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ABSTRACT

In an attempt to improve the fidelity of motion in flight
simulators, a motion control system that accounts for the dynamics of
the human vestibular (motion sensing) system has been implemented on the
NASA Ames Vertical Motion Simulator (VMS). The motion control system,
called the Optimal Washout System (OWS), minimizes the vector difference
between the sensory outputs of the vestibular systems of a pilot in the
modeled aircraft and of the pilot in the simulator. This is
accomplished by minimizing the error in the outputs of mathematical
models of the otolith organs (linear acceleration detectors) of the two
pilots and the error in the outputs of mathematical models of the
semicircular canal organs (angular acceleration sensors) of the two
pilots. The OWS controls the motion of the simulator cab by minimizing
a weighted quadratic cost function of otolith error, semicircular canal
error, and simulator cab displacement.

A set of experiments was performed on the VMS to evaluate the
performance of the OWS and to determine valid measures of simulator
motion fidelity. During the experiments, four experimental test pilots
compared the OWS system to the motion control system normally used on
the VMS. Three versions of each washout system were tried. To compare
the motion characteristics of each system, the pilots flew a generic
thrust vectored hovering vehicle and performed the following tasks: (1)
four trials of a formation flight tracking task with a sum-of-sines
disturbance on the lead aircraft, (2) three dash quick stop maneuvers,
and (3) several sinusoidal pitching maneuvers from a stationary hover at
1, 2, and 4 cycles per second. Tracking performance during formation
flight was recorded. Cooper-Harper handling quality ratings (HQR) and
simulator motion quality ratings were given by the pilot subjects.

Pilot comments and ratings indicate that the OWS is a reasonable
control system for simulator motion; however, some refinement is
necessary before operational use. The data from the test also indicates
that performance in the tracking task is not necessarily a good measure
of washout motion, due to corruption by learning effects and large
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variations in performance among trials and pilots. Similarly,
describing functions calculated from the stick inputs of the pilot
during the tracking task are not necessarily good indicators of motion
fidelity. The performance variability among trials and the lack of
performance differences among washouts makes the describing functions
difficult to interpret. Cooper-Harper handling quality ratings
recorded for each washout were analyzed and appear to be reasonable
indicators of simulator motion fidelity. The motion quality ratings
also appear useful in determining the strengths and deficiencies of the
motion washouts.

Thesis Supervisor: Dr. Steven Bussolari
Assistant Professor of Aeronautics and Astronautics
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1. Introduction

1.0 Motivation for Research

The increased use of flight simulators for pilot training and

certification is a result of the large cost associated with operating

and maintaining flight vehicles and the need to practice maneuvers that

are too dangerous to perform in the actual aircraft (i.e.-engine out on

takeoff). However, to adequately train pilots in the simulator, it is

necessary to provide them with a realistic cockpit environment including

visual inputs and motion sensations. Both of these sensory input

systems add a significant cost to the price of the simulator; however,

with time, the cost of the visual systems is decreasing while the cost

of motion systems remains approximately constant. Therefore, for given

size contraints of the motion system, it is desirable to maximize the

sensory inputs generated by the motion system. This thesis deals with

this optimization of the motion system.

Because flight simulators have limited motion excursions, the

simulator cannot exactly replicate the motions of an aircraft;

consequently, the accelerations of the aircraft are transformed so that

only the high frequency components are used to drive the simulator

motion base. This technique of filtering the aircraft motion to produce

simulated motion is valid since the human vestibular system, composed of

organs that detect linear and angular accelerations, is most sensitive

to high frequency motion [Young, et al 73]. The filtering system, or

simulator drive logic, described in this thesis utilizes the dynamics of
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the vestibular organs in an attempt to improve the simulator motion

characteristics. Referred to as the Optimal Washout System (OWS), it

operates by minimizing the error between the output of mathematical

models of the vestibular systems of the aircraft pilot and the simulator

pilot.

1.1 Current Filtering Techniques

Various experimenters have developed and tested a number of

acceleration filtering systems or "washouts". The term "washout" refers

to the technique of giving the pilot the initial acceleration of a

maneuver and then slowly attenuating the simulator motion before the

limit of simulator travel is reached. Some of the representative

filtering systems include the crossfeed washout [Sinacori, et al 77],

the adaptive gain washout [Reidell, Hoffman 78], the parabolic limiting

signal compressor [Sinacori 73] and the human dynamic orientation model

washout [Fuller 77]. The crossfeed washout, the adaptive gain

washout, and the parabolic limiting signal compressor are typical of

many current washout routines, each designed mainly by intuition and

less by scientific information about human perception of motion. The

crossfeed washout (Figure 1-1) uses second order high-pass filters with

cross-coupling between linear acceleration and angular rate to minimize

undesired accelerations in the plane of the maneuver. The adaptive gain

washout (Figure 1-2) calculates the proper motion gain based on the

terms of a cost equation. The parabolic signal compressor (Figure 1-3)

calculates the proper simulator acceleration based on the aircraft

acceleration and the current position and velocity of the simulator cab.

The final filtering system, the orientation model washout (Figure 1-4),
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Figure 1-1. Crossfeed Washout [Sinacori, et al 77]
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Figure 1-2 Adaptive Gain Washout [Reidel, Hoffman 78]
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is an outgrowth of work by Ormsby (Ormsby 741 and is similar to the

Optimal Washout System in that it uses models of the vestibular system.

The orientation model washout, however, uses these vestibular models to

match the simulator pilot's perception of "down" with that of the actual

aircraft pilot, while the OWS matches the output of models of the neural

firing rates of the organs in the vestibular system.

1.2 Development of the Optimal Control Washout

In 1980, Sivan, Ish-Shalom, and Huang [Sivan, Ish Shalom, Huang 82]

completed the development of the optimal washout control system,

following which, Ish-Shalom implemented the washout on a three degree of

freedom Link GAT-1 flight simulator [Ish- Shalom 82]. Unfortunately,

due to limitations in the simulator's motion capability, the tests were

not conclusive. Therefore, the purpose of the current research was to

implement the control system on a flight simulator with sufficient

motion capability that the characteristics of the OWS could be observed.

The NASA Ames Vertical Motion Simulator (VMS) was selected for this

task. To evaluate the performance of the optimal washout system,

experimental comparisons were made with an existing washout of the

crossfeed type. To quantify the pilots' perceptions of motion with each

washout, various motion evaluation procedures and rating scales were

utilized.

1.3 Description of Thesis

Chapter 2 of this document details the formulation of the Optimal

Washout System and includes a description of the human vestibular

system. Various assumptions used in the developement of the washout
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system are highlighted.

Chapter 3 explains the experimental procedures used to compare the

operation of the Optimal Washout System to that of the NASA Ames washout

system. The design methodology for each of six washouts used in the

experiment is discussed and the dynamic characteristics of the washouts

are compared. A discussion of the test procedures follows, along with a

description of the techniques for pilot subjective evaluation of the

washouts.

The experimental results are then presented in Chapter 4 and the

data analysis techniques described. The relationship between pilot

performance in a tracking task is compared to subjective ratings of the

aircraft handling qualities and to ratings of the washout system

fidelity.

Chapter 5 summarizes the findings of the experiment and describes

recommendations for future work.
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2. Optimal Washout System Formulation

2.0 Introduction

In an attempt to improve the fidelity of motion in flight

simulators, a washout system has been designed that explicitly utilizes

the dynamics of the human vestibular (motion sensing) organs. The

washout system observes the surge linear acceleration and pitch angular

velocity of the mathematical aircraft model and calculates the imaginary

aircraft pilot's vestibular states (otolith and semicircular canal

physiological outputs) in terms of normalized units. The washout system

then determines what surge linear acceleration and pitch angular

velocity to command to the simulator to minimize the error between the

vestibular states of the simulator pilot and the imaginary aircraft

pilot (Figure 2-1). This error is a vector composed of the difference

in neural firing rates of the otoliths of the two pilots and the

difference in firing rates of the semicircular canals of the two pilots.

If this was the only task of the washout, the controller would command

simulator motions such that the simulator pilot's vestibular states

exactly match those of the imaginary aircraft pilot; consequently, the

travel of the simulator cab would closely match the trajectory of the

aircraft. Since, however, the simulator does not have unlimited travel,

the controller must constrain the motion of the simulator to within the

hardware limits of the facility while simultaneously minimizing the

error between the aircraft pilot's and the simulator pilot's vestibular

systems. This tradeoff between vestibular error and cab displacement is
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best solved by optimal control techniques.

Prior to applying optimization techniques, this problem must be

cast into linear control system form. In order to do this, the

following assumptions have been made:

-The utility and acceptability of flight
simulator motion is improved by minimizing
the expected value of the mean squared
error between the aircraft pilot's and the
simulator pilot's vestibular systems. This
criterion is assumed independent of the
motion cues provided by the simulator's
visual system.

-The pilot's vestibular system can be
modeled as a linear, time-invariant
system. This neglects any threshold or
saturation effects.

-The pilot's perception of motion is assumed
to be linearly related to the firing rate
of the vestibular system organs, i.e.- the
higher the firing rate, the greater the
sensation of motion.

-In determining his spatial orientation,
the pilot uses proprioceptive cues to a
much lesser extent than vestibular cues.

-Aircraft motions resulting from pilot
inputs and external disturbances generally
cannot be predicted; therefore aircraft
motions can be modeled as random processes.

2.1 Vestibular System Description

The vestibular system is the pilot's primary means of motion

detection in the absence of visual cues. The vestibular system, located

near the iinner ear, consists of the semicircular canals, that detect

angular motion, and the otoliths, that detect linear accelerations and

the force due to gravity. By understanding the structure and dynamics
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of these organs, a mathematical model can be developed to approximate

the physiological outputs of the vestibular system and thereby obtain a

greater understanding of the motion perception process.

2.1.1 Semicircular Canal Structure

Two sets of semicircular canals are located in the head near the

inner ear, each set consisting of three approximately orthogonal rings

that eminate from a central bulb called the ampulla. The rings are

filled with fluid which tends to remain inertially fixed as the ring

rotates with the head; however, the fluid is forced to rotate with the

ring due to a gelatinous plug called the crista ampullaris. The

inertial force of the fluid causes a deflection of the crista, though

the visco-elastic .properties of the crista cause this deflection to

eventually decay even under steady state rotation. Hair cells imbedded

in the crista measure the deflection of the crista and trigger nerve

signals that are sent to the brain for determination of angular motion.

Figure 2-2a and 2-2b illustrate the structure of the semicircular canals

and the crista ampullaris.

2.1.2 Semicircular Canal Model

The semicircular canals can be modeled as a damped torsional

pendulum [Young 74] that relates an angular velocity input to crista

defletion (Figure 2-3). In the model, "d" represents the deflection of

the crista and " represents the angular motion input to the system.

This is a valuable model in understanding the dynamics of the

semicircular canals; however, for the purposes of the washout system,

the model is extended one step in the perceptual process. It is assumed
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that the- neural firing rate of the nerve cells in the crista is a better

predictor of motion perception than is the deflection of the crista;

therefore, the following model is used [Shalom 82].

Gs 
00Y98 S s -- yscc

s+co

where yscc is the normalized firing rate in threshold units, i.e.-

yscc=1 when the subject is being accelerated at a threshold level. The

Gs and co are determined from Hosman's work [Hosman 78] which states

that the threshold of angular acceleration is 1.45 deg/sec 2 at a

frequency of 0.94 rad/sec ; consequently-, Gs=37.746 and c 0 =0.169

2.L.3.Otolith Structure

The otoliths are small bony cavities, adjacent to the semicircular

canals, whose inside surfaces are covered with a gelatinous layer that

is coated with small calcite deposits. When the organ is accelerated,

the calcite deposits tend to remain inertially fixed, thereby causing a

shear in the gelatinous layer. As with the semicircular canals, the

shear deflection is detected by hair cells that trigger nerve signals

that are then processed by the brain. The structure of the otolith is

shown in Figure 2-4.

2.1.4 Otolith Modeling

The otolith organ can be modeled as overdamped spring-mass-damper

system with the visco-elastic gelatinous layer determining the damping

19



and stiffness of the system. However, as with the semicircular canals,

the model is then extended one step in the perceptual process. The

normalized firing rate of the nerves at the base of the hair cells is

calculated instead of the deflection of the gelatinous layer [Shalom

821.

linear acceleration G0(s+aO)
or component of yo to

gravity s+bo

where yoto is the normalized firing rate in threshold units, G0 =1.62

sec 2 /ft, a =0.076 rad/sec and b0 =0.19 rad/sec. The values of a and bo

are taken from Zacharias's work [Zacharias 78]. The value of Go is

determined from Hosman's work [Hosman 78] which states that the

threshold of linear acceleration is 0.47 m/sec 2 at a frequency of 0.0

rad/sec (ramp acceleration). Actually, throughout the work presented

here, the incorrect value of 0.66 was used for Go which was calculated

using an acceleration of 0.47 m/sec 2 at a frequency of 0.94 rad/sec.

This should be corrected for future experiments.

2.2 Problem Formulation

The otolith and semicircular canal models form the basis of the

optimal control washout. They are combined to form a vestibular system

model for both the imaginary aircraft pilot and the simulator pilot.

These vestibular system models are then combined with a mathematical

model of the simulator motion base system, and an aircraft maneuver

shaping filter. During the operation of the washout, the difference in

the outputs of the two vestibular subsystems is minimized by commanding

20



the proper inputs to the simulator motion base hardware. A mathematical

model of the hardware, the motion base subsytem, monitors these inputs

and updates the calculated position and velocity of the simulator cab.

With this knowledge, the washout can restrain the displacement of the

cab to within the travel limits of the motion base. The shaping filter

operates on white noise to produce a spectrum of maneuvers similar to

that of the aircraft being simulated. It is assumed that the summation

of an infinite number of aircraft maneuvers would produce a spectrum

similar to that generated by a low pass filter. The break frequency of

the filter is a function of the types of maneuvers being performed and

the type of aircraft being flown [Ish-Shalom 82]. The shaping filter is

used only during the washout design process and it informs the

controller of the expected frequency components of the maneuvers to be

performed in the simulator.

2.2.1 Vestibular Subsystem Description

The vestibular system models use as inputs, the linear

accelerations and angular velocities illustrated in Figure 2-5. Note

that as the pilot pitches the aircraft, a component of the gravity

vector couples into the longitudinal acceleration vector in the aircraft

body axis. This component has a magnitude of g*SIN(O), but by making

small angle assumptions, the coupling, called g-tilt, can be modeled as

shown in Figure 2-6. G-tilt is exploited in many washout systems to

give the pilot the sensation of constant acceleration in the plane of

the tilting. For example, if a takeoff is being simulated, the

simulator cannot provide the required long duration linear acceleration;

however, by slowly pitching the pilot to a constant nose-up attitude, a

21
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component of the g vector causes the pilot to feel a constant surge

acceleration.

The combined vestibular model is then cast into state space form

for the imaginary aircraft pilot and for the simulator pilot, as shown

in equations 2.1 through 2.4.

Aircraft Pilot's Vestibular System:

ja(t)=Aaxa(t)+Baua(t) (2.1)

a(t)=Ca-a(t)+Daua(t) (2.2)

where:

* aircraft pilot's otolith state
x-a= * aircraft pitch angle (integral of pitch rate)

* aircraft pilot's semicircular canal state

aircraft linear surge acceleration
-ua * aircraft pitch rate

* aircraft pilot's normalized otolith
firing rate

la= * aircraft pilot's normalized semicircular
canal firing rate

g= acceleration due to gravity

-bA ±Gog(a.-bo) 0.0 G(a-bo) 0.0
Aa= 0.0 0.0 0.0 Ba= 0*0 1'0

0.0 0.0 - co 0.0 -Gsco

-1.0 ~+G g 0. D -Go 0.0]

C 0.0 0.0 -1.0 Da 0 .0 ) -s_

where the upper sign is for the pitch-surge case and the lower sign is

for the roll-sway case. This sign convention results from the fact that

with a positive aircraft pitch rate (pitch up), with no coordinating
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linear acceleration, the pilot feels he is accelerating in the positive

x direction; however, a positive aircraft roll rate (roll right), with

no coordinating linear acceleration, causes the pilot to feel he is

accelerating in the negative y direction.

Simulator Pilot's Vestibular System:

x (t)=As-Es(t)+B.ju (t) (2.3)

y4 (t)=Cs5 s(t)+Dsus(t) (2.4)

where:

* simulator pilot's otolith state
xLs= * simulator pitch angle (integral of pitch rate)9 simulator pilot's semicircular canal state

commanded simulator linear surge acceleration
U * commanded simulator pitch rate

* simulator pilot's normalized otolith
firing rateL * simulator pilot's normalized semicircular
canal firing rate

g= acceleration due to gravity

-bA B N g(ag-bo) 0.0 GB(a-b 0.0 .

As= 0'0 0'0 0.0 Bs= O'. 1'0

0.0 0.0 -c 0 0.0 -Gsco

C 1.0 tGog 0.0 D Go 0.0
Cs 0.0 0.0 1.0 Ds 0.0) Gs

where the upper sign is for the pitch-surge case and the lower sign is

for the roll-sway case. This sign convention follows from the same

reasoning as with the aircraft pilot's vestibular subsystem.
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2.2.2 Motion Base Subsystem Description

The third subsystem, the simulator motion base system, determines

the position and velocity states of the simulator cab. The washout

controller monitors these states and issues commands to keep the

simulator within the limits of allowable travel. For simplicity, during

the validation phase of this program, the simulator has been assumed to

have no dynamics and hence acts simply as a double integrator, as shown

in equations 2.5 and 2.6 . For future tests, the simulator dynamics can

be more accurately modeled as a low pass filter.

xnb(t)=mbKb(t)+Bmbus(t) (2.5)

Imb(t)=Cmbmb(t)+Dmb,!s(t) (2.6)

where:

* simulator motion base displacement
mb" * simulator motion base velocity

*commanded simulator linear surge acceleration
us * commanded simulator pitch rate

0. 0 1.01 0.0 0.01Ab" 0.0 0. 0 mb" 1 .0 0. 0 -

1.0 0.0 G 0.0

Cmb" 0.0 1 . 0] mb" OO.0 GS

To further improve the operation of the washout system, the cab

position, velocity, and pitch angle states could be updated with actual

hardware measurements passed through a Kalman Filter. This technique

could be used to reduce unmodeled simulator dynamics if sufficient

control authority is available.
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2.2.3 Shaping Filter Subsytem

The final subsystem acts is a shaping filter that operates on white

noise to produce a spectrum of maneuvers similar to that of the aircraft

being simulated. The system contains two low pass filters with b1 being

the break frequency of the aircraft's longitudinal acceleration spectrum

and b 2 being the break frequency of the aircraft's pitch rate spectrum.

Values for b, and b 2 are found by performing a Fourier analysis on

typical aircraft maneuvers. For the recent OWS experiments, the Fourier

analysis was performed on a simulated pilot dash-quick stop maneuver;

biwas found to be 0.20 and b2 was found to be 0.26 .

The state equations for the shaping filter are as follows:

in(t)=Anxn(t)+Bn(t) (2.7)

JUa(t)=Cnxn(t) (2.8)

where:

aircraft linear acceleration noise state
-n aircraft pitch rate noise state

nt=* aircraft linear acceleration driving noise]

aircraft pitch rate driving noise

aircraft linear acceleration
u-a= aircraft pitch rate

A -by 0 B by 0 C 1 0
An 0 -b2 En 0 b2 Cn 0 1

2.2.4 Combined System Description

The aircraft pilot's vestibular subsystem, the simulator pilot's
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vestibular subsystem, the simulator motion base subsystem, and the

shaping filter are then combined as shown in Figure 2-7 and equations

2.9 and 2.10

Combined System Equations

x(t)=A*x(t)+B*us(t)+H*n(t) (2.9)

y(t)=C*x(t)+D*u-(t) ( .0
as (2.10)

where:

Fxa * otolith error
xS * semicircular canal error

LImb j * simulator displacement

xn L* simulator velocity

Aa 0 0 BaCn 0 0
A= 0 As 0 0 B =Bs H= 0

0 0 Amb 0 Bmb 0
0 0 0 An c B n-

C Ca CS 0  DaCn2 D*= 0s
0 0 Cmb 00

1X10-50

Bc = 0 1XO-51

Although Be should contain four elements equal to zero, the finite

values shown above were chosen to speed convergence of the numerical

Ricatti Equation solver during the calculation of the feedback gains.

The feedback gains of the combined system are generated to minimize

the expected value of the following cost equation:

J=E[xTRx+uTQu] (2.11)
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J=E[ql*(otolith error)2 +

+q 2*(semicircular canal error) 2 +
+q 3*(simulator displacemfnt) 2 +
+q 4 *(simulator velocity) +
+r 1 *(commanded simulator surge acceleration) 2 +
+r 2 *(commanded simulator pitch rate) 1 (2.12)

where q1 , q2, q3, q4 , r1 , r 2 are weighting factors

selected by the designer.

Writing the cost equation in more standard form:

JEveT let+p(u T u+aTRd-Ymb)]

where:

* otolith error
!vest * semicircular canal error]

* simulator displacement
1Ymb * simulator velocity

(2.13)

qi 0

0 q2

rL 0]
R=

0 r2

q3 0
Rd=

-0 q4-

Now by concatenating the y vectors:

J=E (TQ T+pTRu]

where:

q, 0
Q= 0 q2

0 0
0 0

0
0

pq 3
0

0
01
0!

pq4]

In terms of the system formulation, this becomes:

J=E[xTRi+2xTR1 2 us +uIR2u

29

(2.14)

R=- r1 0
0 r2

(2.15)



where:

Ri=C*TQC* R1 2 =C*TQD* R2=pR+D*TQD* (2.16)

The matrices A*, B*, C*, D*, H*, R1 , R1 2 , and R2 are substituted

into a Linear Quadratic Gaussian algorithm which solves the steady state

Riccati Equation and produces a 2x10 feedback matrix F. This matrix is

used to calculate the inertial axis simulator commands through the

equation:

us=-Fx (2.17)

where F can be partitioned:

us= [-Fa -Fs -Fmb -Fn] Lbj (2.18)

Enj

_us=-Fa -Fs-s-Fmbmb-Fn (2.19)

Note that xn=ua and the states, x(t), are updated

through the equation:

k(t)=A*x(t)+B*us(t) (2.20)

Equations 2.19 and 2.20 are implemented in software to produce the

washout system. The system is shown in block diagram form in Figure 2-

8. Note that in this figure, an additional block has been included

which represents the simulator displacement limiting logic on the Ames

VMS simulator. This non-linear limiting logic system uses the current

cab position, velocity, and acceleration to predict if the cab will hit

the end of the simulator track. If no impact is predicted, the

simulator simply uses the acceleration commanded by the linear washout

system. If an impact is predicted, the limiting logic commands
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Figure 2-8. Incorporation of Limiting Logic into OWS

31



accelerations to brake the cab before a limit is reached. As seen in

Figure 2-8, the commanded acceleration output of the limiting logic is

fed back to update the simulator pilot's vestibular model states and the

simulator motion base subsystem states; thereby keeping the model states

synchronized with the states of the actual systems.

.2.3 Transfer Function Matrix Computation

Using equations 2.1, 2.3, and 2.5, the transfer functions of each

subsystem can be written as follows.

Xa(s)=(sI-Aa)~ 1 Baua(s) (2.21)

Xs(s)=(sI-As)1 BsUs(s) (2.22)

Xmb(s)=(sI-Amb)~'BmbUs(s) (2.23)

but from equation 2.19:

Us(s)=-F aXa(s)-Fs Xs(s)-FmbXmb(s)-Fn(s) (2.24)

Substituting equations 2.21, 2.22, and 2.23 into 2.24 yields:

Us(s)=-Fa(sI-Aa)~Ba a(s)-Fs(sI-As sus(s)-

-Fmb(sI-Amb)~IBmbUs(s)-FnXn(s) (2.25)

Now from equation 2.25, if Cn=I, then Ua(s)=Xn(s); therefore, equation

2.25 becomes:

Us(s)=[I+Fs(sI-As)~IBs+Fmb(sI-Amb)~'BmbF'

*[-F a(s I-Aa )~Ba-Fn]Ua(s) (2.26)

This equation produces a 2x2 matrix with each element being an eighth

order order transfer function.
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3. Experimental Procedures

3.0 Description of Ames Vertical Motion Simulator Facility

In order to evaluate the performance of the Optimal Washout System,

a series of tests was conducted on the NASA Ames Vertical Motion

Simulator (VMS) (see Figure 3-1). This facility, designed primarily for

helicopter simulations, has a vertical travel capability of ±23 ft and a

horizontal travel capability of 115 ft. The simulator cab can be

rotated 90 degrees about a vertical axis to allow the horizontal track

to be used for surge accelerations or sway accelerations. For the

experiments described here, the cab was aligned with the surge axis.

The VMS facility is supported by three computer systems: a Sigma-8,

a PDP 11/34, and a visual scene generator. The Sigma-8 accepts pilot

control inputs through a set of analog-to-digital converters and uses

these inputs to update the aircraft model states. The angular rates and

linear accelerations from the aircraft model are then sent to the

motion washout program, implemented on the PDP 11/34, that commands the

proper linear accelerations and angular rates to the simulator motion

base. The visual scene computer then updates the pilot's external view

based on the current aircraft position and attitude. Because a finite

amount of time is required to cycle through these computations and to

store the desired data, an iteration step size is selected. For the

tests described here, this step size was set at 34 milliseconds.

3.1 Description of Washouts

Six washouts were evaluated in this study: three "high fidelity"
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Figure 3-1. NASA Ames Vertical Motion Simulator
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washouts and three "low fidelity" washouts. For the maneuvers being

performed, the three high fidelity washouts (Ames Nominal, OWS Nominal,

and OWS High Otolith Weighting) were designed to utilize most of the

motion base's t 15 ft horizontal travel capacity. The three low

fidelity washouts (Ames Decreased Gain, Ames Increased Omega, and OWS

Decreased Gain) were designed to utilize approximately half the

horizontal travel. The purpose of these last three washouts was to

simulate a motion base of lesser capability.

The Ames washout structure is shown in block diagram form in Figure

3-2; the parameter values for each of the Ames washouts are listed in

Table 3-1. With knowledge of the aircraft being simulated and the

maneuvers being performed, Richard Bray, the designer of Ames washout

system, selected the parameter values for the Ames Nominal washout. The

two other Ames washouts were designed to test the effects of decreased

washout filter gain and increased filter break frequency. By decreasing

the filter gain, the amplitude of accelerations commanded to the

simulator are reduced at all frequencies. By increasing the break

frequency of the filter, the low frequency motion is attenuated while

less motion attenuation occurs at higher frequencies.

The maneuvers performed in the experiment were approximately

coordinated, meaning that as the aircraft pitched forward, the pilot

felt no net surge acceleration in the body axis. Although the aircraft

is accelerating forward in the inertial surge axis, the body axis

component of this acceleration is countered by the body axis component

of the acceleration due to gravity (Figure 3-3). Because of this
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Table 3-1. Parameters for Ames Washouts

DECREASED GAIN

0.3

0.7

0.6

1.0

1.0

0.7

0.6

0.7

0.4

1.0

1.0

0.7

0.7

4.0

0.1

0.6

AIRCRAFT SURGE
BODY AXIS

PITCH ANGLE (e)

LOCAL 
X

HORIZONTAL

INCREASED OMEGA

0.6

0.7

0.6

1.0

1.0

0.7

0.7

4.0

0.1

0.6

F.
F

VERTICAL g 1

Fb F
F F

COORDINATE SYSTEM FORCE VECTORS

Figure 3-3. Forces on the Pilot
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effect, the surge acceleration sensed by the pilot, AXP (Figure 3-2), is

approximately equal~to zero; furthermore, since the simulator vertical

acceleration is typically close to zero, XIN (Figure 3-2) is also

approximately equal to zero. As a result, little motion is commanded by

the low frequency tilt and linear drive channels of the Ames washout;

the primary motion results from the X-& coordination channel.

Therefore, to control the amount of simulator motion commanded, the gain

and break frequency of the simulator pitch rate filter were varied in

the Ames washouts.

The Ames Increased Omega washout was designed by increasing the

break frequency of the pitch rate filter, thereby decreasing the amount

of low frequency pitch rate, and consequently, the amount of low

frequency surge acceleration commanded to the simulator motion base.

To evaluate the effects of reduced amplitude surge acceleration, the

Ames Decreased Gain washout was then designed to utilize half the

simulator travel. This was accomplished by reducing the pitch rate gain

by one-half. Unfortunately, due to an error in implementation, the

Decreased Gain washout also had an increased pitch rate break frequency;

consequently, this washout is of lower fidelity than originally

designed.

The three optimal control washouts were designed to minimize the

cost functional:

J=E[ql*(otolith error) 2 +
+q2*(semicircular canal errog2+
+q3*(simulator displacement) +
+q4*(simulator velocity) 2 +
+rl*(commanded simulator surge accel ration)2+

+r2*(commanded simulator pitch rate)
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The values of the cost functional weighting parameters are listed

in Table 3-2. The. OWS Nominal washout was designed by choosing the

parameter weights presumed to produce the best motion characteristics.

By increasing the cost on the motion base displacement term in the cost

functional, the OWS Decreased Gain washout was generated. It utilizes

approximately half the horizontal travel of the simulator. For this

washout and the OWS Nominal washout, the weighting on otolith error was

equivalent to the weighting on semicircular canal error. The final

washout, the OWS High Otolith Weighting washout, was designed with a

higher cost on the otolith error than on the semicircular canal error;

therefore, relative to the other OWS washouts, it reduces otolith error

at the expense of semicircular canal error. All OWS washouts were

designed, for typical maneuvers, to limit the maximum cab velocity

below the Ames hardware limits of 6 ft/sec2.

Table 3-2. Cost Weightings for the OWS

NOMINAL DECREASED GAIN HIGH OTOLITH WEIGHTING

OTOLITH
ERROR 0.707 0.707 1.4

WEIGHT

SIMULATOR
DISPLACEMENT 0.707 0.707 0.707

WEIGHT

SIMULATOR -2 x 2 -2
VELOCITY 3 x 10 5 x 10 1 x 10
WEIGHT

SIMULATOR 2 2 -2
ACCELERATION 4 x 10 4 x 10 8 x 10
WEIGHT

SIMULATOR -4
PITCH RATE 1 x 10 1 x 10 l x 10

WEIGHT
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During the tests, the Optimal Washout System was implemented on the

Sigma-8 computer and, for safety reasons, the Ames washout was left

operational on the PDP 11/34 even when the OWS was utilized. This

arrangement allowed the Ames limiting logic to remain active at all

times. To remove the dynamics of the Ames washout filters from the

system when the OWS was being tested, the proper gains, damping ratios,

and natural frequencies were selected in the Ames surge acceleration

filter and pitch rate filter to cause them to simply act as a unitary

gain elements (see Figure 3-2 and Table 3-3). The gain of the X-0

coordinating channel and the gain of the low frequency pitch tilt

channel were set equal to zero such that no cross-coupling dynamics

occurred when the OWS was operational. Since the OWS was not set up to

control the remaining axes (roll-sway, yaw, and heave), the Ames

washout in these axes was used as it normally would be in typical VMS

operations.

To compare the characteristics of the washouts, Bode plots of each

are presented in Figures 3-4 through 3-9. In each plot, the upper left

transfer function (A1 1 ) filters the aircraft linear acceleration to

generate a component of simulator linear acceleration; the upper right

block (A 1 2 ) generates the other component from aircraft pitch rate.

Similarly, A2 1 and A2 2 are used to generate the simulator pitch rate

based on aircraft linear acceleration and pitch rate.

Simulator Surge Accel A1 1  A 1 2  Aircraft Surge Accel
(inertial axis) (inertial axis)

Sim Pitch Rate A21 A22 Aircraft Pitch Ra t e
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Table 3-3. Parameters to Nullify the Dynamics of the Ames Washout

GQ 1.0

W Q 0.0

GQX 0.0

GX 1.0

wX 0.0

GXQ 0.0

VWOL 1000.0 ft/sec

VWOF 1000.0 ft/sec

Note: Two sets of motion parameters are actually used by the
washout routine. One set is used when the speed of the
aircraft is below the value of VWOL, the other set is
used when the speed is above VWOF. When the OWS system
was operational, VWOL and VWOF were set higher than the
maximum speed of the aircraft so that the parameters in
this table were always used by the washout.

Because of non-linear elements in the Ames washouts, the gain

levels shown in the A2 1 blocks of the Ames washouts cannot be directly

compared to those of the OWS washouts, though the dynamics should be

comparable. This block of the OWS washouts filter out only the low

frequencies, but the Ames washouts filter out both high and low

frequencies; consequently, with the Ames washouts, aircraft step linear

acceleration inputs (e.g.-application of brakes) do not cause

perceptible simulator step pitch accelerations.

To evaluate the washout performance with actual pilot inputs, a

dash-quick stop maneuver has been executed on each of the washouts; the

cab trajectories and vestibular responses are plotted in Figures 3-10

through 3-15 and the summed squared otolith and semicircular canal

errors are listed in Table 3-4. Note that the same pilot inputs

(Figures 3-16) are used for each washout case. It is interesting that
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Table 3-4

SUMMED SQUARED VESTIBULAR ERRORS USING ACTUAL STICK COMMANDS

WASHOUT.

AMES NOMINAL

AMES DECREASED GAIN

AMES INCREASED OMEGA

OWS NOMINAL

OWS DECREASED GAIN

OWS HIGH OTOLITH WEIGHTING

OTOLITH ERROR

56.6

7.9

25.5

1728

1777

1607

SEMICIRCULAR CANAL ERROR

1423

1728

1702

411.6

331.9

625.0

Table 3-5

SUMMED SQUARED VESTIBULAR ERRORS USING SQUARE WAVE STICK COMMANDS

WASHOUT.

AMES NOMINAL

AMES DECREASED GAIN

AMES INCREASED OMEGA

OWS NOMINAL

OWS DECREASED GAIN

OWS HIGH OTOLITH WEIGHTING

OTOLITH. ERROR

179

14.4

58.2

1570

1749

1256

SEMICIRCULAR CANAL ERROR

3241

3678

3969

1288

966

1876
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with the OWS Nominal and Decreased Gain washouts, the otolith errors are

greater than the semicircular canal errors even though theoretically the

washouts should allow equal levels of error from each vestibular organ.

Furthermore, the OWS High Otolith Weighting washout should allow greater

semicircular canal error in order to reduce otolith error. Now if

square waves are used for pilot inputs (Figure 3-17), the controller

does the correct error balancing, as illustrated in Figure 3-18 and

Table 3-5. For the purposes of comparison, the result of applying the

same inputs to the Ames Nominal washout is shown in Figure 3-19.

Actually in Table 3-5, the otolith errors are still slightly higher than

semicircular canal errors, but this is because the otolith error is

coupled to the simulator displacement cost term. To reduce otolith

error the system would command large simulator excursions, but the

displacement term reduces these commands thereby inducing some

additional otolith error.

The reason excessive otolith error results when the actual pilot

commands are used instead of square wave inputs can be explained by an

analysis of the characteristics of the inputs. During the actual dash-

quick stop maneuver, the pilot commands pitch down during seconds five

through ten of the run; however, the pitch up command is not given until

the twenty second point. As a result of this delay, the pilot inputs

initially appear to have a DC component in pitch rate. This DC

component is attenuated by the high-pass filters in block A1 2 of the OWS

washouts; therefore, no DC linear acceleration is commanded to the

motion base. However, the DC pitch rate component passes through the

A2 2 block with no attenuation, thus commanding the simulator to pitch

56



SIMULATOR DISPLACEMENT

5 ,

I-'

H

35
(sec)

35
(sec)

35
(Sec)

AIRCRAFT PILOT'S OTOLITH RESPONSE

5
(sec)

SIMULATOR PILOT'S OTOLITH RESPONSE

AIRCRAFT PILOT'S SEMICIRCULAR CANAL RESPONSE

K 
_

W
35

(sec)

SIMULATOR PILOT'S SEMICIRCULAR CANAL RESPONSE

35
(sec)

0x 35
(sec)

SEMICIRCULAR CANAL ERROR

Figure 3-18. Time Response of OWS Nominal Washout

57

15.

5

5

c0

5

0

OTOLITH ERROR

k 11 -

44

I

\1



15

35
(see)

SIMULATOR DISPLACEMENT

5 r5 
1

35
(see)

0

I-' t
AIRCRAFT PILOT'S OTOLITH RESPONSE I

35 0
(see)

AIRCRAFT

V
SIMULATOR PILOT'S OTOLITH RESPONSE

5

35 o40
(see)

PILOT'S SEMICIRCULAR CANAL RESPONSE

35
(see)

SIMULATOR PILOT'S SEMICIRCULAR CANAL RESPONSE

35
(see)

OTOLITH ERROR
SEMICIRCULAR CANAL ERROR

Figure 3-19. Time Response of the Ames Nominal Washout

58

I
5

35
(see)

5

0

k a-

5T

- 1
1-4



down. This pitch angle is not properly coordinated by the washout since

no linear acceleration is commanded; therefore, large otolith errors

result. This effect is not evident with the square wave pilot inputs

since the length of time between between pitch up and pitch down is very

short; consequently, no large DC components are observed by the filters

for any significant length of time.

3.2 Vehicle Dynamics

The vehicle dynamics used in this experiment are representative of

a vectored thrust hovering aircraft, whose pitch stick input (dele) to

surge displacement transfer function is:

-48.24
dele (s)(s)(s+0.02)(s+2.0)(0.Ols+1) -- - surge accel

A bode plot of this transfer function is shown in Figure 3-20.

3.3 Test Procedure

The evaluation of washouts was performed over a period of four

days, during which four NASA helicopter test pilots served as subjects,

three of whom had prior experience on the VMS. For each pilot, two

test sessions were performed, each lasting approximately sixty

minutes. Four motion cases (one fixed base and three motion washouts)

were tested during each session; the order of presentation is listed in

Table 3-6. Note that for each pilot, the three 'high fidelity' motion

cases were compared in one session while the three 'low fidelity' cases

were compared in the other session. A copy of the experimental

procedure used to brief the pilots is listed in the Appendix.

To evaluate each particular washout, four trials of a tracking task
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Table 3-6

PRESENTATION ORDER OF WASHOUTS

PILOT #2

SESSION #1 SESSION #1

1. AMES DECREASED GAIN

2. OWS DECREASED GAIN

3. AMES INCREASED OMEGA

SESSION #2

1. AMES INCREASED OMEGA

2. OWS DECREASED GAIN

3. AMES DECREASED GAIN

SESSION #2

1. AMES NOMINAL

2. OWS NOMINAL

3. OWS HIGH OTOLITH WEIGHTING

PILOT #3

SESSION #1

1. OWS HIGH OTOLITH WEIGHTING

2. OWS NOMINAL

3. AMES NOMINAL

PILOT #4

SESSION #1

1. OWS HIGH OTOLITH WEIGHTING

2. OWS NOMINAL

3. AMES NOMINAL

SESSION #2

1. AMES NOMINAL

2. OWS NOMINAL

3. OWS HIGH OTOLITH WEIGHTING

SESSION #2

1. AMES INCREASED OMEGA

2. OWS DECREASED GAIN

3. AMES DECREASED GAIN

1. AMES DECREASED GAIN

2. OWS DECREASED GAIN

3. AMES INCREASED OMEGA
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were performed, each trial lasting 75 seconds. The hovering vehicle

was initially placed 108 ft behind, 28 ft to the right of, and 2 ft

below the target vehicle, a "hovering" F-111. This aircraft was used

since it was readily available in the data base of the computer

generated imagery. Both the F-111 and the piloted hovercraft were

placed at an initial altitude of 80 ft, thereby providing the pilot with

good visual cues from the surrounding canyon scenery (see Figure 3-21).

The pilot was told to remain this set distance behind the F-111 as the

F-111's pitch angle was modulated by a five component sum of sines

disturbance (Table 3-7). To reduce the possibility that the pilot could

learn to predict the disturbance, a different combination of sines was

used for each of the four tracking trials. The magnitude of each of the

Table 3-7. Magnitudes of Disturbance Components

MAGNITUDE
FREQUENCY CASE #1 CASE #2 CASE #3 CASE #4

0.257 rad/sec -1.0 1.0 -1.0 1.0

0.513 1.0 -1.0 1.0 -1.0

0.770 -1.0 1.0 -1.0 1.0

1.15 1.0 -1.0 -1.0 1.0

1.54 -1.0 1.0 1.0 -1.0

GAIN ON SUM OF COMPONENT FREQUENCIES = 0.06

component sine waves remained the same, but the phase was sometimes

shifted 180 degrees, as shown in Table 3-7. As the F-111 pitched, the

magnitude of its lift vector was adjusted such that the vertical

component of lift always exactly countered the force due to gravity;

therefore, the F-111 remained at a constant altitude. The horizontal
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Figure 3-21. Visual Scene During the Tracking Task



component of the lift vector caused the F-111 to be randomly accelerated

along the inertial surge axis. To facilitate off-line data analysis,

the relative positions of the F-111 and the hovering vehicle were

recorded along with the pilot stick inputs.

To further evaluate the washout characteristics, the hovering

vehicle was placed in the center of the canyon at an altitude of 30 ft.

The pilots would execute a dash-quick stop maneuver by pitching nose

down approximatelv 10 deg, accelerating down the canyon, and pitching

nose up to come to a stop over a road positioned approximately 1000 ft

downrange. This maneuver was typically performed three times.

Finally, the pilots would perform a sinusoidal fore-aft pitching

maneuver with a maximum pitch angle amplitude of 5 to 10 degrees at

frequencies of 1,2 and 4 cycles/sec.

To quantify the pilots' opinions of the washouts, they first rated

the handling qualities of the aircraft's pitch-surge axis using the

Cooper-Harper rating scale (Figure 3-22). This is a standard scale

with which all the test pilots have had extensive experience. Although

the scale does not directly apply to the evaluation of simulator motion

systems, it is useful for this purpose since any motion cues provided to

the pilot yield lead information as to the future state of his aircraft.

Consequently, any motion cues provided by the motion base of the

simulator improve the pilot's ability to control the aircraft, thereby

improving the handling quality rating.

The pilots were than asked to directly evaluate the simulator
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HANDLING QUALITIES RATING SCALE

ADEQUACY FOR SELECTED TASK OR
REQUIRED OPERATION*

ADEQUACY

"'AIRCRAFT
CHARACTERISTICS

Excellent
Highly desirable

GoTod

DEMANDS ON THE PILOT PILOT
IN SELECTED TASK OR REQUIRED OPERATION* RATING

I-

1-

Pilot compensation not a factor for
Negligible deficiencies desired performance

Fair - Some mildly Minimal pilot compensation required for
- unpleasant deficiencies desired performance

Yes-
Minor but annoying Desired performance requires moderate
deficiencies pilot compensation

IsNo Deficiencies Moderately objectionable -Adequate performance requires
satisfactory wtthout warrantaisfatoentu wrvemnt deficiencies considerable pilot compensation

improvement? improvement
Very objectionable but Adequate performance requires extensive
tolerable deficiencies pilot compensation

Yes Adequate performance not attainable with
- Major deficiencies maximum tolerable pilot compensation.

Is adequate ,Controllability not in question
performance No Deficiencies

attainable with a tolerable require Considerable pilot compensation is required
-a iMajor deficiencies

pilot workload for control

Intense pilot compensation is required to
Major deficiencies- s, retain control

s -Improvement MControl will be lost during some portion of
it controllable? mandatory Mator deticiencies required operation

Pilot decisions Definition of required operation involves designation of

Cooper-Harper Ref. NASA TND-5153 subphases with accompanying conditions.

2

3

flight phase and/or

Pilot compensation not a factor for
desired performance

Figure 3-22. Cooper-Harper Handling Qualities Rating Scale

I



motion cues using a scale (Figure 3-23) developed by Steven Bussolari

and John Stewart. Note that the motion categories include smoothness,

sense, amplitude, phase lag, discomfort, disorientation, and overall

feel. Also note that each scale contains specific anchor points in an

attempt to standardize the ratings between pilots.

The results of the pilots' tracking task performance are presented

in the following chapter along with a sumary of their handling quality

and motion evaluation ratings.
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MOTION RATING SCALES

The motion of the simulator will be rated on the following seven scales:

Attribute

SMOOTHNESS:

C'K1S:

AMPLITUDE:

PHASE LAG:

DISCOMFORT:

DISORIENTATION:

OVERALL:

Rating

extremely
smooth-comparable
with fixed base

definitely correct
as in aircraft

no motion experienced

none experienced

none experienced

none experienced

excellent

exreel - jek

extremely jerky
limit of tolerance

totally reversed

at least twice
that expected

at least 1800

cannot continue
maneuver

cannot perform
maneuver

extremely poor

Pilots will be asked to rate the motion during the Forward Step and
Pitching Maneuvers. If they desire, they may fly the vehicle in the canyon
to elucidate any particular attribute of the motion. Their comments will
be recorded.

Note: To avoid encounters with the software limits during motion
evaluation, pilots will be requested to keep pitch angle excursions within
positive or negative 10 degrees.

Figure 3-23. Motion Rating Scale
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4. Results and Discussion

4.0 Introduction

By analyzing the data from the experiments on the VMS, an attempt

has been made to determine a valid measure of flight simulator motion

fidelity and to assess the performance of the Optimal Washout System in

comparison to a standard crossfeed washout system. Fidelity measures

investigated include displacement tracking performance, velocity

tracking performance, describing functions of the pilot model, handling

quality ratings (HQR), and motion scale ratings.

4.1 Discussion of Tracking Task

In the tracking task, the pilots were instructed to remain a fixed

distance from the lead aircraft as the lead aircraft was perturbed by a

sum-of-sines disturbance. This distance was selected to be 108 ft, at

which the pilots were positioned at the beginning of each run. Due to

difficulties in controlling the high order dynamics of the hovercraft

and in judging the distance to and detecting the motion of the F-111,

the pilots could not perfectly track the lead aircraft. In general, the

pilots tended to track with a position bias from the desired 108 ft set

point with a variance about the biased point. The variance of the

hovercraft's position from the bias point is defined as the Displacement

Error Score (DES). The position bias and DES are calculated as follows:

N DISPLACEMENT ERRORi - 108'BIAS=

i=1 N
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N
DES =

i=1

(DISPLACEMENT ERRORi - MEAN DISPLACEMENT ERROR)2

N-1

VARIANCE
(DES)
(VES)

ERROR

- BIAS 4 -. 108'

TARGET
11-F' IVEHI CLE

PILOTED I
VEHICLE SET

PT

Because it may be easier for the pilots to detect a velocity error

between the F-111 and their aircraft than it is to detect an absolute

difference in distance, the Velocity Error Scores (VES) have also been

analyzed. The VES's are the variance of the error between the

velocities of the F-111 and the hovercraft. They are calculated using

the following equation:

N
VES = Z

i=1

(VELOCITY ERROR. - MEAN VELOCITY ERROR)
2

N-1

It is presumed that, the pilot uses some combination of velocity

error and displacement error feedback to perform the tracking task.

However, due to the difficulty in simulataneously analyzing both

displacement error and velocity error in terms of a multi-variable

system [McRuer and Krendel 74], the analysis presented has been

performed on the displacement and velocity data separately.

A list of the biases and variances for each trial is given in
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Appendix C. Some data editing has been performed to remove any

anomalous effects; for example, during some runs, the disturbance

quickly switches from a large negative peak to a large positive peak.

If the pilot is not fully alert, he has difficulty in properly tracking

the lead aircraft and a large displacement error will result. Because

this effect is evident in only two of 128 runs, it is not indicative of

the overall performance; therefore, these segments have been edited out

from the raw data. There are also sections near the end of some runs

where the error increases greatly. These sections have also been

editted since the pilot, due to fatigue, has probably lost total

concentration and is not fully aware of the distance to the lead

aircraft. This effect was evident in only four of the 128 runs.

4.2 Presentation of Tracking Performance Data

To illustrate the functional relationships between the various

motion evaluation parameters, the following Figures are presented. The

DES's for each pilot are shown in Figures 4-1 through 4-4 in which the

second session fixed base run is plotted first to serve as a reference

point, followed by the three Ames washouts, and finally the three OWS

washouts. To demonstrate any learning effects present in the

experiments, the performances during each washout have then been plotted

in order of presentation (Figure 4-5 through 4-8). The horizontal lines

at the top of each graph indicate that the performance during one

washout (at the left end of the line) is significantly different from

the performance during another washout (on the right end of the line).

To better illustrate learning, each trial is plotted in order of

presentation in Figures 4-9 through 4-12. Trials 1 through 4 and 17
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through 20, bounded in the figures by dashed lines, are fixed base runs.

Figures 4-13 through 4-16 illustrate the relationship between position

bias and displacement performance. This relationship is expected since

the rate of change of the angle subtended by the F-111 is greater if the

pilot is closer to the lead aircraft; therefore, it is easier to detect

and thereby track the motion of the F-111 if the pilot is closer to the

F-111. Finally, to determine any relationship between handling quality

ratings and performance, Figures 4-21 through 4-24 have been presented.

The same family of figures made for displacement have also been

made for velocity tracking performance. The VES's have been plotted

versus washouts in Figures 4-25 through 4-28, order effects are examined

in Figures 4-29 through 4-36, position bias effects are illustrated in

Figures 4-37 through 4-40, and the handling quality ratings are plotted

versus performance in Figures 4-41 through 4-44.

The pilot comments for each of the washouts are presented in

Appendix D.

4.3 Discussion of Tracking Performance Data

Due to the individual pilot characteristics, the data will be

discussed for each pilot separately, from which generalizations shall be

made for the entire population.

For Pilot #1, it is evident from Figure 4-1 that the variations of

DES's between trials is typically greater than the difference in DES's

between washouts; therefore, statistically there are no differences in

performance between the three Ames washouts and two of the OWS washouts;
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Figure 4-28. Velocity Performance vs Washout
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however, performance with the OWS High Otolith Weighting washout is

significantly better than with the Ames Nominal washout. Figure 4-9

illustrates that there is minimal correlation between the order of

washout presentation and displacement performance (R-0.07 considering

all motion trials, R=-0.21 considering all trials in the first session);

therefore, there are minimal learning effects after the first two fixed

base trials of the first session. On the hypothesis that tracking

performance improves if the pilot is closer to the lead aircraft,

position bias has been plotted versus performance (Figure 4-13);

however, there is no significant correlation (R=-0.17). Comparing the

handling quality ratings to the DES's, Figure 4-21 confirms that there

is little correlation (R=0.24) between the HQR's and the DES's. In

summary, for Pilot #1, there are minimal order effects on displacement

performance, there is no relationship between bias and performance, and

there is no correlation between displacement performance and handling

quality ratings.

Now looking at the velocity performances for Pilot #1 (Figure 4-

25), there are fewer significant performance differences between

washouts than there were in the displacement plots. However, Figures 4-

29 through 4-33 do indicate a slight learning trend towards the

reduction of velocity error (R=-0.56 considering all motion cases and

R=-0.61 for all trials in the first session). The bias plot (Figure 4-

37) indicates a slight correlation (R=0.43) between bias and

performance, but in general, because the range of biases is so small,

the effect of bias on performance is insignificant. Observing, Figure

4-41, there is a slight correlation (R=0.61) between the velocity
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performance and the handling quality ratings. In the plot of the

Cooper-Harper ratings (Figure 4-17), the pilot rates the Ames Nominal,

the Ames Increased Omega, the OWS Nominal, and the OWS High Otolith

washouts on the same level, but rates the Fixed Base, the Ames Decreased

Gain, and the OWS Decreased Gain washouts worse. This corresponds to

the data in Figure 4-25 in that the performance for Fixed Base, Ames

Decreased Gain, and OWS Decreased Gain are all slightly worse than for

the rest of the washouts. Although the two washouts that were presented

first had the worst performances and the worst HQR's, it is unlikely

that learning was the only factor in the handling quality ratings. The

pilot indicates specific motion cues that were lacking in the first two

washouts but were present in latter washouts (see pilot comments in

Appendix D). In summary, for velocity performance, there was a slight

learning effect and a slight correlation between performance and

handling quality ratings.

For Pilot #2, the differences in displacement performance (Figure

4-2) is quite significant for a number of washouts. The performance

with the Ames Nominal, OWS Nominal, and OWS High Otolith Weighting

washouts are significantly better than the performance for the Fixed

Base, Ames Increased Omega, and OWS Decreased Gain cases; unfortunately,

the variability in the Ames Decreased Gain case makes impossible any

conclusions about its rank relative to the other washouts. It appears

that the pilot's performance was typically better during the second

session of the experiment. This result can be attributed to three

factors: to learning effects, to the possibility that the pilot had a

bad day during the first session, or to the improved motion cues of the
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washouts used during the second session. There appears to be minimal

learning evident for this pilot. In Figure 4-10, although the

performance on each trial is reasonably well correlated with the order

of presentation when considering all the trials (R=-0.63) or when

considering all trials with motion (R=-0.71); nevertheless, when

considering only the trials in the first session, there is no

correlation (R=-0.15), indicating that the level of performance during

the second session is better than that of the first session, not that

significant learning has taken place throughout the experiment. The

possibility that the pilot had a bad first session is unlikely judging

from the similar performance levels of the two fixed base cases.

Therefore, the most likely explanation is that the pilot preferred the

motion cues of the higher fidelity washouts. This is confirmed by pilot

comments given during testing of the third washout; the pilot stated

that the improved motion of that case over the two previous low fidelity

washouts allowed him to move closer to the lead aircraft, but Figure 4-

14 indicates a very strong relationship between the bias position and

the performance level. The closer the pilot is to the lead aircraft,

the better his performance; therefore, the improved motion of the

washouts in the second session allowed him to move closer to the lead

aircraft and thereby improve his performance. Comparing displacement

performance with the handling quality ratings (Figure 4-22), there does

appear to be a slight correlation between these two parameters. The

pilot rates the Ames Nominal and Ames Decreased Gain washouts as the

best, followed by the OWS Nominal and the OWS High Otolith Weighting

cases. This trend is reflected in the DES's also, where the Ames
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Nominal, OWS Nominal, and OWS High Otolith Weighting have equivalent

performance ratings. In summary, there is no real learning effect in

displacement performance, but there is improved performance with

improved motion, probably a result of the pilot's confidence to move

closer to the lead aircraft when sufficient motion cues were provided.

Also, there is a slight correlation between the handling quality ratings

and the displacement performance.

The velocity performance plot (Figure 4-26) for Pilot #2 displays

the same relative shape as does the displacement plot, but the relative

differences in means of the VES's is less than those of the DES's.

Therefore between washouts, there are fewer significant performance

differences for velocity than for displacement. Nevertheless, the

variability of the Ames Decreased Gain case is much less in velocity

than in displacement, thereby making it evident that a fairly high level

of performance was achieved with this washout relative to the Ames

Increased Omega and OWS Decreased Gain washouts. This corroborates with

the pilot comment that he felt his performance improved with the Ames

Decreased Gain washout; furthermore, this corroborates with the handling

quality ratings: the Ames Decreased Gain washout was rated a 2, the Ames

Increased Omega case was rated a 3, and the OWS Decreased Gain case was

rated a 3.5 . For this pilot, there is a slight learning effect in

velocity (R=-0.50), particuarly in the first session, as illustrated in

Figures 4-30 and 4-34. Figure 4-38 indicates that there is no

correlation between position bias and performance; however, there is a

fairly strong relationship between the handling quality ratings and the

VES's (R=0.71).
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With respect to the other pilots, Pilot #3 had the best average

DES's for the motion cases, although between washouts, there is little

difference in mean DE's; consequently, there are no significant

differences between the washouts (see Figure 4-3). Observing Figure 4-7

and 4-11, there does appear to be a learning trend in the first session

(R=-0.66), but most of this trend is due to the poor performance in the

fixed base trials. If considering learning only over the first session

motion runs, there is much less correlation (R=-0.37). Although the

pilot does comment that he has observed some learning by the end of the

second motion washout, it is not apparent in his performance. Figure 4-

15 indicates that displacement performance is independent of position

bias (R=0.05). Similarly, Figure 4-23 indicates that there is no

correlation (R=0.26) between DES's and HQR's.

It is evident in Figure 4-27, that for Pilot #3, the velocity

performances on the Ames washouts are significantly better than the

performance with the OWS High Otolith Weighting case. Moreover, when

the population of trials performed with the Ames washouts are compared

with those performed with the OWS washouts, a t-test confirms that the

overall performance on the Ames washouts is significantly better

(p=99.3%) than the overall performance on the OWS washouts. It is not

clear whether this is a result of better motion cues with the Ames

washouts, or whether the analysis is biased by learning, since the first

two washouts, during which the most significant learning would occur,

were OWS washouts. Figures 4-31 and 4-35 do indicate a learning trend,

mainly in the first session (R=-0.72), but again, it is not clear how

much of this effect is a result of the washout characteristics and how
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much is a result of learning. Pilot comments do indicate the pilot did

notice some learning by the second washout of the first session. Figure

4-39 indicates that there is no correlation (R=0.12) between bias

position and velocity performance. Figure 4-43 illustrates that the

VES's are fairly independent of the handling quality ratings (R=0.31),

mainly because there is little variation in mean performance with each

washout. The changes in HQR's are therefore more likely a function of

pilot workload which would increase when insufficient motion cues are

present. In summary, there are few performance differences between

washouts, although there is a learning trend which is more evident in

the VES's than in the DES's. Judging from the pilot comments, this

learning effect could have slightly biased the HQR for the OWS High

Otolith Weighting case, which was the first washout presented. Finally,

there appears to be no correlation between performance and the handling

quality ratings.

The DES's for Pilot #4 are plotted in Figure 4-4. The only

significant difference between washouts is that performance with the

Ames Increased Omega case is better than that with the OWS High Otolith

Weighting case. There appears to be no learning occurring after the

first two fixed base runs of the first session (R=0.12). There is a

slight correlation (R=0.46) between bias position and displacement

performance (Figure 4-16), but no correlation (R=0.06) between the DES's

and the handling quality ratings (Figure 4-24).

Now looking at the VES's in Figure 4-28, the performance

differences between washouts are more apparent than for the DES's.
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Observing Figures 4-32 and 4-36, there appears to be no learning effect

in the first three washouts (R=-0.22), although significant learning did

occur during the three fixed base runs. Generally, the performance with

the three washouts of the second session appear to be better than that

for the washouts of the first session. This difference can be explained

by three possibilities: (1) sufficient learning occurred over the

length of the experiment to affect the results between sessions, (2) the

pilot preferred the lower fidelity washouts, or (3) the pilot had a bad

first session. The first explanation, that the pilot experienced

significant learning, contradicts the previous evidence that minimal

learning occurred. The suggestion that the pilot's performance was

better the second session because he preferred the lower fidelity

washouts is unlikely. During the second washout presented the second

session, the OWS Decreased Gain washout, even though the pilot had

relatively good performance, he rated it a 6 and commented that it was

the worst washout configuration he had tested so far. The final

suggestion that the pilot had a bad day during the first session, is a

possibility, but this is difficult to conclusively prove or disprove;

however, it should be noted that this session was performed on a Monday

morning and that it was the first session performed by any of the

pilots; consequently, there were a number of operational difficulties

and computer failures which may have frustrated the pilot. A comparison

between bias position and velocity performance is given in Figure 4-40,

which illustrates the slight correlation (R=0.50) between the two

factors. Figure 4-42 illustrates the independence (R=0.30) of velocity

performance and HQR's.
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The correlation results for all pilots are summarized in Table 4-1.

4.4 Discussion of Pilot Model Describing Functions

To obtain the combined pilot-aircraft (open loop) describing

function, the data from the tracking tasks was analyzed using an off-

line NASA Ames routine. The analysis was first run using position error

and later velocity error as the input to the pilot describing function.

Pilot stick commands were used as the output. The information obtained

from the program included amplitude ratios, phase angles, and signal to

noise ratios of the pilot response at the five disturbance frequencies.

Unfortunately, for many of the data points, the signal to noise

ratio is very small, especially at high frequencies; consequently, it is

probable that the pilots were not necessarily using a linear control

scheme. This corroborates one pilot's comments that he was utilizing a

bang-bang control strategy. This is also substantiated by an FFT of the

pilot stick inputs (Figure 4-45) where the dotted lines represent the

disturbance frequencies. In Figure 4-45, it is evident that the

frequency of the pilot's local peak amplitude is sometimes offset from

the disturbance frequency. In other cases, there is a bimodal amplitude

distribution about the disturbance frequency, with a low amplitude at

the actual disturbance frequency; furthermore, there is a large remnant

across the spectrum of interest. All of these factors, plus the fact

that the there were large performance variations between trials for each

pilot, makes definitive conclusions about specific features (crossover

frequencies, phase margins) of the open loop transfer functions

extremely difficult. To illustrate this point, a typical Bode plot of
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Table 4-1. Summary of Correlations

CORRELATION WITH DISPLACEMENT PERFORMANCE

PILOT #1 PILOT #2 PILOT #3 PILOT #4

ORDER -.21 -.15 -.37 .12

BIAS -.17 .87 .05 .46

HQR .24 .43 .26 .06

CORRELATION WITH VELOCITY PERFORMANCE

PILOT #1 PILOT #2 PILOT #3 PILOT #4

ORDER -.61 -.50 -. 72 -.47

BIAS .43 .37 .12 .50

HQR .61 .71 .31 .30
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the combined pilot-aircraft describing function is presented in Figure

4-46. The crossover frequency is difficult to determine because of the

large variability among trials. Furthermore, the results shown are

affected by the poor signal to noise ratio in the region of interest.

It is however interesting to note that the phase lags are all near 180

degrees, indicating a marginally stable response. This is expected due

to the high order dynamics of the hovercraft plant and to the difficulty

of performing the tracking task. It is possible that if the pilots had

been instructed to track the lead aircraft from a closer point the

performance would have been more consistent, the signal to noise ratio

would have improved, and there would have been significant differences

among washouts for each of the describing functions.

Some general observations about the describing functions are that

Pilot #3 had the most linear slopes and therefore, probably had the most

linear control strategy. This pilot also had the best performance

ratings, although his gains are slightly less than those for Pilot's #1

and #2. In general, Pilot #4 had the best phase margin.

4.5 Discussion of the Motion Rating Scale

The motion ratings for each pilot are summarized in Table 4-2.

Unfortunately, due to pilot rating idiosyncrasies, it is difficult to

draw conclusions from the ratings when evaluating over the entire

population; however, dealing with each pilot separately, it is possible

to obtain some fairly significant results by correlating each motion

evaluation parameter with the overall motion rating (Table 4-3). For

Pilot #1, sense, discomfort, and disorientation correlate well with the
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MOTION RATING CATEGORIES

WASHOUT SMOOTHNESS SENSE AMPLITUDE PHASE LAG DISCOMFORT DISORIENTATION OVERALL

PILOT #1

Ames Nominal 1.5 1.0 3.0 1.0 1.0 1.0 1.75
Ames Decreased Gain 1.5 1.75 2.0 1.0 1.0 1.0 2.0
Ames Increased Omega 1.5 1.0 3.0 1.0 1.0 1.0 1.5

OWS Nominal 1.5 1.0 3.0. 2.25 1.0 1.0 2.0
OWS Decreased Gain 1.5 3.0 3.0 4.0 2.5 2.5 3.0
OWS High Otolith Weighting 1.5 1.0 3.0 1.5 1.0 1.0 1.5

PILOT #2

Ames Nominal 3.5 1.3 2.7 1.2 1.0 1.0 1.3
Ames Decreased Gain 1.25 1.0 3.0 1.0 1.0 1.0 1.2
Ames Increased Omega 2.5 1.5 2.5 1.5 1.2 1.0 1.5

OWS Nominal 2.5 1.2 2.7 1.2 1.0 1.0 1.3
OWS Decreased Gain 2.0 1.5 2.5 1.5 1.5 1.5 1.5
OWS High Otolith Weighting 2.5 1.5 2.7 1.7 1.3 1.2 1.5

PILOT #3

Ames Nominal 2.0 1.0 3.0 2.0 1.0 1.0 2.0
Ames Decreased Gain 2.0 1.0 3.0 4.0 1.0 1.0 2.0
Ames Increased Omega 2.0 1.0 3.0 3.0 1.0 1.0 2.0

OWS Nominal 2.0 1.0 4.0 3.0 2.0 1.0 2.0
OWS Decreased Gain 2.0 1.0 2.0 4.0 1.0 1.0 4.0
OWS High Otolith Weighting 2.0 2.0 4.0 2.0 1.0 2.0 2.0

PILOT #4

Ames Nominal 2.0 1.0 3.0 * 1.0 1.0 2.0
Ames Decreased Gainfi 1.5 1.0 3.0 2.0 3.0 1.0 1.5
Ames Increased Omega 1.0 1.0 3.0 3.0 3.5 1.0 1.5

OWS Nominal 2.0 1.0 3.0 2.0 3.0 1.0 4.0
OWS Decreased Gain 3.0 3.0 4.0 4.0 5.0 3.0 5.0
OWS High Otolith Weighting 2.0 1.0 3.0 * 5.0 1.0 5.0

*no rating given

Table 4-2. Motion Rating Categories
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Table 4-3

CORRELATION OF EACH MOTION RATING CATEGORY TO "OVERALL MOTION" RATINGS

overall motion rating; however discomfort and disorientation are

probably the result of poor sense rather than being separate factors of

the washout. For Pilot #2, there are significant correlations of sense

and lag to the overall rating. For Pilot #3, the most significant

correlation is with amplitude, while for Pilot #4, the most significant

correlation is with smoothness.

To illustrate any correlation between the handling quality ratings

and the overall motion rating, Table 4-4 has been constructed. For

Pilots #1 and #2, there is fairly significant correlation between the

the HQR's and the overall motion rating (R=0.91 for both pilots). The

two other pilots exhibited less correlation (R=0.80 for Pilot #3 and

R=0.72 for Pilot #4).
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PILOT #1 PILOT #2 PILOT #3 PILOT #4

SMOOTHNESS 0.0 0.25 0.0 0.77

SENSE 0.93 0.97 -0.20 0.53

AMPLITUDE 0.0 -0.83 -0.76 0.53

LAG 0.78 0.96 0.55 0.70

DISCOMFORT 0.94 0.85 -0.31 0.70

DISORIENTATION 0.94 0.60 -0.20 0.53



Table 4-4

COMPARISON OF "OVERALL MOTION" RATING TO HANDLING QUALITY RATINGS

WASHOUT MOTION RATING HANDLING QUALITY RATING

Pilot #1

Ames Nominal 1.75 4.5
Ames Decreased Gain 2.0 5.0
Ames Increased Omega 1.5 4.5

OWS Nominal 2.0 4.25
OWS Decreased Gain 3.0 6.0
OWS High Otolith Weighting 1.5 4.0

Pilot #2

Ames Nominal 1.3 2.4
Ames Decreased Gain 1.2 2.0
Ames Increased Omega 1.5 3.0

OWS Nominal 1.3 2.7
OWS Decreased Gain 1.5 1.5

OWS High Otolith Weighting 1.5 3.0

Pilot #3

Ames Nominal 2.0 4.0

Ames Decreased Gain 2.0 4.0

Ames Increased Omega 2.0 5.0

OWS Nominal 2.0 4.0
OWS Decreased Gain 4.0 6.0

OWS High Otolith Weighting 2.0 5.0

Pilot #4

Ames Nominal 2.0 4.5
Ames Decreased Gain 1.5 3.0
Ames Increased Omega 1.5 3.0

OWS Nominal 4.0 5.0
OWS Decreased Gain 5.0 5.5

OWS High Otolith Weighting 5.0 4.0
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5. Conclusions and Recommendations

5.0 Motion Evaluation Techniques

1. From the experimental results, it is evident that even with highly

trained test pilots, there is great variability in performance among

trials and among pilots; consequently, performance, though widely used

as an indicator of motion fidelity, is not necessarily a valid or

consistent measure. In our experiments, performance was affected by

learning (especially in velocity performance), by position bias, and by

the difficulty of executing the assigned task. Furthermore, the

tracking performance scores generally are not well correlated with the

pilot comments or with the handling quality ratings.

2. The use of pilot describing function charateristics to indicate

motion fidelity is also not necessarily valid. As with performance, the

describing function characteristics are smeared by the performance

variability among trials and by possible non-linear (bang-bang) pilot

control schemes, both of which are probably a function of the difficulty

of the task.

3. Even though the pilots were actually using HQR's to rate the handling

qualities of the aircraft, for our experiments, the HQR's appear to be

sensitive to the washout designs and are reasonably good indicators of

motion fidelity. This is expected since the ratings indicate how much

pilot compensation is required to control the aircraft. The amount of

compensation is affected by the motion cues provided; therefore the
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HQR's are relevant. In the experiments, the ratings are fairly

consistent with pilot comments and they display no significant learning

trends. Although the HQR's do not exhibit consistent magnitude levels

between pilots, the shapes of the HQR versus washout plots are

reasonably consistent between pilots.

4. The motion rating scale was reasonably successful in highlighting the

strengths and deficiencies of the washouts, although a more precise

definition of the various terms in the scale would be advantagous. When

the overall motion rating is correlated with each of the motion

parameter categories, sense is best correlated for Pilot #1, sense and

lag are best correlated for Pilot #2, amplitude is best correlated for

Pilot #3, and smoothness is best correlated for Pilot #4; therefore, the

pilots either associate different motion qualities to the fidelity of

motion or they have different interpretations of the motion scale

categories.

5.1 Control System Improvements

1. One of the major goals of this experiment was to illustrate that the

minimization of vestibular error is a reasonable technique for the

design of washout systems. In general, the pilot comments and ratings

justify the technique; however, relative to the experiments described

here, better HQR's and pilot comments can probably be obtained for the

OWS washouts by correcting the low gain inadvertantly used in the

otolith model. The pilots appear to prefer the more coordinated

washouts; therefore, more weight should be placed on the otolith error

when designing future washouts, as was done with the OWS High Otolith
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washout. Although HQR's with the OWS High Otolith Weighting washout

(2:1 otolith to semicircular canal weighting) were not significantly

better than those for the OWS Nominal washout (1:1 otolith to

semicircular canal weighting), the HQR's for all OWS washouts may have

been mainly affected by the lack of pitch angle coordination during the

dash-quick stop maneuvers. This effect can be removed by filtering out

the DC components of the aircraft pitch rate and thereby improving the

coordination of the OWS washouts.

2. A possible improvement in the washout system could be obtained by

implementing the sign-sensitive cost as proposed by Ish-Shalom {Ish-

Shalom 821. This sign-sensitive cost minimizes the motion cues to the

simulator pilot that are in the direction opposite to the motion cues

experienced by the aircraft pilot. For example, the motion sensations

due to the accelerations commanded to keep the simulator within travel

limits are minimized if the aircraft pilot is not sesnsing accelerations

in the same direction.

3. In order to fully maximize the motion base capabilites, a combined

visual-vestibular model should be developed and implemented into the

current control system format. This would allow the washout system to

better estimate the pilot's perception of motion since both visual and

vestibular influences on perception are considered.

5.2 Possible Improvements in Experimental Procedures

1. To facilitate the development of more definitive conclusions,

learning effects during the experiments should be minimized; therefore

the pilots should be allowed greater time to learn the task before data

111



is taken.

2. To help the pilots learn the proper tracking distance to the lead

aircraft, the pilots should be positioned at the set point and told that

they are at the desired tracking distance. Their position should then

be incrementally deviated on either side of the desired set point and

the pilots told their distance from the set point. In this way, they

can develop a feel for their distance from the lead aircraft before data

is taken.

3. A common set of runs should be made in each session to allow the

evaluation of session effects on performance. The extreme learning

during the first session fixed base runs made comparison of performance

to the second session fixed base runs impossible.

4. More realistic flight tasks should be used to evaluate the motion

washout characteristics. Though the tasks used in this study were

helpful in highlighting the differences between washouts, some of the

bothersome washout characteristics observed during the tests may not

arise during typical flight operations in the simulator. Therefore,

some washouts that were rated poorly during the rather atypical flight

maneuvers performed in the tests, may be entirely adequate for normal

flight missions.

5.3 An Extended Motion Fidelity Test

1. To determine the relationship of motion fidelity to motion evaluation

scales and pilot performance, the pilots could perform a set of tracking

runs in the simulator with no motion, a set of runs in the simulator
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with varying degrees of motion, and a set of runs in an actual

helicopter using the same visuals as in the simulator. The graphic

images could be transmitted from the ground and displayed on CRT's in

the cab. Current helicopters designed to evaluate single pilot cockpits

could be utilized for the experiment since they have one completely

enclosed cockpit with visuals supplied only through video terminals. A

backup pilot is also onboard to take over the controls should any

emergency arise. This type of testing would permit performance in the

simulator to be compared to performance in the aircraft; furthermore,

transfer of training could be evaluated.
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C THIS ROUTINE CALCULATES THE WASHOUT COMMANDS
SUBROUTINE WASH

C
DIMENSION STATES(10)
DIMENSION CONTRL(2),AAC(3,3),BAC(3,2),ACST(3)
DIMENSION SIMCTL(2),ASIM(5,5),BSIM(5,2),SIMST(5)
DIMENSION FDBK(2,10)

C
C----------------------------------------------------------------------
C THESE ARE ALL PARAMETERS FROM THE AMES WASHOUT ROUTINES. THE ONLY
C AMES PARAMETERS ACTUALLY REQUIRED IN THIS ROUTINE ARE: IMODE, AXIN,
C AYIN,ZSDD,THES,PHIS,XDDO,YDDO,PDA,QDA,THETR,PHIR,RDA,DT

COMMON/IFLAGS/IMODE, I90
COMMON/STATE/AXIN,AYIN,AZIN,PDA,QDA,RDA,THETR,PHIR
COMMON/OUTPUT/DUM1,DUM2,DUM3,YS,YSD,YSDD,ZS,ZSD,ZSDD,PSIS,PSISD,
1 PSISDD,THES,THESD,THESDD,PHIS,PHISD,PHISDD
COMMON/MISC/ODT, DT,GS,HCG, ZBIA,XDDO,YDDO,PIN,QIN

C----------------------------------------------------------------------
C
C
C SIMACC TRANSFERS TO THIS ROUTINE, THE CAB SURGE ACCEL FROM THE PREVIOUS
C ITERATION AS CALCULATED IN THE LIMITING LOGIC OF TRANFL. XSDD IS USED
C TO UPDATE THE SIMULATOR STATES FOR THIS ITERATION.

COMMON/SIMACC/SIMACC
C
C
C THESE STATEMENTS COMMUNICATE WITH OUR SUBROUTINE LOAD WHICH CONTAINS
C THE DYNAMICS AND FEEDBACK MATRICES.

COMMON/ACVEST/AAC, BAC
COMMON/SIM/ASIM,BSIM
COMMON/FDBK/FDBK

C
C
C ON THE FIRST PASS, LOAD THE.DYNAMICS AND FEEDBACK MATRICES

IF(IMODE.LE.0) CALL LOAD
C
C

C TRANSFORM THE AIRCRAFT BODY AXIS LINEAR ACCELERATION AND ANGULAR
C VELOCITY TO INERTIAL AXES.
C.......... ......... 190-0.............................................

IF (190.EQ.1) GO TO 10
C
C NEXT LINE WAS CHANGED 7-11-84 TO NEGATE THE G-TILT EFFECTS IN THE ACCEL DATA
C

CONTRL(1)- AYIN+GS*COS(THETR)*SIN(PHIR)-ZSDD*PHIS+YDDO
CONTRL(2)- PDA+THETR*RDA
GO TO 20

C
C...............................................
C
C NEXT LINE WAS CHANGED 7-11-84 TO NEGATE THE G-TILT EFFECTS IN THE ACCEL DATA
10 CONTRL(1)- AXIN-GS*SIN(THETR)+ZSDD*THES+XDDO

CONTRL(2)- QDA-PHIR*RDA
C
C

C
C
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C THIS SUBROUTINE CALCULATES THE NEW STATES OF
C THE DYNAMICAL SYSTEM
C

SUBROUTINE STVAR(CONTRL,DYNMAT,BMAT,N,M,STATES,DT)
C ~

DIMENSION CONTRL(M), DYNMAT(N,N), BMAT(N,M), STATES(N)
DIMENSION TEMP1(10), TEMP2(10)

C
C--------------------------------------------------------------------------
C DIMENSION
C CONTRL - CONTROL INPUT VECTOR (M X 1)
C DYNMAT - SYSTEM DYNAMIC EQUATION MATRIX (N X N)
C BMAT - CONTROL SENSITIVITY MATRIX (N X M)
C OUTMAT - OUTPUT SCALING MATRIX (NPX N)
C DMAT = FEED-FORWARD SCALING MATRIX (NPX M)
C N = DIMENSION OF THE STATE VECTOR
C M - DIMENSION OF THE CONTROL VECTOR
C NP - DIMENSION OF THE OUTPUT VECTOR
C STATES - STATE VECTOR OF THE SYSTEM (N X 1)
C DT - TIME.STEP SIZE
C YOUT - OUTPUT VECTOR (NPX 1)
C TEMP1 - TEMPORARY STORAGE VECTOR ( 10 )
C TEMP2 - TEMPORARY STORAGE VECTOR ( 10 )
C
C THIS ROUTINE CALCULATES:
C STATES=STATES+(DYNMAT*STATES+BMAT*CONTRL)*DT
C
C--------------------------------------------------------------------------
C
C CALCULATE THE PRODUCT OF DYNMAT AND STATES

CALL PRDUCT(DYNMAT,N,N,STATES,TEMPi)
C CALCULATE THE PRODUCT OF BMAT AND CONTRL

CALL PRDUCT(BMAT,N,M,CONTRL,TEMP2)
C CALCULATE THE DERIVATIVES OF THE STATES, INTEGRATE THEM, AND ADD TO
C THE PRESENT STATES

DO 10 INDEX-1,N
10 STATES (INDEX) -STATES (INDEX) +(TEMP1(INDEX) +TEMP2 (INDEX) )*DT
C
C

RETURN
END

C THIS SUBROUTINE CALCULATES THE PRODUCT OF AN ARRAY AND A VECTOR
SUBROUTINE PRDUCT(ARRAYl,NROW1,NCOL1,VECTOR,RESULT)

C
DIMENSION ARRAYl(NROW1,NCOL1), VECTOR(NCOL1), RESULT(NROW1)

C
C------------------------------------------------------- A---------------
C ARRAYl- THE ARRAY TO BE MULTIPLIED
C - VECTOR- THE VECTOR MULTIPLYING THE MATRIX
C RESULT- THE VECTOR RESULTING FROM THE MULTIPLICATION
C NROW1 - THE # ROWS IN THE ARRAY
C NCOL1 - THE # OF COLS IN THE ARRAY AND THE # OF ENTRIES IN THE VECTOR
C
C THIS SUBROUTINE CALCULATES:
C RESULT-ARRAYl*VECTOR
C---------------------------------------------------------------------------
C

DO 20 IROW-1,NROW1
C COMPUTE THE INNER PRODUCT OF THE VECTOR AND EACH ROW OF THE ARRAY

SUM-0.
DO 10 IENTRY-1,NCOL1

10 SUM-SUM+ARRAY1(IROW, IENTRY) *VECTOR ( IENTRY)
20 RESULT(IROW)-SUM

RETURN
END

118



C UPDATE THE AIRCRAFT PILOT'S VESTIBULAR SYSTEM WITH THE NEW AIRCRAFT
C LINEAR ACCEL AND ANGULAR VELOCITY
20 CALL STVAR(CONTRL,AAC,BAC,3,2,ACST,DT)
C
C
C REVISE SIMCTL(1) TO THE VALUE ACTUALLY COMMANDED TO THE SIMULATOR
C AFTER THE LIMITING LOGIC. (190 ADDED JULY 30,1984)

SIMCTL(1)-SIMACC
C
C UPDATE THE SIMULATOR PILOT'S VESTIBULAR SYSTEM AND THE SIMULATOR
C MOTION BASE STATES

CALL STVAR(SIMCTL,ASIM,BSIM,5,2,SIMST,DT)
C
C LOAD THE 'STATES' VECTOR WITH THE 3 NEW AIRCRAFT VESTIBULAR STATES,
C THE 3 NEW SIMULATOR VESTIBULAR STATES, THE 2 NEW SIMULATOR MOTION
C BASE STATES, AND THE 2 NEW STOCHASTIC PROCESS STATES.

STATES(1)- ACST(1)
STATES(2)- ACST(2)
STATES(3)= ACST(3)
STATES(4)= SIMST(1)
STATES(5)= SIMST(2)
STATES(6)= SIMST(3)
STATES(7)= SIMST(4)
STATES(8)- SIMST(5)
STATES(9)- CONTRL(1)
STATES(10)- CONTRL(2)

C
C MULTIPLY THE FEEDBACK MATRIX BY THE NEWLY DEFINED 'STATES' VECTOR

CALL PRDUCT (FDBK, 2,10, STATES, SIMCTL)
C
C CORRECT THE SIGNS OF THE SIMULATOR CONTROLS

SINCTL(1)=-1.*SIMCTL(1)
SIMCTL(2)--1.*SIMCTL(2)

C

C DETRANSFORM THE COMMANDED INERTIAL AXIS SIMULATOR CONTROLS TO BODY AXES
C SUCH THAT THEY ARE CORRECTLY TRANSFORMED BACK INTO BODY AXES IN THE
C AMES WASHOUT. NOTE THAT THE SIMULATOR PITCH TRANSFORMATION ANGLE IS
C UPDATED HERE SINCE THE PITCH ANGLE IS UPDATED IN ROTFIL BEFORE THE
C AXIS TRANSFORMATION IS MADE IN TRANFL.
C.......................190=0..............................................

IF (190.EQ.1) GO TO 30
AYIN-SIMCTL(1)+ZSDD*(PHIS+SIMCTL(2)*DT)-YDDO
PDA-SIMCTL (2) -THETR*RDA
GO TO 40

C..........................90-1..........................................
30 AXIN-SIMCTL(1)-ZSDD*(THES+SIMCTL(2)*DT)-XDDO

QDA-SIMCTL(2)+PHIR*RDA

40 RETURN
END
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EXPERIMENTAL PROCEDURE FOR VMS MOTION WASHOUT EXPERIMENTS

This document describes the specific tasks and experimental measurements to
be used in the evaluation of the optimal washout system on the Vertical
Motion Simulator (VMS) -

MOTION WASHOUT SYSTEM CONDITIONS

The two basic washout systems to be used on the VMS are the second order
Ames washout and the Optimal washout. Each of the washouts will be
presented in three conditions, yielding six washouts to be evaluated. The
Ames washout will be presented as nominal, reduced gain, and increased
break frequency. The Optimal Washout System (CWS) will be presented as
nominal, reduced simulator travel, and high otolith weight.

1. Ames Nominal. This will be the washout system best suited to the
particular aircraft dynamics used. The gains and break frequencies will be
chosen by Ames personnel aquainted with the second order washout system.

2. Ames Reduced Gain. This will be the Ames Nominal condition with the
gain in the pitch-surge axis reduced such that the simulator will travel
less for a given acceleration of the aircraft model.

3. Ames Increased Break Frequency. This will be the Ames Nominal
condition with the break frequency in the pitch-surge axis increased. This
will tend to reduce the transmission of low frequency aircraft model motion
to the simulator.

4. OWS Nominal. This will be the washout generated by the optimal control
technique with the best estimates of the desired weights on the cost
function components. Essentially, it will be the best a priori guess of
the desired washout.

5. OWS Reduced Simulator Travel. In this condition, the cost of simulator
travel will be increased such that the motion produced by the resulting
washout will be of lesser amplitude. This is analogous to the Ames Reduced
Gain condition.

6. OWS High Otolith Weight. This condition will be produced by increasing
the weight of the otolith errors with respect to those of the semicircular
canals. This will increase the amount of "coordination" used to keep the
net force vector oriented in the direction consistent with the actual
aircraft.

FLIGHT TASKS

The three basic flight tasks are presented below.

Tracking With Target Disturbance. This task will involve flying formation
to the rear of the target aircraft. The target aircraft will be disturbed
longitudinally with a sum-of-sines disturbance.
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Forward Step Maneuver. This task will begin with the aircraft at the
beginning of the canyon in a stationary hover at approximately 20 ft
altitude. The pilot will be instructed to establish a 5-degree nose-down
pitch attitude while maintaining altitude. This 5-degree pitch down will
be held as the aircraft accelerates to a steady flight speed. As the
aircraft approaches the road through the canyon, the nose will be brought to
a pitch up attitude and the aircraft brought to a stationary hover over the
road.

Pitching Maneuver. With the aircraft in a stationary haver, the pitch
attitude will be oscillated through positive and negative 5-10 degrees with
a period of 4, 2, and 1 second.

EXPERIMENTAL MEASUREMENTS

During each trial, the following measurements will be taken:

Pilot Describing Function. The gain and phase of the open-loop
piloT/vehicle combination will be calculated using an on-line computer
routine and recorded for each trial (this measure will be taken for the
longitudinal tracking task only).

Task Performance. The target and vehicle positions will be recorded during
each trial. From these, the error in tracking can be computed.

Subjective Ratings of Aircraft Handling Qualities. The Cooper-Harper
rating scale will be used by the pilots to estimate the handling qualities
of the test aircraft in each trial.

Subjective Ratin9s of Simulator Motion. A rating scale for simulator
motion will be employed to assess the effectiveness and acceptability of
the washout system for each trial. Ratings of the motion will be taken
during the forward step and pitching maneuver tasks. Pilots will be
informed if the simulator encounters limits during this evaluation. They
will be told to "disregard the previous maneuver" if that maneuver resulted
in a limit encounter.
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MOTION RATING SCALES

The motion of the simulator will be rated on the following seven scales:

Attribute

SMOOTHNESS:

SENSE:

AMPLITUDE:

PHASE LAG:

DISCOMFORT:

DISORIENTATION:

OVERALL:

Rating

1

extremely
smooth-comparable
with fixed base

definitely correct
as in aircraft

no motion experienced

none experienced

none experienced

none experienced

excellent

exr 5il ek

extremely jerky
limit of tolerance

totally reversed

at least twice
that expected

at least 1800

cannot continue
maneuver

cannot per form
maneuver

extremely poor

Pilots will be asked to rate the motion during the Forward Step and
Pitching Maneuvers. If they desire, they may fly the vehicle in the canyon
to elucidate any particular attribute of the motion. Their comments will
be recorded.

Note: To avoid encounters with the software limits during motion
evaluation, pilots will be requested to keep pitch angle excursions within
positive or negative 10 degrees.
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ORDER OF PRESENTATION

The order of presentation given below is based on 4 subjects. If less than
4 are employed, the order will be truncated at the appropriate subject
number. Each experimental session will involve the evaluation of three
washout conditions. The washout conditions are numbered as on page one of
this document. Each session will begin with the fixed base case as a warm-
up. The pilot subject will be asked to perform each task 4 times and then
proceed to the next task.

Subject 1

Session 1

Fixed Base
Washout 1
Washout 4
Washout 6

Session 2

Fixed Base
Washout 2
Washout 5
Washout 3

Subject 2

Session 1

Fixed Base
Washout 6
Washout 4
Washout 1

Session 2

Fixed Base
Washout 3
Washout 5
Washout 2

Subject 3

Session 1

Fixed Base
Washout 2
Washout 5
Washout 3

Session 2

Fixed Base
Washout 1
Washout 4
Washout 6

Subject 4

Session 1
Fixed Base
Washout 3
Washout 5
Washout 2

Session 2
Fixed Base
Washout 6
Washout 4
Washout 1
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RAW VELOCITY VARIANCES

FIXED
BASE
#1

FIXED
BASE
#2

PILOT #1

11.94000
23.14000
9.380000
12.53000

11.10000
24.18000
13.38000
6.460000

10.60000
AMES 5.890000

NOMINAL 2.760000

9.060000

12.21000
17.32000
6.820000
6.810000

7.700000
4.850000
5.800000
8.300000

6.210000
OWS 5.550000

NOMINAL 7.510000
6.060000

OWS
DECR
GAIN

OWS
HIGH

OTOLITH
WT

7.530000
5.630000
11.08000
10.76000

6.450000
2.610000
4.480000
5.430000

PILOT #2

15.83000
13.65000
24.50000
15.45000

32.44000
25.02000
21.80000
12.02000

14.00000
8.280000
6.530000
4.260000

10.31000
9.560000
4.470000
6.710000

11.05000
14.56000
12.81000
9.390000

0.0000000
6.510000
6.180000
7.810000

16.39000
9.750000

0.0000000
12.71000

11.68000
8.190000
8.090000
8.290000

PILOT #3

44.24000
18.54000
26.78000
25.56000

15.80000
18.96000
41.32000
35.29000

7.260000
5.980000
10.65000
15.15000

15.42000
7.800000
11.95000
7.200000

9.160000
9.530000
4.390000
10.62000

16.14000
21.22000
9.330000
8.160000

11.64000
7.640000
16.38000
28.61000

13.89000
18.34000
15.52000
19.44000

PILOT #4

44.24000
64.89000
30.22000

17.68000
10.97000
12.33000
14.80000

13.50000
18.47000
25.03000
13.56000

14.08000
9.490000
9.180000
14.30000

8.090000
9.280000
12.28000
6.820000

21.83000
19.28000
19.39000
11.80000

15.58000
11.36000
11.95000
13.34000

24.85000
17.53000
14.45000
11.42000
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PILOT #1

FIXED 49.41000

BASE 18.32000
#1 -6 .830002

11.17000

FIXED-20. 51500
BASE -6.989998
#2 -11.49800

-22.22700

-23.42100
AMES -24.79800

NOMINAL -22.57700
-27.72600

AMES -7.500000

DECR -9.077003

GAIN -8.0001831ES-14.39900

AMES
INCR

OMEGA

-02

-7.540001
-20.70600
-17.14400
-17.35700

-14.28600

OWS -14.11900
NOMINAL -26.40700

-11.65100

OWS
DECR
GAIN

OWS
HI GH

OTOLITH
WT

-2.230003
-12.26000
-20.40600
-9.069000

-9.360001
-15.64700
-17.21400
-19.16600

RAW BIASES

PILOT #2

35.00999
34.30000
33.48000
37.28000

29.44000
33.58000
25.64000
21.00999

13.21000
20.61000

0.5699997
2.010002

40.61000
47.84000
25.16000
24.36000

46.41000
37.03999
24.08000
32.02000

21.84000
13.66000
0.5199966
9.529999

60.89000
33.89000
25.12000
31.37000

13.50000
14.40000
23.72000
16.67000

PILOT #3
61.60001

-7.050003
-9.302002
-11.12300

-0.3799973
-6.629997
-12.20100
-2.669998

-7.580002
-9.570999
-7.599998
-10.12000

-1.239998
-8.084000
-9.9998474E
-3.110001

-9.249001
-7.339996
-15.67000
-7.360001

12.65000
-2.000000
-17.02900
-10.24200

4.959999
2.139999
8.010002
5.519997

-3.699997
-2.199997
-6.070000
4.669998

-02

PILOT #4
43.74001
43.00000
11.24000

13.49000
14.41000
18.35000

-0.3799973

18.16000
28.32001
26.80000
19.47000

4.449997
-11.19000
1.989998
8.879997

10.55000
2.489998
5.300003
10.73000

24.08000
31.25999
32.16000
17.70000

24.55000
12.10000

-3.570000
14.33000

30.99001
37.92999
34.16000
23.39999
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RAW DISPLACEMENT VARIANCES

FIXED
BASE
#1

FIXED
BASE
#2

PILOT #1

610.5840
399.2004
114.2761
199.9396

151.7824
238.6000
125.6641
112.1481

AMES 124.5456
NOMINAL 140.1856

184.6881
178.4896

86.47140
192.6544
108.3681
54.98222

164.6089
84.05223
68.85681
100.6009

55.90553
97.59464

OWS 178.2225
NOMINAL 66.63457

OWS
DECR
GAIN

OWS
HIGH

OTOLITH
WT

52.98384
109.2025
130.8736
55.98032

57.59293
92.35210
54.09602
77.77477

PILOT #2

268.9600
320.0521
417.3849
341.1409

512.5696
470.8900
329.4225
165.1225

152.2756
141.6100
77.47520
40.05624

375.1969
584.6700
121.2201
129.7321

400.4001
379.4704
199.0921
228.0100

133.1200
71.35180
50.28228
104.2441

273.5716
214.7200
385.7296

82.97388
92.94888
139.9489
108.7849

PILOT #3

1906.196
499.5225
238.0849
250.5889

144.0000
81.88440
290.7025
305.5504

87.83438
50.05562
71.19984
101.6064

148.5961
75.16890
116.2084
65.99937

75.62041
58.01869
78.78339
68.26064

126.8600
116.8561
88.20967
60.79321

93.02603
46.32164
177.6889
176.0929

52.37417
192.0996
114.7041
74.92000

PILOT #4

915.6676
1301.045
278.5561

218.4484
127.4641
178.2225
194.3236

142.8025
315.4176
445.2100
331.6041

359.1025
195.4404
95.68752
602.2117

135.0244
256.6404
202.7776
85.28522

250.2724
315.4176
371.3329
152.0289

364.0464
239.3209
147.1369
214.3296

438.0649
416.9764
347.4496
176.6241
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Comments of Pilot #1

* Fixed Base:

* Ames Nominal:
(#4) -Fourth washout tried

-No objectionable motion
-Looked coordinated
-One of the better ones - similar to Ames Incr Omega

* Ames Decreased Gain:

(#1) -First washout tried
-Didn't feel enough motion, did feel coordinated

* Ames Increased Omega:
(#3) -Third washout tried

-Best washout yet (prior washouts:Ames Decr Gain & MIT Decr Gain)
-No more surge phasing as compared to MIT Decr Gain
-Amplitude looked like real world
-Could be a little more motion

* MIT Nominal:
(#5) -Fifth washout tried

-Aware of more surge accel
-Able to use motion to help in tracking (pilot could increase

tracking aggressiveness)
-Not enough surge on large pitchdown steps (surge lag) (not as bad

as in MIT Decreased Gain) (lag is acceptable)
-Good configuration

* MIT Decreased Gain:
(#2) -Second washout tried

-Slides forward in seat upon pitchdown - longit accel not sufficient
to properly coordinate

* MIT High Otolith Weighting:
(#6) -Sixth washout tried

-Best washout yet

General Comments:
-Pilot didn't like helicopter collective
-Vehicle well damped in pitch
-Tracking task is not that easy
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Comments of Pilot #2

* Fixed Base:
-A bit disorienting in pitch maneuver
-Used the collective quite a bit more the second session during

fixed base

* Ames Nominal:
(#6) -Sixth washout tried

-Able to stay closer to the F-111 than with previous washout (MIT
Nominal Washout)

-Better than previous washouts (MIT High Oto and MIT Nominal)
-Felt a lot more motion during hover (in a good sense)
-Roughness felt in the cab during last run (hardware problem)

* Ames Decreased Gain:
(#3) -Third washout tried

-Pilot liked washout (helped him fly closer to F-111)
-Too much seat-of-the-pants decel (during steps)
-Not too much feeling of accel (during steps)

* Ames Increased Omega:
(#1) -First washout tried

-Becoming more aggresive on controls

* MIT Nominal:
(#5) -Fifth washout tried

-Better able to predict stopping point during the step accel
runs than he was with the MIT High Oto Wt

-Seat-of-the-pants good. Motion matched the visuals
-Felt less discomfort than with the MIT High Oto Wt washout

* MIT Decreased Gain:
(#2) -More seat-of-the pants accel than expected when

pitch up (slightly disorienting)
-Slow to catch up with pitch input (probably lagging surge accel)

during step maneuvers
-More responsive in pitching task than last washout (Ames Incr Omega)

* MIT High Otolith Weighting:
(#4) -Fourth washout tried

-During pitchup (during step maneuver), experienced too much decel
-Seat-of-the-pants feel is good
-Pitch response is not that good at lower frequencies, but is better

at higher frequencies

General Comments:
-Had to increase altitude to keep F-111 in sight

- -Tracking task is relatively easy
-Tended to overcompensate on backup maneuvers during tracking
-Due to blending of the F-111's elevator into the fuselage, it

was easier to see when the F-111 was pitching forward than
when it was pitching back
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Comments of Pilot #3

* Fixed Base:
-None

* Ames Nominal:
(#3) -Third washout tried

-Pilot felt no difference betweem this washout and the MIT Nom WO

* Ames Decreased Gain:

(#6) -Sixth washout tried
-Much easier than the previous washout (MIT Decr Gain)
-Motion of chase aircraft more closely linked in translation to

that of the F-111 - same time delay between pitch attitude
and translation - made tracking easier

* Ames Increased Omega:
(#4) -Fourth Washout tried

-Tracking improved with motion as compared to the fixed base runs
-Motion would be too sluggish for a more aggressive maneuver

* MIT Nominal:
(#2) -Second washout tried

-Last tracking task, sufficient pilot learning to give the vehicle
a handling qualities rating of 4 (best run of the four)

-Slight degradation in the time to generate longitudinal motion as
compared to the high otolith weighting

-Noticable lag between pitch rate and onset of longitudinal accel

* MIT Decreased Gain:
(#5) -Fifth washout tried

-Pitch response is similar to the last washout (Ames Incr Omega), but
it takes longer to develop a translational rate - this makes it
more difficult to do the tracking task

-slightly smoother than the previous washout - didn't notice bumps as
much

-More noticable phase lag with increasing pitch freq as compared to
the Ames Incr Omega washout

* MIT High Otolith Weighting:
(#1) -First washout tried

-Takes too long to develop the longitudinal accel cues
-Motion "chugging" keeps this washout from being excellent

General Comments:
-Had to lean forward in cockpit during large nose down attitudes in

order to keep F-111 in sight
-CGI not continuous (adds scenery as you go down the canyon) - causes

a feeling of "chugging" some of which is in the motion though
-Short period of time between F-111 pitching motions makes it much

more difficult to evaluate the response of the chase aircraft
-White flashes in the CGI starting with washout #4 (second session)
-Pilot thought he was doing poorer tracking job second session,

possibly since he just got through flying an OH-58
-Attitude of F-111 drives tracking task, not really its position
-Difficult to judge the amplitudes of motion since didn't have a

real aircraft to compare to
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Comments of Pilot #4

* Fixed Base:
-Amazing sensations of motion due to visuals
-Found that when both he and the F-111 were nose high, and then the

F-111 pitched down, he felt as if he was pitching up

* Ames Nominal:
(#1) -First Washout tried

-Pitch response good
-Didn't see too much that was interesting
-Pitch maneuver good
-Nothing erratic
-Lag is perceptible (less than 90)

* Ames Decreased Gain:
(#4) -Fourth Washout tried

-Best washout yet
-Easier to track F-111
-Pitch Maneuvers good (but blurred visuals)

* Ames Increased Omega:
(#6) -Sixth Washout tried

-Best maneuvering config, on same par as Ames Decr Gain washout
-Good hover handling qualities
-Pitch maneuver doesn't feel too good - motion matches controls, but

possibly some overshoot

* MIT Nominal:
(#2) -Second Washout tried

-Tracking task harder to fly than in Ames Nominal
-More of a bang-bang control (result of uncomfortable lags)
-Harder to hold attitude and hover
-Get desired input sooner but causes overshoot
-After dash, pull nose up, and push back down to hover, produces

"tide of motion" in surge forward

* MIT Decreased Gain:
(#5) -Fifth Washout tried

-Feels phase lag, overshoot, follow-on time constant with motion
-Easy to get out of phase with motion
-"Not one of your star configurations"
-Borders on disorienting
-Severe lags in onset cues (in large pitch motions, motion initially

lags and then rushes in and overwhelms you in large nose up or
nose down attitudes)

-Still not as sickening as MIT High Otolith Wt Washout
-Difficulty in holding hover (X-Y pos)
-Aircraft pitch response more than expected
-Pitching control out of phase and causes overshoots
-Pitch maneuvers - motion out of phase
-Motion overtravels visuals
-Worst configuration yet

* MIT High Otolith Weighting:
(#3) -Third Washout tried

-Thought performance improved in this washout from that in Ames Nom and
MIT Nom

-Motion overshoots in pitch more prevalent after large maneuvers than
in Ames Nom and MIT Nom

-Small pitch oscillations made him sick

General Comments:
-Tracking task requires little collective
-Found it easy to end up far away from the F-111 (initial fixed base)
-Sinusoid pitch oscillations: inputs more step response to make the

aircraft respond with a sinusoidal pitch maneuver
-Chase aircraft performance not sufficient to really tightly track

the lead aircraft
-Hard to nail down many items in our rating scale
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