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ABSTRACT

The billiard ball map has been studied since the beginning of the
century. Interest in it has recently increased, spurred by new math-
ematical techniques and the interest in the length spectrum asso-
ciated to boundary value problems.

The goal of this study is to better understand convex planar do-
mains in which the billiard ball map is integrable, that is, where
there is a continuous family of caustics for the billiard ball map and
this family includes the boundary. The principal result is the theo-
rem of the third chapter which shows that the only smooth convex
planar curves satisfying a certain group property are ellipses.

This group property and a curvature relating operator leading to
both the property and to the proof of the theorem are defined in
the second section and in the beginning of the third section.

Also important are the motivating example of chapter 4 which
shows that the relation between caustics suggested by the theorem
of the third chapter is special, and the example of chapter 5 in
which the lengths of caustics are completely isolated.

Thesis Supervisor: Dr. Richard B. Melrose

Title: Professor of Mathematics
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The first chapter of this work introduces the billiard ball map,

invariant circles, and caustics, and explores some basic relations

among them. The second chapter gives a characterization of caus-

tics and builds an operator relating caustics which is based on this

characterization. This chapter explains geometric relations be-

tween caustics in analytic terms and includes the main ingredients

of the theorem of the third chapter.

The third chapter includes the principal calculation, giving an

obstruction to satisfying the group property (also discussed in that

chapter), and the fourth and fifth chapters provide relevant exam-

ples.
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Notation

n a (planar, bounded, convex) domain.

# the billiard ball map.

T*X the cotangent bundle of X.

B*X the unit ball in T*X.

S*X the unit cotangent bundle of X.

<ft geodesic flow (in R 2).

a8 the boundary of 0 (usually smooth).

p projection SjaR 2 -- B*80(II C R 2 ).
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Chapter 1.

Introduction

The only proposition in this section is typical of the point of

view that this work takes. Borrowed in part from algebraic geom-

etry, this viewpoint agrees at times with the modern point of view

(B*afl), and on other occasions with the century old point of view

(everything is in the plane). The latter point of view is useful, and

sometimes even elegant, as in the example of the fourth section.

1.1. The Billiard Ball Map

Given a convex planar domain, fl, with smooth boundary, 8,

we define the billiard ball map on 80,

B*fl -+ B*a,

as follows:

Let S*R 2 denote the unit cotangent bundle, and let B*8fl =

E T*80l 1}. We will view B*af as embedded in T*R2 ,

and S*R2 as embedded in T*R2 (we want to be able to use geodesic
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Figure 1.1: The billiard ball map

translation in R 2 ). Let qg denote geodesic flow in R 2 , and 7r

T*R 2 -+ R 2 the projection.

There is an inward pointing normal, i(p)E SR 2 (the unit tan-

gent bundle's fiber at p) for pE 80. (If Bc R 2 is any set containing

0, and e E S*R2 with ( (i(p))>O, then 7r(4ot) E 80 for some t>O

and if r(4t() E dB then t>min{t> 0 1 7r(4t() E 80}.)

Given E B*a0, there is a unique inward pointing w E S*R2

(w(i(p));> 0) with e(v)=w(v) for vE T,80 c-+ TR 2 .

Define p : SjaR2 _+ B*80 by p,(w) = e ife(v)=w(v), for

all vE T,80. We have just shown that given an inward pointing

orientation of 80, p has an inverse, p- 1. If w is not tangent to

80, that is w(i(p))>O, then there is a least t>0 with 4tw E SinR 2

(which we denote by t) and we set

O(W = potp~1
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If w is tangent to 8, that is w(i(p))=O or = 1, then we set

O(W = .

1.2. Invariant Circles and Caustics

Definition 1.2.1: An invariant circle for the billiard ball map

on a, #, is a smooth section, E, of B*0 -- +' a, such that if

E E5(8fl), then #(e) E E(80).

Definition 1.2.2: A caustic for the billiard ball map on a is

a simple closed curve Cc ( such that if e E S*C and t(e) is the

least t> 0 with (4te) E 80, then there is a e' E S*C (and a t(')

the least t> 0 with 7r (4te') E 80 ) with # (p*t(f)e) = Pot(f)p',P as

above.

p-1 (E(8 0 )) C SOR 2 may be viewed as a (one parameter) fam-

ily of lines (parameterized by any parameterization of 90). To

e E p-'((80)) we associate the line {7rot4 I t E R}, where 4,t is

geodesic flow, and 7r is projection. (See the figure above.)

For convex 0, we can see the correspondence of caustics to

invariant circles directly. For E 2(80), consider {7ro(p~'e) I

t E R}n80 = {7r(e), r(#(e))}. We claim that if 7re 2 is between

7re 1 and 7rf#(ei) on 80, then the line segments 7re17r#(e1) and

7re 27#/( 2 ) must intersect (1, e2 E E(a)). To see this, first note

that q(p)=#.E(p) is a continuous map (from 80 to itself) and that

q(p)=p only when #E(p) = E(p), that is only when |E(p)|=1 and

the invariant circle, E, corresponds to the caustic an. We show

that q is one-to-one, and thus if 7r8( 2 ) is not outside the arc seg-
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Figure 1.2: The correspondence of E to a family of lines.

ment 7r( 1 r3( 2 ), continuity of q is contradicted. To see that q is

one-to-one assume q(pi)=q(p2). Then, since '(E(P1)),#((P2)) E

Z(al), #3E(Pi) = #E (p2), so2(pi) = E(P2) and p1 = P2-

Given pE 8, take a sequence {pk} C 8 with pl -- p as

k -+ oo, and ph # p. Let ok = pq(p) lpAq(pt). {ok} converges

to a unique point, o(p), since it is a sequence in the compact line

segment pq(p) (8 is convex), and p'- o(p', p) = pq(p) flp'q(p') is

continuous in p' so there can be at most one accumulation point

for {ot}. For E E(80), we denote o(7r(()) by c(e). C={c(e) I e E

E(an)} is the desired caustic. C is a closed curve since c(e) is con-

tinuous and af is closed. When al is smooth and convex, (p,p') -4

o(p,p') is smooth near an (as shown in the next paragraph). Since

80 is compact, C is smooth as long as (p,p') -4 o(p,p') is injective.

The condition for this map to be injective is an open condition,

and, since 80 is itself an invariant circle (Eo(p)=(p,1)), for invari-
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Figure 1.3: The construction of the caustic C.

ant circles near Eo the corresponding caustic is smooth.

The role played by the curvature in this setting is clarified

if we assume that the lines (corresponding to E(s), a E 8l) are

given by y = y(s) + m(s)x in the x-y plane near a fixed line y =

y(so) + m(so)x (we assume that m(s) < oo for s near so). Then the

intersection of y = y(s) + m(s)x and y = y(so) + m(so)x is given

by

Y(so) - y(s)
m(s) - m(so)

Both numerator and denominator approach zero as s approaches

so, so this equation has a unique solution when k(so) = 8 ,m(so) 3
0. (k is the curvature and for a closed curve if the curvature has

constant sign then it must be positive.) So if the curvature is never

zero, there is a well defined smooth convex caustic corresponding

to E. Finally, if 2 is (C2 ) near 'o, then 0 < k(s) for any s. The

construction of C (for convex fl) shows that the tangent to C at

11



Figure 1.4: The integral curve corresponding to C.

J2

c (when c=c(e) this tangent is {7rop-'(e) I t E R}) does not

intersect C near c. Since C is closed, this implies that C is convex.

Conversely, given a smooth convex caustic, C, its tangents pro-

vide an invariant circle for the billiard ball map, #, on a. Orient

C. At cEC take r(c) E S0 C (the unit tangent bundle). There is a

unique e E S,*C with e(r(c))=1. Regard e E T,*R2 , under the in-

clusion T,*C c-+ T*R 2 . Let t(c) be the least t> 0 with 4te E Ta'nR2 .

For pE 80 there is a (unique) c EC with 7ret(,)e(c)=p, because C

is convex. Let E(p) = pt(e)((c). Since C is smooth, c '-4 e(c) is

smooth, and since C is convex and smooth, p'-4 c is smooth. So E

is a smooth section of B*80 -+ an. By definition, C is a caustic

if and only if fpt(,)((c) = pqt( 0')((c') for some c'E C, and hence,

given pE 8l as above, q=1rp4e(c,)((c') E 80 and #(E(p)) = E(q).

So p(2(80)) c 2(80) and 2 is an invariant circle.

We summarize our findings in

12



Proposition 1: Given a convex planar domain fl with a smooth

boundary, 8l, there is a one-to-one correspondence between in-

variant circles for the billiard ball map on 80 in a neighborhood

of Eo(p) = (p, 1) and convex smooth caustics for the billiard ball

map on n in a neighborhood of an.

pf: The correspondence given above is one-to-one because any

curve in R2 is completely determined by its tangent lines. (The

construction of C from E actually showed this.)

Note that if fl were not convex, there would be a line segment

p contained in f (p,qE an) so that for any point, a, on that

segment there is another point, b, on an, with ao not contained

in f. Hence, any caustic tangent to P could not be convex. (The

corresponding "invariant circle" would be discontinuous.)

Definition 1.2.3: The billiard ball map on dn is integrable if

there is a neighborhood N of s*an in B*80 which is included in

the images of invariant circles for the billiard ball map on 8n. That

is, for each ( E N there is a pE a and an invariant circle E with

Definition 1.2.4: We say that the billiard ball map on an is in-

tegrable up to C, or that it is integrable between C and an,
if C is a caustic for the billiard ball map on an, and every point

in f lying between C and a8 belongs to some caustic.

Since n is compact, if the billiard ball map on an is integrable,

there is a caustic C whose corresponding integral curve has its

image contained in the neighborhood N of the definition above, so

13



that the billiard ball map on 80 is integrable between C and df.

In what follows, we aim to understand convex planar curves

for which the billiard ball map is integrable and an additional

condition holds. The proposition of this section allows the char-

acterization of caustics in the second section, and thus the char-

acterization of curves for which the billiard ball map is integrable

and the caustics have a special property.

14



Chapter 2.

Caustics and Evolutes

The treatment in this chapter is motivated by the first lemma

within. The author first encountered the reflected distance in the

dynamics of the billiard ball map in a paper by Lazutkin [L} where

the length of a caustic and the rotation number of the map induced

on that caustic by the billiard ball map are related through the

reflected distance.

2.1. Caustics

Let fl be a convex planar domain with a smooth boundary.

Let C be a caustic for the billiard ball map on a.

Orient C, that is, split S*C to a disjoint union S*C = FS*C U

BS*C. Fix a point p E C and take +(p) E FS*C, --(p) E BS*C

(there is exactly one choice for each of these). Then we define

points q+, q- E C which are the forward and backward return

points of p. q+ is such that there are e-_(q+) E BS*+C and

15



t( _ (q+)) 2 0 and t( +(p)) > 0 with

P(Ot(C-(q+)) +(q+)) =

-P(kt(C+(P))t+(P)) E B*8fl,

and q- E C is such that there are e+(q-) E FS*_ C and t(f+(q-)),

t( (p)) > 0 with

P (Ot(j+ (q-))e+ (q-))

- -P((t(E-(p))e-(p)) E B*8a.

Definition 2.1.1: For a,b E C denote by labi the length of the arc

segment of C between a and b. With t((-(p)), t(e+(p)), t(6-(q+)),

and t( +(q-)) as above, we set

FQ(p, C, afl) = t(e+(p)) + t( _(q+)) - |q+p|

which we call the forward reflected distance of C from 80

at p. (See the accompanying figure.)

BQ(pC, 80) = |pq-I -t(&+(q-)) -t( -(p))

is the backward reflected distance of C from 80 at p.

Note that we could define the "reflected distance" for any curve

C inside 0 (C not necessarily a caustic) by replacing p and -p

above by 7r, and B*a90 by a, but this seems to be special to two

dimensions.

Lemma 2: If C is a caustic for the billiard ball map on 80 (0 con-

vex with smooth boundary), then the forward reflected distance,

16



Figure 2.1: The reflected distance of C from 8 at p.

FQ(p,C,8O), is independent of the point p, as is the backward

reflected distance.

proof: Consider FQ(p,C,aO).

For each ( E S*C let t( ) denote the first t > 0 with 4tC E

SinR 2 . Let

p: SinR2 -- B* a

be as in the first section.

Fix p,p' EC, let q,q' EC be their forward return points, let

f C C be the arc segment between p and p', and let b C C be

the arc segment between q and q'. Consider the submanifolds

F,B C S*R2 given by

F = { | e FS;C,0 < t < t

and

B = {4 E| BS*C,0 < t < t()}.

17



Figure 2.2: The forward and backward Lagrangians of C.

We define a map r : F, B -+ B*8a. If e E F or e E B, e = pt. for

some e. E S*C, and r(e) = p4t(f.-t.)e (this is geodesic translation

to 8 followed by projection to B*af).

It is known [GM] that the billiard ball map is symplectic with

respect to the cannonical 2-form, w, on B*dn. This symplectic

structure was discovered by Birkhoff who viewed the billiard ball

map as a twist map on an annulus. In this setting, the billiard

ball is represented by its trajectory and the coordinates in the

annulus are the angle which a trajectory makes with the tangent

to the boundary and the point on the boundary at which it hits

the boundary (given by arclength). In these coords, the 2-form

is given by sin(angle)d(arclength)d(angle). We claim that F and

B, the forward and backward flowouts above, are Lagrangian with

respect to r*w. To see this, note that r*w is invariant under 4t, the

geodesic flow, and that C is invariant under the billiard ball map.

18



So the only question is whether r*w is degenerate on T R2 f F, and

on T R2 flB. But these intersections are in T*C (T*C C T R2 ),

and F and B are Lagrangian. Using Stoke's theorem we obtain

0 = f W = fw ) Z(MW,

and

0 = fB W= ftEB t(O)w.
Jaf JIee(aB)

To conclude the proof for FQ, observe that

(*)f F B( )w+ fB =

FQ(p, C, 8) - FQ(p', C, 80) + I Ip( +(P))| - |p(-(P

where A-Bc 80 is 7r(B) n 80 = 7r(F) af 80, and for each PEA-B,

+(P) E FF and e(P) E Bp. When C is a caustic, Ip( +(P))| =

jp(e_(P))|, so the integral on the left hand side of (*) is zero, and

O=FQ(p,C,80)-FQ(p',Can).

The proof that BQ(p,C,80)=BQ(p',C,80) is exactly the same

with the signs and the roles of p and q (and of p' and q') re-

versed. In fact, the argument above shows that -BQ(q, C, 80)

equals -BQ(q', C,80), and we may choose the q-s first, picking

the p-s to be their backward return points.

2.2. Evolutes

Let 0 be a convex planar domain with a smooth boundary

which is integrable up to C. In light of the lemma of the previous

19



section, there is a relation between an and each of the caustics for

the billiard ball map ona8.

Definition 2.2.1: For QER, and Cc fl, a caustic for the billiard

ball map on 8l, we say that 80 is the Q-evolute of C if Q>O

and FQ(p,C,8O)=Q for pEC, or if Q < 0 and BQ(p,C,80)=Q for

pEC.

We identify smooth convex curves in R 2 by their curvature (see, for

example, [MM]). That is, to each smooth convex curve we associate

its curvature when the curve is parameterized by tangent angle,

and to each k E C**(R/27rZ; R), with

f 2r dt 2w dt

J cos k(t) = j sin(t) -= 0,

we associate the curve with coordinates

fG dtz(6) = 0 cos(t) ,fo k(t )

le dty(6) = sin(t) .
YO= o k(t )

We will call the space of all such curvatures C* (S; R+).

In this setting we have

Definition 2.2.2:

L : R x C**(S; R+) -> C*'(S; R+)

which takes (Q,k) to v, where v is the curvature of the Q-evolute of

the curve C whose curvature is k, is called the curvature relating

operator.

20



Proposition 3: In the setting of the previous two definitions

£(-Qk) = L(Qk).

Proof: If we change the orientation of C (whose curvature is k),

we do not change the curvature of the evolute. But FQ(p,C,80)=

-BQ(q,C,80) =FQ(p,C,a8) where q is the forward return point

of p, and C is C with the reversed orientation.

2.3. Curvature Relations

We would like to compute at least part of the curvature relating

operator, L.

Let a be a simple closed (strictly) convex smooth planar curve

given by its tangent angle (0 < 0 < 27r) and its curvature (0 <

kC(0)); a() e dt Ya 1  dt
a(6) =( cos(t) dt, y. + asin(t) ).

fo k(t) o k(t)

Let b be the Q-evolute of a (0 < Q), given by its tangent angle,

4, and curvature, v. Then

b(4) = a(01) + ti(cos 01, sin 01) = a(02 ) + t 2 (cos 62 ,sin 62),

and

Q = t1 + t 2 - (S2 - Si),

where s is the arclength along a.

We get

t1 - {sin 6212 cos(t)k~1 (t)dt
sin(62 - 01) fe1

21



Figure 2.3: The curve b is the Q-evolute of a

62
- COS 2 f sin(t)k-'dt},

1 1

t2 = . {COS 61 02sin(t)k-1(t)dt
sin(62 - 01) e

02
- sin 0 1 cos(t)k-ldt},

and
02

s2 - Si = 1 k~'(t)dt.

Thus,

1 a
Q = n - 0 {sin(t -0 1)+sin(02 -t) -sin(02 -0 1)}k~1(t)dt.

sin(02 - 01) 01

Fix 01, and consider the left hand side of the equation for Q
above as a function of 02. Set

02

g(02) = {sin(t - 01) + sin(02 - t) - sin(02 - 01)}k~ 1(t)dt.

Let A = 02 - 01, and g(A) = i(02).

22



It is clear that g is C* in A (since a02 = a when 01 is fixed),

and we find (using the calculation presented in the next section)

that

g(A) = 1-k 1 (01)A 4 + O(A 5 ).
24

It is also clear that when k is positive g (and therefore g) is

smooth in 01 - it involves only k- 1 and its derivatives. We set

b(01) = (x(01 ),y(01)), so that its curvature is

v(01) = (X'y" - y'X")/|(I', y') I.

Since, by assumption, a is a caustic for b, 1 = 1+ !A. Using this

we can find an expression for v(4) in terms of k and A (as we do

in the following section to order 4). This expression is smooth in

A and in 01, and hence, when A is sufficiently small, v is smooth

in A and in 4.

We summarize in

Proposition 4: £(Q,k) is a differential operator which is smooth

in Q2/3, for sufficiently small Q.

Proof: From the previous calculations Q = A3 (0 1 )g(A), with

g smooth in A and in 01 and g(O) = (12k)- 1(01). By the first

proposition in the first chapter, if Q is sufficiently small, then k >

0, and because the region between C and 8fl is compact, |g(A) -

(12k)-11 < min{1(12k)-1 }, and A ~ Q1/3.

Setting A = cQ1/3 + f(Q, A) shows that f ~ Q2/3 , and contin-

uing in this fashion A = f(Q'/ 3) where f is smooth in Q 1/ 3 and in

01.

23



L is smooth in A and 01, again from the calculation, so L(Q, k)

is smooth in Q113 and in 61. Since 4 = 61+ !A, if A is sufficiently

small, L is smooth in A and q. But the proposition preceding the

calculation shows that C(Q,k) = £(-Q,k), and Q and Q1/3 have

the same sign. So L (Q, k) is in C**(SO; R) and is smooth in Q2/3.
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Chapter 3.

Caustics in Integrable Domains

In this chapter we will take a closer look at the curvature re-

lating operator in a region for which the billiard ball map is in-

tegrable. This will shed light on the structure of the curvature

relating operator, and thus on the nature of such regions.

3.1. The Group Property

For the circle, parameterized by arclength, s, and with (s, 0) E

S;R 2 , the billiard ball map is given by #(s,0) = (s + 26,0) (See

figure). The caustics for the billiard ball map on the circle are

concentric circles, so the billiard ball map on any given caustic

is itself integrable and the caustics for the billiard ball map on

the caustic are also caustics for the billiard ball map on the outer

circle.

Definition 3.1.1: We say that the caustics for the billiard ball

map on a circle satisfy the group property; the evolute of the

evolute of a given caustic is also the evolute of that caustic.

25



Figure 3.1: The billiard ball map on the circle.

The caustics for the billiard ball map on the ellipse also satisfy the

group property for caustics not too far from the boundary [GM]

and, indeed, if the ellipses are the only integrable planar curves,

then all integrable planar curves do. However, the example of

the next section does not satisfy the group property leading us

to search for a characterisation of curves which satify the group

property.

3.2. A Limiting Example

Here we construct an example for which the group property

fails; there is a smooth curve with an evolute whose evolute is not

an evolute of the original curve.

We wish to construct a smooth convex curve, C, which is the

circle on one half and lies inside the circle on the other half (see

26



Figure 3.2: The curve, C, its evolutes and tangent lines.

figure).

We can do this by specifying the curvature, k, of this curve:

let k be a C* positive function on R with k(O) = 1 for 7r < 0 < 27r,

and
12x dg 2r dt

Scost sint =0
S k(t) o k(t)

and for 0 < 0 <7r,

(le dt\
2

( cost 2
o (t)

sint dt 2
t <1.
k(t)

This gives us the curvature of C, and hence C itself. In fact, we

can construct such a C directly: Set

1- a exp- tan2(z-r/2) , x E [0, 7r)

, x E [7r, 27r)

with 0 < a < 1/(5M) where M = suptER(1 + t 2 ) exp-t 2 = 1.

27
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Set a(x) = (r(x) sin x, -r(x) cos x) E R2 . Then a is C* and it

is convex - because (1 - a exp~t -r/2)) sin x has a single local

maximum at x = 7r/2.

Consider two evolutes of C, Ei the Qi evolute of C (for some

Qi > 0) and E2 the Q2 evolute of C (Qi < Q2). Also consider the

lines 1 and m tangent to C at 0 = r and 0 = 0 respectively. (See

previous figure.) Between the tangent lines, E1 and E 2 are exactly

the evolutes of a circle, and hence are circles themselves.

We claim that on the right of E1 fl, E1 is not a circle, that is,

for points on Ei near E1 lI but with smaller tangent angle, E1 is

not a circle.

Proof: This is a consequence of the discussion (in the first

chapter) of caustics and integral curves. Because it is interesting

in its own right, we state

Lemma 5: If C1 and C2 are both caustics for 80, and they agree

on a segment, a, then they agree on the image of a reflected from

80. In the language of the section on caustics (the first section

of the second chapter), if a is a segment of C1 with a C C2 , and

a' is the set of forward or backward return points of a, then o' E

C1f nC 2.

Proof: a determines an integral curve segment, E, as in proposi-

tion 1, and Ran(E) determines a curve segment, &, where Ran is

reflection at 80. Since C1 and C2 are caustics, & c C1  C2. But

Thus, if E1 were a circle in some interval on the right of E1 lI,
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then C would agree with a circle in some interval to the right of

C fl , which is a contradiction and proves the claim.

Now the evolute of E1 , call it E', is a circle between ' and

m', where ' and m' are the tangents to El at E1 f 1 and E1 inm

(respectively). Using the previous claim, E' is not a circle (imme-

diately) to the right of E' n '.

If we choose E' to be that evolute of E1 which agrees with E2

between ' and m', then the above proves that E' and E2 are not

the same providing the wished for example.

3.3. The Curvature Relating Operator

For a curvature function, k, corresponding to a caustic which

belongs to a collection of caustics satifying the group property, and

any (sufficiently small) P and Q, there is an R with

C(Q, L(P, k))(4) = C (R, k)(4),V E [0, 27r].

Since L(Q, k) is smooth in Q2/s,

E ~ Lo(k)Q20/,
j=0

which leads to

Definition 3.3.1: A simple smooth convex closed curve with cur-

vature k such that for some fixed e and any 0 < Q < e and any N,

3 R and c E R with

$ £n($ £,(k)Q2 /3)Q 2n/3 = $ n(k)R2n/3
n=0 j=0 n=O
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is said to satisfy the formal group property.

The immediate question is whether this is a property of C,

that is, it holds for all curvatures, or is a property which singles

out curves satisfying the group property.

We answer this question by carrying out the computation of L

to (as it turns out) almost two non-trivial terms.

We know that C (0, k) = k so Lo is the identity.

Fix 0 < P, Q, set v = C (P, k) and w = L (Q, k), and assume

that w = C(R, k) for some 0 < R. w is C* in Q2/3 and in R 2/3 ,

and 0 < w when 0 < k and P and Q are sufficiently small. In

addition, v is smooth in P2/3 and w is smooth in P2 /3 when P and

Q are small (because then 0 < v). Also, R=P when Q=0, and

R=Q when P=0, so

R 2/3 = p2/ 3 + +2/ p 2/3 Q 2/3G(kP 2/3, Q2/ 3)

with G a constant determined by the caustic with curvature k (G

is a constant, since P, Q, and R are constants).

For L(Q, (P, k)) = £(R, k) to hold to fourth order we must

have (with p = p2/3, q Q2/ 3, r = R2/3)

£ok+ ik(p+ q) + L kpq + L2k(q2 + p 2 )

= ok + 1kr + 2kr2 +0 6

= £ok + £ik(p + q) + £1pqG(k, 0,0) + £ 2 k(p 2 + pq + q2 ) +06,

or

2 k - L1 kG(k, 0,0) - 2L 2 k = 0.
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We do not know G above, but in the fourth order terms G(k,0,0)

affects the terms involving two or fewer derivatives and not those

involving three or four derivatives. We also know that the above

equation is satisfied by ellipses, so that if we find the terms in the

equation which involve three and four derivatives, we can complete

the equation by using the fact that it is satisfied by ellipses and

including a constant multiple of L1.

For what follows we simplify the notation by writing 6 for 61,

and k for k(6). When we wish to evaluate k at another point, say

4, we will write k(4) only for the leading terms of an expression,

with the understanding that the k-s following it are evaluated at

the same point. Recalling our expression for Q,

_ 1 0
Q = 1 2 sin(62 - t)k-'(t)dt

smn(62 - 01) (e

+ 0 sin(t - 61)k-'(t)dt

- 2 k-'(t)dt.

We will consider 61 fixed, and solve for 62 - 61 in terms of Q.

We call the first second and third integrals above I1, 12, and 13

respectively. To simplify notation let 8 denote differentiation with

respect to 62, and set A = 62 - 61.

8l = cos 62  cos tk-1(t) dt + sin 62 sintk-'(t)dt,

and BIl(A = 0) = 0.

821 = k~l - I1,
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which allows us to easily find

I1= 1k-A2+
2!

1 (k- 1)'A3

3!

+ [(k1)" - k~ 1]A4 + ! [(k~1 )(3) - (k~1)']A 5

+ [(k - (k~1)" + k~1]A 6

+ - [(k (5)- (k- 1)(3) + (k-1)']A 7 + O(AI),

where f' = af(o1). Similarly,

12 = k~1A2 +
2 !(k-1)'A

+ 1[3(k1)" - (k-1)]A 4 + 1 [4(k- 1 )( 3) - 4(k-1 )']A 5
4! 5!

+ 1[5(k-1)(4) 10(k~ 1)" + k~1]A 6

+-[6(k-1)(5) - 20(k-1)( 3) + 6(k~1 )']A 7 + O(A 8 )

and,

13 = k~ 1A + 2(k-1)'A2

+ 1 (k-1 )(4)AS +

sinA =1+

+ 1(k-1)"A + (k~1)(3)A4

+ O(A 7).

!A2 +
6

7 A4 + O(A 6 ),360

Q = (Il + 12)/(sin A) - 13

- 1 k~A 3

12

+ (-1 k 2 k" +
80

S1 k~ 2 k'A 4

24

-k 3 (k') 2 + 1 k-')A 5
40 120
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11 1~'k 1 _

+( 360k~-2k0)+ k-6k'k"- k~4(k) - 1 k~2 k')A6 + O(A7).
360 060240

For convenience, we set q=Q'/ 3 and denote 61 by 6. We are in-

terested in 2 and in the first two terms of the group property,

so we solve using the two highest derivative terms for each power

of q greater than two, and we ommit products of more than two

differentiated terms since they lead to lower order terms. In what

follows, equivalence is equivalence modulo lower order and (three

or more) mixed derivative terms.

We know that A is a smooth function of q, so we can solve

for it iteratively (setting A = (12) 1/3k/ 3q + b(k)q 2, and solving for

b(k) by plugging into the above equation, etc.).

A = (12)1/13k" 3 q + -(12)/k-k'q- + ( k" - k-1(k')2)qs
6 5 5

+(12)1/( k0/3k() - 1 k-2/3k'k")q4 + O(q5 ).
15 10

Recall that b(4) = a(6) + ti(cos 0,sin6), which when we solve

for ti, will give us an expression for b, parameterized (unfortu-

nately) by 6. This will enable us to compute the curvature of b.

Denote ti by t, and recall that

t = ( sin(6 + A - s)k-lds.
sin(A) fe

so that (using our expansions for I1 and for 1/ sin(A) )

t = -k~A - -k~2k'A2 + - (-k~2k" + 2k-3 (k') 2 + k-1) A3

2 6 24

1 7
+ (-k-2k0) + 6k~3 k'k" - 6k-4 (k')3 - -k 2k') A'4 + O(A 5 ).

120 3
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And,

t (12)1/3k-2/3 q 1 (12)2/3k-4/3k'q2
2 12

+(-1k-k" + 7 k-2(k') 2 )q3

5 3

+(12)1/3(- k -2/3k(3) + 1 k-5/3 k'k")q + 05.
30 10

(Here 0,, denotes terms of order n and greater.)

Let X and Y denote the coordinates of b, and x and y denote

the coordinates of the curve a, and let v denote the curvature

function for b. Then

X'YII - X"Y'
V =

and using b = a + t(cos 0,sin0)

v(O) = k + kk't - 1k t2 - k3 (t') 2 - 3k 2 k'tt' - k 3tt"
2

3 k3k'ts + 3k 4tt't"
2

+ 6k 3k't(t') 2 + 8k 4 (t') 3

1k5k'tt' + 3kt 2 (t') 2 -
2

10k 4k't (t')3

-9k 5 (t')' + -kt 3 t" - 6k 5t(t')2 t" + Os
2

- k + kk't - 1k3t2 - k3(t') 2 - 3k 2 k'tt' - k3 tt" + 3k4tt't"
2

k (0) + 1-(12) 1/3k /3 k'q
''2

+(12)2/3( k2/sk"
6

+ -k 1/(k') 2 - k5/3)q2
36 8

3k'k")qa + (12)1/3( 7k/3k'k(3) + 1 k4/2k(4))q4 + 0.
10 60 10
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The problem is, of course, that this gives v(4) in terms of a function

(of q, and depending on k) at 0. To deal with this we recall that

= (02 + 01)/2 = 0 + 1 A.
2

So,

0+ (12) 1/3kl/3k'q+ 1(12) 2/3 k~ 11 3k'q2 +( k"- 1 k-1 (k') 2)q3
2 12 10 10

+(12)1/3( 1kl/3k() - 1 k-2/3 k'k")q4 + 0,15 20

which yields (solving iteratively, and expanding the expressions

involving k(0) with each iteration)

1/ 1.. +O
0 -4 - (12) 1/ki/a(O)q + (- k + 1 k~() 2 )q3 + O).

2 20 10

Here k denotes differentiation with respect to 4, which will be

denoted in square brackets for higher derivatives (e.g. k[3I). Using

this (and in the process of obtaining it) we also find

k(0) =k(4) - (12)1/3k1/kq + 8!(12)2/3k2/s3q2

+(- k k[3- ] ick)qs + !(12)1/3k4/3k [4]q4 + O,4 20 32 '

k'(6) = k(4) - (12)kkqq + k2/3k*s92 - + 04,2 8 q

(where we use k'(6) = a4(k(6)) x (1/o0),)

k"(0) = k(4) - -(12)1/3k'I/k Iq + -(12)2/sk2/sk'Iq2 + O,
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- -(12)1/ 3 k[41q + 02,2

k1/ 3(6) = k1/3 - (12) 1/ 3k1/1 3kq
6

( I4 -4+(12)2/

+ (- 1k1/3
12

k-1/ 3(0) =

k-1 (k)2 )q 2

36

k131 + k-2/3kk)qs + 04,20

k-1/3(4) + 1(12)'/3k~1|cq

+(12)2/3(- k~2/3f + 1k-5/3 (k) 2)q2 + Os,+(2 24 k+18

and finally, k-'() = k- 1 (k)+ derivative terms xq.

We now substitute in the previous equation for v to get

V(4) =- k(#) + (12)2/3( 1 k 2/3kv~q$ k~q) +24 k~1/ (c)2

+(12)1/3( 1 k 4/3k [41-
160

3 k/kk31)q4 + 0(q').
40

To obtain the equation L - 2 = 0 we find

k + (12)2/4( k2/3k - k- 13 kk)q2 + 04,12

D m Ic + (12)2/3(! k2/sk[41 _ 1k-11ckl[l)q + 03,24 18

v2/3 k 2/ 3 + (12)2/*1( 1 k13k - 1 k-2/3 (k )2)q2 + 04,36 27

36

k (3) (0) =- k 1(4)

-- k613)q 2



(k) + (12)2/s-k2/ck[3]q2 + 04,
12

and v-1/ 3 = k-1/+derivative terms xq2 . (Here all terms are

evaluated at <.)

Thus,

i( - kl/kklsl),48 12

and

0 = L - 2,2 =-(12)'/s( 1 k'/3k '4 + kl/Sickl'l).
120 15

This resulting equation must be satisfied by the ellipse, whose

curvature, given in terms of its tangent angle and the major and

minor axes, is

k(0) = (ab) 2 (a2 sin2 0 + b2 cos 2 0)3/2,

and so,

Theorem 6: The equation satisfied by the curvature of a convex

smooth curve whose evolutes satisfy the group property is

k(4) = -8k-1kk(3)+k-1(C)2+- k-2(k)2Ik+4c- k-3(k )4-36k-1(k)2
3 9

+a(k)(k-2/sk _ i k5/3(k)2 _ k/3),24 18 8

where a(k) is a constant depending on the caustic with curvature

k, and the equation is chosen so that it is 0 for ellipses.
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We know that this equation is satisfied by the curvature of

any ellipse and its rotations, and we think that these are the only

convex closed curves whose curvatures satisfy this equation.

We can show this if a(k)=O as follows. We first observe that

the curvature of any simple closed curve (parameterized by tangent

angle) is periodic (with period 27r), and that if we set y = -6 and

consider the curvature as a function of y, the equation remains the

same (a(k) is a constant).

Next observe that the equation is homogeneous (if k(G) satisfies

the equation, so does ck(6) ), so, given that k is never zero, we

may assume that k(0) = 1. Since the curve is closed, its curvature

must have a minimum, so by rotating the curve we may assume

that k(0) = 0, and that k(O) > 0. (We may now rescale so that

k(O) = 1 still holds.) Finally, because the equation is invariant

under the change y = -0 and k(0) = 0, k(3)(0) = -k( 3 )(0), and

k(3)(0) = 0.

Looking at the curvature of the ellipse as given above, we see

that k(0) = a/b2 can be scaled to become 1, the curvature has a

minimum at 6 = 0, Ic(0) = - 3 can be set to any non-negative

value, and k( 3)(0) = 0. Since the group property equation has

unique positive solutions (it is well posed), the curvature of any

closed curve satisfying the group property equation agrees, after

rotation and rescaling, with an ellipse, and thus represents an el-

lipse.

Alternatively, as noted in the previous section, to be the cur-

vature of a simple closed curve, the curvature (given as a function
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of tangent angle) must be periodic (of period 27r) and must satisfy

the closure conditions

f2r 
2w

Jcos tk1(t) dt = sin tk'(t)dt = 0.

We could make use of this by letting r(6) be the radius of curvature

(= k- 1 (0)). Then r is periodic of period 27r and is continuous (since

k is assumed to be strictly positive and smooth), so

00

r(G) = ao + E a,, cos(ne) + bnsin(nO),
n=1

and the closure conditions simply require that ai = bi = 0. We

want to show that the closure conditions are not satisfied by a

fourth solution of the group property equation, which we could do

by plugging the sum representation of r into the group property

equation for r - the equation obtained by substituting r- 1 for k in

the group property equation.

It is my hope that this result will be usefull in understanding

the spectral properties of ellipses and that integrable curves can

be shown to satisfy the group property so that the conjecture that

the only integrable curves in two space are ellipses can be proved.
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Chapter 4.

Reflection From a Boundary with

Negative Curvature

In this chapter we consider an example of geodesics reflected

away from the boundary of a convex region. Let X be the torus

X = R 2 /Z 2 endowed with the metric from R 2 , and let 0 C X be

an open convex region with a smooth boundary, 80. We define

the billiard ball map on outward pointing elements of B*80 (or

SaOR 2 ) as in the first chapter, for those elements which return to

anl.

Remark: In this example any geodesic leaving 8f0 returns to

80, that is, if E Tj,(X\f1) then 3t > O(t < oo) with 4Ot E T;,X,

where 4t is geodesic flow induced from R 2. Proof: If is outward

pointing (as assumed), then its orbit under geodesic flow is either

rational - in which case the orbit is closed (or returns to 80 before

closing), or it is irrational - in which case the orbit is dense and,

again, must hit 80 in finite time.

For convenience we will consider the torus with 0 deleted to
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Figure 4.1: The flat torus with a convex region deleted.

be R 2 with Z 2 copies of fl deleted. (See figure.) It is clear that we

may assume that f f([0, 1] x [0,1]) C (0,1) x (0, 1). This viewpoint

is our standing assumption for the remainder of this example. In

this setting, we code each copy of fl by the coordinates (n,m) if it

is contained in (n,n+1) x (m,m+1) and we call it the (n,m) copy

of n.

We restrict our attention to S (X \ 0).

Definition 4..2: For e E S*R 2 let r(e) E SR 2 be such that

e(r(e)) = 1. For e1, e2 E S*R2 we call arccos 2(r(e1)) = e(r(62))

the angle between e1 and 2, which we denote by e1 o e2.

Let P1, P2 E all, E Sja(X \ n), e1 # 2, then either there are

ti,t 2 E R such that 7r(4k(e 1 )) = 7r((2)), or there are no such

ti and t 2 . In fact, since n is convex, ti < 0 if and only if t 2 < 0.

41
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Figure 4.2: The angle between el and e2 is negative, while

el 0 e2 > 0.

Definition 4..3: If t, and t 2 as above exist, we call

-sign(t 2) arccos 4t 2 6(r (0t, ei)) = -sign(ti) arccos 4t, 1 l(r (42 z6))

the angle between e and 6. If no such ti and t 2 exist, the

angle between e and 2 is zero (they are parallel). See figure. We

denote this angle by 6 o e2 (as well).

In the setting of So (X \ (1), which is our setting for the remainder

of this example, we will view the billiard ball map, #l, as

P- 1 o0 o 0p : S8iO(X\ n) -+ Sin (X \ 1).

We will still call it the billiard ball map and denote it by #.

The key tool for this example is

Lemma 7: Let l, 6 E Sjo(X\(I) be such that 7rfl(el) and 7r,3(6)

are contained in the same copy of 80 (7r : T*R2 -+ R 2 the projec-

tion.)
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Figure 4.3: The first case: t < 0.

Then the angle between fl((1) and #(62) is at least as large as the

angle between e1 and -2. Moreover, if #(Ci) o #(2) = eio 2, then

#( i) = (1 and #(2) =2.

Proof: Assume first that 10 e2 > 0, that is, that ?rot e = ?rot e2

for ti, t 2 < 0 (see figure). Then (with angles as in the figure)

1+01+02+ (7r-A) = 27r and a+(O1+A)+(7r-A)+(02 +A) = 27r,

so - = a + 2A.

By convexity of 80, A > 0, so -y > a, unless A = 7r, that is,

el and e2 are tangent to 8fl (A < 7r since e1 and e2 originate in

the same copy of n.)

In the second case, assume that 1 o < 0 and that if t(e) is

the least t>0 such that vrqe)e E an, then ti < t(e 1 ),t 2 < t( 2 )

(see figure). If the tangents at 7r#l(e 1) and 7r#( 2 ) were simply the

line fl( 1)irfl( 2 ), the angle between fl(e1) and #(2),~, would be

smaller than -y (the actual angle), using the convexity of a. But
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Figure 4.4: The second case: t(e) > t > 0.

= a and hence #(e1) o #2 = I > 0.

Finally, assume that e1 o e2 < 0 and ti > t(e1 ) and t 2 >

t(62 ). We may assume #(ei)o 0(2) < 0 for otherwise we are done.

Reversing the direction of the flow, and comparing the situation

to that of the first and second cases, we see that a > -y. Thus

e1 o e2 = -a < -- Y = $(1) o 3 (e2).

The lemma enables us to prove

Theorem 8: Lengths of closed geodesics in (R 2 /Z 2 ) \ ( are iso-

lated, that is, for any given length I E R, there are at most finitely

many geodesics of length 1, and there is a 6 > 0 such that there

are no geodesics of length ' with ' E (I - 6,1) U(l, + 6).

Proof: Using the preceding lemma, we show that closed geodesics

which are not tangent to B0 are completely determined by the

sequence of copies of 80 which they visit: If the closed geodesics
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Figure 4.5: The third case: t > t( ) > 0.

starting out at (1 and at 2 visit the same copies of a8 and have

periods m and n, then #mn(e1)OI mn((2) > io (2, but #"'"((,) =

so either e1 = e2 or they are parallel and m=n=1.

Fix I > 0. At most (I + 1)2 copies of f intersect with a cir-

cle of radius 1/2 from any given point. Hence there are at most

(I + 1)2! arrangements of copies of 0. There may be at most 2

geodesics that are tangent to a for each pair of copies of an -

they are represented by a line tangent to the two copies in the R 2

representation of this situation. Thus there are at most

((1+1)2 + ( + 1)21
2

closed geodesics of length bounded by 1.

Note that two geodesics which are reflected infinitely often

from the same copies of an might be different - they may, for
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example, oscillate between two copies of 80 until they become

parallel.
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