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RAPID PYROLYSIS OF SWEET GUM XYLAN

WITH APPLICATIONS IN MODELLING WOOD

by

Jayant Ghosh

Submitted to the Department of Chemical Engineering in January 1983
in partial fulfillment of the requirements for the degree of
Master of Science in Chemical Engineering.

ABSTRACT

Data were obtained on the yields of tars and chars and on yields,
rates of evolution and compositions of individual gases from the
rapid pyrolysis of sweet gum xylan.

Fifty mg samples of powdered xylan (45-90 microns) were pyrolyzed
at 1000 K/s to peak temperatures between 600 and 1400K in a 3x10 5 Pa
helium atmosphere. Samples were cooled at approximately 200 K/s after
zero residence time at the peak temperature. Gas chromatography was
used to characterize individual gaseous and light tar products. The
char and heavy tars were determined gravimetrically and analyzed by
elemental analysis.

On an ash-free basis, the overall weight loss from xylan was
84 wt%, while the ultimate yield of gases (at 1400K) was 35.8 wt%.
Tar (a heavy liquid product) accounted for the remaining volatiles.
Secondary reactions of tar contributed to increased gaseous product
yields at temperatures above 800K. At temperatures above 1150K
secondary reactions of light gaseous volatiles with char (-char gasifi-
cation), resulted in greater overall sample weight loss. Carbon
monoxide and carbon dioxide comprised the largest fraction of the
gaseous products reaching ultimate yields of >17 wt% and 15.2 wt%
respectively. Yields of chemical water reached 5.2 wt%, and the rem-
ainder of the hydrocarbons and heavy oxygenated compounds together
amounted to only 5.1 wt% of the original sample.

A kinetic model based on a single-step first-order reaction was
fit to the experimental data. This procedure gave three rate
parameters for each of the individual gaseous products: (1) V* - the
ultimate yield in wt%; (2) E - the activation energy; and (3) log k,
where k is the Arrhenius frequency factor. The kinetics of
wood pyrolysis were modelled as the weighted sum of the pyrolysis
behaviors of its three major constituents by taking filter paper
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cellulose, milled wood lignin and sweet gum xylan as their surrogates.
The results were compared with experimental data on sweet gum hard-
wood pyrolysis and were found to give reasonable agreement for both
total gas yields and individual gaseous product yields. However,
due to the high char yield from xylan (16.4 wt%), the simulation for
overall weight loss consistently underestimated experimental data.
Some discrepancies between the simulation and experimental observ-
ations arose; these may be attributed to secondary interactions
between the decomposition products of the individual wood components,
and to possible catalytic effects of the 5 wt% potassium in the
xylan samples used.

Thesis supervisors: Jack B. Howard, Professor of Chemical Engineering

John P. Longwell, Edwin R. Gilliland Professor
of Chemical Engineering

William A. Peters, Principal Research Engineer
Energy Laboratory
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1. INTRODUCTION

The survival of any technologically adyanced civilization will

ultimately depend upon the energy alternatives at its disposal. Since

the industrial revolution of the 1700's, the per capita energy util-

ization has increased and is still increasing today. It has there-

fore become imperative to determine on a detailed basis not only

what methods of fuel use are the most efficient, but also what

alternate as yet unused reserves may make a sizeable contribution to

our energy pool.

To date, synthetic fuels research has been mainly in the area

of exhaustible fuel resources. While crude oil, oil shale, tar

sands and other fossil fuel depletable compounds exist in relative

abundance in various parts of the world, it is clear that the renew-

able energy sources such as biomass deserve increasing attention.

The ratio of time required for the regeneration of the "exhaust-

ible" resources to that needed for the regeneration of "renewable"

resources is approximately four to five orders of magnitude. Our study

is concerned with the pyrolysis of wood and its constituents, but

also with the mathematical modelling of the pyrolysis. A model, if

it proves successful, gives quantitative guidance on how to vary

pyrolysis conditions to make the production of a particularly desirable

fuel component efficient. These are the motivations for the study on

the pyrolysis of biomass.

A summary of the conversion schemes for biomass into fuels is

shown in Fig. 1-1. As of this writing, thermal processes have proven

14
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to be the most economically viable, and of the three shown in the

figure, we are interested in pyrolysis. A comparison of the thermal

processing of biomass with fossil fuels reveals the following:

- Biomass is a cleaner fuel due to its low sulfur and
nitrogen content

- It has a larger H/C ratio which favors the production of
volatiles and decreases the formation of char residues

- It has a lower caloric value than fossil fuels

- It may have a greater moisture content which detracts
from optimal thermal conversion

Figure 1-2 illustrates reaction pathways in the thermal processing

of biomass.

Biomass is not the solution to all the energy needs of the

United States. Once implemented, a program which makes best use of

the available resources without depleting forests and farmlands

could contribute up to ten percent of total US energy requirements

(Probstein and Hicks, 1981). However, in the face of rapid depletion

of fossil fuels, which today acc-ount for almost ninety percent of

our energy, a steady ten percei contribution from biomass would be

of ever increasing importance the mix of national energy sources

over the next thirty years.

16



2. BACKGROUND

2.1 The Nature of Xylan

There are many references in the chemical polymer and wood related

literature on the nature of the constituents of wood. One of the most

authoritative monographs on the topic is by Wenzl (1970), but many

other researchers have contributed to the field and are too numerous

to be listed here.

For the specific component of interest, the hemicelluloses,

the largest body of work relating to their isolation and determination

comes from Timell (1964, 1965). Browning (1967) gives an excellent

summary of the isolation procedures for wood constituents as well

as the separation methods which have been standardized by organizations

such as TAPPI. The hemicellulose used in this study, 0-acetyl-4-0-

methylglucurono-6-D-xylan (xylan) was prepared by Prof. H. M. Chang

of the Department of Wood and Paper Science, North Carolina State

University. A flowsheet of his isolation procedure is given in

Fig. 2.1-1. The glucomannan obtained in th" isolation is also a

hemicellulose species but was not investigi *ed in this research.

Xylan constitutes 30.6 wt% of extractive-free hardwood (Andrews, 1980);

glucomannan comprises only 3 to 5 wt% of it.

While the repeating cellobiose units which form the linear back-

bone of the cellulose molecule have been well characterized, the same

has not been done for hemicelluloses. Though both are found side by

side in the cell walls of plants and are natural polymers of repeating

17
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sugar units, their chemical structures are sufficiently different to

warrant separate studies of each. Fig. 2.1-2 lists the sugar units

which make up hemicelluloses. The main differences between cellulose

and hemicellulose are their crystallinity and degree of polymerization

(D.P.): native cellulose is linear (D.P. % 10,000) and is highly

crystalline (i.e., is resilient and rigidly structured); hemi-

celluloses are more crosslinked (100 < D.P. < 400) and are more

amorphous (i.e., less rigidly structured). In comparison, lignin,

the remaining major wood component, is highly crosslinked in a

complex 3-D structure and is completely amorphous. Figure 2.1-3

compares structures of cellulose, xylan and lignin.

Joseleau and Barnoud (1976) have studied the local ultrastructure

of xylans in cell walls of plants via enzymatic degradation. Their

findings indicate that young plants produce cellulose and xylan

concomitantly in building the primary cell wall. As the plant ages,

xylan layers adjacent to cellulose layers reach a maximum thickness.

The younger xylan is not structurally different from older xylan,

but has a lower D.P.. With increasing maturation, the side groups

such as the acetyl or 4-0-methyl groups in xylan are modified. The

xylan backbone, however, still untouched at this stage, progressively

undergoes chemical restructuring by dehydration reactions to a

polymeric compound with OH side groups (Wenzl, 1970). Gradually,

xylan assumes a more amorphous structure, and, according to Joseleau

et al. (1976) is transformed into lignin which is deposited in middle

lamellae of the cell wall. Cellulose too seems to undergo a similar

19
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transformation.

The ash content of wood is generally less than 0.5 wt% (Kollmann

and Cote, 1968). Ashing experiments performed on the present xylan

showed a surprisingly high ash content of 9.0 wt%. Table 2.1-1 out-

lines these ashing results and Table 2.1-2 gives the calcium and

potassium content of each of the ashes. According to Kollmann and

Cote (1968) common mineral constituents in wood ash are calcium,

potassium, magnesium, carbonates, phosphates, silicates and sulfates.

2.2 Pyrolysis of Biomass

Good literature reviews of biomass pyrolysis and gasification

are given in the compendium published by the Solar Energy Research

Institute (SERI 1979). A count of the references for cellulose,

xylan and lignin indicates that a clear majority of the published

work so far has been on cellulose, while work with lignin is in

second place. There appear to be only a few papers on xylan

pyrolysis, anad this author is unaware of any studies of its rapid

pyrolysis.

This research on the pyrolysis of xylan is a continuing effort

on a project in which M. R. Hajaligol (1980) studied the rapid

pyrolysis of cellulose and T. R. Nunn (1981) investigated milled wood

lignin and sweet gum pyrolysis. The present work focuses on the rapid

pyrolysis of xylan, and on assessing whether the rapid pyrolysis

23



*
Table 2.1-1 Ash from wood

SAMPLE

No. 507 filter paper
(cellulose)

Sweet gum xylan
Milled wood lignin
Sweet gum hardwood

Ash (weight % sample)

0.07

9.0
0.15
0.23

Samples heated from 298K to 1023K at 5 K/min.

Table 2.1-2 Calcium and potassium conjent
wood and its constituents

of ash from

Ashed
sampl e

No. 507
(cel

filter paper
lulose)

Sweet gum xylan

Milled wood

Sweet gum

1 ignin

hardwood

wt. % of
ash

Cal cium

0.43

3X10-3

0.33

7.8

wt. % of
sampl e

3X10

3X10~4

5X10~4

1 .8X10- 2

Potassium
wt. % of wt.

ash

4.5

49.0

2.9

72.0

sample

3X10

4.5

4X10-3

0.17

Determined by atomic absorption of aqueous solutions

24

% of

of ash.

and its constituents



behavior of whole biomass (sweet gum) may be predicted from similar

information on its three major constituents.

Most of the work to date on the pyrolysis of xylan has been done

by Shafizadeh (1972, 1977). Fang and McGinnis (1975) have pyrolyzed

holocellulose (delignified extractives-free wood), which thus contains

the unsegregated cellulose and hemicellulose fractions. Each study

was also supplemented with a discussion of the effects of inorganic

additives (mainly ZnCl and NaOH) on the pyrolysis products spectrum.

Table 2.2-1 and Table 2.2-2 show the product yields from the pyrolysis

of xylan; Table 2.2-3 shows the yields from holocellulose pyrolysis.

In addition to these results, work has been done by the same

scientists and also by Stamm (1956) on elucidating the chemical

structure of tars and chars from pyrolysis. Further investigations

into the kinetic mechanisms of xylan pyrolysis have been made by

Shafizadeh (1977), but no one seems to have determined kinetic

parameters for xylan pyrolysis. From an analysis of rates of free

radical formation and of weight loss from cellulose, xylan, lignin

and wood, Shafizadeh (1977) concludes that "the free radical formation

in wood is roughly the summation of that for its three major consti-

tuents". This provides incentive for determining whether pyrolysis

behavior of whole wood may indeed be simulated from pyrolysis of its

individual components.

Care must nevertheless be taken in comparing different sets of

such published data due to the variety of conditions under which

biomass pyrolysis has been studied.

25



Table 2.2-1 Pyrolysis products of xylan and treated xylan at 573K.

(Shafizadeh and Chin, 1977)

Product Neat +10% ZnC12

Liquid condensate 30.6* 45.3

Carbon didxIde 7.9 7.5

Char 31.1 42.2

Tar 15.7 3.2

High mol. wt. component (17)'

.D-xylose from hydrolysis (54)c

'Percentage, yield based on the weight of the sanple.

Based on the weight of the tar

%ased on the weight of oligosaccharides.

Table 2.2-2 Pyrolysis of 4-0-methylglucuronoxylan and

0-acetyl-4-0-methylglucuronoxylan at 773K.

(Shafizadeh, McGinnis and Philpot, 1972)

Peak Pyrolylss product Xylan O-Acetylxylan Methad of
mwubeIdentiication*

Neat +ZnCI, +NaOH Heat +ZnICI 2  +NaOH

12' Pixed aes e
3 Acetaldehyde 2.4 0.1 1.6 1.0 1.9 1.6 cd.ejf
4 Furan T 2.0 0.3 2.2 3.5 0.4 c
5 Acetone ' 0.3 T 3.3 T . e
6 Propionaldenyde J T 0.7 T cAeJ
7 Methanol 1.3 1.0 2. 1.0 1.0 2.8 c

It 2,3-Butanedione T T T T T T cAe.f
12 Ethanol T 0.6 T 0.6 C
13 2-Butenal T 1.2 T 1.4 c
24 1-Hydroxy-2-propanone 0.4 T 2.0 0.5 T 0.8 cAef.
IS 3-Hydroxy-2-butanone 0.6 T J 0.6 T 0.6 C
16 Acetic Acid 1.5 T 3.1 10.3 9.3 3.4 a,c
17 2-Fumdehyde 4.5 10.4 1.6 2.2 5.0 0.6 abec.e.f

Char 10 26 21 10 23 23
Carbon dioxide 8 7 14 8 6 22
Water 7 21 26 14 i5 19 e

Refers to identifi
Percentage, yield

cation methods described in experimental part of paper.
based on sample weight; T=trace amounts.
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Table 2.2-3 Pyrolysis products of holocellulose from

Loblolly Pine bark.

(Fang and McGinnis, 1976)

Total yield (S) Identifi-
cation

No. Compound Neat 5% ZnCl 2  5% NaOH methoda

1-4 Small molecular
weight hydro-
carbons 0.40 0.43 1.80 a,b

5 Methanol 1.12 1.72 0.65 a,b

6 Acetaldehyde 0.21 0.15 0.34 a,b,c

7 Acrylaldehyde 0.07 0.05 0.09 a,b,c

8 Furan 0.52 0.64 0.47 a,b

9 Acetic Acid 1.39 0.54 1.04 a,b

10 Diacetyl 0.23 0.24 0.31 a,b,c

11 1-Hydroxy-2-
propanone 0.06 0.02 0.22 a,b,c

12 2-Furaldehyde 0.51 0.77 0.06 a,bjc

Carbon monoxide 5.28 5.80 8.98 b

Carbon dioxide 11.04 11.81 20.42 b

Water 37.25 42.51 37.22 b

Char 20.17 34.83 28.04 --

a. Identifi_ !.on method: (a) Comparison of reten-

tion time and additi of known compound; (b) vapor phase

fragmentation; and (<. Zormation of a 2,4-dinitrophenyl-

hydrazone derivative
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3. APPARATUS AND PROCEDURE

3.1 Reactor

A batch reactor used previously by Hajaligol (1980) for cellulose

pyrolysis and by Nunn (1981) for lignin and sweet gum wood pyrolyses

was used in this research. The reactor was designed to allow study of

a large range of heating rates, residence times and pressures as

indicated in Table 3.1-1.

The captive sample reactor is a 22.9 cm by 22.9 cm I.D. Corning

pyrex cylinder flanged at both ends by circular stainless steel plates.

Feedthroughs were made in the top plate for the electrodes, thermo-

couple leads and a sampling/injection port for gases. The bottom

plate only has an exit port for purging the volatiles into the gas

collection system.

The screen which holds the wood samples is a 14 cm by 15 cm

piece of 325 mesh stainless steel cloth which is folded twice in its

largest dimension. The final result is a piece 4.5 cm by 14.5 cm

which fits between the electrodes. The sample is placed in the inner

fold, and the thermocouple in the outer fold when the screen is ready

to be used in the reactor. The 1 cm diameter brass electrodes spaced

13 cm apart descend 12.5 cm into the middle of the reactor and terminate

in 1.8 cm by 2.7 cm by 6 cm solid brass clamps which hold the screen

in place.
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Variability of Pyrolysis Reaction

Conditions

Operating Parameter

Heating Rate

Peak Temperature

Holding Time at the

Peak Temperature

Pressure

Range of Control

50 to 100,000 K/s

400 to 1500 K

0 to infinity sec

6
1.3 to 4.1 X 10 Pa

*A separate reactor is available for experiments
up to 1 X 108 Pa.

screst,

Lipewte s

( 77K )

46 asygse ft&reap

3aseter Vessel

Class-Vool Trap
(196K )

Figure 3.2-1 Schematic of Captive Sample Apparatus (Hajaligol,1980)
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3.2 Reactor Accessories

The gas collection system consists of two traps in series. The

first U-shaped trap (glass wool trap) is made of a 39.6 cm long,

0.95 cm I.D. stainless steel tube, is packed with glass wool made by

Alltech Associates, and is immersed in a methanol/dry ice bath at

195K. The second trap (lipophilic trap) is of the same dimensions

but is immersed in a dewar of liquid nitrogen (75K) and is packed

with 50/80 mesh Porapak QS chromatographic packing made by Waters

Associates.

The rapid response Chromel-Alumel thermocouple manufactured by

Omega Engineering Inc. has a wire diameter of 0.00254 cm with a

0.00763 cm bead. The electrical response of the thermocouple is

measured on a Hewlett Packard 680M strip chart recorder. A schematic

diagram of the reactor is shown in Fig. 3.2-1.

The electrical heating system for the apparatus designed by

Caron (1978) is shown by Nunn (1981).

3.3 Gas Analysis

The gases are analyzed on a Perkin Elmer Sigma 2B gas chromato-

graph with an associated Sigma 10B data integration station. Two

stainless steel columns in series are used in the chromatograph: the

first is a 45,7 cm long 0.635 cm I.D. column packed with 80/90 mesh

5A molecular sieves manufactured by Analabs Inc.; the second is a
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3.66 m long, 0.635 cm I.D. column packed with 50/80 mesh Porapak QS.

Prior to this work, product gas yields from biomass pyrolysis

were determined on a Perkin Elmer Model 3920B chromatograph with a

Porapak QS column only. The switch over to the Sigma 2B was made

not only to get better separation between air and product gases but

also to obtain a superior separation between the carbon monoxide

and carbon dioxide peaks. Furthermore, the new temperature program

for the analysis does not require the subambient temperature program-

ming needed by the Model 3920B (starting at 203K), rather, all

analyses were done above 300K, which resulted in a substantial

savings of cryogenic coolant.

The dual flame ionization (FI)/thermal conductivity (TC) detect-

ors provided consistency checks for certain hydrocarbon yields.

Nevertheless, each detector has its own indispensible role: the FI

detector has better sensitivity than the TC detector for hydrocarbons

while the TC detector is crucial in quantifying those components which

are not recognized by the FI detector. The detailed procedure for gas

chromatography in the Sigma 2B is given in Appendix A.

3.4 Sample Preparation

Hajaligol's (1980) studies of cellulose pyrolysis were performed

with Whatman #507 filter paper in the form of strips 1 cm by 4 cm by

0.0101 cm in dimension; Nunn (1981) used wood powder and pressed flakes
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of lignin for his work. The xylan powder used in this study was

isolated by H. M. Chang's laboratory (North Carolina State University),

from the same wood sample that provided Nunn with sweet gum hardwood

and milled wood lignin. It was subsequently sieved in the 45-90

micron range as was the wood powder, to eliminate heat transfer

limitations and to ensure that none of the xylan was lost through

openings in the screen heater mesh. This powder was kept in a

dessicator, over silica gel, for at least one month before use.

In contrast to the earlier biomass studies, the sample weight

was reduced from 0.1 g to 0.05 g to ensure no mass transfer limitations

existed during reaction. (At one time it was believed that mass

transfer limitations were hindering complete reaction; this was later

found not to be true. Nunn (1981) presents calculations of an upper

limit on powdered sample size for which heat transfer limitations

would be unimportant for our reaction conditions.) Halving the

sample weight did not adversely affect the material balances for the

experiments. The powder was spread uniformly over as large an area

of the screen as possible, without coming near the electrode clamps.

3.5 Run Procedure

Prior to their use in experimental runs, the 325 mesh screens

were prefired in a helium atmosphere. The helium, from Middlesex

Supply Co., is 95.5% pure and contains nitrogen and oxygen gases as
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impurities. During the prefiring to a peak temperature of 1300K, the

oxygen reacts with the chromium in the stainless steel to give the

screen a coating of chromia (Yurek, 1977). The screens, upon cooling,

exhibit a more dulled luster than they posessed originally. This

procedure is believed to deactivate catalytic sites on the screens

and thus retard their ability to influence secondary cracking of

pyrolysis products. Hajaligol (1980) discusses experiments which

indicated the screen had little effect on the observed pyrolysis

behavior of cellulose.

The 50 mg of powdered xylan is then spread as a thin layer on

a preweighed screen, which was first dried over silica gel; the

screen and sample are left to dry overnight in covered petri dishes

containing silica gel. Just before use in the reactor, the screen

and sample are weighed until a dry equilibrium weight is established

within 0.1 mg.

A circular piece of aluminum foil 21 cm in diameter, with a

4.5 cm diameter opening at its center is placed on the bottom of the

reactor around the gas exit port, for tar collection. To further

prevent tars from escaping with the gases, a 3.7 cm diameter circular

piece of Whatman EPM 1000 glass filter paper is placed over the exit

port. The foil, filter and hex-nut (to hold the filter in place) are

also dried overnight in covered petri dishes containing silica gel.

All parts are weighed until consecutive weighings differ by less than

0.1 mg, and are then properly positioned into the reactor.

After the screen containing the sample is firmly installed between
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the electrodes, the thermocouple bead, mounted on a moveable holder

in the reactor, is carefully inserted into the top fold of the

screen, and is positioned near its center. The top flange of the

reactor is lowered to the pyrex cylinder and bolted shut; next, the

reactor volume is evacuated to 1.3 Pa. The reactor is pressurized

with helium (prepurified by being passed through a lipophilic trap

at 75K) to l.3x10 5 Pa and then evacuated again. This procedure is

repeated three or four times. Upon final pressurization, the

helium is allowed to reach room temperature (< 5 min.).

The temperature recorder is adjusted to read 298K and motion

of the strip chart is initiated; the heating switch is thrown, and

the sample is pyrolyzed at 1000 K/s to the desired peak temperature

according to the setting on the heating timer. Once the peak

temperature is reached, the current across the electrodes is

automatically shut off, and the screen cools by convection and

radiation starting at an average cooling rate of 200 K/s. After

ten seconds of cooling, the temperature recorder is turned off.

The particulates in the reaction gases are allowed to settle

and the gases are allowed to reach room temperature (< 15 min.).

The vessel is slowly pressurized to 3x10 5 Pa with prepurified helium,

and the product gases are purged through the traps for one hour, at

a helium flow rate of 0.25 1/min. Hence, 1.6 reactor volumes are

passed through the traps.

The captive sample reactor is opened; the screen (containing char),

the filter, nut and foil (containing tars) are placed in covered petri
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dishes containing silica gel, and are weighed until an equilibrium

weight is reached. The tars on the sides of the reactor and on the

top flange are recovered by wiping these areas with two preweighed,

predried Kimwipe tissues which are wetted with a 2:1 volume/volume

mixture of nanograde methanol:acetone. A third tissue serves as a

control for residual solvent. All three tissues are allowed to

evaporate solvent for one half hour in a fume hood, and are then

placed in a covered petri dish over silica gel to dry. The tar

containing tissues are weighed to a final equilibrium value, and their

tar content is obtained by difference from their initial dry weight

minus the correction for residual solvent calculated from the weight

increase of the control tissue.

The gases are quantified by heating each trap in a boiling

water bath (373K) for a half hour during which its contents are

desorbed and purged by helium flowing at 0.07 1/min (75 trap volumes

total) into the gas chromatograph. In addition, the glass wool trap

is extracted with two 10 ml aliquots of a 2:1 volume/volume solution

of nanograde methanol:acetone to recover any light tars and liquids

which pass through the filter on the reactor's outlet. The resulting

tar solution is collected in a preweighed aluminum cup, and the solvent

is allowed to evaporate overnight. The total tar yield is thus

operationally defined as the sum of the tars on the aluminum foil, the

Kimwipe tissues, the aluminum cup, and the filter and nut. The char

yield is determined gravimetrically from weight loss of the screen

plus sample.

35



3.6 Error Analysis

Nunn (1981) and Hajaligol (1980) discuss the errors associated

with the experimental methods outlined above. The only new sources of

error in this work are from the response factors determined for the

Sigma 2B gas chromatograph, and are presented in Appendix A.
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4. RESULTS AND DISCUSSION

4.1 Global Pyrolysis Results for Xylan

The first section on experimental results presents the yields

of char, tar and total gases evolved from the pyrolysis of as-

received xylan containing 9 wt% inorganic matter as a function of

peak temperature. Figs. 4.1-1 to 4.1-3 show weight loss, gas yield

and tar yield respectively. The curves drawn through the data are

free drawn trendlines, and show similarities with those observed

for the pyrolysis of filter paper cellulose, milled wood lignin

and sweet gum hardwood (Hajaligol, 1980; Nunn, 1981).

The char yield decreases dramatically between 550-750K after

which it levels off to 32 wt%. The yield stays level until 1100K

when it starts to drop again. At a temperature of 1400K the yield

is lowered to 27 wt% and is still decreasing.

Gas production commences at 600K and rises continuously to

35 wt% when the temperature is about 850K. The yield is constant

at 35 wt% in the temperature interval 850-1300K; past 1300K there

is a slow increase in gas production again. At 1400K, the yield

is 37 wt% and is still increasing.

Tars are generated before gases and are evolved at about 500K.

Their yield peaks at 37 wt% between 750-800K, declines to a plateau

of 33 wt% at 1000K, and remains constant with further increase in

temperature.
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Fig. 4.1-1 Char yield from pyrolysis
sweet gum xylan.
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Fig. 4.1-2 Total gas yield from pyrolysis
of sweet gum xylan.
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Fig. 4.1-3 Tar yield
sweet gum

from pyrolysis of
xyl an.
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4.2 Char Yield

The most striking result from the global pyrolysis data presented

is the high ultimate char yield of 25 wt% (.of cellulose: 4.2 wt%;

lignin: 14 wt%; wood: 7.0 wt%). This finding may be attributed

partially to the high ash content (9.0 wt%) of the xylan. In Chapter

2 it was pointed out that woods have ash contents around 0.5 wt%. If

the xylan in wood contained 9.0 wt% ash, the wood would contain 2.7

wt% ash if the cellulose and lignin are assumed to be ash free.

To correct the global and individual gas yields from xylan

pyrolysis for the high ash content, which is due to the xylan isolation

procedure (see Fig. 2.1-1), the scheme outlined in Fig. 4.2-1 was

implemented. The material balances for each.experimental point are

preserved in this numerical procedure; Figs. 4.2-2 through 4.2-4 show

the corrected char, total gas and tar yield from xylan. The major

effect of the correction is in increasing the ultimate yield of total

gas and tar by about 10% of their previous values to 38 wt% and

35 wt%, while correspondingly decreasing the char yield by roughly 8 wt%

to an ultimate value of 17 wt%.

Appendix D contains the experimental data for the production of

individual product gases from xylan pyrolysis. The remainder of the

data presented in this chapter have been corrected and are thus on an

ash-free basis. Any noteworthy differences which have arisen in the

interpretation of the data due to the corrective scheme, have been

saved for discussion in Section 4.4.
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Fig. 4.2-1 Corrective calculations for char, tar and gas yields

(a) ORIGINAL XYLAN SAMPLE :

Pyrolysis

CHAR

9 wt. % ash

actual
yield

actual
yield

, actual yields = 100 wt. %

(b) CORRECTED YIELDS BASED ON 91 WT. % XYLAN :

Corrected gas yield

Corrected tar yield

Corrected char yield

(+)

Actual Gas Yield

0.91

Actual Tar Yield

0.91

Actual Char Yield - 0.09

0.91

Total yield = 100 wt. %

42

GAS

actual
yield



600 800 1000 1200 1400

TErPERATURE (K)

Fig. 4.2-2 Char yield from xylan pyrolysis,
corrected for ash content.
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Fig. 4.2-3 Total gas yield from xylan
pyrolysis, corrected for ash
content.
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Fig. 4.2-4 Tar yield from xylan pyrolysis,
corrected for ash content.
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4.3 Kinetic Modelling of Pyrolysis Products

The second section of the results focuses on individual gaseous

species evolved'. The data for each gas were first curve-fitted by

eye to reveal the ostensible trend (indicated by the dashed line), and

later were fit by a nonlinear least squares regression routine named

POWELL (see Appendix C), according to the single reaction first order

model used by Franklin (1980), Hajaligol (1980) and Nunn (1981). The

curve fit generated by a program named CLFITI (Franklin, 1980) using

POWELL's best fit parameters is shown on the same figures as the

smooth continuous curve, but plots yield as a function of "idealized

temperature" (see Appendix B). When only the latter curve appears on

a plot, the model is said to exactly follow the ostensible trend.

Figure 4.3-1 illustrates the production of methane from xylan.

The amount of methane generated at temperatures below 800K is less

than 0.05 wt%. In the range 800-1300K the increase is virtually linear,

and only gives a slight sign of tapering away at the highest temperatures.

The yields of ethylene and ethane shown in Fig. 4.3-2 and 4.3-3

respectively are closely modelled by first order kinetics. The

production of each is discernible at about the same peak temperature

(700K). Ethane production is complete by 1100K while ethylene evolution

continues to about 1150K. Ethylene has an ultimate yield of 0.42

wt%; that of ethane is 0.12 wt%.

It is difficult to find the ostensible trend in the water data

due to the scatter. Nevertheless, the first order model gives a
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4.3-1 Methane yield from sweet
xylan pyrolysis.
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Fig. 4.3-2 Ethylene yield from sweet gum
xylan pyrolysis.
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reasonable approximation to the data as shown in Fig. 4,3-4. The

ultimate calculated yield is 5.2 wt%, but the true value could range

from 4.5-6.5 wt%.

As with water, there is much scatter in the formaldehyde data

(Fig. 4.3-5). The yield increases linearly with temperature with a

break in the slope at 1050K. However, the kinetic model gives a

plausible S-shaped curve fit with an ultimate yield of 0.12 wt%.

(See Table 4.2-1 for the standard error of estimate.)

Figs. 4.3-6 through 4.3-9 show the yields for propylene,

methanol, acetaldehyde and ethanol respectively. The methanol and

acetaldehyde yields seem to peak between 900-950K. Other than that,

these four products can generally be considered to satisfactorily

follow the kinetic model.

On a weight basis carbon dioxide and carbon monoxide account

for most of the gases produced. Fig. 4.3-10 shows that carbon

dioxide's yield follows the kinetic model well, but only until 1200K.

Between 1200-1400K, however, the yield drops 2 wt% (absolute) to

14 wt% total. -The same is not true of carbon monoxide. The overall

curve for carbon monoxide (Fig. 4.2-11) is consistent with a series

of steps at 800K, 1000K and 1150K respectively. However, the curve

fitted by the model also approximates the data relatively well, but

overspecifies the ultimate yield as an exaggerated 27 wt%. Therefore,

for greater accuracy, each hypothetical step was separately fit by

its own single reaction first order model. The results for steps 1

and (2+3) combined (800K and 1000K) are depicted in Figs. 4.3-12 and
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Fig. 4.3-7 Methanol yield from sweet
gum xylan pyrolysis.
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Fig. 4.3-8 Acetaldehyde yield from sweet
gum xylan pyrolysis.
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Fig. 4.3-9 Ethanol yield from sweet gum
xylan pyrolysis.
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Fig. 4.3-10 Carbon dioxide yield from
sweet gum xylan pyrolysis.
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Fig. 4.3-1 1 Carbon monoxide
sweet gum xylan

yield from
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4.3-13. Step 3 could not be independently fitted due to the paucity

of high temperature data. The sum of the ultimate yields for carbon

monoxide's three steps is 17.3 wt% which is in much closer agreement

with experiment.

Table 4.3-1 lists the activation energies (E*), Arrhenius

preexponential factors (log 10k), ultimate yields (V ) and the

standard errors of estimate from POWELL's regressions for all

gaseous compounds from sweet gum xylan pyrolysis.

In addition to modelling yields of individual gases, the global

weight loss, total gas yield and tar yields were also separately

fitted for best values of E*, log k and V*. Figs. 4.3-14 through
10

4.3-16 respectively show the modelled curves for these three "products".

Though the single reaction first order decomposition model cannot

predict a peak in a product's yield, methanol, acetaldehyde, water

and tar yields, which all show a peak, were fitted by the model

strictly for comparison with Hajaligol's (1980) and Nunn's (1981)

data.

4.4 Comparison of Cellulose with Hemicellulose

Before proceeding with a discussion of the simulation of wood

(section 4.5), it is instructive to compare the pyrolysis behavior of

the two largest wood constituents: cellulose and hemicellulose. When

this simulation was first attempted by Nunn (1981), it was postulated,

in the absence of data for the pyrolysis of hemicellulose, that
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Fig. 4.3-13 Carbon monoxide yield (Step 2).
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aTable 4.3-1 Kinetic parameters for pyrolysis of sweet gum xylan

E (kcal/g-mol) logok
(k = sec 1)

V* (wt. %)
Standard
error of
estimate
(wt. %) d

Weight loss

Tar

Gas

CH4

C02

CO b
H2 0

HCHO

C3H6

CH30H

CH3CHO

CH3CH20H

C2H4

C2H6

CO
CO

(step 1)

(teps 2

c -

+ 3)

12.8 + 1.0
29.0

11.7

12.0

36.0

+

+

+

+

8.0

3.5

2.0

4.0

4.1 + 0.4 83.6 + 0.5
10. +

3.7 +

2.3 +
12. +

3.0

1.0

0.5
1.0

35.8 +

38.0 +

1.1 +

15.2 +

6.0 + 2.0 0.8 + 1.0 27.0 +

29.0 + 19. 9.0 + 6.0 5.2 +

14.0

25.0

+

+

6.0

4.0

4.0 +

6.0 +

2.0

1.0

14.0 + 8.0 5.0 + 3.0

17.0 + 7.0 5.0 + 2.0

12.0 + 2.0 3.1 + 0.6

21.0

21.0

12.0
c 41.0

+

+

+

+

3.0
4.0

8.0

8.0

4.8 +
5.0 +

3.0 +

8.0 +

0.7
1.0

3.0
2.0

0.12 +

0.32 +

1.62 +

1.12 +

0.8

1.0

0.1
0.2

21.

0.2

0.01

0.006

0.04

0.05

0.32 + 0.01

0.42 +

0.12 +

8.81 +

8.5 +

0.02

0.004

0.02

0.5

a Data presented as : "best fit value + one standard deviation of fit value"
b Single reaction model
c Step-wise modeT involving 3 independent reactions
d Defined as :

; n data points.
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Product

2.1

3.9

4.1

0.009
0.66

2.0

0.67

0.027

0.002

0.16

0.18

0.003

0.003
0.001

0.23

0.53

n 2
S mV o - ) / (n-3)

'I, jmodel jIexp.
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cellulose and hemicellulose behaved similarly. The following is

meant to provide a picture of the accuracies and inaccuracies of that

hypothesis.

Fig. 4.4-1 indicates that the initial rate of methane production

is greater for sweet gum xylan than for filter paper cellulose at

least for temperatures between 700K and 950K. However, the increase

in methane production thereafter is 2.5 times greater for cellulose.

Both compounds reach their ultimate yields: 2.6 wt% for cellulose,

1.1 wt% for xylan by 1300K.

While it is not clear whether ethylene formation from xylan

occurs at a lower temperature than the same from cellulose (see

Figs. 4.4-2 and 4.4-3), ethane is produced from xylan at a noticeably

lower temperature. The ultimate yield of ethylene is achieved for

both species around 1150K (2.1 wt% for cellulose versus only 0.44 wt%

for xylan). However, ethane production is initially more rapid for

xylan: 0.12 wt% by 1000K; the yield from cellulose reaches 0.25 wt% at

a significantly higher temperature of 1150K.

At temperatures below 800K, xylan evolves chemical water more

readily than cellulose as shown in Fig. 4.4-4. In fact, water prod-

uction from xylan ceases before 30% of the ultimate water yield from

cellulose is attained. In order to compare xylan data with comparable

cellulose data, the yields of water and formaldehyde had to be combined

because individual water and formaldehyde data are not available for

cellulose. However, the yield of formaldehyde is so small for both

species (c.f. 0.11 wt% from xylan) that the curves can be considered to
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represent only the water yields without significant loss in accuracy.

As for the light hydrocarbon gases discussed previously, propylene

is generated starting at a lower temperature for xylan than for

cellulose. Yet, both reach their ultimate yields by 1000K. The

ultimate yield from cellulose is twice that from xylan. Fig. 4.4-5

presents these results.

The general trend found for light hydrocarbons, i.e. their

evolution at lower temperatures from xylan than from cellulose is

also true of carbon monoxide, although its rate of production from

xylan is not quite so fast as it is from cellulose. This is shown

in Fig. 4.4-6. Carbon dioxide yield on the other hand (Fig. 4.4-7)

is more closely like that of water because its production from

xylan is complete before any is evolved from cellulose. Carbon

dioxide and water are the only compounds which are produced in

significant quantities both at a lower temperature and a faster rate

from xylan than cellulose.

In conclusion, as might be expected from the differing structural

conformations for celluloses and hemicelluloses, their pyrolytic

behavior is dissimilar. Even with regard to weight loss and total

gas production, shown in Figs. 4.4-8 and 4,4-9 respectively, filter

paper cellulose and sweet gum xylan behave differently. Thus, the

wood simulation model used by Nunn (1981) must be revised in the

light of these new findings, and especially the fact that xylan is

much more reactive than is cellulose.
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4.5 Simulation of Wood

An assessment of the extent to which the rapid pyrolysis of wood

can be simulated from comparable information on its constituents

is one of the primary objectives of this research. The simulation

algorithm to be tested assumes that the yield of each pyrolysis product

from wood is given by the sum of the yield of this product from each

of its three major constituents (cellulose, hemicellulose and lignin)

each weighted by the weight fraction of that constituent in the parent

wood. For sweet gum hardwood, the fractional composition was taken

to be 42.5 wt% cellulose, 30.6 wt% hemicellulose and 26.9 wt% lignin

based on information from Andrews (1980).

The equations describing the simulation follow. The simulated

integral yield of product i

3

Y (g(t)) = W. Y. .(g(t))
j=l 313

where W. weight fraction of constituent j in wood

Y. . = integral yield of product i from pyrolysis of
'' constituent j in wood

g(t) = the temperature-time history of the pyrolysis
sample

As mentioned, the values for W. were obtained from Andrews (1980).

The values of Y(g(t)) for cellulose were taken from Hajaligol's (1980)

study on No. 507 filter paper; the corresponding data for lignin were

from Nunn's (1981) work on lignin pyrolysis while the hemicellulose

(xylan) Y(g(t)) was generated by this research.
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Figs. 4.5-1(a) through 4.5-7(.a) show the experimental data for

individual product gases from sweet gum wood pyrolysis (Nunn, 1981),

and compare the curves fitted to them with the curves obtained from

the simulation (shown by the dotted lines). Side by side, Figs.

4.5-1(b) through 4.5-7(b) present the identical data which Nunn (1981)

obtained along with his simulation for wood which assumed wood was

73.1 wt% cellulose and 26.9 wt% lignin. In the absence of data on

hemicellulose, Nunn had assumed cellulose and hemicellulose behaved

identically.

The individual product gases whose yields are better simulated

by the current work than by Nunn's simulation include methane,

ethylene, ethane and propylene (Figs. 4.5-1 through 4.5-4). The

most noticeable improvement arises due to the closer fit provided

in the plateau or ultimate yield region at high peak temperatures.

Although the present simulation overpredicts the ultimate yields

for these four specific compounds, the simulated curves remain within

the scatter of experimental data from wood pyrolysis,and are superior

to Nunn's simulation which overshot the data by a substantially

greater amount.

The corresponding pair of simulations shown in Fig. 4.5-5(a)

and (b) for carbon monoxide show no great differences between each

other. Nunn's simulation and the simulation from this study do an

almost identical job, but do not accurately model wood's behavior for

carbon monoxide evolution. The same is not true for water and

formaldehyde production; while both simulation curves (Figs. 4.5-6(a,b))
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are inside the scattered data, each has its strong and weak points.

The strong point in Nunn's curve is the closer agreement to data in

the high temperature region, while the strong point of the current

simulation lies in showing the proper temperature dependence of the

yield insofar as predicting the correct temperature at which the

ultimate yield of water and formaldehyde is first achieved (1000K).

Carbon dioxide is better modelled by the simulation from this

study than by Nunn's model. While both simulations are far from

ideal, the major redeeming qualities of the present simulation are

its rather accurate prediction of the temperature (1000K) at which

carbon dioxide achieves its ultimate yield and its closer reduction

of the absolute value of that yield.

Figs. 4.5-8 and 4.5-9 show the simulations for total weight loss

and gas production. The current work consistently underestimates the

data for wood for both cases over the entire temperature range. Nunn's

simulation also underestimates the wood data in the steeply rising

section of both plots, but is remarkably accurate in matching the

ultimate yields. In general, Nunn's simulation for weight loss more

closely matches the data from the pyrolysis of wood than any other

simulation matches the rest of the data for wood.

Table 4.5-1 lists the best fit kinetic parameters for the

pyrolysis of sweet gum wood and compares them with those derived

from the present simulation of wood.
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Table 4.5-1 Comparison of kinetic parameters for sweet gum

hardwood pyrolysist to those predicted from the

wood pyrolysis simulation model.

Component E (kcal/g-mol) logiok
(k = sec-1)

V* (wt. %)
Standard
error of
estimate
(wt. %)

CH,

C2H

C2H6

H20 + HCHO

C3H6

C02

CO

Weight loss

Gas

20.7

26.0

29.8

12.7

245.

82.9

18.9

28.5

19.0

(16.6)

(19.2)

(23.7)

(11.5)

(43.8)

(14.3)

(14.6)

(16.5)

(11.8)

4.5

5.7

6.8

3.5

59.

19.

4.1

7.6

4.5

(3.8)

(4.4)

(5.9)

(3.3)

(11.)

(3.8)

(3.4)

(4.5)

(2.9)

2.2 (1.9)

1.2 (1.2)

0.22(0.17)

6.3 (7.1)

0.43(0.41)

6.6 (5.9)

19. (17.)

84. (93.)

38. (41.)

t Values in parenthesis

See Table 4.3-1.

are data from Nunn (1981)
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4.6 Char Gasification

There are several factors which may eventually be found to

explain why the ultimate yields for individual gases obtained from

simulation are greater than the same from wood. One of the postulated

factors is secondary reactions of volatiles with char at temperatures

above 1150K. This phenomenon would result in gaseous yields sub-

stantially higher than the ultimate yields for gases generated by

primary reactions (mainly those at temperatures less than 1150K).

Though the reactor provides a large escape and quench volume

for volatiles evolving from the neighborhood of the sample screen,

visual inspection of their recirculation patterns in the reactor

(as revealed by the movement of tar fog during and after each run)

shows that for peak temperature runs higher than 1200K, some of the

evolved primary gases re-contact the heater screen before it reaches

the peak temperature.

The role of such effects in carbon monoxide and carbon dioxide

gi -ration was emphasized since, combined, these two products comprise
*

a :it 60 wt% of all volatiles. In addition, the overshoot for V

Mo the simulation for these gases were 3.0 wt% and 3.8 wt%

respectively which is a large fraction of the total gas yield of 40 wt%.

There is one new feature found in the data for carbon dioxide production

from xylan which cannot be explained by the secondary cracking of tar

postulated above. Beyond 1200K, carbon dioxide production decreases

by 2 wt% instead of increasing beyond its plateau at 15.2 wt%. Thus,
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still another hypothesis which considered a char gasification reaction

was formulated. The char gasification reaction is:

C + CO 2 2C0char 2

Experiments described below have proven the existence of this reaction

for xylan pyrolysis.

Dershowitz (1979) examined the analogous process in a pulverized

Montana coal char. Based on intrinsic kinetics, he showed that the

equilibrium in the reaction

C char + CO 2CO

lies to the right (log Kp " 1.7) at 1200K. At higher temperatures,

the production of CO is even more greatly favored.

Tables E.1, E.2 (Appendix E) and 4.6-1 list the experiments

performed, and give the data relevant to proving the occurrence of

the gasification reaction. The objective of these specially designed

experiments .,s to separate the contributions to the observed xylan

pyrolysis be;- vior of (a) primary thermal decomposition of the xylan

and (b) secom;ary gasification of the pyrolysis-derived char.

Therefore, the apparent generation of carbon monoxide in three steps

was thoroughly reexamined and evaluated in light of the hypothesized

occurrence of char gasification. The ultimate char yields from these

experiments, when compared with those for the regular peak temperature

pyrolysis runs, gave a strong indication of whether or not char

gasification was occurring.
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The first two experiments (H-38 and H-39) performed were "holding

time" experiments designed to show the qualitative nature of secondary

reactions. In both runs, the char yield was lower than that expected

for a standard "peak temperature" run at 1023K which is 32.5 wt%.

Although carbon dioxide reached its ultimate yield by 1023K, the

experiments both indicated a small increase in carbon dioxide yield

due to the added chance for reaction during the 19 seconds of

"holding time". The carbon monoxide yields also increased substan-

tially. It is not clear from these experiments whether the greater

yields of both gas species stems from further primary pyrolysis or

from secondary reactions; it is most likely from a combination of the

two.

The next pair of experiments, summarized in Table E.2, were

directly concerned with peak temperature runs, and had the objective

of approximately determining the temperature above which secondary

reactions become important. A preliminary study of the carbon

monoxide "three step" yield pattern suggested that this temperature

might be either 1073K or 1193K, corresponding to the base of the

second and third steps respectively (cf. Fig. 4.3-11). In each

experiment, the char yield was expected to equal that corresponding

to the second, higher peak temperature run (1373K). Indeed, the

char yields matched according to prediction (cf. Fig. 4.2-2),

confirming that any secondary reactions which may have occurred also

occur during standard pyrolysis runs. Furthermore, experiment H-40

seems to confirm that while carbon dioxide production is essentially
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nil past 1073K, carbon monoxide is still being produced by what

evidently are primary reactions. (No other gaseous component exists

in sufficient quantity to be able to generate such large amounts of

carbon monoxide from secondary reactions.) That we are seeing only

primary reactions is also evidenced by the discrepancy in carbon

dioxide and carbon monoxide yields from their expected values at a

peak temperature run at 1373K. This difference, thus, must be

shown to be the result of secondary reactions.

In experiment H-41, the evacuation of all gases from the reactor

after the first peak temperature run, followed by the injection of

4 cc-atm of carbon dioxide before the second run to 1373K, was

designed to force secondary reactions between gas and char. The

final yields of carbon dioxide and carbon monoxide qualitatively

prove the existence of the char gasification reaction. However, the

net gas yields indicate that only one-half of the total carbon

monoxide produced in the second run can be attributed to originate

from carbon dioxide. The remainder then must have come from primary

reactions in the char.

Experiment H-42, outlined in Table 4.6-1(a), finally integrated

all observations into a consistent picture of the nature of char

gasification for xylan. Upon quantifying the gases evolved by each

successive peak temperature run, it was firmly established that

carbon dioxide reaches its ultimate yield of 15.5 wt% gradually by

1373K. At temperatures even as low as 1023K, the carbon dioxide

yield is within 7% of its ultimate value. Similarly, it is known that
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Table 4.6-1(a) Experiment H-42 confirming the three step

yield curve for carbon monoxide , and the

char gasification reaction

Temperature - time history

gases
analyzed

gases
analyzed

gases
analyzed

time

STEP 1: Peak temperature run to 1023 K
STEP 2: Peak temperature run to 1073 K
STEP 3: Peak temperature run to 1193 K

INDIVIDUAL YIELDS: C02 CO

Step 1 (1023K)
Step 2 (1073K)
Step 3 (1193K)

CUMULATIVE YIELDS:

14.4 wt. %
0.76
0.22

C02

Step 1 (1023K)
Step 2 (1073K)
Step 3 (1193K)

14.4 wt. % (15.0)*
15.2 (14.8)
15.5 (13.6)

8.9 wt. % (8.5)*
11.7 (12.)
13.5 (17.)
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1193
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300
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Table 4.6-1(b) Calculations proving validity of stoichiometry
in char gasification reaction for xylan char.
(Data from Table 4.6-1(a))

Difference in C02 yield attribuable to char gasification:

15.5 - 13.6 wt. % = 1.9 wt. % at 1200K.

Difference in CO yield attribuable to char gasification :

17.0 - 13.5 wt. % = 3.5 wt. % at 1200K.

Postulated reaction:

Molecular weights
C02 + C (char) -+- 2CO

44 12 2(28)

Basis = 50 mg xylan sample.

1.9 wt. % C02 = 2.16 X 10-5 g-mol C02
3.5 wt. % CO = 6.25 X 10 g-mol CO 5
Expected CO = 2 (2.16 X 10 g-mol) = 4.3 X 10- g-mol CO.

Difference (6.25 - 4.3) X 10-s g-mol = 1.9 X 10-s g-mol (0.8 wt. %)

due to continued primary reaction formation of CO.
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the evolution of carbon monoxide by primary reactions does exhibit

a three-step behavior: the first plateau at 8.4 wt% is reached by

923K; the second shorter plateau at 11.6 wt% is achieved by 1150K.

The third plateau, the existence of which may be deduced from the

available data, though it lies at the high temperature periphery

of our data, is at about 13.7 wt% of carbon monoxide and is attained

by perhaps 1250K. The most important element in the interpretation

of H-41 which allows us to justify this third plateau for carbon

monoxide at 13.7 wt% is that calculations show (see Table 4.6-1(b))

that the deviations from 15.5 wt% carbon dioxide and from 13.7 wt%

carbon monoxide can be attributed to a stoichiometric char gasification

reaction (i.e., CO + C + 2C0).
2

4.7 Step Behavior of Carbon Monoxide

Suuberg (1977) in an extensive study of the devolatilization

behavior of a Montana Lignite and a Pittsburgh Seam Bituminous coal

observed step behavior for several gas species' yields. The reaction

conditions for the rapid pyrolysis behavior were varied over a wide

range of heating rates and pressures. Despite this variation in

conditions, a three step behavior for the production of carbon

monoxide from the coals is proposed as is done here for the pyrolysis

of xylan.

The supporting evidence is strong for the coals, and is justified

based on the assumption that carbon monoxide production proceeds via
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different mechanisms depending on the peak temperature of the pyrolysis.

The complex petrographic structure of coal provides enough justifi-

cation for this hypothesis and did not force Suuberg to constrain

the suggested applicability of this mechanism to carbon monoxide

evolution alone; methane, ethylene and carbon dioxide, for example,

also exhibit two step yield behavior.

A similar argument may be proposed for xylan but only for

carbon monoxide. Looking at xylan's structure illustrated in

Fig. 2.1-3(a), we find that carbon monoxide may be generated

from the carboxylic glucoronic acid group, from the H CO- side
3

group, from the C-0-C chain which links adjacent pentose sugar

units together, and lastly from the oxygen-carbon group in the

ring structure itself. Based on relative bond strengths (Benson, 1976)

it is reasonable to postulate that the first step in carbon monoxide

production (see Fig. 4.3-11) between 550 and 1050K is due to the

rupture of the H C- side groups on the pentose ring in the 4-ortho
3

position of the xylan backbone. The second step (1050 to 1200K) is

probably the result of the cleavage of one carbon-oxygen bond between

the five carbon sugars, while the high temperature plateau (1200 to

1400K) would be from carbon monoxide formation from carbon and oxygen

atoms within a 6-membered ring. Fig. 4.7-1 points out the specific

groups mentioned. A final comment is needed to emphasize that the

glucoronic acid group is most likely the precursor to carbon dioxide

production and normally will not yield the monoxide.
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1. Most likely
position

3. Third possible
position

r7~

2. Second most likely
- position

- o -0Nq 1' 0 -

Fig. 4.7-1 Three possible locations in xylan's
structure which might yield carbon
monoxide upon pyrolysis.
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4.8 Effects of Potassium in Xylan Pyrolysis

Mineral additives such as NaOH, H PO , ZnCl and (NH ) HPO have
3 4~ 2 4 2 4~

been added to xylan (Shafizadeh, 1972; 1976) and to holocellulose

(Fang and McGinnis, 1976). The differences resulting therefrom were

tabulated next to those of their "neat" pyrolyses. It is found that

char yields increase substantially, tar yields decrease substantially

while the yields of light hydrocarbons vary -- some, such as furan,

ethanol and water are evolved in larger quantities; others such as

methanol and carbon dioxide remain essentially constant while acetic

acid, acetaldehyde, and acetone, for instance, decrease in yield

(see Table 2.2-1 and 2.2-2).

A more extensive study performed by Cosway (1981) on the

effects of calcium, sodium and potassium, ion exchanged with carboxylic

hydrogen ions in demineralized subbituminous coal, is more directly

relevant to the present work on xylan. Since Cosway's data were

gathered on an apparatus very similar to the one used here for xylan,

and since the same heating rate (1000 K/s) was used for pyrolysis, the

analogies with and extrapolations from this research are particularly

meaningful. Further, the potassium ions which exist in the xylan

microstructure are replacing the hydrogen ions in glucuronic acid

groups (Chang, 1982(b)), the predominant carboxylic acid group in

xylan.

The main observation made by Cosway concerned the large increase

in char yield due to the metal ions. No mechanism is proposed, but
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it is safe to speculate that the reduction in weight loss may be

due to catalytic activity of the metal ions, probably in accelerating

rates and extents of tar cracking to char and gases. This result

can justify a 16 wt% char yield from xylan. The weight loss from

coal was reduced from 55% to 38% on a dry mineral matter free (DMMF)

basis. Tar yield, too, was found to decrease in the presence of

potassium.

As for product gases, Cosway notes that carbon monoxide yield

is depressed (from V* = 10% DMMF to V = 8% DMMF for potassium

substituted coal). Fig. 4.8-1 shows the typical behavior obtained by

Cosway for carbon monoxide, methane and other volatiles from sub-

bituminous coal pyrolysis. Of the several interesting features in

the figure, it is clear that the primary function of the metal ions

is not only to lessen the ultimate yield of gas but also to lessen
*

the apparent reactivity of the coal samples. Thus, not only is V

less than that for demineralized coal, but the curve for gas production

is also shifted to the right (i.e., to higher temperatures). The

only compound for which this behavior is reversed is carbon dioxide;

Fig. 4.8-2 presents Cosway's data for carbon dioxide production.

If we believe the pyrolysis behavior for xylan is affected by

the potassium impurity in much the same way as it affects Cosway's

coal, then we can give a suitable explanation for the inaccuracies of

the simulated curves for wood pyrolysis. All of the simulation curves,

be they for weight loss or propylene evolution, have one common feature:

all underestimate the analogous behavior of wood during the most rapidly
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TEMPERATURE (K)

Fig. 4.8-1 Carbon monoxide yield from rapid pyrolysis
of a Montana subbituminous coal; R = raw,
D = demineralized, N = sodium added,
C = calcium added, K = potassium added.
(Cosway, 1981)
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TEMPERATURE (K)

Fig. 4.8-2 Carbon dioxide yield from rapid pyrolysis
of a Montana subbituminous coal; R = raw,
D = demineralized, N = sodium added,
C = calcium added, K = potassium added.
(Cosway, 1981)
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rising region of the weight loss or product evolution. It is con-

ceivable that this phenomenon is due to an apparently lowered xylan

reactivity due to potassium's catalytic action. Furthermore, one

may hypothesize that the pyrolysis data from potassium-free xylan

when combined with those of Hajoligol's (1980) cellulose and Nunn's

(1981) lignin, which were both free of potassium, would yield a

simulation curve which would closely match Nunn's wood data.

Nunn's wood had a small potassium content in agreement with the

quantity one might expect to find in woods.

4.9 Experimental Accuracy

The present pyrolysis reactor gives good material balance

closures (between 90 and 100%). The char yield is determined grav-

imetrically and is subject to < 0.1 wt% inaccuracy. The yield of

gases, which are collected in the glass wool and lipophilic traps, is

subject to a somewhat greater inaccuracy because recovery is between

80 and 100%. But -.he greatest part of the inaccuracy lies in

collecting tars. While tar yield is partially determined gravimetric-

ally from the foil which lines the bottom of the reactor, most of

the tar is recovered on the Kimwipe tissues which are used to wipe

down the reactor's sides and top. About 50% of the tar appears on the

tissues once the solvent is evaporated. Though the control tissue

provides a correction for residual solvent, the solvent sometimes

accounted for 30% of each tissue's accumulated weight.
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A final note concerns the yield of heavy oxygenated gases which

are eluted after water. Nunn (.1981) mentions a possible 30% error

in each of those peaks for formaldehyde, methanol, acetaldehyde,

ethanol, acetone and furan. Yet it is not of much consequence in the

overall material balance of which they represent 1 wt% maximum.

More serious is the fact that methanol and acetone, which are in the

solvent used to extract tars from the glass wool trap, could never

be completely desorbed from the glass wool. As a result, although

reasonable qualitative trends may be inferred from the present data

on methanol, their quantitative significance is questionable.
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5. CONCLUSIONS AND RECOMMENDATIONS

The conclusions to be drawn, given that the experimental

apparatus generates consistently reproducible data with material

balance closures generally in excess of 90 wt%, are:

(1) The pyrolysis data on sweet gum xylan shows similarities

to analogous data obtained from the pyrolysis of filter paper

cellulose, milled wood lignin and sweet gum hardwood in terms

of (a) the high degree of devolatilization possible, (b) the

high tar yield at high temperatures, (c) the light volatile

products' distribution, and (d) the good fit of the single step

first order reaction model to the data.

(2) The devolatilization behavior of cellulose and hemicellulose

are not in as close agreement with each other as expected

from their structural similarities, the major differences

arising from the greater reactivity of hemicellulose, demon-

strated by incipient volatiles evol tion at lower temperatures

than for cellulose, and the noticea ly great differences

in ultimate yields for carbon monoxide and carbon dioxide.

(3) The temperature dependence of yields from wood, of all products

except char is well simulated by the present model which

accounts for the differences in the pyrolysis behavior of

cellulose and hemicellulose. This represents a significant

improvement over a previous simulation which hypothesized that
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these two wood components behaved identically.

(4) The high char yield from xylan is probably due to its high

potassium content, since it is known from other studies on

coal and biomass that inorganic matter catalyzes char formation

in pyrolysis.

(5) The large potassium content of the present xylan may catalyze

the char gasification reaction at temperatures above 1150K

(CO + char i 2CO). This generates carbon monoxide in greater
2

quantities than would have been expected from primary pyrolysis

and secondary (tar cracking) reactions.

Additional work must be done in order to discover the reasons for

the differences between simulation and experimental observations for

wood pyrolysis; hence, the recommendations are:

(1) To determine the pyrolysis characteristics of mineral-free

xylan and compare them with filter-paper cellulose pyrolysis

behavior;

(.2) To perform a similar study on natural sweet gum cellulose (a-

cellulose) and also compare the results with t .se of filter

paper cellulose;

(3) To investigate more closely the effects that inorganic minerals

(such as potassium) have on the pyrolytic decomposition reactions

in biomass, especially with regard to catalytic char gasification;

(4) To compare the pyrolysis behayior of wood reconstituted from a

mix of its three major components with that predicted by

simulation; and
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(5) To study the secondary reactions of tars from wood and its

constituents to establis.h a more quantitative picture of

their role in global pyrolysis behavior. The possible greater

stability of xylan derived tars indicated in the present

work is of particular interest.
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APPENDIX A - GAS CHROMATOGRAPHY

A.1 Response Factors for Sigma 2B Gas Chromatograph

For each of the identified product gases evolved on pyrolysis,

gas samples (for CO, CO , CH , C H , C H and C H ) of volumes ranging
2 4  2 4 2 6 3 6

from 0.25 cc to 2.0 cc, and liquid samples (for HCHO, CH OH, CH CHO,
3 3

EtQH, acetone and furan) of volumes ran9ing from 0,25 pl to 2.0 pl

were injected into chromatographic columns maintained at 573K. Methane

of 99.97% purity (Matheson, ultra-high purity) is used as the standard

caltbration gas, since it responds to both the thermal conductivity

detector (TCD) and flame ionization detector (FID), and thus has a

response factor of 1.0.

For gases other than methane, the response factor was calculated

from:

mg. ACH
R -

A. mgCH
4

in which mgi was regressed versus Ai/(ACH /mgCH )) via linear least

squares to obtain the response factor (R ) as the slope of the line.

Then, R. is used in the following formula:

R 0.6544 A.mgi = i A AH1 A~CH 1
4

where: mg milligrams of component i

Rg = response factor for i
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mgCH = 0.6544 per cc (RCH = 1.000)CH 1100

A = TC or F1 peak area for i

ACH = TC or FI peak area for CH 4

Thus, only ACH needs to be obtained for a Icc sample of methane (which

contains 0.6544 mg methane) to get all other mg1 .

Table A,1 lists the TC and FI response factors for the gases

collected in the glass wool and lipophilic traps.

A,2 Operation of the Sigma 2B Gas Chromatograph

Gas chromatography often involves the separation of a sample on

a single column temperature programmed from ambient or sub-ambient

initial temperatures to some higher final temperature.

Previous biomass pyrolysis studies in this laboratory utilized

a 3.6 m long 0.635 cm ID column packed with Porapak QS (Waters

Associates), temperature programmed from 203K to 513K at a constant

rate of 16 K/min. In this protocol, the gases emerged from the

column in the following order: air, carbon monoxide, methane, carbon

dioxide, ethylene, ethane, propylene, water plus formaldehyde,

methanol, acetaldehyde, ethanol and heavier oxygenated hydrocarbons.

This method had the drawback of not providing a clear separation

between the air and carbon monoxide peaks, nor could it discriminate

between water and formaldehyde peaks. To overcome these deficiencies,

a new method developed by Serio (1983) proyed effective.
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Table A.1 Response factors for thermal conductivity (TC) and
flame ionization (FI) detectors on the Sigma 2B
and Perkin Elmer 3920B gas chromatographs

Component

CH4

C02

CO

C2 H4

C2 H6

H2 0

HCHO

C3 H6

CH30H

CH3CHO

CH3CH2OH

CH3COCH 3

Furan

CH3COOH

TC Sigma 2B FI

1.000

*

*

0.791 + 0.007

0.889 + 0.015

*

*

1.437 + 0.006

3.5 + 0.1

1.000

1.71 + 0.01

1.437 + 0.006

1.37 + 0.01

0.92 + 0.09

1.34 + 0.03

1.34 + 0.03

1.47 + 0.02

1.466 + 0.016

1.68 + 0.02 3.01 + 0.014

1.63 + 0.02 1.93 + 0.02

1.63 + 0.01 1.893 + 0.007

2.07 + 0.03 1.36 + 0.05

1.90 + 0.014 4.72 + 0.04

No FI response
Old response factors used C02 as the standard gas
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PE 3920B
TC

1.00

1.78

1.36

1.26

1.28

1.24

1.24

1.47

1.34

1.34

1.55

1.47

1.47

1.91

*



The novel technique uses a 0.92 m long x 0.635 cm ID column

packed with 80/90 mesh 5A molecular sieve in series with the 3.6m

long Porapak QS column described above. It is possible, via a

switching mechanism at the gas inlet port to these columns (see

Figure A.2) to reverse the in-series positioning of the two

columns. From Fig. A.2 we see that valve position A corresponds to

having the molecular sieve column (#2) first, followed by the

Porapak column (#1), with no communication between the sample and

the columns. Valve position B allows the gases to enter the

Porapak column first and then the molecular sieve column. In this

position the carrier gas sweeps through the sample loop before

entering the columns. Thus, the valve must initially be at position

B to allow the gases to enter the column system. This position also

results in the entire sample being deposited first on the Porapak

column. This is necessary since certain components, e.g., CO2, H2 0'

are nearly irreversibly adsorbed on the molecular sieve column.

Two distinct temperature programs were used with the new method,

one for the glass wool trap and the other for the lipophilic trap.

This is necessary due to the differences in product gas distribution

in each trap. Nonetheless the main features of the gas analysis are

the same for both traps, and their description follows.

Initially, the valve is in position B and all the gases are

swept into the Porapak column at ambient temperature. The valve

stays in that position until air and then methane exit the molecular
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Description of Column and Detector Sequence (Gas Analysis)

Column Sequence Reversal System

Valve Position B

Column 2 (Por
ColIuimn I (Mol

Fig. A.2 Columns' configurati
Switching time = 4.
and 7.8 minutes for

Valve Position A

opak QS)
ecular Sieve)

on in Sigma 2B Gas Chromatograph.
2 minutes for glasswool trap;
lipophilic trap. (Johnson, 1982)
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sieve column. Due to the retarding effect of the molecular sieve

column on carbon monoxide, methane "overtakes" carbon monoxide and

is detected first. At this point, the carbon dioxide is nearly at

the connection between the two columns. The valve is switched to

position A so that the carbon dioxide comes out of the Porapak

column to go straight into the detectors, not to the molecular

sieve column, and hence is detected right after methane. All the

carbon monoxide which was on the molecular sieve column when the

valve is switched from position B to A then retraces its path back

to the Porapak column, passes through it a second time, and exits

to the detectors with ethylene and ethane.

The net result is a clean separation not only between air and

carbon monoxide, but also between carbon monoxide and carbon dioxide,

which are major gaseous products of xylan pyrolysis. In addition,

the versatility of the temperature programming in the Sigma 2B allows

two different ramp rates during a single analysis, while the integrator

offers "skim" correction for peaks hich "tail" enhancing the sensi-

tivity and accuracy of the quantit -ive gaseous determinations. The

skim correction allows a more accu: ate determination of peak areas for

gases found in minute quantities. These peaks are frequently superimposed

on larger peaks, the latter of which tail due to the particular gas'

adsorption/desorption characteristics on the Porapak column (-see Fig.

A.3).
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A B
Parent
Peak

Skimmed

Tangent
Point

C

Valley
Point

Vertical

4Baseline

Areas of Unresolved Peaks Obtained with Peak Skimming

(A and C) and without Peak Skimming (B). C is a Special

Case in which Two Unresolved Peaks Are Skimmed from

the Trailing Edge of a Large Peak and Separated by

a Vertical to the Skim Line.

(From Perkin-Elmer Sigma 10B Console Operations Manual, 1979)
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APPENDIX B - MATHEMATICAL ANALYSIS OF DATA

Howard (1981) describes different mathematical models which have

proven effective in quantitatively defining the high temperature pyrolytic

behavior of coals and biomass materials. These models range in soph-

istication from simple single step first order expressions to more

complicated multiple reaction models which have a distribution of

activation energies for each product species. In order to ensure

consistency with previous biomass pyrolysis modelling at MIT

(Hajaligol, 1980; Nunn, 1981) and to facilitate comparison between

sets of best fit parameters for various wood components, a single

reaction first order decomposition model was used to fit the data

in this work.

In this model the rate of formation of species i with a yield

of V i (wt%) at time t is given by:

- . (V. - V.)(1
dt1 1 1

where V = ultimate value.of V. (i.e., for long times and
high temperatures) 1

k. = Arrhenius rate constant for species i

The model dictates a rate of formation for product species i as

being proportional to the departure of Vi from Vi. The Arrhenius

factor has the usual dependence on temperature:
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0
k. k. exp(-E./RT) (2)

where k? = preexponential factor

E. = Activation energy for species i
1

R = universal gas constant

T = temperature

A nonlinear fitting routine (POWELL, see Appendix C) which

minimizes the sum of squared errors between calculated and experimental

yields is used to compute values for V-, E1 and log k?. To do the
i i 10 1

regressions, POWELL calls a subroutine "FUN" which is the function

(or model) to which the data are being fitted. POWELL is supplied with

initial guesses for V , Eg and log k. as well as time-temperature

histories for each experimental run. FUN contains the integrated form

of Eq. (1):
*t'
V. - V (T')

ln = - k exp(-E /RT(t)) dt
V.
*1 0

Thus, POWELL calls FUN for each yield data point to compute the yield

V (T') from the experimental time-temperature history (yield at time

t' for a run to a peak temperature TI), compares the answer with

the experimentally obtained value for V (T'), and adjusts V., E. and

log 10k to minimize the square of their difference. Fifteen data points

with their corresponding time-temperature histories are supplied

per run, with time intervals of 0,3-0.9s between data points. These

data include the initial rapid heat-up (.3 points: ls duration)

128



followed by 8.9s of cool-down after the peak temperature is reached

(12 points),

Once acceptable best fit parameters are obtained from POWELL,

they are used as input data to a curve fitting program; CLFITI

(Franklin, 1980). An interpolated yield versus temperature curye is

generated, starting at 373K totalling 25 data points at 50K

intervals,, using idealized time-temperature histories. These ideal

tijne-temperature histories are calculated based on a constant heating

rate of 1000 K/s to the peak temperature, followed by an exponentially

decaying cooling with an initial cooling rate of 200 K/s. CLFITI also

computes the idealized peak temperature to which the sample would

have had to be pyrolyzed in order to achieve the measured experimental

yield. This temperature is then used with ideal time-temperature

histories to calculate the ideal yield from subroutine FUN, and is also

the temperature used in plots of yield versus "peak temperature".

129



APPENDIX C

(Powell)
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:UTIL:LIb:POWELL :POWELL

C M IS THi NUMBER OF DATA POINTS
C N IS THE NUMBER OF UNKNOWNS
C F IS A VECTUk (IF LENGTH h COdTAINING THE RESIDUALS
C X IS THE VECTOR OF UNKOWNE
C E ABSOLUTE ACCUKACY LIMI1 VECTOR OF LENGTrH N ON THE
C CHANGE IN VALUES OF THE UNKNOWNS BETWEEN 1TERATIONS
C ESCALE PARAMETEk LINITING THE STEP SIZE; NORMALLY X(I) WILL NOT BE
C CHANGED BY MORE IHAN ESCALE*E(I) IN A SINGLE STEF
C (SUGGESTED VALUE = 1000.)
C IPRINT PRINTING INDEX
C NAXFUN MAXIMUM LIMIT ON NUMBER OF FUNCTION EVALUATIONS
C W STORAGE VECTOR
C

COMPILER DOUBLE PRECISION
PARAMETER NN=10 INUMBER OF FARAMETERS
PARAMETER Mh=100 *NUMBER OF DATA POINTS
PARAMETER ND=10 ;MAX. 4 DATA ITEMS/POINT
DIMENSION E(NN) , F(Mh) ,X(NN)
COMMON W(1330),NDATASDATAS(ND9MM)
CALL FOP EN(1, *GDATA")
NI=1
NO=30
READ,(NI)NMMAXFUNIFRINT
FORMAT (8110)
READ(NI)ESCALE
FORMAT(BE10.4)
DO 100 I=1,N

100 READ(NI)X(I),E(I)
WRITE(NWO3)

3 FORiiAT(//,10X,27HPOWELL REGRESSION ALGORITHM
C

CALL SSOQIIN(MN.F.X.E.ESCALEIFPRINTMAXFUNFFNINO)
C

WRITE(NO0,4)FF
4 FORMAT(/,2X,'THE SUM OF THE SULIARES OF RESIDUALS = ',1E16.8)

WRITE(N0,5)
5 FORiAT(/q2X9'FINAL PARAMETER VALUES:'P/)

WRITE(NO.6)(JX(J)pJ=1vN)
6 FORMAT(4(3(' Para. ',I2.':',G16.8),/))

READ(1,END=1)I ;IF READ SUCCESSFUL, SUPRESS CALL TO ANOVA
CALL PPLOT(MFN.X) $MAKE EPLOT PLOT FILES
IF (I.NE.0) GOTO 1 ;SUPRESS CALL TO ANOVA ONLY IF DATA IS = 0

WRITE(NO1002)
1002 FORMAT(/r' Call to ANOVA %uspressed bw '0' in last lirne of data file')

GOTO 7

1 CONTINUE
TYPE ' '
WRITE(NO91000)

1000 FORMAT(' Calling ANOVA.. 'Z)
CALL ANOVA(N9X.MpF9FFv.000510)

7 CONTINUE
X DO 10 I=1,M
X10 TYPE 'I#F(I)=',I9F(I)

END
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:UTIL:LIB:POWELL:SSOMIN

COMFILER DOUILE PRECISION
SUBROUTINE SSOMI (MNFXEEStTCALEIPRINTMAXFUN#,FFNINO)

C
C THIS SUBROUTINE ACCOMPLISHES IHE MINIMIZATION OF
C CHI-SQUARE VIA THE ALGORITHN DEVELOFED BY
C POWELL. THIS FROGRAN IS TAKEN FROM KUESTER AwD MIZE,
C OPTIMIZATION TECHNIOUES WITH FORTRAN,(NCGRAW HILL,
C NEW YORK: 1973).
C

DIMENSION F(M),X(N),E(N)
COMMON W(1330)

LOGICAL STOFF, MAXCAL , CONT INFIRST
C
X TYPE 'AT START OF SSOIiIN'

WRITE (NO,12) NViNMAXFUNESCALE
12 FORIAT(/p' Nuossber i of wters = ',I2,4X,'Numbers u daLa t-uints

1 13/,' maxisumi luwed nlumber of sust-uf-,uua res functiu e valuion
1 I5,/,' ESCALE (Pe ramfeIer limitinog the ut- s ) ',G10.4)
WRITE(NO,13)

13 FORMAT (/,2X, 'Initial buesses:')
WRITE(NO,31) (IX(I),I-1,N)
WR1TE(NO,18)

18 FORMAT (/,2X, 'Accuraew uf Parasoeters (cunviermence tulerances)')
TYPE ' '

WRITE (N0,23) (IE(l),I-1,N)
23 FORNAT(4(3(" Farm.',I2,'u"G16.8),/))
C
C INITIALIZE
C

STFP=.FALSE.
MAXCAL=.FALSE.
IFFIPRINT*( IPRINT-1)
ITC=O
IP L0
MFLUSN=M+N
KST-N+FLUSN
NPLUS=N+1
KINV=NPLUSW(MFLUSN+1)
KSTORE-KINV-MPLUSN-1
NN=N+N
K=NN

C
C INITIAL FUNCTION EV4LUATION

C
CALL CALFUN(MNvF#X)

X TYPE 'JUST AFTER CALLING CALFUN IN SSOMIN'
X TYPE 'X=',X(1)rX(2),X(3)
X TYPE 'F',F(1),F(2)
C

MC=1
FF=0.0

X TYPE 'BEFORE FIRST LOOP IN CALFUN'
DO 1 I=IM
K=KI
W(K)=F( I)
FF=FF+F(I)*F(I)

1 CONTINUE
X TYPE 'AFTER CALFUN .. FF-'rFF

FOLD=FF
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100 FIRST-.TRUE.
K= K ST
I=1

C
C COMPUTE IHE COMFONENTS OF THE 6kAIiIENT IN 1HE CONJUGATE DIRECTIONS
C

2 XDUMMY=X(I)
X TYFE 'AFTER STATENiENT 29 X(1)-'eX(1)

ISMALL=O
iUMMY=E'AE.S(X(I) 1 .D-6)+F(1)

X TYFE 'BEFORE STATEHENT 5t lvX(I),DUMiiY-'9e1X(I)#DUMMY
5 X(I)=X(I)+0UMNY

X TYPE 'X(I)-',X(I)
CALL CALFUN(MNPFPX)
MC=MlC+ I
X ( I ) =XDUMbY
DO 3 J=1N
K=K+1
W(K)=0.
W(J)=0.

3 CONTINUE
SUM=0.
KK=NN
D1O 4 J=lvM
KK-KK+1

C
C FFLUS-FBEST
C

F(J)=F(J)-W(KK)
SUM=SUM+F(J)*F(J)

4 CONTINUE
IF (SUN .GT. FFi1.D-12) GO 10 6

C
WRITE (NO07) I

7 FORMAT (SX93HTHE13p'-TH LOMPONENT OF THE INITIAL STEP WAS TOO S't
1'MALL. DOUBLE IT')

DUMMY=2.0iDUMMY
C

ISMALL=ISHALL+1
K=K-N
IF (ISMALL .LT. 15) GD TO 5

WRITE(NO91777)I
1777 FORMAT(/t' Parwaeter '912,' sevms to have no, effect on the v-um of -uueres'

1 9' of residualu.'t/7' Check wour FUN subprugraw.'v
2 /P' Exitigi frow SSOMIN at this point.')

ITC=0
K=NN
DO 8 I=1M
K=K+1
F(I)=W(K)

B CONTINUE
GO TO 10

C
C SUM IS USED TO NORMALIZE G(IK) AND D(IvJ)
C

6 SUMr1.o/DSQRT(SUM)
ISHALL=O
J=K-N+I

C
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C W(J) IS 1)(1,1) NOTIE f(IvJ)-.0 J NOT EUUAL TO I
C

W (J)=DUlN;.;vY*SUM
D10 9 J=1,M
K=K-+1

C
C W(K) IS G(I.K) IN THE CDOORDINATE DIRLCTIONS
C

W(K)=F(J)SSUM
KK=N+tJ
DO 11 II=1,1
KK=KK+iMFLUSN

C
C W(II) IS G4GT(III)
C

W(11)=W(II)+W(KK) 4W(K)
11 CONTINUE

9 CONTINUE
ILESS=I-1
IGAIAX=N+I-1
INCINV=N-ILESS
INC]NP=INCINV41
IF (ILESS .GT. 0) GO TO 14

C
C INVERSE OF G*GT(IIJJ) IIJJ-1,1 BY HOUSEHOLDER IETHODl
C RECALL. (1-1)X(I-1) UPPER BLOCK ALREADY DONE
C

W(KINV)=1.0
GO TO 15

14 B=1.
DO 16 JNNPLUS.IGAOAX
W(J)=0.

16 CONTINUE
KK=KINV
DO 17 II=1,ILESS
IIF=II+N

C
C W(IIF)=W(NtII) IS THE SUN OF &-1(IIJ)*G*GT(JI) J=19N
C

W(11F)=W(IIF)+W(KK)*W(II)
JL=II+1
IF (JL .GT. ILESS) GO TO 19
DO 20 JJ=JLILESS
KK=KK+1

4 JJF=JJtN
W(IIP):W(IIP,)+W(KK)*W(JJ)
W(JJF)=W(JJP)+W(KK)*W(II)

20 CONTINUE
G
C F IS G*GT(IuI)-SUN OF G*GT(III)*G-1(IIJJ)*G*GT(JJI)
C WHICH IS AO
C

19 B(=B-W(II)*WCIIP')
KK=KK+INCINF

17 CONTINUE
B=1./B
KK=KINV
DO 21 II=NPLUSIGAYAX
BB=-b*W(II)
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11O 22 JJvIIGAMAX
C
C W(KK) IS G-1(II.JJ) WHICH EQUALS A1-14A1-14A24AO-14A34A-1

W(KK)=W(KK)-BP CW(JJ)
KK=KK+1

22 CONTINUE
C W(KK) IS 6-1(1,11) WHICH EQUALS -AO-1*A3 WHICH EQUALS G-1(II1)

WCKK)CBB
KK=KK+INCINV

21 CONTINUE

C
C W(KK) IS G-1(I1.) WHICH EQUALS AO-1
C

W(KK)= l
15 1F( .NOT. FIRST) GO TO 27

1=1+1
IF (I .LE. N) G0 TO 2

C
C O-TH ITERATION INITIALIZATION
C

FIRST=.FALSE.
ISAME=0
FF=O.
KL=NN
DO 26 I;-lM
KL=KL+1
F(I)=W(KL)
FF=FF+F(I)*F(I)

26 CONTINUE
CONTIN=.TRUE.

27 IPC=IPC-IFRINT
x TYPE 'AFTER STATEMENT 27 IN SSOMIN'

IF (IPC .GE. 0) GO TO 29
C
C I1ERATION PRINTOUT
C

28 WkITE (NO,30) ITC.MCPFF
30 FORMAT (/,2X,9HI tratiunI3,4X,'NuLmbr (if umi-cjf-iuuares function vveluaiiuns

1'= ',I4,/,2XP'Sus-of-tth-souarei = ',D16.8,/,2Xv'Parameterb'
WRITE (NO,31) (IX(r),I-1.N)

31 FORMAT(/, '(3(-' Parm.',I2u*',G16.B),/))
WRITE (NOr<n)

32 FORMAT (/v 'Rviduals ( theureticl minus data value) fur each dta Point:')
WRITE (NO,.:' (JtF(J),J-1,M)

35 FORMAT (/q ',13,'*',G13.5))
IPC=IPP
IF (STOPP) 2 TO 33

C
C CONVERGENCE AZ3TS
C 1 N+1 VALUES OF F ARE THE SAME
C 2 MAXIMUM OF STEF(I)/E(I) LESS THAN EQUAL TO 1.0 (CONTIN FALSE)
C 3 MAXIMUM OF THE I-TH COMPONENT OF THE ACTUAL STEP TAKEN / E(I)
C LESS THAN OR EQUAL TO 1.0 CHANGE LESS THAN OR EQUAL TO 1
C

CHANGE-0.0
29 IF (CHANGE .NE. 0.0) ISAME 0 0

ISAME-ISAME+1
IF (ISAME .LE. N) GO TO 291
IF CIPRINT .LE. 0) 60 TO 33
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WRITE (N0,295)
29S FORMAT (/,5X, 'N+1 VALUES OF F ARE THE SAKE')

IF (FF .GE. FOLD) GO TO 10
FOLD,=FF
K=NN
I00 293 I;-lM
K=K+1
W(K)=F(I)

293 CONTINUE

Go 10 100
291 IF (CONTIN) GO TO 34

IF (CHANGE .GT. 1.0) GO TO 36
10 IF (IPRINT .LE. 0) GO TO 33

C
C 1ERNINAL PRINTOUT
C

WRIlE (N0,38)
3B FORMAT (/,rX,'SSOhIN FINAL VALUES OF RESIDUALS AND PARAMETERS')

STOFF'=.TRUE.
GO TO 28

33 RETURN
C

36 CONTIN=.TRUE.
C
C START NE XT ITERATION
C

34 ITC=ITC+1
X TYPE 'AFTER STATEMENT 34 IN SSOMIN'

K=N
KK=KST

C
C CALCULATION OF P
C

[D0 39 I=1,N
K=K+1
W(K)=0.
KK=KK+N
W(1)=0.
DO 40 J=1,M
KK=KK+1

C
C W(I) IS THE SUM OF G(IK2 (K) WHICH IS -P(I)

C
W(I)=W(I)+WCKK)*F(J)

40 CONTINUE
39 CONTINUE

DM-0.
K-KINV

C
C CALCULATION OF 0
C

DO 41 II=IN
IIP=II+N

C
C W(IIP)=W(N+II) IS THE SUM OF -1(IIJ)*(-P(J)) 4=1#N WHICH IS -0(I)
C

W(IIP)-W(IIP)+WCK)*W(II)
JL=I1+1
IF (JL .GT. N) GO TO 43
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DO 44 J.I=JLN
JJF=JJ+N

W( I IP) =W( I IP) 4W(K)*W(JJ)
W(JJF)=W(JJF)+W(K) *W(II)

44 CONTINUE
K=K+1

C
C MAXIMUM OF FI)40(1) KL INDEX OF THE DIRECTION OF D(IJ)
C TO BE REPLACED BY STEF(J)
C

43 IF (DM .GE.DlAlS(W(II)*W(IIF))) GO TO 41
DM=DlABS(W(II)*W(IIP,))
KL=II

41 CONTINUE
II=N+MFLUSNKL
CHANGE=O.
DO 46 I=1,N
JL=N+I
W(I)=0.
DO 47 J=NFLUSWN
JL=JL+MPLUSN

C
C W(I) IS THE SUM OF (-0(J)*D(JvI) J-1,N WHICH IS -STEP(I)
C

WCI)=W(I)+W(J)*W(JL)
47 CONTINUE

II=II+1
C
C INTERCHANGING KL AwD N ROWS OF D(IJ) PLIT XBEST IN li(NJ)

C
W(II)=W(JL)
W(JL)=X(I)

C
C CHANGE IS THE MAXIMUN OF ABSCSTEF(I)/E(I))
C

IF (DABS(E(I)*CHANGE) .GT.DABS(W(I))) (0 TO 46
CHANGE=DABS(W(I)/E(I))

46 CONTINUE
DO 49 1=1,M
I1=11+1
JL=JL+1

C
C INTERCHANGING KL AND N ROWS OF 6 PUT FEEST IN G(NK)
C

W(11)W(JL)
W(JL)=F(I)

49 CONTINUE

FC=FF
ACC=0.1/CHANGE
IT=3
XC=O.
XL=O.
IS-3
XSTEF=-D4IN1(0.5SESCALE/CHANGE)
IF (CHANGE .LE. 1.0) CONTIN-.FALSE.

C
C L3NEAR SEARCH
C
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X TYPE 'BEFORE CALLIN(i LINMIN'
51 CALL LINNIN (ITXCFC96,ACCO.1,XSTEF)

IF (IT .NE. 1) GD TO 53
MC=MC+1
IF (MC .LE. MAXFUN) GO TO 54
WRITE (NO,I6) MAXFUN

56 FORNAT (SX,16, 'CALLS TO CALEUN')
MAXCAL=.TRUE.
60 TO 53

54 XL=XC-XL
DO 57 J=I#N
X(J)=X(J)+XL*W(J)

57 CONTINUE
XL=XC
CALL CALFU (F;,NFX)
FC=0.
DO 58 J=1,M
FCwFC+F(J)*F(J)

58 CONTINUE
IF (IS .NE. 3) GO TO 59
K=N

C
C DETERMINATION OF SECOND BEST POINT
C

IF (FC-FF)
61 IS=2

FMIN=FC
FSEC=FF
GO TO 63

62 1S=1
FN1N=FF
FSEC qKC
GO TO 63

59 IF (FC .GE.
K=KSTORE
IF (IS .EG.
K=N

74 IF (FC-FMIN
66 FSEC=FC

GO TO 63
65 IS=3-IS

FSEC=FMIN
FMIN-FC

63 DO 67 J-let
K=K+1
W(K)=X(J)

67 CONTINUE
DO 68 J-1.9
KCK+1
W(K)=F(J)
CONTINUE
Go TO 51
K=KSTORE
KK=N

68

53

61,51,62

FSEC) GO TO 51

2) GO TO 74

) 65,51,66

IF 15-2 XBEST AND FBEST LIE IN W(N4 ) SECOND REST X AND X LIE IN
W(KSTORE+ )=D(N#J) AND G(NK)
IF IS IS NOT 2 XBEST AND XBEST LIE IN W(KSTOREt ) AND THE SECOND
BEST LIE IN W(N+ )
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C
IF (IS .NE. 2) GO TO 69
K=N
KK=KSTORE

69 SUN-0.
IM=O.
JJ=KSTORE
DD0 71 J;-19N
K=K+1
KK=KK+1
JJ=JJ+ 1

C
C XBEST INTO X
C XBEST-XSECOND' INTO D(NJ)
C

X (J ) =WU(K)
W (JJ)=WC(K) -WC(KK)

71 CONTINUE
DO 72 J-1,M
K=K+1
KK=KK+1
JJ= JJ+1I

C
C FEBEST INTO F
C FBEST-FSECOND' INTO G(NK)
C

F (J )=W(K)
W CJ J) UWCK) -WC(K K)
SUK-SUh+W (JJ ) W (JJ)
IMiri+F(J)W( JJ)

72 CONTINUE
IF (MAXCAL) (,O TO 10
J=KINV
K K= N 1LUS - KL
DO 76 11O L
K=J+KL-I

C
C INTERCHANGE KL AND N ROWS OF G-1
C

W(I)=W(K)
WC(K)=W(J-1)

76 CONTINUE
IF (KL .GE. N) 60 TO 78
KL=KL+1
JJ=K
DO 79 I-KLN
K=K+1
J=J+NFLUS-I
W( I)=W(K)
WC(K)=W(CJ-1)

79 CONTINUE
W(JJ)=W(K)

B=1./z-W(KL-1)KK

W(KL-1)W(JN)

GO TO 88
78 B=1./W(N)
88 K=KINV

C
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C DErERMINE Al-I FROM G-1 FOR USE IN CALCULATING NEW G-1
C

DO 80 Ir1,ILESS
Bb=B*W( I)
DO 81 J=I,1LESS

C
C W(K) IS G-1(IJ) WHICH IS A1-1=N1-b2*144-1B3
C

W(K)=W(K)-BBi&W(J)
K=K+1

81 CONTINUE
K=K+1

80 CONTINUE
IF (FMIN .LT. FF) GO TO 82
CHANGE=0.0
GO TO 84

82 FF=FMIN
C
C CHANGE IS THE MAXIiUli OF lHE COMPONENTS OF THE ACTUAL STEP TAKEN
C DIVIDED BY THE COMPONENTS OF E
C

CHANGE-DABS (XC) *CHA4GE
84 XL=-DM/FMIN

SUM=1 .0/DSQRT (SUM+DEIhXL)
K=KSTORE
DtO 6 I-19N
K=K+1

C
C W(K) IS D(NvJ) THE STEP TAKEN PROPERLY NORMALIZED
C

W(K)=SUK*W(K)
W(I)=O.

85 CONTINUE
DO 86 I=IVM
K=K+1

C
C W(K) IS G(NPK) WHICH IS (FBEST-FSECOND+(SUM OF (FBEST-FSECOND)*FBEST/
C FMIN)*FBEST) NORMALIZED
C

W(K)=SUM]i(W(K)+XL*F(I))
KK=NN+1
DO 87 Ja19N
KK=KK+MPLUSN

C
C W(J) IS THE N-TH ROW OF G*GT
C

W(J)=W(J)+W(KK)*W(K)
87 CONTINUE
86 CONTINUE

GO TO 14
C

END
ENDS
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Sweet Gum Xylan Pyrolysis Runs at 1000K/s and 3 X

Run Temp.
no. (K)

4
5
6
8
9
10
11
12
14
16
17
19
20

21
22
24
25
26
27
28
30
31
32
33
34
35
36

775
1371
1355

626
664
864
882

1011
883

1344
1381
1110
1128

1120
1178
1149
1195
1253
1310
972
800

1157
1165
840

1284
687
692

Char Tar CH4

35.2
27.6
28.4
68.3
63.0
34.9
33.6
33.0
33.3
26.1
25.5
33.3
32.4

32.5
33.6
31.9
31.2
30.7
28.0
33.6
34.3
28.5
28.7
32.1
25.4
35.5
37.0

28.0
30.6
27.6
10.0
17.5
20.1
16.1
33.9
23.9
16.4
35.0
24.3
22.3

24.3
17.9
26.0
29.3
23.8
21.6
26.3
13.8
20.9
21.3
18.6
21.5
17.2
21.2

0.0
0.95
0.87
0.0
0.0
0.02
0.20
0.33
0.19
0.95
0.68
0.58
0.64

0.67
0.61
0.72
0.74
0.71
0.82
0.47
0.05
0.85
0.81
0.34
0.74
0.0
0.01

O C Co2 C2H4 C2H6 H20

13.1
13.2
17.2
6.7
7.3

13.9
19.0
14.3
13.7
12.3
10.3
13.8
13.9

8.2
11.4
11.2
12.7
12.0
12.4
13.7
14.1
13.2
12.8
13.9
11.9
11.1
15.1

3.87
14.4
10.0
1.85
2.72
4.45
5.97
7.83

11.8
14.7
11.9
8.2

10.4

9.32
10.8
10.7
12.6
12.6
15.8
7.40
4.70

17.2
13.9
6.74

16.1
4.0
4.1

0.01
0.61
0.55
0.0
0.0
0.07
0.08
0.23
0.15
0.40
0.30
0.31
0.36

0.40
0.39
0.40
0.39
0.36
0.40
0.18
0.07
0.39
0.41
0.07
0.33
0.0
0.01

0.02
0.11
0.13
0.0
0.0
0.07
0.08
0.11
0.09
0.12
0.08
0.12
0.13

0.12
0.14
0.11
0.12
0.11
0.11
0.10
0.08
0.10
0.10
0.07
0.09
0.0
0.01

4.80
6.78
5.50
7.35
3.05
3.65
4.57
5.46
6.20
3.96
5.56
4.90
4.10

3.90
3.83
5.83
9.60
4.56
6.64
8.90
6.15
6.62
5.74
6.45
4.40
6.0
7.1

HCHO C3H6 CH3OH CH3CHO

0.03
0.02
0.08
0.0
0.03
0.06
0.09
0.06
0.13
0.16
0.02
0.04
0.08

0.04
0.13
0.13
0.08
0.12
0.04
0.13
0.30
0.10
0.03
0.05
0.05
0.02
0.09

0.02
0.15
0.30
0.0
0.0
0.12
0.28
0.30
0.31
0.38
0.17
0.18
0.30

0.30
0.25
0.30
0.31
0.27
0.30
0.24
0.29
0.27
0.29
0.38
0.28
0.08
0.13

1.31
1.90
1.80
1.04
1.5
2.0
2.0
1.18
1.41
1.35
4.7

1.5

2.4
1.3
0.93
0.97
1.10
5.7

1.7
1.3
1 .35
1.4
1.1
1.5
1.2

0.73
0.88
1.00
0.16
0.13
1.1
1.3
1.72
1.67
1.42
0.74
0.92
1.30

1.13
1.05
0.95
1.17
0.94
0.91
1.14
1.88
0.84
0.85
1.24
0.98
0.67
0.75

Material
Ethanol balance

0.03
0.33
0.31
0.0
0.06
0.22
0.23
0.26
0.22
0.29
0.33
0.31
0.03

0.28
0.22
0.18
0.22
0.31
0.22
0.03
0.25
0.28
0.25
0.27
0.20
0.10
0.20

89.1
99.9
94.8
97.0
96.6
82.7
87.4

102.4
95.5
80.0
94.5
90.7
89.5

91.1
82.8
90.2

100.0
89.3
92.1
97.4
85.4
95.7
91.0
88.0
84.0
90.5
88.5

5
10 Pa He
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Experiments H-38 and H-39 substantiate possibility
of secondary reactions

H-39

evacuation

-4

Y time

(Heatup to 1023K; held at
1023K for 20 seconds)

(Peak run to 1023K: STEP 1. Evacuate
reactor to remove C02 to reduce
opportunity for char gasification,
then repressurize with helium. Then
holding time run at 1023K for 19
seconds: STEP 2)

CHAR
YIELD

EXPECTED
CHAR YIELD*

CO
YIELD

EXPECTED
CO YIELD*

CO2
YIELD

EXPECTED
C02 YIELD*

H- 38

29.5 wt. %

32.5 wt. %

15.7 wt. %

7.6 wt. %

15.0 wt. %

13.9 wt. %

H-39

28.1 wt. %

32.5 wt. %

STEP 1: unknown
STEP 2: 2.75 wt.

7.6 wt. %

STEP 1: unknown
STEP 2: 0.20 wt.

%I

%/

13.9 wt. %

144

Table E.1

TEMP.
(K)

1023

300

H-38
TEMP.
(K)

1023

300

* Yield expected from peak temperature run at 1023K.



Table E.2 Experiments H-40 and H-41 locate the temperature
interval in which secondary reactions assume importance.

H-40

time'

at 1073K : STEP 1,
by peak run at 1193K

H-40

26.8 wt. %

26.5 wt. %
EXPECTED
CHAR YIELD

CO
YIELD

EXPECTED
CO YIELD

C02
YIELD

EXPECTED
C02 YIELD

STEP 1: unknown
STEP 2: 12.3 wt. %

STEP 1: 8.0 wt. %
STEP 2: 16. wt. %

STEP 1: unknown
STEP 2: 15.8 wt. %

STEP 1: 13.9 wt. %
STEP 2: 12.0 wt, %

TEMP.
(K)
1193

1073

300

H-41

evacuation;
and C02 inj.

(Peak run to 1073K STEP 1. Evacuate
reactor; repressurize with helium
and 4 cc-atm C02 , followed by peak
run to 1193K : STEP 2)

H-41

25.2 wt. %

25.5 wt. %

STEP 1: unknown
STEP 2: 2.3 mg t

STEP 1: 8.0 wt. %
STEP 2: N/A *

STEP 1: unknown
STEP 2: 6.5 mg t

STEP 1: 13.9 wt. %
STEP 2: N/A *

t (4 cc-atm C02injected = 7.9 mg)

* Not applicable
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TEMP.
(K)
1193
1073

300

(Peak run
followed
STEP 2)

CHAR
YIELD
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(Mass and energy balances)
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Elemental, total mass, and
Sweet Gum Xylan pyrolysis

energy balances for

Component

Approx.
ultimate
yield
(wt. %)

Heat of
combustion

C H 0 _ (Btu/lb)*

% of wood
energy in
component

- 40.7 5.7 48.0

18.1 57.5 4.0 23.4

38.5 46.7 5.7 43.9

0.75 0.56 0.19

13.1 5.6
0.35 0.30 0.05

7090

9500

7825
- 23860

7.5 4340

- 21630

0.09 0.07 0.02 - 22300
0.02 0.01 T T 8190

0.19 0.16 0.3 - 21000

Xylan

Char

Tar

CH4

CO

C2H

C2 H6

HCHO

C3H6

CH30H

CH3CHO

Ethanol

Furan

Acetic
acid

Misc.
C.H.0.

0.19 0.05 0.3

0.81 0.44 0.07 0.3

9770

11400

0.36 0.19 0.05 0.13 12780

0.5

1.0

1.0

0.3 0.05 0.14 13280

0.5 0.08 0.45

0.5 0.08 0.45

6270

18000

93.7 40.3 4.3 44.0

93.7 92.0 76.0 92.0

87.0

90.0%

* Heats of combustion from "Handbook of Chemistry and Physics";
those for xylan, char and tar computed from:

Q (Btu/lb) = 146 (C) + 569 (H) - 51.5 (0) (Mason and Gandhi, 1980)

T = trace amounts
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Table F.1

0.5

100.0

24.2

42.5

3.0

8.0
1.0

0.3

T

0.6

0.7

1.0

0.6
1.0

1.0

3.0

Total

Closure


