.62 -
1.41 0.16
1.34 0.21
1.53 0.15
1.42 0.24

(0.82) 0.22
1.35 0.27
1.61 0.27
0.79 0.25
1.44 0.27
1.44
1.55
1.28
1.48

0.20
0.25
0.32

0.17
0.41
0.56
1.64
1.53

2.01
1.45
2.00
2.44
1.22
1.86
2.31
1.44
1.76

1.89
1.54
1.68

0.01
0.03
0.18
0.70
0.62
0.78
0.80
0.79
0.77
0.80
0.41
0.50
0.86
0.49
0.78
0.87
0.88
0.52
0.80

0.02
0.05
0.15
0.71
0.37
0.72
0.53
0.99
0.48
0.53
0.25
0.30
0.95
0.32
0.62
0.83
0.75
0.24
0.97

0.06
0.14
0.10
0.36
0.19

0.34
0.41
0.39
0.75
0.17
0.42
0.72
0.23
0.28

0.20
0.17
0.38

0
0.05
0.01
0.28
0

0.41
0.09
0.63
0.09
0.10
0.37
0.08
0.34
0.21
0.74
0.28
0.37
0.37
0.31

0.13
0.19
0.17
0.13
0.14
0.05
0.13
0.22
0.11
0.04
0.26
0.29
0.21
0.18
0.23
0.13
0.22
0.40
0.86

101.4
103.6
103.4
102.3
99.4

100.6
95.5
96.8
98.0
95.9
96.0
95.6
95.9
92.5
94.6
93.6
96.6
97.3
95.4

(*numbers in parentheses were excluded from the kinetic analysis)

Ru Temp.
_ _ (K)

88
96
89
97
87
93
95
86
90
99
85

102
91

101
98
92
84
83

100

581
663
754
770
790
826
873
934
944
973

1023
1063
1125
1213
1236
1276
1353
1436
1443

96.86
94.00
81.85
55.08
40.92
45.00
22.98
20.62
25.71
16.35
14.69
13.76
14.31
13.95
14.78
15.03
14.52
13.33
14.15

1.73
4.94

14.84
34.36
45.10
40.37
51.33
51.37
51.10
52.62
51.39
49.48
45.87
47.21
45.05
45.93
45.84
47.69
43.07

ONca
0**


