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Abstract

One of the challenges of density estimation as it is used in machine learning is that usu-

ally the data are multivariate and often the dimensionality is large. Operating with joint

distributions over multidimensional domains raises specific problems that are not encoun-

tered in the univariate case. Graphical models are representations of joint densities that are

specifically tailored to address these problems. They take advantage of the (conditional)

independencies between subsets of variables in the domain which they represent by means

of a graph. When the graph is sparse, graphical models provide an excellent support for hu-

man intuition and allow for efficient inference algorithms. However, learning the underlying

dependence graph from data is generally NP-hard.

The purpose of this thesis is to propose and to study a class of models that admits

tractable inference and learning algorithms yet is rich enough for practical applications.

This class is the class of mixtures of trees models. Mixtures of trees inherit the excellent

computational properties of tree distributions (themselves a subset of graphical models) but

combine several of them in order to augment their modeling power, thereby going beyond

the standard graphical model framework.

The thesis demonstrates the performance of the mixture of trees in density estimation

and classification tasks. In the same time it deepens the understanding of the properties of

the tree distribution as a multivariate density model. Among others, it shows that the tree

classifier implements an implicit variable selection mechanism.

An algorithm for learning mixtures of trees from data is introduced. The algorithm is

based on the the EM and the Minimum Weight Spanning Tree algorithms and is quadratic

in the dimension of the domain.
This algorithm can serve as a tool for discovering hidden variables in a special but

important class of models where, conditioned on the hidden variable, the dependencies

between the observed variables become sparse.

Finally, it is shown that in the case of sparse discrete data, the original learning algorithm

can be transformed in an algorithm that is jointly subquadratic and that in simulations

achieves speedups factors of up to a thousand.

Thesis Supervisor: Michael I. Jordan

Title: Professor, Department of Brain Sciences
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Chapter 1

Introduction

Cetatea siderald in stricta-i descarnare
Imi dezvelegte-n Numdr vertebra ei de fier.

Ion Barbu
-Pytagora
The astral city in naked rigor

Displays its iron spine - the Number.

1.1 Density estimation in multidimensional domains

Probability theory is a powerful and general formalism that has successfully been applied

in a variety of scientific and technical fields. In the field of machine learning, and especially

in what is known as unsupervised learning, the probabilistic approach has proven to be

particularly fruitful.

The task of unsupervised learning is that, given a set of observations, or data, of pro-

ducing a model or description of the data. It is often the case that the data is assumed

to be generated by some [stationary] process and building a model represents building a

description of that process. In any definition of learning is present an implicit assumption

of redundancy: the assumption that the description of the data is more compact than the

data themselves or that the model constructed from the present data can predict [properties
of] future observations from the same source.

As opposed to supervised learning, where learning is performed in view of a specified task

and the data presented to the learner are labeled consequently as "inputs" and "outputs"

of the task, in unsupervised learning there are no "output" variables and the the envisioned

usage of the model is not known at the time of learning. For example, after clustering a

data set, one may be interested only in the number of clusters, or in the shapes of the

clusters for analysis purposes, or one may want to classify future observations as belonging

to one (or more) of the discovered clusters (as in document classification), or one may use

the model for lossy data compression (as in vector quantization).
Density estimation is the most general form of unsupervised learning and provides a

fully probabilistic approach to unsupervised learning. Expressing the domain knowledge

as a probability distribution allows us to formulate the learning problem in a principled

way, as a data compression problem (or, equivalently, as a maximum likelihood estimation

problem). When prior knowledge exists, it is specified as a prior distribution over the class

of models, and the task is one of Bayesian model selection or Bayesian model averaging.

Parametric density estimation with its probabilistic framework also enables us to sepa-

rate what we consider as "essential" in the description of the data from what we consider
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inessential or "random"'.

One of the challenges of density estimation as it is used in machine learning is that
usually the data are multivariate and often the dimensionality is large. Examples of domains
with typically high data dimensionality are pattern recognition, image processing, text
classification, diagnosis systems, computational biology and genetics. Dealing with joint
distributions over multivariate domains raises specific problems that are not encountered
in the univariate case. Distributions over domains with more than 3 dimensions are hard
to visualize and to represent intuitively. If the variables are discrete, the size of the state-
space grows exponentially with the number of dimensions. For continuous (and bounded)
domains, the number of data points necessary to achieve a certain density of points per unit
volume also increases exponentially in the number of dimensions. One other way of seeing
this is that if the radius of the neighborhood around a data point is kept fixed while the
number of dimensions, in the forthcoming denoted by n, is increasing the relative volume
of that neighborhood is exponentially decreasing. This constitutes a problem for non-
parametric models. While the possibilities of gathering data are usually limited by physical
constraints, the increase in the number of variables leads, in the case of a parametric model
class, to an increase in the number of parameters of the model and consequently to the
phenomenon of overfitting. Moreover, the increased dimensionality of the parameter space
may lead to an exponential increase in the computational demands for finding an optimal
set of parameters. This ensemble of difficulties related to modeling multivariate data is
known as the curse of dimensionality.

Graphical models are models of joint densities that, without attempting to eliminate
the curse of dimensionality, limit its effects to the strictly necessary. They do so by taking
advantage of the independences existing between (subsets of) variables in the domain. In
the cases when the dependencies are sparse (in a way that will be formalized later on) and
their pattern is known, graphical models allow for efficient inference algorithms. In these
cases, as a side-result, the graphical representation is intuitive and easy to visualize and to
manage by humans as well.

1.2 Introduction by example

Before discussing graphical models, let us illustrate the task of density estimation by an
example. The domain represented in figure 1-1 is the DNA splice junction domain (briefly
SPLICE) that will be encountered in the Experiments section. It consists of 61 discrete
variables; 60 of them, called "site 1", ... "site 60" represent consecutive sites in a DNA
sequence. They can each take 4 values, denoted by the symbols A, C, G, T representing the
4 bases that make up the nucleic acid. The variable called "junction" denoted the fact that,
sometimes, the middle of the sequence represents a splice junction. A splice junction is the
place where a section of non-coding DNA (called intron) meets a section of coding DNA (or
exon). The "junction" variable takes 3 values: El (exon-intron) when the first 30 variables
belong to the exon and the next 30 are the beginning of the intron, IE (intron-exon) when
the reverse happens and "none" whe the presented DNA section contains no junction 2 . An
observation or data point is an observed instantiation for all the variables in the domain

'The last statement reveals the ill-definedness of "task-free" or purely unsupervised learning: what is
essential for one task may be superfluous for another. Probability theory cannot overcome this difficulty
but it can provide us with a better understanding of the assumptions underlying the models that we are
constructing.

2The data are such as a junction appears in the middle position or not at all.
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Figure 1-1: The DNA splice junction domain.

(in our case, a DNA sequence together with the corresponding value for the "junction"
variable).

In density estimation, the assumption is that the observed data are generated by some
underlying probabilistic process and the goal of learning is to reconstruct this process based
on the observed data. This reconstruction, or or any approximation of thereof, is termed
as a model. Therefore, in this thesis, a model will be always a joint probability distribution
over the variables in the domain. This distribution incorporates our knowledge about the
domain. For example, a model for the SPLICE domain, is expected to assign relatively
high probability to the sequences that are biologically plausible (among them the sequences
observed in the data set) and a probability close to 0 to implausible sequences. Moreover,
a plausible sequence coupled with the correct value for the "junction" variable shoud have
a high probability, whereas the same sequence coupled with any of the other two values for
the "junction" variables should receive a zero probability.

The state space, i.e. the set of all possible configurations of the 61 variables, has a size of
3 x 460 1013. It is impossible to explicitly assign a probability to each configuration and
therefore we have to construct more compact (from the storage point of view) and tractable
(from the computation point of view) representations of probability distributions. To avoid
the curse of dimensionality, we require that the models have a number of parameters that is
small or slowly increasing with the dimension and that learning the models from data can
also be done efficiently. In the next section we shall see that graphical probability models,
have to first property but not fully satisfy the second requirement. Trees, a subclass of
graphical models, enjoy both properties but sometimes need to be combined in a mixture
to increase their modeling power.

In the present example, there is a natural ordering of the variables in a sequence. In
other examples (Digits, Bars) the variables are arranged on a two-dimensional grid. But,
in general, there is not necessary to have any spatial relationship between the variables in
the domain. In the forthcoming, we will discuss arranging the variables in a graph. In this
case, the graph may, but is not required to match the spatial arrangement of the variables.

1.3 Graphical models of conditional independence

1.3.1 Examples of established belief network classes

Here we introduce graphical models of conditional independence or in short graphical mod-
els. As [54] describes them, graphical models are "a computation-minded interpretation of
probability theory, an interpretation that exposes the qualitative nature of this centuries-old
formalism, its compatibility with human intuition and, most importantly, its amenability
to network representation and to parallel and distributed computation.". Graphical mod-
els are also known as belief networks and in the forthcoming the two terms shall be used
interchangeably.

We define probabilistic conditional independence as follows: If A, B, C are disjoint sets
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Figure 1-2: An example of a Bayes net (a) and of a Markov net (b) over 5 variables.

of variables, we say that A and B are independent given C, if the following relationship
holds: PABIC - PAjCPBIC for all configurations of A, B and C. In the graphical models
language we say that C separates the sets A, B and we write

A _L B I C (1.1)

Equivalently, two variable sets are (conditionally) independent when knowing one does
not affect our knowledge about the other. Graphical models, by taking independences into
account, avoid processing irrelevant information where possible. This means that using
a graphical model is at one's advantage in the measure that the variables in the domain
can be grouped into (conditionally) independent subsets. For a domain where there are no
independences a graphical model reduces to a n-way probability table or some other generic
function of n variables.

A belief network encodes independences by means of a graph in the following way:
each variable v is associated with a vertex of the graph. The graph's topology is used to
represent dependencies. More rigorously, the absence of an edge indicates an independence
relationship. This graph is called the structure of the belief network. The most common
classes of belief networks are:

" Markov nets

" Bayes nets

" decomposable models

* chain graphs

A Markov net (better known as a Markov random field) is defined by a structure that
is an undirected graph with arbitrary topology. Two variables that are connected by an
edge are neighbors. The independences that a Markov net expresses are summarized by
the global Markov property: a variable is independent of all the others given its neighbors.
Figure 1-2(b) shows a Markov net and illustrates some of the independence relationships
that it encodes. We define a clique of an undirected graph to be a maximal subset of
variables that are all neighbors of each other. The probability distribution is a product of
functions (called clique potentials) defined each on a clique of the graph. In the example of
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figure 1-2(b) the cliques are {a, b, c}, {a, d}, {d, e}, {b, e}; c I d, e I a, b; d I bj a, e; e I a l b, d
are among the independences represented by this net.

Thus, the Markov net is specified in two stages: first, a graph describes the structure of
the model. The structure implicitly defines the cliques. Second, the probability distribution
is expressed as a product of functions of the variables in each clique and some parameters.
We say that the distribution factors according to the graph. For example, a distribution
that factors according to the graph in figure 1-2 is represented by

P = pabccadde4be (1.2)

The number of variables in each clique is essential for the efficiency of the computations
carried on by the model. The fewer variables in any clique, the more efficient the model.
The totality of the parameters corresponding to the factor functions forms the parameter
set associated with the given graph structure.

Bayes nets are belief nets whose structure is a directed graph that has no directed
cycles; such a structure is called a directed acyclic graph, or shortly a DAG. We denote by
n-v an edge directed from u to v and in this case we call u the parent of v. A descendent of u
is a variable w that can be reached by a directed path starting at u; hence, the children of
U, their children, and so on, are all descendents of u. Figure 1-2(a) depicts an example of a
DAG. The independences encoded by a Bayes net are summarized by the directed Markov
property, that states that in a Bayes net, any variable is independent of its non-descendents
given its parents. The probability distribution itself is given in a factorized form that
corresponds to the independence relationships expressed by the graph. Each factor is a
function that depends on one variable and all its parents (we call this set of variables a
family). For example, in figure 1-2(a) the families are {a}, {c}, {b, c}, {b, c, d}, {d, e}. The
list of independences encoded by this net includes a I b, {a, b, c} I eld. Any distribution

with this structure can be represented as

P = PaPcPbcPbcPed (1.3)

In short, for both classes of belief nets, the model is specified by first specifying its

structure. The structure determines the subsets of "closely connected" variables (cliques

in one case, families in the other) on which we further define the factor functions (clique

potentials or conditional probabilities) that represent the model's parametrization.

Any probability distribution P that can be factored according to a graph G (DAG or

undirected) and thus possesses all the independences encoded in it is called conformal to G.

The graph G is called an I-map of P. If G is an I-map of P then only the independences

represented in G will be useful from the computational point of view even though a belief

net with structure G will be able to represent P exactly. If the distribution P has no other

dependencies then those represented by G, G is said to be a perfect map for P. For any

DAG or undirected graph there is a probability distribution P for which G is a perfect

graph. The converse is not true: there are distributions whose set of independences does

not have a perfect map.

Decomposable models. Bayes nets and Markov nets represent distinct but intersect-

ing classes of distributions. A probability distribution that can be mapped perfectly as

both a Bayes net and a Markov net is called a decomposable model. In a decomposable

model, the cliques of the undirected graph representation play a special role. They can

be arranged in a tree (i.e acyclic graph) structure called junction tree. The vertices of the

junction tree are the cliques. The intersection of two cliques that are neighbors in the tree
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is always non-void and is called a separator. Any probability distribution that is factorized
according to a decomposable model can be refactorized according to the junction tree into
clique potentials #c and separator potentials #s in a way that is called consistent and that
ensures the following important property:

The junction tree consistency property If a junction tree is consistent [38, 36] then
for each clique C C V the marginal probability of C is equal to the clique potential #c.

The factorization itself has the form

P c C(1.4)
Hs #s

From now on, any reference to a junction tree should implicitly assume that the tree
is consistent. This property endows decomposable models with a certain computational
simplicity that is exploited by several belief network algorithms. We will discuss inference
in junction trees in section 1.3.4.

Chain graphs [] are a more general category of graphical models. Their underlying
graph comprises both directed and undirected edges. Bayes nets and Markov nets are both
subclasses of chain graphs.

1.3.2 Advantages of graphical models

The advantages of a model that is factorized according to the independences between vari-
ables are of several categories:

" Flexibility and modeling power. The flexible dependence topology, complemented
by the freedom in the choice of the factor functions, makes belief network a rich and
powerful class among probabilistic models. In particular, belief networks encompass
and provide a unifying view of several other model classes (including some that are
used for supervised learning): hidden Markov models, Boltzmann machines, stochastic
neural networks, Helmholtz machines, decision trees, mixture models, naive-Bayes
models.

More important perhaps than the flexibility of the topology is the flexibility in the
usages that graphical models admit. Because a belief network represents a probability
distribution, any query that can be expressed as a function of probabilities over subsets
of variables is acceptable. This means that in particular, a belief network can be used
as a classifier for any variable of its domain, can be converted to take any two subsets
of variables as inputs and outputs respectively and to compute probabilities of the
outputs given the inputs or can be used for diagnostic purposes by computing the
most likely configuration of a set of variables given another set.

This flexibility is theoretically a property of any probability density model, but not all
density representations are endowed with the powerful inference machine that allows
one to compute arbitrary conditional probabilities and thus to take advantage of it.

* The models are easier to understand and to interpret. A wide body of practi-
cal experience shows that graphical representations of dependencies are very appealing
to the (non-technical) users of statistical models of data. Bayes nets, which allow for
the interpretation of a directed edge u- as a causal effect of u on v, are particularly
appreciated as a means of knowledge elicitation from human domain experts. More-
over, in a Bayes net the parameters represent conditional probabilities; it is found that

20



specifying or operating with conditional probabilities is much easier for a human than

operating with other representations (as for example, specifying a joint probability)

[54].

The outputs of the model, being probabilities, have a clear meaning. If we give these

probabilities the interpretation of degrees of belief, as advocated by [54], then a belief

network is a tool for reasoning under uncertainty.

" Advantages in learning the parameters from data for a given structure.

More independences mean fewer free parameters compared to a full probability model

(i.e. a model with no independences) over the same set of variables. Each parameter

appears in a function of only a subset of the variables, thus depends on fewer variables.

Under certain parametrizations that are possible for any Bayes net or Markov net

structure, this allows for independent estimation of parameters in different factors.

In general, for finite amounts of data, a smaller number of (independent) parameters

implies an increased accuracy in the estimation of each parameter and thus a lower

model variance.

" Hidden variables and missing data. A hidden variable is a variable whose value

is never observed 3 . Other variables may on some occasions be observed, but not in

others. When the latter happens, we say that the current observation of the domain

has a missing value for that variable. If in an observation (or data point) no variable

is missing, we say that the observation is complete. The graphical models framework

allows variables to be specified as observed or unobserved for any data point, inte-

grating thus supervised learning and naturally handling both missing data and hidden

variables.

1.3.3 Structure learning in belief networks

Learning the structure of a graphical model from data, however, is not an easy task. [331
formulates the problem of structure learning in Bayes networks as a Bayesian model selection

problem. They show that under reasonable assumptions the prior over the parameters of

a Bayes network over a discrete variable domain has the form of a Dirichlet distribution.

Moreover, given a set of observations, the posterior probability of a network structure can

be computed in closed form. Similar results can be derived for continuous variable models

with jointly Gaussian distributions [32]. However, finding the structure with the highest

posterior probability is an intractable task. For general DAG structures, there are no

known algorithms for finding the optimal structure that are asymptotically more efficient

than exhaustive search.
Therefore, in the majority of the applications, the structure of the model is either

assessed by a domain expert, or is learned by examining structures that are close to one

elicited from prior knowledge. If neither of these is the case, then usually some simple

structure is chosen.
3 One can ask: why include in the model a variable that is never observed? One reason is that our

physical model of the domain postulates the variable, although in the given conditions we cannot observe it

directly (e.g. the state of a patients liver is only assessed indirectly, by certain blood-tests). Another reason

is of computational nature: we may introduce a hidden variable because the resulting model explains the

observed data well with fewer parameters than the models that do not include the hidden variable. This

is often the case for hidden causes: for a second example from the medical domain, a disease is a hidden

variable that allows one to describe in a simple way the interplay between a multitude of observation facts

called symptoms. In chapter 6 we discuss this issue at length.
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1.3.4 Inference and decomposable models

The task of using a belief network in conjunction with actual data is termed inference.
In particular, inference means answering a generic query to the model that has the form:
Q="what is the probability of variable v having value xz given that the values of the
variables in the subset V' c V are known?". The variables in V' and their observed values
are -referred to as categorical evidence and denoted by E. In a more general setting, one can
define evidence to be a probability distribution over V' (called a likelihood) but this case
will not be considered here. Thus, inference in the restricted sense can be formally defined
as computing the probability P(v = x,|E) in the current model. This query is important
for two reasons: One, the answers to a wide range of common queries can be formulated as
a function of one or more queries of type Q or can be obtained by modified versions of the
inference algorithm that solves the query Q. Two, Q serves as a benchmark query for the
efficiency of the inference algorithms for a given class of belief networks.

Inference in Bayes nets. In [54] Pearl introduced an algorithm that performs exact
inference in singly connected Bayes networks, called by him polytrees. A singly connected
Bayes net is a network whose underlying undirected graph has no cycles. In such a net there
will always be at most one (undirected) path between any two variables u and v. Pearl's
algorithm, as it came to be named, assumes that each node can receive/send messages only
from/to its neighbors (i.e. its parents and children) and that it performs computations
based only on the information locally present at each node. Thus it is a local algorithm.
Pearl proves that it is also asynchronous, exact and that it terminates finite time. The
minimum running time is bounded above by the diameter of the (undirected) graph, which
in turn is less or equal to the number of variables n.

The singly-connectedness of the graph is essential for both the finite termination and the
correctness of the algorithm's output 4 . For general multiply connected Bayes nets, inference
is provably NP-hard [8].

The standard way of performing inference in a Bayes net of general topology is to
transform it into a decomposable model; this is always possible by a series of edge additions
combined with removing the edges' directionality. Adding edges to a graphical model does
not change the probability distribution that it represents but will "hide" (and thus make
computationally unusable) some of its independences. Once the decomposable counterpart
of the Bayes net is constructed, inference is performed via the standard inference algorithm
for decomposable models, the Junction Tree Algorithm that will be described below.

Inference in junction trees. As defined before, a decomposable model (or junc-
tion tree) is a belief network whose cliques form a tree. Tree distributions, which will be
introduced in the next section, are examples of decomposable models.

Inference in a graphical model has 3 stages. Here these stages are described for the
case of the junction tree and they represent what is known as the Junction Tree algorithm
[38, 36]:

Entering evidence. This step combines a joint distribution over the variables (which
can be thought of as a prior) with evidence (acquired from a different source of in-
formation) to produce a posterior distribution of the variables given the evidence.

4
1t is worth mentioning, however, that recently some impressively successful applications of Pearl's algo-

rithm to Bayes networks with loops have been published. Namely the Turbo codes [3], Gallager [26] and
Neal-MacKay [44] codes that are all based on belief propagation in multiply connected networks. Why
Pearl's algorithm performs well in these cases is a topic of intense current research [69].
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The expression of the posterior is in the same factorized form as the original distri-

bution, but at this stage it does not satisfy all the consistency conditions implicit in

the graphical model's (e.g. junction tree's) definition.

Propagating evidence. This is a stage of processing whose final result is the pos-

terior expressed as a consistent and normalized junction tree. Often this phase is re-

ferred to as the Junction Tree algorithm proper. The Junction tree algorithm requires

only local computations (involving only the variables within one clique). Similarly to

Pearl's algorithm for polytrees, information is propagated along the edges of the tree,
by means of the separators. The algorithm is exact and finite time; it requires a num-

ber of basic clique operations proportional to the number of cliques in the tree. If all

the variables of the domain V take values in finite sets, the time required for the basic

inference operations in a clique is proportional to the size of total state space of the

clique (hence it is exponential in cardinality of the clique). The total time required

for inference in a junction tree is O( the sum of these state space sizes ).

Extracting the probabilities of the variables of interest by marginalization in

the joint posterior distribution obtained at the end of the previous stage. In a consis-

tent junction tree the marginal of any variable v can be computed by marginalization

in any >c for which v E C. If the clique sizes are small relative to n, this represents

an important saving w.r.t. the time for computing the marginal. This is also the

reason for the locality of the operations necessary in the previous step of the inference

procedure.

Returning to Bayes nets, it follows that the time required for inference by the junction

tree method is exponential in the size of the largest clique of the resulting junction tree. It is

hence desirable to minimize this quantity (or alternatively the sum of the state space sizes)
in the process of constructing the decomposable model. However, the former objective is

provably NP-hard (being equivalent to solving a max-clique problem) [2]. It is expected,
but not yet known, that the alternative objective is also an NP-hard problem. Moreover,
it has been shown by [37] that any exact inference algorithm based on local computations

is as least as hard as the junction tree algorithm and thus also NP-hard.

Inference in Markov nets. [30] showed that inference in Markov random fields with

arbitrary topology is also intractable. They introduced a Markov chain Monte Carlo sam-

pling technique for computing approximate values of marginal and conditional probabilities

in such a network that is known as simulated annealing.

Similar approaches of approximate inference by Monte Carlo techniques have been de-

vised and used for Bayes nets of small size also [31, 60].
Approximate inference in Bayes nets is a topic of current research. The existent ap-

proaches include: pruning the model and performing exact inference on the reduced model

[40], cutting loops and bounding the incurred error [19], variational methods to bound the

node probabilities in sigmoidal belief networks [35, 39].

1.4 Why, what and where? Goal, contributions and road
map of the thesis

The previous sections have presented the challenge of density estimation for multidimen-

sional domains and have introduced models as tools specifically designed for this purpose.
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It has been shown that graphical models focus on expressing the dependencies between
the variables of the domain, without constraining neither the topology of these dependencies,
nor their functional form. The property of separating the dependency structure from its
detailed functional form makes them an excellent support for human intuition, whitout
compromising the modeling power of this model class.

The probabilistic semantics of a graphical model makes it possible to separate model
learning from its usage: once a belief network is constructed from data, one can use it in
any way that is consistent with the laws of probability.

We have seen also that inference in graphical models can be performed efficiently when
the models are simple, but that in the general case it is an NP-hard problem. The same
holds for learning a belief network structure from data: learning is hard in general, but we
shall see that there are classes of structures for which both learning the structure and the
parameters can be done efficiently.

It is the purpose of this thesis to propose and to describe a class of models that is rich
enough to be useful in practical applications yet admits tractable inference and learning
algorithms.

1.4.1 Contributions

The mixture of trees models represent this class. A tree can be defined as a Bayes net
in which each node has at most one parent. But trees can represent only acyclic pairwise
dependencies and thus have a limited modeling power. By combining tree distributions in a
mixture, one can represent any distribution over discrete variables. The number of trees (or
mixture components) is a means of controlling the model's complexity. Mixtures of trees
can represent a different class of dependencies than graphical models. From the algorithmic
perspective, this thesis shows that the properties of tree distributions, namely the ability
to perform the basic operations of computing likelihoods, marginalization and sampling in
linear time, directly extend to mixtures.

An efficient learning algorithm. This thesis introduces an efficient algorithm for es-
tinating mixtures of trees from data. The algorithm builds upon a fundamental property
of trees, the fact that unlike almost any other class of graphical models, a tree's structure
and parameters can be learned efficiently. Embedding the tree learning algorithm in an
Expectation-Maximization search procedure produces an algorithm that is quadratic in the
domain dimension n and linear in the number of trees m and in the size of the data set N.
The algorithm find Maximum Likelihood estimates but can serve for Bayesian estimation as
well. To preserve the algorithm's efficiency in the latter case, one needs to use a restricted
class of priors. The thesis characterizes this class as being the class of decomposable priors
and shows that the restrictions that this class imposes are not stronger than the assump-
tions underlying the tree mixture of trees learning algorithm itself. It is also shown that
many widely used priors belong to this class.

An accelerated learning algorithm for sparse binary data If one has in mind appli-
cation over high-dimensional domains like document categorization and retrieval, preference
data or image compression, a quadratic algorithm may not be sufficiently fast. Therefore, I
introduce an algorithm that exploits a property of the data that is frequent in these domains
- sparsity - to construct a family of algorithms that are jointly subquadratic. In controlled
experiments on artificial data the new algorithm achieve speedup factors of up to 3000; the
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Figure 1-3: Structure of the thesis

performance is practically independent of n as long as the sparsity and the size of the data
set remain constant.

A top-down approach to hidden variable discovery Learning the structure of a
graphical model from data is a hard but important problem. The vast majority of algorithms
in this field pursue a bottom up strategy in which the basic unit is the graph edge. There is
no fundamental reason to make the graph edge play a special role; in fact, it is not the edges
but the families or cliques that are the building parts of a graphical model. Therefore, in
this thesis I pose the question: can structure search be performed in a top-down manner? I
show that there is a hidden variable model that I call the H model for which this approach
is natural and produces a partition of the variable set into clusters on which structure
search can be performed independently. I show then that the mixture of trees learning
algorithm is a tool for performing the partitioning operation. The result is a heuristic
algorithm for discovering hidden variables in H models. Motivated by the need to validate
the models obtained by the hidden variable discovery algorithm, I investigated the use of
large deviation theory for testing probabilistic independence between discrete variables and
obtained an alternate distribution free independence test based on Sanov's theorem.
The optimality of the test is under study.

1.4.2 A road map for the reader

The structure of the thesis can be seen in the diagram 1-3. The introduction and chapter 2
lay the foundation by defining the fundamental concepts and by reviewing tree distributions
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and their inference and learning algorithms.
Chapter 3 builds on this to define the mixture of trees with its variants, to introduce the

algorithm for learning mixtures of trees from data in the Maximum Likelihood framework
and to show that mixtures of trees can approximate arbitrarily closely any distribution over
a discrete domain.

The following chapters will each develop this material into a different direction and thus
can be read independently in any order. Chapter 4 discusses learning mixtures of trees in a
Bayesian framework. The basic learning algorithm is extended to take into account a class
of priors called decomposable priors. It is shown that this class is rich enough to contain
important priors like the Dirichlet prior and Minimum Description Length type priors. In
this process, the assumptions behind decomposable priors and the learning algorithm itself
are made explicit and discussed.

Chapter 5 aims to improve the computational properties of the tree learning algorithm.
It introduces a data representation and two new algorithms that exploit the properties of
those domains to construct exact Maximum Likelihood trees in subquadratic time. The
compatibility of the new algorithms with the EM framework and with the use of decom-
posable priors are also discussed.

The next chapter, 6, introduces the top-down method for learning structures with a hid-
den variable, methods for scoring the obtained models and a discussion of the independence
test approach to validating them.

Finally there comes the chapter devoted to experimental assessments. Chapter 7 demon-
strates the performance of mixtures of trees on various tasks. There are very good results
in density estimation, even for data that are not generated from a mixture of trees. The
last part of this chapter discusses classification with mixtures of trees. Although the model
is a density estimator, its performance as a classifier in my experiments is excellent, even in
competition with classifiers trained in supervised mode. I analize the behavior of the single
tree classifier and demonstrate that it acts like an implicit feature selector.

The last chapter, 8 contains the concluding remarks.
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Chapter 2

Trees and their properties

I think that I shall never see

A poem as lovely as a tree.
Joyce Kilmer
-Trees

In this section we introduce tree distributions as a subclass of decomposable models and

we demonstrate some of the properties that make them attractive from a computational

point of view. It will be shown that fundamental operations on distributions: inference,
sampling and marginalizing carry over directly from their junction tree counterparts and

are order n or less when applied to trees. Learning tree distributions will be formulated as

Maximum Likelihood (ML) estimation problem. To solve it, an algorithm will be presented

that finds the tree distribution T that best approximates a given target distribution P in

the sense of the Kullback-Leibler divergence. The algorithm optimizes over both structure

and parameters, in time and memory proportional to the size of the data set and quadratic

in the number of variables n. Some final considerations on modeling power and ease of

visualization will prepare the introduction of mixtures of trees in the next section.

2.1 Tree distributions

In this section we will introduce the tree model and the notation that will be used throughout

the paper. Let V denote the set of variables of interest. As stated before, the cardinality

of V is |VI = n. For each variable v E V let r, denote its number of values, Q(v) represent

its domain and x E Q(v) a particular value of v. Similarly, for subset A of V, Q(A) -

@EA Q(v) is the domain of A and 1 A an assignment to the variables in A. In particular,
Q(V) is the state-space of all the variables in V; to simplify notation xv will be denoted

by x. Sometimes we shall need the maximum of r, over V; we shall denote this value by
rMAX-

According to the graphical model paradigm, each variable is viewed as a vertex of an

(undirected) graph (V, E). An edge connecting variables u and v is denoted by (iv) and

its significance will become clear in the following. The graph (V, E) is called a tree if it has

no cycles1 . Note that under this definition, a tree can have a number p between 1 and IVI
connected components. The number of edges |El and p are in the relationship

|El +p = IVI (2.1)

'This definition differs slightly from the definition of a tree in the graph theory literature. There, a tree
is required to have no cycles and to be connected (meaning that between every two vertices there should
exist a path); our definition of a tree allows for disconnected graphs to be trees and corresponds to what in
graph theory is called a forest.
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which means that adding an edge to a tree reduces the number of connected components
by 1. Thus, a tree can have at most lVI - 1 = n - 1 edges.

Now we define a probability distribution T that is conformal with a tree. Let us denote
by ToL. and Tv the marginals of T for u, v E V and (uv) c E:

T , (x,xv) = ( T(x) (2.2)

They must satisfy the consistency condition

Tv(xv) ZT(x,xu) Vu,v, (uv) E E (2.4)

Let deg v be the degree of vertex v, i.e. the number of edges incident to v E V. Then, the
distribution T is conformal with the tree (V, E) if it can be factored as:

H(2,VygeETuv(xu, xv)
T(x) = (2.5)

The distribution T itself will be called a tree when no confusion is possible. The graph
(V, E) represents the structure of the distribution T. Noting that for all trees over the same
domain V the edge set E alone uniquely defines the tree structure, in the following when
no confusion is possible we identify E with the structure. If the tree is connected, i.e. it
spans all the nodes in V, it is sometimes called a spanning tree.

Because a tree is a triangulated graph it is easy to see that a tree distribution is a
decomposable model. In fact, the above representation (2.5) is identical to the junction tree
representation of T. The cliques identify with the graph's edges (hence all cliques are size
two) and the separators are all the nodes of degree larger than one. Thus the junction tree
is identical to the tree itself with the clique and separator potentials being the marginals

Tuv and Tv, deg v > 1 respectively.
This shows a remarkable property of tree distributions: a distribution T that is conformal

with the tree (V, E) is completely determined by its edge marginals {T, (uv) c E}.
Since every tree T is a decomposable model it can be represented in terms of conditional

probabilities

T(x) = Tvepa(v)(xvjxpa(v)) (2.6)
vCV

We shall call the representations (2.5) and (2.6) the undirected and directed tree represen-
tations respectively. The form (2.6) is obtained from (2.5) by choosing an arbitrary root
in each connected component and directing each edge away from the root. In other words,
if for (iv) in E, u is closer to the root than v, then u becomes the parent of v and is
denoted by pa(v). Note that in the directed tree thus obtained, each vertex has at most
one parent. Consequently, the families of a tree distribution are either of size one (the
root or roots) or of size two (the families of the other vertices). After having transformed
the structure into a directed tree one computes the conditional probabilities corresponding

to each directed edge by recursively substituting 1 P") by Tvlpa(v) starting from the root.
tpa(v)

pa(v) represents the parent of v in the thus directed tree or the empty set if v is the root
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of a connected component. The directed tree representation has the advantage of having

independent parameters. The total number of free parameters in either representation is

Y rurv - E (deg v - 1)rv - p

(u,v)EE vCV

Z (ru- 1)(rv - 1) + E rv - n (2.7)
(u,v)EE vCV

The r.h.s. of (2.7) shows that each newly added edge (uv) increases the number of
parameters by (ru - 1)(rv - 1).

Now we shall characterize the set of independences represented by a tree. In a tree there
is at most one path between every two vertices. If node w is on the path between u and
v we say that w separates u and v. Correspondingly, if we set w as a root, the probability
distribution T can be decomposed into the product of two factors, each one containing only
one of the variables u, v. Hence, u and v are independent given w:

Therefore we conclude that in a tree two variables are separated by any set that intersects
the path between them. Two subsets A, B C V are independent given C c V if C intersects
every path between u E A and v E B.

We can also verify that for a tree the undirected Markov property holds. The set of
variables connected by edges to a variable v, namely its neighbors separates v from all the

other variables in V.

2.2 Inference, sampling and marginalization in a tree distri-
bution

This section discusses the basic operations: inference, marginalization and sampling for
tree distributions. It demonstrates that the algorithms for performing these operations are
direct adaptations of their counterparts for junction trees and are heavily relying on the
generic Junction Tree algorithm. It is also shown that all basic operations are linear in the
number of variables n. This fact is important because the analog operations on mixtures of
trees use the algorithms for trees as building blocks. The details of the algorithms however,
although presented here for the sake of completeness, can be skipped without prejudice for
the understanding of the rest of the thesis.

2.2.1 Inference.

As shown already, tree distributions are decomposable models and the generic inference
algorithm for trees is an instance of the inference algorithm for decomposable models called
the Junction Tree algorithm. We shall define it as a procedure, PropagateEvidence(T, E)
that takes as inputs a tree having structure (V, E) presented in the undirected factored rep-
resentation and some categorical evidence S on a set A c V. The procedure performs the
first two steps of the inference process as defined in section 1.3.4. It enters the categorical
evidence by multiplying the original distribution T with a {0, 1}-values function represent-
ing the categorical evidence. Then it calibrates the resulting tree by local propagation of
information between the cliques (edges) of the tree. Finally, it outputs the tree T* that is
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factored conformally to the original T and represents the posterior distribution TV,. The
algorithm is described in detail in the last section of this chapter. It is also demonstrated
that it takes a running time of the order O(r Ix|E|).

The last step, extracting the probabilities of variables of interest from the above men-
tioned representation is done by marginalization and will be discussed in the next section.
In particular, obtaining the posterior probability of any single variable involves marginal-
ization over at most one other variable which takes O(PrAX) operations.

2.2.2 Marginalization

In a junction tree, computing the marginal distribution of any group of variables that
are contained in the same clique can be performed by marginalization within the respective
clique. For a tree, whose cliques are size two, the marginal of each variable v can be obtained
either directly as T, (if v is a separator and separator potentials are stored explicitly) or by
marginalizing in the potential Tv of the edge incident to v (if v is a leaf node). Thus, the
marginal for any single variable can be obtained in O(ruAX) additions.

The pairwise marginals for all the variables that are neighbors in T are directly available
as the clique potentials Tue. The above enumeration exhausts all the cases where the
marginals are directly available from the tree distribution. In the following I describe
an algorithm that can efficiently compute the marginal distributions for arbitrary pairs of
variables. The algorithm can be generalized to marginal distributions over arbitrary subsets
of V.

First, it will be shown that the marginal Tv depends only on the potentials of the edges
on the path between u and v in E. Let path(u, v) = (w = u,w, w 2 , ... , d = v) be the
vertices on the path between u and v in the tree (V, E) and let d > 1 be its length. Then,
the marginal Tuv can be expressed as

TUV =E T
1 V\{u v}

d

= ( TU Twiw ( Tw,\pa(w/, (2.8)
v } =1 w'CV\path(u,v)

d

= Z TU H T uil1-1 (2.9)

§Ev\{u,o} i=1

H d 1 1 0Si=1 T-1, (2.10)
x~i,i=1,d-1 i=1 W,

The first form (2.8) is obtained as the directed tree representation with a root at u. Sum-
mation over each xw, not on the path from u to v can be done recursively starting from the
leaves of the tree and results in a factor of 1. Thus the form (2.9) is obtained. The third
form, (2.10) is the rewriting of the previous equation in the undirected representation.

Each of the intermediate variables wi appears in only two factors of (2.9); consequently,
summation over the values of the intermediate variables can be done one variable at a time,
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as indicated by the following telescoped sum:

TVU = ( T d- .. ... T,31,2 13 (TU ( TW1 JUTW2 1 1) (2.11)
wd-1 Xw,2 XTw

w 3

The computation of one value of Tv takes Ed-1 rWi additions and multiplications; to com-

pute the whole marginal probability table we need to perform

d-1

rur r = 0((d - 1)r Ax)
i=1

operations.
As the above equation shows, the intermediate sums involved in the computation of

Tuv are themselves marginal distributions. This suggests that if the intermediate sums are

stored and if the pairs (uv) ( E are enumerated in a judiciously chosen order, one can

compute all the pairwise marginal tables by summing over 1 variable only for each of them;

in other words, all the pairwise marginals can be computed with O((n - 1)(n - 2)r3Ax)

operations.
Marginalization in the presence of evidence represents the third and last step

of inference, as presented in the previous subsection. This problem can be approached in

various ways, one of them being the polytree algorithm of [54]. The approach we present here

follows directly from the procedures for entering evidence, calibration and marginalization

introduced above. To find T*v = TuA for u, v E V, A C V one has to

1. enter and propagate evidence by T* +- PropagateEvidence(T, EA)

2. compute the marginal T*v

2.2.3 Sampling

Sampling in a tree is best performed using the directed tree representation. The value of

the root node(s) is sampled from its (their) marginal distribution. Then, the value of each

of the other nodes is sampled from the conditional distribution given its parent P(vlpa(v)),
recursively, starting from the root(s). This simple algorithm is the specialization of the

algorithm presented in [14] for sampling from a junction tree. In [12] an algorithm is

presented for sampling without replacement in a junction tree that can be immediately

specialized for trees.
Sampling in a tree in the presence of evidence is done, just like marginalization in the

presence of evidence, in two steps. First, one incorporates the evidence by the Propaga-
teEvidence algorithm; second, sampling by the procedure described above is performed

on the resulting conditional distribution.

2.3 Learning trees in the Maximum Likelihood framework

2.3.1 Problem formulation

First, I shall formulate the learning problem as a Maximum Likelihood (ML) estimation

task.
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Assume a domain V and a set of observations from V called a dataset D = {x, x2 ... xN}

We further assume that these data were generated by sampling independently from an un-
known tree distribution To over V. The learning problem consists in finding the generative
model T'. According to the Maximum Likelihood principle the estimate of T' from D is the
model that maximizes the probability (or likelihood) of the observed data. Equivalently,
one can search to optimize the logarithm of the likelihood, called log-likelihood, which leads
us to formulate the ML Learning Problem for trees as follows:

Given a domain V and a set of complete observations D, find a tree distribution T* for
which

T argmax ( log T(x). (2.12)

2.3.2 Fitting a tree to a distribution

The solution to the ML Learning Problem has been published in [7] in the broader context
of finding the tree that best fits a given distribution P over the dataset D. The goodness
of fit is evaluated by the Kullback-Leibler (KL) divergence [43] between P and T

KL(P|IT) = l P(x)log P(x) (2.13)
XED T(x)

Since the Chow and Liu algorithm will constitute a building block for the algorithms that
will be developed in my thesis, I shall present it and its derivation here. The impatient
reader can skip to the next subsection.

Let us start by examining (2.13). It is known [11] that for any two distributions P and
Q, KL(P||Q) > 0 and that equality is attained only for Q = P. The KL divergence can be
rewritten as

KL(P| fQ) = P(x)[log P(x) - log Q(x)]

Z P(x) log P (X) - E P(x) log Q(x) (2.14)

Notice that the first term above does not depend on Q. Hence, minimizing the KL divergence
w.r.t. Q is equivalent to maximizing the second term of (2.14) (called the cross-entropy
between P and Q) and we know that this is achieved for Q = P.

Now, let us return to our problem of fitting a tree to a fixed distribution P. Finding
a tree distribution requires finding its structure (represented by the edge set E) and the
corresponding parameters, i.e. the values of T,(x, x,) for all edges (uv) E E and for all
values xU, x'.

Assume first that the structure E is fixed and expand the right-hand side of (2.13):

KL(P||T) = (2.15)

= > P(x)[log P(x) - log T(x)]
XED

1
= - P(x) log Pr - P(x log[ H Tvpa(v) (XvIxpa(v))]

xED xcD vCV

= -H(P) - ( > P(x)log Tpa(v)(xV lxpa(v))
vGV xED
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-H(P) - E E Pv,pa(v)(Xv, xpa(v))log Tpa(v)(XvIXpa(v))
VCV 3

V'XPa(v)

- H(P) - EEZPpa(v) (Xpa(v)) E3 PvJ pa(v) (Xv I Xpa(v)) log T}pa(v) ('V I Xpav)
VCV Xpa(v) XV

In the above, H(P) denotes the entropy of the distribution P, a quantity that does not
depend on T, and Pv, Pv represent respectively the marginals of {u, v}, v under P. The
inner sums in the last two lines are taken over the domains of v and pa(v) respectively.
When v is a root node, pa(v) is the void set and its corresponding range has, by convention,
one value with a probability of Ppa(v)(Xpa(v)) = 1. Moreover, note that the terms that
depend on T are of the form

- Pvlpa(v) (Xv lpa(v)) log Tpa(v) (X lXpa(v))
Xv

which differs only by a constant independent of T from the KL divergence

KL(Pvlpa(v) |Tvpa(v))

We know that the latter is minimized by

Tvlpa(v)(. Xpa(v)) Pvpa(v)(| Xpa(v)) VV C V. (2.16)

Hence, for a fixed structure E, the best tree parameters in the sense of the minimum KL
divergence are obtained by copying the corresponding values from the conditional distribu-
tions Ppa(v). Let us make two remarks: first, the identity (2.16) can be achieved for all v

and xpa(v) because the distributions Tvgpa(v,)- are each parameterized by its own set of

parameters. Second, from the identity (2.16) it follows that

Tsv = Puv V(u, v) E E (2.17)

and subsequently, that the resulting distribution T is the same independently of the choice
of the roots. For each structure E we denote by TE the tree with edge set E and whose
parameters satisfy equation (2.17). TE achieves the optimum of (2.13) over all tree distri-
butions conformal with (V, E).

Now, with the previous results in mind, we shall proceed to the minimization of KL(P T)
over the tree structures. First, notice that this task is equivalent to maximizing the objective

J(E) = { P(x) logTE(X). (2.18)
rCD

over all structures E.
Expanding the above formula and using (2.17) we obtain successively:

J(E) = (2.19)
N

=3P(xi) log TE (Xi)
i=1

N

= 3P(x)[ logTl(zizi) -E (deg v - 1) log T ()] (2.20)

=v1 (u,v)EE vGV
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N

ZP(xl)[Z logP(x4x) - (degv- 1) logP (x)] (2.21)
i=1 (uv)EE vEV

N

= ( ( P(xi )[ log Pu,( xix - lOg Pu(xi ) - log P (xi )]
(uv)E E1

N

+ ( (xi ) log P, (xi) (2.22)
vEV i=1

zi) log (XU4) + ( P(xi) log PV (x) (2.23)
(u,v)EE i=1 VEV i=1

= E E PaV(xU,x) 0g (X ) PV(xV) log Pv(xv) (2.24)
(u,v)E E xux, Pxu xv V xv

= Inc - ( H (PV) (2.25)
(u,v)EE vEV

Equation (2.20) follows from the undirected tree representation (2.5) of TE, (2.21) is
obtained from (2.20) by taking into account (2.17); equation (2.23) follows from (2.22) by
performing a summation over all x E D that have the same xu, xv and using the definitions
of Puv and Pv; finally in equation (2.24) the terms Iso under the first sum sign represent
the mutual information between the variables u and v under the distribution P:

Iuv = ( PUV(Xz, xo) log P"( (XP, X) (2.26)
XUXV Pu(xu)Pv(xv)

The mutual information between two variables is a quantity that is always non-negative
and equals 0 only when the variables are independent.

Remark two important facts about equation (2.25): first, the second sum does not
depend on the structure E; second and more importantly, the dependence of J(E) from
E is additive w.r.t. to the elements of the set E. In other words, each edge in (u, v) E E
contributes a certain positive amount to J(E) and this amount Iso is always the same,
independently of the presence or absence of other edges and of the size of their contributions!

In this situation, maximization of J over all structures can be performed efficiently via a
Maximum Weight Spanning Tree (MWST) algorithm [10] with weights W_, = I, u, v E
V.

The MWST problem is formulated as follows: given a graph (V, E) and a set of real
numbers, called weights each corresponding to an edge of the graph, find a tree (V, E), E E E
for which the sum of the weights corresponding to its edges is maximized. This problem
can be solved by a greedy algorithm that constructs the tree by adding one edge at a time,
in decreasing order of the weights {Wut}. There are several variants of the algorithm:
the simplest one, called Kruskal's algorithm, runs in O(n 2 log n) time. Note that if all the
weights are strictly positive, a tree with the maximum number of edges and p 1 connected
components will result. If some of the weights W,, are zero, it is possible to obtain trees
with more than one connected component. More sophisticated MWST algorithms exist (see
for example [10, 64, 25, 20, 59]) and they improve on Kruskal's algorithm on both running
time and memory requirements. However, the running time of all published algorithms is at
least proportional to the number of candidate edges (1E1). In our case, this number is equal
to n(n - 1)/2 since all pairs of variables have to be considered. Hence, the best running
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time achievable for a MWST algorithm will be 0(n 2 ). Henceforth, we will assume that the
MWST algorithm runs in 0(n 2 ) time and will not further specify the implementation.

All of the above are summarized in the TreeLearn algorithm

Algorithm TreeLearn
Input Probability distribution P over domain V

Procedure MWST( weights ) that fits a maximum weight spanning tree over V.
1. Compute marginals Po, Pu, for u, v E V.
2. Compute mutual informations I., for u, v E V.
3. Call MWST( {Isu} ) that outputs the edge set E of a tree distribution T.
4. Set Tu = Puv for (uv) E E.
Output T

The algorithm takes as input a probability distribution P over a domain V and outputs
a tree distribution T that minimizes the KL divergence KL(P T).

The running times for the algorithm's steps are as follows:

steps 1,2. For steps 1. and 2. (computing the marginals and the mutual informations for all pairs
of variables) the running time is dependent on the representation of P. But, generally,
it should be expected to be 0(n 2 ), since there are n(n-1)/2 mutual information values
to be computed.

step 3. The MWST algorithm takes 0(n 2 ) operations (or 0(n 2 log n) in Kruskal's variant).

step 4. This step comprises only 0(nrIgX) assignments (remember that El <n).

Hence, the total running time of TreeLearn is 0(n 2 + nriAX) or 0(n 2 ) if we consider

rMAX to be a constant.

2.3.3 Solving the ML learning problem

The previous subsection has presented the algorithm TreeLearn(P) that finds the tree
distribution T* closest in KL divergence to a given distribution P,

T* argmin KL(P||T).
T

To solve the initial Maximum Likelihood estimation problem it is sufficient to call
Treelearn(P) where P is the uniform distribution over the data

1 1 ED
P(x) = 7V zE (2.27)0 otherwise

To see this, note that

1N
KL(P||IT) = N (log T() - log N. (2.28)

i=1

Hence, minimizing the above expression is equivalent to maximizing the r.h.s. of equation
(2.12).

For this case, the first step of the TreeLearn algorithm, computing the marginals, takes

O(Nn2 r AX) time. This time dominates the times required for each of the following steps

(unless N'rIAX < log n, which is usually not the case) and thus, the running time of the
ML tree estimation algorithm is O(Nn2 r IX).
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2.4 Representation capabilities

If graphical representations are easy to grasp by means of human intuition, then the subclass
of tree graphical models will be even more intuitive. For once, they are sparse graphs, having
n - 1 or fewer edges. More importantly and more precisely, between each two variables
there is at most one path, or, in other words, the separation relationships between subsets
of variables, which are not easy to read out in a general Bayes net topology, are obvious
in a tree. Thus, in a tree, an edge corresponds to the simplest common sense notion of
direct dependency and is the natural representation for it. However, the very simplicity
that makes tree models intuitively appealing also limits their modeling power. In other
words, the class of dependency structures representable by trees is a relatively small one.
For instance, over a domain of dimension n there are nn-2 distinct (undirected) spanning
trees [70], but a total of 2n(n-1)/2 undirected graphs 2 . Mixture of trees models, which
will be presented next, are a way of circumventing this problem. This thesis will show
that mixtures of trees can arbitrarily increase the representation power of tree distributions
while sacrificing only little of their computational advantages and, to a certain extent, even
preserving their appeal to human intuition.

2.5 Appendix: The Junction Tree algorithm for trees

This section will present the mechanisms for entering evidence in a tree density model and
for maintaining consistent representations in the presence of evidence.

Since a tree distribution is also a junction tree, inference will be done via the Junction
Tree algorithm using the undirected tree representation (2.5) described previously.

Entering evidence In the general sense, evidence on a subset A of variables is defined
to be a (possibly unnormalized) probability distribution

EA : Q(A) -* [0, o). (2.29)

A finding is a special type of evidence: A = {v} for some v e V and ft = Ef{j takes values
in the set {0, 1} only. A finding on v represents a statement that v cannot take certain
values. Any finding ft can be expressed as a sum of J functions 3 with as many non-zero
terms as the number of non-zero values of ft.

fV(Xz) = E fV(zo:osrX (2.30)
ivEQv

If SA consists of a collection of findings, one for each variable v E A, such that:

EA = 1 ft (2.31)
veA

the evidence is said to be categorical. Here and in the rest of the thesis, only categorical
evidence will be considered. For handling non-categorical evidence that is contained in one
clique, the reader is referred to [38]. [54] discusses another special case of non-categorical
evidence that is compatible with the polytree algorithm.

2 To see that a = n'-2 < - 2n(--1)/2 note that a grows like n' while # grows like (2"/2 ) and
that n < 2'/2 for n > 2.

3Dirac's symbol 6, is 1 if x =x- and 0 otherwise
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For any prior distribution Pv of the variables in V and for any categorical evidence EA

4A , AcV,
P1*(xv\A,xa) Pv(xv\A,XA)EA(xa) (2.32)

represents the probability of V\A, XA after observing the evidence EA. This probability is
of course 0 for o # zt. Moreover, the conditional probability of the remaining variables
given the evidence is proportional to the above product

Py\A A(xV\A) X PV(x).EA(XA) (2.33)

Using the convention P*(XA LA) = EA(A) we express the posterior conditional distribu-

tion of all the variables given the evidence EA as

PIA (X) C Pv(x).E(XA). (2.34)

The above equations and discussion easily generalizes to the case where EA is a product
of sums of 6 functions, i.e. the case of categorical evidence. Hence, for any categorical
evidence EA we define the operation of entering evidence by equation (2.34).

The normalization constant in equation (2.34) is

EP (x) (2.35)

which represents the prior probability of the categorical evidence P(EA) [38, 36]. Hence,
the conditional probability of V given the (categorical) evidence EA is given by:

Py I EA(x) =PV(X)A(XA) (2.36)
P(EA)

For a tree distribution T, equation (2.34) rewrites as

T I"A(x) c TV(x)EA(xA) (2.37)

and the prior of EA, given by (2.35) with P replaced by T, can be efficiently computed as
it will be shown later.

Note also that because the posterior probability obtained by (2.34) is unnormalized, the
evidence can be an unnormalized function as well.

Propagating evidence. When (categorical) evidence is entered in a tree T (or in a
decomposable model), the resulting distribution T  \AISA is factored according to the graph

of T, but its factors (i.e. the clique potentials) are neither consistent (as a junction tree)

nor normalized. The following step, called tree calibration has the purpose to make T* a
normalized and consistent distribution again. The calibration represents the Junction Tree
algorithm proper and is applicable in general to any decomposable model, but what will

be presented here is its specialization for tree distributions. For the general case and the
proofs of consistency, see [36] or [38].

It is important to keep in mind that calibration does not add any information to the
model, but merely reorganizes the information already present in order to represent it in a
form that is convenient for subsequent use (e.g. marginalizations).

The basic operation in evidence propagation is called absorption. We say that edge (ow)
absorbs from neighboring edge (uo) when the following procedure is called:
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Algorithm Absorb
Absorb(u, v, w)

Input edge potentials T*v, T, (uv), (vw) E E
1. T* = T*
2. TV = T,

3. TV*W <- TV*

Output Tv*w

Note that absorption is an asymmetric operation: Absorb(u, v, w) and Absorb(w, v, u)
produce different results. After an absorption, the potentials T*w and T,* are consistent. If
T*v is normalized, so will be T*w. If the potentials are already consistent, then an absorb
operation in either direction changes nothing. These facts can be easily proved:

Z TT*(x,(xx) = T (X) 
Z~v~xvxwT()

TV(xV) ZW

- TV* TV (x)
TV (x)

=TUV(xu,xv)
xu

The above derivation proves consistency after absorption. Moreover, if the potentials are
consistent before absorption, then the fraction T*(XV) equals 1 for all xv and absorption in

either direction leaves the potentials unchanged. Assume now that T*v is normalized. Then

( T*(xV, x) = E TV*W(xV, xW)

xv ~

5 T Vx u, v
xv x

= 1

In the following it will be necessary to use absorption from multiple edges. This is defined

as:

Algorithm Absorb
Absorb(ui,... ,um, v, w)

Input edge potentials T* T, (uiv), (vw) E E, i 1,... m

1. fori=1, .. ., m

TV' = T*v
2. TV = , TUV

3. T - T =1 TV-
Output Tvw

We say that edge (ow) absorbs from adjacent edges (uiv), . . . (umv). Unlike the previous

case, after absorption from multiple edges, the potentials involved in the operation are not
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necessarily consistent. To make them consistent, it would be sufficient for each of the edges

(uiv) to absorb from (ow). As we shall see shortly, this is the idea behind the Junction
Tree propagation algorithm: the whole tree is made consistent by a series of absorptions
from the periphery towards a "root edge" (or root clique) followed by a second series of
absorptions in the opposite direction. The mechanism is implemented by two recursive
procedures, CollectEvidence and DistributeEvidence which are described below.

When CollectEvidence from w is called for edge (v, w) E E, then the edge calls
CollectEvidence from v for all the other edges adjacent to v and then absorbs from them.

Algorithm CollectEvidence
CollectEvidence(T, v, w)

Input factored representation of tree T
nodes v, w, (vw) E E
let n(v) ={w, U .... um}, m > 0

1. for i = 1, . .. , mn
CollectEvidence(T, ui, v)

2. Absorb(ui,... um,v,w)

Output T

CollectEvidence(v, w) fulfills the task of recursively absorbing from the subtree rooted
in node v of edge (ow). DistributeEvidence(w, v) has the reverse effect: when it is called
from w for edge (ow) E E, all the other edges adjacent to v absorb from (vw) then call
DistributeEvidence from v.

Algorithm DistributeEvidence
DistributeEvidence(T, w, v)

Input factored representation of tree T
nodes v, w, (ow) e E
let n(v) = {w, U1,... Um}, m > 0

1. for i= 1,...,m
1.1. Absorb(w, v, ui)
1.2. DistributeEvidence(T, v, ui)

Output T

With the procedures above, we can introduce the Junction Tree algorithm, called here
PropagateEvidence. The algorithm takes as input a tree distribution T over the space
Q(V) represented as a set of consistent, normalized marginal distributions TU, and some
categorical evidence EA, A C V. It outputs the distribution T *, represented as a consis-
tent, normalized tree distribution with the same structure as T.
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Algorithm PropagateEvidence
PropagateEvidence(T, EA)

Input a tree distribution T in factored representation conformal to (V, E)
categorical evidence EA on a subset A c V

1. enter evidence: T* <- TEA
2. choose an edge (vw) E E as root edge
3. CollectEvidence(T*, w, v)

CollectEvidence(T*, v, w)

4. normalize: Z = E T**W <- T
5. DistributeEvidence(T*, w, v)

DistributeEvidence(T*, v, w)
Output T*

The proofs of correctness for this algorithm are given in [38, 36]. The normalization
constant Z computed in step 4 of the algorithm represents the probability of the evidence
T(SA). To see this, notice that the potential T*w of the root edge does not change after
the normalization. Moreover, all the other tree edges absorb, directly or indirectly, from

(vw). Therefore, at the end of the algorithm, all the edge potentials will be normalized.
Since the tree is consistent, by simple function identification we conclude that indeed each

T*,,,, (v/wi) E E represents the
The propagation of evidence in a tree distribution takes order O(rhAX|El) time.
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Chapter 3

Mixtures of trees

The previous section has shown that in the framework of graphical probability models, tree
distributions enjoy many properties that make them attractive as modeling tools: they have
a flexible topology, are intuitively appealing, sampling and computing likelihoods are linear
time, simple efficient algorithms for marginalizing and conditioning (0(n 2 ) or less) exist.

Fitting the best tree to a given distribution can also be done exactly and efficiently. Trees
can capture simple pairwise interactions between variables but they can prove insufficient for
more complex distributions. Therefore, this chapter introduces a more powerful model, the

mixture of trees. As this thesis will show, mixtures of trees enjoy most of the computational

advantages of trees and, in addition, they are universal approximators over the space of all

distributions.
We define a mixture of trees to be a distribution of the form

Q(x) = AkTk(x) (3.1)
k=1

with

)k > , k~1..n Z:Ak =1- (3.2)
k=1

The tree distributions Tk are the mixture components and Ak are called mixture co-

efficients. From the graphical models perspective, a mixture of trees can be viewed as a

containing an unobserved choice variable z, which takes value k E {1, .... m} with probabil-
ity Ak. Conditioned on the value of z the distribution of the visible variables V is a tree.
The m trees may have different structures and different parameters.

Note that because of the variable structure of the component trees, a mixture of trees

is neither a Bayesian network nor a Markov random field. Let us adopt the notation

A Lp B I C (3.3)

for "A independent B given C under distribution P". If for some (all) k E {1, ... m} we

have
A LTk B|C with A,B,C c V

this will not imply that
A LQ B I C.

On the other hand, a mixture of trees is capable of representing dependency structures
that are conditioned on the value of one variable (the choice variable), something that
a usual Bayesian network or Markov net cannot do. Situations where such a model is
potentially useful abound in real life: Consider for example bitmaps of handwritten digits.
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Figure 3-1: A mixture of trees with m = 3 and n = 5. Note that although b ITk ci, a for
all k = 1, 2, 3 this does not imply in general b I c a for the mixture.
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Figure 3-2: A MVixture of trees with shared structure represented as a graphical model.
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They obviously contain many dependencies between pixels; however, the pattern of these
dependencies will vary across digits. Imagine a medical database recording the body weight
and other data for each patient. The body weight could be a function of age and height
for a healthy person, but it would depend on other conditions if the patient suffered from
a disease or were an athlete. If, in a situation like the ones mentioned above, conditioning
on one variable produces a dependency structure characterized by sparse, acyclic pairwise
dependencies, then a mixture of trees will be the model most able to uncover and exploit
this kind of dependencies.

If we impose that all the trees in the mixture have the same structure we obtain a mixture
of trees with shared structure (MTSS). Note that even in this case the resulting mixture does
not preserve the independence relationships of the component trees. But a MTSS can be
represented as a Bayes net (after choosing an orientation for the trees) or, more directly,
as a chain graph. Chain graphs were introduced by []; they represent a superclass of both
Bayes nets and Markov random fields. A chain graph contains both directed and undirected
edges. The representation of the MTSS as a graphical model is given in figure 3-2.

A simple modification of both the mixture of trees and the mixture of trees with shared
structure is to have the choice variable be observed as well. Such models will be called
mixtures with visible choice variable in the forthcoming. Unless otherwise stated, it will be
assumed that the choice variable is hidden. Therefore, sometimes it will be referred to as
hidden variable.

3.1 Representation power of mixtures of trees

Here it will be shown that for discrete variable domains the class of mixtures of trees can
represent any distribution.

Theorem Let V = {vi, v2 , ... Vn} a set of variables with finite ranges and P a proba-
bility distribution over Q(V). Then P can be represented as a mixture of trees.

Proof. Let us denote by 6,. the distribution over Q(V) defined by

o6-(x) = '1X X (3.4)0, otherwise

oX* can be identified with a tree Tx* having n connected components (i.e. a factored
distribution) and

T-X 17 v-= X*
Ti= ' i3 for j'= 1,..n. (3.5)0, otherwise

Moreover, any distribution P can be represented as a mixture of 6 distributions:

P(x) = ZP(*)X*(X). (3.6)

where the sum is taken over the range of V and P(x*) represent the mixing coefficients.
This completes the proof.

3.2 Basic operations with mixtures of trees

Marginalization The marginal distribution of variables subset A c V is

QA(xA) Z Q(x)
xV\A
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m

Z Z k k(X)
XV\A k=1

Z Ak Z Tk (X)
k=1 xV\A

= AkTA(zA) (3.7)
k=1

Hence, the marginal of Q is a mixture of the marginals of the component trees.

Inference (in the restricted sense) which is marginalization after conditioning on the
evidence is performed in an analog way. Let EB be the evidence and B c V be the set of
variables that the evidence is about. Then

QA(XAIEB) = Q(XlEB) (3.8)
XV\(AUB)

Z AkTA(XAIEB). (3.9)
k=1

One can also infer the value of the hidden variable given some evidence EB by applying
Bayes' rule

P'r[z kISB] Pr[SBIz = k]Pr[z = k] (3.10)
Zk' Pr[EBIz = k']Pr[z = k']

kTB (B)

Ek' Ak'TB'(EB)

In particular, when the evidence consists of observing all the visible variables E = {vi =

X1, V2 = X2,... o }n = n}, B = V and (Xi, X2 ,... Xn) = x the posterior probability distri-
bution of z is

Ak pk~
Pr[z = k|S] = Pr[z = kjx] = AkTk() (3.12)

Sampling Sampling in a mixture of trees, in the presence of evidence or not, is a straight-
forward extension of sampling from one tree discussed in chapter 2.2. The procedure for
sampling from a mixture of trees uses TreeSample( T, E) the procedure that samples
from a tree distribution given evidence E (possibly void)

Algorithm MixTreeSample( Q, E)
Input a mixture of trees Q

evidence E
1. sample k the value of z from (A,, A2 , .. . A)
2. sample x from Tk component of the mixture and returns a value x.

Output X
Conclusions As this subsection has shown, the basic operations on mixtures of trees,

marginalization, conditioning and sampling, are direct extensions of the corresponding op-
erations on tree distributions. Their complexity scales accordingly: Marginalization over
a subset V \ A in a mixture of trees takes m times the computation for marginalization
over the same subset in a single tree. For instance, computing the marginal of a single
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variable (that is not in a separator) takes 0(mrIAx). Inference in a mixture of trees takes
m junction tree propagation operations, O((mnr IAx). Inferring the value of the hidden
variable takes rn multiplications. Sampling from a mixture is 0(m + n.ns), where ns is
the number of operations required to sample a value of a vertex in a clique, conditioned on
the value of the other vertex. For the directed tree representation ns < rMAX. The choice
of the tree to sample from is an m-way choice requiring 0(m) operations.

3.3 Learning mixtures of trees in the ML framework

3.3.1 The basic algorithm

This section will show how a mixture of trees can be fit to an observed dataset in the
Maximum Likelihood paradigm via the EM algorithm [18].

The learning problem is similar to the one formulated for trees in chapter 2. We are
given a set of observations D {= , 2, .,2 1 N} and we are required to find the mixture
of trees Q that satisfies

N
Q = argmax (logQ(xi). (3.13)

Q1 i=1

Here and in the rest of the thesis we will assume that there are no missing values for the
variables in V. As for z we will first assume that it is hidden. We denote the (hidden)
values of the choice variable by {zi, i = 1,... N}.

Learning the ML mixture of trees model will be done by means of the Expectation-
Maximization (EM) algorithm. This is an iterative algorithm devised for fitting maximum
likelihood parameters for models with hidden or missing variables. Each iteration consists
of two steps, Expectation and Maximization, that will be described below.

The EM algorithm introduces a likelihood function called the complete log-likelihood
which is the log-likelihood of both the observed and the unobserved data given the current
model estimate M {m, Tk, Ak k - 1,... m}

N m

lC(1,...N z1...NIM) -k,2i(log Ak + log T ki)) (3.14)
i=1 k=1

The complete log-likelihood depends on the unknown values of the hidden variable and
therefore it is not directly computable. The idea underlying the EM algorithm is to instead
compute and optimize the expected value of 1c.

The Expectation (E) step consists of estimating the posterior probability of the hidden
variable for each of the observations. In our case this means estimating the probability of
each tree generating data point xi

AkT k Xi)Pr[z' = klxz,M] =Yk(i) = k, = E[kz] (3.15)
Ek' AkT (Xi)

One uses these posterior probabilities to compute the expectation of Ic, which is a linear
function of the -Yk (i) values.

N m

E lc(1N ... ' M1... N E E yk (i)(log Ak + log Tk(4) (3.16)
i=1 k=1
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Let us introduce the following quantities:

N

k k(x'), k = 1,... m (3.17)
i=1

P k(Xi) - k( (3.18)

The sums 1k E [0, N] can be interpreted as the total number of data points that are
generated by component Tk. By normalizing the posteriors -Yk(i) with F we obtain a
probability distribution pk over the data set. In the following it will be shown that pk acts
as a target distribution for Tk. For now, let us express the expected complete log-likelihood
in terms of pk and Fk.

m m N

E[c | xl,..N,] E k log Ak - E 1k E pk(Xi) log Tk(Xi) (3.19)
k=1 k=1 i=1

The Maximization (M) step of the EM algorithm reestimates the parameters of the

model so as to maximize E[, I x1,.N M]. It can be proved [18] that the iteration over

these two steps converges a local maximum of the log-likelihood of the visible data given

the model.

By inspecting equation (3.19) one can see that the expression of E[),] is a sum whose

terms depend on disjoint subsets of the model's parameters. Hence, one can maximize

separately each term of the sum w.r.t. to the part of the model that it depends on.

Thus, by maximizing the first term of (3.19) subject to the constraint

m

ZAk1
k=1

one obtains the new values for the parameters A

Ak = for k 1,... m (3.20)
N

To obtain the new distributions Tk, we have to maximize for each k the expression that

is the negative of the cross-entropy between pk and Tk.

N

pk (i) log T k(Xi) (3.21)

This problem is equivalent to the problem of fitting a tree to a given distribution and

can be solved exactly as shown in section 2.3.2. Here I will give a brief reminder of the

procedure. First, one has to compute the mutual information between each pair of variables

in V under the target distribution pk

I-k = (xX,) log Pu ii, v E V, u #v. (3.22)
UV UVPk(xu)Pk(xv)

Second, the optimal tree structure ETk is found by a Maximum Weight Spanning Tree

algorithm using Ik as the weight for edge (u, v), Vu, v E V. Once the tree is found, its

marginals Tkv (or Tk), (uv) E are exactly equal to the corresponding marginals Pkv
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of the target distribution pk. They are already computed as an intermediate step in the
computation of the mutual informations 1,k (2.26). The algorithm is summarized here:

Algorithm MixTree - outline

MixTree(D, Mo)

Input:Dataset {x 1 ,.. . xN

Initial model Mo = {m, Tk, Ak, k 1,... m}
Procedure TreeLearn( P)

Iterate until convergence:

E step: compute i, pk () for k 1,... m, i = 1, ... N by (3.15), (3.17), (3.18)
M step: for k =1,...rn

Mi. Ak + k/N
MT. T k =TreeLearn(Pk)

Output model M ={m, Tk, Ak, k 1,... m}

Now we show the steps of the algorithm again in more detail. Next to each step is

displayed its running time. Time and memory requirements will be discussed in the next

subsection.

Algorithm MixTree

Input:Dataset {x 1 ,. xN}

Initial model M {m, Tk, Ak, k =1,.. . m}

Procedure MWST( weights ) that fits a maximum weight

spanning tree over V
Iterate until convergence:

E step: compute -i, pk(Xi) for k = 1,... m, i = 1,... N
by (3.15), (3.17), (3.18) 0(mnN)

M step: for k= 1,...m
M1. Ak - Fk/N 0(m)
M2. compute marginals pk pc u, v E V 0(mn2 N )

M3. compute mutual information I u, v E V 0(mnr Ax)

M4. call MWST({ Ik }) to generate ETk O(mn2 )
M5. TV <- Pk, ;T! +- Pk for (u, v) E ETk 0(mnr Ax )

3.3.2 Running time and storage requirements

Running time. Computing the likelihood of a data point under a tree distribution (in

the directed tree representation, where the parameters represent conditional distributions)

takes n - 1 = 0(n) multiplications. Hence, the E step should require O(mnN) floating

point multiplications/divisions.

For the M step the situation is: m divisions for computing the Ak values in step Ml;

0(mn2 N) for the marginals of pk in step M2; another 0(mn2rAX) for the mutual infor-

mations in step M3; 0(mn2 ) for running the MWST algorithm m times in step M4; finally

O(mnr MAX) for computing the tree parameters in the directed representation in step M5
of the algorithm. These values are presented at the right of the MixTree algorithm above.

The total running time per EM iteration is thus

0(m n 2 N + mnrAX)) (3.23)
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The dominating terms in this cost correspond to the computation of the marginals pk and

of the mn(n - 1)/2 mutual informations under the distributions pk.

Storage requirements Storing the data takes mN integer numbers; additionally, to

represent the model one needs 0(mnr4IAx) real parameters. This storage is necessary

independently of the learning algorithm used.

The intermediate values that are needed by the EM algorithm are:

* the -Yk values that require mN storage locations. The pk values can overwrite the -Yk
values so that no additional storage is needed for them.

" the single variable and pairwise marginals of pk that require n(n+1)r 2 storage.
0 ~2 'MAX soae

They can be overwritten for successive values of k.

* the mutual informations Ik between pairs of variables that require n(n - 1)/2 storage

locations. They can also be overwritten for each k.

" the additional temporary storage required by the MWST algorithm. In the Kruskal

algorithm, this amount is proportional to the number of candidate edges, namely

0(n 2 ). Other algorithms, [10] require only linear space.

The total storage is

0(mN + mnr2AX + nrAX) (3.24)

Again, the dominant cost corresponds to the computation of the pairwise marginals of the

distributions pk.

3.3.3 Learning mixtures of trees with shared structure

It is possible to constrain the m trees to share the same structure, thus constructing a

truly Bayesian network. The steps of the EM algorithm that learn mixtures of trees with

shared structure, called MixTreeS, are given below. Most of the reasoning and calculations

parallel the ones describing the fitting of a tree to a distribution in section 2.3.2.

The E step here is identical to the E step of the MixTree algorithm. So are the

expression of the expected complete log-likelihood

m m N
E[lc ,.:r NM - k log Ak -- k Ypk Xi)logT k(Xi) (3.25)

k=1 k=1 i=1

One can easily see that the reestimation of {Ak, k - 1, ... m} is decoupled from the estima-

tion of the rest of the model and can be performed in the same way as before, i.e.

Ak = - for k = 1,... m (3.26)
N

The difference is in reestimating the k tree distributions, since now they are constrained

to have the same structure. Hence, the maximization over the tree distributions cannot be

decoupled into m separate tree estimations but must be performed simultaneously for all

the trees. A reasoning similar to one in section 2.3.2 shows that for any given structure the

optimal parameters of each tree edge Tk are equal to the parameters of the corresponding

marginal distribution Pk (equation (2.17),reproduced here)

TV = Pk V(u, v) E E (3.27)
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It remains only to find the optimal structure. The expression to be optimized is the second

sum in the r.h.s. of equation (3.25):

m N

>rkFP k (Px) log T k (x)
k=1 i=1

(3.28)

By making the substitution (3.27) in the above expression and following a series of steps
similar to (2.20-2.25) we obtain that (3.28) is equal to

m

E Fk[
k=1 (u,v)CE

m

ukv - H(Pvk)]
vEV

= N E Ak E In,, + constant independent of structure
k=1 (u,v)CE

= N E I5vz + constant

(u,v)GE

(3.29)

(3.30)

(3.31)

Hence, optimizing the structure E can be again done by a MWST algorithm with the
edge weights represented by Iuvz the conditional mutual information between the variables
adjacent to it given z. This algorithm is essentially the same as the TANB learning algorithm
of [24, 22]. The expressions in the right column represent the running time for each step of
the algorithm.

Algorithm MixTreeS
Input:Dataset {W1,...XN}

Initial model M = {m, Tk, Ak, k = 1,... m}
Procedure MWST( weights ) that fits a maximum weight spanning tree over V

Iterate until convergence:
E step: compute -4, Pk(Xi) for k = 1,... m, i =1,...N

by (3.15), (3.17), (3.18) 0(mnN)
M step: M1. for k - 1,...m

compute marginals Pk, Pkv, u, v E V 0(mn2 N )
M2. compute the conditional mutual information Inz u, v E V 0(mnr2IAX
M3. call MWST({I }) to generate ET O(n 2 )
M4. fork=1l,...m

Ak Fk/N O(m)
M5. fork= 1,...m

Tv <- Pkv, ; Tk <- Pv for (u,v) EFT 0E(mnr IX)

3.3.4 Remarks on the learning algorithms

The above described procedures for learning mixtures of trees from data are based on one
important assumption that should be made explicit now. It is the

Parameter independence assumption: For any k, v and value of pa(v) the distri-
bution Tk is a multinomial with rv - 1 free parameters that are independent both of thevjpa(v)
tree structure and of any other parameters of the mixture.1

'In [33] this assumption is stated as three distinct assumptions called: parameter modularity, global
parameter independence and local parameter independence.
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The parameter independence assumption is essential to the computational efficiency of
the MixTree and MixTreeS algorithms. The independence of the parameters of Tk ofvjpa(v)
any other parameters allows for the simple form of step M5 of the EM algorithm. The inde-
pendence from tree structures allows us to use the MWST algorithm to globally maximize
over tree structures at each iteration. As a practical remark, note that although equation
(3.27) calls for copying the marginals of the target distributions pk, the algorithms should
implement the directed tree representation and thus copy in its parameters the conditional
probabilities P.vlpa(v)~

Note also that, although the TreeLearn algorithm always attains a global solution,
learning a mixture of trees by the EM algorithm will converge to a local maximum of the
likelihood.

The tree structures obtained by the basic algorithm are connected. In the following
chapters we will show reasons and ways to obtain disconnected tree structures.

Missing variables are handled elegantly by trees. Any number of nonadjacent missing
variables can be marginalized out in O(rMAX) time and this bound grows exponentially
with 1, the size of the largest connected subset of missing variables.

Observed but unknown choice variable An interesting special case is the situation
where the choice variable is in fact one of the observed variables (or a small subset thereof),
but we don't know which one? To discover it, one can either: build several mixtures by
conditioning on each one of the observables and then compare their posteriors, or: build one
standard mixture model and then compare the mutual information between the structure
variable and each of the others to identify the most likely candidate.

3.4 Summary and related work

This chapter has introduced the mixture of trees model with its variants and has shown
that the basic operations on mixtures of trees are direct extensions of the same operations
on tree distributions and thus inherit their excellent computational properties. It has also
presented a tractable algorithm to learn the model from data in the Maximum Likelihood
framework.

Trees have been noticed for their flexibility and computational efficiency as early as
1968 by [7] who also used them in a classification task, in what is called here a mixture of
trees with visible choice variable (i.e. by fitting a different tree to each class). [54] builds
on the Chow and Liu algorithm an exact algorithm for learning a polytree when the true
distribution is known to be a polytree. Fitting the best polytree to an arbitrary distribution
is NP-hard [33, 13]. [27] considered the same model, now with an explicit and observed
choice variable as a special case of the Bayesian multinet [28]. The MTSS appeared in
the work of [24] as the Tree Augmented Naive Bayes classifier and was further developed
in [22, 23]. The latter work also considers continuous variables and suggests an ingenious
heuristic for deciding whether the continuous variables should be discretized or whether
their density should be approximated (e.g. by a mixture of Gaussians). The mixture of
trees as it was presented here encompasses the aforementioned models as special cases; it
was introduced in [46, 48]. Classification results with the mixture of trees (which will be
presented in chapter 7 were first published in [48].

Mixture models, the second "parent" of mixtures of trees, have come an even longer way.
Therefore I will only cite mixture models that are closely related to the present work. The
mixture of factorial distribution in the form of the Naive-Bayes model (i.e with the choice
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variable being a class variable in classification task), sometimes known as Auto-Class was

given the name and an attentive study in [5] and was heavily used ever since for its excellent

cost/performance ratio2 . [41] successfully used a mixture of factorial distributions with a

hidden variable for classification and this line was further followed by [50] who combined the

two. The idea of learning tractable but simple belief networks and superimposing a mixture

to account for the remaining dependencies was developed independently of this work by [65]

into mixtures of Gaussian belief networks. Their work interleaves EM parameter search with

Bayesian model search in a heuristic but general algorithm.

From here we shall go on to examine learning the same model in the Bayesian framework

and show that the algorithms introduced here can be extended to that case as well. The

quadratic time and storage complexity of the learning algorithm is satisfactory for medium

scale problems but may become prohibitive for problems of very high dimensionality. We

shall show how these requirements can be reduced under certain conditions of practical

importance. We shall also examine how a mixture of trees can be used for classification.

Finally we study the use of the mixture of trees learning algorithm as a heuristic for solving

a challenging problem: hidden variable discovery.

2 Section 7.3.5 shows that the Naive Bayes classifier has little sensitivity to irrelevant attributes, just like

the single tree classifier, which partly explains its success.
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Chapter 4

Learning mixtures of trees in the
Bayesian framework

The ML paradigm assumes that the model is estimated using the data only and excluding

other sources of knowledge about parameters or model structure. But, if prior knowledge

exists and if it can be represented as a probability distribution over the space of mixtures

of trees models, then one can use the Bayesian formulation of learning to combine the two

sources of information.

In the Bayesian framework, the main object of interest is the posterior distribution over

models (in our case mixtures of trees) given the observed data Pr[Q ID]. By Bayes' formula,
the posterior is proportional to

Pr[Q D] oc Pr[Q, D] = Pr[Q] 11 Q(x) (4.1)
XED

In the above Pr[Q] represents the prior distribution over the class of mixture of trees models;

the second factor is Q(D), the likelihood of the data given the model Q.
The probability of an observation x is obtained by model averaging

Pr[x] = Q(x)Pr[QID]dQ (4.2)

However, except for a few special cases neither Pr[x] nor the posterior Pr[QID] are repre-

sentable in closed form. A common approach is to approximate the posterior distribution

around its mode(s) for example by the Laplace approximation []. Another approach is to

replace the integration in equation (4.2) by a finite sum over a set Q of models with high

posterior probability.

Pr[x] Q(x)Pr[QID] (4.3)
QGQ

This approximation is equivalent to setting Pr[QJD] to 0 for all the mixtures not in Q.
Consequently, the normalization constant in the above formula is computed over Q only.

Finally, if we are to choose one model only to summarize the posterior distribution

Pr[QID] then a natural choice is the mean of the distribution. As it will be shown the

mean can sometimes be expressed as the MAP estimate under a certain parameterization.

Finding the modes of the posterior distribution Pr[Q D] is a necessary step in all the

three approaches; therefore, although Maximum A-Posteriori (MAP) estimation of Q is

not seen as a purpose per se, this chapter will be concerned with maximizing the posterior

distribution Pr[Q ID] cx Pr[Q, D].
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4.1 MAP estimation by the EM algorithm

According to equation (4.1) in the previous section, maximizing the posterior log-likelihood
of a model is equivalent to maximizing

log Q(D) + log Pr [Q] (4.4)

which differs from log Pr[Q ID] only by an additive constant. The EM algorithm previously
used to find Maximum Likelihood estimates can be adapted to maximize the above expres-
sion (which represents the expression of the log-likelihood plus the term log Pr[Q]) [51].
The quantity to be iteratively maximized by EM is now

E[log Pr[Qxl ....N z1...N]] = logPr[Q] + E[lc1,...Nz1,....lNIQ)] (4.5)

It is easy to see that the added term does not have any influence on the E step of the
EM algorithm, which will proceed exactly as before. However, in the M step, we must be
able to successfully maximize the r.h.s. of (4.5). We have seen that in the previous chapter
exact maximization was enabled by the fact that we obtained a separate set of equations
for A and for each of the mixture components Tk. Therefore, we will look for priors over
the mixtures of trees models that are amenable to this decomposition.

For a given m a prior over the space of mixtures of trees with m mixture components
comprises a prior over the distribution A,...m of the hidden variable and priors over each
of the m trees' structures and parameters. We require that the prior is expressed in the
product form

Pr[Q] = Pr[A1,...m] J Pr[Ek]Pr[parametersTk|Ek]. (4.6)
k=1

Pr[Tk]

Moreover, remember that the key to the efficient maximization in equation (3.21) was the
fact that its r.h.s could be further decomposed into a sum of independent terms, each of
them corresponding to an edge of Tk. Therefore, a similar property is desirable for the prior
Pr[Tk]. A prior probability for a tree has two components: the prior for the tree structure

(represented by the edge set Ek) and the prior for the tree parameters, given the structure.
We shall require that both components decompose in a way that matches the factoring of
the likelihood in equation (3.21):

Pr[Tk] = Pr[Ek] Q Pr[TU,] (4.7)

(u,v) E Ek

oc 7J f3 kPr[Tkv] (4.8)
(u,v)EEk

A prior over the class of mixtures of trees having all the above properties is called a decom-
posable prior.

In the context of decomposable priors, at the M step of the EM algorithm the new model

Q"" is obtained by solving the following set of decoupled maximization problems:

* for the A parameters

m

A =e argmax Y 'k log Ak + log P(A1m). (4.9)
EkAk=1 k=1
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* for each tree Tk equation (3.21) in the previous chapter is replaced by

N

T k new - argmax (pk (Xi) logTk (Xi) + log Pr [Tk] (4.10)
Tk

Requiring that the prior be decomposable is equivalent to making strong independence

assumptions: for example, it means that the prior probability of each tree in the mixture is

independent of all the others as well as of the probability distribution of the mixture variable.

In the following sections, the implications of some of these independence assumptions will

be made more explicit. It will also be shown that, although the independence assumptions

made are strong ones, they are not too restrictive. The class of decomposable priors is rich

enough to contain members that are interesting and of practical importance.

4.2 Decomposable priors for tree distributions

4.2.1 Decomposable priors over tree structures

The general form of a decomposable prior for the tree structure E is one where each edge

contributes a constant factor independent of the presence or absence of other edges in E.

Pr[E] oc i exp(-#3o) (4.11)
(u,v)GE

With this prior, the expression to be maximized in the M step of the EM algorithm (former

equation (3.19))becomes

1 Fk log Ak + Fk pk(X) log T k(Xi)

k=1 k=1 i=1 (u,v)Ek

Consequently, each edge weight in tree Tk is penalized by its corresponding 0 divided by

the total number of points that tree k is responsible for:

wk = I[k - (4.13)

A negative #3u increases the probability of uv being present in the final solution. On the

contrary, if /3v is positive, it acts like a penalty on the presence of edge nv in the tree. If

131 is sufficiently large the weight War becomes negative and the edge is not added to the

tree. Hence, by introducing edge penalties, one can obtain trees Tk having fewer than n - 1

edges and thus being disconnected. Notice that the strength of the prior decreases with Ik

the total number of points assigned to mixture component k. Thus, for equal priors for all

trees Tk, trees accounting for fewer data points will be penalized stronger and therefore will

be likely to have fewer edges.
If one chooses the edge penalties to be proportional to the increase in the number of

parameters caused by the addition of edge uv to the tree,

0 -V = #(ru - 1)(r, - 1) (4.14)

then a Minimum Description Length (MDL) [56] type of prior is implemented. Note that

the effective penalty for each parameter is inversely proportional to the number of data

points Fk the tree that the parameter belongs to is responsible for.
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In [33], in the context of learning Bayesian networks, the following prior is suggested:

Pr[E] = cK NA(E,E*) (4.15)

where A(.) is a distance metric and E* is the prior network structure. Thus, this prior
penalizes deviations from the prior network. For trees, the distance metric becomes the
symmetric difference:

A(E, E*) = |(E \ E*)U(E* \ E)j (4.16)
This prior is also factorable, entailing

{o lnK (uv)E* (4.17)In K (uo) E*

What happens in the case of mixtures of trees with shared structure? Recall that in
this case each edge uv had a weight proportional to the mutual information between u and
v conditioned on z: Iv (3.31). The effect of the decomposable prior is to penalize this

weight by -/3f

4.2.2 Priors for tree parameters: the Dirichlet prior

We will introduce now an important subclass of decomposable priors for parameters called
Dirichlet priors. The Dirichlet prior is the conjugate prior of the multinomial distribution.
Since the distribution of the mixture variable is a multinomial as well, the facts shown in
this section will cover this case too.

Let z be a discrete random variable taking r values and let Og = Pz(j), j = 1,... r.
Then, the probability distribution of an i.i.d. sample of size N from Pz is given by

r

P(z1,....N) _ N
P~lN H7 JN (4.18)

j=1

where Nj, j = 1,... r represent the number of times the value j is observed in and are
called the sufficient statistics of the data. The sample itself is said to obey a multinomial
distribution.

The Dirichlet distribution is defined over the domain of 01,... r and depends on r real
parameters N , > 0 by

F (E N) N'-1
D(01,...,; Nr) _ F(N) - (4.19)

In the above FQ represents the Gamma function defined by

F (p) = ft t-letdt. (4.20)

For any nonnegative integer n

F(n + 1) = n! (4.21)

The importance of the Dirichlet distribution in connection with a multinomially dis-
tributed variable resides in the following fact: If the parameters 0 of the multinomial dis-
tribution have as prior a Dirichlet distribution with parameters N, j = 1,... r, then, after
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observing a sample with sufficient statistics Ng, j =1 ... r, the posterior distribution of 

is a Dirichlet distribution with parameters N + Ng, j = 1,... r. This justifies denoting the

distribution's parameters by N'. One popular alternative parameterization for the Dirichlet

distribution is given by:

N' NI (4.22)
j=1

N'
P =(4.23)

(4.24)

Note that in this parameterization the means of the parameters Og are equal to P. We
say that the Dirichlet distribution is a conjugate prior for the class of multinomial distribu-
tions. The property of having conjugate priors is characteristic for the exponential family
of distributions.

The Dirichlet prior in natural coordinates

The multinomial distribution was represented before as defined by the parameters OB, j =
1, . .. r. But there are infinitely many ways to parametrize the same distribution. For each
set of parameters y1,..., the corresponding representation of the Dirichlet prior results from
the well known change of variable formula

8o
D(y1,...ry; N r _r) - D(01.... r(Y1...r); N ) (4.25)

with | representing the absolute value of the determinant of the Jacobian of 0(y). Note
that because of the presence of this factor, the maximum of D(.; NL ) has both a different
value and a different position in each parametrization. This dependence of the parametriza-
tion is one fundamental drawback of MAP estimation which justifies the Bayesian and
approximate Bayesian approaches mentioned above.

By contrast, the mean of f(y)D(y; N') of any measurable function f over any measur-
able set is independent of the parametrization. In particular, the mean of the Dirichlet
distribution is independent of the parametrization and equal to

N'
E[0j| = , NI j=,.. (4.26)

Ey=1 N/

Of special interest is the so called natural parametrization of the multinomial, defined
by r - 1 unconstrained parameters #:

log i = 1 ... r - (4.27)
Or

The parameters # take values in (-oo, oo) when 0 1....r > 0. The reverse transformation
from # coordinates to 0 coordinates is defined by:

1 (4.28)
1= ± ~ c

ekj
-i = , _1 , j=1,...r-1 (4.29)

(4.30)
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In the natural parametrization, the Dirichlet distribution is expressed as

l'(E 1 N')r-1 e
D(#1 .r; N' ) = fJ( (4.31)

]- iIN) _ 1 + e (1 + E eoi)NJ

A remarkable property of the natural parametrization is that its mode coincides in position
with the mean. To see this, it suffices to equate to 0 the partial derivatives of the Dirichlet
distribution w.r.t the # parameters. After some calculations, one obtains

e________ NI=~ - * i = 11 . .. r - 1 (4.32)
1 + edi' N1

or equivalently

y = j= 1,... r (4.33)

Dirichlet priors for trees and mixtures

[33] show that the assumptions of likelihood equivalence which says that data should not
help discriminate between structures which represent the same probability distribution, pa-
rameter modularity which says that the parameters corresponding to an edge of the tree
should have the same prior every time the edge is present in the tree and parameter inde-
pendence which says that in any directed tree parametrization the parameters of each edge
are independent of anything else. These combined with some weak technical assumptionsi
imply that the parameter prior is Dirichlet.

In the case of trees, likelihood equivalence is automatically assured by definition (all tree
parametrizations, directed or not, represent the same distribution). Parameter modularity
and parameter independence are implicitly assumed as a basis for the tree fitting procedure
that we have used. Moreover, requiring a decomposable prior over tree structures preserves
parameter modularity. Hence, requiring decomposable priors not only fits naturally in the
framework already adopted, but introduces almost no additional constraints. [33] also show
that the likelihood equivalence constrains the Dirichlet priors for all the parameter sets to
share a common equivalent sample size N'. All these results hold for trees and mixtures
as described by the present framework. Moreover, it is easy to see that when learning
tree distributions the Dirichlet parameters collapse into the fictitious sufficient statistics
represented by the pairwise "counts" N = "# times u = i and v j". Therefore,
for the case of trees, the prior over all parameters of all possible edges of tree Tk can be
described by the set of fictitious marginal counts

{Nif _, u,v E V, I =1,... r, j 1, ... rv}

Alternatively, one can normalize the counts and express the Dirichlet prior over all trees as a
table of fictitious marginal probabilities P,v for each pair u, v of variables plus an equivalent
sample size N' that gives the strength of the prior.

However, it is important to note that the fictitious marginal counts or alternatively the
pairwise marginals Pf, cannot be set arbitrarily 2 . The values Pu'v have to satisfy

PU'V(zUoV) = { Py (x) Wv17, u (4.34)
xCQ(V):u=x ,v=x,

'These technical assumptions assumptions amount to the positivity of the joint prior.
2Take for example a set of three binary variables a, b, c. Assume that Pab(01) = Pab(10) = 0 and

P6c(01) = Pbc(10) = 0. This implies that a = b = c and thus constrains Pac(01) = Pac(10) - 0.
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for some joint distribution P' over Q(V).
The above represent a system of linear equality and inequality constraints. Verifying

them directly is theoretically straightforward but computationally intractable on account
on the exponential number of columns of the system's matrix (a number of the order of

IQ(V)). Still one can notice that the uninformative prior given by

1
PU'(XUXV) = (4.35)

is valid since it represents the set of pairwise marginals of the uniform distribution over
Q (V)3.

If the Dirichlet prior is represented in the natural parameters and the empirical distri-
bution is P, with sample size N, then, from the fact that the Dirichlet prior is a conjugate
prior, it follows that finding the MAP tree is equivalent to finding the ML tree for

~1
P N (N'P' + NP). (4.36)N + N'

Consequently, the parameters of optimal tree will be

T i v = -"" (4.37)
PV

and, according to the previous section and equation (4.33) they will also represent the mean
of the posterior distribution. Moreover, using the parameter independence assumption, we
can conclude that the optimal tree distribution itself is the mean of the posterior distribution
given the structure.

For mixtures, maximizing the posterior translates into replacing P by pk and N by Fk
in equation (4.36) above. Namely, each step of the EM algorithm fits the optimal tree to
the distribution

# Ik + N (N'P' +FkPk). (4.38)rk + N'

If we want to distinguish between trees, then different Dirichlet priors can be used for each
tree. By the previous arguments, at each M step the resulting trees Tk and Ak values
represent the mean of their respective posterior distribution. However, this does not imply
that the mixture Q = Z AkTk is also the mean of its own posterior. The presence of the
hidden variable cancels the independence assumption that allows us to conclude this for the
single tree.

3 This prior is called the BDeu prior in [33]. We note in passing that the uninformative prior denoted
there as the K2 metric is not a valid prior from the point of view of equations (4.34).
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Chapter 5

Accelerating the tree learning

algorithm

"So do something! Fast!" said the Fish.
Dr. Seuss
-The Cat in the Hat

5.1 Introduction

The Chow and Liu (CL) algorithm presented in chapter 2 as the TreeLearn algorithm
as well as the MixTree algorithm that builds on it are quadratic in the dimension of the
domain n. This is due to the fact that to minimize the the KL divergence

KL(P||T) = P(x)log P(x) (5.1)

the TreeLearn algorithm needs the mutual information I, under P between each pair of
variables u, v in the domain. When P is an empirical distribution obtained from and i.i.d.
set of data, the computation of all the mutual information values requires time and memory
quadratic in the number of variables n and linear in the size of the dataset N. It has been
shown (section 3.3.2) that this is the most computationally expensive step in fitting a tree
to data. The time and memory requirements of this step are acceptable for certain problems
but they may become prohibitive when the dimensionality n of the domain becomes large.

An example of such a domain is information retrieval. In information retrieval, the data
points are documents from a data base and the the variables are words from a vocabulary.
A common representation for a document is as a binary vector whose dimension is equal
to the vocabulary size. The vector component corresponding to a word v is 1 if v appears
in the document and 0 otherwise. The number N of documents in the data base is of the
order of 103 - 104 . Vocabulary sizes too can be in the thousands or tens of thousands.
This means that fitting a tree to the data necessitates n2 ~ 106 - 109 mutual information
computations and n2 N ~ 109 - 1012 counting operations! However, the problem has a
particularity: each document contains only a relatively small number of words (of the order
of 102) and therefore most of the component values of its corresponding binary vector are
null. We call this property of the data sparsity. Can we use sparsity to improve on the time

(and memory) requirements of the TreeLearn algorithm?
The rest of this chapter shows that the answer to this question is yes. It also shows how

this improvement can be carried over to learning mixtures of trees or TANB models. We
call the algorithms obtained accelerated Chow and Liu algorithms (aCL). The table below
offers a preview of the results that will be achieved. The symbol s < n represents a measure
of the data sparsity, and NK is the number of steps of the Kruskal algorithm.
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TreeLearn aCL
E step O(mnN) - O(msN)
M step O(mrn 2 N) O[m(s2 N + sn + nk)]

It is obvious that in general the proportionality with the size of the data set N cannot be

improved on, since one needs to examine each data point at least once. Hence the focus will
be on improving on the dependence on n. Here the situation is as follows: there are several
MWST algorithms, some more efficient than others, but all the algorithms that I know of
run in time at least proportional to the number of candidate edges ne. For the tree learning
problem ne = n(n - 1)/2 which results in algorithms that are at least quadratic in the
number of variables n. But we also have additional information: weights are not completely
arbitrary; each edge (uv) has a weight equal to the mutual information Iuv between the
variables u and v. Can we use this fact to do better? Remark that the only way the MWST
algorithm uses the edge weights is in comparisons. The idea the present work is based on is
to compare mutual informations between pairs of variables without actually computing
them whenever this is possible. This way, by partially sorting the edges before running the
MWST algorithm significant savings in running time can be achieved. A second but no less
important idea is to exploit the sparsity of the data in computing the pairwise marginals

PJV. Combining the two will result in algorithms for fitting a tree to a distribution that

(under certain assumptions) are jointly subquadratic in N and n w.r.t. both running time
and memory. Let us start by stating the assumption underlying them.

5.2 Assumptions

Binary variables. All variables in V take values in the set {0, 1}. When a variables takes
value 1 we say that it is "on", otherwise we say it is "off". Without loss of generality we
can further assume that a variable is off more times than it is on in the given dataset. The
binary variables assumption will be eliminated later on (section 5.4).

Integer counts. The target distribution P is derived from a set of observations of size
N. Hence,

PV(1) - N - 1 - PV(0) (5.2)
N

where Nv represents the number of times variable v is on in the dataset. According to the
first assumption,

1 1
0 < PV(1) - or 0 < Nv < -N (5.3)

2 2

We can also exclude as non-informative all the variables that are always on (or always off)
thereby ensuring the strict positivity of Pv(1) and Nv.

Let us denote by New the number of times variables u and v are simultaneously on. We
call each of these events a cooccurrence of u and v. The marginal PV of u and v is given by

N.Puv (1, 1) = NuV (5.4)

N.Puv(1,0) = Nu - Nv (5.5)

N.Pv(0,1) =N - NuL (5.6)

N.Puv(0,0) = N-N-N+Nuv (5.7)

All the information about P that is necessary for fitting the tree is summarized in the
counts N, Nv and Nuv, u V = 1, ... ,I n that are assumed to be non-negative integers. From
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now on we will consider P to be represented by these counts. Later on (section 5.3.5) this
assumption will be considerably relaxed.

Sparse data. Let us denote by 0 < |x| < n the number of variables that are on in
observation x. Further, define s, the sparsity of the data by

s = max |xil (5.8)
i=1,N

If, for example, the data are documents and the variables represent words from a vocabulary,
then s represents the maximum number of distinct words in a document. The time and
memory requirements of the accelerated CL algorithm that we are going to introduce depend
on the sparsity s. The lower the sparsity, the more efficient the algorithm. From now on, s
will be assumed to be a constant and

s << n, N. (5.9)

As we shall see, of the four assumptions introduced here, the sparsity assumption is the only
assumption that we cannot dispense with in our program of accelerating the tree learning
algorithm.

Data/dimension ratio bounded The ratio of the number of data points N vs. the
dimension of the domain n is bounded and bounded away from 0.

N
0 < Rmin < - < Rwax (5.10)

n

This is a technical assumption that will be useful later. It is a plausible assumption for
large n and N.

5.3 Accelerated CL algorithms

5.3.1 First idea: Comparing mutual informations between binary vari-
ables

The mutual information between two variables u, v E V can be expressed with the above
notations as:

1-U Hu+H u

N ulogN - (N- N ,)log(N - N ) NlogN
- N, log Nv - ( N - Nv) log( N - Nv) + N log N

+Nuv log Nuv + (Nu - Nuv) log(Nu - Nuv) + (Nv - Nuv) log (Nv - Nuv)

+ (N - Nu - Nv + Nuv) log(N - Nu - Nv + Nuv) - log N} (5.11)

Knowing that N is fixed for the dataset, it follows that Iuv is a function of 3 variables:
No, Nu and N,,. Let us fix Nuv and Nu and analyze the variation of the mutual information
w.r.t. Nv:

"UV = log Nv -log(N - Nv) -log(Nv -Nuv) +1log(N - Nu - Nv +Nuv)

Nv(N - Nu - Nv + Nuv) (5.12)
(Nv-Nuv)(N-Nv)
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Equating the above derivative to 0 one obtains the extremum:

N* = (5.13)
SN,,

It is easy to verify that N,* is a minimum and that it corresponds to mutual independence
between u and v. Note that N*v is not necessarily an integer.

But more importantly, this calculation has the following practical implication: assume
that u is fixed and thereby Nu is also fixed. Assume also that the variables in V are
sorted by decreasing Nv and that we are interested only in the variables following u in this
ordering. We denote this latter fact by v >- u. To express it in an intuitive way, assume
that edge av is directed from the lower ranking variable toward the higher ranking one. In
this case the mutual informations between u and the variables v following a correspond to
the weights of the edges outgoing from u. Partition this set of variables (or edges) into sets
Vc, c = 0,1, ... according to the number c = Nuv of cooccurrences with u. Further partition
the sets V, c > 0 into

Vc+ = {vEVv>-uandNuv=candNv>N*} (5.14)

Vc = {vEVjv-u andNuv,=candNv<N*} (5.15)

For c = 0 N* = 0 so that Vo = V+ For each of these subsets Isu varies monotonically
(increasing or decreasing) with Nv. It means that if V- and V+ are sorted by increasing
respectively decreasing Nv then the variables within each set are sorted in the decreasing
order of their mutual information with u. This way, we can achieve a partial sorting of the
mutual informations I, for a given u without computing any of the mutual informations
involved. To obtain v = argmax Isu we only need to calculate and compare the first elements

of the lists Vi, c - 0,1. This procedure can save substantial amounts of computation

provided that the total number of values of c = Nv is small for each u.
If the data are sparse, then most pairs of variables do not cooccur. Consequently, the

list V±(u) for c > 0 have, together, much fewer elements than the Vo(u) lists. One can
pool the former together, for each u, without significant cost in computation time. Of the
two accelerated algorithms that are introduced here, the first costructs and uses all the V+
lists, whereas the second one uses only V0 .

5.3.2 Second idea: computing cooccurrences in a bipartite graph data
representation

The bipartite graph data representation Let D = {X, ... xN} be a set of observations
over n binary variables whose probability of being on is less than 1/2. It is efficient to
represent each observation in D as a list of the variables that are on in the respective
observation. Thus, data point xi, i =1, . . . N will be represented by the list xlist' =
list{v c Vjx< = 1}. The name of this representation comes from its depiction in figure 5-1
as a bipartite graph (V, D, E) where each edge (vi) E E corresponds to variable v being on
in observation i. The space required by this representation is no more than

sN << nN,

and much smaller than the space required by the binary vector representation of the same
data.
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variables

Figure 5-1: The bipartite graph representation of
"variable v is on in data point i".

a sparse data set. Each edge iv means

Computing cooccurrences in the bipartite graph representation First, let us
note that the total number NC of cooccurrences in the dataset D is

12
Nc = Z Nv < s2N

V>-U 2
(5.16)

where s is the previously defined sparsity of the data. Indeed, each data point x contains
at most s variables that are on, therefore contributing at most s(s - 1)/2 cooccurrences to
the sum in (5.16). Hence, the above result.

Therefore, as it will be shown shortly, computing all the cooccurrence counts takes the
same amount of time, up to a logarithmic factor. The following algorithm not only computes
all the cooccurrence numbers N,, for u, v E V but also constructs the lists V, c > 0.
Because the data are sparse, we expect the lists Vo(u) to be on average much larger that
the other V(u) lists. Therefore, instead of representing Vo(u) explicitly, we construct its
complement Vo(u) representing the sorted union of all the lists V (u), c > 0 or, in other
words, the list of all the variables that cooccur with u at least once. We assume that the
variables are already sorted by decreasing Nv, with ties broken arbitrarily.

This algorithm will serve as a building block for the accelerated Chow and Liu (aCL)
algorithms that the next subsections will introduce. One of them, aCL-I, uses all the Vei
lists as shown below. The second one, aCL-II simplifies this process by creating only the
Vo(u) lists and pooling the contents of the rest of the lists (i.e. the variables that cooccur
with u) in one list Cu sorted by the mutual information Inu.

For each variable u we shall initialize a temporary storage of cooccurrences denoted by
cheap, organized as a Fibonacci heap (or F-heap) [20]. Then, the lists Ve*(u), c > 0, u E V

can be computed as follows:
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Algorithm ListByCooccurrence
Input list of variables sorted by decreasing N,,

dataset D = {xlist, i = 1,... N}

1.for u = 1, . .. n

initialize cheap,
2. for i = 1, ... N

for u c xlistP

for v E xlist ,v >- U

insert v into cheap,
3.for u = 1, ... n

construct lists V1-(u), c > 0
construct list Vo(u)

Output lists V(u), Vo(u) u = 1,... n, c > 0

To construct the set of lists Vc(u), c > 0 we proceed as follows:
ConstructLists(u)

compute N*
c= 0
V = U

while cheapu not empty

vnew = extract max cheapu
if unew >- v / new set of cooccurrences

Insert v, c in corresponding lists
v vnew
c =1

else 7/ one more cooccurence for the same v

c++
Insert v, c in corresponding lists 7/insert last set of cooccurrences

To insert v, c in corresponding lists we do:

if v >- u // not first step
if Nv < N*

insert v in V- (u) at the beginning
else

insert v in Vc+(u) at the end
insert v in Vo(u) at the end

The algorithm works as follows: cheapu contains one entry for each cooccurrence of u
and v. Because we extract the elements in sorted order, all cooccurrences of v with a will
come in a sequence. We store v and keep increasing the count c until a new value for v
comes out of the F-heap. Then it is time to store the previous variable in its corresponding
V(u). Since the different v's come in decreasing order, we know that in V+ we have to
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insert at the end, whereas in V;- we have to insert at the beginning to obtain the desired

sorting of the lists. Vo(u) is the list of all variables that cooccur with u, sorted by decreasing

N,. Since it is assumed that most variables do not cooccur with u, it is more efficient to

store Vo(u) than its complement Vo(u).

Insertion in each V assumes implicitly that we test if the list was created and create it

if necessary. To handle insertion in VI efficiently, we store the current maximum value of
c for each u in the variable cmax(u). We maintain a vector of pointers to the V lists with
dimension 2cmax (u). If a list is empty its corresponding pointer is a null pointer. This way,
each insertion in a V list takes constant time. This time includes checking that the list
is initialized. Each insertion in one of the Ve* lists is followed by the insertion of the same
variable at the end of the list Vo(u), which is also a constant time operation. The amount
of additional storage incurred by this method will be discussed later on.

Running time. As shown above, an insertion at the extremity of a list takes constant
time. Extracting the maximum of an F-heap takes logarithmic time in the size of the heap.
Thus, extracting all the elements of a heap cheap., of size Lu takes Zf"u logl = log Lu! <

Lu log Lu.
Bounding the time to empty the heaps cheapu. Extracting all elements of all

heaps cheapu takes therefore less than T =E Lu log Lu. Knowing already that EZ Lu =
Nc < 1/2s 2 N it is easy to prove that the maximum of r is attained for all Lu equal.
After performing the calculations we obtain 7 ~ O(s2 N log {). The total number of list
insertions is at most proportional to T. It remains to compute the time needed to create
cheapu. But we know that insertion in a F-heap takes constant time and there are Nc

cooccurrences to insert. Therefore the whole algorithm runs in O(s 2 N log N) time.
Memory requirements.The memory requirements for the temporary heaps cheapu

are equal to NC. The space required by the final lists Vj*(u) is no more than proportional
to the total number of cooccurrences, namely O(s2 N). It remains to bound the space taken
up by the vectors of pointers to the lists. This space is no larger than

ai = Z 2cmax(U).
uEV

The total number of cooccurrences NC is

Z c[length(V+(u)) + length(Vf (u))] = Nc < s2N/2 (5.17)
uEV c=1

Under this constraint, ui is maximized when length(V±(u)) = 0 for all but one of the lists

with c = cmax(u) for which it is equal to 1. Then the l.h.s. of (5.17) becomes

E Cma (U).
uGV

It follows that ai < s 2 N. Thus the total space required for this algorithm is O(s 2N).

5.3.3 Putting it all together: the aCL-I algorithm and its data structures

So far, we have an efficient method of partially sorting the mutual informations of all the

candidate edges. What we aim for is to create a mechanism that will output the edges av
in the decreasing order of their mutual information. We shall set up this mechanism in

the form of an F-heap called vheap that contains an element for each u E V, represented
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by the edge with the highest mutual information among the edges outgoing from u. The
maximum over this set will obviously be the maximum over the mutual informations of all
the possible edges not yet eliminated. The record in cheap is of the form (c, u, v, I,,v), with
v >- u and Iu being the key used for sorting. Once the maximum is extracted, the used
edge has to be replaced by the next weightiest edge in u's lists.

With this in place the Kruskal algorithm can by used to construct the desired spanning
tree. The outline of the algorithms is

Algorithm aCL-I - outline

ne= 0 // the number of tree edges
E = <
while ne < n - 1

(uv) = extract max(vheap)
if (uv) does not create a cycle with edges already in E

add (v) to E

ne ++

get a new (Uv') and insert it in vheap
Output E

It remains to show how to efficiently construct a suitable cheap. This is not hard, once
we have the lists V(u), Vo(u) and vlist the sorted list of all variables. It suffices to take
the first element of each list, let it be called oi, c > 0, compute the respective mutual
information Inc and insert the triple (c, oc, Iu) in a F-heap iheapu. How to extract the
first element of the implicitly represented Vo(u) will be discussed later. Extracting the
maximum of iheap(u) will provide us with the desired maximum over all edges originating
in u. The quadruple (c, u, c, Inv) is inserted in vhcap and c is also used to replace the
eliminated edge with one from the same list.

It remains to show how to handle the variables that do not cooccur with u. For this
we maintain a pointer pu into vlist. Initially pu points to the successor of u in olist. We
compare p with the first element of Vo(u) and if they are equal we increment p by one and
delete the head of Vo(u) recursively, until we find a v in vlist that does not cooccur with
u. For this v we compute the mutual information and insert the triple (0, v, Inu) in ilist.
To get the next variable not cooccurring with a we increment p and repeat recursively the
above comparison procedure with the head of Vo(u). Now we can summarize the algorithm
as

Algorithm aCL-I

Input variable set V of size n
dataset D {xlist, i 1, ... N}

1. compute Nv for v E V
create vlist, list of variables in V sorted by decreasing Nv

2. ListByCooccurrence // partial sort the mutual informations
3. create vheap

for u e vlist
create iheaps

(c, v, I) = extract max with replacement from iheapu
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insert (c, u, v, 1,,) in oheap
4. E = KruskalMST(vheap) storing the c = N,, values for the edges added to E
5. for (uv) E E

compute the probability table Tse using No, No, N,, and N.
Output T

5.3.4 Time and storage requirements

Running time In the first step we have to compute the variables' frequencies N,. This can
be done by scanning trough the data points and by increasing the corresponding Nv each
time v is found in xlistP for i = 1,. . . N. This procedure will take at most sN operations.
Adding in the time to initialize all N, (0(n)) and the time to sort the Nv values (0(n log n))
gives an upper bound on the running time for step 1 of the aCL algorithm of

0(n log n + sN)

The running time of the second step is already estimated to

0(s 2N log -)
n

Step 3 takes one mutual information computation for the head of each Ve±(u) list, plus
n log Cmax operations to extract the maximum from each iheapu and insert it into vheap
(the reader is reminded that insertion in an F-heap is constant time). By 0 max we denote
the maximum over u of the number of non-empty V (u) lists associated to a variable u E V.
The total number of lists is denoted by NL. With these notations the total time for this
step is

0(NL + n log Cmax)

Step 4 is the Kruskal algorithm. For each edge extracted from vheap another one has to be
inserted. Extraction takes 0(log n) because the size of vheap is always < n; a new insertion
involves an extraction from an iheap, done in 0(log Omax) and one computation of a mutual
information, taking constant time. Checking that the current edge (uv) does not create a
cycle and adding it to E can be done in constant time. Thus, if we denote by nK the total
number of edges examined by the Kruskal algorithm this step takes a number of operations
of the order

O(nK log nCmax)

The last step computes n - 1 probability tables, each of them taking constant time. Thus,
its running time is

0(n)

Adding up these five terms we obtain the upper bound for the running time of the aCL
algorithm as

N
0(n log n + s 2 N log - + NL + n log Cmax + nK log(nCmax)) (5.18)

n

Let us now further refine this result, by bounding NL and 0 max. Appendix 5.9 computes
an upper bound on the number of lists NL. If our third assumption holds (N/n bounded
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away from 0 and oo) then this bound reduces to O(sn). For Cmax we shall use the obvious
upper bound

Cmax < Nc.

Notice that since Cmax influences the running time only by its logarithm, any bound that
is polynomial in s, N and n will do. Now the expression of the running time for the aCL
algorithm becomes

O(n log n + s 2N log - + sn + n log s2 N + nK log(s 2nN)) (5.19)
n

which further simplifies to

N
O(n log n + s 2 N log + sn + nK log (s2 nN)) = O(n + s 2N + sn + nK) (5.20)

n

This bound, ignoring the logarithmic factors, is a polynomial of degree 1 in the three
variables n, N and nK. However, we know that nK the total number of edges inspected by
Kruskal's algorithm has the range

n(n - 1) (5.21)
2

Hence, in the worst case the above algorithm is quadratic in n. However, there are
reasons to believe that in practice the dependence of nK on n is subquadratic. Random
graph theory suggests that if the distribution of the weight values is the same for all edges

, then Kruskal's algorithm should take a number of steps proportional to n log n [70]. This
result is sustained by experiments we have conducted: we ran Kruskal algorithm on sets of
random weights over domains of dimension up to n = 3000. For each n, 1000 runs were
performed. Figure 5-2 shows the average and maximum nK plotted versus n log n. The
curves display a close to linear dependence.

Memory requirements To store data and results we need: O(sN) for the dataset in
the bipartite graph representation, O(n) to store the variables and another O(n) to store
the resulting tree structure and parametrization.

The additional storage required by the algorithm includes O(n) for vlist, then O(s 2 N)
for all the lists created in step 2 of the algorithm. In step 3, vheap is created taking up
O(n) memory. The space occupied by all the ilists is proportional to the number of their
elements, namely NL. As we have already seen, this number is 0(sn).

The last two steps do not use auxiliary storage so that the total space used by the
algorithm is

O(s 2N + n + NL) (5.22)

or, using the bound in appendix 5.9

O(s 2 N + sn) (5.23)

5.3.5 The aCL-II algorithm

When the data are sparse enough, one can simplify the aCL-I algorithm. The V:'(u) lists
for c > 0 can be replaced by a single list C, of all the variables cooccurring with u. The
difference between Cu and the list Vo(u) introduced previously is that the records in C,
contain as an additional field the mutual information Iu, and are sorted thereby. The list

70



x 10,
2.5 r

2

1.5-

(D

1-

0.5-

01
5 500 1000 2000 3000

n

Figure 5-2: The mean (full line), standard deviation and maximum (dotted line) of Kruskal
algorithm steps nK over 1000 runs plotted against n log n. n ranges from 5 to 3000. The

edge weights were sampled from a uniform distribution.

N.E

D* 0 DE0L000list of v >- u, N 0, sorted by No

Figure 5-3: The aCL-II algorithm: the data structure that supplies the next weightiest
candidate edge. Vertically to the left are the variables, sorted by decreasing Nu. For a given

u, there are two lists: Cs, the list of variables v >- u, sorted in decreasing order of Iuv and
(the virtual list) V(u) sorted by decreasing N,. The maximum of the two first elements
of these lists is that is inserted into an F-heap.The overal maximum of Iuv can then be
extracted as the maximum of the F-heap.
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Vo(u) preserves its function of supplying (together with vlist) the variables not cooccurring
with u in decreasing order of their mutual information with u.

This implies computing all I, v E Cu, u E V ahead of time, but they are no more than
Nc < 1/2s 2 N. The maximum weight edge outgoing from u is obtained by comparing the
two mutual informations corresponding to the current heads of lists Cu and Vo(u). The data
structure used is shown schematically in figure 5-3 and the algorithm is described below.

Algorithm aCL-II

Input variable set V of size n
dataset D {xlistP, i = 1,... N}

1. compute Nv for v E V
create vlist, list of variables in V sorted by decreasing Nv

2. construct lists Vo(u), u E V
compute mutual informations In, v E Vo(u), a E V.
create and sort Cu, u E V

3. create vheap
for u G vlist

v = argmax -IU
headCuheadVo(u)

insert (c, u, V, vIs) in oheap

4. E = KruskalMST(vheap) storing the c = Nuv values for the edges added to E
5. for (uo) E E

compute the probability table Tuv using Ns, No, Nuv and N.
Output T

5.3.6 Time and memory requirements for aCL-II

Steps 1, 4 and 5 of the above algorithm copy the corresponding steps of aCL-I. Hence we
analyze only steps 2 and 3.

Constructing Vo has been discussed previously and found to take 0(s 2 N log N) time
and 0(s 2N) memory. Then we need to compute no more than 0(s 2 N) mutual informations
and to sort the resulting lists. The worst case for the latter is when all the lists are equal.
Then, the total time is bounded by

n( 2N 2 N =2N log 92N
n n n

a result encountered before.
Constructing vheap takes 0(n) units of time and memory. Each extraction from it

is 0(log n). All the extractions from the virtually represented Vo(u) take no more than
nK + Nc time steps since there are at most NC elements that have to be skipped. nK is
again the number of steps taken by Kruskal's algorithm. Therefore, the running time of the
aCL-II algorithm is

0(n log n + sn + s 2 N log(s 2nN) + nK log n) (5.24)

The additional memory requirement are bounded by

0(n + s 2 N). (5.25)
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Comparing (5.24) above to (5.20) it appears that it is not possible to determine which
algorithm is asymptotically faster from the bounds alone. The algorithms have large parts
that are identical and the factor log s 2nN is a loose overestimate in both formulas; thus,
it may be that the running times of the two algorithms are close in reality. But more
important is the fact that by the aCL-II algorithm we have managed to relax the one of
the assumptions made in the previous section: the latter algorithm does not rely on integer
counts. This difference will become essential in the context of the EM algorithm.

5.4 Generalization to discrete variables of arbitrary arity

This section will show how the TreeLearn algorithm can be accelerated in discrete domains
where the variables can take more than two values. The algorithm that we are going to
develop is a simple extension of the aCL-II algorithm. Therefore, we shall present only
the basic ideas of the extension and the modifications to the aCL-II algorithm that they
imply.

The aCL algorithms introduced previously were exploiting the data sparsity. If they
are to be generalized, it is first necessary to extend the notion of sparsity itself. Thus, in the
forthcoming we shall assume that for each variable exists a special value that appears with
higher frequency than all the other values. This value will be denoted by 0, without loss
of generality. For example, in a medical domain, the value 0 for a variable would represent
the "normal" value, whereas the abnormal values of each variable would be designated by
non-zero values. Similarly, in a diagnostic system, 0 will indicate a normal or correct value,
whereas the non-zero values would be assigned to the different failure modes associated
with the respective variable. An occurence for variable v will be the event v f 0 and a
cooccurrence of u and v means that u and v are both non-zero in the same data point.
Therefore, we define |x| as the number of non-zero values in observation x

|X| = n - E 6, (5.26)
vCV

The sparsity s will be the maximum of |xj over the data set, as before.
From the above it can be anticipated that the high frequency of the 0 values will help

accelerate the tree learning algorithm. As before, we shall represent only the occurrences
explicitly, creating thereby a compact and efficient data structure. Moreover, we shall
demonstrate a way to presort mutual informations for non-cooccurring variables similar to
that used by the aCL-II algorithm.

5.4.1 Computing cooccurrences

Following the previously introduced idea of not representing explicitly 0 values, each data
point x will be replaced by the list olist of the variables that occur in it. However, since
there can be more than one non-zero value, the list has also to store this value along with
the variable index. Thus

xlist = list{(v, Xe), v E V, oc 0}.

Similarly, a cooccurrence will be represented by the quadruple (u, xu, v, x,), Xu, XV f 0.

Counting and storing cooccurrences can be done in the same time as before and with a
proportionally larger amount on memory, required by the additional need to store the (non-
zero) variable values.
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Instead of one cooccurrence count N,, we shall now have a two-way contingency table
N,. Each N,{ represents the number of data points where u =, V j, i,4j 0. This
contingency table, together with the marginal counts Nv (defined as the number of data
points where v = j, j : 0) and with N completely determine the joint distribution of
u and v (and consequently the mutual information I Constructing the cooccurrence
contingency tables multiplies the storage requirements of this step of the algorithm by

(AX) but does not change the running time.

5.4.2 Presorting mutual informations

As in subsection 5.3.1, our goal is to presort the mutual informations Iuv for all v >- u
that do not cooccur with u. We shall show that this can be done exactly as before. The
derivations below will be clearer if they are made in terms of probabilities; therefore, we
shall use the notations:

Nv
P(i) = " i 0 (5.27)

N

PVo PV P(0) = 1 - ( P(i) (5.28)
isO

The above quantities represent the (empirical) probabilities of v taking value i 0 and 0
respectively. Entropies will be denoted by H.

A "chain rule" expression for the entropy of a discrete variable. The entropy Hv
of any multivalued discrete variable v can be decomposed in the following way:

HV -PologPVo--EP (i)logPV(i)
i#O

= -Pro log Pro - (1- Pro)Z ( () log +l1 j~ 1 log(1 - Pvo)1
(1-Peo) (1 - PO)

= -Pu log Po - (1 - Po) log(1 - PVo) -(1 - PVo) E ) log
1( - Po) (1 - Pro)

-H-

= Hvo + (1 - Pvo)HT (5.29)

This decomposition represents a sampling model where first we choose whether v will be
zero or not, and then, if the outcome is "non-zero" we choose one of the remaining values
by sampling from the distribution Pv1vo (i) = jIj . Hvo is the uncertainty associated with
the first choice, whereas H - HvIvOo is the entropy of the outcome of the second one. The
advantage of this decomposition for our purpose is that it separates the 0 outcome from the
others and "encapsulates" the uncertainty of the latters in the number H.

The mutual information of two non-cooccurring variables We shall use the above
fact to find an expression of the mutual information Iv of two non cooccurring variables
U, v in terms of Po, Pvo and Hg only.

Inv = Hu - Hu1 v (5.30)
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The second term, the conditional entropy of u given v is

HUlV= PvoHulv=o + ( P(j) Hv (5.31)
j+0 '

0

The last term in the above equation is 0 because, for any non-zero value of v, the condition
N = 0 implies that u has to be 0. Let us now develop Hulv o using the decomposition in
equation (5.29).

HuIV_0 = Huoiv=0 + (1 - Pu=0|v=0)Hu u+0,,=0 (5.32)

Because u and v are never non-zero in the same time, all non-zero values of u are paired
with zero values of v. Hence, knowing that v = 0 brings no additional information once we
know that u 0 0. In probabilistic terms: Pr[u = ilu f 0, v = 0] = Pr[u ilu : 0] and

Huji:go,v=o = HTT (5.33)

The term Hu oiv~o is the entropy of a binary variable whose probability is Pr[u = Oe= 0].
This probability equals

Pr[u=0|v=0] = 1-EPI=O(i)
i+0

P(i)

S 1 - PU0  (534)1+0

1 - PVO

Note that in order to obtain a non-negative probability in the above equation one needs

1 - PUo < Po

a condition that is always satisfied if u and v do not cooccur. Replacing the previous three
equations in the formula of the mutual information, we get

Iuv = PUo log PUo - PVo log Pro + (PUo + Pro - 1) log(PUo + Pro - 1) (5.35)

an expression that, remarkably, depends only on Puo and Pro. Taking its partial derivative
with respect to Pvo yields

DIn, 1 Po +Puo -l
= log < 0 (5.36)

OPVo PVo

a value that is always negative, independently of Pvo. This shows the mutual information
increases monotonically with the "occurrence frequency" of v given by 1 - PvO. Note also
that the above expression for the derivative is a rewrite of the result obtained for binary
variables in (5.12) in the case Nuv = 0.

We have shown that the aCL-II algorithm can be extended to variables taking more
than two values by making only one (minor) modification: the replacement of the scalar
counts Nv and Nuv by the vectors Nv, j f 0 and, respectively, the contingency tables
N {, i,j, 0.
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5.5 Using the aCL algorithms with EM

So far it has been shown how to accelerate the CL algorithm under the assumption that the
target probability distribution P is defined in terms of integer counts N, No, Nu, u, v E V.
This is true when fitting one tree distribution to an observed data set or in the case of
classification with TANB models where the data points are partitioned according to the
observed class variable. But an important application of the CL algorithm are mixtures of
trees, and in the case of learning mixtures by the EM algorithm the counts defining P for
each of the component trees are not integer.

Recall that each E step of the EM algorithm computes the posterior probability of each
mixture component k of having generated data point x'. This is -Yk(i) defined in equation
(3.15). The values -y have the effect of "weighting" the points in the dataset D with values in
[0, 1], different for each of the k trees in the mixture. The counts Nk and Ntk corresponding
to tree k are defined in terms of the y values as

N = - Z-= Yi) (5.37)

N = Z -/k() (5.38)
i:xi =1

NkN2 = [ Yk~) (5.39)
i:X =1/\x'=1

These counts are in general not integer numbers. Therefore, for learning mixtures of
trees the aCL-II algorithm is recommended.

Now we shall examine steps 1 and 2 of the aCL-II algorithm and show how to modify
them in order to handle weighted data.

First, remark that step 1 will have to sort the variables m times, producing m different
vlists, one for each of the components. Computing the Nt values is done similarly to the

previous section; the only modification is that for each occurrence of v in a data point one

adds -Yk(i) to Nt instead of incrementing a counter. Remark that no operations are done

for pairs of variables that do not cooccur in the original data set, preserving thereby the

algorithm's guarantee of efficiency.

For step 2, a similar approach is taken. At the time of inserting in cheapk one must

store not only v but also -yk(i). When the heap is emptied, the current "count" c sums all

the -yii7) values corresponding to the given v.

Note also that one can use the fact that the data are sparse to accelerate the E step

as well. One can precompute the "most frequent" likelihood Tk A Tk(0,...,0) for each k.

Then, if v is 1 for point x' one multiplies TJ by the ratio k also precomputed.p0Tk (O1pa(v))

This way the E step will run in O(msN) time instead of the previously computed O(mnN).

5.6 Decomposable priors and the aCL algorithm

All of the above assumes that the tree or mixture is to be fit to the data in the maximum

likelihood framework. This section will study the possibility of using priors in conjunction

with the aCL algorithm. The classes of priors that we shall be concerned with are the priors
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discussed in chapter 4. We shall first examine priors on the tree's structure having the form

P(E) cx exp ( #:UV)

As shown in section 4.2.1, this prior translates into a penalty on the weight of edge (UV) as
seen by a MWST algorithm

WU <-- IV - N""
N

It is easily seen that for general #, values such a modification cannot be handled by the
aCL algorithms. Indeed, this would affect the ordering of the edges outgoing from u in a
way that is inpredictable from the counts No, Nov. However, if #hu is constant for all pairs
U, V E V, then the ordering of the edges is not affected. All we need to do to use an aCL
algorithm with a constant penalty 3 is to compare the Iuv of each edge, at the moment it
is extracted from vheap by Kruskal's algorithm, with the quantity -1. The algorithm stops

as soon as one edge is found whose mutual information is smaller than the penalty 1 and
proceeds as before otherwise. Of course, in the context of the EM algorithm, N is replaced
by Nk -- Fk and Q can be different for each component of the mixture. Remark that if all
the variables are binary (or have the same number of values) an MDL type edge penalty
translates into a constant /uv.

Regarding Dirichlet priors on the tree's parameters, it has already been shown that
they can be represented as a set of fictitious counts N' U, v E V and that maximizing the
posterior probability of the tree is equivalent to minimizing the KL divergence

KL(P 11 T)

with P a mixture between the empirical distribution P and the fictitious distribution P'
defined by N'v. This challenges two of the assumptions that the accelerated algorithms are
based upon. First, the counts No, No, cease to be integers. This affects only the aCL-I
algorithm.

Second, both algorithms rely on the fact that most of the Nuv values are 0. If the counts
N' violate this assumption then the aCL algorithms become inefficient. In particular,
the aCL-II algorithm degrades to a standard TreeLearn algorithm. Having many or all
N', > 0 is not a rare case. In particular, it is a characteristic of the non-informative priors
that aim at smoothing the model parameters. This means that smoothing priors and aCL
algorithms will in general not be compatible.

Somehow suprisingly, the uniform prior (4.35) constitutes an exception: for this prior, in
the case of binary variables, all the fictitious cooccurrence counts are equal to N'/4. Using
this fact, one can prove that for very small and for large values of N' (> 8) the order of the
mutual informations in Vo(u) is preserved and respectively reversed. This fact allows us to
run the aCL-II algorithm efficiently after only slight modification.

5.7 Experiments

The following experiments compare the (hypothesized) gain in speed of the accelerated
TreeLearn algorithm w.r.t the traditional version presented in chapter 2 under controlled
conditions on artificial data.

The binary domain had a dimensionality n varying from 50 to 1000. Each data point
had a fixed number s of variables being on. The sparsity s took the values 5, 10, 15
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Figure 5-4: Real running time for the accelerated (full line) and traditional (dotted line)
TreeLearn algorithm versus number of vertices n for different values of the sparsity s.
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Figure 5-5: Number of steps of the Kruskal algorithm nK versus domain size n measured

for the aCL-II algorithm for different values of s

and 100. The small values were chosen to gauge the advantage of the accelerated algorithm

under extremely favorable conditions. The larger value will help us see how the performance

degrades under more realistic circumstances. Each data point (representing a list of variables

being on) was generated as follows: the first variable was picked randomly from the range

1,.. I. n; the subsequent points were sampled from a random walk with a random step size
between -4 and 4. For each pair n, s a set of 10,000 points was generated.

Each data set was used by both TreeLearn and aCL-II to fit one tree distribution

and the running times were recorded and plotted in figure 5-4. The improvements over the

traditional version for sparse data are spectacular: learning a tree over 1000 variables from

10,000 data points takes 4 hours by the traditional algorithm and only 4 seconds by the
accelerated version when the data are sparse (s = 15). For s = 100 the aCL-II algorithm

takes 2 minutes to complete, improving on the traditional algorithm by a factor of "only"
123.

What is also noticeable is that the running time of the accelerated algorithm seems to be

almost independent of the dimension of the domain. On the other side, the number of steps

nK (figure 5-5) grows with n. This observation implies that the bulk of the computation

lies with the steps preceding the Kruskal algorithm proper. Namely, that it is in computing
cooccurrences and organizing the data that most of the time is spent. This observation
would deserve further investigation for large real-world applications.

Figure 5-4 also confirms that the running time of the TreeLearn algorithm grows
quadratically with n and is independent of s.
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5.8 Concluding remarks

This chapter has presented a way of taking advantages of sparsity in the data to acceler-

ate the tree learning algorithm. The ideas introduced have been developed into the two

algorithms presented without exhausting the number of possible variants.
The methods achieve their performance by taking advantage of characteristics of the

data (sparsity) and of the problem (the weights represent mutual informations) that are
external to the Maximum Weight Spanning Tree algorithm proper. Here the algorithms
have been evaluated considering that the data sparsity s is a constant. If this is not the
case, however, the actual complexity of the algorithms can be computed easily from the
bounds provided here, since the dependence on s is made explicit in each of them.

Moreover, it has been shown empirically that a very significant part of the algorithms'
running time is spent in computing cooccurrences. This prompts future work on applying
trees and mixtures of trees to high-dimensional tasks to focus on methods for structuring the
data and for computing or approximating marginal distributions and mutual informations
in specific domains.

The aCL-II algorithm relies heavily on the fact that most cooccurrences between vari-
ables are zero. Given this fact, it can smoothly handle real values for the non-zero cooc-
currence counts and even some classes of priors. The aCL-I algorithm is more restrictive
in the sense that it requires integer counts and from the present perspective, it is at clear
disadvantage w.r.t aCL-II both in simplicity and in versatility.

5.9 Appendix: Bounding the number of lists NL

Let us denote the total number of nonempty lists V (u), c > 0, u E V by NL. It is obvious
NL is maximized when all list lengths are 1 for c < C, 0 for c > C + 1 and 0 or 1 for c = C,
where C is a constant to be determined. In this case, the number of lists can be expressed
successively as

C

NL = nZ2c+O(n)(C+1)
C=1

C(C+ 1)= 2n + O(n)(C + 1)
2

= n(C+C 2)-+ O(n)(C+1)

Therefore
n(C+C 2 ) < NC < 82 N/2 (5.40)

Solving for C we obtain

1 s2 N
C < -- + +N 1 (5.41)

- 2 2n

which amounts to

NL nC + O(n)

n N 1 n
= +n 0 ()

2 n 2 s2N

=0 sn + (5.42)
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Under the assumption that {- is bounded above and below the equation simplifies to
n

NL = O (sn) (5.43)
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Chapter 6

An Approach to Hidden variable
discovery

Atdtea cldile de fire stdngi!
Gdsi-vor oare gest inchis s6 le rezume,
Sa nege, dreapta, linia ce frdngi-
Ochi in virgin triunghi tdiat spre lume?
Ion Barbu

Grup
So many heaps of tangled straw!
Will they find clean gesture to comprise them,
To straighten them into the golden beam
Shone by the divine triangle eye?

This chapter presents a way of using mixtures of trees and the MixTreeS learning al-
gorithm for discovering structure in a particular class of graphical models with hidden
variables. In the process of structure discovery model selection and model validation are
important components. With this goal in mind, I introduce and a novel method for validat-
ing independencies in graphical models with hidden variables whose scope is much broader
than the class of models investigated here.

6.1 Structure learning paradigms

Structure discovery has been one of the most challenging and most fascinating problems
in graphical models ever since the beginning of the field. This is to no surprise given that
the task of identifying dependencies and independencies in observations is at the core of
scientific discovery as an intellectual process. Work in this field can be loosely categorized
into three areas of research.

The first category of structure learning methods (and the oldest also) is based on condi-
tional independence tests. [67] introduce an algorithm that constructs a Bayesian network
that is consistent with a given list of independence statements. A similar result exists for
decomposable models: [16] described a method to learn decomposable models or decompos-
able approximations to Markov network models using an oracle for conditional independence
queries. The algorithm is exponential in the size of the largest separator. The two works are
impressive in their success in inverting the relationship between a graphical model structure
and its list of independencies. On the other hand, the strength of the results reflects the
strength of the underlying assumptions. In other words, the methods assume as input an
information that is at least as hard to obtain as the graph itself. Testing the conditional
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independence A I B I C is exponential in |AJ.JBJ.JCl. The first method assumes that we
know beforehand all independencies in a domain V (and implicitly all the pairs A, B that are
not independent). But who is to give us such a list of independencies? Moreover, assuming
that we were to undertake the intractable task of performing all the required independence
tests, we would be faced with uncertain and perhaps contradictory information that none
of the above methods are prepared to handle.

[54] presents an algorithm for finding a polytree structure from mutual information
measurements when the underlying distribution is known to be a polytree. The same chapter
presents a method for learning star decomposable graphs' the case of binary variables and
ideal correlation measurements. These methods have the same drawback of requiring ideal
information that cannot be obtained from data.

[6] introduces an algorithm for learning a minimal I-map of a distribution from data.
The algorithm is based on evaluation of pairwise mutual informations between variables, and
independence tests that require computational effort proportional to the size of the largest
separator, but it is shown to work efficiently on sparse graphs. The implicit assumption
that complete independence information can be obtained from pairwise independence tests
- an assumption that will be examined later in this chapter. It is also assumed that there is
sufficient data to ensure a correct answer to all the independence tests, an assumption that
brings this paper in the same group with the ones requiring ideal information.

The second category of methods explicitly takes into account the existence of a finite
sample of data points from which the structure has to be learned. The most influential is the
Bayesian approach pioneered by [9] and developed by Heckerman, Geiger and Chickering
in the now classical paper [33]. They state the problem of Bayesian learning of Bayesian
belief networks from data, make explicit the assumptions underlying their approach and
show how to calculate, for each network structure E the score Pr['D, E]. The score is
then used for model comparison. They also prove that optimizing the Bayesian score over
networks structures is NP-hard when each node is allowed to have more than 1 parent.
Therefore, both [9] and [33] use a local search: The search algorithms typically generate
proposed additions or deletions of an edge from the graph, and these proposed moves are
evaluated by computing (an approximation to) the marginal likelihood of the updated graph

(exact calculations can be performed in some cases for graphs without hidden nodes). Local
search is the most common approach to structure learning thus far. Methods based on non-
Bayesian scores have been proposed by [45]. The cited works assume that data are complete
and that there are no hidden variables. [61] develop a method for scoring equivalence classes
of DAGs with hidden variables in the special case when the dependence relationships are
jointly Gaussian, augmented by a heuristic search algorithm.

The third category of methods includes methods that also consider learning from data,
but are explicitly aimed at finding dependencies. Some of the methods do not attempt to
construct a complete graphical model, but to find as many dependencies or independencies
as possible. [63] and [17] directly find dependencies in discrete databases by counting
coincidences in subsamples. [34] constructs minimal Markov nets in a heuristic way. The
first two methods are aiming at discovering structure in high-dimensional domains, where
applying more sophisticated algorithms is computationally too expensive. This is a little
explored area of research, but it is the area where the approach presented here most likely
belongs.

'A star decomposable graph is a tree over the visible domain augmented with some hidden variables
where each hidden variable has a degree at least 3.
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The method to be developed in the forthcoming is fundamentally a method of learning
from data. It belongs to the third category of the above taxonomy by the fact that it

is mainly concerned with finding (a certain class of) dependency structures rather than a
fully determined graphical model. But it relates to the second category by the fact that it
generates multiple models and compares them by a score that will be further defined.

6.2 The problem of variable partitioning

The approach to structure learning presented in this thesis differs from all the methods
mentioned above. Rather than adopting a local search heuristic based on single edge addi-
tion or deletion like the methods in the second category, or than looking for dependencies
like the methods in the third category, it attempts to find separators.

A separator 2 is a variable or group of variables S that, when observed, separates V \ S
into two independent subsets A 1, A 2 . If a separator exists and it is found, then learning the
structure of the domain V reduces to learning the structures of Ai U S and A 2 U S. Since the
number of possible structures grows superexponentially with n, by partitioning the domain
the search space is reduced in a superexponential manner. Moreover, if more separators
can be found in A 1, A 2 , then one can proceed recursively, effectively implementing a divide-
and-conquer structure learning algorithm. We call this approach variable partitioning.

If the separator S is included in V it is called a visible separatore. A visible separator
of small size (practically 1 or 2 variables) can be found in a brute-force manner, by trying
all possibilities. The number of such trials is 0(nisl and each trial implies testing the
conditional independence of two or more large sets, an exponential task by itself. As it will
be shown later in this chapter (section 6.7.3), under certain assumptions the aforementioned
independence tests can be reduced to tests on pairs of variables. This makes each trial
quadratic in n.

This work focuses on a different situation: the case when the separator is a hidden
variable. For this case the brute force approach is not sufficient and a different method
needs to be devised. Much of the machinery developed for this case is applicable to visible
separators; such that, in some sense, a visible separator is a simple case of hidden variable
separator.

The hidden variable separator, or shortly hidden variable h, is assumed to partition
V into several clusters of variables that are mutually independent conditioned on h. To
maintain computational tractability, we assume a restrictive architecture for each cluster,
in particular we assume that each cluster is a tree. We propose an algorithm whose goal
it is to find a good set of trees and to find a good choice of tree structure within each
cluster. Later we examine what happens when the true distribution of the data violates
this restrictive assumption.

Let V denote as usual the set of variables of interest. Remember also that x, is a
particular value of V, XA an assignment to the variables in the subset A of V and x is a
shorthand for xv. The variables in V will be referred to as being visible. We introduce
an additional variable, a hidden (unobservable) variable denoted by h. This variable takes
values ranging from 1 to m. The joint space V U {h} is denoted by Vh. The following
assumption about the joint distribution P over Vh is essential:

Assumption 1. The hidden variable h partitions V into p mutually disjoint subsets

2 The term originates in the junction tree literature.
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Figure 6-1: The H-model (a) and a graphical model of the same distribution marginalized
over h (b).

Al
A1

h

A2 A2

(a) (b)

A 1 ,... , A,, U3 A= V that are conditionally independent given h. We write

Aj I Aj, I h j, j' = 1, ... m (6.1)

Consider the graphical model G corresponding to P (figure 6-1,a). Assumption 1 implies
the graph topology G = (V4, E U E') 3 . The edge set is the union of E', which contains a
directed edge from the hidden variable h to each of the visible variables in V, and of E, which
contains only undirected edges between pairs of visible variables. Moreover, the induced
graph over V only has p connected components. Thus, in the graphical model language,
conditional independence given h translates into h separating the respective variable clusters
in G. We can view this model as a mixture of factorial models over the p hyper-variables
A 1,...p. Therefore, we call a model that satisfies Assumption 1 a hyper mixture of factorials,
or in short an H model. H models are chain graphs.

Note that A3 being mutually independent given h does not imply that Aj are indepen-
dent after marginalizing over the values of h. Graphically, if Aj are mutually separated (by
h) in G, they are in general not separated in the graph GM = (V, EM) corresponding to
the marginal distribution of V

m

Q(x) = P(x, h = k) (6.2)
k=1

Let us compute the number of parameters of the models represented by P and Q under
the simplifying assumption that |vI = 2 for all v, p = 2 and that P, PAjih,j =1,2 are
represented by probability tables. We have

#pars(P) = m(2A1| +2|A 21- 2) < 2" - 1 = #pars(Q) for m <' 2n/ 2 A1 +2|A 2 1) (6.3)

Hence, if the sizes of A1 and A 2 are close, introducing a hidden variable can result in
exponential savings in terms of the number of parameters.

We formulate the variable partitioning task as follows: given a domain Vh = {h} U, Aj
such that ALAjIh Vj, j' and a set of observations D = {x1,..., xN) from V = U A, find
the sets Aj, the number of values of h, the distribution Ph and the distribution y = P(hlxi)
over the values of the hidden variable for each of the observed instances x' in D.

Of course, the final goal is to construct a model P of the domain; to do this, once
variable partitioning is completed, one has two choices: either to use the model P that

3More precisely, a graph that is consistent with Assumption 1 is equivalent to a structure of type 0
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our algorithm learns, or to construct by some other method (including a recursive call to
our variable partitioning algorithm) a probabilistic model for each of the domains Aj U h.

The sizes of the domains being smaller than n, this task should be considerably easier than
constructing a model over V directly.

However, one should be aware of the important difficulties that this quest has to face.
Searching over the space of all possible partitions of V (of size -E -) is a forbidding task. Itp.
has been shown that learning the structure of belief networks from data even in the absence
of hidden variables is an intractable problem [33]. Second, the H model is a mixture model
and we also know that learning mixtures in certain instances is NP-hard [41. The above
reasons show that all one can do is to provide heuristic procedures for coping with this
large-scale but important search problem.

There are theoretical difficulties as well: as it has been shown, graphical models with
hidden variables do not belong to the curved exponential family and thus the BIC/MDL
criterion is not a consistent estimate of the marginal likelihood of the model structure,
as it is for exponential family models [29]. Computing the Bayesian posterior marginal
probabilities of the model structure represents an equally intractable computation.

It is also generally known that models with hidden variables are subject to non-identifiability
problems. A simple example will illustrate this: Suppose that the observed distribution
over the two binary variables a, b is uniform and that we know that this distribution is the
marginal of a mixture distribution

Qab = Z Ph(k)Pablh=k
k=1,2

The above is an underdetermined system of equations in the unknowns Ph, Pabih. Two of
the possible solutions are

P(1(k) = 0.5 k = 1 2 P( = 0 a b P(1) 0.5 a= b
h ab|0 0.5 a b abI1 0 a f b

and

p( 2) (k) = 0.5 k = 1, 2; p (2) = 0 a 0 bI 0.5 a = 0

Both of the above distributions have a uniform marginal over a, b and so does any convex
combination of PM, p(2). Hence there is an infinity of mixture models that have the same
marginal over the observed variables.

Non-identifiability can cause severe convergence problems in learning the model. For
our task identifiability is even more important, since in its absence we are likely to find
several hidden variable solutions (potentially an infinity!) that explain the data equally
well. Identifiability of hidden variable models is an area of current research [29, 58, 62].
The existent results are only preliminaries to a general theory. However, in the case of
models with binary variables only, [62] gives the following sufficient condition that is highly
relevant to the present problem.

Theorem [62] An H-model over a domain Vh consisting of binary variables only is
identifiable if either (a) or (b) hold:

(a) p > 3

(b) p = 2, V = A1 J A 2 and PAIh, PA2 Ih are not fully connected graphical models.
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6.3 The tree H model

In the following we present an algorithm for variable partitioning derived under additional
assumptions about the model structure. We shall also assume for now that m and p are
known.

We define a tree H model over Vh = {h} U (Up A3 ) as an H model for which PAjIhk

Tk are trees for all j, k. The structure of T k is fixed for all k, but its parameters may vary

with k. We denote the structure of each connected component 4 j by Ej. Their union is the
edge set E = U3 E. Because there are p distinct connected components we have

|El = n-p (6.4)

The conditional distribution

Pvlh(xlk) =- T Tx) (T(xaj)
j

can be viewed either as the product of p independent trees over the Ajs or as one tree Tk

over V having p connected components. This remark enables us: (1) to avoid explicitly
specifying p from now on by using the notation Tk and (2) to view the H as a special case
of mixture of trees with shared structure. This allows us to use the efficient algorithms
devised for mixtures of trees for fitting tree H models.

A tree H model is obviously a mixture of trees with shared structure; therefore, learning
it can be done by a variant of the MixTreeS learning algorithm. The derivation of the
algorithm closely parallels the one given in section 3.3.3, so only the final description thereof
is be included here.

Algorithm HMixTreeS

Input: Dataset D = {x1, ... xN

Procedure Kruskal( p, weights ) that fits a maximum weight tree with n - p edges over V
p a minimum number of connected components
Initial model Mo

Initialize EM with M {E, Ak, Tk, k=1,.. .m}
Iterate until convergence

E step: compute i, pk(xi) for k = 1,... m, i = 1,... N
M step:

M1. Ak +- Fk /N, k = 1,.... .m
M2. compute marginals pk, pk u v E V, k 1,...m
M3. compute mutual information Ik u, v E V, k 1,... m
M4. call Kruskal(p, { Iuvih}) to generate E
M5. Tukv +- Pk, Tk <-Pk for (u v) E E

Output M

As one can see, the only change w.r.t the standard MixTreeS algorithm is in step M4 where
we need to construct the maximum weight tree with the prescribed maximum number of
edges. Kruskal's algorithm fits this purpose easily, since it adds the edges in the order of

4 The reader should be aware of the distinction between mixture components indexed by the values of h
and connected components which are subtrees of each tree mixture component and are indexed by j = 1, . . .p.
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their decreasing weight. It can be proved 5 that stopping Kruskal's algorithm after it adds
n - p edges results in the maximum weight spanning tree with (at most) that number of
edges.

6.4 Variable partitioning in the general case

6.4.1 Outline of the procedure

We have presented a tractable algorithm for learning a special case of H models, the tree
H models. Our next step is to apply the same algorithm to data that are not known to be
generated by a tree H model. Hence, we need to proceed with caution and to use model
selection and validation criteria to evaluate the output of the algorithm.

The procedure I used can be outlined as a two stage process: The first stage generates
models with different values for m and p and different structures and parameters by repeat-
edly calling the HMixTreeS algorithm. The second stage validates the models produced
in the first stage by testing that the independencies they imply are not contradicted by
the data and computes a score for each (valid) model. The different models can be then
compared based on this score. The method is summarized as follows:

Algorithm H-learn - outline

Input: Dataset D ={, .. . XN}

Confidence level 6
Parameters mnAX, PMAX, Ntrials

Procedure HMixTreeS
for m= 2,3,...,mMAx

for p= 2,3,...pMAX
for t= 1,...,N trials

Initialize randomly Mo
Mm,p,t=HMixTreeS(D, Mo, p)
Validate Mm,p,t with confidence 6
if Mm,p,t valid

Compute score(Mm,p,t)
Output M = argmin score(Mm,p,t) or the 1 models with best score

M m.p,tvalid

The rest of the chapter studies and develops this approach. For two of the subtasks
involved - evaluating the description length of a model and testing independence - detailed
descriptions are given in sections 6.6 and 6.7 respectively.

6.4.2 Defining structure as simple explanation

When we set our goal to be learning about a real domain that has inherently unobserved
variables, having little or no prior knowledge about it, how can we know when we have
discovered the "right" interactions between variables ? We shall define a good structure in
this case as a structure that is both simple and likely in view of the data, simplicity being
measured by the description length of the model. The reader may have realized already

5 By a proof similar to the proof of Theorem 8.2.18. in [70].
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that we what we have stated is a version of the well known Minimum Description Length
(MDL) principle [56].

DL(D,M)

M* argmin [DL(M) + DL(DIM)] (6.5)
M

The last term in (6.5) is -log Pr[DIM] the negative base 2 log-likelihood. The first
term can be decomposed as

DL(M) = bits(n) + bits(structure) + bits(parameters I structure) (6.6)
k=1

Note that any tree structure requires the same number of bits6 , independently of p (1 for
each variable, specifying its parent or #). The first term is also constant over all models7 .
Hence, computing the description length amounts to computing the description length of
the parameters for the distributions Tk. However, this is not a straightforward task.

We can approach it in two ways. The first is to use the approximation to the model
description length derived by Rissanen [56] and also known as the Bayes Information Crite-
rion (BIC). It assumes Inpars log N as the description length of the parameters. According
to BIC, each edge (uv) E ET contributes

ABIC _ M(ru - 1)(rv - 1) log N (6.7)

bits in addition to the description of a "tree" with no edges that we take as bottom line.
The minimization of the DL over tree structures can be automatically incorporated into the
EM algorithm, by assigning the weigths

WU= -=N/1C (6.8)

The method has the advantage of indirectly controling the number of connected components
p. A drawback of equation (6.8) is that it penalizes parameters in each component equally.
To see why this is a problem, imagine that there is one component that is responsible for no
data at all; the parameters of this component will have no influence on the data likelihood
but the model will still be penalized for them. So, it would be sensible to replace m in the
above formula with something representing an "effective number of parameters".

A heuristic remedy that I tried for this problem is to take into account the fact that
parameters are estimated from different amounts of data for each k. Hence, I considered
that each edge (uv) E ET contributes to the total penalty by

AYCh = ( - 1)(r, - 1) maX(logkO) (6.9)
k=1

which gives the BICh criterion.
A second approach is to directly approximate the DL of a model. To achieve this, we

represent the probability values on a number of bits b (smaller than the machine precision)
obtaining an approximate model Mb. For each b in a chosen range, DL(Mb) is easily

6 Unless we have a nonuniform prior over tree structures.
71f mI is small,as it is implicitly assumed throughout the paper and if there is no prior on m. Otherwise,

the first term will vary with m.
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computed and so is Pr[DIM]. Then we approximate the true DL by argminDL(D, Mb).
b

A full description of this procedure will be included in section 6.6. This method being a

purely evaluatory method, it can be used even for models learned using the penalty from
equations (6.8) or (6.9) above.

Number of connected components p As a consequence of the weight modification
(6.8), the weights can now be negative. Kruskal's algorithm will stop adding edges when
it first encounters a weight < 0, so this implicitly controls p. Moreover, the penalty will
be likely to increase with m thus favoring sparser structures. Alternatively, one can make
p vary over a previously fixed range (e.g. between 2 and n) and compare all the resulting
models by their description lengths.

Selecting m. The description length DL provides us with a consistent criterion for
comparing between model structures with different numbers of trees, thus enabling us to
select m.

Local optima We deal with this problem in the usual way: by restarting the EM
algorithm several times, each time from different random points in the model space. Con-
sequently, for each new run of the EM algorithm we may end up with a different model
structure (and parameters) but this is a help inasmuch as it is a problem, since the role of
the EM algorithm is to present us with good, but also diverse candidate structures.

6.5 Experiments

6.5.1 Experimental procedure

The experiments described in the following aim to assess the ability of the HMixTreeS
algorithm to discover the correct structure and the hidden variable in two cases: when the
data are generated by a mixture of trees and when they are not. In both cases, we will
also evaluate the description length and the alternative scores discussed above as model
selection criteria for this task.

The experiments therefore were run on artificial data generated in two steps. First,
an H-model structure is created (figures 6-2 and 6-3 show the structures used here). The
domain has 12 visible variables and one hidden variable, all taking 3 values. Second, for
each structure, 10 sets of random parameters were sampled; each resulting model was used
to generate a data set of 3,000 examples, of which 2,000 were used for training and 1,000
were used for testing. The values of the hidden variable were recorded but served only for
testing purposes. The first structure (figure 6-2) is a tree H model, the other two (figure
6-3) are general H models. In the latter case, because pilot experiments have shown that
discovering the variable partitioning is relatively easy when the true partitioning is visible
in the marginal distribution of the data, all the data sets were checked for this property
and accepted only if the true structure could not be recovered by fitting a single tree.

6.5.2 Experiments with tree H models

This group of experiments demonstrates that the HMixTreeS algorithm is capable of
recovering structure when the generative model is a tree H model. The model structure is
shown in figure 6-2. Two random parametrizations for this structure were generated and
from each them a training set (N = 3,000) and a test set (Ntest = 1000).

For each training set, models with m = 2, 3,4 were learned using the MDL edge penalty
to choose the number of connected components p. For comparison the case m = 3, p =
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Figure 6-2: The tree H model used for training.

x

(a) (b)

Figure 6-3: The models used for training: (a) S1, (b) S2.

4, #3 0 was tried too. For each set of parameters, the algorithm is run 20 times with
different random initializations.

The results for one of the data sets are displayed in figure 6-4. From the figure we can
see that the correct structure p = 3 is found in all 20 cases corresponding to m = 3 and
MDL edge penalty. The high accuracy means that the values of the hidden variable are
correctly estimated. It can also be seen that for m = 2 and 4 and for p = 4, the description
length is higher than for the true model m = 3, p = 3. Hence, the number of values of the
hidden variable is correctly selected too. The results for the second data set are similar,
except that there the correct structure is found in only 19 out of 20 trials.

Another example of successful structure learning and hidden variable discovery is the
Bars learning task that will be presented in section 7.1.2.

6.5.3 General H models

The following experiments were run on 10 data sets generated from structure S1. For every
parameter setting, the learning algorithm was run 20 times from different initial points.
The initial points were chosen randomly without including any knowledge about the desired
structure. Unless otherwise stated, the empirical description length DL was used as model
selection criterion. We diverge a little from the algorithm outlined previously by leaving
model validation last, after examining the properties of all the resulting models.

The first series of experiments were run on models with m = 3 and fixed p = 3 (the true
values). As figure 6-5 shows, in 8 out of 10 trials the correct structure prevailed both in
terms of the number of times it appeared and in terms of its description length. For these 8
cases, according to the DL criterion, the best model had the correct structure and in many
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Figure 6-4: Description lengths and accuracies for models with fixed p = 2 and variable
m = 2, 3,4 learned from data generated by the tree H model in figure 6-2. For m = 3 and
4 all structures are correct. (a) general, (b) detail of the upper left corner of (a).

cases all five best models were correct. The accuracy of the hidden variable retrieval is also
relatively high (the baseline for accuracy is 0.33), but not as high. For the remaining two
data sets (c and j in figure 6-5) the correct structure is present but it overtaken in score by
other structures (however, at least one of the best 5 models has the correct structure).

I have run a series of similar experiments with m = 3 but applying the MDL edge
penalty to set p. In this situation, the learning algorithm consistently overestimated p by
1, but otherwise found a structure compatible with the correct one. Therefore, I searched
the space of p values in a manner similar to the search for m. For this purpose, models
with m = 3,4 and p = 2,4 were trained. The results were not encouraging: For p = 2 both
m = 3 and m = 4 produced a significant number of models with shorter description length.
This suggests the presence of residual dependences between components that are taken up
by the additional link (especially in the case m = 3), something to be investigated in the
model validation phase. But, as a conclusion so far, estimating p appears to be a hard task.

The next set of experiments studies the effect of varying m with p fixed at the true value
3. H models with m = 2,4, 5,6 were trained on all the data sets. Figure 6-6 summarizes the
results for set d. One sees that the models forrm = 2 cluster separately in a region of higher
description lengths. For m = 4, 5, 6 three things happen: the proportion of good structures
is increased (for all data sets); the description length of the models decreases until m = 5
and remains about the same for m = 6 (all but 1 case, where it settles at m = 4); the hidden
variable accuracy remains stationary (all cases). Moreover, in all cases, the minimum DL
model has the best structure (but m > 3) and except for data set c, all 5 best models are
correct. The explanation for this behavior is that, since the true mixture components are
not tree distributions, adding more components to the mixture of trees helps model the
true distribution more closely: some of the original three mixture components are allocated
more than one tree. The explanation is sustained by examining the confusion matrices: for
each of the m trees the data it represents comes mostly from one component of the original
mixture.

Here is a confusion matrix for data set d, m = 5. The columns are the trees, the rows
are the original components, and the matrix element i, j represents the proportion of data
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Figure 6-5: Model structures and their scores and accuracies, as obtained by learning tree
H models with m = 3 and p = 3 on 10 data sets generated from structure S1. Circles
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DL models. The x-axes measure the empirical description length in bits/example, the
vertical axes measure the accuracy of the hidden variable retrieval, whose bottom line is at
0.33
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the vertical axis measure the accuracy of the hidden variable retrieval, whose bottom line

is at 0.33. Notice the decrease in DL with increasing m.

from component i modeled by tree j.

0 1 2 3 4
0: 0.504 0.391 0.063 0.018 0.025
1: 0.010 0.018 0.659 0.012 0.301

2: 0.050 0.023 0.045 0.837 0.045

Cluster Accuracy = 0.914

The experiments show that choosing m solely by minimizing the description length can

lead to an overestimation of the number of components. Based on the gap in the DL

dimension between the models with m = 2 and the rest of the models (all data sets except

c) one could study the possibility of using it as a criterion for selecting m.

Comparison between the different model section criteria The above results were

plotted again (not shown), replacing in turn the BIC, the modified BIC and the test set

log-likelihood as the horizontal axis, in order to see if there are differences in selecting the

correct structure. We found that the test log-likelihood fails to select the best model in

3 cases when DL does, however we think that this is not sufficient evidence that the log-

likelihood is less good than the description length. The other differences seemed also to

favor the empirical description length, but in an even less significant way.

The results obtained for the second structure are qualitatively similar.
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6.6 Approximating the description length of a model

Here is described the method used to approximate the DL of a mixture of trees model. It
is a general enough method to be used with any probability model, graphical or not. The

idea is to encode the model M as best we can on a fixed number of bits B and then to
compute the description length of the data under this approximated model called MB. If B
is smaller than the length of the original representation of M and if M is a local maximum
of the likelihood, then the term DL(D MB) will be larger then the original DL(D M);
however, the model DL will be equal to B and thus smaller than the original DL(M). By
varying B over a reasonable range and minimizing the total description length we obtain

DLemP = argminDL(D, MB), (6.10)
B

an upper bound to the local minimum of the desired description length.
The better the encoding for each B (in the sense of preserving the likelihood of each

observed data point), the closer is the above minimization to the true DL(D, M). In
practice, we realize a tradeoff between encoding quality and computational cost. We want
cheap encoding schemes that preserve the represented distribution reasonably well.

To evaluate the DL of a mixture of trees, we use the above idea only to approximate
the DL of the tree parameters within the mixture's DL. We assume that the structure
description takes the same number of bits for any tree (n pointers, one - possibly null - for
the parent of each node) and thus can be ignored from the DL. The DL of the A parameters
is approximated by

bA = r Ilog N.
2

The parameters of the tree distributions are encoded with the same number of bits b. This
number is a sum of two precisions, bm and bAf, that will be defined below. The number
of parameters is given by equation (2.7). Thus, the total number of bits (excluding the
constant for structure) is

DL(Q) = bA +m(bm + b)[ (r-1)(rv - 1) +E r - n] + Z r, log r, (6.11)

(u,v)CE vEV (u,v)CE

Now we show how to encode the parameters of the trees. In our directed tree based im-
plementation, the parameters represent the values of the conditional probabilities TvIpa(v)(xo Izpa(v)
(where, of course, sometimes pa(v) is the empty set). For each fixed value of pa(v), this
distribution is a multinomial. Therefore, in the following we describe a way of encoding
multinomial distribution.

6.6.1 Encoding a multinomial distribution

Encoding a set of real numbers on a finite number of bits always involves some sort of
quantization. So, to encode the parameters of a distribution one needs to first quantize
them. The quantization of the multinomial distribution parameters is done in the natural
parametrization introduced in section 4.2.2.

Let the distribution values be Oj, j = 1 ... r and let jMAX be the index of the largest 0.
The natural parameters are given by (4.27), reproduced here in slightly modified form

log 0,
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Adding a minus sign in front of the logarithm function ensures that all the # parameters
are positive. Since the 0 parameters are allowed to be 0, their range is in [0, oo].

We are going to represent the # values on a finite number of bits. This is done in two
stages: First, the large # values are "truncated" to the constant 2 bi if they exceed it. This
corresponds to bounding the smallest 0 values away from 0. Then, the resulting values are
represented as bm bit precision binary numbers, or equivalently, they are multiplied by 2bm

and stored as integers. Note that while bAf controls the representation precision for small
probabilities, bm control the precision of large probabilities. Both precisions are relative to
the largest value of 0. The full encoding of 0 1..., is represented by r, the encoding precision
bm, the position of the maximum JMAX and the values

/nc 2 bm min(0i, 2bm), i = 1,... r, i jMAX (6.13)

To decode the values of 0 from the above representation one has to apply formula (4.28)
to #"2bc2bm and replace the maximum 0 in position jMAX. Note that the value bM is not
necessary for decoding.

If the value of r is given by a separate table (remember that we are encoding several
distributions over the same domain) and that bm is also encoded separately, the total number
of bits to encode 01,...r is

log [r] + (bm + bM)(r - 1) ~ log r + (b, + bA)(r - 1) (6.14)

By adding up the right-hand sides of (6.14) values for all Tp,(,) one obtains the last two
terms of (6.11). To see this remark that: (1) each free parameter is encoded on bM + bm bits
and (2) re, log r, = r, log r, for all positive numbers r,, r,. To make the search tractable,
the values of bm and bN are common to all distributions in Q and thus bm is recorded only
once.

6.7 Model validation by independence testing

6.7.1 An alternate independence test

Assume that we have two independent discrete variables u and v taking ru, r, values re-
spectively, and an i.i.d. sample of size N drawn from their joint distribution. Since the
variables are independent, their mutual information is obviously zero, but its estimate from
the sample i, does not generally exactly equal zero. In this section we want to bound the
probability that the sample mutual information ZI, is larger than a threshold M > 0.

Of course, ih will never exceed max(log ru, log rv) so it will be assumed that M is below
this value. We shall use large deviation theory, and in particular Sanov's theorem [11] to
obtain this bound.

Let us denote by #P", P, PV respectively the sample joint distribution of u, v and its
marginals. We shall consider the following two sets of probability distributions over the
domain Q(uv)

E£ {P I >M} (6.15)

F {QI = 0} (6.16)

The set F represents all the factorized distributions over Q(av). With this notation our
problem can be formulated as: what is the probability of the sample distribution P to
belong to E given that the true distribution is in F?
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Sanov's theorem gives us the following result: For any distribution Q and any closed
set of probability distributions E, the probability that the sample distribution P of an i.i.d.
sample of size N drawn from Q is in E is denoted by QN(E) and satisfies

QN(E) < (N + 1 )r 2 -N.KL(Pg 1| Q) (6.17)

where r is the size of Q's domain and

P6 = argminKL(P||Q) (6.18)
PcE

is the distribution in E that is closest to Q in KL-divergence8 . We also know [71] that for
any distribution P over Q(uv)

minKL(PIIQ) = KL(PIPP) 1 . (6.19)
QEF

Hence

min KL(PI|Q) =minI = M (6.20)
PcE,QcF PeE

Using this result in Sanov's theorem above we conclude that for any Q E F

QN(E) < (N + 1 )r'rL 2 -NM (6.21)

In other words, for any two independent variables u, v, the probability that their sample
mutual information Zfv exceeds a threshold M > 0 is bounded by

(N + 1)rrv2 -NM

Conversely, given a probability 6 we can derive the corresponding M:

M = I [log I + rarv log(N + 1)] (6.22)

This bound is distribution free: it requires no assumption about the distributions of u and
v. As expected, the value of M for fixed 6 decreases with the sample size N. Contrast this
with the x 2 test, that does make assumptions about the underlying distribution but whose
p-values (the analogues of M) are independent of the sample size.

Because E is the closure of its interior, Sanov's theorem and a reasoning similar to the
above one enables us to establish a lower bound for QN(E)

QN(E) > 1 2-NM (6.23)
(N + 1)rurv

It is interesting to compare the test devised here, call it Sanov test with the well-known

x 2 test for independence. It is easy to show that the x 2 statistic is approximating a KL
divergence. For this, let us compute the quantity KL(uPv ,v) as a function of the
counts Nij =#times u = i, v j, Ni =#times u i, Nj =#times v = j and

N

8A somewhat tighter bound for the r.h.s of equation (6.17) is [r + N'-1]2 -N.KL(PQ II Q)
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KL(PuPvJ,v ) = log (6.24)

1 N-i
-E n n (6.25)

NIn2 .. nj

- ~ N ln(1 + N - i) (6.26)

1 Nij - nj 1 (Nij - ng) 2
~ - n[n -ni 2 + ] (6.27)Nln2 Zij n 2 ng11 \ (N -n 1 (g)2 ~)6.7

1 1 Y(Ni - ni ) 2  
(6.28)

Nln22 i nij

= X2 (6.29)
21n2

Hence, whereas the Sanov test is based on KL(PWv 11 PuP,), the x 2 independence test is
an approximation of the reverse divergence KL(uPV I| P5). Of course, the motivation for
the x 2 test is not in this divergence but in Central Limit Theorem arguments.

6.7.2 A threshold for mixtures

Now we undertake to estimate an approximate confidence interval for the sample mutual
information when the variables u and v are independent given a third variable z. In this
case the true joint distribution of u, v is

m

Q - AkQkQk (6.30)
k=1

where, as usual, the values Ak represent the probabilities of variable z being in state k E
{ 1,. . m}. Again, we assume an i.i.d. sample of size N; given this sample, we group the
data points by the values of z in m groups of size Nk respectively. Therefore, we have

E N = N.
k=1

kk

We denote by ZIN the sample mutual information between u and v in group k. Let us
further denote by p(N, M) the probability that the sample mutual information from a size
N sample does not exceed M > 0.

p(N, M) =1 - QN(E) (6.31)

Of course, p is also a function of re, rv and the true distribution Q. To simplify the notation
we drop these variables. This is acceptable because ru and rv are fixed and because the
dependence on Q will be masked by the use of bounds that hold for any Q.

Our goal is now to fix a confidence level J and to find the thresholds Mk, k = 1,... m
depending on 6 such that Ih < Mk for all k with probability J. We start by expressing the
probability of the event E="Z k < Mk for all k" as a function of the values Mk and after

we arrive at a convenient expression we will equate that with 6.
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Let us first introduce some notation: let Z be the i.i.d. sample of size N representing

the values of z, and N = (N 1, .... Nm) an m-tuple of Nk values as defined above. By

(:NX)_ N!(6.32)N1!N2! ... Nm!

we denote "N choose N 1 ,... Nm", the multinomial coefficient indexed by _ (Ni, . .. Nm).

Then,

Pr[E] = Pr[Z]H Pr[ < Mk I Z]
Z k

= H ( N Ak (Z)p(N (Z),Mk)
Z k

= ( p(NkMk)
N \/k k

If the factors p(N, M) vary slowly with N (further on we show when this happens), then

the above sum is dominated by the term corresponding to the largest (N) A k, a value

attained for
N* AkN, k =1,... m. (6.33)

Moreover, using Stirling's approximation N! (-) we have

N NN! AkN

N k Hk(AkN)! kk

NI (AkN)AkN

NN (AkN)!

-N+(k NAk

This allows us to write m
Pr[S] p(NAk, Mk) (6.34)

k=1

If we now choose Mk according to (6.22) i.e.

lk k= [log = + rar, log(AkN + 1)] (6.35)
Ak N

we have

1 - < p(AkN, Mk) < 1 - (6.36)
(AkN + 1)rv

and
Pr[Ec] ~(1 - 5)m = 1 - o(6.37)

For a given 8 the corresponding 8 is

=1 - (1 - 6) (6.38)
mn
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To conclude, we have to prove our assumption that the functions p(Nk, Mk) vary slowly
with the first argument. More precisely, we are interested in upper bounding them. But

p(Nk. Mk ) 1 1
p(N*, Mk) - p(N*,Mk) - 1 - (

For small values of 6 the above quantity is close to unity validating our previous derivation.

6.7.3 Validating graphical models with hidden variables

In this section we will apply the previous test to the models of interest to us: graphical
models with a hidden variable that separates the observed ones into two conditionally
independent subsets. Thus, we will assume that we have a set of variables V, a dataset
D { X .. i'N} of observations from V and the model

Q(x) = AkTk(A)7(xB) (6.40)
k=1

where A, B is a partition of V. Thus Q assumes that there is a hidden variable z taking
values k = 1,. .. m with probabilities Ak and that A - B | z. We want to test whether
the data D supports the independence implied by Q. In the following we will be referring
to the Sanov test developed in section 6.7.1, but arguments similar to those presented here
hold for the X 2 independence test.

There are two issues that need to be addressed: First, in this case the variable z is
not observed. Therefore, we use Monte Carlo sampling from the posterior -My(i) to obtain
sequences Z = (z, .. . zN). For each of them we compute ZakI, k = 1, ... m and compare
them to the respective thresholds.

Second, establishing independence between two sets of variables implies a summation
over Q(A) x Q(B) = Q(V). This configuration space is usually much larger than the size
N of the available sample. With r'r, = |Q(V)I the threshold M becomes giant (6.22) and
the comparison meaningless. And, if N becomes comparable to Q(V) then the calculations
become intractable. Therefore, we will test the independence of A and B by performing
independence tests on pairs of variables u E A, v E B. In general it is not true that

uivj|z Vu EA,vEB -- > AIB| z. (6.41)

But (6.41) is true for a broad class of distributions. In particular, if the true distribution
of the data is a chain graph (6.41) holds. Now we have to test the independence of JAllBI
pairs of variables, something that is computationally intensive, but tractable. However, we
will be performing simultaneous tests and we have to take this into account.

We use therefore a Bonferroni inequality [42 that states that if each hypothesis Hu, is
true with confidence 1 - c,, then their conjunction is true with confidence at least

1-UV
UV

In the present case, 7
(uv represent the hypotheses "u I v z"; by ESu we denote the events

"ZKi(Z, D) < Mk Vk". There is no special reason to treat any of them differently; hence

E
Euv - AJ Ij Vu eA, v EB (6.42)
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The test procedure can be summarized as follows:

Algorithm TestIndependence
Input model Q, data set D, confidence E
1. E- = E/(IJlB|)

fix 6, compute by (6.38)
2. compute 7 (yM(i), k = 1,... m, i = 1,.. . N) the posterior

probability that i was generated by component k of the mixture
3. for u E A, v E B

3.1 compute the thresholds Mk by (6.22)
3.2 repeat

3.2.1 sample Z from y
3.2.2. for k = 1,... m compute 1, and compare to Mk until

Pr[ES,1 ) <> 5 with confidence 1 - J; ">" means reject 'Hu-,
"<" means accept it

Output accept independence hypothesis if all the tests in step 3. accept it,
otherwise reject

The crux of the method is step 3 where we need to estimate the low probabilities Pr[Ee]
with very high confidence g for each pair u, v. We have of course the freedom to choose a
o closer to 0.5 in order to require fewer iterations of 3.1-3.3 to compare Pr[Suv] with 6 at
the required confidence level. But a larger ( means a lower threshold Mk and this in turn
means loosening the approximation in Sanov's theorem 9 and thus increasing the probability
of type I error (false acceptance).

The choice of e reflects our tradeoff between type I and type II errors. For a small e
the probability of rejecting a model (i.e. rejecting the independence hypothesis) that is
correct is low, but we are likely to accept independence when this is not true. This latter
probability is inflated in our case by further dividing c between the |AlIBI tests in (6.42).
Therefore it is better to accept a somewhat larger false rejection risk by choosing a larger
c lest the test becomes too permissive.

Let us examine if the assumptions our tests are based upon are true in the above
procedure. The |Al BI individual independence tests are dependent on each other because
they share the observed values (xi, . . . XN), but the Bonferroni inequality accounts for that.
The dataset D is not the dataset the model was trained on.

It is in using an independence test based on Pr[ES1 ,] that we depart from the assump-
tions. Because the data D are already observed, the quantity that is actually estimated by
repeating 3.2.1 - 3.2.2 is not Pr[ES,] but Pr[S,|, D]. It can be expressed as

Pr [S ID] Pr [ZD] Pr [I < MkIZ, D] (6.43)
Z k

= fI 7z(i) l Jr(zD)<Mk (6.44)
Z i k

= Z fl>2(i) (6.45)
Z:IkU(Z, D)<u Mkvk i

Hence, a correct test would predict or bound the above probability. But this involves the
intractable summation over {Ik(Z, D) < Mk Vk}.

Finally, a general fact about independence tests and their utility. The independence
test can only reject independence and provide an estimate of the risk in doing it. It can

9 This can be seen by examining the proof of Sanov's theorem.
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never accept independence and estimating the risk of error associated with this decision is
usually difficult.

6.8 Discussion

This chapter has been an exploration in to the domain of learning the structure of graphical
models with hidden variables. We proposed to use the mixture of trees learning algorithm in
order to uncover the presence of a hidden variable that partitions the visible variables set into
mutually independent subsets. Such a model is useful because (if the number of values of the
hidden variable is small) it offers the possibility to drastically reduce the complexity of the
resulting density. Moreover, if such a hidden variable and the corresponding separation are
discovered, the model's structure can be refined by subsequent structure learning separately
in each of the variable clusters. It is, to my knowledge, the first top down approach to the
problem of structure learning. However, as we stressed, the task that we attempt to solve is
known to be a difficult one. Searching the space of possible structures is proven to be NP-
hard. We have transformed it into a continuous domain optimization problem via the EM
algorithm and are relying on multiple initializations to obtain good candidate structures.
Empirically we showed that this is not unreasonable: the EM algorithm is indeed capable
of uncovering the hidden structure and to converge to it even when this structure is not
detectable in the marginal distribution of the visible variables.

The problem of model selection for domains with hidden variable is a topic of current
research. We introduced a method to empirically evaluate the description length of a
distribution. The empirical description length and a number of other criteria (BIC, holdout
set likelihood and modified BIC) were compared on the task of selecting the best H model
structure. It was found that the examined criteria are relatively similar in accuracy, with
slight advantage for the empirical description length. None of the criteria proved completely
reliable in selecting the good structure. One reason for this is that the task is such that
the scoring function, no matter which one, is in impossibility to distinguish between the
failure to discover the independency structure (the information of interest) on one side, and
inaccuracy in the representation of the conditional distributions once the structure is found
(information irrelevant to our task). In the context of comparing models by score, we found
by experiment that determining the correct number of connected components p is not an
easy task. In particular, for the data used in the experiments, the MDL edge penalty is
systematically too strong, biasing towards models with false independencies.

An alternate approach is to test the obtained models for the independencies they assume.
Testing independence in models with hidden variables is a yet unsolved problem. Here
we propose a heuristic based on Monte Carlo sampling, together with a novel approach to
independence testing based on large deviation theory. Independence tests allow to eliminate
the structures in which the hypothesised variable clusters are not independent given the
hidden variables, but they cannot help if the model has fewer connected components than
the correct one (however, in some cases this can be considered a minor structure error).
Moreover, the risk of discarding a structure that is correct but has residual dependencies
because the trees are too simple to represent the distributions in each variable cluster and
thereby induce inaccuracy in the values of the hidden variable.

By contrast, the case when the working assumption - that the data was generated by
a tree H model - was correct has proved to be a much easier one. The rate of structure
recovery by the EM algorithm, when the structure parameters m and p are correct is very
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high, often 100%. Likewise, the accuracy of the values of the hidden variable is very good.

For model selection with fixed m and p, as well as for search across values of m, p, the model
selection criteria, be they empirical DL or others, are found to be reliable.
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Chapter 7

Experimental results

This section describes the experiments that were run in order to assess the capabilities
and usefulness of the mixture of trees model. The first experiments examine the ability of
the MixTree algorithm to recover the original distribution when the data are generated
by a mixture of trees. For these models, only artificial data are used. The next group of
experiments studies the performance of the mixture of trees as a density estimator; the
data used in these experiments are not generated by mixtures of trees. Finally, we perform
classification experiments. In these experiments, we study both the mixture of trees and a
classifier consisting of a single tree trained as a density estimator. Comparisons are made
with classifiers trained in both supervised and unsupervised mode. The section ends with
a discussion of the single tree classifier and its feature selection properties.

In all the experiments below, unless otherwise stated, the training algorithm is initialized
at random, independently of the data or of the knowledge about the desired solution. Log-
likelihoods are expressed in bits/examplel and therefore are sometimes called compression
rates. The lower the value of the compression rate, the better the fit to the data.

In the experiments that involve small data sets, a smoothing procedure has sometimes
been used. The technique I applied is called smoothing with the marginal and is described
in [24, 52]. One computes the pairwise marginal distributions for the whole data set Poal
and replaces the marginals Pk by

(1 -a)P + potal (7.1)

Intuitively, the effect of this operation is to give a small probability weight to unseen in-
stances and to make the m trees more similar to each other, thereby reducing the effective
model complexity. For the method to be effective in practice, a is a function of Ik and

Pk . In particular, for the experiments in this thesis, a global smoothing parameter a is ap-
portioned between mixture components and, within each mixture component, beween tree
edges. Whereas a in the above equation is always between 0 and 1, the global smoothing
parameter may be larger than 1. In some cases (e.g. when fitting a single tree), I used
smoothing with a uniform distribution instead of smoothing with the marginal.

7.1 Recovering the structure

7.1.1 Random trees, large data set

For the first experiment, we generated a mixture of 5 trees over 30 variables with r = 4
for all vertices. The distribution of the choice variable A as well as each tree's structure

11 bit is the negative base 2 logarithm of a likelihood of 0.5.
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Figure 7-1: Eight training examples for the bars learning task.

and parameters were sampled at random. The mixture was used to generate 30,000 data
points that were used as training set for a MixTree algorithm. The initial model had

m = 5 components but otherwise was random. We compared the structure of the learned
model with the generative model and computed the likelihoods of both the learned and the

original model on a test dataset consisting of 1000 points.

The results on retrieving the original trees were excellent: out of 10 trials, the algorithm
failed to retrieve correctly only 1 tree in 1 trial. This result can be accounted for by sam-

pling noise; the tree that wasn't recovered had a A of only 0.02. Instead of recovering the

missing tree, the algorithm fit two identical trees to the generating tree with the highest
A. The difference between the log likelihood of the samples of the generating model and

the approximating model was 0.41 bits per example. On all the correctly recovered trees,
the approximating mixture had a higher log likelihood for the sample set than the gener-

ating distribution. This shows that not only the structure but the whole distribution was
recovered correctly.

7.1.2 Random bars, small data set

The "bars" problem is a benchmark structure learning problem in neural network unsuper-

vised learning algorithms. It has many variants, of which I describe the one used in the
present experiments.

The domain V is the I x I square of binary variables depicted in figure 7-1. The data
are generated the following manner: first, one flips a fair coin to decide whether to generate

horizontal or vertical bars; this represents the hidden variable in our model. Then, each
of the 1 bars is turned on independently (black in figure 7-1) with probability Pb. Finally,
noise is added by flipping each bit of the image independently with probability pn.

A learner is shown data generated by this process; the task of the learner is to "discover"
the data generating mechanism.

What would it mean to discover the data generating mechanism with a mixture of trees?

A mixture of trees model that approximates the true structure (figure 7-2) for low levels
of noise is shown in figure 7-3. Note that any tree over the variables forming a bar is an
equally good approximation. Thus, we will consider that structure has been discovered

when the model learns a mixture with m = 2, each Tk having 1 connected components, one

for each bar. Additionally, we shall test the "classification accuracy" of the learned model
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Figure 7-2: The true structure of the probabilistic generative model for the bars data.

h=1 h=O

Figure 7-3: A mixture of trees approximate generative model for the bars problem. The
interconnection between the variables in each "bar" are arbitrary.
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Figure 7-4: Test set log-likelihood on the bars learning task for different values of the

smoothing a and different m. Averages and standard deviations over 20 trials.

by comparing the true value of the hidden variable (i.e. "horizontal" or "vertical") with the

value estimated by the model for each data point in a test set.

We do not compare all of our results directly against neural network results, mainly

because most of the published results are qualitative, focusing on whether the model is able

to learn the structure of the data. We closely replicate the experiment described in [15] in a

way that makes the present experiment slightly more difficult than theirs. The training set

size is Ntmin = 400 (in [15] it is 500), the data set contains ambiguous examples (examples

where no bars are present, which consequently are ambiguous from the point of view of

classification) and the noise level is small but not zero (it is zero in [15]). Because the other

authors studying this problem assume incomplete knowledge of structure (in this case, the

number of hidden units of the neural net), we do something similar: we train models with

m = 2,3, ... and choose the final model by the likelihood on a holdout set. Typical values

for 1 in the literature are 1 4, 5 (the problem becomes harder with increasing 1); we choose

/ = 5 following [15]. The probabilities pA and p, are 0.2 and 0.02 respectively. The test set

size is Ntest = 200. To obtain trees with several connected components we use a small edge

penalty # = 5. Because the data set is small smoothing with different values for a is used.

For each value of m we run the MixTree learning algorithm 20 times on the same training

set with different random initial points and average the results.

Selection of m The average test set log-likelihoods (in bits) for m = 2, 3 are given in

figure 7-4, together with their standard deviations. Clearnly, m = 2 is the best model.

Structure recovery. For m = 2 we examined the resulting structures: in 19 out of 20

trials, structure recovery was perfect (in the sense explained above); in the remaining trial

the learned model missed the correct structure altogether, converging to a different local

minimum apparently closer to its initial point. For comparison, [15] examined two training

methods and the structure was recovered in 27 and respectively 69 cases out of 100. This
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Table 7.1: Results on the bars learning task.

Test set ambiguous unambiguous

ltest [bits/datapt] 9.82 i 0.95 13.67 i 0.60
Class accuracy 0.852 ± 0.076 0.951 ± 0.006

EMEME MEMMMMM
MMM MMM MM MMMM
M M M M MM MM
ME EEMM
M MM MMMMM

M MM EM
EM EM MMM EM
MMMMM MEMMMM

Figure 7-5: An example of a digit pair.

result held for the whole range of the smoothing parameter a.
Classification. The classification performance is shown in table 7.1. The result re-

ported is obtained for a value of a chosen based on the test set log-likelihood. Note that
on data generated by the previously described mechanism, no model can achieve perfect
classification performance. This is due to the "ambiguous" examples, like the one shown in
figure 7-1 (upper row, third from left), where no bars are on (or, less likely, where all bars
are on). The probability of an ambiguous example for the current value of Pb is

Pambig = Pb - (1 - Pb)' = 0.25 (7.2)

Since ambiguous examples appear in either class with equal probability, the error rate
caused by them is 0 . 5 Pambig = 0.125. Comparing this theoretical upper bound with the
value in the corresponding column of table 7.1 shows that the model has indeed a very good
classification performance, even trained on ambiguous examples.

To further support this conclusion, a second test set of size 200 was generated, this
time including only non-ambiguous examples. The classification performance, shown in the
corresponding section of table 7.1 rose to 0.95. The table also shows the likelihood of the
(test) data given the learned model. For the first, "ambiguous" test set, this is 9.82, 1.67
bits away from the true model entropy of 8.15 bits/data point. For the "non-ambiguous"
test set, the compression rate is significantly worse, no surprise since the distribution of the
test set is now different from the distribution the model was trained on.

7.2 Density estimation experiments

7.2.1 Digits and digit pairs images

We tested the mixture of trees as a density estimator by running it on a subset of binary
vector representations of handwritten digits and measuring the average log-likelihood. The
datasets consist of normalized and quantized 8x8 binary images of handwritten digits made
available by the US Postal Service Office for Advanced Technology. One data set (that
we call "digits") contained images of single digits in 64 dimensions, the second (called
"pairs" hitherto) contained 128 dimensional vectors representing randomly paired digit
images. Figure 7-5 displays an example of a digit pair. The training, validation and test
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Table 7.2: Average log-likelihood (bits per digit) for the single digit (Digit) and double

digit (Pairs) datasets. Boldface marks the best performance on each dataset. Results are

averaged over 3 runs.

m Digits Pairs

16 34.72 79.25
32 34.48 78.99
64 34.84 79.70

128 34.88 81.26

set contained 6000, 2000, and 5000 exemplars respectively. The data sets, the training

conditions and the algorithms we compared with are described in [21]. Each model is

trained on the same training set until the likelihood of the validation set stops increasing.

We tried mixtures of 16, 32, 64 and 128 trees, fitted by the basic algorithm. For each of the

digits and pairs datasets we chose the mixture model with the highest log-likelihood on the

validation set and using it we calculated the average log-likelihood over the test set (in bits

per example). The averages (over 3 runs) are shown in table 7.2. Notice the small difference

in test likelihood between models that is due to early stopping in the training algorithm.

In figure 7-6 we compare our result (for m = 32) with the results published by [21].The

other algorithms plotted in the figure are the mixture of factorial distributions (MF), the

completely factored model (which assumes that every variable is independent of all the

others) called "Base rate" (BR), the Helmholtz Machine trained by the wake-sleep algorithm

[21] (HWS), the same Helmholtz Machine where a mean field approximation was used for

training (HMF) and a fully visible and fully connected sigmoid belief network (FV). Table

7.2 displays the performances of all the mixture of trees models that we tested.

The results are very good: the mixture of trees is the absolute winner for compressing the

simple digits and comes in second as a model for pairs of digits. A comparison of particular

interest is the comparison in performance between the mixture of trees and the mixture of

factored distribution. In spite of the structural similarities, the mixture of trees performs

significantly better than the mixture of factorial distribution indicating that there exists

some structure that is exploited by the mixture of spanning trees but can't be captured by
a mixture of independent variable models. Comparing the values of the average likelihood in

the mixture of trees model for digits and pairs we see that the second is more than twice the

first. This suggests that our model (just like the mixture of factored distributions) is able

to perform good compression of the digit data but is unable to discover the independence

in the double digit set.

7.2.2 The ALARM network and data set

The second set of density estimation experiments features the ALARM network [33, 6].
This Bayes net model is a benchmark model for structure learning experiments. It is a

medical diagnostic alarm message system for patient monitoring and it was constructed

from expert knowledge. The domain has n = 37 discrete variables taking between 2 and 4

values, connected by 46 directed arcs. Since the ALARM net was not constructed from a

complete data set I use in the experiments data generated from the model itself. This is

artificial data, but it is an interesting experiment for two reasons: (1) the data generating
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Figure 7-6: Average log-likelihoods (bits per digit) for the single digit (a) and double digit
(b) datasets. MT is a mixture of spanning trees, MF is a mixture of factorial distributions,
BR is the base rate model, HWS is a Helmholtz machine trained by the Wake-Sleep algo-
rithm, HMF is a Helmholtz machine trained using the Mean Field approximation, FV is
fully visible fully connected sigmoidal Bayes net. Notice the difference in scale between the
two figures.

distribution is not a tree or a mixture of trees (17 nodes have more than one parent) but
the topology of the DAG is sparse suggesting that the dependence can be approximated by
a mixture of trees with a small number of components m; (2) the generative model captures
the features of a real domain of practical importance.

We generated a training set having Ntrain = 10, 000 data points and a separate test set
of Ntest = 2,000 data points. On these sets we train and compare the following models:
mixtures of trees, mixtures of factorial distributions, the true model (without training),
gzip (without training). For mixtures of trees and factorial distributions, the comparison is
made in the following way: we separate a validation set of Nvalid 1, 000 data points from
the training set; then, models with different values of rn are trained on the remaining data
and evaluated (after the training process converges) on the validation set. For each value
of m we run 20 trials. The averaged value of the log-likelihood on the validation set is used
to choose the optimal m. Then, the models with that m are evaluated on the test set and
the likelihood achieved on it is compared against other classes of models.

The results are presented in table 7.3. The result reported for gzip was obtained by
writing the data in a file in binary format, with all additional information removed and
presenting it to the gzip program.

One can see that, even with a 9,000 data set, the mixture of trees does not approximate
the true distribution perfectly. However, note the difference in likelihood values for the true
model between the training and the test set, suggesting that a data set in the thousands
is still not a large data set for this domain. Among the other models used to approximate
the true distribution, the mixture of trees is a clear winner. If being ahead of gzip and the
base rate model was expected, it was not so with the mixture of factorials. However, the
superiority of the mixture of trees w.r.t this model is also clear.

To examine the sensitivity of the algorithms to the size of the data set also ran the
experiment with a training set of size 1,000. The results are presented in table 7.4.

Again, the mixture of trees is the closest to the true model, beatingthe mixture of

111

120 r



Table 7.3: Density estimation results for
ALARM data set. Training set size Ntran
20 trials.

the mixtures of trees and other models on the
= 10,000. Average and standard deviation over

Model

ALARM net
Mixture of trees m = 18
Mixture of factorials m = 28
Base rate
gzip

Train likelihood
[bits/data point]
13.148
13.51 t0.04
17.11 t 0.12
30.99
40.345

Test likelihood
[bits/data point]

13.264
14.55 i 0.06
17.64 i 0.09
31.17
41.260

Table 7.4: Density estimation results for the mixtures of trees
set of size 1000 generated from the ALARM network. Average
20 trials.

and other models on a data
and standard deviation over

Model

ALARM net
Mixture of trees m = 2, a = 50
Mixture of factorials m = 12, a = 100
Base rate
gzip

Train likelihood
[bits/data point]
13.167
14.56 t0.16
18.20 t 0.37
31.23 + 0.21
45.960

Test likelihood
[bits/data point]
13.264
15.51 ± 0.11
19.99 ± 0.49
31.18 ± 0.01
46.072
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factorials by an even larger margin than for the large data set. Notice that the degradation
in performance for the mixture of trees is relatively mild (about 1 bit), whereas the model
complexity is reduced drastically (from 18 to only 2 mixture components, and this in the
context of additional parameter smoothing!). This indicates the important role played by
the tree structures in fitting the data and motivates the advantage of the mixture of trees
over the mixture of factorials for this data set.

7.3 Classification with mixtures of trees

7.3.1 Using a mixture of trees as a classifier

Classification is a common and important task for which probabilistic models are often used.
Very often density models are trained on data with the sole purpose of classification. This
procedure is not asymptotically optimal, but there is empirical evidence that it can offer
good performance in practice. Therefore, this section will be devoted to experimentally
assessing the performance of the mixture of trees model in classification tasks.

A density estimator can be turned into a classifier in two ways, both of them being
essentially likelihood ratio methods. Denote the class variable by c and the set of input
variables by V. In the first method, adopted in our classification experiments under the
name of mixture of trees classifier, one (mixture of trees) model Q is trained on the domain
{c} U V, treating the class variable like any other variable and pooling all the training data
together. In the testing phase, a new instance x E Q(V) is classified by picking the most
likely value of the class variable given the other variables' settings.

c(x) = argmax Q(xc, X) (7.3)
XC

The second method calls for partitioning the training set according to the values of the
class variable and for training a density estimator on each partition. This is equivalent with
training a mixture of trees with visible choice variable, the choice variable being the class
c. This method was first used by [7]; if the trees are forced to have the same structure
we obtain the Tree Augmented Naive Bayes (TANB) classifier of [24]. To classify a new
instance x one turns to Bayes formula

c(x) = argmaxP[c= k]Tk(X) (7.4)
k

7.3.2 The AUSTRALIAN data set

We investigated the performance of mixtures of trees on three classification tasks from the
UCI repository [1]. In the first experiment, the data set was the AUSTRALIAN database
[1]. It has 690 examples each consisting of 14 attributes and a binary class variable. Six of
the attributes (numbers 2, 3, 7, 10, 13 and 14) were real-valued and they were discretized
into 4 (for attribute 10) respectively 5 (for all other attributes) roughly equally sized bins.
In our experiments, in order to compare with [41] the test and training set sizes were 70
and 620 respectively (a ratio of roughly 1/9). For each value of m that was tested we
ran our algorithm for a fixed number of epochs on the training set and then recorded the
performance on the test set. This was repeated 20 times for each m, each time with a
random start and with a random split between the test and the training set. In a first series
of runs all training parameters were fixed except for m. In the second series of runs, we let #,
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Table 7.5: Performance comparison between the mixture of trees model and

sification methods on the AUSTRALIAN dataset. The results for mixtures

distribution are those reported in [41]. All the other results are from [49].

other clas-
of factorial

Method % correct Method % correct

Mixture of trees m = 20, 13 = 4 87.8 Backprop 84.6

Mixture of factorial distributions 87.2 C4.5 84.6

(D-SIDE in [41])
Cal5 86.9 SMART 84.2
ITrule 86.3 Bayes Trees 82.9

Logistic discrimination 85.9 K-nearest neighbor 81.9

Linear discrimination 85.9 AC2 81.9

DIPOL92 85.9 NewID 81.9
Radial basis functions 85.5 LVQ 80.3

CART 85.5 ALLOC80 79.9
CASTLE 85.2 CN2 79.6
Naive Bayes 84.9 Quadratic discrimination 79.3

IndCART 84.8 Flexible Bayes 78.3

9

5 10 15
m

20 25 30

Figure 7-7: Classification performance of different mixture of trees models on the Australian

Credit dataset. Results represent the percentage of correct classifications, averaged over 20

runs of the algorithm.
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Table 7.6: Performance of mixture of trees models on the MUSHROOM dataset. m=10 for
all models.

Algorithm Correctly Soft class Test likelih. Train likelih.
classified 7true/N (bits/datapoint) (bits/data point)

No smoothing .998 .997 27.63 27.09
Smooth w/ marginal 1 .9999 27.03 26.97
aj = 0.3, ap = 20
Smooth w/ uniform 1 .9997 27.39 27.02
all = 0.3, op = 200

the edge pruning parameter, change in such a way as to keep mf3 approximatively constant.
This results in roughly the same fraction of pruned edges independently of the number of
components. The results, which are slightly better than in the previous experiment, are
presented in figure 7-7. What is common to both series of experiments is the relatively large
set of values of m for which the performance stays at the top of its range. We hypothesize
that this is caused by the multiple ways the models are smoothed: edge pruning, smoothing
with the marginals and early stopping.

The best performance of the mixtures of trees in the second case is compared to other
published results for the same dataset in table 7.5. For comparison, correct classification
rates obtained and cited in [41] on training/test sets of the same size are: 87.2% for mixtures
of factorial distributions and 86.9% for the next best model (a decision tree called Cal5).
The full description of the other methods can be found in [41, 49]. It can be seen that on
this dataset the mixture of trees achieves the best performance, followed by the mixture of
factorial distributions from [41].

7.3.3 The MUSHROOM data set

The second data set used was the MUSHROOM database [57]. This data set has 8124
instances of 23 discrete attributes (including the class variable, which is treated like any
other attribute for the purpose of model learning). The training set comprised 6000 ran-
domly chosen examples, and the test set was formed by the remaining 2124. The smoothing
methods used were a) a penalty ap on the entropy of the mixture variable and b) smoothing
with the marginal according to (7.1) or with a uniform distribution. The smoothing coef-
ficient aVr was divided between the mixture components proportionally to 1/Fk. For this
dataset, smoothing was effective both in reducing overfitting and in improving classification
performance. The results are shown in table 7.6. The soft classification colums expresses
an integrated measure of the confidence of the classifier. Note that besides the classification
being correct, the classifier also has achieved high confidence.

7.3.4 The SPLICE data set. Classification and structure discovery

The last task was the classification of DNA SPLICE-junctions. The domain consists of
60 variables, representing a sequence of DNA bases, and an additional class variable. The
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Figure 7-8: Comparison of classification performance of the mixture of trees and other models
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of [24], NB is the Naive Bayes classifier, Tree represents a mixture of trees with m = 1, MT is a
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task is to determine if the middle of the sequence is a splice junction and what is its type2 .
Hence, the class variable can take 3 values (EI, IE or no junction) and the other variables
take 4 values corresponding to the 4 possible DNA bases coded here by the symbols (C, A,
G, T). The data set consists of 31175 labeled examples. We compared the Mixture of trees
model with two categories of classifiers and thus we performed two series of experiments.
A third experiment involving the SPLICE data set will be described later.

For the first series, we compared our model's performance against the reported results
of [66] and [53] who used multilayer neural networks and knowledge-based neural networks
for the same task. The sizes of the training set and of the test set are reproduced from the
above cited papers; they are 2000 and 1175 examples respectively. We constructed trees

(m = 1) and mixtures of m = 3 trees with different smoothing values a. Fitting the single
tree can be done in 1 step. To fit the mixture, we separated Nvalid= 3 0 0 examples out of
the training set and learned the model using the EM algorithm on the remaining 1700. The
training was stopped when the likelihood of the validation set stopped decreasing. This
can be regarded as an a additional smoothing for the m = 3 model. The results, averaged
over 20 trials, are presented in figure 7-8,a. It can be seen that the tree and the mixture
of trees model perform very similarly, with the single tree showing an insignificantly better
classification accuracy. Since a single tree has about three times fewer parameters than a
mixture with m = 3 we strongly prefer the former model for this task. Notice also that in
this situation smoothing does not improve performance; this is not unexpected since the
data set is relatively large. With the exception of the "oversmoothed" mixture of trees
model (a = 100) all the trees/mixture of trees models significantly outperform the other
models tested on this problem. Note that whereas the mixture of trees contains no prior
knowledge about the domain, the other two models do: the neural network model is trained
in supervised mode, optimizing for class accuracy, and the KBNN includes detailed domain
knowledge before the training begins.

The second set of experiments pursued a comparison with benchmark experiments on
the SPLICE data set that are part of the DELVE repository [55]. The DELVE benchmark
uses subsets of the SPLICE database with 100, 200 and 400 examples for training. Testing is
done on 1500 examples in all cases. The algorithms tested by DELVE and their performances
are shown in figure 7-8,b,c, and d. We fitted single trees (m = 1) with different degrees of
smoothing. We also learned naive Bayes (NB) and Tree Augmented Naive Bayes (TANB)
models [24]. A NB or a TANB model can be fit in one step, just like a tree. According to
the DELVE protocol, we ran our algorithms 20 times with different random initializations
on the same training and testing sets.

The results are presented in figures 7-8b,c and d. Most striking in these plots is the
dramatic difference between the methods in DELVE and the classification obtained by a
simple tree: in all cases the error rates of the tree models are less than half of the performance
of the best model tested in DELVE. Moreover, the average error of a single tree trained
on 400 examples is 5.5%, which is only 1.2% away from the average error of trees trained
on the 2000 examples dataset. The explanation for this remarkable accuracy preservation
with the decrease of the number of examples is discussed later in this section. The Naive
Bayes model exhibits a behavior that is very similar to the tree model and only slightly
less accurate. However, augmenting the Naive Bayes model to a TANN significantly hurts

2The DNA is composed of sections that are useful in coding proteins, called exons, and of inserted sections
of non-coding material called introns. Splice junctions are junctions between an exon and an intron and they
are of two types: exon-intron (EI) represents the end of an exon and the beginning of an intron whereas
intron-exon (IE) is the places where the intron ends and the next exon, or coding section, begins.
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Figure 7-9: Cumulative adjacency matrix of 20 trees fit to 2000 examples of the SPLICE

data set with no smoothing. The size of the square at coordinates ij represents the number

of trees (out of 20) that have an edge between variables i and j. No square means that this

number is 0. Only the lower half of the matrix is shown. The class is variable 0. The group

of squares at the bottom of the figure shows the variables that are connected directly to

the class. Only these variable are relevant for classification. Not surprisingly, they are all

located in the vicinity of the splice junction (which is between 30 and 31). The subdiagonal

"chain" shows that the rest of the variables are connected to their immediate neighbors. Its

lower-left end is edge 2-1 and its upper-right is edge 60-59.
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EI junction
Exon Intron

28 29 30 31 32 33 34 35 36
Tree CA A G G T AG A G
True CA A G G T AG A G T

IE junction
Intron Exon

15 16 ... 25 26 27 28 29 30 31
Tree - CT CT CT - - CT A G G
True CT CT CT CT - - CT A G G

Figure 7-10: The encoding of the IE and EI splice junctions as discovered by the tree
learning algorithm compared to the ones given in J.D. Watson & al., "Molecular Biology of
the Gene" [68]. Positions in the sequence are consistent with our variable numbering: thus
the splice junction is situated between positions 30 and 31. Symbols in boldface indicate
bases that are present with probability almost 1, other A,C,G,T symbols indicate bases or
groups of bases that have high probability (>0.8), and a - indicates that the position can
be occupied by any base with a non-negligible probability.

the classification performance. The plots also allow us to observe the effect of the degree of
smoothing when it varies from none to very large. In contrast to the previous experiment
on SPLICE data, here smoothing has a beneficial effect on the classification accuracy for
values under a certain threshold; for larger values the accuracy is strongly degraded by
smoothing. These accuracy profiles can be observed in tree models as well as in the TANN
and Naive Bayes models and they are similar to the bias-variance tradeoff curves commonly
encountered in machine learning applications. Also not surprisingly, the effect diminishes
with the increasing size of the data set (and is almost invisible for a training set size of 400).

Discovering structure. Figure 7-9 presents a summary of the tree structures learned
from the N=2000 example set in the form of a cumulated adjacency matrix. The adjacency
matrices of the 20 graph structures obtained in the experiment have been summed 3 . The
size of the black square at coordinates i, j in the figure is proportional to the value of the
i, j-th element of the cumulated adjacency matrix. No square means that the respective
element is 0. Since the adjacency matrix is symmetric, only half the matrix is shown.
From figure 7-9 we can see first that the tree structure is very stable over the 20 trials.
Variable 0 represents the class variable; the hypothetic splice junction is situated between
variables 30 and 31. The figure shows that the splice junction (variable 0) depends only on
DNA sites that are in its vicinity. The sites that are remote from the splice junction are
dependent on their immediate neighbors. Moreover, examining the tree parameters, for the
edges adjacent to the class variable, we observe that these variables build certain patterns
when the splice junction is present, but are random and almost uniformly distributed in
the absence of a splice junction. The patterns extracted from the learned trees are shown
in figure 7-10. The same figure displays the "true" encodings of the IE and El junctions

3The reader is reminded that the adjacency matrix of a graph has a 1 in position ij if the graph has an
edge connecting vertices i and j and a 0 otherwise.
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Figure 7-11: The cumulated adjacency matrix for 20 trees over the original set of variables

(0-60) augmented with 60 "noisy" variables (61-120) that are independent of the original
ones. The matrix shows that the tree structure over the original variables is preserved.
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as given in [68]. The match between the two encodings is almost perfect. Thus, we can
conclude that for this domain, the tree model not only provides a good classifier but also
discovers the true underlying model of the physical reality that generates the data. Remark
also that the algorithm arrives at this result without any prior knowledge: it does not know
which variable is the class and it doesn't even know that 60 variables out of 61 are in a
sequence.

7.3.5 The single tree classifier as an automatic feature selector

Let us examine the single tree classifier that was used for the SPLICE data set more
closely. According to the separation properties of the tree distribution, the probability of
the class variables depends only on its neighbors, that is, on the variables to which the class
variable is connected by tree edges. Hence, a tree acts as an implicit variable selector for
classification: only the variables adjacent to the queried variable (this set of variables is
called the Markov blanket [54]) will be relevant for determining its probability distribution.
This property also explains the observed preservation of the accuracy of the tree classifier
when the size of the training set decreases: out of the 60 variables, only 18 are relevant to
the class; moreover, the dependence is parametrized as 18 independent pairwise probability
tables Tciass,.. Such parameters can be accurately fit from relatively few examples. Hence, as
long as the training set contains enough data to establish the correct dependency structure,
the classification accuracy will degrade slowly with the decrease in the size of the data set.

Now we can explain the superiority of the tree classifier over the models in DELVE in
the previous example: out of the 60 variables, only 17 are relevant to the class. The tree
finds them correctly. a classifier that is not able to perform a reasonable feature selection
will be hindered by the remaining irrelevant variables, especially if the training set is small.

For a given Markov blanket, the tree classifier classifies in the same way as a naive Bayes
model with the Markov blanket variables as inputs. Remark also that the naive Bayes model
itself has a built-in feature selector: if one of the input variables v is not relevant to the
class, the distributions Pic will be roughly the same for all values of c. Consequently, in
the posterior Pc,1 that serves for classification, the factors corresponding to v will simplify
and thus v will have (almost) no influence on the classification. This explains why the naive
Bayes model also performs well on the SPLICE classification task. Notice however that
the variable selection mechanisms implemented by the tree classifier and the naive Bayes
classifier are not the same.

Sensitivity to irrelevant features. To verify that indeed the single tree classifier
acts like a feature selector, we performed the following experiment, using again the SPLICE
data. We augmented the variable set with another 60 variables, each taking 4 values with
randomly and independently assigned probabilities. The rest of the experimental conditions
(training set, test set and number of random restarts) were identical to the first SPLICE
experiment. We fitted a set of models with m = 1, a small beta = 0.1 and no smoothing
and compared its structure and performance to the corresponding model set in the first
experiment series. The structure of the new models, in the form of a cumulative adjacency
matrix, is shown in figure 7-11. We see that the structure over the original 61 variables is
unchanged and stable; the 60 noise variables connect in a random uniform patterns to the
original variables and among each other. As expected after examining the structure, the
classification performance of the new trees is not affected by the newly introduced variables:
in fact the average accuracy of the trees over 121 variables is 95.8%, 0.1% higher than the
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accuracy of the original trees4 .

4 The standard deviation of the accuracy is 3.5% making this difference insignificant.

122



Chapter 8

Conclusion

The subject of this thesis has been the tree as a tool for statistical multivariate modelling. A
tree, like any graphical model, has the ability to express the dependencies between variables
(by means of the graph) separately from the detailed form of these dependencies (contained
in the parameters), a property that makes it an excellent support for human intuition and
allows the design of general inference and learning algorithms.

Trees are simple models: this is especially evident when one examines the algorithm
that fits a tree to a given distribution. All the information about the target distribution
that a tree can capture is contained in a small number (at most n - 1) pairwise marginals.
Simplicity leads to computational efficiency. Efficient inference is a direct consequence of
the fact that trees are decomposable models with small clique size. But the existence of an
efficient algorithm for learning the tree structure makes trees quasi-unique in the graphical
models family. The modeling power of trees is limited, but, as this thesis shows, they can
be combined in mixtures to overcome this drawback. The number of trees in the mixture
is a smoothing parameter that allows one to control the complexity of the resulting model.

From the point of view of their ability to graphically represent independencies, mixtures
are not strictly speaking graphical models because the independence relationships between
the visible variables cannot be determined from the graph topology alone (i.e. the depen-
dency structure is not separated from the parametrization as it is for belief networks). But
from the computational point of view, they are tributary to the belief network perspective
and methods. Mixtures of trees inherit the computational properties of trees, both in terms
of inference and of learning from data, to such an extent that in fact all mixtures of trees al-
gorithms in this thesis are combinations and modifications of the corresponding algorithms
for trees.

The learning algorithm for mixtures of trees introduced here is a version of the well
known EM algorithm. As such, it converges to a local optimum only. This property is
a characteristic of mixtures in general, rather than of the present model. It is also an
illustration of the fact that in the search for the best model structure there is no free lunch:
just as learning optimal graphical model structure requires brute-force search, learning
mixtures suffers from the local optima problem.

Therefore, it is sensible to ask: when should one class of models be chosen instead of the
other? A rule suggested by the above discussion on structure search is: Use graphical models
for those problems where there is significant knowledge about the dependency structure of
the data, so that the structure search is minimal or not necessary. In the case when there
is little or no prior knowledge about the structure of the dependencies mixtures of trees
should be the preferred candidate. And if the structure is unknown, but simple, like in the
splice junction example, a single tree may suffice for the task. The reader should keep in
mind however that the final answer will depend on the properties of the actual data.

123



We have also examined the use of the mixture of trees learning algorithm as a heuristic

method for hidden variable discovery. The research is motivated in part by the cases in

science and everyday life when identifying a hidden variable enables one, by providing

a computationally simple model, to change one's way of thinking (like diseases, hidden

variables that are at the core of medical knowledge). A second motivation was seeing this

problem as an instance of a more general divide and conquer approach to the problem of

structure learning. Because structure search requires model selection and model validation,
this thesis has explored these topics as well. It has devised and tested as a model selection

criterion an empirical measure of a model's description length. On the model validation

side it has introduced a new distribution free independence test.

Making the learning scale better with the dimensionality of the domain by taking advan-

tage of certain properties of the data is the last, but not the least of the research topics that

this work is concerned with. The property it was built onto is data sparsity, loosely defined

as low entropy in the marginal distributions of the individual variables. The algorithms

introduced reduced running time by up to 3 orders of magnitude, mainly by intelligently

reorganizing the data in a manner that exploits sparsity. This underlines the importance of

combining the graphical models perspective with other data mining techniques in enabling

us to conquer the high dimensional domains that exist out there.

After devoting a whole thesis to trees, one may want to ask: are they unique in the

properties and advantages demonstrated here? Are there other classes of graphical models

that can be learned efficiently from data? There is one other such class. It is the class

of Bayes nets for which the variable ordering is fixed and the number of parents of each

node is bounded by 1. The optimal model structure for a given target distribution can be

found in O(n"+1 ) time for this class by a greedy algorithm. These models as well as the

tree models are instances of matroids [70]. Matroids are the unique algebraic structure for

which the "Maximum Weight" problem, corresponding to the Maximum Weight Spanning

Tree problem, is solved optimally by a greedy algorithm. Therefore, any class of graphical

models that were also matroids would have a structure learning algorithm that is better

than brute-force. Finding such classes is an open problem.

Mixtures of trees extend the possibilities of graphical modeling for unsupervised learning

and demonstrate at the same time the potential of this exciting field of research.
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