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ABSTRACT

My Ph.D. thesis research consists of three independent projects regarding
highly flattened astrophysical systems.

In the first project I investigate the existence of the two-stream instability in
stellar systems using the collisionless Boltzmann equation. Here I distinguish the
two-stream instability from other possible instabilities using a physically plausible
definition. I consider only systems which are time-reversal invariant. Systems
which consist of a pair of uniformly rotating counterstreams are studied both
numerically and analytically in terms of linear perturbation theory. The main
results are as follows: In counterstreaming Kalnajs disks, there is almost no two-
stream instability for any mode of perturbation except (n, m)=(3, 1). It is found
from numerical analysis that the onset of the two-stream instability in Kalnajs
disks seems to set in through a neutral mode: w = 0. We further conjecture
that the one-armed mode may be unstable to the two-stream instability also in
counterstreaming disks with differential rotation.

In the second project, in collaboration with Prof. Toomre, I explore the possi-
bility of the hose instability in disk galaxies also using the collisionless Boltzmann
equation. It is shown that a small-scale bending instability originates when there
is a large velocity dispersion in the disk plane. A major consequence of this work
is that the hose instability arises in any thin stellar disk if the vertical velocity
dispersion is much smaller than the horizontal velocity dispersion. In general the
critical degree of anisotropy depends on the unperturbed distribution function.
For a thin non-rotating stellar system with an anisotropic Gaussian velocity dis-
tribution, it is found from detailed numerical analyses that the hose instability
can be avoided at all wavelengths if the ratio of the vertical to horizontal velocity
dispersion exceeds 0.293.

In the third project I investigate collisional transport processes in differen-
tially rotating dense particle disks in terms of kinetic theory. In contrast to the
stellar disk systems treated in the first and second projects, planetary rings are
collision-dominated systems which consist mainly of icy rocks. My objective is to
extend particle disk models of previous workers by taking the effect of nonlocal
collisions into account. The nonlocality gives rise to several novel features since
the fractional volume occupied by the ring particles is not small and so the or-
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dinary kinetic theory is not accurate. As a possible way to improve on this, I
employ the Enskog theory of dense hard sphere gases to study the dynamics of
particle disks. Results from this theory permit us to understand the structure
and stability of optically thick regions in planetary rings, such as the Saturnian
B ring. Particularly, the vertical density profile is determined and possibilities of
the viscous instability and liquid-solid phase transition are discussed.

Thesis Supervisor: Dr. Scott Tremaine
Title: Professor of Physics
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CHAPTER 1.

THE TWO-STREAM INSTABILITY IN STELLAR SYSTEMS
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ABSTRACT

The two-stream instability of self-gravitating stellar systems has been studied

in the infinite homogeneous case by many authors. We review previous analyses,

whose conclusions are often conflicting, and show that there is no two-stream

instability in infinite homogeneous gravitating systems. In more realistic models

the effects of finite size and rotation must be taken into account. In this paper we

extend the stability analysis to finite, disk-like systems (counterstreaming Kalnajs

disks). By comparing the stability diagram of a counterstreaming disk with that

of a reference single-stream disk we can separate the two-stream instability from

the Jeans instability inherent in any self-gravitating system. We find that there is

very little parameter space in which a counterstreaming Kalnajs disk can exhibit

the two-stream instability for any mode except (n, m) = (3,1). Using a WKB

dispersion relation we examine the asymptotic behavior of high order modes in

the stability diagram and we find that the results roughly agree with those from

numerical analysis of the exact dispersion relation. Studying the modes for which

the two-stream instability is possible, we find it is likely that the two-stream

instability sets in through a neutral mode: w = 0. We further conjecture that

there may be unstable one-armed (m = 1) modes in counterstreaming stellar

systems with differential rotation.
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I. INTRODUCTION

This paper investigates the possibility of an instability in stellar systems

which is analogous to the two-stream instability of plasma physics. The classical

two-stream instability appears when a beam of electrons passes through a plasma

at rest. Suppose for simplicity that both the beam and the plasma consist of

cold electrons so that the thermal motion of the particles is negligible compared

with the beam speed. An inert background of protons ensures overall neutrality.

The system is assumed to be infinite and homogeneous: both the beam and the

plasma extend throughout space and the beam velocity is the same everywhere.

The dispersion relation is then given by

2 2
P+ -. =1b1

W2 (o-k - V)2

where the longitudinal oscillation frequencies for the plasma and the beam are

WP = V4irnpe2 /m and Wb = /47rnbe 2 /m, n, and nb are the corresponding number

densities, m is the electron mass, and V is the beam velocity relative to the

plasma. In most practical cases the beam density is small compared with the

plasma density so that n, > nb or w, > Wb. Then the presence of the beam only

slightly affects the principal mode of longitudinal plasma oscillations: W ~ oP.

However, in addition to this mode, another mode w ~ k - V appears which we

call the drift mode. In general when a group of particles move as a whole with a

velocity V, we can define a collective mode (w, k) with w ~ - V associated with

such a drift motion. The beam-plasma instability can be explained in terms of a

coupling between the above two modes. If the frequencies and the wave vectors

of the two modes match each other and if there exists an imbalance of energy

contents between them, the excessive amount of energy in one mode is spent to

excite another mode through the mode coupling. If further this energy input

exceeds the decay rate of the mode inherent in the plasma, we can establish an
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instability. In the beam-plasma system the instability criterion is given by

.-4a 1/3] 3/2

<k V 1 + --n
wp nPjI

The growth rate is generally a function of |k - VI/wp and nb/np, but the maximum

growth rate is attained when k - V I = w, and is given by Buneman (1958):

V5 n( t~ 1/3
^/max - ( wp. (2)

2 2n,

The existence of this instability has led to the suggestion that stellar systems

containing two or more streams of stars may be unstable. It must be stressed

at the start, however, that the analogy between stellar systems and electrostatic

plasmas has two major limitations:

1. The maximum growth rate of the two-stream instability due to an electron

beam in a plasma is proportional to wp. To construct the analogous stellar

system we replace nye 2 /m by -Gp. Thus the growth rate -y becomes purely

imaginary, and the instability disappears.

2. In an infinite, homogeneous, Maxwellian, electrostatic plasma oscillations of

all wavelengths are damped, but in the corresponding stellar system oscilla-

tions are damped if k > kj but grow if k < kj, where the Jeans wavenumber

is

k = 2 (3)

and a is the root mean square velocity dispersion in one dimension. Therefore,

in stellar systems the Jeans instability is already present, and any instability

appearing in stellar systems with two streams may be simply a modified Jeans

instability rather than a two-stream instability.

In this paper we distinguish Jeans and two-stream instabilities using the

following physically plausible definition. We consider only systems which are

10



time-reversal invariant, i.e., in which the phase space density of the stellar system

containing two streams can be written

F2( 0) = [f(2,v) +f(i,-)]. (4)

The analogous single-stream system is described by the phase space density

F1( , v) = f( , -). (5)

We shall say that there exists a two-stream instability if the system described by

F2 (2, v-) is unstable or overstable but the system described by F, (X, v-) is stable.'

There have been a number of earlier analyses of the two-stream instability

in infinite homogeneous gaseous and stellar systems. We comment on and sum-

marize these results in §II. In §III we extend these analyses to investigate the

two-stream instability in uniformly rotating axisymmetric systems. §IV contains

a summary and discussion of the relevance of the two-stream instability to differ-

entially rotating stellar systems. We shall not discuss the two-stream instability

between gaseous and stellar systems, which has been investigated in detail by

Sweet (1963), Talwar and Kalra (1966), Suchkov (1969), Kato (1973), Ikeuchi,

Nakamura and Takahara (1974) and others.

' A system is called stable if Imw < 0 with respect to some mode (w, Ik). If

Imw > 0, it is called unstable when Rew = 0 and overstable when Rew $ 0.
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II. INFINITE HOMOGENEOUS SYSTEM

II.1. Results

Unlike electrostatic plasmas, which can be neutral due to the cancellation of

positive and negative charges, infinite homogeneous stellar systems can never be

in static equilibrium. Nevertheless, it is useful to analyze their stability using the

assumption that the unperturbed homogeneous system is in equilibrium. This

is the so-called Jeans swindle. The analysis below has been given by a number

of authors such as Sweet (1963), Lynden-Bell (1967) and Ikeuchi, Nakamura and

Takahara (1974), but we repeat it here for reference.

Consider two infinite homogeneous stellar systems 1 and 2 whose mean ve-

locities are V1 = V/2 and V2 = -V/2, respectively. Assume further that the

unperturbed distribution function fo is the sum of two Gaussians foi, fo2 with

unperturbed mass densities poi, P02 and velocity dispersions ci, C2 :

2

fo(5) = Zfoi(i), (6)
i=1

where

di = V - Vi (7)

and

foi = exp ( . (8)
(v/2-7ci) 3 2c

As stated before, the Jeans swindle consists of assuming that the unperturbed

potential iko=constant or V~o = 0 (even though this apparently contradicts Pois-

son's equation V 240 = 47rGpo). Then the linearized Boltzmann and Poisson

equations read

Bt + (6- V)fi - Vo1-l fo = 0 (9)at1
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and

V2V)1 = 4xrGpi, (10)

where the perturbed potential, distribution function, density are denoted by $1,

fi, pi, respectively and

(11)P1 = fidV.

Assuming perturbations of the form

A1 oc A exp [i(k - - wt)],

where the frequency w is generally complex and the wave vector k is real,

the dispersion relation from equations (9), (10) and (11) as

k 2 =-4rG _.# d= -4rG .. .._# {_O dwi.
k - F- Oi k - (d-i + Vj) -o

Introducing the component of 'i parallel to k as will = ti - k, where A

and |ki = k > 0, and carrying out the two-dimensional integration

perpendicular component, we find

k 2 = -4rG 22 k(dgil/dwil)dwill = -42G 0dwi

_100 k(wil +Vil)-w -_G f-ko (wil +Vil - w

(12)

we find

(13)

tk

thever

1k)2
(14)

where

gi(wi ) = exp
V7 2kc 2c?/

(15)

and

Vi = V -k. (16)

In terms of the plasma dispersion function 2 (Fried and Conte 1961)

Z() - i 0 0 exp(-Z 2 )dz, (17)

2 The integral representation (17) is valid only in the upper half g plane, but it

can be analytically continued into the real axis and lower half g plane by deforming

the integration contour in such a way that Z is well-defined in the whole g plane.
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the dispersion relation (14) is written as

-2k 2 = ki -Z (i (18)
i=1

where the Jeans wavenumber for each subsystem i (i = 1,2) is defined by

2 4iGpo(1i
kg; = 2 -(9

ci

The real and imaginary parts of equation (18) yield

-2k 2 = k 1 ReZ, - to + iy + k 2 ReZ' (# + zo + , (20-1)

0 = k 1ImZ,(X - z +sy + k 2 ImZ'X + i (20-2)

where

Rew ImW Vi.Ic V ci

kci kci c1 2c 1 ' C2

The system of equations (20) must be solved for x and y for fixed values of

(k/kj1) 2 , (k/kJ2 2 , xo and #.

Assume, for simplicity, that ci = c2 and kji = kJ 2 . Then we have a two-

dimensional parameter space (V/ci = 2xo, [k/kj 1 ]2 ), which is to be divided into

three regions as defined in footnote 1. The result is shown in Figure 1 (Fig. 33 in

Ikeuchi, Nakamura and Takahara 1974).

3 There is a mistake in Fig. 3 in Ikeuch, Nakamura and Takahara (1974): The

curve corresponding to x = y = 0 is

k ) 2 = 2 -4 e-2 e t2dt,

where ( = xo/F and it has an intercept with the horizontal axis at V/ci = 2.61,

above which value no unstable mode exists for any wavenumber.
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Now we will show that, according to our definition given in §1, there is no two-

stream instability in the counterstreaming stellar system described by equation

(6). Our reference system with a single stream at a mean velocity V /2 has a

Gaussian velocity distribution 2foi (tii) so that its dispersion relation is

-k2 = k 2ReZ' X - xo + iY (21-1)

0 = ImZ' .O+i (21-2)

This system has a Jeans wavenumber v/Zkji since its mass is equal to the to-

tal mass of the counterstreaming system. The stability diagram of the single

stream system is easily drawn in the (V/ci, [k/kjl12 ) space. It has a neutral

line (k/kj )2 = 2, on and above which the system is stable, and below which it

is unstable for V = 0 and overstable for V 5 0. Comparison between the two

stability diagrams shows that the instability (either unstable or overstable) region

in Figure 1 is completely contained by that in the single stream stability diagram.

Thus, there is no two-stream instability in the counterstreaming system. It is to

be stressed that, as the relative speed V becomes much larger than the velocity

dispersion ci = c2 , the two streams become independent and all we see in Figure

1 is a convected Jeans instability.

11.2. Other Authors

A number of somewhat confusing claims about the existence of the two-stream

instability in stellar systems have been made by other workers.

Sweet (1963) was the first to consider the stability of homogeneous, inter-

penetrating systems of gas and stars with relative streaming motions. He treated

three cases:

1. gas moving through a Maxwellian stellar system at rest;
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2. two Maxwellian stellar systems interpenetrating each other with equal and

opposite mean velocities;

3. two Maxwellian stellar streams with equal and opposite velocities in the pres-

ence of a stationary gaseous background.

Most of Sweet's attention was directed to the interaction of gas and star streams

(case 1 and case 3); we shall not examine these results since we are concerned

with the two-stream instability in stellar systems. For case 2 Sweet derived the

correct dispersion relation (18), but did not examine its consequences, as he was

mainly concerned with the interactions of gaseous and stellar streams.

Lynden-Bell (1967) was the first to state clearly that no two-stream instability

arose in a homogeneous stellar system consisting of two Maxwellian streams. He

also investigated non-Maxwellian star streams, making use of Nyquist diagrams,

and found that a two-stream instability could occur only when at least one of the

streams had a very flat-topped velocity distribution.

Harrison (1970) also clearly understood that the only instability in a counter-

streaming stellar system is the Jeans instability, and that star-streaming does not

introduce any new form of instability although it affects the quantitative location

of the stability boundary.

Hohl (1971) claimed to find a two-stream instability in a planar stellar sys-

tem using analytic arguments and numerical experiments. His analytic results4

are misleading because he uses the fluid equations rather than the Vlasov equation,

and the instabilities of counterstreaming fluids are very different from collisionless

4 There are some mistakes in Hohl's equation (3): it should read

W*2 = k*{[k*(V* 2 + 1) - 1] [4V* 2k*(k* - 1) + 1]1/2},

with proper definitions kj = 27rGmN/O.2 , Wj = kju, k* = k/kj and w* = w/wj.
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systems (Ikeuchi, Nakamura and Takahara 1974). His numerical results appear to

be correct, but Hohl's interpretation of them is misleading, and in fact they sup-

port our claim that there is no two-stream instability in homogeneous Maxwellian

stellar systems: as the streaming velocity was increased Hohl found that instabil-

ities parallel to the streaming direction were suppressed, leading to a filamentary

structure caused by Jeans instabilities in the transverse direction.

Marochnik and Suchkov (1969), Mark (1976), Bertin and Mark (1980) all

found a kind of two-stream instability between the disk and the halo, but this kind

of instability is very different from what we discuss here, because their systems

are not time-reversal invariant.

Mikhailovskii and Fridman (1972), and Polyachenko and Shukhman (1980)

claimed to find a two-stream instability but in an extremely artificial system, i.e.,

collisionless particles which rotate uniformly in a cylinder of infinite length and

finite radius and have a velocity distribution along the cylindrical axis consisting

of a low density beam and a high density background.

Nakamura (1978) considered a two-component rotating disk model to find

constraints on the velocity dispersion of the missing mass in the solar neighbor-

hood, but his results are based on the gas dynamical approximation and there is

no relative angular velocity between the observed mass component and the miss-

ing mass component so that his model is not adequate to study the two-stream

instability of two-component stellar disks.

In conclusion, there is no two-stream instability for an infinite homogeneous

stellar system containing two Maxwellian velocity distributions, but a two-stream

instability is possible in some cases if the velocity distribution is non-Maxwellian

(Lynden-Bell 1967).
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III. STABILITY OF UNIFORMLY ROTATING STELLAR DISKS

In this section we analyze the linear dispersion relation of counterstreaming

Kalnajs disks both numerically (§III.1) and analytically (§111.2), the latter in

terms of the WKB approximation. Complete understanding of the stability of the

system would be possible with the help of N-body experiments.

III.1. Numerical Analysis

Kalnajs (1972) disks have the surface density

o(r) = (3M/27rR 2 ) 1 - r2/R2 r > R; (22)
0 r >R.

and potential

Vo(r) = -12r2 for r < R, (23)
2

where

37rGM (24)Go = 4R3 ,(4

G is the gravitational constant, M is the total mass of the disk and R is the

radius of the outer edge. The mean angular speed, f, of the stars in a Kalnajs

disk is independent of position, and relative to this mean speed, the stars have an

isotropic velocity dispersion in the disk plane, whose components are

(c ) = (c2) = -( - )(R2 - r2). (25)

As an unperturbed distribution function Kalnajs chooses

To(cr, co, n, r) = [o(r)/27r a(f, r)] [a2 (l, r) - r2 -1/2 r < a; (26)
0 T > a.

where the polar coordinates (r, s) are introduced in the two-dimensional velocity

space:

Cr = R7or cos s and ce = Rfor sins. (27)
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The maximum value of r is given by

a(f, r)= / - C2, (28)

where

2 =(29)

and the coldness C of the disk is defined by

C = . (30)
no

Since fl can take on any value between -1o and flo, the coldness parameter C

ranges between zero and unity. The Ostriker-Peebles parameter 5 t is related to C

by

t = -C2. (31)
2

It is easy to show that To is a self-consistent solution of the Vlasov and Poisson

equations, with a surface density given by equation (22).

Kalnajs (1972) analyzed the stability of stellar disks using the linearized

Vlasov equation. Just as for the fluid Maclaurin disks, the normal modes have

potential distributions which are described by associated Legendre polynomials,

P,"'(g). However, the dispersion relations are very different in the two cases. In

particular, for a given (n, m) a Kalnajs disk has up to (n+1) different modes with

different frequencies, while a Maclaurin disk has only three.

Linear combinations of the functions defined by equation (26) for different l's

can be constructed to form more general solutions; in particular, we can construct

a composite model with the weighted distribution function

TO =- T+ + T- (32)

s t is defined as the ratio of the rotational kinetic energy T to minus the energy

of self-gravitation W (Ostriker and Peebles 1973).
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in order to determine whether the two-stream instability is present in Kalnajs

disks. Here we have introduced the notation

= -10(in). (33)
2

It is clear that To will also be a self-consistent solution of the Vlasov and Poisson

equations. The dispersion relation for the distribution function (32) is given by

1 1
-A(n,m,, W) + -A(n, m, -,w) = 1, (34)
2 2

where A(n, m, f, w) is given by Kalnajs (1972):

2 r(l + 1/2)r (m + _ 1) - c+d m/o - m + 2k

r P(l + m+1)2m c=O d=-c k=-d 0 - m+ 2k

P (m + 1 + c + 1/2)(1 - n/fo)c+d+k-1 (1 + n/nom+c-a-k-1 (35)
P(c - d + 1)P(c + d + 1)(l - c + 1)(k + d + 1)(m - k - d + 1)

where

S= 2n-m (36)

and 1, m, n are non-negative integers, but n 2 + m 2 / 0. For convenience we define

1 1
A(n,m,Ow) = 1A(n, m, f, w) + -A(n, m, -, W) - 1. (37)

2 2

A is an even function of w. If n is even, A has n simple poles at w = -n, -(n -

2),...,-2,2,...,n - 2,n, and if n is odd, it has n + 1 simple poles at w =

-n, -(n - 2),... ,-1,1,.. ., n - 2,n. Therefore, for even n there are generally n

complex roots which satisfy A = 0, whereas for odd n there are n + 1 complex

roots. Our goal is to determine the number of real roots of the equation A(w) = 0

as a function of the coldness C for various modes (n, m). If all the roots are real,

the mode (n, m) is stable. We have determined the stability of all the modes with

I < 5 and m < 10 numerically. [The modes with lowest and highest values of

n examined are (1,1) and (20,10).] The regions of instability of the modes with
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I < 5 and m < 5 are indicated by thick horizontal lines in Figure 2, which is to

be compared with the instability regions for the single stream disk indicated by

thin horizontal lines. (Compare Fig. 1 of Kalnajs 1972).

Here are some remarks on Figure 2. In general instability regions of the

counterstreaming Kalnajs disk are much scarcer than those of its single stream

counterpart, and localized around the cold end C ~ 1 except for the low 1 modes

(1 = 0 or 1) where there are short instability regions at the hot end C ~ 0. At

the hot end instability regions have some complex structure when the azimuthal

mode number m is smaller than 5, but after attaining a small maximum length

they generally become shorter and seem to vanish asymptotically as m increases.

As for the axisymmetric modes, the instability regions are identical with those of

the single stream counterpart as they should be, because reversing the velocity of

half the stars in the single stream disk does not affect the axisymmetric dynamics.

According to our definition of the two-stream instability, among the modes

we have examined only the (n, m) = (3,1), (9,1), (11,3), (11,1), (13,3) modes are

unstable to the two-stream instability. The two-stream instability is present over

the following intervals of C:

Mode Regions of
(n, m) Two-stream Instability

(3,1) 0.7071 < C < 0.8029

(9,1) 0.8935 < C < 0.8942

(11,1) 0.9185 < C < 0.9198 (38)

(11,3) 0.8942 < C < 0.9107

(13,3) 0.9267 < C < 0.9319

Each interval shown above is a part of an overstable or unstable interval of

the counterstreaming Kalnajs disk. At the left endpoint of each interval a pair

of frequencies merge to become zero while the other frequencies remain real and
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finite. The fact that the number of real frequencies decreases by two at these

left end points implies that the emerging pair of complex frequencies are purely

imaginary since A is an even function of w. It can be shown numerically that all

the remaining roots stay real in the above intervals. Thus the counterstreaming

Kalnajs disk is not overstable but unstable in all intervals shown in equation (38).

In the cases of the (3,1), (9,1), (11,1) modes, as we increase the coldness C,

the two-stream instability sets in at C = 0.7071, 0.8942, 0.9185, respectively when

a pair of real frequencies with the same magnitude become zero and then appear

as a pair of purely imaginary frequencies. As C increases further, the growth rates

become larger and reach 0.5150, 0.1665, 0.3172 (in units of Go) at C = 0.8029,

0.8942, 0.9198, respectively. Above these values of C the two-stream instability

is no longer considered to be present since the single stream stellar system is also

unstable.

As for the (11,3), (13,3) modes each interval shown in equation (38) is com-

pletely contained by unstable intervals of the counterstreaming Kalnajs disk

0.8434 < C < 0.9296, 0.8745 < C < 0.9540, respectively. In each case, as C

increases, a pair of purely imaginary frequencies appear at C = 0.8434, 0.8745,

and disappear at C = 0.9296, 0.9540, respectively. In between there is an interval

in which the single stream system is stable and only the counterstream system is

unstable, and it is this interval which we identify in equation (38) as the region

of two-stream instability. The growth rate of the two-stream instability decreases

from 0.6604 to 0.5950 as C varies from 0.8942 to 0.9107 for the (11,3) mode, and

from 0.9108 to 0.8873 as C varies from 0.9267 to 0.9319 for the (13,3) mode.

The above observations lead us to a conjecture that the occurrence of two-

stream instability in our counterstreaming stellar system may be closely related

to the presence of a neutral mode: w = 0. Although it is hard to prove this
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conjecture, it seems more natural to assume Rew = 0 rather than non-zero Rew at

the onset of instability since we have confined ourselves to time-reversal invariant

systems. Indeed, no two-stream instability was found within the unstable or

overstable intervals with non-zero left endpoint frequencies.

111.2. Short Wavelength Perturbation Analysis

In the last section we carried out a normal mode analysis to investigate the

stability of counterstreaming Kalnajs disks. In order to confirm and extend the

above results, we here treat the same problem using the WKB approximation and

obtain a dispersion relation which is valid for high order modes.

We impose a potential perturbation of the following form

T1(r, 0, z = 0, t) = A(r) exp{i[mO + <>(r, t) - wt]}, (39)

where A(r) and <b(r, t) are real functions. Equation (39) is identified as a gravita-

tional potential with m identical spiral arms. Introducing the radial wavenumber

k(r,t) = aD, (40)
ar

we can write the condition under which the WKB approximation is valid as IkIr >>

27r. If the spiral wave pattern is assumed to rotate in the positive 0 direction, k > 0

corresponds to trailing waves and k < 0 to leading waves. If the arms are tightly

wound, the radial distance between arms is approximately 27r/Ikl. In the WKB

approximation, if we drop terms of the order of 1/(Ikjr), the Poisson equation

reduces to a simple relation between the potential perturbation and the density

response:

Si 2=rG 1. (41)
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Equation (41) shows that the surface density response must have the same sinu-

soidal dependence as the imposed potential. Thus we may write

Si(r, 0, t) = (@+ + o-) exp{i[mO + <I>(r, t) - Wt] (42)

where U+ (r) are the real amplitudes of surface density perturbations for the stellar

component with mean angular velocity ±M Hereafter fl is assumed to be positive.

In order to solve the linearized Vlasov equation and to find the perturbed

distribution function, we also assume that the radial and tangential velocity dis-

persions are much smaller than the mean circular speed so that the unperturbed

orbits satisfy the epicyclic approximation. Then, under both WKB and epicyclic

approximations, the solution of the linearized Vlasov equation can be obtained

analytically (Lin, Yuan and Shu 1969):

/a f21r 2A a 27 ax9
=+]= dr dsr W1+l = dr dsr(1 - q±) , (43)

o o (R flo)2 o fo g(.2)

where To is given by equation (26) and

q= q(ar, s, v±)

1 vr 4 4xx
-r ds exp i vx + 2ar sin s- -)cos - ,144)27r sin v±?r _,2 2

a= , (45)
2C

vi = .f (46)

Here the epicyclic frequency r,(r) is defined by

drIc2 =2f0(207 + r~! (47)

and xe = 20 in the case of uniform rotation. In order to remove the nonintegrable

singularity of
Bxo 41 o8

-(2) 2(a2 _ T2) (48)
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at the upper limit r = a, we approximate to by a sequence {'ho'} of distributions

with continuous derivatives which converges to TO in the limit n --+ oo (Kalnajs

1972). We first integrate

o a
r(1 - q±) ao dr

by parts over r 2, noting that

Ton(r = a) = 0 and q(r = 0) = 1, (49)

and then take the limit to find

A
Uj (Rflo) 2 Io 2wrds j dr'ho -. (50)

Integrating over s and then r, we obtain the density response to the spiral gravi-

tational perturbation

A
r2GR (1 - C2)

Hv (y) = -- r/ dz co
I0

-- 7 H,,, (2aa)
sin v±7r j

s(2vx) cos(y cos x)

(51)

(52)

and we have used the equations (22), (24) and (28). Combining equation (41) with

equation (51), we reach the WKB dispersion relation for a pair of counterstreaming

Kalnajs disks:

?r y 2 |k|Rs ' 2
2 y2 + (|k|Rg)2

.s+ Hn , (y) -
smn/ v+r

s H (y),sin v-7r

where

y=2aa=kRg -- 1

It has been shown by Hunter (1963) that the elementary surface densities

-"= -P,"'() exp[i(mO - wt)]

(53)

(54)

(55)
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or their corresponding elementary potentials

"= 27r2GR "'P,"'() exp[i(mO - wt)] (56)

form a complete set of normal modes, where -y'7 are constants depending on m and

n. Since the associated Legendre polynomial P,'(g) has an asymptotic expansion

= (n + m + 1/2) 7r -1/2

P(n + 3/2) 2

cos n+ -arccost - -+ +O(-), (57)
2 4 2 n

where 0 < arccost < 7r (Abramowitz and Stegun 1964), we have, by equation (44),

/ d± +1/2
k(r) =n + - arccost = R 1/'

Therefore,
1

|k|Rg ~ n +- for n > 1. (58)
2

According to the stability diagram shown in Figure 2 the onset of the two-stream

instability in a counterstreaming Kalnajs disk seems to occur through a neutral

mode. Therefore, we shall set w = 0 in equation (53) to look for the critical

coldness parameter at the onset of instability. When w = 0 and ic = 2Q, we

find v_ = -v+ = m/2. Noting the symmetry properties of the function (52)

H (y) = H v(y) = H,(-y), we can simplify equation (53):

7r y 2 (n + 1/2) m7r /2
4 y 2 + (n + 1/2)2 sin(mir/2)

For each mode (n, m) we will solve equation (59) for y and thus for the critical

value of C by

Ccrit = n + 1/2
C c , . = ,( 6 0 )w/y f2+ (n + 1/2)2

which follows from equation (54).
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The dimensionless frequency v+ can take on only values between -1 and 1

since the density response cannot support the imposed potential perturbation for

lvil 1 in stellar disks. Since v_ = -v+ = m/2, only modes with m = 0 and

m = 1 satisfy the condition for supporting the waves. According to the WKB

analysis, therefore, the counterstreaming Kalnajs disk cannot support waves with

m > 2 modes: they are evanescent. For m = 0 and m = 1 modes the roots of

equation (59) are found numerically and the corresponding values of the critical

coldness parameter are obtained from equation (60). Results are listed in the

following:

Mode Cerit from Instability Regions
(n, m) Eqs. (59), (60) shown in Figure 2

(4,0) 0.7781 0.818 < C < 1

(6,0) 0.8522 0.852 < C < 1

(8,0) 0.8923 0.889 < C < 1

(10,0) 0.9173 0.914 < C < 1

(3,1) 0.6393 0.707 < C < 1 (61)

(5,1) 0.7915 0.794 < C < 1

(7,1) 0.8598 0.855 < C < 1

(9,1) 0.8979 0.894 < C < 1

(11,1) 0.9218 0.919 < C < 1

For any mode equation (59) has an obvious root y = 0, i.e., Ccrit = 1, but it

is not shown in the table (61). The corresponding instability regions in Figure 2

which set in through neutral modes are also listed for comparison. The (2,0) and

(1,1) modes are omitted because there are no instability regions to be compared

in Figure 2 and also because these n's are so small that the short wavelength

perturbation analysis is not good. While Figure 2 shows that the (11,3) and

(13,3) modes have some instability regions, they are stable (evanescent) according
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to the WKB analysis so that C,;it does not exist for these modes. As expected

the agreement between the WKB and exact numerical results becomes better as

n increases.
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IV. SUMMARY AND DISCUSSION

The results from §III are summarized here briefly: We have found from

numerical analysis of the linear dispersion relation that counterstreaming Kalnajs

disks exhibit almost no two-stream instability except for five low order modes

which are two-stream unstable in very short intervals of the coldness parameter

C. The only exception is the (3,1) mode which has a two-stream unstable interval

extending over about 10% of the entire C range. We have found that the two-

stream instability seems to set in through the neutral mode. The complementary

WKB analysis for the high order modes gives a fair agreement to the numerical

analysis in §11I.1. The WKB analysis also shows that only density waves for the

m = 0 and 1 modes are supported in counterstreaming Kalnajs disks under the

assumption that the instability to amplify these waves sets in through the neutral

mode. A physical argument which makes this assumption plausible is as follows:

If the two-stream instability sets in through the neutral mode, a certain density

wave driven by this instability has zero pattern speed. Therefore, if this density

wave is trailing as seen from one stellar stream, the same wave is leading as seen

from the other stellar stream. Since these trailing and leading waves have angular

momentum densities of equal magnitude but opposite sign, it is possible that by

combining the two streams we can amplify the density wave at no extra cost.

Now how will the situation change in the more general case of differential

rotation? Instead of developing a stability theory of differentially rotating stellar

disks, we discuss the possibility of two-stream instability within kinematical argu-

ments. The results for the differentially rotating stellar disks could be confirmed

and improved by N-body experiments. In more general cases of counterstreaming

disks with differential rotation, we have v_ = mn(r)/x(r) = -v+ if we assume

w = 0 at the onset of the two-stream instability. Since d1/dr < 0 in general,

we find K < 20. Therefore, the condition on which density waves are supported:
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I v±I < 1 again implies that m cannot be 2 or larger. Since we are not interested

in the axisymmetric mode, it turns out that the m = 1 mode is the only mode

with zero pattern speed that can be supported in counterstreaming disks with

differential rotation. It is conceivable, then, that the possibly unstable m = 1

mode in the counterstreaming model disks, such as Mestel disks (Mestel 1963)

and isochrone disks (Henon 1959), is also caused by the two-stream instability

due to stellar counterstreams. The two-dimensional N-body experiments by Zang

and Hohl (1978) seem to support this conjecture. As the percentage of retro-

grade stars at the initial time becomes higher, they find increasingly prominent

one-armed feature in the later stage of evolution.

In real stellar systems counterstreaming motions by retrograde stars are ob-

served in the central bulges of disk galaxies and in the elliptical galaxies, where

the systematic rotation is overwhelmed by the random motion due to high velocity

dispersions. In order to realize the internal motions of elliptical galaxies or central

bulges of disk galaxies most simply, let us consider a disk galaxy which is flattened

due to rotation. If we randomly choose half the stars and reverse their velocities,

the overall mass distribution will not be affected by this operation so that the disk

will keep an axisymmetric and flat shape. However, the disk has no net rotation

now! This hypothetical system can be said to be flattened not because of rotation

but because of its anisotropic velocity dispersion (c ) ; (cI) > (c2), consistent

with observations (Bertola and Capaccioli 1975, Illingworth 1977). The true sit-

uation in elliptical galaxies and central bulges in disk galaxies should not be so

simple and three dimensional models are clearly necessary, but we may be right

in spirit in the above simple model. Therefore, the counterstreaming stellar disk

models we have considered in this paper may be of some use in understanding the

stability of bulges in disk galaxies or ellipticals. These locations might be the only

places to look for the two-stream instability in stellar systems.
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FIGURE CAPTIONS

Figure 1:- The stability diagram of a pair of infinite homogeneous Maxwellian

stellar systems counterstreaming with a relative speed V. Both counterstreams

are assumed to have the same velocity dispersion and density so that the stability

of the system is determined by two parameters: V/ci and (k/kj1 )2 .

Figure 2:- Instability regions for the low order modes (I < 5 and m < 5) of

the counterstreaming Kalnajs disk as a function of the coldness C are indicated

by thick horizontal lines. Corresponding instability regions of the single stream

reference disk are indicated by thin horizontal lines. The absolute value of a pair

of real frequencies of the modes which become unstable at the onset of instability

(endpoint frequency) is indicated on the right side of the diagram (in units of fo)

in the order in which it appears as the coldness C increases. The number of real

frequencies in the associated instability region is shown in parentheses.
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Figure 2
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CHAPTER 2.

THE HOSE INSTABILITY

IN HIGHLY FLATTENED STELLAR SYSTEMS
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ABSTRACT

We explore the possibility of the hose instability in disk galaxies using the

collisionless Boltzmann equation. It is shown that a small-scale bending instability

originates when there is a large velocity dispersion in the disk plane. A major

consequence of this work is that the hose instability arises in any thin stellar

disk if the vertical velocity dispersion is much smaller than the horizontal velocity

dispersion. In general the critical degree of anisotropy depends on the unperturbed

distribution function. For a thin non-rotating stellar system with an anisotropic

Gaussian velocity distribution, we find from detailed numerical analysis that the

hose instability can be avoided at all wavelengths if the ratio of the vertical to

horizontal velocity dispersion exceeds 0.293.
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I. INTRODUCTION

About 60% of bright galaxies in the general field are classified as spiral galax-

ies. Spiral galaxies are quite flat, having roughly a ten-to-one aspect ratio. Al-

though there is a considerable central bulge, it seems that in the solar neghborhood

the equal density surfaces are effectively parallel to each other at least to 0.5 kpc

on both sides of the galactic plane. Studies of galactic rotation have revealed that

1.3 x 10"ME are concentrated in the central bulge and 0.6 x 1011MO are spread

fairly uniformly in the disk (Oort 1927, Schmidt 1965, Mihalas and Binney 1981,

Bahcall and Soneira 1980,1984). The attraction of the parallel layers of mass

in the disk is mainly responsible for accelerations perpendicular to the galactic

plane. The attraction of the central bulge also has a component perpendicular to

the galactic plane, but this is relatively small up to distance of about 0.5 kpc from

the galactic plane. Thus, we ignore the effect due to the bulge component in this

paper.

According to the above considerations, it appears that the plane-parallel ap-

proximation to the stellar disks of spiral galaxies is an excellent one. The velocity

distribution is independent of two space coordinates x and y in the galactic plane

and consequently so are the density and the potential. There have been a number

of investigations of the structure and stability of stellar disks as inhomogeneous

collisionless systems in terms of the plane-parallel approximation, but they have

assumed that the disks have no macroscopic motion in the vertical direction (e.g.,

Toomre 1964). In this paper we will fully treat the vertical equilibrium in order to

investigate the vertical motion in the disks. The dynamical equilibrium in the disk

plane will be left out, but consideration of this simpler one-dimensional equilib-

rium permits us to deal rigorously with analogs to real inhomogeneous and rotat-

ing systems. Our objective is to develop the stability analysis of highly flattened

non-rotating stellar systems with an anisotropic Gaussian velocity distribution
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by solving the collisionless Boltzmann and Poisson equations and to determine

the regions of possible instabilities in their parameter space. Our results will be

compared with observational data.

Before describing the more accurate derivation which we shall give later using

the Boltzmann and Poisson equations, we first give a simple heuristic derivation

of the dispersion relation for a bending mode which we shall call the "hose" mode

later. We note here that the basic understanding and the following heuristic

analysis have already appeared in Toomre (1966). We consider the stellar disk

as a collection of interpenetrating plane-parallel streams with different streaming

velocities. For simplicity, we assume that the disk has zero thickness, that all

the stars stream along the x axis in the disk plane (the x-y plane), and that the

system is uniform in the y direction.

Suppose that the sheet experiences a small displacement h(x, t) in the z di-

rection perpendicular to the disk plane, and assume that the streams are all con-

strained to have the same displacement. The vertical acceleration for stars of a

given x velocity, u, is

az = ( + u-) 2 h(x, t). (1)
at az

If there were only two streams interpenetrating each other along the x axis with

velocities ±U 0 , we would have

1
f(u) = [b(u - Uo) + 5(u + Uo)] (2)

2

and thus
a2h +u2 a2h

at 2  ~(3)(az) = t2 + o 22 3

Our velocity distribution is instead given by

1 ( U2 "
f(u) = exp (4)

7ro.2 20 2
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and the acceleration averaged over many streams is

(az) = 2 ah2+ a 22 h (5)

If we write h(x, t) = H exp [i(kx - wt)], the equilibrium potential at the height

h(x,t) is -27rGth(x,t), where y, is the constant surface density and G is the

gravitational constant. Thus, the restoring force per unit mass acting on the

displaced sheet is given by -27rGpkh(x,t) since the perturbed potential depends

on z as exp(-k Izi). Therefore, we obtain the equation of motion

a2 h a2 h2h + - -27rGyikh, (6)
at2  (X

and thus the dispersion relation for an infinitesimally thin sheet:

w2 = 27rGpk - a2 k 2  (7)

It is clear from equation (7) that the gravitational restoring force serves to stabi-

lize the system, while a centrifugal force originating from the horizontal velocity

promotes instability. The physical mechanism of the instability is understood as

follows: Suppose that the stellar sheet is bent slightly due to gravitational per-

turbations. Since the stars are confined to the sheet, they exert centrifugal force

on the stellar sheet and thus serve to enhance the original perturbation. The

instability is rather similar to the hose instability in a magnetized plasma, where

the dispersion relation is given by (Spitzer 1962)

2 ,2k2Bk2k2(8
W 2 = of2 k 2 + Bk- 101 k2, (8)47rp

where p is the mass density of the plasma, a1 and o0 are the velocity disper-

sions of the plasma parallel and perpendicular to the magnetic field and B 2 /87r

is the energy density of the magnetic field. There are, however, two main differ-

ences. First, both the tension of magnetic lines of force and the perpendicular
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velocity dispersion work to stabilize the plasma whereas there is only a gravita-

tional restoring force in the stellar system. Second, the hose instability in the

plasma can occur at all wavelengths whereas in the stellar system the instability

is avoided if the wavelength is longer than u 2/Gyt as is shown by equation (7).

Despite the above differences it is appropriate to call the instability derived from

the dispersion relation (7) the "hose instability" of the infinitesimally thin stellar

system.

It turns out that in the infinitesimally thin stellar system the hose instability

is exactly complementary to the Jeans instability: It has been shown (Toomre

1964) that an infinitesimally thin stellar sheet with horizontal velocity dispersion

and without rotation is subject to the Jeans instability at all wavelengths longer

than the Jeans wavelength

u2A J - ,r 
( 9

Gyi

whereas the dispersion relation (7) indicates that w has two complex roots for k

greater than 27rGyz/U 2 or for wavelengths shorter than a2 /Gy.

In the remainder of this chapter we generalize the above considerations to a

more realistic disk of finite thickness. The most important influence of the disk

thickness is to suppress the instability at wavelengths less than the disk thick-

ness (Toomre 1966; Kulsrud, Mark, Caruso 1971; Bertin, Mark 1980). Since the

thickness is of the order of a, 2/Gya, where a,, is the vertical velocity dispersion,

it is predicted that the hose instability will stop operating when the speed ratio,

ao/o, becomes sufficiently large. Toomre (1966) has already given a rough esti-

mate of 0.3 for the critical speed ratio, but we will determine it more accurately

in an independent numerical analysis in §IV. The stabilizing effect of a finite disk

thickness has simple physical interpretation. Although the self-gravity of the stars

is a stabilizing force, it also serves as the source of vertical coupling which is a
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prerequisite for instability. The vertical coupling among the different horizontal

velocity classes of stars is stronger if the vertical velocity dispersion, o,,, is smaller.

As the vertical coupling gets weaker, the various classes of stars gradually cease

to move together in the z direction and the collective instability vanishes.

We can use these arguments to estimate the smallest unstable wavelength.

If a certain velocity class of stars were vertically displaced by a distance d from

the neutral plane, they would feel an acceleration of the order of 47rGped, where

Pc is the volume density in the central plane. If the associated vertical frequency,

,47rGpe, were much higher than the natural horizontal frequency, uk, the various

velocity classes of stars within the disk would be constrained to move almost

completely together in the z direction. The above condition would be satisfied if

2 < 47rGpc
k2 0; 2, (10)

or, introducing the thickness

z o . (11)
Pc Gyl

Thus the hose instability should be present if

>. 9r R, (12)

where

R OW (13)

is the ratio between the two velocity dispersions and A4 is the wavelength A ex-

pressed in units of the Jeans wavelength:

A 4(14)

It is to be noted that the similar role of maintaining the vertical coupling among

various parallel velocity classes of charged particles in magnetized plasmas is

played by the magnetic field.
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II. EQUILIBRIUM MODEL

As a simple equilibrium solution to the Boltzmann equation describing a

stellar system which is infinite and homogeneous in the x-y plane, we choose the

following distribution function:

fo(z,u,vw) = Cexp (- 23 3, (15)

where both the total energy per unit mass

E = -(u2 + 2w 2 ) + O(z) (16)
2

and the partial energy in the z direction

E 3 = -w2 + o(z) (17)
2

are separately conserved. In our model system the unperturbed stellar motion in

the vertical direction is exactly decoupled from that in the horizontal plane; in

a real stellar disk the motions are approximately decoupled so long as the disk

is thin. Integrating equation (15) over velocities, we find the equilibrium density

distribution

po(z) = fodudvdw = 2ra2N/2 Ta 2C exp [ . (18)

Eliminating the equilibrium potential, do(z), from equation (18) and the Poisson

equation

d = 4rGpo, (19)
dz 2

we get a differential equation for the equilibrium volume density:

d (1 dpo _ 4(G
- -----z = - c2 po, (20)dz po dz U2

which is to be solved with the boundary conditions

po(0) = pc and p' (0) = 0. (21)
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The solution is given by (Spitzer 1942, Camm 1950),

PO(z)= pc sech2  = 2rGp z sech2 (22)'\ ~, -27rGz~ se (2

where
2

Pc = 2 (23)
27rGzO

and zo is a typical thickness of the system since the vertical scale height is given by

zo/2 as z tends to infinity. From equations (18) and (22) we obtain the equilibrium

potential

4o(z) = 2r2 In cosh z-. (24)

Then, the normalization constant, C, is determined:

C =- " . (25)
(27r)5 / 2 Gz 2 (2

Integrating equation (22) over z, we get the surface density

f~ 00

9 = Po(z)dz = " (26)
ooW irGzo'

which shows that only two out of the three quantities i, zo, ouw can be chosen

independently. From equation (23) we also have

Pc = . (27)
2zo

In §III we develop the linear perturbation analysis for this equilibrium system and

solve the Boltzmann and Poisson equations in order to determine the regions of

stability and instability in parameter space. The modes considered in this paper

are labeled as "hose" modes or "Jeans" modes according to whether the density

perturbation is antisymmetric or symmetric in the vertical cordinate z.
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III. LINEAR PERTURBATION ANALYSIS

First, we introduce dimensionless variables:

X
zo
U

_y

zo
V

z

zo
W

(28)U= -- , V* - = , W
Uw Uw Ow

t
t* =-,

to

where the time scale, to, is given by

to =- z
om rw (29)

Using the above dimensionless variables, we express the equilibrium density, po-

tential and velocity distribution function as follows:

po(z.) = A sech 2 z.,
2zo

do(z*) = 2aw In cosh z,

fo(zu.,v4,w.)= po(z.) exp
27rf2urw2 o 27r [2(R2U

where the ratio R between the two velocity dispersions is defined by equation (13).

We now consider a small perturbation which we write as

2zo

4'(z., z.,t.) = * 4(z., z.,t.,

(33)

(34)

(35)f'(xz*,t*,u*,v*,w*) = fo(z*,u*,v*,w*)f*(x*, z*,t*, uvw*),

where we have assumed without loss of generality that the perturbation propagates

along the x axis in the x-y plane:

y,
Op*
49y,

Of.*
- * = 0.

ay*
(36)

47

(30)

(31)

(32)+ R2 vl +



Now the basic equations which must be satisfied by the above perturbed quantities

are the Boltzmann equation

Df - R 2u* -Ok w (37)
Dt, ax* az*

where the convective derivative is defined as

D _ 8 a a a
- 9+u +v +w, -2tanhz, (38)

Dt at, 8x, ay, az, Ow,

and the Poisson equation

a2_ -2 = 2p.. (39)

These are supplemented by the relation between the distribution function and the

density:

p= (2R)3/2 sech 2 z, f f. exp E (R2u2+ R2v +w ) du,,dvdw*. (40)

First we solve the Boltzmann equation for f.. Integrating equation (37) along

the stellar orbit from the remote past to the present time, t., and assuming that

f, vanishes in the remote past, we get

f,,(x,,,z,,t2,u,,,va+,wa) = -J (R2, + z t)dt', (41)

where x , z' nU', w'/ are the position and velocity at time t' of the orbit which

passes through the phase space point x., z, u,, w, at t.. Since the projection of

the stellar motion onto the x-y plane is constant in velocity, we have

v'I = U*,

U , = , )

4* = x,, - u,,(t,,-t) (42)
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Since the perturbation propagates along the x axis, we may write

2R2x
# (x,,z.,t ) = I(z ,t*) cos (43)

where A, is the wavelength in units of the Jeans wavelength, Aj, as defined by

equation (14). For future convenience we also define a parameter

2R 2

a =- ,* (44)

Making use of equations (41), (42), (43), we can now integrate equation (40) over

u* and v, to obtain

P* (X* 9z* 5t*) = (27r)-1/ 2 sech 2z* cos ax* J exp
1w,2 H(w, z, t*)dw*,

(45)

where

H(w*,z*,t*) = -
a a2(t *- t'.) 2

exp 2R 2 [a2(t,
- t') + * z' (z',,t')dt'.

(46)

Noting the relation

( D
Dt'

I
w* az',I ',t.)=

a \
at',(z' It') (47)

and integrating the term with D(/Dt' by parts, we rewrite equation (46) as

follows:

H(w*,z*,t*) = -Q(z,t*) +

x a+

exp -2 (t
f-00 1 R

- t', 2]

(48)

where the w, dependence of H is hidden in z', through the equation of motion in

the vertical direction

d 2 * = -2tanhz'
dt12 ah~ (49)
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and the boundary conditions

z'(t. =z and
dz'

d'(t,) = w.. (50)

Without loss of generality we may write

<D(z', t') = exp(2Rst')P (z'), (51)

where s is the dimensionless growth rate of the perturbation in units of 27ro/Aj.

The perturbed density can also be written in the form

(52)

Due to the Poisson equation (39), P (z.) is connected with D (z.) by

(-2 + (53)

or

P(z.)
a _0o

exp(-a jz, - g1)D (g)d . (54)

Also, P(z*) and D(z*) are related to each other through equations (45) and (48):

D (z.) = (27r)-1/ 2 sech 2z* J exp - w2 H(w*,z.)dw., (55)

H(w*, z*) = -P(z*)

+ jcexp(
2R 2 - 2Rsr) [2Rs + ( 1

\R2
a2r P (z')dr. (56)

In order to solve these coupled integral equations (54), (55) and (56), we

expand D(z.) in terms of a set of orthogonal functions

00

D (z.) = Eck DI(z*),
k=1

(57)
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dP (z.) = 2D (z.),
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and impose a single component perturbation Di(z.). The corresponding imposed

potential perturbation is given by

Pk(z*) = exp(-a Iz* - I)Dk(c)dg. (58)
a _ 00

Substituting (58) into (56), we find

Hk(w*,z*) = -Pk(z*)

+ exp - - 2Rsr 2Rs + 1 a2r] Pk(z')dr.(59)

Thus, we obtain the resulting density perturbation

Ek (z*) = (27r)1/2 sech 2z* J exp (-w2 )Hk (w, z*)dw*, (60)

which is in general not Dk(z.) but a linear combination:

00

Dk(z*)= f AkmDm(Z*). (61)
m=1

The matrix Akim tells us how much of the density component Dm(z.) is excited

by imposing an initial density perturbation Dk(z*). Our objective is to determine

the boundary between stability and instability regions in the three-dimensional

parameter space (A4, R, s), which is equivalent to finding the set of parameter

values (A*, R, s) for which the largest eigenvalue of Akm is equal to unity. Not

second or third largest ones but the largest, because in order for this system to

be unstable it is only necessary that we have one eigen-perturbation which grows

in the system.

To proceed further we need an explicit expression for the density perturbation,

Dk(z*). There exist two distinct modes according to the parity of Dk(z*), that is,

the hose mode if

D (-z.)= -Dk (z*), (62)
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and the Jeans mode if

Dk (-z*) = Dk(z*). (63)

We choose to impose the following density perturbations:

Dk(z*) = sech 2 ~"z, x P2k-l(tanhz*) hose (64)
LP 2 k- 2 (tanhz*) Jeans,

where k = 1,2,3,... and Pa(x) is the Legendre polynomial of order n. The par-

ticular choice of the exponent, 2 - a, caused a rapid convergence in the eigenvalue

series as a function of the order of the matrix Akm. Acknowledgement is due to

Alar Toomre for this neat technical improvement. The function (64) satisfies the

orthogonality condition

f 0sech2,-2z*Dm(z)D(z)dz* = ,mn (65)

where

Cm 2m - (1/2) hose (66)
2m - (3/2) Jeans.

From equations (60), (61), (65) we find the following expression for the response

matrix:

Cm *f*
Akm = dz, dwsech2az*exp 1wI Dm(z*)H(w*,z*). (67)

Recalling that z energy is conserved:

12 12
-w2 + 2 ln cosh z -w2, (68)

2 *2 0

where wo = w, (0) is the dimensionless maximum velocity attained when the star

passes through the neutral plane (z* = 0), we make a change of variables from

(z., w*) to (t., wo). The corresponding Jacobian is

19(z* w*) (w,* (-2 tanh z*)
8(t., wo)WO Bw awo

[ (-w2 - 21ncoshz*) + 2tanh z, )
amo 2 amo(9

=WO. (69)
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dz.dw. = wodwodt.. (70)

The range of the new variables is 0 < wo < oo and 0 < t. :5 T(wo), where the

dimensionless period associated with the stellar vertical motion, T(wo), is given

by

T(wo) 4 0 dw.

= 4 -2tanhz.

= 2wo jlr/2 [1 - exp 2cos 2 1/2 cos OdO (71)

and behaves asymptotically like

T - vi2r as wo - 0 and T ~ 2wo as wo -- oo.

Thus, equation (67) is replaced by

Akm = (27r)- 2 Cm exp - wo Skm(wo)wodwo

= (27r)- 1/ 2 Cm j e Skm(V2Y)dx, (72)

where

Skm(WO) = -Vkm(Wo,0)

+ j0 [2Rs + - 1 a2T exp (2Rsr - a )Vkm(wor)dr (73)

and

Vkm(WO,T) = jo sech2a- 2z*(t*)D (z*(t*)] Pk [z*(t* - r)] dt*.

This completes the prescription for calculating the matrix elements, Akm. In order

to actually evaluate the three-fold integral in equations (72), (73), (74) we have

to resort to numerical analysis, which will be developed in the following section.
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IV. NUMERICAL ANALYSIS AND RESULTS

In this section we describe the numerical techniques used to solve the equation

of motion (49) and to evaluate the integrals in equations (58), (72), (73) and

(74). Here we declare that our general goal of accuracy should be to obtain seven

significant digits for elements and eigenvalues of the response matrix Akm.

IV.1. Fast Potential Integrator

First, we use equation (58) or

Pk(z) = 1je-"[ (z*+ x) + Dk(z* - x)] dx (75)
a0

to solve the Poisson equation. We evaluate the integral using the Euler-Maclaurin

summation formula and a step size Ax = 0.02; the error is of order (Ax) 8 ~

10- 3 . After specifying the value of a, we tabulate Pk(z*) for k = 1,2,...,8 and

-9.98 < z. < 9.98 at intervals of Az. = 0.02. We need not keep terms Pk(z*) for

k > 9, because it turns out by experiment that we can obtain sufficiently accurate

eigenvalues as we increase the order of the response matrix Akin towards eight.

IV.2. Orbit Determination

Next we solve the equation of motion (49) to determine z, as a function of

t.. We consider equation (49) as a pair of first-order differential equations

dz, dw.
dt* = w. and d = -2 tanh z, (76)dt* dt*

impose initial conditions

z*(0) = 0 and w*(0) = wo (77)
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and use the fourth-order Runge-Kutta method, which involves errors of order

h5  10-8, when the step size is chosen to be h ; 0.025. Although wo varies

continually between zero and infinity, we only have to integrate equation (76) for

a small number of values of wo, because we shall employ the N-point Laguerre

integration formula for the wo integration (Abramowitz and Stegun 1972). After

trying various N points, we find that we typically need N = 32 to establish secure

answers. Moreover, in order to obtain seven significant figures we need to deal

with only 15 out of 32 values of wo since the rest have weight factors smaller than

10-. Therefore, the initial velocities to be chosen are

wo(i) = v2x, (78)

where i = 1,2,..., 15 and xi is the ith zero of the Laguerre polynomial of order

32, L 32 (x). Numerical values of wo(i) are given in Table 1. It is to be noted

that the maximum height reached by a star in the fifteenth orbit is given by

zo(15) = 9.339374 and is within the range for which values of Pk(z.) are tabulated.

Once we know the initial velocities it is straightforward to compute the periods

(71) by the trapezoidal rule. Since the stellar orbit has the symmetry properties

z, (T - t.) = -z*(t*) and z. [(T/2) - t.] = z.(t,), (79)

we have only to integrate equation (76) for one quarter period.

IV.3. Three-fold Integral

Since the first term in equation (73) does not involve z. at different times, we

can evaluate its contribution to Akim more efficiently without change of integration

variables from (z., w.) to (t., wo), that is,

A( = -(27r) 12Cm exp w) Vkm(wo,0)wodwok ~ 1 _
55



= -2Cm sech2"zDm(z.)Pk(z.)dz.. (80)

Using the values of Dm(z*) and Pk (z.) listed in the table, we can easily evaluate the

above integral by the trapezoidal rule. It can be shown analytically that A_ = 0

if m < k.

The second term in equation (73) involves more work since we require the

product of Dm and Pk at different times. However, the integration over t. in equa-

tion (74) is simplified if we decompose sech 2,- 2 z.(t.)Dm [z,(t.)] and Pk [z*(t* -r)]

into Fourier components:

00

sech-z(t*)Dm [z(t) =x sin(2i-2)wt* hose (81)cos(2i -2)wt* Jeans,

and

Pk [z(t-r )] = p sin(2i - 2)w(t* - r) hose
cos(2i - 2)w (t- r) Jeans, (82)

where
27r

T(wo)

The density and potential Fourier coefficients are given by

di(m,wo, a) = 8 fT/4 dt sech 2a- 2z (t) Dm [z (t)]

f sin(2i - 2)wt hose
x [1 - (Si1/2)] cos(2i - 2)wt Jeans (84)

and

8 fT/4 Psin(2i - 2)wt hose
ik, wo, a) = 0 dt Pk[z(t)] x [1 - (6b1/2)] cos(2i - 2)wt Jeans. (85)

It turns out that we need only the first several Fourier coefficients for equations

(81) and (82) to retain the necessary accuracy. Thus, i = 1,2,..., 5, m and

k = 1,2,...,8 and wo = wo(1),wo(2),...,wo(15), and for a fixed value of a we
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typically require a table of 5 x 8 x 15 = 600 density and potential Fourier co-

efficients. Integration in equations (84) and (85) is easily done by the centered

rectangle rule without loss of accuracy, because the integrands are periodic func-

tions of t with a period T. The necessary values of Pk(z.) at a certain time along

the stellar orbit have been computed by the use of the table of Pk(z.) and the

Lagrange four-point interpolation formula. The remaining integration over r and

wo is carried out by the Euler-Maclaurin summation formula and by the 32-point

Laguerre integration formula, respectively.

IV.4. Results

Now we shall show the actual procedure to obtain some typical values on

the hose neutral curve. We set the growth rate s = 0. We first choose a certain

speed ratio, say, R = 0.1 and then vary the wavelength A,. (At some places where

the hose neutral curve has a small gradient we should rather fix A, and vary R.)

At A. = 1.00 the response matrix Akm is evaluated as shown in Table 2. By

inspection we realize a few features of this matrix. First, it is almost diagonal

and the diagonal element becomes progressively smaller as k gets larger. Second,

for a fixed k or m higher order elements are progressively smaller than lower ones

except around the diagonal element. Third, it is not symmetric. Once we have

known that the contribution from higher order density perturbations is progres-

sively smaller, it is expected that we can accurately estimate major eigenvalues

of this actually infinite dimensional matrix in the following way. We evaluate the

eigenvalues of M dimensional submatrices (See Table 2. M = 1, 2, ... , 8) using

subroutine GREV in the VAXMATH subroutine library. The result is shown in

Table 3. It turns out by numerical experiments that all the eigenvalues are real

positive and the second largest eigenvalue is always smaller than the largest one
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by roughly one order of magnitude. We also realize that the series for the largest

eigenvalues as a function of the order M of submatrices in most cases converge

rapidly as M approaches 6 to 8. Typical CPU time for this evaluation of the

largest eigenvalue for fixed s, R and A. is 1.7 to 1.9 seconds in our VAX com-

puter. It is a phenomenally short time for this much of computation. Were it not

for the elaborate choice of any of the computational methods described in §IV.1,

§IV.2 and §IV.3, the CPU time would easily blow up to hours. By trial and error

we know that, for R = 0.1, as A4 increases from 0, the largest eigenvalue increases,

becomes unity between 0.25 and 0.26, reach the maximum and keeps decreasing

while getting unity again somewhere between 1.07 and 1.08. The largest eigen-

values are found at A4 = 1.06, 1.07, 1.08, 1.09 as 1.000600, 1.000273, 0.999959,

0.999659, respectively. The wavelength giving the largest eigenvalue of unity is

found by the Lagrange four-point interpolation formula as A = 1.0787.

We have arrived at the elements of the response matrix, Akin. For each set

of parameters (A4, R, s) we have computed the largest eigenvalue of the matrix

Akm. In Figure 1 and Figure 2 we have plotted in the A.-R plane those points at

which the largest eigenvalue is equal to unity for four fixed values of s. Each mode

has its neutral curve, corresponding to s = 0, which divides the whole parameter

plane into stable and unstable regions.

Two particular points along the Jeans neutral curve correspond to systems

which have been investigated in the literature. The first point (A* = 1, R = 0)

is the neutral wavelength for a planar stellar system with infinitesimal thickness.

This wavelength, shown in equation (9). A given velocity dispersion in the system

can thus stabilize only those disturbances whose typical dimensions are smaller

than Aj. The second point (A, = 2, R = 1) represents the neutral wavelength for

a plane-parallel stellar system with isotropic velocity distribution. Ledoux (1951)

investigated the stability of the corresponding gaseous system. He showed that
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Jeans' criterion was still valid provided that the density p in the standard Jeans

wavelength (Jeans 1928)

X(3) - (86)
Aj Gp

for an infinite homogeneous medium is replaced by half the density in the central

plane, pc/2. Combining equations (9), (14), (22), (26) and (86) we can show that

the above statement is also true for the stellar system:

7ro 2  2o2

=--- = 2Aj or A* = 2. (87)
Gpc/2 Gy

For the hose neutral curve, note that there exists a maximum speed ratio

R = 0.293 at the wavelength A. = 1.22, beyond which the system is stable for all

wavelengths. That is, there is no hose instability if the vertical velocity dispersion

exceeds 29% of the horizontal velocity dispersion (Toomre 1966, Toomre 1983).

There is a small overlapping region where both the Jeans instability and the hose

instability are possible (Figure 3).

In Figure 1 and Figure 2 three more curves are shown in the instability region

of each mode. These correspond to finite growth rates s = 0.1,0.2,0.3. Each of

these three curves divides the instability region into two subregions according to

whether the horizontal disturbances can grow faster than at a given growth rate

or not.

Finally, we can check the numerical results by investigating the limiting case

of an infinitesimally thin system (R = 0). For the hose mode, replacing w in the

dispersion relation (7) by is(27ro/Aj), we obtain

-s2 - 1 1 (88)

Solving this for A4, we find

2 (89)
1+ 1+42
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Another obvious root is A, = 0 as indicated by equation (12). For the Jeans mode,

similar arguments through equation (56) in §III lead us to the following equation

for the critical wavelength:

1 sA4 /s 2 A \ sA l
-=1 - V exp 1 - erf I. (90)

where erf(x) is the error function

2 z
erf(x) = e- dt. (91)

Numerical values of A* are given in Table 4 for different growth rates. The growth

rate for the hose instability can be arbitrarily large, which occurs at around (A 4 =

0, R = 0), whereas there exists a maximum growth rate, s = 0.3468, for the Jeans

instability which is attained at (A* = 3.349, R = 0).
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V. CONCLUSIONS

We have determined the regions of the hose instability and the Jeans insta-

bility in the parameter space (AL, R) for a non-rotating stellar system with an

anisotropic Gaussian velocity distribution in the vertical and horizontal directions.

Our conclusion is that in this system the hose instability is avoided at all wave-

lengths if the vertical velocity dispersion exceeds 29% of the horizontal velocity

dispersion.

These calculations can be extended in a number of ways. The critical ratio

of the two velocity dispersions generally depends on the choice of the equilibrium

distribution function. What is more important, in a more realistic model, the

effect of rotation must be taken into account. If the growth rate s is much larger

than the angular frequency of rotation, we can neglect the effect of rotation and

thus the equilibrium in the horizontal direction. Toomre (1966) has done a more

complicated numerical calculation involving the epicyclic motion of disk stars

and has found that its effect would not alter the critical ratio by more than

10%. However, the self-consistent treatment of the rotational effect may require

inclusion of both epicyclic motion and galactic rotation through proper choice of

a more complicated equilibrium model.

Observational data show us that the ratio of vertical to radial velocity dis-

persion ranges between 0.45 and 0.65 for various velocity classes of disk stars at

the solar neighborhood (e.g., Wielen 1974). The ratio of vertical to tangential

velocity dispersion is even larger. Thus it is unlikely that the hose instability is

operating in our Galaxy at the present time.

However, it is an established observational fact that the random velocities of

disk stars in our Galaxy increase with increasing age. The most natural class of ex-

planations is based on the hypothesis that there exist mechanisms to progressively

61



increase the velocity dispersions of disk stars with time. Moreover, the observed

velocity dispersions as a function of stellar age rise most rapidly for young stars

and change relatively more slowly for old stars. Thus, we cannot exclude the

possibility that the axial ratios of the velocity ellipsoid may also depend on the

stellar age. In fact, according to Fig. 4. and TABLE V of Wielen (1974), Group

6d stars on or near the main sequence with B - V color less than 0.05 (spectral

types A1) have mean age (T) = 0.2 x 109 years, speed ratio R = o-./o, = 0.29

while Group 6c stars on or near the main sequence with 0.05 < B - V < 0.2 (A2 <

spectral types < A6) have (T) = 0.4 x 109 years, R = 0.24. For each main-sequence

group, the mean age is assumed to be about half the main-sequence lifetime of the

appropriate stellar type, that is, a constant star-formation rate is assumed. The

above two groups of young stars also show a significant vertex deviation of about

+200. Therefore, it may be possible that the hose instability was present in our

Galaxy in the past. We wish to make more definite statements in this respect in

our future works.
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FIGURE AND TABLE CAPTIONS

Figure 1:- The region of the hose instability for a non-rotating stellar system with

a finite thickness and an anisotropic Gaussian velocity distribution in vertical and

horizontal directions. Boundary curves corresponding to growth rates (in units

of 27r/Aj) s = 0,0.1,0.2,0.3 are drawn in the parameter space (A4, R), where

A* = A/Aj is the wavelengh in units of the Jeans wavelength and R = uw/u is

the ratio of the vertical to the horizontal velocity dispersion.

Figure 2:- The region of the Jeans instability for a non-rotating stellar system

with a finite thickness and an anisotropic Gaussian velocity distribution in vertical

and horizontal directions. Boundary curves corresponding to growth rates (in

units of 27ro/Aj) s = 0, 0.1, 0.2,0.3 are drawn in the prameter space (A* , R), where

A4 = A/Ai is the wavelength in units of the Jeans wavelength and R = am/u is

the ratio of the vertical to the horizontal velocity dispersion.

Figure 3:- The mutual relationship between hose and Jeans boundary curves.

The part of the parameter space (A4, R) where both the hose instability and the

Jeans instability are possible.

Table 1:- The vertical components of stellar velocities (in units of the vertical

velocity dispersion) when they pass through the neutral plane, which are neces-

sary to accomplish the wo integration in Equation (72) by the 32-point Laguerre

integration formula. The first fifteen values of wo are actually necessary since the

rest have too small weight factors.

Table 2:- The lower order (k, m < 8) elements of a typical response matrix Akim

when s = 0, R = 0.1 and A* = 1.

Table 3:- Eigenvalues of i x i submatrices (i < 8) shown in Table 2.

Table 4:- The critical wavelengths (in units of the Jeans wavelength) in the

limiting case of a non-rotating infinitesimally thin stellar system: R = 0. The
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hose critical wavelengths, other than an obvious solution A = 0, are analytically

given by Equation (89). The Jeans critical wavelengths are found numerically

from Equation (90). Numerical values of these critical wavelengths are shown for

reduced growth rates s = 0, 0.1, 0.2, 0.3.
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Figure 3
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Table 1

i wo(i)
1 0.298293
2 0.684874
3 1.074137
4 1.464547

5 1.856022
6 2.248705
7 2.642807
8 3.038571
9 3.436265

10 3.836177
11 4.238618
12 4.643925
13 5.052464

14 5.464639
15 5.880894
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Table 2

/1.002919 -0.009102 -0.005071 -0.003341 -0.002400 -0.001824 -0.001411 -0.001278
0.001029 0.169159 -0.000308 -0.000305 -0.000253 -0.000206 -0.000171 -0.000099
0.000178 0.000555 0.067653 0.000065 -0.000006 -0.000025 -0.000014 -0.000105

A-km = 0.000054 0.000153 0.000312 0.036205 0.000082 0.000037 -0.000016 0.000094
0.000022 0.000059 0.000111 0.000191 0.022506 0.000052 0.000079 -0.000033
0.000011 0.000028 0.000050 0.000081 0.000118 0.015355 0.000021 0.000013
0.000006 0.000015 0.000027 0.000035 0.000075 0.000070 0.011100 0.000069

\0.000003 0.000009 0.000011 0.000032 0.000020 0.000038 0.000084 0.008424
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Table 3

1 1.002919

2 1.002908 0.169170

3 1.002907 0.169168 0.067656
4 1.002907 0.169168 0.067657 0.036205
5 1.002907 0.169168 0.067657 0.036206 0.022505
6 1.002907 0.169168 0.067657 0.036206 0.022506 0.015354
7 1.002907 0.169168 0.067657 0.036206 0.022507 0.015354 0.011099
8 1.002907 0.169168 0.067657 0.036206 0.022506 0.015354 0.011101 0.008422
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Table 4

Hose Mode
0, 1
0,0.990195
0,0.962912
0, 0.923280

Jeans Mode

1,oo
1.152106, 96.967545
1.396445, 21.835955
1.988289, 7.510781
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ABSTRACT

We investigate the mechanical equilibrium and collisional transport processes

in differentially rotating dense particle disks in which the filling factor is not small,

so that the ordinary Boltzmann kinetic theory is not accurate. Our treatment is

based on the Enskog theory of dense hard sphere gases, except that the spheres

are inelastic. We show that the viscous instability which has been suggested as a

source of the structure in Saturn's B ring does not arise in our models. However,

the ring may be subject to a liquid-solid phase transition so that alternating

"frozen" and "melted" zones may be present.
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I. INTRODUCTION

Since the celebrated work by Maxwell (1890) there have been a number of the-

oretical attempts at understanding the structure and stability of planetary rings,

using both hydrodynamical and kinetic theoretical approaches. Hydrodynamical

treatments would be accurate if the collision frequency were much higher than the

orbital frequency, whereas the equations of stellar dynamics would apply if the

collision frequency were much lower than the orbital frequency. However, neither

theory can accurately account for the behavior of planetary rings since the two

frequencies are comparable with each other in particulate rings with optical depth

near unity. Therefore, we must solve the Boltzmann equation with an appropriate

collision term. In general it is a difficult task to determine the collision term for a

many-particle system and various approximate methods have been developed to

evaluate the collision term by various authors.

Cook and Franklin (1964) solved the Boltzmann equation for a differentially

rotating disk, using the relaxation-time approximation to the collision term (Krook

model): (df/dt)c = -ve(f - fo) where ve is the collision frequency and fo is the

equilibrium distribution function. Unfortunately the Krook model works best for

collisions of elastic particles, and Cook and Franklin had to introduce the energy

loss in inelastic collisions in an ad hoc way.

Recently Shu and Stewart (1985) have discussed an elegant modification to

the Krook model in which different velocity dispersions are assigned to the phase

space distribution function and its equilibrium counterpart. This modification

provides a natural way for the Krook approximation to handle inelastic collisions.

However, although the relaxation-time approximation is very useful and helps us

avoid the complications involved in a detailed account of particle collisions, it

is difficult to estimate the errors involved and to know how to improve on this
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assumption in a systematic way.

Goldreich and Tremaine (1978) constructed a model of collisional particle

disks in which the collision term was evaluated by assuming that the velocity

distribution was a triaxial Gaussian. Their results are probably more accurate

than results based on the Krook model. However, this treatment still neglects

spin degrees of freedom and the finite size of the particles.

Brahic (1977) was the first to stress the importance of the finite size of the

ring particles. He showed that nonlocal effects in collisions led to a minimum

velocity dispersion of the ring particles which was comparable with the difference

in orbital velocities between radially adjacent particles.

Recently the generalization to include the spin degrees of freedom and the

effect of nonlocal collisions has been investigated by Shukhman (1984).

All the above analytic treatments have assumed low filling factors, but it

is also important to deal with high filling factors. A dense particle disk is not

expected to behave like a gas but like a liquid and therefore liquid models are

essential for understanding the features of rings with high optical depths, such as

the Saturnian B ring. It is even conceivable that parts of the ring may be in a

solid phase. Thus it is important to study the possibility of a phase transition

between the two phases. A crude model of dense disks, based on a granular flow

model due to Haff (1983), was investigated by Borderies et al. (1985).

In this paper we generalize the kinetic theory of differentially rotating particle

disks to the case where the filling factor is not small by employing the Enskog

theory of dense hard sphere gases (Enskog, 1922). In §II we derive the Boltzmann

equation and its moment equations in cylindrical coordinates and apply them to

the axially symmetric steady state. Particle spins are included in the derivation.

§III is devoted to the construction and evaluation of the Enskog collision term and
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to the definition of the momentum flux density tensor. We consider actual ring

models and present numerical results in §IV. Spin degrees of freedom are neglected

in the present numerical analysis, but they will be included in a subsequent paper.

A discussion is given in §V.

79



II. THE BOLTZMANN EQUATION AND ITS MOMENTS

II.1. The Boltzmann Equation in Cylindrical Coordinates

In our analysis of particle disks at high optical depths we make the following

assumptions:

(i) The particles are identical hard spheres of mass m, diameter a and moment of

inertia I. Thus, we neglect the effects of the particle size distribution.

(ii) Collisions are inelastic so that, after each collision, the magnitude of the

normal component of the relative velocity decreases by a factor equal to the normal

restitution coefficient E,, 0 < e, 1, while the tangential component changes by

a factor equal to the tangential restitution coefficient et, -1 < Et < 1. Perfectly

smooth spheres have Et = 1 while perfectly rough spheres have et = -1. These

coefficients are assumed to be independent of the magnitude of the incident relative

velocity. In most materials the normal restitution coefficient decreases as the

relative velocity increases; we have neglected this dependence since it does not

play a central role in the models we examine here.

(iii) Gravitational scattering is neglected, although the overall self-gravitational

field of the ring will be included.

(iv) The velocity ellipsoid is assumed to be independent of the vertical coordinate

z. (Within the other assumptions of our model, this can be proved to be true in

the limit of high optical depths; see equation [141] in §IV.3). The spin pressure

tensor (equation [17] below) is also assumed to be independent of z.

We begin by deriving the Boltzmann equation which governs the distribution

function of the ring particles. Many of the results in this section were first obtained

by Shukhman (1984).
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Let the center of mass of a ring particle have the radius vector X'. The

orientation of the body is specified by the three Euler angles, which together

with the three components of the vector z make six coordinates. The continuity

equation for the system of particles is given by

8F~~ 8 d 8di8+--a F-+- F - F . (1)
at +q dt) a dt ) t C

Here the distribution function F is defined so that F (p, q, t) dydq is the number of

particles at time t whose generalized momenta are within an element df around y
and whose generalized coordinates are within dqj around q, where q = (q1, .. , q)

and y' = (P1,... ,p). The term (aF/at)c is the rate of change of F due to

collisions. Using Hamilton's equations

dq aH dip aH
dt ap# dt aq

we can express equation (1) as

aF aH aF aH aF _ (aF (2)

at +ay aqa q ap at a

We write q = (r, 0, z, a,,, y) where r, 0, z are the usual cylindrical coordinates

and a, #l, -y are the Euler angles of a particle (See Figure 1 for definitions). The

particle Hamiltonian is

1 2 + p2 + p2 - 2 ppp., cos a
H = p2 + -l + p2 + - p2 + s.Y2 + mU(r,0,z), (3)2m r r2 Z 2I c smn a

where pr, pO, Pz, Pa, pp, p., are the generalized momenta corresponding to r, 0, z,

a, #, -y, respectively, and U is the gravitational potential per unit mass. Due to

the spherical symmetry of the particle the potential is independent of the Euler

angles. Substituting equation (3) into equation (2), we find

aF p oF pP aF pF
at m ar mr 2 86 m az
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8U N
+m 8 )

p - pC

Isin
2

OF aUOF aUOF
-m -

apr 00 ape Oz apz
os a OF ,+ p - pp cos a OF

a 0/ Isin2 a O8Y

(pp - p-,cos a)(p, - pp cos a) F

I sin 3 a apa ( Fjajt (4)

We now wish to use (v,., vO, Vz) instead of (Pr, p, Pz) and (Wr, wO, Wz) instead

of (PPP', p p-,), where V = Vrr + vO0 + vzz is the velocity of the center of mass of

the sphere and W' = Wrr + w Z+ is its angular velocity about its center of

mass. The relations between the old and new variables are

Pr Pe
Vr - , V = ,

m mr

Pz
vz = -

m

Wr -a Cos (6 -,#) + ppcsa-1smn(6 -,#),I Isina
W -csi(0-3 + pp cos a -p.YCs 0-,

wz = .
I.

We define a new distribution function f so that

fx(,0, , ,t)diddidW = F(pq~,t)dpfdti

(5)

where q5 = (a, P, -y) and do = dad3dy. The relation between F and f is given by

f(, , 1, VW, t) = (mI)3 sin aF(q, p, t). (6)

Using equations (5) and (6), we can express all the derivatives in equation (4) in

terms of the new variables. Consequently, the Boltzmann equation for f is

Of Of
t r O+at or

Or

vow of
r our

v Of
r 00

0O2 Of
r Vr

+ VOf
vz Oz

1 au
r 00

vre Of
r Ove

OU Of
az 0vz

VOWr Of
r awq
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+ [w, cos(O -3) - we sin(O - )] ( - f cot a

+ o + cot a[wsin(O -#) + wecos(O -3)]

- csc a [r sin(O -1) we cos( -#)] - (7)

If the spheres are randomly oriented, then F does not depend on the Euler angles.

Thus, f is proportional to sin a and independent of # and -y. In this case, which

we assume from now on, the last three terms on the left hand side of equation (7)

drop out.

1I.2. Moment Equations

The number density, the mean velocity and the pressure tensors of second and

third ranks are defined by the lowest order velocity moments of the distribution

function:

n(i, t) = f(, 1,3 , t)d Vdwi, (8)

nUA(',t) = VAfd~dW, (9)

PAB( ,t) = (vA -uA)(VB -uB)fd~dG, (10)

PABC( ,t) = (vA - uA)(VB - uB)(vc - uc)fddW, (11)

where suffixes A, B and C denote r, 0 or z.

Next, velocity moments of the collision term are defined by

TA( ,t) = vA(a4) didw, (12)

and

QAB(Xt) = (vA - uA )(VB - UB) (fd Wd. (13)
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Note that TA would vanish if collisions were assumed to be local, i.e., if the finite

size of the constituent particles were neglected. Local collisions would ensure local

conservation of momentum regardless of whether collisions are elastic or inelastic

and thus TA would vanish; however, in a nonlocal collision model momentum

can be transferred across a boundary via sound waves travelling through particles

which straddle the boundary ("collisional" momentum transfer as opposed to the

usual "translational" transfer). Thus we cannot neglect the difference SU in the

mean orbital velocity £Zr between adjacent particles with a radial separation of

order a. Since SU - rfl'a I la, it turns out that the effect of nonlocal collisions

is important if the velocity dispersion becomes comparable to or smaller than fa,

i.e., if the ring is a monolayer. The effect of particle size can be neglected when

the velocity dispersion is much larger than fla.

The spin counterparts of equations (9), (10), (12), (13) are defined in a similar

manner by the angular velocity moments:

nyA(,t) = J Wf ddW, (14)

VAB(X, t) = (WA - pA)(WB - pB)fddw, (15)

MA(Ft) = did, (16)

HAB(',t) = wA -A)(wB - pB) dd. (17)

The continuity equation, Euler's equation, the viscous-stress equation and

the spin counterparts of the latter two equations are now obtained by multiplying

equation (7) by 1, VA, (VA - UA)(VB - UB), WA, (WA - pA) (WB - pAB), respectively,

and then by integrating over V' and WJ.

The continuity equation reads

an a(nur) 1 d(nue) F(nuz) Fnur = (18)+t +r r + + -at r r ao az r
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where we have used the fact that the number density is not changed by collisions:

f td~dw' = 0. (9

Euler's equation reads

DUA (nU +1U OU +PAr 1OPA+ 0 PAz
nl +nl SAr+ - S AG+ - 6 Az i-+ + -- +

Dt Or r 90 z (Or r 90 oz

nuo2 + PO+ e A nuOur + Pro PAr6 Ar + + TA,
r r r

(20)

where equation (19) has been used and the convective derivative is defined by

D 0 0 ue0 0D = - + Ur 9+ O a+ z - (21)Dt at or r 80 az'

The viscous-stress equation reads

DpAB (OUr Ur 18u 0U UZ
+ + -- + + ) PAB

Dt Or r r 8 O az

+ ~ +SB- JPAr + I +OA---PBrOr r Or r

(1aUB 2ue (Ur 1A 2u Ur

r 0 r r rA80 r r

+ az PAz+ l PBz

aPABr + PABr + 1PABO + OPABz
ar r r 80 az

1
+-1(AOPBrO + eBOPArO - bArPBee - bBrPAOe) = QAB.

r
(22)

Since we assume that the random speeds are much smaller than the mean orbital

speeds, all the pressure tensors of the third rank in equation (22) will be dropped

from now on except aPABz/Oz, which is formally of the same order as the terms

we keep (however, as we shall see this term never contributes to our final answer).

In deriving the spin counterparts of equations (20) and (22), we assume,

following Shukhman, that it is possible to separate variables in the distribution

function:

(23)f(, ,l 0) = f(-,5 )fs(G).
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Then, we find
DyA nuoye nuOyr

nD - 6 A, + 6A8 = MA,
Dtr r

where equation (19) has been used again, and

DVAB (Our Ur 1 8u a9Uz

Dt ar r rae a9z

+ O(6AOBr + SBBVAr - 6AruBn - 6BrVAe) = HAB.
r

11.3. Axially Symmetric Steady State Solutions

From now on we specialize to axially symmetric systems: aa = 0, and

focus on the steady-state solutions: a/at = 0.

Axial symmetry and time-independence imply that the mean orbital motion

is circular so that

u = uOe = rfl(r)o, (26)

where f2(r) is the mean angular speed of circular motion. Axial symmetry also

implies that the mean spin motion is given by

p' = pZZ = pZ. (27)

At any location in the central plane z = 0

Pzr = Pz = Vzr = Vze = Prrz = PrOz = Peez = Pzzz = 0. (28)

Since, according to assumption (iv), the velocity ellipsoid is independent of z,

equation (28) must be true in our model for arbitrary z.

From the above considerations, equations (20), (22), (24) and (25) are sim-

plified to read (Shukhman, 1984, equations [8], [9], [10] and [11])

au
nar- nrP2 = Tr - + POO

T ar r r
(29-1)
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0 = TO - 09Pro
T r

9U

2 PrO

r
0 Pzz

caz

0 = Mr, 0 = MO, 0 = MZ,

-40Pro = Qrr,

KC2
Pro = Qoo,

0 = Qzz,
C2

2P rr - 2 0poo = QrO,

0 = Qoz,

0 = Qzr,

-2fvro = Hrr,

2uro = Hoo,

0 = Hzz,

fl(vrr - VOO) = HrO,

0 = Hez,

0 =Hzr

where in is the epicyclic frequency, defined by

/c2(r) = 2 fl(r) [2rn(r)
df2

+ r J.
dr

For each position there exist principal axes (i, , $) of the pressure tensor p

which are in general tilted with respect to (r, 0, z). We can choose 3 = z because
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(29-2)

(29-3)

(30)

(31-1)

(31-2)

(31-3)

(31-4)

(31-5)

(31-6)

(32-1)

(32-2)

(32-3)

(32-4)

(32-5)

(32-6)

(33)



of equation (28). Then we introduce the transformation angle 6 by ^sin S = xi,

where we can require 6 to be between 0 and ir/2 without loss of generality. In the

new coordinate system P12 vanishes, and equation (31) is given by (Shukhman,

1984, equation [30])

-2Ap 1 1 sin26 = Q11, (34-1)

2Ap 2 2sin26 = Q22, (34-2)

0 = Q33, (34-3)

(2Q - A - Acos 26)p11 - (20 - A + Acos 26)p 2 2 = Q12, (34-4)

o = Q23, (34-5)

0 = Q31, (34-6)

where Oort's constant A is defined by

r d9
A(r) =- . (35)

2 dr

Similarly, there exist principal axes (a, b, 8) of the spin pressure tensor v. We

can take ^ = $ because of equation (28). We introduce another transformation

angle A by $sin A = 1 x a, where A also ranges between 0 and 7r/2. In the new

coordinate system Vab vanishes, and equation (32) is given by (Shukhman, 1984,

equation [31])

0 = Haa, (36-1)

0 = Hbb, (36-2)

0 = H, (36-3)

9(vaa - Vbb) = Hab, (36-4)

o = Hbc, (36-5)

0 = Hca. (36-6)
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Both the pressure tensor p and the spin pressure tensor v are symmetric. It is

to be noted that Q12 and Hab may remain finite even though p12 and Vab vanish.
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III. THE ENSKOG COLLISION TERM

III.1. Mechanics of Inelastic Two-Body Collisions

Suppose that two identical spheres with initial velocities (i,6) and (1,01)

collide with each other and leave the collision site with final velocities (i"', W-') and

(/51','1), respectively. The centers of the two spheres at the instant of collision

define a unit vector

A a= (37)

where a is the diameter of the sphere. A is normal to the tangential plane of the

two spheres. The initial and final relative velocities are given by

g = V1 - V, (38)

g =v 1 -V (39)

Conservation of momentum requires

V #+ V1 = '+ # 1' (40)

The velocity change in the collision is

A' -(= A -C- '# ), (41)
m

where

2 = ( - ' (42)2

is the impulse exerted on the sphere with initial velocities (V', W') during the colli-

sion. Since the changes of the angular momenta due to collision are given by

-aA
(X AP, (43)

2

aA
I(1 - =- x (44)
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a A6-

21

s=--axLAP' -=A x AP

2I

- = 0 + -1#S = W+1'

S W +Wi.

Introducing the relative velocities of the two contacting points before and after

the collision:

= (1 aA
+W01 x - )

-aA)
2 )

a
2 (49)

(50)
2

and their normal and tangential components to the tangent plane:

wn = gni

W = jt + -S x5A,
2

W'= g, a S ^
~t+2

(51)

(52)

(53)

(54)

where

(55)

(56)

-# = (# - AA --# = # - #,

Wn = (W -A)A, Wt = Wn j,

etc., we can now define the normal and tangential restitution coefficients by

' = -en~ n (0 < En < 1) (57)
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where

(45)

and

(46)

(47)

(48)

- V+ x



and

' = etI (-1 ; Ct < 1). (58)

et = 1 corresponds to perfectly smooth spheres, whose spin motions are decoupled

from translational motions. This case was treated by Goldreich and Tremaine

(1978). Et = -1 corresponds to perfectly rough spheres. When two rough spheres

collide, the points which come into contact will not, in general, possess the same

velocity. It is supposed that the two spheres grip each other without slipping. First

each sphere is strained by each other, and then the strain energy is reconverted

into kinetic energy of translation and spin, no energy being lost. The effect is that

the tangential relative velocity of the spheres at their point of contact is reversed

by the impact. In the extreme cases above (Et = +1 or Et = -1), there is no energy

loss due to tangential friction, while Et = 0 corresponds to maximum energy loss

due to tangential friction (the latter case was treated by Shukhman, 1984). From

equations (42), (46), (49) and (50) we get

AP = - A, a2 . (59)
2 2 1

Taking the normal and tangential components of equation (59) and using the

definitions (57) and (58), we find

A = m, W" (60)

and

Apt = mctWt, (61)

where

n 2E (62)
2

and

S -t 1 + ma2 ).-1 (63)
2 41
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Note that our ict and Et are different from Shukhman's:

S 1 ( ma 2)-1 4 S -1-I (et = 0)(= - 1+ m, 1 E =1-24= (1+4I~kt 2 , 41I ma2}

Shukhman's notation is unfortunate in that Et has nothing to do with the tan-

gential restitution coefficient.

Thus we have

= -n + st t = ""#' + _W' (64)
m En Et

Substituting equation (64) into equations (41) and (45), we obtain the final veloc-

ities expressed in terms of the initial velocities and the initial velocities in terms

of the final velocities (Shukhman, 1984, equation [16]):

-' = -.+ nW + -t.t, (65-1)

V01' = F1 - Kn~n - Ktft, (65-2)

__#1 - et - 2rt - -
D'=a A X W, (65-3)

01= 1- - Xt 2 W (65-4)

and

V =iX' + _4'! - ', (66-1)
E n Et

Vi= 1 - W + _- ', (66-2)
En Et

_# __#/ 1 - et - 2rt - #
0 '+ -A x W', (66-3)

aEt

W1 =1' + 1 t2ct A x ' (66-4)

We can evaluate the amount of energy dissipated by the inelastic collision.

From equations (38), (41) and (64) we find the change in the translational energy

per unit mass

AE(T) = (v12 + - 2- 1
2 ) = xc(ic - 1)Wn2 - JC(it -'N) + rt 2 Wt 2 . (67)AE - +, V Vjt26
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Similarly, from equations (45), (47), (49), (63) and (64) the change in the spin

energy per unit mass is:

AE(S) - (12 + 2 _ 2 1 + 2 Wt2 . (68)
2m +w -I w2)K(Jt Wt 2E t)

Thus, the change in the energy per unit mass is given by

AE = AE (T) + AE(S) - 1 [(1 _ En 2 )gn 2 + 2rt(1 + Et)Wt 2], (69)

which is always negative and vanishes only when E, = 1 and et = ±1. The first

case corresponds to perfectly elastic and perfectly smooth spheres, whereas the

second case corresponds to perfectly elastic and perfectly rough spheres.

We can see from equations (65) that the spin equations are decoupled from

the translation equations if and only if

Et = 1. (70)

In this case collisions do not affect the spins on the spheres and the spin energy

of the system is kept constant as seen from equation (68).

There is an interesting case which corresponds to complete concentration of

the mass at the centers of the spheres. In this case I tends to zero and thus /Ct

tends to zero even if Et $ 1. Equations (65-1) and (65-2) become identical with

the analogous equations for smooth spheres, and the spin energy and translational

energy cease to be interconvertible, as seen from equation (68). Thus the trans-

lational motion is completely unaffected by the spins, although the spins are still

affected by translational motion through equations (65-3) and (65-4).
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111.2. Construction of the Enskog Collision Term

In this section we derive a form for the collision term (f/dt)C, which takes

into account the effects of (i) inelastic collisions, (ii) spin degrees of freedom,

(iii) finite particle size and (iv) filling factor near unity. The original form of

the collision term derived by Boltzmann was valid for elastic collisions of point

particles with no spin degrees of freedom. Generalizations which include inelastic

collisions have been considered by a number of authors (see Stewart et al. [1984]

for a review). The generalization to include spin degrees of freedom and finite

particle size is due to Shukhman (1984). In this section we rederive Shukhman's

results and generalize them to the case where the filling factor rnas/6 is not small.

The Boltzmann collision term is constructed under the following two funda-

mental assumptions:

Bi: There are only binary collisions and these collisions are instantaneous in time

and local in space. This assumption is valid if the spatial extension of particles is

negligible or, more exactly, if the particle size is much smaller than the mean free

path at low densities ( na3 < 1). With this assumption we may write

(f p+ _ p-, (71)
at

where

N-= P-didciddt (72)

is the number of binary collisions in the time interval dt, where one particle with

location (F, X+ d(), velocities (--, -- + dv-) and (-, -- + d ) is deflected to any other

velocities V' and 0-', and

N+ = P+diddwdt (73)

is the number of binary collisions in the time interval dt, where one particle lying

in the element d' around 5, with arbitrary initial velocities V' and W', ends up

after the collision with a velocity in the given range (V', V' + dg) and (W', W + dW).
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B2: The number of pairs of particles in the volume element d' and in the time

interval dt with respective velocities in the range (i#, i + dg), (W#, 2 + dw') and

(611,1 + d7 1), (&1,c1 + dW1), which are able to participate in a collision, is given

by the product

fXz ,5, t)dsd~dwf i V1,1 W )dzi di dW1. (4

This assumption, also called the "Molecular chaos assumption" or "Stosszahl-

ansatz," is very hard to justify rigorously since it introduces statistical arguments

into a purely mechanical problem. It claims that in a dilute particle system

a binary collision between two particles which have already interacted, either

directly or indirectly through a common set of other particles, is an extremely

unlikely event. More precisely, it is equivalent to assuming the complete absence

of correlations, both in position and in velocities, of two particles which are going

to collide. Mathematically, this is the statement that the pair distribution function

f 2 (, iW, sI, i4, 1 , t) is equal to the product f(i, V,' W', t)f(F1, 1 , 1 , t).

With these two assumptions, it is rather straightforward to formulate the

Boltzmann collision term. The Boltzmann collision term provides a successful

description of many-particle systems as long as the filling factor is very small,

but as the density increases, the Boltzmann collision term ceases to be valid

and processes involving more than two particles start to play an important role.

A systematic extension of the theory, which would take many-body effects into

account, is extremely difficult to develop on the basis of Boltzmann's original

arguments. A systematic generalization can be attained with the help of the

distribution function method developed by Bogolyubov (1962). As Cohen (1983)

remarks, however, this generalization is plagued by divergences, and the ensuing

necessary rearrangements have severely restricted its usefulness in understanding

the properties of even moderately dense gases.
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Therefore, it is remarkable that Enskog (1922) was able to propose an ad hoc

generalization of the Boltzmann equation which could successfully describe the

properties of a dense fluid consisting of hard sphere particles. This theory still

provides a very useful first approximation to the behavior of dense systems. Its

principal virtue is that Boltzmann's binary collision term is modified in such a way

that the simplicity of the binary collision dynamics of the Boltzmann equation is

maintained. Boltzmann's assumptions were modified by Enskog in the following

way:

El: Enskog completely neglects multiple collisions and describes the dynamics by

two-body events as in the Boltzmann theory. Enskog theory has had only limited

success in the study of molecular dynamics because molecules are not hard spheres

and multiple collisions cannot be neglected; however, it is ideally suited for the

study of particulate systems like planetary rings.

E2: In the Enskog theory the equation for the one-particle distribution function

is exactly the same as the Boltzmann equation except that the calculation of the

collision term is modified. Since the spheres have finite diameter a, collisions

are not local and collisions involve the two distribution functions at points F and

xi separated by the distance a. This entails a new transport mechanism of mo-

mentum and energy that is absent in the Boltzmann collision term, namely, the

"collisional" transfer of momentum and energy. This is the essentially instanta-

neous - actually at the speed of sound in the particles - transfer of momentum

and energy from the center of one particle to the center of the other via the in-

teratomic potential, as opposed to the "translational" transfer of momentum and

energy due to free flight over a mean free path which is the only tranfer mecha-

nism in the Boltzmann theory. Collisional transfer leads to an instantaneous flux

of momentum and energy through an arbitrary surface between two centers of

colliding members, and hence to an increase in pressure. The collisional transfer
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becomes important as the density becomes higher and it completely dominates

the translational transfer at high densities.

E3: Enskog also takes into account that the frequency of binary collisions is

modified by a geometrical effect: The particles of diameter a occupy a finite

fraction of the total volume of the system so that the effective volume accessible

to their motion is reduced. Therefore, the collision frequency in a system of dense

hard spheres is enhanced by a factor Y(n) as compared with that in a system

of particles whose size is much smaller than the average interparticle distance.

In this paper we call Y(n) the "Enskog factor." Note that Y is a function of

position through the density n but is independent of velocity, because the Enskog

theory takes "position correlations" into account but completely ignores "velocity

correlations."

This assumption is justified only in thermal equilibrium in which the cre-

ated velocity correlations are destroyed through collisions in such a way that the

Maxwellian velocity distribution is maintained. In an non-equilibrium system the

value of Y may also involve the space derivatives of the density, but in planetary

rings at high filling factors the density is expected to be almost uniform except

at edges so that in the first approximation the value for Y in thermal equilibrium

can be used.

In a uniform and isotropic system the average number of pairs of particles with

one particle in a volume element dz and the other in dzi, n 2 (', i)did'i, depends

only on the radial distance | - 21I = r2. A dimensionless function, called the

radial distribution function, can be defined by g(r2) = n2(r2)/n2, where n is the

uniform number density of single particles. It can be shown that the Enskog factor

is identified as the radial distribution function for the two particles in contact
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(Kirkwood et al., 1950):

Y(n) = lim g(r2).
r 2 +a+O

The Enskog factor approaches unity as the density becomes low, and increases

with increasing density, becoming infinite as the system approaches the state in

which the spheres are packed so closely that motion is impossible. The Enskog

factor cannot be calculated directly in the context of Enskog theory; it must be

determined separately, e.g., from molecular dynamics experiments (cf. §111.4).

The influence of nonlocal collisions (E2) on the dynamics of planetary rings

was first noticed by Brahic (1977) in his numerical simulations. Recently

Shukhman (1984) has taken this effect into account in his analysis, but he did

not include the enhanced collision rates (E3).

With this background we now construct the Enskog collision term. Let us

first find the formula for N-. We consider a given particle located in a volume

element d' and having velocities i and W and we observe scattering events in a

frame fixed to this particle. This particle plays a role of the "target." Particles

with velocities in the range (ii1, 1 + di1) and (&, 1 + dc1) which can collide

with this target are uniformly and randomly distributed, and at time t and at

location i 1 = X - a1 they form a homogeneous incident "beam" with a number

flux dS = gf( i 1 ,01, t)di'idci, where g is the magnitude of the initial relative

velocity. The number of particles deflected by the target in the solid angle d in

the time interval dt is

dSu(fl, g)dfldt, (75)

where a is the scattering cross section and is generally a function of [ as well

as g. In terms of the scattering angle t, defined by V) = arccos [(' - "')/gg'], we

have dO = sin kdod4, where 4 is the azimuthal angle around the initial velocity
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g#. Transforming to another angle 0, defined by

0= arccos ,) (76)

we can write d = 4[(. A)/g]dA, where

dA = sin 9dOd#.

Therefore, formula (75) now reads

dS4u(O, 4, g) dA dt, (77)
g

which has the advantage over formula (75) that it is independent of any particular

frame of reference. For hard spheres we simply have o = a 2 /4 for 0 < 7r/2 and

a = 0 for 0 > 7r/2. Generally for repulsive interactions 0 cannot exceed 7r/2.

Therefore, we introduce the Heaviside function

(1 ,if z > 0-
O() = 0 3if X < 0.

in order to take this geometrical constraint into account. Thus, for hard sphere

systems formula (77) becomes

f(Si, i 1 , 1 , t)dvidwla 2 (g , )9(-- A)dAdt. (78)

We see that N- is obtained by multiplying formula (78), first, by the number of

target particles f(5, V'5 W, t)d5ddW, second, by the Enskog factor Y evaluated at

the point of contact (5 + 51)/2 = - aA/2 of the two colliding spheres and by

integrating over all solid angles and all velocities i1 and W1. Thus, we find

N(5,W,t) = a 2 d5d-ddt J di 1 d - 1 d A(g-. A)(~ -g A)

X Y [n (X - aA /2) ] f (X-, V-',W1 0 tf (X' - aA, , IW1, t). (79)

N+ will be given by an expression similar to equation (79), but now we can

no longer take dii and dc' outside the integral. The number of binary collisions in
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the time interval dt, where one particle in the volume element dS around 5, with

arbitrary initial velocities V' and W', ends up with final velocities in the given range

(v', ' + di') and (6', W' + d6') is given by

N+(5, 1',01',t) = a2didtJ dvf d63J d1J d1f dA(- - A)(J - A)

x Y [n(5 - aA /2)] f (5, V, 63, t)f(5 - aA, V1 , 1, t), (80)

where the integrations are carried out under the constraints

--- - 1 -Et - 2Kt -
7' <i7+ionWn + KtWt < V' + d-' and < - x+dt'

a

We now make a change of integration variables from initial velocities to final

velocities. The corresponding Jacobian is defined by

a(J, -# -# 1  . (81)

If En and et are independent of W, we have J = -EnEt 2 . Thus

d41d6'd' d6d11' = IJ didid hd6d 1. (82)

From (57) we also note that

(Wl A) = E ('- A). (83)

Therefore, equation (80) is transformed to

N+(,# 61',',t) = a2diVd63'dtJ dil'J dW1'J dA}(-' - A/en)(-9'- A/c,)

x Y [n(5 - aA/2)] f(5, , W', t)f (# - aA, t1, W, t), (84)

where V', ,' 1, W are given in terms of V', W', v1', W1' by equations (66). Making

the variable transformations: "' ,', 1',i' t,3,,1 and A =* -A, we

arrive at

1 A (_4 A~
N+ (zV,,t) = a2didwdtf di1f d6 1 f dA - A J A)

x Y[n(x'+ aA/2)] f~, (*,*, tf + aA, *,W* t), (85)
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where

En Et

V* =1 - 1 W +t 2 Wt

Ecn EIt

= 1 - Et 2x -

act

Wi - aEt - Axt

;* =t - -Sx A. (86)
2

The Enskog collision term is finally given by

(k f) = a j di-1 d 1J dA( - A) ( - A)

( Y [n(x-+ aA \/2)]
(z,~~ W* * t)f (X-+ aA,V*, W1, t)

x ~ ,t (87)
-Y[n(x- - aA X/2)] f(X, V, W, t)f(' - A, 51 51, ).(7

If the spin degrees of freedom and the effect of finite particle size are neglected,

equation (87) reduces to equation (19) of Trulsen (1971), while if the spin degrees

of freedom are neglected and perfectly elastic collisions are assumed, equation (87)

reduces to equation (16.3,4) of Chapman and Cowling (1970).

Finally, from equation (87) we can calculate the following integral which will

be useful later:

f I ( -, -) d5 a ds

=a2J dJ d&0J d1J d 1 dA( - A)g(- - 1)Y [n(z - a1X/2)]

xf(5,,J0, t)f(# - aX, ,1, t) ['(V', c') - (W, L)]. (88)

Here T'(V', W) is an arbitrary function of velocities, and V' and W' are given by

equations (65-1) and (65-3), respectively.
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111.3. The Choice of Distribution function

To make further progress we assume that the distribution function is the

product of a translational part and spin part as in equation (23), and that each of

them is a triaxial Gaussian in the corresponding principal axis system (Goldreich

and Tremaine, 1978; Shukhman, 1984):

fT (, v-) = n(i) (27r)3/2 (cic 2 cs)~1 exp{- [V 2 , (89-1)
i=1 i

fs(3) = (27r)-3/2(DaDbDc)-1 exp -, .ja * (89-2)
a=a,b,c ak

Here (CI, c2, C3) are the velocity dispersions along the principal axes (1, 2, $) of Pij,

and (Da, Db, Dc) the angular velocity dispersions along the principal axes (a, I, )

of vg. The components of the mean velocities are given by

i= ri7(r) sinS

2= rU2(r) cos b

U3 = 0, (90)

Aa = 0

Mb = 0

pc = A. (91)

Introducing the velocity of the center of mass relative to the mean velocity

-+ -- 1
Ve = V -- E= V+ -g- U, (92)

2

and substituting equations (89-1) and (89-2) into equation (88), we find

V(,) c - didw = a2f dV-c fdi ds dw- d A (j AG ji -A)j (at )cI9
xY [n(z - aA/2)] n(i)n(z - aA)F(Vc, A)G(g, A)S(s")W(cW, s)

{ ~f-Tri# 1 1Et -2Kt A

2[Vc + U - -j+ nWn + atWt, - A x W]

1 , (9 3 )

2
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F(Vc, 5A) -r -3/2(cc2c)-1 exp -

G(J, A) (47r)~3/2(cc2c)1 exp{

Vc - oui(A)/2]2

C2
t

1

}
[gi -- u(A)]

2

4c?

S~)= (47r) -3/2 (DaDbD)-1 exp [- Z
a=a,b,c

(94)

Here we define the difference of mean orbital velocities between the colliding par-

ticles by

(95)

Since in planetary rings the particle size is much smaller than the orbital radius,

equation (95) can be expanded in terms of a/r. For the Saturnian B ring a/r ~

10-9. To the lowest order in a/r, we have

buo = 1aAr,
2

In the principal axis system we obtain

1u = -fa[3Al sin26 + A2 (1 +3 cos 26)],
4
1

SU2 = -la[A 1 (3cos2b - 1) - 3A 2 sin26],4

Su 3 = 0.

Making use of equation (93) and integrating over Ve, G and S,

set of general expressions for the moments Ti, Ma, Qij and Hagp:

Ti = a2f

(97)

we obtain a

dA d-Y[n(- - aA/2)]n(Y)n(i - aA)

(-A) A)G(, A)(En-A + f) (98)

104

where

I

W-1S= 7- 3/ 2 (D~D) xK> (WO, - sot/2)2 1
W ()r/(DDDc) exp -' D2/

ae=a,b,c af

6 u, = GaAO, Suz = 0. (96)

4D2paaf

66'= E~z - A) - 0(9).



M a 2J dAf d-Y [n(x - aA/ 2 )] n(xln(5 - aA)

x (,. j)(y. A)G(gJ~) 1 ~ Ea- 2)t [A x -+ ap- - a(p - A (99)

Qij = a2J dAf dJY [n(i - aA/2)]n(i)n( i5 - aA)(J' - A)e(g- A)G(J, A)

X {Xi(nyn + ictYj) + X (Kngni + ictYi) + K2gnignj

+ Kflt(gniYj + gnjYi) + 'g gigtj + agti(j xA

+ agt3 (p~ x A + eiklejmnXkmAlAn (100)
k,I,m,n

Hp = a2f dAf dgY [n(z - aA/2)] n(i)n(5 - aA)(' - A) (g~ A)G(j, A)

x 2- 2it (D2 + D2)(6ap + Aa Ap) + a 2/t) 2

x( p + p + AaAp [4(p- A)2 + 2 DI t]

+ ti., (A x J-)p +40(^ x J-)]- a(A' - A)[(^ x 9)cAp +(^\ x J-)p Ao]
2(- Aa 2 2  2)1

- a2 A)- -j)(Aapp + Appa) - AaAp(D + D) . (101)

Equations (98) - (101) yield the right hand sides of the moment equations (29),

(30), (34) and (36). Here,

Xi = 1(Sui - gi),
2

Y = gtu + a(p~ x A)j,
2D2 cos2 A + 2D2 sin 2 A (2D2 - 2D2) sin A cos A 0

Xij = (2Da - 2Db) sin A cos A 2Da sin 2 A + 2D cos 2 A 0
0 0 2D 2 +4912

2D2 0 0
ap 2D 0 . (102)

0 0 2D2 + 4p2
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111.4. The Equation of State and the Phase Transition

The Enskog factor Y(n) is closely related to the equation of state of a system

of elastic hard spheres. We assume that the Enskog factor is the same for a system

of inelastic spheres as it is for elastic spheres. This assumption is unlikely to be

exactly correct but should capture the qualitative behavior of the Enskog factor

in the inelastic system. The equation of state for an elastic hard sphere gas is

- 1 + bY, (103)
nkT

where p, n, T, k are the pressure, number density, temperature and Boltzmann's

constant and
2

b = -7rna 3  (104)
3

is four times the filling factor and is related to the second virial coefficient B 2 by

b = nB 2 .

There have been a number of investigations of the equation of state for the

elastic hard sphere gas. In the low density limit the compressibility factor p/nkT

can be represented by the virial expansion

00 00

nkT = ZBini-1 = Cibtl, (105)
i=1 i=1

where the Bi are the virial coefficients and are related to the reduced virial coef-

ficients Ci by

Bi = B 2 i 1Ci (i = 1,2,3,. .. ). (106)

For hard spheres the first seven virial coefficients have been evaluated. Therefore,

in the low density limit the Enskog factor can be represented by

7

Y(b) = > Cib~ 2 , (107)
i=2

where (Ree and Hoover, 1967; Devore, 1984)

C 2 = 1.00000, C3 = 0.62500, C 4 = 0.28695,
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C5 = 0.11025, C6 = 0.03894, C7 = 0.01376.

At high densities, however, equation (107) becomes progessively less and less accu-

rate. This is hardly surprising since Y must diverge when the density approaches

the close-packing density no = N/r/a 3 (for a face centered cubic lattice). At this

density b = 2VZ7r/3 = 2.96 and the filling factor is v.F2r/6 = 0.74. Even well be-

fore this density is reached, the virial expansion becomes inapplicable because the

system undergoes a liquid-solid phase transition (Hoover and Ree, 1968; de Llano

and Ramfrez, 1975; Young and Alder, 1980). Computer experiments show that

the phase transition starts to occur at x = 0.67 where x = n/no, corresponding

to b = 1.98.

To represent Y(b) in the range 0 < b < 1.98 we will employ a polynomial

fit to the molecular dynamics data by Alder and Wainwright (Ree and Hoover,

1967). The advantage of this "pseudo" virial expansion is that it permits us

to calculate part of the collision integrals analytically while it reproduces the

molecular dynamics data throughout the entire liquid phase.

From Table IV of Ree and Hoover (1967) we choose five points (b, Y) =

(0.2962, 1.2154), (0.9873, 2.0764), (1.4810, 3.3019), (1.7423, 4.3563), (1.8512,

4.9535) and look for a fifth order polynomial which satisfies Y(0) = 1. Thus

we find
7

Y(b) = Dibt 2 , (108)
i=2

where

D2= +1.0000, D 3 = +0.8874, D4 = -1.1764,

D= +2.5828, D 6 = -1.5909, D7 = +0.3974.

Note that the Enskog factor reaches Y(1.98) = 5.84 at the crystallization density

b = 1.98. Equation (108) yields values of Y(b) which agree with the formula given

by Carnahan and Starling (1969) within 2% error.
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111.5. The Momentum Flux Density Tensor

As we mentioned in §11.2 and §111.2, there are two modes of momentum

transfer in dense particle disks, "collisional" and "translational" transfer. The

momentum flux density tensor due to translational transfer is simply the pressure

tensor pi. In this section we derive the analogous momentum flux density tensor

pNL due to collisional or "nonlocal" transfer (cf. equation [A1.4] of Shukhman,

1984).

Consider the principal axis coordinate system (1, 2, 3) of the pressure tensor

pij evaluated at a given location '. Suppose we have two colliding spheres whose

centers straddle a plane perpendicular to i. One particle with velocities (, )

has its center above the plane at X, and the other with velocities (V1,01) has

its center below the plane at si = Y - aA: x 1i < xi. The condition that the

two centers straddle the plane is that A i = Ai > 0, and that the center of the

first sphere i must lie within a skew cylinder on the surface element dS (across

which momentum is transferred) in the plane, with generators parallel to A and

of length a; the volume of this cylinder is aAldS. Hence the average number of

such collisions per unit time, in which V, t1, 01' I, A lie in their respective ranges

is

Y [n(5 - aA/2)] f(5, iY, c)f(zii, A1, &1)a2( . A )A ( - A)dAO(Ai)aAidS.

Each such collision causes a sphere on the upper side of dS to gain momentum

per unit mass d'- = + t at the expense of a sphere on the lower side.

Thus the j-th component of the collisional or nonlocal momentum flux vector

through the unit surface area perpendicular to the i axis is

pj =a fdvf dw' d -1 fd W1 fdA j- A)y - A) Y [n (X - aA/2)]

x fx, , v)f(5i, i'1, 01 )Aje(Aj)(Knn + Wt);

a dv d 1 dw d-1 dA( -A)(g-. A)Y [n(x - aA/2)]
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x f (#, , )f (# - aiA, 1 01)Ai(rcgny + ntWtj). (109)

Following the procedure in §111.3, we adopt the triaxial distribution (89), change

the integration variables from V, ii1 3 ', W1 to 1e, y, ,g, and integrate over Ze, W'

and S:

- f dA d( - A) ( . A)Y [n(' - aA/2)]n(5)n(z - aX)

xG( , AAi [K, + -t ( t + ap~ A). (110)

The nonlocal momentum flux density tensor is generally not symmetric, although

it is symmetric when the spin degrees of freedom are neglected (ft = 1). 1 The

total momentum flux density tensor is pT = pig + p E.

From equation (110) we can calculate various interesting quantities:

(i) The kinematic viscosity is defined by

yT = + V NL = Pr O (111)

--rf2'(r)n(z)'

where

PrB = (P11 - P2 2) sin 6 cos 6, (112)

~NL =(PNL - NL) sineb cos 6 + PNL CS6- 6 N sn . (13pNLc 2 11 sin2  (113

Equation (111) reduces to equation (45) in Goldreich and Tremaine (1978) if the

nonlocal momentum flux density tensor is neglected.

(ii) The angular momentum luminosity is the rate of outward transport of angular

momentum across the streamline with radius r (Borderies et al., 1985). Since the

1 For most fluids the pressure tensor is symmetric, since an antisymmetric

pressure tensor leads to a net torque on a small fluid element which leads to

arbitrarily large angular acceleration as the size of the element shrinks to zero

(e.g., Misner et aL, 1970, p.141). However, a non-symmetric pressure tensor can

arise in simple systems; e.g., a hard sphere gas with polarized spins.
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viscous torque exerted on a unit length of streamline due to the material inside it

is

rJplTdz,

the angular momentum luminosity due to viscosity is

LT(r) = 27rr 2 J (Pro + PrL )dz. (114)

(iii) A useful dimensionless number is the ratio R of the viscous stress pT to the

mean pressure TrpT/3. In a fluid this ratio is R = -rn'(r)r//p, where p and r7 are

the scalar pressure per unit mass and the dynamic viscosity nv. In our case

3 n(c2 - c2) sin 26 + 2 pNL
R = (115)

2c1 + c2c3)+ + p +p122 3

The ratio R is equivalent to the quantity v/F1 defined by Borderies et al. (1985)

for Keplerian disks. F1 or R is generally of order unity in granular flow models of

particulate rings (e.g., Haff, 1983).
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IV. NUMERICAL RESULTS

Due to the complexity of the complete problem, for the rest of this section

we will confine ourselves to the case without spin degrees of freedom, i.e., we set

Et = 1. The case including spin degrees of freedom will be treated in a subsequent

paper.

We shall also specialize to the Keplerian rotation law

fl r) GM
GM)= (116)

r 3

where G is the gravitational constant and M is the mass of the central planet.

The principal difficulty in solving for the ring structure is in determining the

exact vertical equilibrium of the ring. Even in the case where non-local effects are

neglected the exact vertical ring equilibrium has not been established (cf. Gol-

dreich and Tremaine, 1978). In fact we have already abandoned the possibility

of determining the exact vertical equilibrium self-consistently by our assumption

that the velocity ellipsoid is independent of z (cf. §II.1). Hence we shall investi-

gate two approximate models for the vertical structure in §IV.2 and §IV.3 and

estimate our uncertainties by comparing the two models.

IV.1. Equations of Equilibrium

In planetary rings Izi < r so that to the first order in z 2 /r 2 the potential is

given by

U(r, z) = -- ~ -U2(r)r2 + -1 2(r)z2 (117)
V/r-2 + Z 2 2

As is shown later T, = To = 0, so that the horizontal components of Euler's

equation are automatically satisfied when |z| < r. Thus, from (29), the vertical
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component of Euler's equation is

nf22 z + 27rGmn(z) J n(z')dz' = T3 - 9P33.

Here we have added the overall self-gravity of disk particles to the left hand side

of equation (118). For sufficiently high filling factors velocity dispersions become

so small that self-gravity effects are generally important (cf. equation [125]).

Since we have pii = n(Y)c? from (89), the viscous-stress equation (34) reduces

to

33-U2cin2b Q119
2 O4nc sin 2 = Q11,
3D

5 - 3 cos 26 2
4 Oe

- Onc 2 sin 2b = Q22,
2

0 = Q33,

- 5 + 3 cos 2b n = Q12,4 £n2n =Q2

(119-1)

(119-2)

(119-3)

(119-4)

(119-5)

(119-6)

0 = Q23,

0 = Q31.

Next we nondimensionalize equations (118), (119) by introducing the follow-

ing quantities:

n*(z*) = n(z) g
n(O) '

T-* = i
*n(0)afj2'

gi bu*= ui

- -
Q* =(''

2s n(0)a2J3'

Then we have

n* z* + 3 b()Gn*
4

z
n*(x)dx = T3* -

3 * *2 sin26 =nc, il Q1 1 ,

(118)

* z

a

c* = - (120)

d n*c*2
(121)
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3 n*c *2 sin26 Q* (122-2)

O = Q* (122-3)

5 - 3cos2 *2 5+3cos26 *2

4 n cl - 4 n c2 = 9 (122-4)

o = Q*3, (122-5)

o = Q*1. (122-6)

In equation (121), b(O) denotes four times the filling factor in the neutral plane

(see equation [104]):
2

b(0) = -7rn(0)a 3 = 4FF(0). (123)
3

Also, a factor G, has been defined by

G 8Gm r (124)
G8=2a3 r P

where rs, ps are the radius and volumic density of the planet, and pp is the

volumic density of the particle material (this factor is related to the factor F2 in

equation (42) of Borderies et al., 1985: F2 = 1 + 3G,).

At a typical location in the Saturnian B ring we have rs = 6.03 x 10 9 cm,

ps= 0.618 g cm- 3 , r = 1.04 x 1010 cm, pp = 0.9 g cm- 3 so that G, = 7.4.

From equation (121), the condition that the self-gravity term can be neglected as

compared with the first term is given by

3G.FF(0) Z*j n*(x)dz GFF(0) < 1, (125)

which is violated even for FF(0) = 0.1 when G, = 7.4.

When the spin degrees of freedom are neglected, equations (100) and (102)

become

T;* - (47r)3/2c f*c dAf d*Y [n*(z* - A3/2)]n*(z*)n*(z* - A3)e-z

x (* -A)2 (* -A) A, (126)
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Q g =- (47r)3/2c*c*c*

X (g* -A)2(- - A)

dAf dg*Y [n*(z* - A3 /2)]n*(z*)n*(z* - A3)e-z

bu* - g* bu* - g* .5 )Aix] (127)* * Aj + 2 '-Ai + Kn(g' )9 ~ 17

where

Z = g* Su*2

k=1 ( k

In equations (126) and (127) we have assumed that the scale of horizontal density

variations is much larger than that of vertical density variations so that the radial

dependence of the density can be neglected.

The Ig*| integration can be carried out analytically. The results are

Ti* = n(0 a 3 K 7 dOx sinOx
(47r)3/2C*C*C*I

x n*(z*)n*(z* - cosox)e~C
S7r/2 27r

x A / do sin O cos fo dpA-

Qt -- n(0) a3 Kn X 0,snt 2 7

%) (47r)3/2c*c*es 0

x n* (z*)n* (z* - cos 6ox)e-C

/ /2 27r

" o d6 sin 6 cos 2 7 o dp [Dij A

d pOY [n*(z* - cos z,/2)]

5 /2 f5 (g), (128)

dpY [n*(z* - cos ex / 2)]

- 3 fe ( ) + EjgA 5 / 2 f5 (g)], (129)

where

-1 = sin 6 cos p sin epx + sin 6 sin p cos 69 cos px + cos o sin Vx cos p),

2= - sin V cos p cos px + sin V sin p cos V sin px + cos V sin Vo sin pa,

3= -sin t sin p sin2o + cos O cos i)x,

A (1 13 (Y 2

k=1 k
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-
EZIYkbUk
k=1 k

k=1 k

2

Egg (6x, p\) = 1(bu*'Aj + bu* A),

A ) =-3 - 5+ exp erfc
21 \2

+ 6g2 +3),

f6 ( ) = c4 + 9 2 +8 2
exp erfc (.5 + 10g3 + 15g),

B
S= ,

erfc(x) = ef et2dt.

If we neglect the nonlocal effects in equation (129), its off-diagonal compo-

nents are zero and its diagonal components reduce to equation (33) of Goldreich

and Tremaine (1978) or equation (17) of Borderies et al. (1983).

From equations (126) and (127) we can show analytically that

T1 = T2 =923 =31 =0

and that T*is an odd function of z*. These results are independent of the form

of n* (z*) so long as it is even. Therefore, particularly, we have

T e = 0,

where we denote the vertical integration of a quantity q(z*) by

q(z*)dz*.
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In principle, equation (121) can be solved to determine n*(z*) directly. How-

ever, the computational procedure is rather involved since each evaluation of T*

requires the values of n*(z*) at many different heights. Therefore, we look at

two simple approximate models. In the first model n*(z*) is assumed to have a

Gaussian profile. This is certainly valid when the collision frequency is low and

this model should serve as a reasonable approximation at low optical depths. In

the second model we consider the high collision frequency limit, where the velocity

ellipsoid is determined independently of the density profile.

IV.2. Gaussian Model

We assume that n* (z*) follows a Gaussian profile

z* 
2

n* (z*) = exp _- ) z (134)
2H*2/

where H* is the scale of the disk thickness in units of a. Since Q*3 = Q31 = 0

identically, we may integrate equations (122) over z* to obtain four equations:

3V/ZiH*c2 sin26 = Q11, (135-1)

2
V/2rH* c~2sin 2b = Q , (135-2)

0 = Q3 , (135-3)

H* [(5 - 3 cos 2b)c1 - (5 + 3 cos26)ca 2 ] = Q. (135-4)

A simple integration of equation (121) would yield the trivial result T3* = 0. Hence

we first multiply by z* and then integrate over z*:

V2 H* H*2 - + GH* FF(0) = T3z*, (136)

where the normal optical depth is defined by

r= (r)a- n(z)dz = 3n(0)a n*(z*)dz*. (137)
2 _-00 4 _0'
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Equations (135) and (136) give a system of five algebraic equations which may be

solved for (ct, c*, c*, 6, H*) at given values of the normal restitution coefficient e,

and filling factor in the neutral plane FF(0) = b(0)/4. The vertical integration

may be carried out analytically as follows: From equations (104), (120) and (134)

we find

b(z*) = b(0) exp - z2 . (138)

Substituting equation (138) into equation (108), multiplying by n*(z*)n*(z* -

cos oj, and integrating over z*, we find

Y [n* (z* - cos 6,\/2)] n*(z*)n*(z* - cos ox) = 6H* exp [ co )

(139)

where

s[b(0)] = > Dm [b(0)]m2. (140)
m=2

Thus,

Ir-- S 7" .(Cos O -c 2

V 27r2 3/2cic*i dox sin \ expK (2 21 joX dp\ eC

X j ~/2 do sin V cos 2 9 j dp [Di A - 3 f () + EijA- 5 / 2 f ] (141)
0 0o

Similarly,

*z -frans S ) si f, cosos 2x 6, x O A)2 7 P C
T3z* = 2(27r2)3/2c*C*c dx sin cos 2  2H* 2] j de-

x rdo sin o cos 2 o dpA- 5 / 2 f() (142)

Our aim is now to solve the system of five nonlinear algebraic equations for

given values of c, and FF(0). The greatest problem lies in evaluating the collision

integrals on the right hand sides of equations (135) and (136), each of which is

a four dimensional integral. We begin by tabulating the complementary error

function which appears in f5 (g) and f6 (g). From this table we find necessary
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values of the function by the 4-point Lagrangian interpolation formula. The p

and pe\ integrations are first carried out by the m-point trapezoidal rule. Since the

integrands are periodic functions with period 27r, the trapezoidal rule yields results

with excellent accuracy. The remaining 6 and , integrations are done by the n-

point Gaussian quadrature formula. Here the symmetry of the integrand with

respect to 6o\ = 7r/2 is taken into account in the 6, integration. For m = n = 10

we attain four-digit accuracy. Therefore, about 10000 evaluations of the integrand

are required to find a value of the collision integral, which corresponds to about 6

CPU seconds on VAX 11/780 computers. Once we know how to evaluate collision

integrals, we can use the five-dimensional Newton's method to find solutions to

the system of equations.

We solved the system of equations (135) for various values of e, with and

without the effect of self-gravity. The numerical results for En = 0 with self-gravity

are presented in Figure 2. This is the most extreme case in the sense that the

particle disk has the least thickness (both the completely inelastic collisions and

self-gravity contribute to the small thickness). In general the velocity dispersions

are decreasing functions of the central filling factor FF(0) and in general c* < c* <

cl. At FF(0) = 0 where the particle collisions are completely neglected, we have

numerically verified that 6 = 0 and ct = 2c*, a well-known fact for a collisionless

disk in a Keplerian force field (Chandrasekhar, 1960). Only at FF(0) = 0 is the

root mean square disk thickness equal to H = H*a = cia = c3 /0 and at higher

filling factors the difference between H* and c* becomes significant. The tilt angle

of the velocity ellipsoid 6 increases with increasing filling factor. Since we are only

interested in the liquid phase of the hard sphere system, we cut off the range of

the filling factor at the crystallization point FF(0) = 0.50. We note here that this

crystallization point was determined for a system of perfectly elastic hard spheres.

(There have been no molecular dynamics data for inelastic hard spheres, but the
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filling factor at the crystalization point for the latter system is probably lower

than 0.50.) The optical depth is also plotted as a function of the filling factor.

Within the assumptions of this model we conclude that the solid phase must exist

in the system if the optical depth is larger than the critical value r(0.50) = 0.28.

The critical optical depth actually depends on the choice of c" (T[0.50] = 0.48

for e,, = 0.25, 0.93 for E, = 0.50) and it is larger if the self-gravity is neglected.

The above conclusion provides the first quantitative prediction for the possible

existence of the solid phase in the Saturnian B ring.

IV.3. High Collision Rate Limit

It is rather involved to solve the system of equations (121) and (122) to

determine the vertical structure of the particle disk in general, but it is possible

to solve equations (122) for (ci, c, c,6) in the formal limit when the density is

near the close-packed density. In this limit the Enskog factor Y becomes very

large, and if we neglect variations in the Enskog factor over distances of the order

of the particle size, then equations (122) can only be solved if

R11= R22= R 3 3 = R 1 2 = 0, (143)

where

Ri; = j dtX sin jo dpxe-c

r/ 27r

X ] d6 sin d cos2 o o dp [Dij A~- 3 f6 ( ) + EjjA - 5 / 2f 5 ( )] (144)

In practice the formal limit Y >> 1 is not attained because a phase transition

occurs first; however, at the phase transition Y = 5.84 is substantially larger than

unity, which suggests that equations (143) provide a useful first approximation to
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the behavior of densely packed rings. We shall call this the "high collision rate"

limit. The system of equations (143) involves four unknowns (cI, c*, c*, 6) and a

parameter E,. The numerical solution to (143) is given in Figure 3. The value

of 6 is within 0.007% of 7r/4 for all E, and it seems likely that b = 7r/4 exactly.

The inequality c* < c* < c* holds except in the vicinity of e, = 0 and as E,

approaches unity the velocity dispersions tend to diverge. In the limiting case of

perfectly inelastic collisions , = 0, we find

= 0.2999, c* = 0.2262, c* = 0.2245, 6 = 0.7854. (145)

It is to be noticed that this solution is valid at any height z* so long as the

approximations leading to equations (143) are valid. The value of b is consistent

with the value for a fluid ring when non-local effects are neglected (b = 7r/4,

Goldreich and Tremaine, 1978), but in contrast to the fluid model the velocity

dispersion tensor is not isotropic. The velocity ellipsoid is independent of height,

consistent with the assumption (iv) of §II1.

Substituting (145) into equation (121), we now determine the vertical density

profile in the limit of high collision rate. Since the variation in density across a

particle diameter is assumed to be slow, we have

Y [n* (z* - cos O1 /2)] n* (z* - cos Q\)

~Y [n*(z*)]n*(z*) - cos n* 2 dY + Y [n*(z*)] zn*. (146)

Upon integrating over OX, the contribution from the first term vanishes so

that we are led to the equation

3 z n*(z*) dY dn* c*2 dn*
z* + -b(0)Gs n*(x)dx = K+ Y (z*)] 3 (147)4 0o 2 dn* dz* n* dz*

where

-n(0)a 3 n ir2) 2 7K = d6x sin 0x cos2 ej d peC

X fj/2 d sin 6 cos 2 2r dpA-5/2fs(g). (148)
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We differentiate equation (147) with respect to z* to obtain a second order differ-

ential equation

3 d__ 2 _ 7*___ *

1 + b(0)Gsn*(z*) = dz* 2 [2b0) i 1 Dibil-(o)n*t~ - c*2 In n*, (149)
4 2b(O) i=2 1

which can be solved numerically with the boundary conditions n* (0) = 1 and

n*'(0) = 0. In the limit where the self-gravity is negligible (G, = 0) the solution

is analytic.

The resulting vertical density profile was computed by the fourth order

Runge-Kutta method. The results are shown in Figure 4. Five curves corre-

spond to the various choices of central filling factors FF(0)=0.1, 0.2, 0.3, 0.4, 0.5.

We have included low values of FF(0) for comparison even though the approxi-

mations leading to equations (143) and (144) are not accurate there. As FF(0)

increases, the deviation of the profile from Gaussian becomes significant. The

density profile depends on the choice of cn and on whether the effect of overall

self-gravity is included. In general larger FF(0) and c, yield thicker disks. By

switching off the self-gravity we can have even larger thickness. Once we have the

density profile n*(z*), we can determine the optical depth (equation [137]) and

the disk thickness (z* 2 )1/2, where

(z* 2) z * (150)
n

For the Gaussian profile (134), (z*2)1/2 = H*. The results are shown in Figure 5.

For comparison, the corresponding results for the Gaussian model are also shown.

In the low filling factor limit the Gaussian model is good, whereas it becomes

progressively more inaccurate with increasing filling factor and the results in the

high collision rate limit should provide a better approximation. It is encouraging

that the two methods agree fairly well for intermediate values of the filling factor.

Finally, in Figure 6 the height-integrated kinematic viscosity in units of f2a 2,

the angular momentum luminosity in units of 37rr 2 f12a 2 n(0) and the height-
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integrated ratio R (cf. equation [115]) are plotted as a function of FF(O). These

are explicitly given by

VT* - - 2 p* (151)
12a 3 * '

LT* = LT = T* (152)
37rr 2 (Qa 2 ) 2 n(0) 3 r (1

N =3pi * (153)
n*(ct + c*2 + 2 ) +p +p22 +pp3 15N

where

2pT* = 2(c*2 - c*2 ) sin 26 + (pNL* - piL*) sin 26 + 2 NL* cos 26. (154)

In the low filling factor limit the results for the high collision rate limit do not

vanish, but approach finite values, which correspond to the values given by equa-

tions (151)-(154) when the nonlocal pressure tensor is set to zero and c and

6 are given by equation (145). As for the angular momentum luminosity and

height-integrated kinematic viscosity, there is a general agreement between the

two models in the intermediate filling factor range; we expect that the Gaussian

model becomes more accurate at lower filling factors, while the results from the

high collision rate limit should be more accurate at higher filling factors. The

height-integrated ratio shows a fairly large disagreement at lower filling factors,

but in the higher filling factor range where this ratio is more meaningful the two

models seem to show a better agreement (relative error is 16% at FF(O) = 0.5).

Using an a-model for viscosity, Lightman and Eardley (1974) demonstrated

that the inner region of a gaseous accretion disk around a compact object was

unstable to clumping into rings. It has been conjectured that there may also

be viscous instabilities in particle disk systems since there are regions where the

angular momentum luminosity decreases with increasing optical depth (Lin and

Bodenheimer, 1981; Lukkari, 1981; Ward, 1981), but the analytic and numerical
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treatments by these authors are based on the assumption that FF(O) < 1. In

our study the angular momentum luminosity is always an increasing function of

FF(O) and r due to the presence of the nonlocal momentum flux density tensor

which dominates the pressure tensor at higher densities. Therefore, we conclude

that within the assumptions of our model there is no viscous instability and that

it is not responsible for the multi-ringlet structure of the Saturnian B ring.
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V. DISCUSSION

This work represents an attempt to apply the theory of liquids and dense

gases to differentially rotating disks of inelastic particles. Our results are based on

Enskog's (1922) theory, which has had only limited success in molecular dynamics

because molecules are not hard spheres; however it is well suited for the study of

particle disks.

Within the context of Enskog's theory the only major approximation is in the

treatment of the vertical structure of the disk. We have investigated two models,

which should be accurate in the limit of low and high filling factors. The models

generally agree well at intermediate values of the filling factors (cf. Figures 5 and

6).

Our results confirm Brahic's (1977) claim that even disks of completely in-

elastic particles maintain a thickness which is of the order of the particle radius.

We find that for completely inelastic particles the root mean square z-dispersion

of the particle centers in units of the particle diameters is f(z*2) = 0.2 - 0.3 for

value of the self-gravity parameter G, = 7.4 which is appropriate for Saturn's B

ring (Figure 5).

We find that the angular momentum luminosity is an increasing function of

optical depth in rings composed of inelastic particles and hence there is no viscous

instability.

We find that a dense ring can have filling factors which are large enough

that a transition to the solid phase should occur (at least according to molecular

dynamics experiments on elastic hard spheres). This result suggests that part

of the Saturnian B ring may be in the solid phase. Naturally the whole B ring

cannot be solid because on macroscopic scales it must rotate differentially with

the Kepler shear. However, it may be that the complex ringlet structure in the B

124



ring represents adjacent solid and liquid phases. A system of this kind might well

be stable, since if a solid annulus begins to grow, the shear in the adjacent liquid

annuli increases, so that the liquid annuli are heated more strongly by viscous

dissipation and tend to "melt" the edges of the solid annulus.

It is easy to imagine many ways in which the present work can be extended

and improved. Particle spins (Shukhman, 1984), a particle size distribution (Shu

and Stewart, 1985), a velocity-dependent restitution coefficient and gravitational

scattering beween particles must all be included before a quantitative comparison

with ring observations will be possible.

However, the present work at least provides a kinetic theory model which

includes the effects of finite particle size and which can serve as a basis for com-

parison with numerical models of particle disks.
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FIGURE CAPTIONS

Figure 1:- The definition of the Euler angles which give the configuration of the

body system (lb, Yb, zb) relative to the fixed system (, y, ) whose origin is located

at the center of the planet and whose ^ axis is normal to the ring plane.

Figure 2:- Solution to the system of five equations (135) and (136) when the

normal restitution coefficient E,, = 0 and the overall self-gravity (G, = 7.4) is

included. The velocity dispersions ci, c*, c*, transformation angle 6, disk thickness

H* (all solid lines) and the optical depth r (dotted line) are plotted against the

filling factor in the neutral plane FF(0).

Figure 3:- Solution to the system of four equations (143) in the high collision rate

limit. The velocity dispersions c*, c*, c* and transformation angle 6 are plotted

against En.

Figure 4:- The vertical density profile in the high collision rate limit when e, = 0

and the overall self-gravity (G, = 7.4) is included. The number density n* is

plotted against z* for five cases: FF(0) = 0.1,0.2,0.3,0.4,0.5. The horizontal

scale is in units of the particle diameter.

Figure 5:- Comparison between the Gaussian model and the high collision rate

limit when the self-gravity factor is G, = 7.4. The disk thickness and optical

depth are plotted against FF(0). The Gaussian model is dashed at high values

of FF(0) and the high collision rate limit is dashed at low values of FF(0), to

indicate schematically the region of validity of each model.

Figure 6:- Comparison between the Gaussian model and the high collision rate

limit when the self-gravity factor is G, = 7.4. The kinematic viscosity VT*,

angular momentum luminosity L T* and the ratio W are plotted against FF(0).

The Gaussian model is dashed at high values of FF(0) and the high collision rate

limit is dashed at low values of FF(0), to indicate schematically the region of
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validity of each model.
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