
Real Time Simulation of Rail Dispatcher Operations
by

Santanu Basu

B.Eng., Mechanical Engineering (1997)
McGill University

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science

at the

Massachusetts Institute of Technology

June 1999

C 1999 Massachusetts Institute of Technology

All Rights Reserved

Signature of Author-

Department of Mechanical Engineering
May 24, 1999

Certified by
Thomas B. Sheridan

Ford Professor of Engineering a lied Psychology
Thiis Supervisor

A ccepted by
Ain A. Sonin

Chairman, Department Committee on Graduate Students

0F

JU N

LIBRARIES

Real Time Simulation of Rail Dispatcher Operations

by

Santanu Basu

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Abstract

Cognitive task analyses (CTAs) have been conducted to better understand the thoughts
and actions of modem railroad dispatchers. These have provided information necessary
to any investigation of dispatching operations, especially the study of the impact of new
communications technology on the dispatching environment.

This project was conceived to provide an empirical test-bed for such technologies, in the
form of a real time human-in-the-loop simulator. The report elaborates on the CTA
background information, the design motivation, capabilities of the simulator, and it's
software and hardware architecture. It was written with two goals in mind. First and
foremost, it was written to provide instruction for both the participants and the conductors
of any experiment based on the simulator. Second, it will help in implementing further
functionality through code extension, by providing details of the underlying software.

Thesis Supervisor: Thomas B. Sheridan
Title: Ford Professor of Engineering and Applied Psychology

2

Acknowledgements

I would like to thank the following people for their help and guidance over the course of
this project:

Professor Thomas Sheridan, for providing valuable guidance and help whenever it was
asked for. Dr. Jordan Multer for showing me the ins and outs of working at the Volpe
Center, and being a great project leader to work with. J.K. Pollard for his invaluable help
with gadgets, and answering questions I didn't even think to ask. Steve Jones, for being
so helpful in providing us with participants for our experiments. All the dispatchers who
very sportingly sat through hours of dispatching runs and then provided invaluable
comments and suggestions. Nicolas Malsch, for executing his half of the project so
meticulously. Nicolas Oriol, for going above and beyond the call of duty by doing late
night test sessions on the simulator with us, not to mention helping us out with our actual
experiments. Kari Kulaszewicz for being helpful in general, and in particular for lending
us her pickup truck to transport vital equipment to Volpe. Sarah Meischer, for frequently
offering to help us out on our project even though she was in no way assigned to it. Jay
Einhorn and Ed Lanzilotta, train simulator gurus, for getting me up to speed with prior
work. Drew Kendra and Frank Sheelan, for providing advice and suggestions about the
simulator.

3

Table of Contents

1I In tro d u ctio n ... 5
2 M otivation ... 6

2.1 Recent Trends in the Railroad Industry .. 6
2.2 Proposed Technologies ... 8
2.3 O bstacles... 9
2.4 The Case for Sim ulation ... 10

3 O bje ctiv e s .. 12
4 D e sig n .. 13

4.1 Sim ulator D esign .. 13
4.2 D ata-link D esign... 18

5 Im plem entation.. 23
5.1 D ispatcher Station: D isplay Term inal(s) ... 23
5.2 D ispatcher Station: M essage Console... 31
5.3 Experim enter Station: D isplay Term inal(s)... 41
5.4 Experim enter Station: M essage Console .. 44

6 Experim ental D esign ... 52
6.1 Experim ental Setup... 52
6 .2 S c en ario s ... 5 3
6.3 Subject-Scenario M atrix ... 57
6.4 Experim ental Procedures .. 57
6 .5 M etric s .. 6 0

7 Results and D iscussion .. 65
7.1 H azard N otification Ratio... 65
7.2 A verage Tim e to Response ... 69
7.3 Average Response Duration .. 71
7.4 Total Communications Workload.. 72
7 .5 T ra in D e lay s 7 3
7.6 Q ualitative O bservations... 84

8 C o n c lu sio n ... 8 7
Appendix A Sim ulator Architecture ... 88

A . 1 H ardw are Layer ... 90
A .2 Transport Layer.. 91
A .3 V irtual M achine Layer... 93
A .4 Tim ing Layer ... 94
A .5 Recording Layer .. 96
A .6 D ata Layer ... 98
A .7 D isplay Layer... 103
A .8 Sim ulation Layer.. 105
A .9 M essaging Layer.. 106
A .10 Interface Layer ... ----....-- 107
A .1 1 D irectory Structure 110
A .12 D ata File Form ats...--.... -......--- 110

Appendix B Train Schedules --... 114

Appendix C Territory M ap ----...... ---.......................... 117
A ppendix D Plan V iew of Setup.. 119
References 120

4

1 Introduction

New technologies are being examined by major North American railroads, in the hope

that they will increase efficiency, safety, and facilitate higher volume, higher speed

travel. The impetus for seeking these improvements was provided by the deregulation of

the railroad industry in the early eighties [9]. The resulting market forces, both within the

industry, and relative to other transport industries, made the existing operational patterns

unprofitable.

While the railroads understand that there is a need to adopt new information technologies

(often referred to as data-link technologies), there is an understandable reluctance to

deploy them without extensive research and development and prototype testing. Many

such pilot projects have been carried out, and in addition to producing valuable scientific

results, these have repeatedly shown that deploying a prototype is an expensive

proposition [10] [8].

My thesis seeks to demonstrate that simulation of data-link technologies can be used to

study them in a more cost-effective manner. It does not propose to replace prototyping

with simulation, only to supplement it. The central task in this project is the construction

of a simulator that models the basic functionality of computer aided dispatching, based on

Amtrak's CETC control center [1]. The simulator is then studied to determine if it can

yield information that will help evaluate a sample data-link system, on which was

developed specifically for this project. While the data-link system is described and

investigated, the development and validation of the simulator is the primary focus of the

work. A complementary project by one of my colleagues focuses on the data-link

technology itself

5

2 Motivation

2.1 Recent Trends in the Railroad Industry

In 1980, the Staggers Rail Act initiated the deregulation of the railroad industry [9]. This

came amid a widespread trend toward deregulation of all sectors of the transport industry,

rail, truck, and air. Within a few years, several restrictions on railroad operation were

relaxed. For instance, greater freedom was allowed in "piggybacking" traffic,

encouraging a migration of traffic from higher priced (generally lower traffic) routes to

lower priced ones (generally higher traffic). In the high volume northeast, the Northeast

Rail Service Act was passed, which made it much easier to abandon lightly used track,

and shift the traffic to more heavily traveled routes. Without an entity to oversee the

economic framework in which the various railroads operated, market forces began to

reshape the face of rail transportation.

Another form of deregulation addressed pricing schemes. Prior to the early eighties, the

government had set, or at least placed limits on transport rates, for both freight and

passengers. Beginning in 1980, these restrictions were greatly relaxed, essentially

allowing free market forces to dominate the behavior of the railroad companies. In

contrast to the previous system, each railroad now had to compete against the rest.

Geographic separation did not segment the market because in many cases redundant

routes belonging to different railroads connected identical regions. And since traffic

management was now deregulated, the only way to retain previous traffic levels was to

provide competitive pricing.

The economics of operation under the new rules was fairly simple in a sense. If a

railroad was handling ten units of traffic, it would be much more profitable to route that

traffic over one hundred track-miles than over two hundred. Years of regulated operation

had caused railroads to build track networks that stressed service and geographic

coverage at the expense of efficiency. Now, it became apparent that abandoning lightly

6

used routes, and consolidating the traffic was an economic necessity. Thus began the

shift toward concentrating more traffic on fewer lines.

Increasing traffic, while decreasing total track-miles caused the number of trains per

hour, on average, to increase. There are theoretical limits on how much traffic a given

network can handle. This is termed the line capacity. It is related to the speed at which

trains travel the line, and inversely to the separation between the trains. Railroads never

operate at their line capacity; theoretically such operation would make it impossible to

recover from any mistake because there would be no room for maneuvering. Operating

at above 80% of that capacity is considered undesirable [5].

Therefore, after deregulation, the railroads were only able to shift so much traffic onto

high traffic lines before operations suffered. To increase their line capacity, they began

investigating higher speed travel, and reduced train separations. These two factors

obviously made it more difficult to ensure safety. The train engineers were required to

think more quickly, and their reaction times were reduced. Dispatchers were also

required to think more quickly. In addition, they handled more traffic than before. To an

extent, this was remedied by increasing the number of dispatchers, but this was not a

solution that could be extended ad-infinitum.

A secondary effect of increased traffic was the increased maintenance burden. The

problem lay not in the need to hire more maintenance personnel, as this was simply a

human resources and financial decision. Rather, the problem arose because the

percentage of track undergoing work at any given time increased with increased traffic.

This raised safety issues because potentially hazardous conditions became more frequent.

Another secondary effect was the increased difficulty of routing trains through territory in

which there was a high maintenance presence. A current example of this type of territory

is Amtrak's Shoreline route in the northeast. It is undergoing electrification, so that high

speed trainsets may run on existing track. The motivation for this work is the need to

become more competitive in the Boston-New York corridor with other forms of travel.

7

This illustrates clearly how post-deregulation economic forces have had trickle down

effects on operational characteristics of the railroad.

In an attempt to maintain or improve the levels of efficiency and safety, railroads are

turning to novel technologies. In the United States, they are mostly still in experimental

or prototype phases, but they show great potential to positively impact the way railroads

operate. For the customer, they seek to provide tangible benefits in safety and

convenience. For the railroads, the hope is that they will provide economic gains by

improving efficiency while maintaining acceptable safety levels.

2.2 Proposed Technologies

The majority of the new technologies being examined involve some type of digital

technology to transmit and display information. Sometimes, the term positive train

control (PTC) is a term used to describe efforts being undertaken. Others are termed

data-link technologies, 5-id have already found a place in the airline industry, while

railroads are slightly behind in adopting them. Several railroads in the United States and

Canada have experimented with prototype systems. Some of these are presented here to

illustrate the concept [10].

Canadian Pacific Railroad (CP Rail) deployed a prototype PTC system on its Calgary-

Alberta line from 1993 to 1995. The system concentrated on using digital

communications to convey clearances and releases of track segments. The benefit here

was the ability to carry out this common operation, which normally consumes radio

bandwidth, via digital means. During the test deployment, CP dictated that the migration

was to be carried out in steps that were quickly reversible, so that revenue service was not

interrupted by potential failures of the experimental equipment. This methodology

illustrates the difficulty in testing new technology in a real world scenario. Ultimately,

the cost of maintaining the prototype became excessive and the project was terminated.

This illustrates another drawback of real world deployment that will be used to make a

case for simulators, namely that prototyping any new technology is an expensive task.

8

Another well known foray in data-link technologies was the Burlington Northern (BN)

Advanced Railroad Electronics System (ARES). It was developed beginning in 1984 in

conjunction with Rockwell International, and was quite advanced in the level of

information it provided beyond what was (and mostly still is) considered standard. It

gave dispatchers a means of viewing the actual positions of trains, not just the discretized

block positions. Onboard sensors relayed information to the dispatcher about safety

violations, and dispatcher-side programs checked for common mistakes in track clearance

and release before relaying the information to the trains. Locomotive crews benefited

from global positioning information, and information about conditions on upcoming

routes. In the event that the crew was unable to control the locomotive, braking could be

applied remotely. Maintenance of way crews were also given global positioning

information, and supplied with devices that allowed them to communicate with the

dispatcher digitally, thereby freeing radio bandwidth. ARES was deployed from 1986 to

1990 and proved the viability of many of the technologies. However, the project was

terminated due to financial reasons in 1992.

2.3 Obstacles

The historical cases described in the previous section illustrate one of the main

difficulties in introducing a new technology to an established industry. In the short term

the technology always incurs an economic loss for the company, and may also cause

operational inconvenience if it is widely deployed. Although safety is of great

importance to railroads, the reality is that the cost-benefit analysis is the deciding issue.

A prototype project will be terminated, or not even initiated, if the economic planners

perceive that the short-term cost is high, even if moderate long term gains are likely.

Thus, to better the chances that a new technology will be adopted, the short term

economic loss must be minimized. But what makes prototype deployment so expensive?

To begin with, extensive impact assessments are necessary to predict how the test

deployment will affect the existing revenue service. These take at least months,

9

sometimes years to complete, and they extend the period during which the costs are

positive and the benefits are zero. In some cases, the impact assessment will determine

that it is not possible to deploy a prototype because it will interfere with existing

operation; the project may be terminated at this point, without having provided any

tangible benefit.

If a prototype is deployed, the cost of construction and integration is substantial. It is

often increased by the stipulation that any changes must be quickly reversible. Once

built, the new equipment requires maintenance, and the maintenance personnel require

training. The proposed users of the new technology also need training, and all this costs

money. Finally, in the event that the prototype is not adopted, there is the additional cost

of removing it from the testbed, which incurs additional cost.

Apart from the cost-benefit analysis, there is the issue of time. In the BN example the

time from project initiation to termination was eight years. And this was a case where the

technology was ultimately not adopted. Undoubtedly, if it had been deployed across

BN's territory, additional studies would have had to be conducted relating to scalability,

maintenance and robustness.

2.4 The Case for Simulation

To alleviate some of the problems of prototype deployment, this project proposes using

real time simulation of dispatcher operations. Even for very simple data-link technology,

simulation is cheaper and less resource intensive than real world deployment. Different

types of data-link systems can be tested using essentially the same hardware, which

consists of little more than desktop workstations. Obviously a simulator cannot replace

prototyping after a certain point in the R&D cycle, but it can reduce development time

and cost in the early phases.

There are some potential pitfalls in using simulators. It is important to make the

simulator sufficiently realistic to study the technology. In human-in-the-loop simulators,

10

the participants have to react, to some degree, in the same way they would react to a fully

deployed system. Additionally, the simulator must be carefully designed so that it can

provide a good deal of the same information that a prototype system would provide. In

the course of this project a rail dispatch operations simulator will be constructed and

these issues will be addressed.

11

3 Objectives

Having described the need for a rail dispatch operations simulator, the objectives of this

project can now be laid out. The first objective is to design a simulator to study a novel

communications system, in the context of rail dispatch operations. The issues that will be

investigated are: how should the simulator collect data, and what kind of data should it

collect? Does the data provide useful information that could not be otherwise obtained?

How realistic is the simulator? How flexible is the simulator architecture?

The second objective is to study the use of two simple data-link systems by experienced

dispatchers, in order to validate the usefulness of this simulator. While the data-link

systems will be studied both qualitatively and quantitatively, the primary focus is not to

draw conclusions about them. Rather, it is to demonstrate that the simulation model

adopted in this project is a suitable one for carrying out such a study. This is by no

means clear, as it is very difficult to study such things as intent, cause and effect, and

human reaction based only on recorded actions. The complementary report to this one,

written by my collaborator Nicolas Malsch, focuses on the data-link systems themselves,

and how they compare to standard radio communications.

12

4 Design

There are two primary design issues addressed in this project - design of the simulator,

and design of the data-link system we wish to test. The simulator design mainly

addresses the issues that are specific to a simulated, as opposed to real world, rail

dispatching system. These are of interest to the people conducting the experiment, or

extending the simulator. The data-link design address usability, interface, information

flow, and other issues that would appear in a real world implementation of the system.

These issues have a direct impact on the user of the system, or in this case, the participant

in the simulation.

4.1 Simulator Design

4.].] Real World Model

The simulator interface, not including the data-link system, was based on Amtrak's

dispatch operations center (called CETC) in Boston South Station [1]. The heart of

CETC is a control room where approximately 12 dispatchers are together controlling a

large region of track extending from Boston to New Haven. Each dispatcher operates a

workstation consisting of multiple computers connected to a central network that

maintains state information about various elements of the railroad. Each one is

responsible for a portion of the track, called a territory. Each can also refer to a map of

the entire track network that is displayed across the wall in the front of the control room.

The dispatcher workstation is the operational unit that forms the basis for the simulator.

In CETC, it consists of one or two computers that display the track comprising the

territory of the given dispatcher. The monitors used there are touch sensitive, so many

interactive sequences are done by touching appropriate regions of the screen. A third

screen may display other information, such as train consist information, travel restrictions

etc. Each workstation is also equipped with a foot pedal operated "walkie-talkie" which

13

can be used to contact other railroad employees, such as engineers of trains, or

maintenance of way workers. Additional desk space is used for so-called "cheat sheets",

which contain condensed information about train schedules, assigned work, and other

information that is not quickly accessible through the computer system. These paper

backup systems sometimes become necessary in the event that the computer control

system breaks down; they allow continued, uninterrupted operation.

4.1.2 Interface Design Rationale

While the conventional (non-data-link) elements of the simulator are based on CETC, the

intent was never to duplicate that system in every detail. As with most systems that have

large feature sets, the majority of the operator's time is spent using only a handful of

them. This was observed during the course of several visits to the CETC control room.

An attempt was made to identify standard operations that were involved in the bulk of the

dispatcher's workload.

The actions required to execute these operations in the simulator were designed to be

similar to the corresponding actions at CETC. The goal was to minimize the differences

between the simulated operations and the real ones, apart from the variable

communication medium. In this way, variable dispatcher performance could be

correlated to differences between data-link and radio, rather than to differences in the

standard operative procedures. The operations chosen for inclusion in the simulator were

setting and resetting routes, and creating and removing protected zones.

Setting a route refers to the act of marking a portion of track as "reserved" for travel. The

next train that approaches this track will be allowed to pass through, and then the track

will revert to its default state. This is the primary means of traffic control available to

CETC dispatchers. Setting and resetting a route may at first seem to be a quick task that

does not consume much of the dispatcher's time. Indeed, the act of setting the route may

take only ten seconds. However, the more important factor to consider is the amount of

time the dispatcher thinks about the operation before he actually executes it. This

14

timespan was observed to be substantial in some cases. Moreover, setting a route is one

of the most frequently performed tasks. It forms a kind of background activity, upon

which the communications load (be it radio or data-link) is superimposed. Finally, the

way in which routes are set impacts almost every other aspect of dispatcher operations,

from traffic congestion, to potential hazards, to work assignments. Route setting was

therefore deemed to be an essential activity, and was selected as one of the operations

implemented in the simulator. Route resetting (i.e. removing a route) was included for

completeness, even though it is not a very frequent operation.

Protecting a portion of track is a means by which the dispatcher can provide a safe

working zone to maintenance of way personnel. Trains are routed around protected

zones. Workers ask for protection and are granted or refused it based on traffic patterns,

the length of time protection is requested, and other criteria. In a similar manner to

setting routes, creating protections does not take very long to accomplish, but the

cognitive process prior to the action is rather complex. Several sources of information

are consulted, namely the dispatcher's memory, train schedules, state of traffic at the

moment, and expected state of traffic in the future.

4.1.3 Human-in-the-Loop, Experimenter-in-the-Loop Design

The suffix "in-the-loop", when applied to a simulator, means that the interaction from

and feedback to the experimental participant is real time. Of course, this is a human-in-

the-loop simulator. In this experiment the participants were real dispatchers from CETC

who interacted with the simulator for two shifts of one hour each. This setup is further

detailed in the experimental methodology and procedures section.

Less obviously, this simulator was also designed as an experimenter-in-the-loop system.

This means that the experimenter has the ability to dynamically influence the evolution of

the simulation in real time. The necessity of this simulation model becomes apparent

when one considers the variety and complexity of the stimuli that a dispatcher handles on

the job. He directly interacts with multiple humans, and groups of humans. He indirectly

15

interacts with machinery via his workstation and requests issued to human operators of

machinery. The other human participants in the railroad interact with each other, and

their actions impact the dispatcher.

In more common simulators (such as driving, or flight) it is possible for the experimenter

to act only as an observer, because the participant interacts with a limited number of non-

human elements. This is not possible in a rail dispatch operations simulator. The state of

the art in artificial intelligence still cannot simulate dynamic, intelligent human responses

to interactive sequences (it is debatable whether this will ever be possible). The only way

to simulate this is for one or more people, in this case the experimenter(s), to handle the

portions of the simulation that model person-to-person interaction. This necessity

motivates an experimenter-in-the-loop architecture.

There are restrictions placed on the ability of the experimenter to influence the

simulation. These restrictions are imposed to make it impossible for the participant to

determine which stimuli are the result of computer simulation and which are the result of

experimenter actions. Specifically, the experimenter cannot create any information that

could not be potentially created by an element in the simulation (a train engineer, track

worker, etc.). The experimenter cannot influence any object within the simulation in a

manner that is clearly unnatural. Any communications initiated by the experimenter must

be attributed to an existing element of the simulation. These restrictions strive to prevent

situations where the experimenter subconsciously biases the outcome of the simulation to

support preconceived expectations. At the same time, they allow the flexibility to handle

unexpected events, and to design scenarios that exhibit more sophisticated

communications sequences than would be possible with pre-programmed behavior alone.

4.1.4 Timing Characteristics

The simulator was designed to operate in "psuedo-real-time." This term is chosen

because, while a second in the simulation is a second in the real world, a simulation run

lasting two hours in the real world may only encompass an hour and a half of simulated

16

time. This is possible because the simulator can be stopped for discrete blocks of time, at

which point all simulated elements save their state. When the simulation is again

resumed, the state continues evolving as if no time had passed. It was felt that this ability

was necessary to allow the experimenter to question the participant during the simulation,

about key issues, in a qualitative, discussion oriented manner. It is impossible to do this

without distracting the dispatcher from the tasks at hand if the simulator can not be halted

and resumed on command.

4.1.5 Data Gathering Design

The simulator provides it's own detailed data outputs. It was assumed that video and

audio recording schemes would be insufficient to capture the necessary information from

the data-link system, which depends heavily on text (see the data-link design section).

The design of the simulator's data recording system features real time recording and

minimal post processing. Data is not held until the end of a simulation run, but recorded

to disk as it becomes available. The amount of post processing is also reduced to a

manageable level. The size of the data traces make post processing time-consuming.

Automated post processing is also difficult due to the sometimes qualitative, and highly

variable nature of the data being recorded.

4.1.6 Designing for Flexibility

From the outset, the one of the design goals was to create a simulator that used data files

extensively, providing flexibility without requiring programming. Wherever possible,

data has been removed from the software, and shifted to a datafile that is modifiable

according to fixed rules. Most of the characteristics of a scenario can be altered by

making the appropriate change in those files. Scenarios are discussed in section 6.2.

The datafiles are one means of insuring flexibility. They allow modification of the

objects within the simulation. The other type of flexibility is called extensibility,

essentially the ability to change the way the objects are viewed and manipulated. This

17

requires programming new software code, but every attempt has been made to structure

the simulator such that the amount of programming required is reduced.

4.2 Data-link Design

A basic data-link system was created for this project. This report focuses on studying the

simulator's ability to study the data-link system as it is compared to standard radio

communication. For completeness, a discussion of the data-link system design is

included here. A more in depth coverage of this topic is presented in the complementary

report by Malsch.

Before settling upon one design, a task analysis of CETC dispatchers was carried out to

determine what kinds of activities were most common, most time consuming, easiest,

most difficult, and so on. Then, a set of features was settled upon and designed into the

data-link system of the simulator.

4.2.1 Dispatcher Task Analysis

Through observation of dispatchers on the job, through interviews, and through simple

discussion, several key activities were identified. They can be roughly categorized as

train management, maintenance work management, and information relay management

[7].

Train management includes operations that impact the normal motion of trains through

the territory of a dispatcher. This consists primarily of routing the train in the proper way

through the territory, managing meets and passes, and prioritizing traffic in high traffic

areas. In some cases it also includes short-term speed restrictions, travel bulletins, and

other information relayed to train engineers. A significant amount of time is spent

thinking about these actions because improperly routed trains will potentially encounter

delays. Dispatchers were observed carrying out these actions at CETC. In most cases

they study the current position and target position of a train, and try to map out a route to

18

that target, subject to the restrictions of work in progress, current traffic, predicted future

traffic, and speed limit considerations. They tend to route a train as far as they can

because they feel it reduces the likelihood they will mistakenly leave a train waiting at a

signal. It appears that, in general, they will delay one train ten minutes, rather that two

trains five minutes each. In all cases, they try very hard to avoid delays. In conversations

with dispatchers, small delays, or none at all are one of the most important indicators of a

successful shift. The importance attached to proper routing is a key consideration in

designing a data-link system because it is possible that the routing may take precedence

in the mind of the dispatcher. Therefore the time spent using data-link must be

minimized. The total time spent on train management was observed to be much greater

than the time spent simply on executing routing actions. The majority of the time was

spent thinking about what action to take; little time was actually spent on executing that

action.

Maintenance work management involves scheduling and protecting workers who are

located on or near operational track. The scheduling task begins when a maintenance of

way (MOW) crew contacts the dispatcher and asks for permission to work. The

dispatcher has to make a decision based on the current traffic flow, length of work time

requested, and potential future traffic flow. If the permission is granted, the dispatcher

sets up a protected zone on the track where the work will take place. Trains can no

longer be routed through this zone, which raises the possibility of delays. The work crew

is contacted and notified of the dispatcher's decision. It was observed that the

dispatchers do not like to give work permissions for timespans that are too far in the

future. Instead they tend to ask the work crew to call back later. They also tend to assign

higher priority to train movement than to work requests. When granting permission to

work, there is a substantial back and forth communication between the MOW crew and

the dispatcher. The crew states the locations and time of work. The dispatcher may

misunderstand or fail to hear part of this information and ask for it to be repeated. When

he is satisfied he has heard it properly he will make the decision to grant or refuse. If

granting, he will repeat the locations and times to the MOW crew, which must confirm

them. The dispatcher is also required to write down the information in standardized

19

forms. The whole process can take several minutes in total, during which other activities

may be performed. It was hypothesized that this was an area in which a point to point

data-link system would be advantageous.

Information relay management refers to the role that the dispatcher plays as a central

point of information exchange. For example, consider a train travelling through a

dispatcher's territory, where it encounters an exceptional condition. Perhaps there is

potentially hazardous condition requiring reduced speed. The train engineer knows that

this information will be of interest to other engineers, but he does not know which

engineers will be passing through the same territory area in the future. By relaying this

information to the dispatcher, he ensures that that it will be provided to other train as they

pass through. The dispatcher may also take some action to remedy the situation, such as

contacting a MOW crew. Because the dispatcher is the only member of the railroad

operation that has a fixed location, he tends to handle situations that have a fixed

location. Little time is consumed in relaying information. The difficulty lies in

remembering who to relay the information to, when to relay it, and what to relay. A data-

link system might be helpful in supporting this kind of information relay management.

4.2.2 System Design

Now that a group of key tasks has been identified, the design of the data-link system can

be described. It's characteristics are: text-based, persistent, point to point or multicast,

and non-conversational. These characteristics were chosen based on the tasks mentioned

above. The meaning of each is described, and the reason for choosing it is explained.

Text based means that all information is created and transmitted in the form of text

messages. These messages can refer to images on the display screens, but these visual

objects are not themselves embedded in the messages. Therefore there is no facility for

transmitting live video, or pictures. As an initial trial system, this seems reasonable

because text has more or less the same descriptive power as the spoken word, which is

the current communications standard. Creation of text messages is not accomplished by

20

typing in general, but rather by filling in blanks in pre-formatted messages. This method

was clearly favorable to free-form text entry because several dispatchers said that they

would not use a system that required them to type even a modest amount of text. This

interface is described further in section 5.

Persistent describes the lifetime of a message. In radio communications, this is the

amount of time it takes to speak the message. Since it is not recorded, it does not exist

after that; the dispatcher cannot go back and review the message, apart from the

information that is stored in his memory. This is apparently insufficient, because

dispatchers were observed writing down information based on radio communications.

Therefore, it was hypothesized that a persistent communications system would be of use

to the dispatcher. The data-link was designed such that all incoming and outgoing

messages are recorded and remain available on the screen for future reference.

Point-to-point and multicast are terms that refer to the way a message is delivered, and

who receives it. As a baseline, radio communications are considered broadcast. This

means everyone receives every message. This is a source of two problems. Dispatchers

(and everyone else) receive messages that are not addressed to them, and they have to

ignore them. From observation, it seems that they have become accustomed to this and

tolerate it reasonable well. More importantly, when two parties are communicating on a

broadcast system, no other communication is possible. In practice, this is not always true

due to transmitter range, and it is true that independent communication can occur on

different channels. Nevertheless, the effective bandwidth is low, and dispatchers

routinely complain about this. At the opposite end of the spectrum is point-to-point

communications, where the sender of a message chooses a single target, and no one else

hears the conversation. Standard telephone conversations are point to point

communication. The advantage of this type of system is that multiple communications

between many parties can be continuing simultaneously. The disadvantage is that if ten

different people need to know of a situation, the dispatcher has to create ten different

messages. In between the two extremes is multicast communications. In this case, a

primary recipient is chosen, and other secondary recipients can be specified, similar to

the "cc" field in email messages. Multicast can collapse back to point-to-point at the

discretion of the sender, simply by not specifying secondary recipients. The simulator

provides both point to point and multicast communications.

The last characteristic of the data-link system is a result of the first three features. Non-

conversational means that if party A sends a message to party B, B is not required to

respond immediately. In fact, if A send two messages to B, B may chose to reply to the

second message first, and the first second. This contrasts with a conversational approach,

where each communications sequence generally finishes before the next begins.

Interrupting one sequence to start another is not the norm, and when this is done, some

kind of notification is supplied to the party being interrupted. E-mail systems are non-

conversational. Radio communications are conversational systems. It turns out the

benefit of conversational systems, namely instant feedback, is also its drawback. This

becomes clear in situations where there is not sufficient information to complete a

communications sequence. Usually, this is handled by terminating the conversation, and

restarting it later. This creates a situation where contextual information needs to be

repeated when the conversation is resumed. It is not clear how readily dispatchers will

adapt to a non-conversational system, but it will be interesting to note their reactions. In

any case, a persistent, text based system is inherently non-conversational. One of the

goals of the study will be to observe how successfully the simulator can compare a non-

conversational system to a conversational one.

22

5 Implementation

Now that the design rationale of the simulator has been laid out, the software

implementation can be outlined. The goal is to show how the features described in the

previous section are represented in the simulator, to describe the interface, and to explain

how to use them. On the highest level, the simulator is broken into two parts: the

dispatcher station, which provides the human-in-the-loop functionality, and the

experimenter station, which provides the experimenter-in-the-loop functionality. Each of

these stations is further divided into one or two display terminals, and one messaging

terminal, each of which corresponds physically to a computer. Each component is

described in detail in the following sections.

5.1 Dispatcher Station: Display Terminal(s)

Each display terminal will display roughly half the territory for which the dispatcher is

responsible. Figure 5.1 shows a screen snapshot of a terminal displaying the track for

one of the scenarios used in our thesis project.

The majority of the screen space is occupied by the dark background on which is drawn

the track and other information that can be displayed visually. Any object required to

complete a task is "selectable" which means that it can be accessed by clicking on it on

the screen. The rest of the lower portion of the screen is used to display buttons that

allow the dispatcher to access functionality that is not handled by the messaging screen.

23

baTe

tuJ

0

s1

H

0-d

5.].] Track

Track is normally in white, as is most of the track displayed in the figure. This default

state indicates that the track is not occupied, no work is being done, and it has not been

included in a cleared route. A blue color indicates that the track has been blocked for

work. A light green color indicates that a route has been cleared through this track and

(presumably) a train will be passing through in the future. A yellow color indicates that

the track is being highlighted (see the discussion of the message window for a description

of highlighting). A red color indicates a train, or a portion of one occupies the track.

When more than one state is in effect (such as a routed track that has become occupied),

the ordering is white, green, blue, red, yellow. Thus in the event red and green conflict,

red will be shown, not green.

Tracks are divided into blocks. The boundaries between these blocks are not always

clear; in fact, it is relatively easy to do this, but it is not done to maintain similarity with

the South Station dispatcher display. The blocks are arranged on an invisible grid, such

that every block must begin and end on a grid vertex. A block may span more than one

grid unit. However, blocks can only be oriented horizontally, or at 45-degree angles,

again keeping in line with the South Station displays. As far as the screen display goes,

blocks are atomic elements. This means the block cannot be half red and half green.

Clicking on any portion of the block is equivalent, and will select the whole block.

Blocks meet at grid vertices. Up to six blocks can meet at one such point. While the

blocks themselves only change color, these joints can change shape as well. The shape is

altered depending on which two blocks are "connected." The joints are simply the visual

representation of switches. See below for a discussion on how to affect the states of these

switches.

5.1.2 Interlockings

Interlockings are not really objects in their own right, but special collections of track.

Essentially, an interlocking is a group of branching tracks flanked by non-branching

25

track. Each interlocking is given a name, which is displayed in yellow above the tracks

that comprise that interlocking.

5.1.3 Stations

Like interlockings, stations are just special collections of track. They are labeled in

yellow as well. An unenforced convention that is used currently is to name interlockings

with a letter-number pair, like A5. Stations are given names like Station B, or Terminal.

Trains may or may not stop at stations, depending on their schedules. This is discussed

further in the sub-section on trains.

5.1.4 Poke Points

Frequently, usually near grid vertices, there are small red squares displayed. These are

called poke points. They do not correspond directly to a physical object like a block

does, but they are used to clear and unclear routes. To clear a route (that is, to allow

travel through it) two poke points are selected, and the track between them is cleared; it

turns green to indicate this. The poke points themselves also turn green (from their

default color of red). The user may encounter a situation where he has selected two poke

points, but after a second or two no route has been cleared. This means that the poke

point combination was not a valid pair. Poke points must be on opposite ends of an

interlocking, or on opposing ends of two different interlockings, such that the route

joining them is "between" the poke points, in the topology of the track. In the event that

a route spans more than one interlocking, the poke points along the route will turn green.

To unclear a route that has previously been cleared, the dispatcher must simply click one

of the poke points that was used to clear the route. In multi interlocking routes, even

though poke points long the route will be green, only the end poke points can be used to

unclear the route.

Any track not in a cleared route is considered uncleared. Such track permits travel up to

the next poke point facing the direction of travel. A poke point's direction can be

determined by taking the direction of travel required to arrive at the closest interlocking

26

from the poke point in question. This implies that poke points on opposite ends of an

interlocking are opposite in direction. As a general rule, trains cannot travel through a

poke point in the direction the poke point faces unless that poke point is green. This is

the primary method of controlling traffic.

5.1.5 Trains

Trains are displayed as numbers, accompanied by a direction arrow, and potentially a +

or a - symbol to indicate delays, or ahead of schedule operation. This text is displayed in

yellow. The number is the unique identification number of the train. The train will also

cause the track on which it sits to become red. Since a train may occupy more than one

block, several blocks may be red. However, the train's identification number (ID) and

direction are displayed only on the block where the front of the train is located. This text

may appear above or below the track. Essentially, if one orients ones view along the

track in the direction of motion of the train, the descriptive text will appear on the right of

the track. To select a train, click on the image of the ID number, not of the track where

the train is located.

Trains will traverse the track according to a few simple rules, some of which have already

been mentioned. Trains will not pass through an uncleared poke point in the direction of

their travel. They will not pass through another train, unless they are unable to stop in

time. It is interesting to note that this is even possible; why should trains not be able to

stop in time? The reason lies in the fact that a two aspect system of speed limiting is used

in this simulation. Situations can arise where very short blocks result in inadequate

stopping distances, and the aspect system does not provIDe enough advance warning. Of

course, both the aspect system, and the track lengths can be customized to prevent these

situations from arising (as described in the architecture section). In the rare event that

two trains cannot stop in time to avoid a collision, the simulator is programmed to cause

one train to "die." This means the train will stop moving but will continue to occupy the

blocks occupied at the time of collision, rendering them non-traversable.

27

Trains will stop at stations if the station is listed on the train's schedule, as specified in

the data files with .trn extensions. If a train arrives at a station ahead of time, it will wait

there until it's scheduled departure time. If it arrives late, it will wait for a minimum stop

time, and then continue moving.

Trains normally move in one direction, but may reverse their direction in stations. In

exceptional circumstances, the dispatcher may manually tell a train to reverse direction,

in which case it will slow to a halt, reverse direction, and continue moving. This

functionality is accessed through the reverse button, described below.

5.1.6 Operations

Below the section of the screen used to display track, trains, etc. is a smaller section

containing various buttons. Each of these buttons will launch an operation. Currently

there are five tasks that can be accomplished via these buttons: Clear a route, Unclear a

route, Block track, Unblock track, and Reverse train. Interaction with the simulation

using these buttons follows a click-select-execute pattern. For example, to clear a route,

the dispatcher will click on the "clear route" button, select two valid poke points, and the

simulator will then execute the clear route operation, resulting in the route turning green.

If the dispatcher then wants to clear another route, he will again click the "clear route'

button and go through the same procedure. Clicking a button does not, therefore,

permanently select that operation until another button is clicked. This is somewhat

counterintuitive; however, it mimics the interaction pattern of the dispatch center in

South Station, upon which this simulator is based. The rationale behind this type of

interaction is that the dispatcher has no chance of inadvertently executing an operation

because he was unaware it was "in effect". Each time he wants to do something, he must

explicitly make that task possible by clicking the button. This provides some degree of

safety.

The usage of the clear route operation has already been given as an example; the other

operations are used as follows. To unclear a route, the "unclear route" button is pressed,

a poke point at one end of a cleared route is selected, and the route is cleared. To block a

28

track, the "block track" button is clicked, a single track block is selected, and the

simulator blocks the track, turning it blue. Unblocking works the same way, but the track

turns white. To reverse a train, the "reverse train" button is clicked, the train's ID

number is selected, and the train will be issued a reverse command. Now that the means

of working with these operations is understood, it is necessary to describe what they are

used for.

The route clearing operation is the primary traffic management tool available to the

dispatcher. If a train approaches an interlocking and the poke points at the point of

entrance to that interlocking are red, the train will not be able to pass. In fact, it will start

slowing down somewhat ahead of the interlocking. By clearing a route, the dispatcher is

indicating to the train that it may travel through the interlocking along the green path and

on to the next interlocking. It is important to note a minor difference between the

simulator and the South Station system. There, a cleared route would show green all the

way to the next interlocking, while in this simulator it is only the track within the

interlocking that is green. However, since the portion of track between interlockings is

non-branching, the train has implicit permission to travel all the way to the next

interlocking.

Route clearing is exclusive. This means that a given block of track, or a given switch

cannot be included in more than one route. Thus, routes cannot cross, or be collinear at

any point along their length. Attempting to clear a route that would violate this condition

will result in the operation being cancelled. Moreover, a route cannot be cleared through

track that has been blocked for work (see below). If there is a potential for this kind of

route, the simulator will attempt to find the shortest path around the blocked track. If

there is no such path, the operation will be ignored. In any event, where there are

multiple possible routes between two poke points, the simulator will find the shortest

possible path.

29

Cleared routes are non-directional. A train can enter either end of the cleared route and

travel to the other end. Therefore, it is necessary to make sure that two trains are not

approaching opposite ends of a route that is to be cleared.

Unclearing a cleared route will simply cause the interlocking to revert to it's default state,

which does not allow trains to pass. Unclearing requires only that one of the two poke

points used to clear the route is selected to unclear it.

Blocking is used to protect MOW crews at specific locations on the track. Typically, a

work crew will contact the dispatcher and ask for work protection before attempting to

work at a given location. This communication is accomplished via the messaging

console. However, if the dispatcher decides to grant work protection, he must first block

the track upon which the work will proceed. He does this using the block track operation.

This is essentially a safety measure designed to prevent trains from accidentally travelling

on the same stretch of track and endangering the workers. Although the workers will

complete their work and notify the dispatcher of this, the blocked track will not

automatically unblock itself. This is the responsibility of the dispatcher, and he

accomplishes it using the unblock track operation.

The final operation is train reversal. This is done only in exceptional cases, and is not

used as a standard traffic management tool. One such situation arises in the current

project is a train that is too long to fit on a station platform. This situation requires the

train be moved to another platform, and there is no way to do this without reversing the

train. Train reversal is not instantaneous. Instead, the train will first brake to a halt.

Then, the direction indicator of the train will visually reverse direction, and the train will

begin accelerating. Currently, the simulation does not model the time required to change

the train's direction (for instance, time required for the engineer or conductor to move to

the opposite end of the train). However, the experimenters can insert such a delay by

using an operation available only to them called "halt train", which is described in the

Experimenter Station section.

30

5.2 Dispatcher Station: Message Console

In addition to the two monitors displaying the track, the dispatcher has a third monitor on

which a message console is displayed. This console is the primary experimental

communications system that is being studied in this project. It implements a simple

digital messaging system that is used by the dispatcher to quickly communicate standard

information to other people or devices in the simulation.

31

Bulletin request, Minimum Priority, From: Train #500
??? Bulletin request, Minimum Priority, From: Train #500 INo bulletin, no restriction, To: Train # 626
1?? Foul time request, LOW PRIORITY, From: Work Crew - Track Car #2
??? Foul time request, LOW PRIORITY, From: Work Crew - Repair Crew #5

Bulletin request, Minimum Priority,
Bulletin request, Minimum Priority,

From: Train #500
From: Train #661

From: Train # 626
PRIORITY: Minimum Priority
SUBJECT: Bulletin request
We are ready to leave the station. Is there any bulletin,
END OF MESSAGE

teri# Message

speed restriction for the ride?

To: Train # 46
PRIORITY: Minimum Priority
SUBJECT: No bulletin, no restriction
Everything is fine. No bulletin and no
restriction. You can leave as soon as you have
clearance.
END OF MESSAGE

ii
Reply

???
???CD

0

CD

W'
tQj

5.2.1 Visual Layout

The message console is shown in figure 5.2, after some messages have been received and

sent. The majority of the screen space is reserved to displaying text. This area is

subdivided into four sections. The two sections on the left are used to display incoming

messages, while the two on the right are for outgoing messages. The top sections are

used for message summaries (incoming and outgoing) and the bottom sections for

detailed message text (incoming and outgoing). Below these four sections is a button bar

containing two options. The first is used to send a message, and the second to reply to

the currently viewed message.

5.2.2 Incoming Areas

The incoming message summaries section is perhaps the most important of the four, and

it occupies the top left quadrant. When a message is addressed to the dispatcher (say a

work crew sends a work request message), the first thing that the dispatcher sees is a one

line summary of this message in the incoming summary window.

This summary displays critical information about the message as well as markers

indicating additional status information. Beginning on the left side of a typical summary

line, the dispatcher will see the status marker. This can take on one of three states: not

viewed, viewed but not replied to, and replied to. The markers are indented to different

depths as well as being constructed from different characters. They are a quick way for

the dispatcher to see what needs attending to and what can wait until later. After the

status marker, the subject of the message is displayed which provides a rough idea of

what kind of information the message will convey. Next is the priority, indicating how

urgent the message is relative to others. Finally, the source of the message is displayed

(e.g. Train 401).

These one-line summaries will appear in the summary area in the order in which they

were received. When there are too many messages to display the summaries in the

33

summary area all at once, a scrollbar will appear on the right side of this area allowing

past message summaries to be viewed.

To see an entire message, the dispatcher simply clicks on the summary line. Upon doing

so, the status marker will change from "not viewed" to "viewed but not replied", and the

full text of the message will be displayed in the message text area below. The full

message text will include all the information found in the summary line, as well as the

actual message that is being conveyed.

The message being viewed will often refer to objects that appear in the dispatcher's

display windows. For example, a message asking for work permission will refer to track

locations on which the work needs to be done. In these cases, the object being referred to

will be highlighted using a bright yellow color that is easily distinguishable from the

surrounding display. In reality, the only objects that currently possess the highlighting

capability are the tracks. Highlighting for other objects is not implemented because it is

relatively easy to locate a train, for example, if the train ID appears in the message text.

Tracks are highlighted because it is inherently difficult to speak of a specific portion of

the track without risking confusion. The yellow highlight will remain for as long as the

message is viewed.

5.2.3 Outgoing Areas

The outgoing areas are not used until the dispatcher uses one of the buttons at the bottom

of the screen, send and reply. Both of these will result in a message being sent from the

dispatcher to some elements in the simulation. Once this is done, summaries of these

messages will appear in the top right area exactly as the incoming summaries appear in

the top left. However, there will be no status markers preceding the summaries, and

instead of the message source, the message destination will be displayed. When one of

these summaries is selected, the full message will appear in the bottom right area of the

console.

34

5.2.4 Console Operations

The send and reply buttons at the bottom of the console operate almost identically, except

that the latter is used to reply to the currently viewed message, while the former is used to

initiate a new message. They both launch a process that allows the dispatcher to select a

message template in a methodical manner, and then fill in the blanks of the template to

create a complete message. These templates are analogous to paper forms that address

specific issues relevant to dispatching operations.

The first part of this process consists of navigating through a hierarchical tree that guides

the dispatcher to the desired message. A sample branch of this tree appears in the left

side of figure 5.3. For example, to select the train bulletin message, the dispatcher first

selects "Low Priority" which launches a sub-tree. Within this, he chooses "Engineer

Communications". In the next level he chooses "Bulletin/Speed Restrictions", and in the

final level he selects one of the various types of bulletins.

35

High Priority , Minimum Priority, From: Train #500
Minimum Priority, From: Train #500 No bulletin, no restriction, To: Train # 626

To Rutttu6eam

Cn
CD

CD

, LOW PRIORITY, From: Work Crew - Track Car #2

, LOW PRIORITY, From: Work Crew - Repair Crew #5

Priority,
Priority,
Priority,

From: Train
From: Train
From: Train

Minimum
Minimum

,Minimum

From: Train # 626
PRIORITY: Minimum Priority
SUBJECT: Bulletin request
[e are ready to leave the station. Is there any
END OF MESSAGE

#500
#661
#500

bi

bulletin, speeu, restriction for the ride?

.z2I1
Sehd .. Mesag Reply.....

To: Train # 46
PRIORITY: Minimum Priority
SUBJECT: No bulletin, no restriction
Everything is fine. No bulletin and no
restriction. You can leave as soon as you have
clearance.
END OF MESSAGE

I

Medium Priority

ToMO'- Danivwarinngi

Low Priority

To MOW Standtird com;

To Yard -RouhnU'prefentes

To Bridge Oing
Special messages

Blank Massage

Cancaf

Li.)
0~'

ReplySehd a Message

At this point, a message form is launched in a separate temporary window that floats

above the message console, as seen in figure 5.4. This form is of a standard format

regardless of which message is being constructed. This eliminates the need for the

dispatcher to figure out how to read and fill in each form, which may lead to more

efficient operation (this is one hypothesis that is being tested in this project). Regardless

of the message, certain standard fields are always present. These are the recipient, and

the sender, although the sender field can be left blank if desired, in which case it will

automatically be filled in with the dispatcher's name. Depending on the message, there

may be more fields to fill in, as well as the text in the body of the message.

37

-Message Outline Window

To: Work Crew,- Repair Crew #5 n tue rn n n, T L :

CD

KO
0

0

0

You are granted permission to work at [" ,r-m -
fl from [~ : [to [~ : [~ this afternoon.

Cancel

SUBJECT: Foul time request
We plan to do some work at between interlocking Cl
interlocking C2 T22, block I , interlocking C2 T21
interlocking C2 T12 . The 'window advisor' shows a
afternoon. Is this possible?
END OF MESSAGE

a #500
ew - Track Car #2

a
a
a
a
a

#626
#500
#661
#500
#661

and C2, track 2, block 3 ,
, interlocking C2 T22, block 2
free spot from I : 17 to I : 50 this

ffo bulletin, no restriction, To: Train # 626

To: Train # 46
PRIORITY: Minimum Priority
SUBJECT: No bulletin, no restriction
Everything is fine. No bulletin and no
restriction. You can leave as soon as you have
clearance.
END OF MESSAGE

Reply

From: Dispatcher

Foul time granted

LOW PRIORITY

Subject:

Priority:

00
fedcast I

$eIda Message

.....

I

There are two ways to fill in the blanks in a message. In all cases, the dispatcher may

elect to manually type in the information required in the blank. What exactly this

information is becomes clear in the context of the message body. Alternatively, the

dispatcher may elect to fill in the blanks by clicking on the appropriate object on the

display screens to his left. Of course, there are situations when one method is appropriate

and the other is not. For example, it makes sense to fill in a blank describing a location

by clicking on a piece of track. Conversely, it is impractical to fill in a blank requiring a

time by clicking on a clock. These kinds of fields are filled in via the keyboard. As per

standard computing conventions, the dispatcher can move from one blank to the next by

pressing the "tab" key. Or, he can click in the field with the mouse cursor. At any point

during the form completion, the dispatcher may chose to cancel by pressing the button of

the same name in the lower right hand corner of the message form.

Once the required information is completed, one of two actions may be taken. The

dispatcher may simply click the send button and the message will be sent to the recipient

specified in the form. The form will then disappear, and the main console will again

come into focus. Alternatively, the message may be broadcast. In this case, the message

will still be sent to the specified recipient. However, an additional window will pop up

allowing the dispatcher to select secondary groups of recipients to broadcast the message

to (figure 5.5). Examples of such groups are "All trains on a specific branch" or "All

workers." This functionality recreates the primary benefit of radio communications that

is lacking in digital point-to-point communication, namely, the ability to overhear

conversations and extract secondary meaning from them.

39

Minimum Priority, From: Train #500
All Minimum Priority, From: Train #500 lNo bulletin, no restriction, To: Train # 626

LOW PRIORITY, From: Work Crew - Track Car #2

From:
From:
From:
From:
From:
From:

Train
Train
Train
Train
Train
Train

SUBJECT: Foul time request
We plan to do some work at between interlocking C1
interlocking C2 T22, block 1 , interlocking C2 T21
interlocking C2 T12 . The 'window advisor' shows a
afternoon. Is this possible?
END OF MESSAGE

#626
#500
#661
#500
#661
#500

and C2, track 2, block 3 ,
, interlocking C2 T22, block 2
free spot from I : 17 to I : 50 this

,j To: Train # 46
PRIORITY: Minimum Priority
SUBJECT: No bulletin, no restriction
Everything is fine. No bulletin and no
restriction. You can leave as soon as you have
clearance.
END OF MESSAGE

j
-end a Message

C-
C4

0
03

17on branch A

ion branch

T7 on branch C

on branch D

C>

Minimum
Minimum
Minimum
Minimum
Minimum
Minimum

Priority,
Priority,
Priority,
Priority,
Priority,
Priority,

Repty

It is important to be very clear here about exactly what the broadcast button does. First,

remember that there is only one human experimental subject in this simulation system at

present, and he plays the part of the dispatcher. Thus, broadcasting a message does not

mean there is anyone there to hear it. Secondly, broadcasting a message is not really the

same thing as overhearing messages in radio communications. In digital broadcasting,

the intent lies with the sender. When listening to other people's radio communications,

the intent lies with the listener. It is not possible to simulate or measure the intent to

listen to a broadcasted message without a secondary human participant, but it is possible

to simulate and measure the intent to broadcast a message. Therefore, when the

dispatcher presses the broadcast button and selects a broadcast group, the message is not

actually sent to members of that group. Only the intent to broadcast to that group is

noted, and recorded in a file. Future extensions might alter this, if more than one human

subject is involved in a single simulation.

5.3 Experimenter Station: Display Terminal(s)

The purpose of the experimenter station as a whole is primarily to monitor what is

happening in the simulation, including the messages the dispatcher is sending and

receiving. For the purpose of monitoring the activities of the trains, switches, etc. the

experimenter display terminals can view an arbitrary portion of the track network. Most

likely, this region will be the same region controlled by the dispatcher, as seen in figure

5.6. With this setup, the experimenter will see exactly what the dispatcher sees. The

primary difference is that the experimenter does not have available to him the same set of

operations that the dispatcher does. In general he can see but not influence the simulation

in the way the dispatcher can. He does possess some ability to affect the course of

events, but in the case of such intervention, every attempt is made to portray the results as

a natural occurrence as far as the dispatcher is concerned.

Although the experimenter can select objects on his display screen in the same way that

the dispatcher can, in practice he only uses that ability to select trains. This is because

the only operation currently available to the experimenter is the ability to halt and restart

41

trains. This ability is provided to create unexpected deviations from normal train

behavior, such as engine failure. Unlike pre-programmed events that are based on time,

or triggered events based on position, a train failure will be interesting only as the result

of the situation it breaks down in. For example, a train that breaks down and blocks

several tracks may prevent other trains from moving, but it is not known ahead of time

when exactly this situation will arise. This operation, used in conjunction with the

appropriate messages, will simulate to the dispatcher a realistic train failure. Other such

situational operations could be devised and added to the button bar available to the

experimenter.

42

Fig. 5.6 Experimenter Display Terminal

43

5.4 Experimenter Station: Message Console

The experimenter's message console, shown in figure 5.7, retains the send and reply

functionality of the dispatcher console, but these are not really its primary uses. The

experimenter's console is used primarily to monitor the message flow throughout the

simulator, in a manner that is transparent to the dispatcher. This supports the focus of the

project, which is to test the use of a new digital messaging system.

44

Fig. 5.7 Experimenter Message Console

45

5.4.1 Visual Layout

The layout of this message console is very similar to the dispatcher version. The main

difference is seen at the bottom of the screen where, in addition to the send and reply

buttons, there are two others: modify and forward. The use of these buttons is described

shortly. Also, there are slight differences in the way message summaries are displayed,
which will be discussed.

5.4.2 Incoming Areas

While similar in appearance, the incoming message area serves a somewhat different

purpose here. The "incoming" message area is used to display messages that have been

sent from one object in the simulation to another and are in the process of passing

through the experimenter's station for observation. The one-line summaries are similar

in structure but the status marker has only two states instead of three. The messages are

either unconfirmed, or confirmed. When the message initially arrives, it is tagged with

an unconfirmed marker, which presently is simply the string "<UNCONFIRMED>".

When the experimenter clicks on the summary, the entire message text will appear in the

lower incoming area. The experimenter can then reply, forward, or modify and forward

the message, at which point it becomes confirmed. This is indicated by removing the

unconfirmed marker from the message summary. In the incoming message display area,

the currently selected message is displayed in the same way as in the dispatcher's

message console.

5.4.3 Outgoing Areas

The outgoing area is used to display messages created using the send or reply button. It

is not used to display messages that have been forwarded. The rationale is that these

messages can already be seen in the incoming area, so even though they are outgoing in a

sense, there is no reason to display them again on the right side. The messages that do

appear in the outgoing area behave in the standard manner: summaries are displayed on

top, and clicking on a summary displays it below.

46

5.4.4 Console Operations

The console operations available to the experimenter provide a great deal of flexibility in

how the experimenter can observe and influence the experiment. Depending on how they

are used, his role can range from being a pure observer to being an active participant,

playing the roles of work crews or train engineers. The simulator is designed to make it

impossible for the dispatcher to distinguish what is pure simulation and what is being

"acted" by the experimenter. This allows more complex interactions than would be

possible by using only computer simulated elements. This ability to influence the

simulation is used in specific cases in the current project, but can be used to a greater

extent if desired. It is accessed through the use of the four buttons at the bottom of the

experimenter console.

The send button is used to send a new message. The difference between this one, and the

send button that the dispatcher uses is that here both the sender and the recipient must be

specified (and the sender is not the experimenter). In realit , the experimenter is sending

the message. However, the effect is that the recipient thinks that some other object

within the simulation sent the message. In some cases, that perceived sender object may

exist and be simulated, but lack the ability to decide what messages to send. In other

cases, that object may not exist at all. Therefore, its only effect on the simulation is the

messages that the experimenter sends on its behalf. One example of this type of

nonexistent object is the Engine Repair Crew. There is no program that simulates this.

However, by sending messages on its behalf, the experimenter can create the illusion that

it exists, and observe the response of the dispatcher. The overall philosophy is that if the

dispatcher believes an object exists, it is not necessary that the object actually exist. The

perception is sufficient to elicit a response, which can be studied.

It is important to note here that the hierarchical tree used to select a message for the send

operation (and the reply operation below) is not the same tree as that seen by the

dispatcher. The experimenter has access to all messages, not just the ones used by the

dispatcher. In fact, the root level in the experimenter's tree contains a button that leads to

47

a subtree that is the dispatcher's tree (figure 5.8). Other root level buttons result in trees

which can be used to send train engineer messages, work crew messages, etc. This

supports the design that the experimenter can potentially pretend to be any part of the

simulation.

48

OTI

00

CDC',

0D
CD

The reply button provides another way to play the part of some object. When a message

is replied to, it is not forwarded to its destination. Normally, the message would reach

the destination, and the simulated object would make some decision, perhaps sending a

reply. When the experimenter replies directly, he is essentially making that decision. As

one can imagine, there are situations when the decision making process would be too

sophisticated for the computer to do it properly. In these situations, the experimenter

takes over. He selects a message from the incoming message summaries, clicks the reply

button, and selects the message via the message tree, as usual. When the message form

appears, the sender and recipient are already filled in, based on the fields of the message

to which the reply is being issued. The "to" and "from" fields are simply reversed. The

experimenter than fills in the remaining blanks, if any, and sends the message.

The remaining two buttons have very different uses than the send and reply buttons. The

first of these is the forward button. This does not result in a selection tree or message

form. Instead, the incoming message that is currently selected will be sent to its final

destination. It will remain in the incoming summaries section, but the unconfirmed

marker placed before the summary will disappear. Any message that is not forwarded (or

forwarded modified as described below) will not reach it's final destination. So the

forward button serves two purposes. One, it sends the message to the correct object in

the simulator. Two, it forces the experimenter to quickly review each message and gives

him an idea of what is happening.

Closely related to the forward button is the modify button. This is an interesting feature

that may not be used very often in a typical simulation. It allows the experimenter to

change a message after it has been sent by its source, but before it is received at its

destination. It is strongly recommended that this not be done to messages sent by the

dispatcher because it is likely to ruin his sense of cause and effect as far as messaging is

concerned. However, in other circumstances, it is conceivable that the pre-programmed

behavior of simulated elements may not be satisfactory. They may send the right type of

message, but fill in the fields incorrectly because they cannot react to special situations.

At times like these, the experimenter has the option of modifying any or all of the fields

50

in the message. This is accomplished by a message form that appears immediately after

the modify button is pressed. Note that there is no selection tree preceding the form. The

structure of the form is instead determined by the message that has been selected for

modification. After any fields have been changed (or even if no change was made) the

experimenter clicks the send button on the message form and the message is sent to its

destination. Although very rare, the destination itself can be modified.

51

6 Experimental Design

6.1 Experimental Setup

For this experiment the simulator was configured to run on five PC's with the following

specifications:

CPU 350/400 MHz Intel
Memory 128 MB RAM
Storage ~5 GB Hard Drive
Video 4 MB SVGA Graphics Card (1280x1024 at

65 Hz)
Screen 17 Inch Monitor
Peripherals Microsoft Intellimouse,

Standard 101 Keyboard
Removable Storage 3.5 Floppy Disk Drive
CD 32X CDROM Drive
Network 3C905 or 3C509 series network adapters
Other XGA Realtime Adapter (SVGA to NTSC

signal converter) on two machines

Table 6.1 Hardware Specifications

The most important specifications here are the CPU speed, monitor size, and graphics

card resolution. The CDROM is not essential, a smaller hard drive will suffice, ahd 64

MB RAM will not alter performance. Three of the computers, comprising the

dispatchers simulated workstation, were placed in one room. Two of these possessed the

SVGA-NTSC adapters; these two were used for the track display, while the third

presented the data-link interface screen. The other two computers were placed in another

room separated by a door, and provided the experimenter interface.

A clock was placed on the wall facing the dispatcher; this was reset at the beginning of

each experiment to reflect the starting time of the scenario. Behind and to the right of the

dispatcher a videocamera was positioned to enable a variety of tasks. In the

52

experimenters room two videocassette recorders were used in combination with the XGA

adpater and the videocamera to record the experiment. In the two data-link scenarios

(see below) the recorders' video inputs were connected to the two computers equipped

with the SVGA-NTSC converters. In the radio scenario, one recorder's video input was

connected to the videocamera output. A third monitor was always available to observe

any of the three video feeds, but not to record. In all cases, the audio inputs of one

recorder was connected to the audio output of the videocamera, while the audio output of

the other recorder was connected to a microphone placed near the experimenter's

computers.

Because the dispatcher was required to use three mice and one keyboard, extra desk

space was provided for writing notes, viewing schedules, filling in D-Forms, and other

non-computerized tasks.

6.2 Scenarios

A scenario is the group of files that define a particular simulation. These are data files

that are read from disk by the simulator at the beginning of a run, and are used to define

the characteristics of the simulator. The aspects of the simulation that can be defined in

this way are the number of trains, train behavior, track layout, pre-programmed events,

visual layout, station configuration and naming, interlocking configuration and naming,

signal placement, initial signal states, initial track states, and initial train states. The

means of altering these characteristics are described in the appendix on the simulator

architecture.

Two scenarios were designed for this experiment, both equally difficult in terms of the

dispatcher workload required in each case. They were designed to force the application

of the data-link features of section 4.2.2 to the dispatching tasks of section 4.2.1. The

scenarios were designed to be handled by radio communications as well. Under nominal

operation, the sequence of events in each scenario is summarized in figures 6.1 and 6.2.

In these tables, the first four columns indicate hazardous conditions. The numbers in the

53

columns indicate which trains, under nominal conditions, will pass these hazardous

locations. Shading indicates that the hazard is present, and white that it is gone. The fifth

column indicates the bridge operation schedule. The sixth column indicates the data-link

messages that will result from the hazards and events in columns 1-5, again under

nominal conditions. The last three columns summarize the work events planned in this

scenario, and the total number of messages triggered by them. The time for each event is

read off the left-hand side of the chart.

54

2
300

331

102

Figure 6.1 Scenario 1 Script

55

sw #1

RC #1

RC #2

SW #3

2911 391

242

1
1

364

482

Fig. 6.2 Scenario 2 Script

56

9,10,

RC #2

6.3 Subject-Scenario Matrix

The experiment was organized as a set of 12 simulations (one hour each) using 6

dispatchers from CETC as participants. Each dispatcher visited the Volpe Center and

participated in two one-hour simulations on the same day. The simulations were

categorized as radio, data-link directed, and data-link broadcast. Each dispatcher

participated in two different categories. The radio category involved running a scenario

where the radio was used as the communications medium. Data-link directed used the

system configured in point-to-point mode, while data-link broadcast configured it in a

multicast mode. While the simulator validation can be accomplished with any

combination of a radio and a data-link scenario, the full test set is included here for

completeness. The setup is summarized in table 6.2.

Data-link Directed Data-link Broadcast Radio
Dispatcher 1 Scenario 1 Scenario 2
Dispatcher 2 Scenario 1 Scenario 2
Dispatcher 3 Scenario 1 Scenario 2
Dispatcher 4 Scenario 2 Scenario 1
Dispatcher 5 Scenario 2 Scenario 1
Dispatcher6 I Scenario 2 Scenario 1

Table 6.2 Subject Scenario Matrix

6.4 Experimental Procedures

Two experiments were conducted per day, and apart from the configuration of the

simulator, the procedures followed were the same each day. At the beginning of the day,

the dispatcher was given an overview of the project and it's goals, of course without

disclosing information that could bias the experimental results. They were asked to

complete two forms. One provided the information required to compensate them for their

time. The other was a statement describing their rights as experimental subjects, which

they read and signed. Any general questions about the project were asked and answered

at this point.

57

After this the simulator was placed in the first of three configurations. This first setup

was the training configuration. It was a simple scenario with a reduced number of trains

and messages, although the track layout was identical to the full-scale scenarios in figure

6.1 and 6.2. The training scenario was used to introduce the dispatcher to the various

interface elements of the simulator. After describing these, he was asked to begin routing

the trains based on the training schedule. In this first pass, he was not required to handle

the data-link messages, which were answered for him. He was allowed to become

accustomed to the aspects of the simulator that had corresponding features at CETC.

Any questions were answered in the process of routing. Also, key differences between

the track display in the simulator and that at CETC were explained. Usually after about

half an hour of this, the dispatchers felt comfortable with the non-data-link part of the

simulator.

In the next phase, the dispatcher was given an overview of the data-link system. Then the

dispatcher was asked to repeat the training scenario, but this time he was required to route

the trains and answer the messages. Again, questions that were raised during this phase

were answered to the dispatcher's satisfaction. Usually the second phase lasted half and

hour as well.

After the training phases were completed, the simulator was reconfigured to run one of

the full scenarios. The dispatcher was then provided with the train schedules for the

scenario, and allowed to study it for some time. Following this, he performed routing

operations in the full scenario, but was not shown the messages. The routing practice

was felt necessary to the experiment. If the routing had been completely new to the

dispatcher during the experiment, he may have concentrated entirely on working out the

optimal paths, rather than viewing and answering the data-link messages. The intention

was to maintain a relatively complex train management burden, but to allow the

dispatcher to form the equivalent of "routing habits" which require advance knowledge of

nominal routes.

58

Usually within thirty minutes to an hour, the dispatcher would say that he was ready to

begin the full scenario. At this point the simulation was restarted and all recording

equipment turned on. The clocks were reset to the appropriate time, and we, the

experimenters, retired to the second room where the monitoring equipment was located.

Here the progression of the simulation was monitored, the message flow checked, and

events compared to the scenario's nominal event sequence. All three computer monitors

in front of the dispatcher could be seen through either the videocamera, or SVGA-NTSC

converters. All activities undertaken by the dispatcher could also be seen via the

experimenter screens, which displayed an exact copy of the entire track display.

Halfway through the one hour experiment, the simulator was halted and the dispatcher

was given a situation awareness test. After completing this (usually about five minutes)

the simulator was restarted and the remaining half hour was completed. The same

procedures were followed for the second scenario. After both scenarios were completed,

an exit questionaire was presented to the dispatcher, and he was given the opportunity to

make general comments and suggestions about the system. Usually, an informal

discussion ensued, which was often interesting but not strictly part of the experimental

procedures.

In the scenarios involving radio communications, we played a special set of roles. There

was no data-link system available in these cases; the dispatcher's third monitor was shut

off. All information sent and received by the dispatcher was via walkie talkie receivers.

Thus, we were required to play the role of all elements of the simulation that previously

had communicated via data-link. This included train engineers, maintenance of way

personnel, operators of track-side machinery, and any other parties creating radio

"chatter" due to the inherent broadcast nature of the radio.

Interestingly, the data-link system, although unavailable to the dispatcher, still played a

vital role in the radio scenarios. Maintaining multiple radio personalities was a difficult

task, and the data-link system acted as a teleprompt to let us know when to speak, and

what information to relay. Essentially, the messages that would otherwise have been sent

59

to the dispatchers message console were intercepted by the experimenter message

console and used as cues. We spoke the lines as they were displayed. Conversely, when

the dispatcher responded over the radio, we translated the verbal communication into a

data-link message so that the simulator could respond to the information. The overall

process was quite complex, and it required two people to handle uninterrupted

communication.

6.5 Metrics

Recalling the objectives of this project, the goal is to investigate the usefulness of the

simulator. Carrying out the experiment described in previous sections is therefore a type

of validation. If the simulator can provide non-obvious information about the data-link

systems, and if this information can be used to draw conclusions about those systems,

then it will have proven to be a useful tool. Therefore, in choosing which metrics to

study, an emphasis is placed on extracting information about the data-link systems and

dispatcher usage habits that could not be obtained without the simulator.

6.5.1 Raw Data

Raw data refers to the data collected during the simulation, either in the form of

videotaped actions, or data recorded by the simulator on the computers. In the latter case,

each piece of data is a single event occurring at a specific point in time. Individually,

these do not provide very valuable information, because there is no context in which to

frame the event. When coupled with the continuous videotaped simulation, they become

more valuable. Even more information is gained by considering subsets of these events

that are related to each other through cause-effect relationships. The question to be

answered is to what extent such information can be reliably extracted from the raw data.

The types of events captured in the raw data file are summarized in table 6.3.

60

Event Type Information Recorded
Train Move Movement of a train from one block to another
Interlock Entry Entry of a train into an interlocking, and delay based on nominal

schedule
Interlock Exit Exit of train from an interlocking
Station Entry Entry of a train into a station
Station Exit Exit of train from a station, and delay based on nominal schedule
Route Set Setting a route to allow travel, and signals used to set the route
Route Reset Resetting route to default state, and signal used to reset route
Block Track Protection setup for a track location
Unblock Track Protection removed from a track location
Message Send Completed data-link message sent
Message Read Message viewed by recipient
Message Reply Reply to a message initiated
Message Initiated New message initiated
Message Canceled Previously initiated message canceled before being sent

Table 6.3 Raw Data Outputs

The videotapes made for each simulation run are also considered raw data. In the data-

link cases, they act more as a contextual framework in which to frame the recorded

events. Also, if there is ambiguity in a recorded action, the videotape may serve to

confirm or refute the initial perception. In the radio case, the videotape is a more

important source of raw data. While certain actions are still captured more effectively

using the simulator, the radio communications can only be recorded on videcassette.

6.5.2 Quantitative Information

By analyzing the data, meaningful information can be extracted. This is the key to

validating the simulator, determining what kind of information can be successfully

measured. We propose the following quantitative measurements, summarized in table

6.4, then described in further detail.

61

Data-link Radio
Average Deviation from Nominal Schedule Average Deviation from Nominal Schedule
Hazard Notification Ratio Hazard Notification Ratio
Average Time to Acknowledge Message Average Time to Initiate Response
Average Time to Initiate Response
Average Message Creation Time Average Communications Duration
Total Duration of Messaging Activities Total Duration of Radio Communications

Table 6.4 Proposed Quantitative Measurements

These metrics were deemed to be useful in studying the tradeoffs between the data-link

and radio communications mediums. A discussion of why these were chosen is presented

in the complementary report by Malsch. The aim here is to determine whether the

simulator can provide the necessary information. The schedule deviation and hazard

notification measurements seem to be relatively easy to capture. The others however are

rather more complicated because they involve assumptions about what a dispatcher's

action says about his state of mind. These assumptions are clearly noted below. Also

note that the table above is organized such that measurements listed on the same line are

considered to be comparable. In some cases, the same measurement is possible in both

radio and data-link cases. In other cases, there is no equivalent, due to the fact that a

conversational medium is being compared to a non-conversational one. In these cases

every effort is made to compare similar information.

Average deviation from nominal schedule is essentially a way to measure how efficiently

trains are being routed. For each scenario, schedules were created specifying the nominal

time at which each train was expected to arrive at each interlocking. These schedules

were tested by us to ensure that the nominal values were attainable. The simulator

measures how far ahead or behind these nominal values each train is running.

Hazard notification ratios are used to indicate the level of safety being maintained by the

dispatcher. Each scenario was programmed to create a set of hazardous conditions.

During the simulation, the dispatcher was notified of these conditions by a passing train.

He was required to forward this hazardous information to other passing trains. Failure to

62

do so was considered a breach of safety. This is captured quantitatively as a ratio

between the number of correct notifications issued and the number of notifications

required given the available information. This is admittedly a simplistic way to measure

safety. However, work involving conflict probes and monitors is currently being carried

out as an extension to this simulator, and this will allow more realistic assessments of

safety.

The average time to acknowledge a message is a metric specific to the data-link scenario.

It is assumed that acknowledgement occurs at the time the message is first viewed.

Therefore the quantity that needs to be measured is the time between receipt of a message

and the first viewing of that message. There is no exact equivalent in the radio case

because acknowledging a message and initiating the response are the same thing.

The average time to initiate a response is measured in both radio and data-link cases. In

the data-link case, it is taken to be the time between acknowledgement of the message

and the initiation of the response. In the radio case it is the time between when the initial

message is completed and the response is begun.

The average message creation time is measured between initiating a data-link message

(be it a response to another message or a new message) and sending that message. The

radio counterpart to this metric is the average communications duration. This is taken to

be the time between initiating a sequence of radio communications on a specific topic and

completing the last exchange on that same topic. Timespans during which one party in

the sequence has been told to "standby" do not count toward these measurements.

Issuance of standby commands are standard procedure in radio communication. There is

a certain amount of difficulty in comparing message creation time with communications

duration. Creating a message is a one-time action; a radio sequence is several actions. It

is not entirely clear that these are comparable values. However, an assumption was made

that if the two communications sequences convey the same information, then the time to

execute those sequences are comparable. This was assumed to hold whether the

sequence was one-step as in data-link, or a back and forth discussion as in radio.

63

The total duration of messaging activities is the total time spent using the data-link

features, regardless of what is being done. It is intended to measure how much time is

taken away from all other activities that the dispatcher is undertaking. Its counterpart in

the radio case is the total time of radio communications, i.e. any time at which any audio

communication is taking place between the dispatcher and another party. This is an

interesting metric because in the data-link case the total duration of messaging will

necessarily be far less than one hour in a one hour simulation. The dispatcher cannot use

the data-link features, as they now stand, without interrupting other activities. In

contrast, the total time of radio communication could conceivably be one hour in a one

hour simulation, although in practice it is not.

6.5.3 Qualitative Information

In addition to numerical measurements, an important source of information will be

unstructured observation on our part, and unstructured comments on the part of the

participant. It is hard to say what qualitative observations will be obtained. It is perhaps

better to simply keep an open mind and present a discussion in the results section.

64

7 Results and Discussion

The results for one dispatcher are now analyzed. Information was extracted from the raw

data outputs. In most cases the metrics outlined in section 6.5.2 were successfully

obtained. The measurements from both a radio and data-link scenario are presented,

except for train delays which are measured identically in both cases. In the cases where

there was ambiguity or difficulty in interpreting the raw data, the causes and potential

solutions are outlined with an eye toward improving the simulator. In the complementary

report by Malsch, these results, and those for the other participants, are used to study the

data-link system as it compares with radio communications.

7.1 Hazard Notification Ratio

The hazard notification ratio is a simple measure of how well the dispatcher was

maintaining safety by acting as a relay point for information to and from trains. The

scenarios were designed to create potentially hazardous situations on the various

branches. Trains passing through these zones reported the situation to the dispatcher, and

his job was to relay the information to other trains that might traverse the same route.

Some of those trains may have detected the hazardous situation had disappeared, and they

relayed this to the dispatcher. His job was to again relay this new information to trains

that had previously been told to watch for hazards.

Tables 7.1 (a-h) below outline three types of information from which the hazard ratio is

calculated. All information within the same column is organized chronologically. The

first column in each table is the nominal sequence. This represents the set of messages

that would have been passed back and forth between trains and the dispatcher if all the

trains had been dispatched perfectly. It is based on known train speed profiles, hazard

timing and nominal routes. In most cases the actual routing deviates from the nominal,

due mainly to unfamiliarity with the schedule, despite the training period.

65

The second column displays the sequence of communications that should occur given the

way that the simulation has evolved. It takes into account delays and mistakes in routing.

This column is determined using the knowledge of hazard timing, and the actual

movement of the trains, which is recorded and discussed in section 7.5.

The third column is the actual communications sequence that took place. This

information was either captured from the videotape of the radio communications, or from

the recordings created by the simulator. The hazard ratio is based on a comparison of

column two and three. This means that the effect of incorrect routing is removed from

the calculation. The intention is isolate the communications sequences, and remove the

influence of inexperience with the schedules. This inexperience was a necessary

limitation, since our participants, who normally took several days to become accustomed

to a schedule, were only allowed a few hours due to time constraints.

In the following tables these symbols are used; in each, nnn is replaced by a train number.

D-+# nnn E) Dispatcher tells train that hazard is present

D-+# nnn 0 Dispatcher tells train that hazard is no longer present

D<-# nnn S : Train tells dispatcher that hazard is present

D+-# nnn 0 : Train tells dispatcher that hazard is no longer present

Hazard Type: Trespasser on Track
Location: Branch A
Communications Medium: Radio
Nominal Sequence Correct Sequence Dispatched Sequence
D+-#120 G D+-#120 E D+-#120
D->#191e D-+#191 @ D-4#191D
D->#122e D--#122 8
D->#193 S D->#193 E)
D<-#122 0
D-+#193 0

Table 7.la

66

Hazard Type: Trespasser on Track
Location: Branch B
Communications Medium: Radio
Nominal Sequence Correct Sequence Dispatched Sequence
D+-#244 S D-#242 G D+-#242 D
D->#293 G D-+#291 G D->#291 E

D-+#244 G D-+#293 @
__D-+#293 E D-+#244 E

Table 7.1b

Hazard Type: Kids Stoning Train
Location: Branch C
Communications Medium: Radio
Nominal Sequence Correct Sequence Dispatched Sequence
D--#360 E D+-#360 @ D+-#360 B
D-+#362 G D-+#362 G D-+#393 E
D-+#393 @ D-+#393 E D+-#362 G
D-+#364 E D-+#364 S
D+-#364 0 D+-#362 0

D-+#364 0
D->#393 0

Table 7.1c

Hazard Type: Kids Stoning Train
Location: Branch D
Communications Medium: Radio
Nominal Sequence Correct Sequence Dispatched Sequence
D+-#491 @ D+-#491 D+4-#491 E
D-+#480 S D-#480 E D-+#480 E
D-+#493 E D-+#493 G D+-#480 0
D-+#482 S D-+#482@
D+-#480 0 D+-#480 0
D-+#493 0 D-#493 0
D-#482 0 D-+#482 0

Table 7.1d

67

Hazard Type: Trespasser
Location: Branch A
Communications Medium: Data-link
Nominal Sequence Correct Sequence Dispatched Sequence
D+-#100 S D+-#100 D-#100 S
D-+#113 E D-4#113 E D->#113 E
D-# 102 @ D-+#102 E D-+#115 S
D-+#115 S D-*#115 E D+-#104 E
D-*#117 @ D-*#117 D D->#117
D+-#102 0 D+-#102 0
D->#115 0 D-+#115 0
D-+#117 0 D-+#117 0
D-+#104 0 D-+#104 0
D+-#115 E D-+#113 0
D-*#117 D+-#104 S
D-*#104 G D-+#117 G

Table 7.1e

Hazard Type: Trespasser
Location: Branch B
Communications Medium: Data-link
Nominal Sequence Correct Sequence Dispatched Sequence
D+-#223 B D+-#223 D D+-#223 E
D->#200 D D-+#200 D D->#200 E
D-+#225 E D-+#225 E D+-#200 0
D<-#200 0 D<-#200 0
D-+#225 0 D-+#225 0

Table 7.1f

Hazard Type: Kids Stoning Train
Location: Branch C
Communications Medium: Data-link
Nominal Sequence Correct Sequence Dispatched Sequence
D+-#302 E D+-#302 E D+-#302 D
D-+#333 @ D-+#333 B D-+#333 E

Table 7.lg

68

Hazard Type: Kids Stoning Trains

Nominal Sequence Correct Sequence Dispatched Sequence
D<-#443 @ D<-#443 e D<-#443 8
D--#400 0 D-+#400 @ D-+#400 G
D<-#400 0 D<-#400 0

Table 7.1h

Now the hazard notification ratio can be calculated by taking the number of notifications

that were sent by the dispatcher (third column) and dividing by the number that should

have been sent (second column). Sent notifications are indicated by entries starting with

D-+. The ratios are summarized in the table below.

Radio Data-link
Trespasser, Branch A 0.33 0.33
Trespasser, Branch B 1.0 0.33
Stoning Train, Branch C 0.2 1.0
Stoning Train, Branch D 0.2 1.0

Table 7.2 Hazard Notification Ratios

Table 7.2 demonstrates that the simulator was able to capture the information required to

make a side by side comparison of basic safety levels. The main difficulty, which was

partly anticipated, was creating the second column. This required knowledge of train

delays, because this information has a direct effect on frequency and timing of reported

hazards. The simulator captured this information by tracking the movement of the train

from block to block, through interlockings, and during station stops. It appears that this

level of detail is sufficient to construct the tables.

7.2 Average Time to Response

This value is indicative of how busy the dispatcher is, and how quickly he can respond to

an incoming message. Early on in the project the problem of comparing the

69

Location: Branch C
Communications Medium: Data-link

conversational radio responses to the non-conversational data-link responses was

recognized. It was hypothesized that the radio response time could be compared to the

sum of the acknowledgement and response time in the data-link case. Table 7.3 below

summarizes these values. They give overall times, and times grouped by task type. The

task types are work-related, TSRB (Temporary Speed Restriction Bulletin, which is a

train related task), and other (bridge operations in these scenarios)

Overall Work TSRB* Other
Radio 18 21 17 9
Data-link Acknowledgment 49 58 34 46
Data-link Response 21 32 4 12
Data-link Total 70 90 38 58
* Only one response time (62 s) exceeded 10 s in the radio case

Table 7.3 Communication Response Times

The timing values above are all given in seconds. In the radio case, these values were

obtained by simply listening to the videotaped run. The simulator provided the data for

the data-link case, in the form of four types of recc ds. The first one recorded when a

message was received by the dispatcher. The second one recorded when the dispatcher

first viewed the message. The third one recorded when the dispatcher began answering

the message. And the fourth one recorded when the dispatcher completed the response.

An assumption, which can be reasonably supported, was made in interpreting the data. It

was assumed that by viewing the message, the dispatcher was indicating that he read the

message as well. There was a slight chance that dispatchers would press the keyboard

buttons and scroll back and forth through the messages frivolously. The simulator had no

way to distinguish between this and a genuine message viewing. For two reasons, it was

clear that this happened very infrequently. One, we did not observe this kind of behavior

during the experiments. Two, after completing the experiments the record files did not

display evidence of this in the form of a rapid succession of "view message" records.

It is reasonable, when comparing task types, to say that higher average response time

indicates lower cognitive priority. The simulator can therefore be used to rank cognitive

70

priorities. For instance, in both the data-link and radio case, track work related

communication seems to be given lower cognitive priority then train related

communication. This conclusion drawn from the data was confirmed by discussions with

dispatchers who all stated that they would always deal with train related communication

before track related communication except in exceptional situations.

The times can also be used to compare data-link with radio communications, which was

one of the key requirements to validate the simulator. The data indicates that in the data-

link case, the dispatcher waits substantially longer in all cases before responding to a

message.

7.3 Average Response Duration

In the radio scenarios, the average response duration was measured by simple observation

of the videotaped experiment. The simulator provided the data necessary to calculate the

average response duration in the data-link cases. Once again the values being measured

in the two cases were slightly different. In the radio case, average response duration

included the entire back and forth sequence of communications, confirmation, etc. In the

data-link case, the response duration was actually the time taken to complete the message

form for each response. It was assumed that the two values could be compared if the

information exchanged in each case was the same. From observation of the videotape

and the records file this was found to be true in almost all cases. The only exceptions

were instances when the dispatcher placed a calling party on standby in the radio case,

and completed the communication later. If it was clear that the intervening timespan was

not used to address issues related to the original communication, it was discounted from

the response duration. The response duration values are summarized in table 7.4; all

times are in seconds.

Overall Work TSRB* Other
Radio 63 102 10 12
Data-link 30 45 9 22

Table 7.4 Average Response Durations

71

These results demonstrate the simulator's ability to provide information about the

communications workload. By measuring the time spent on various tasks, the simulator

can help make decisions about what information should be transmitted via data-link

instead of radio. For example, if results indicate that the communications time devoted to

managing work permissions is cut in half by using data-link, then there is an argument for

doing that. In fact, this kind of time savings is apparent in Malsch's comparison of data-

link vs. radio. Furthermore, dispatchers have stated that work permission management

would be a good candidate for data-link communication. This illustrates how

information gained by simulation can be confirmed by follow-up discussions with

participants.

7.4 Total Communications Workload

This metric was simply a means to compare how much time the dispatcher spent

communicating over the radio and over the data-link messaging system. This

information is useful because if the same amount of information can be conveyed in less

time, all aspects of dispatching would benefit. Bandwidth would be used more

effectively, and dispatchers would have more time to think about their course of action.

Note that this measure does not include time that is potentially spent thinking about what

information to communicate. It is solely a measure of the time required to communicate

it. Again the radio information was gathered via direct observation. The simulator

provided the raw data from which the data-link information was extracted. Table 7.5

summarizes overall communications workload, and workload by category of

communication.

Radio Data-link
Hazard Notification 185 176
Work Permission Management 1117 407
Temporary Speed Restrictions 70 51
Other 48 44
Total 1420 678

Table 7.5 Total Communications Duration

72

Here again, because two different media of communication are being compared, an

assumption was made. It is assumed that the time between initiating a data-link reply and

completing that reply is spent constructing the reply. This is in fact known to be false

because dispatchers were observed several times completing some other small tasks

within this timespan. In essence, the dispatcher was putting the reply form on "standby",

similar to the way a standby command was issued over radio communications. In both

cases, the dispatcher attended to more pressing matters. It is easy to measure the standby

times in the radio case because the command was issued explicitly. It is not possible to

accurately measure the corresponding value in the data-link case because it requires

knowledge of where the dispatcher's eye is focused, this being indicative of the focus of

cognitive attention. Therefore we must conclude that the times listed for total data-link

communications duration are necessarily high estimates.

7.5 Train Delays

Train delays were recorded by the simulator to provide an idea of how efficiently the

routing tasks were accomplished. This was one of the easiest measurements to take since

a nominal schedule provided a baseline, and delays simply required measurement of the

time at which trains passed each interlocking. There was no difference in the method of

calculating delays between the radio and data-link cases since the trains were simulated

elements. To demonstrate this capability of the simulator, the train delays for a data-link

scenario are shown in the charts below.

In these charts, delays are given in seconds. It is clear that the number of data points is

not consistent from chart to chart. This is because different trains traverse different

numbers of interlockings on their scheduled route. The charts are not meant to be

directly compared to each other, but rather to provide a picture of the progression of each

trains through its nominal route. Each bar represents the train's delay as it passes an

interlocking on its route, with the first one visited placed on the left side of the chart.

Positive delays indicate that the train is behind schedule, negative delays ahead of

73

schedule. These charts can be compared to the train schedules in Appendix B and the

territory map in Appendix C to spatially locate each interlocking.

Train 402

0

-50

-100

-150

-200

Trip Progression

Fig. 7.1b

Train 333

cc

700 -

600 -

500 -

400

300

200

100

0
1 2

Trip Progression

Fig. 7.1c

74

Train 202

(5
(5
0

0

-50

-100

-150

-200

-250

-300

-350

Trip Progression

Fig. 7.ld

Train 113

(5

(5
0
0

400
350
300
250
200
150
100
50
0

-50

Trip Progression

Fig. 7.le

75

Train 300

200

150

m 100

50

0
1 2 3 4

Trip Progr

Fig. 7.1f

Train 102

1000 ------

800

600

% 400

200

0

-200 1 2 3 4

Trip Progr

Fig. 7.lg

5 6 7

ession

ession

76

Train 221

0

-10

-20

-30--

-40

-50

Trip Prog

Fig. 7.lh

Train 443

180 - -
160
140
120 -
100

- 80 -
O60 - -

40
20
0

1 2 3 4

Trip Prog

Fig. 7.li

ression

5 6 7 8

ression

77

Train 111

0

40

20

0

-20

-40

-60

-80

-100

-120

Trip Progression

Fig. 7.1j

Train 100

-

0

600

500

400

300

200

100

0
1 2 3 4 5

Trip Progression

Fig. 7.1k

78

Train 400

-U

O

450 -
400 -
350 -
300 -
250 -
200 -
150 -
100 -

50 j
0-

1 2 3 4 5 6 7

Trip Progression

Fig. 7.11

Train 223

250 -- --..

200

150

100 -

50 -

0
1 2 3 4 5 6 7 8

Trip Progression

Fig. 7.1m

79

Train 441

40

35

20
15

10 -
5-
0

1 2 3 4

Trip Progression

Fig. 7.ln

Train 331

600

500

400

300

200

100

0
1 2 3 4 5 6

Trip Progression

Fig. 7.1o

80

Train 200

(U
I.;

0

150

100

50

0

-50

-100

-150

Trip Progression

Fig. 7 .1p

Train 225

(U

0

350

300

250

200

150

100

50

0

-50

Trip Progression

Fig. 7.1q

81

Train 104

50

0

-50

-100

-150

-200

-250

Trip Progression

Fig. 7.lr

Train 115

600-

580

560

540

520

500 _

480

460

1 2 3

Trip Progression

4 5

Fig. 7.Is

82

...............

Train 302

0
-10

-20 f

>-40 ;

o-50

-70

-80

Trip Progression

Fig. 7.l t

Train 117

800
700 -
600

m 500
% 400

S300A
200
100

0
1 2 3 4

Trip Progression

Fig. 7.lu

The train delay charts, taken as a group, give a rough indication of how well the

dispatcher is routing the trains, or alternatively, how difficult the nominal routing task is.

This can also be viewed on a per branch basis, for instance by looking at all 200-series

trains. Viewed individually, many of the charts display a common characteristic. They

tend to have abrupt jumps in the delay values. These are interesting because they indicate

one of two things. If the jump is positive, it means the train was waiting before the

83

interlocking for a significant time. Usually this indicates that the interlocking was not

cleared for the train to pass. This can be confirmed by referring to the raw data file,

which records when each interlocking was cleared. If the jump is negative, it means the

train made up time after leaving a station.

While the delay charts are useful in tracking routing efficiency in a data-link vs. radio

experiment, they can also be valuable when studying line capacity, which is another

potential use for this simulator. Theoretical models can be tested by scripting a scenario

and studying the delay charts of each train.

7.6 Qualitative Observations

The qualitative information gained by using this simulator was in a way the most useful

because it was not restricted to a pre-determined set of measurements. Some of it

resulted from observations made during the simulation, and some from comments made

by dispatchers before and after the simulation.

Because the participants in this project were dispatchers who currently work at CETC

dispatching center, their reaction to the simulator interface was especially interesting. On

a very promising note, they all took the simulator seriously. There was always a

possibility that they would treat it entirely as a game, because it was not realistic enough

in appearance or in operation. If this had been the case, then it would invalidate most of

the information that the simulator provided, because presumably the dispatchers would

not put the same amount of effort into the simulated tasks as they would on their job.

It is also interesting from a human factors perspective to understand why they did take it

seriously. Each participant was told, at least once, that this was roughly based on the

CETC system, but greatly simplified. However, most of them made comments indicating

that they thought the track display screens were more or less consistent with what they

work with daily. It appears therefore that the visual appearance of the simulator was

more important than its operational realism. If this is true, then future dispatching

84

simulators should place a premium on visual realism, without of course sacrificing

operational realism.

Most of the dispatchers made some comments that were strikingly similar. They all said

that the data-link messaging system would be greatly improved if a set of audio cues

were triggered when messages of different priorities or category arrived at the console.

This perhaps reflects their radio dispatching background. It is a suggestion that should be

incorporated into future versions of the simulator or into other simulators testing data-link

systems.

Most of them also commented on the assignment of priorities to the various messages,

saying that they would have assigned them differently. The simulator architecture was

designed to allow the priorities to be changed very easily, in anticipation of this kind of

comment.

Most dispatchers also commented that the workload was far in excess of what they were

accustomed to in CETC. However, upon questioning them, they said the reason was not

that each individual task took longer than at the CETC, but that there were far too many

tasks to complete. This reaction was anticipated. In fact, the scenarios were designed so

that dispatchers would make some mistakes, thereby providing a means of comparison

between data-link and radio. This topic is discussed in greater detail in the Malsch's

discussion on scenario design.

Some observations were made by us, the experimenters, during the dispatching runs.

Like human-in-the-loop aspect of the simulator, the experimenter-in-the-loop architecture

worked well, and it proved indispensable in the end. Several situations arose that were

unexpected, and which the simulator was not designed to handle. One typical example of

this occurred a few times on the right side of the territory where trains were entering from

the imaginary adjacent territory. Sometimes, the dispatcher would be very busy and

would neglect to route those trains. When one train remained blocked behind an

interlocking and another train entered the simulation on the same track, there was a

85

danger of collision. This resulted both from the dispatcher's heavy workload, and

because he was unable to view a global territory map as he could at the CETC. In these

cases it was our job as experimenters to try and avoid these collisions. If they became

unavoidable, we would create a communications sequence that made sense given the

context. This kind of behavior was not pre-programmed into the simulator and required

an experimenter-in-the-loop architecture. Most importantly, the experimenter-in-the-loop

proved to be a transparent model, which means the dispatcher participant was not aware

which portion of his stimuli was being created by the computer and which portion

originated with us. We were pleased with its performance and would recommend it as a

useful simulation model.

86

8 Conclusion

The focus of this work was to design, implement, and validate a real time railroad

dispatching simulator, as well as the associated simulation model; this task was

successfully accomplished and the resulting simulator provides an environment in which

to test data-link theories.

The simulation model was based on standard human-in-the-loop principles, supplemented

by the addition of a variable level of flexible experimenter interaction. This modified

model, called experimenter-in-the-loop simulation proved to be a valuable way to

simulate a complex, multiple human, multiple machine environment. It allowed human

experimenters to intervene in situations that required a substantial amount of

sophisticated behavior that could not be produced by simulated elements. It also proved

transparent to the experimental participants.

The simulator was validated as an experimental tool by applying it to the study of a

simple data-link system. It provides a level of flexibility that allows it to simulate

situations that would be considered unsafe in the real world, and would therefore be

difficult to study. Experimental participants, experienced dispatchers from Amtrak's

CETC center, reacted favorably to the simulator. Their comments indicated that the

simulator is visually realistic. On the other hand, they indicated that it lacked the same

operational complexity of CETC. The simulator architecture detailed in this report was

designed to be flexible and to allow modifications based on comments such as these.

Future applications of the simulator include further testing of data-link systems, one of

which is currently under development. Additionally, it can be configured to study

theories about line capacity, meet/pass efficiency, and traffic management.

87

Appendix A Simulator Architecture

It is not essential to read this section on the simulator software architecture to use the

simulator either as an experimenter or a dispatcher. It is geared more toward those who

want to understand the existing software at a developer's level, so that they may extend

its capabilities. Therefore, it is assumed that the reader is already familiar with the basic

vocabulary of software development, particularly object-oriented software development.

Because the system is rather large, its architecture is discussed in terms of layers, one

built on top of the other. The method of layers is a very common way to describe

software systems, with the lower layers being the basic building blocks, with a very

general purpose. Upon these are built the higher layers, which are typically more specific

in their purpose. Most of the time, the lowest level layer is the hardware layer, while the

highest level layer is the interface between the user and the software. Most often, the

majority of communications are between a layer and the one directly below it, or with

other layers at the same level, but sometimes communications may span several layers.

The layer distinctions adopted to describe this simulator are as follows. First comes the

hardware layer, which includes the computers, network cards, network, monitors, etc.

Upon this is built the transport layer, which is the means of packaging data and

exchanging it between computers. Next is the virtual machine layer, which is essentially

the Java Virtual Machine (JVM), and some supporting software. Above this are several

layers that are considered to be on the same level; these are the timing, recording, data,

and display layers. On top of these lies the simulation layer and messaging layer; again,

both are considered to be at the same level. Finally, at the highest level is the interface

layer.

88

Fig. A. 1 Layered Architecture of Simulator

The rationale behind using this layering scheme to describe the architecture is that

extensions to the software will most likely only involve the interface and simulation

layer, and perhaps the messaging layer. It is unlikely that any layer below these will need

to be modified in a substantial way, unless dramatically different capabilities are

required. Thus, over half of the code need not be touched, and this makes the job of

extending the simulator much easier.

The rest of this section will describe in detail each of the layers. While the lower layers

are discussed at some length, more emphasis will be placed on the higher layers since

they are specific to this simulator. For the purposes of discussion, some terminology has

to be agreed on. The words used most often that are a frequent source of confusion are

defined as follows:

JVM: an environment in which java code is executed

Local: existing on the same JVM

Remote: existing on a different JVM

Local Access: requiring no communication outside the JVM

89

Remote Access: requiring communication between JVMs

Synchronized Access: essentially, "one at a time" access to a shared resource

Centralized: located in a single location within the simulator

Localized: located at many points throughout the simulator

A. 1 Hardware Layer

This simulator currently runs on a group of Pentium machines. Their clock speeds are

350MHz and 400MHz. There is also a slower machine of the 486DX class running at

66MHz. In all, there are six machines, which happen to correspond directly to the six

parts of the experimenter and dispatcher stations described above. Of course, other types

of machines could be used. The recommended setup (due to performance reasons)

includes four Pentiums with clock speeds of 300MHz or higher, and two Pentiums with

clock speeds of 100MHz or higher. It will become apparent in the sections that follow,

that it is possible to make up for one slower than average machine, with another faster

than average machine, due to the component based design of the higher layers. Also note

that, because the software components are written entirely in Java, it should be possible

to entirely replace the hardware layer with one of equal performance, but base on another

chipset (for instance, using Sun Sparcs instead of PC's). However, this has not been

tested, and there would likely be some minor bugs to work out.

Computer Workstation Computer Workstation

Monitor onitor Keyboard

mouse se

AE a A re

Ethernet Based Local Area Network

90

Fig. A.2 Hardware Configuration

Each computer is connected to a local area network via an ethernet card capable of

1OBaseT data transfer rates. The cards used in the current setup are either 3C905 or

3C509 series cards from 3Com.

Inputs are accomplished via standard mice and keyboards. Each computer is connected

to a 17 inch SVGA monitor. Hard drive space is not really an issue since the simulator

software itself takes only two megabytes of space, while the Java Virtual Machine

occupies another few dozen, depending on the version. Memory capacities on the

machines range from 64MB to 128MB. It would be sufficient to have 64MB on all

machines, and although it has not been tested, the simulator will most probably work fine

with as little as 16MB of RAM per machine.

A.2 Transport Layer

This layer is actually made of three sublayers, called IP (Internet Protocol), TCP

(Transmission Control Protocol), and RMI (Remote Method Invocation). Strictly

speaking, RMI is part of the JVM, but since it conceptually is closer to a transport

mechanism, it is included here instead.

91

To JVM and
Upper Layers

RMI Layer

rCP Layer

AI
IP Layer

To Hardware
A le Laver

Fig. A.3 Transport Layer Detail

IP and TCP are standard protocols in the world of networking, so they will not be

discussed too deeply here. It is sufficient to say that IP is at the lowest level. It is a quick

and unreliable way to send bits of data across the network. It is rare that IP is ever used

directly without building another layer on top of it. One such layer is TCP, which is

somewhat slower, but guarantees delivery of data to some extent. Very many, detailed

discussions of these protocols can be found on various web sites.

Upon these two is built RMI, a transport protocol developed by Sun Microsystems as part

of their Java programming language [3] [11] [12]. RMI is more than simply a transport

protocol; it also allows the remote calling of methods (functions in objects) from one

machine to another. This is a great advantage to a simulator such as this, because it is

essentially a group of interacting components spread across several machines. Without

using RMI, it would be necessary to develop a complex messaging protocol that would

92

remotely invoke the appropriate methods. This is time consuming and potentially error

prone.

On the other hand, RMI is slow. In some cases, it appears to be almost and order of

magnitude slower than TCP/IP. A significant portion of the effort in designing the higher

level layers went into thinking about how the advantages of RMI could be leveraged

while maintaining a minimum level or performance.

In any case, RMI requires a support tool, called the RMI registry. This must be run prior

to running any software that makes use of the RMI protocol. The program itself can be

found in the /jdkl . .x/bin directory (see the directory structure section on where to find

files). There are some issues to keep in mind when using this registry. There must be an

entry in the "autoexec.bat" file which reads "set classpath=c:\<project directory>" where

<project directory> is the root directory for the files associated with the simulator. That

happens to currently be "c:\kawa\projects." Additionally, there is a bug in the registry

which will sometimes cause the error message "Invalid class found in stream" or

something similar. If, while extending the simulator, no bugs can be found in the source

code, it is worthwhile to shut down the registry and restart it; this may solve the problem.

For a further description of RMI, refer to the web site www.javasoft.com.

A.3 Virtual Machine Layer

This simulator requires that the JVM be installed on all the computers. This installation

of compatible versions of the JVM comprises the virtual machine layer. The simulator

was developed using the 1.1.5 - 1.1.7 versions of the JVM. Any of these versions in any

combination can be installed. With few or no modifications, versions 1.2 may also be

used. It was not used for the initial development since it was still in beta release at the

time the project began. In any case, the features specific to version 1.2 are not used.

93

This layer is, in essence, the java programming language API's, so it is necessary to run

the programs. But it also provides a useful decoupling mechanism between the hardware

and the simulator software. The simulator does not directly access any hardware, but

does so indirectly through the JVM. This may not seem helpful at the moment, but it

makes the job of porting the simulator to another platform very easy, if ever this is

required. The necessary changes to the code would be minimal, and there would also be

very few changes to the data files (described in the following sections).

A.4 Timing Layer

This is the first of the layers built from the ground up specifically for this simulator. The

purpose of this layer is to provide a basic timing system with which various components

can synchronize themselves. This ensures that events that are happening at the same time

in reality are actually happening at the same time as far as the simulation goes. It

provides a means for "stopping time", speaking of course of the simulation timeline.

There are two halves to the timing functionality: the central timer, and the synchronized

remote timers.

Timer For
Machine 1

Central Synchronization
Timer For and Command
Entire Calls
Simulator

Timer For
Machine k

Element 1 Machine 1

Element 2 Machine 1

Element n Machine 1

Current and
Elapsed Time
Queries

Element 1 Machine k

Element 2 Machine k

Element m Machine k

Fig. A.4 Timing Mechanism

94

A.4.1 Central Timer

The functionality of the centralized timer is implemented by an instance of the

timeServer class. It maintains an internal reference to the system clock, which tracks

time in terms of the number of milliseconds elapsed since a fixed date (which seems to be

midnight GMT, 12/31/69). The time server maps a time tI in this fixed real time frame

to an arbitrary time t2 in the simulation time frame. This mapping is made at the

beginning of the simulation. During the simulation, the central timer can be halted and

resumed; this can be done repeatedly. The current and elapsed time can also be queried.

The current time is simply the start time (t2) plus the elapsed time. The important thing

to note is that the current and elapsed time are in the simulator's time frame. To illustrate

the distinctions, assume that the simulator is started when the real world time is 4:00 PM,
and the simulation starting time is arbitrarily set to 1:00 PM, denoted as (4:00/1:00).

Now, if the simulator is halted at (5:00/2:00) for 30 minutes, then when it is resumed the

time pair will be (5:30/2:00). This shows how the simulation time frame does not move

forward during a halt.

Because the simulation time frame does not move forward, neither does any object

synchronized with the central clock. In effect, the entire simulation freezes for as long as

is necessary. This ability can be used to conduct situation awareness tests for the

participants in the experiment, provide a break in an exceptionally long test run, etc.

A. 4.2 Synchronized Remote Timers

There is only one central timer, but there is any number of remote "mirror images" of this

timer. There is at least one, and probably several, on each computer. They exist so that

there is no need to continually refer to one timer, a method that could become slow and

relatively inefficient. These remote versions behave in exactly the same way as the

central version. Whenever a command is issued to the central timer (be it start, halt, or

resume), the command is copied to each of the remote timers.

95

There is an issue of time lag in transferring these commands. Although this lag is no

more than about a second, it was eliminated in the following way. When the start, halt,

or resume commands are issued, they are not assumed to take effect immediately. They

are issued with a "standoff' time, which means they will execute after a specified number

of seconds. This means that the command can be issued centrally and relayed remotely,

but no action is taken until the standoff time has passed. Then, all the commands are

executed simultaneously.

A.5 Recording Layer

The recording layer is a means by which the activity of the simulation can be recorded to

disk in real time, then analyzed later. The recording mechanism is arranged in the form

of one global repository for each machine, to which all parts of the simulator can write

records. In the interest of speed, the objects writing these records do not write directly to

the record store, but to a fast temporary buffer. Within a few seconds, the recorder will

clear the buffer and write these to a file. At the end of a simulation, there is one file on

each machine with the ".rec" extension, and a name specified at the beginning of the

simulation. It holds the raw recordings of the simulation. These are not readable by

humans, but can be converted into structured text files using a secondary utility

implemented by the recordTools class. Before discussing the file structures, a description

of how records are created is helpful.

When an event occurs in the simulation that needs to be recorded, a few lines of code are

executed to create the record. An object of one of the subclasses of the record class is

instantiated, and any data required to define the record is passed to the constructor. The

only piece of data that is required by all records is the timestamp, which is obtained from

one of the remote timer objects described above. Other data varies from record to record.

The record object is then sent to the recorder. When it decides to write the record to file

(which is very soon after it is given the record) it will use the serialization mechanism of

Java to write the record to disk as an object.

96

Record Buffer, Holds
Record Temporarily

Simulation Disk File, Recor
ress, _Buffertumps

reates w er Contents Here
jgecord Fixed Intervals

Fig. A.5 Recording Mechanism

This object will appear in the file as text interspersed with other symbols specific to

Java's serialization protocol. In general, the file will not be readable. However, a

secondary file can be created by using the recordTools class. It will take the original

record file and reread the record objects stored there into memory. Then, it will ask the

records to render themselves into a human readable format (every subclass of record must

implement functionality to accomplish this; it is the only requirement of subclassing the

record class). Then, the human readable text is written back into a file with the same

name as the original record file, but this time with a ".txt" extension.

The structure of this file is linear, and ordered chronologically. Each entry contains a

timestamp, the type of record, and a textual or numeric description of any data contained

in the record. The format is easy to review, but the files can potentially become very

long. For simulations longer than about one hour, it may be necessary to process the

record files even more, separating types of records into different file. This feature is not

presently implemented.

97

One last feature that is necessary is the merging of record files. Because there is one file

for each computer, there will be several record files when the simulation is finished.

Each is chronologically ordered, but they must be combined so a complete picture of the

simulation progression can be drawn. The recordTools class implements a tool that

allows the merging of two record files. More files can be successively merged into the

resulting file, until all the files have been merged into one.

Record File 1

Record File 2
Merged Human Readable
Record File 0 Record File

0

Record File n

Fig. A.6 Record File Post-Processing

A.6 Data Layer

This layer is one of the most crucial parts of the simulator, but also one that is not likely

to be modified much in the future. It was also one of the most difficult parts of the

simulator to program. The difficulty arose because the elements of the simulator needed

fast, local access to consistent centralized data. That is what the data layer provides.

Before describing how it does this, it is useful to understand why it is necessary.

A. 6.1 Simulation Requirements

Much of the data referenced in this simulator is used to model the activities of objects in

real time. Therefore, the data are accessed very often, by many different objects. This

98

precludes a totally centralized system, where all the data are stored on one machine and

accessed remotely when it is needed. Even without the RMI protocol, this kind of access

pattern would be too slow. Moreover, the need to synchronize access to data (prevent

different objects from modifying the same data at the same time) would likely result in a

noticeable delay if many objects tried to get at the same data.

At the other end of the spectrum is a totally decentralized model where the data are

copied as many times as necessary such that every object gets it's own copy. This

becomes impractical as well because when one object makes a change to its data, the

change must be reflected to all other copies; after all, the copies really describe the same

object. If each object has it's own copy, it becomes almost impossible to make all the

necessary updates and guarantee consistent data.

A system is required that combines relatively fast access to read and write data, while

maintaining data consistency at all times. This system must also be transparent to the

objects accessing the data; they should be able to treat it as if it was the only copy

available, when in fact it is not. The data layer fulfills these competing requirements

reasonably well. It is based on a few simple components. There is a centralized data

store which retains "master copies" of data objects. There are any number of local data

stores that maintain "mirror copies" of these objects. And the objects that want to be

processed by the data layer must derive from a root class called localWorldObject. All

other data are derived from the root class remoteWorldObject

A. 6.2 Central Data Store

The class localGroupServerImpl implements the functionality of the central data store.

This central store is never used directly to access data, but it serves several other

important purposes.

The central store is aware of all local data stores. When a new local store is created, it

contacts the central store to register itself. By doing this it is requesting that it should be

notified of any change that is made to the centralized data.

99

The central store always maintains a copy of all the data available to the simulation. At

the beginning of the simulation much of this data is read from disk. When local data

stores first register themselves, they are given all this data. It is even possible that a local

store could be created during the simulation and recieve the data then.

A. 6.3 Local Data Store

Typically, there is one local data store per JVM. Access to the data in this store is global

within the JVM, so there is no need to maintain special references to the store. When

they are set up initially, they register them selves with the central store, as mentioned.

Whenever a piece of data is changed, the change is reflected through the central store to

all the other local stores. The mechanism of how this is done is described in the next sub-

section.

The overall effect of this system is twofold. The data can be accessed quickly, without

any reference to the central copy. But if a change is made in the local copy, the central

copy must be notified. The system lends itself to applications where data is read very

often, but modified less frequently. That is exactly the type of application that this

simulator is.

100

Remote
Synchronization with
Central Store

Central
Data Store
(One per
Simulator)

..

Remote or
Local Access

Remote
Data Object
(Any
Number
Any Pos
Machines)

....... Mar

Data End
User

sible Machine Boundary

ndatory Machine Boundary

Fig. A.7 Data Layer Schematic

A. 6.4 Local Objects

The term "local objects" is used to denote data objects that exist as multiple copies,

several locally, and one centrally. This is in contrast to remote data, which exists as a

single copy over the entire simulator and is accessed remotely when needed. All local

data is implemented by classes derived from the class local WorldObject. The most

important feature of these classes is their ability to automatically make an update call to

the local data store when any part of their structure changes. For example, the local

object used to model track makes an update call when the speed limit of the track changes

as a result of aspect restrictions.

101

Local
Data
Store
(One per
Machine)

Local
Access

The update call is what initiates the data consistency mechanism across the entire

simulator. The local data store becomes aware that a data object has changed. It then

contacts the central store and notifies it of this fact. The central store then contacts all the

other local stores and notifies them. Finally, they make the change to their copies of the

data.

This whole process is transparent to the process that initially made the change, since the

object being changed initiates the update call, not the process itself. The only

requirement is that all the local objects used in the simulator (the existing ones, and the

ones that may be created in the future) are well defined. This means that when there is a

means provided to change data in the object, the update call is also made automatically.

If this simple rule is not obeyed, then data consistency can no longer be guaranteed

throughout the simulation, and the resulting data will be invalid.

A.6.5 Remote Objects

The complementary type of object is a remote object. It exists only in one place. In

general, local objects are synonymous with the passive objects described in section 3.1,

while remote objects are synonymous with active objects. Passive/active are functional

descriptions while local/remote are architectural descriptions of the same things.

Because a remote object exists in only one place, its data must be accessed over the

network. Thus, it is not practical to access the data frequently. An example of a remote

object is a train (it is also an active object). It maintains a state variable to describe it's

speed, heading, mass, etc. While some of these variables may change rapidly, such as the

speed, other objects in the simulation will not be aware of this because they do not

sample the values at frequent intervals.

The general rule to follow is that objects that need to be used by many other objects very

frequently should be made local, but objects that access other objects frequently but are

not themselves accessed frequently can be made remote.

102

A.7 Display Layer

This layer is responsible for automatically visualizing changes made to a simulation

element, if that element's has a visual representation. An example of this automatic

screen update is the switch. When a switch changes state, as the result of a routing

operation, the screen image must be updated because the switch will probably connect

different tracks then it did previously. The display layer accomplishes this update.

Similar to the data layer, the display layer operates on the basis of a centralized

information relay point working together with several local display points.

4
Local Object
(State has
Changed)

A

Local
Display

0000

Fast Local Update

Slower Relay Update

Fig. A.8 Display

Redundant Update (Not Executed)

Layer Schematic

A. 7.1 Central Relay

103

Local
Display

Whenever a local display is initialized, the first thing it does is register itself with the

central relay point, of which there is only one. Later, when the visuals are updated on

one machine, the change can be reflected to all the other machines. This is necessary

because there is always the possibility that two local displays will overlap to some extent

and display the same data. In these cases, the visual display must be consistent to avoid

confusion.

When a change is made to an object such as a switch, the switch object automatically

initiates two types of updates. One has already been mentioned: the update call to the

local data store. The second takes care of the screen update.

This screen update itself has two parts. This first is the local update portion, which is

described in the next section. The second is the central update portion. This notifies the

central relay point that a visual change has been made on one of the displays. The central

relay will then automatically reflect the change to all the local displays.

A. 7.2 Local Displays

As mentioned in the previous section, there are two halves to a visual update. The second

half is carried out locally. When an object changes its visual appearance, it notifies any

displays that coexist locally on the same JVM as itself. This occurs independently of the

central relay point. Thus, there seems to be two ways that a local display is updated.

However, only on of these methods is used for any given display. If the display coexists

locally with the object that has changed, it is updated locally. Otherwise, it is updated via

the central relay point.

Incidentally, the local displays are encased in a larger window. This window directly

implements the display screens of the dispatcher and experimenter terminals.

104

A.8 Simulation Layer

At the next higher level above the preceding four layers lies the simulation layer. It

makes extensive use of all four of those layers to accomplish it's task. This is essentially

to continually modify the states of simulation elements according to a set of rules and

data files. This is accomplished in two ways, through state based simulation and event

based simulation.

A. 8.1 State Based Simulation

State based simulation is the process of altering the state of a simulated object by

considering its current state and applying a set of rules to modify that state. It is

independent of the time. To illustrate, the simulation of train dynamics under the force of

the train's engine is state based. Its current velocity, engine traction force, local

curvature, friction coefficient, etc. can be used to derive the same data at a later instant in

time. It does not matter what the time is because the train will behave the same way as

long as the state variables are ide-tical. The next state values are obtained using a rule

set, which in the case of the train, is the set of dynamical equations describing the train.

A. 8.2 Event Based Simulation

This type of simulation is based on time. Certain events are programmed to occur at

certain times, regardless of the state of their surroundings. This is accomplished by using

event files, which are data files that contain definitions of events. Besides the time of

occurrence and type of event, other data may be specified in each entry. The data from

these files is read into a set of event objects, each an instance of a class derived from a

root event class called scheduledEvent. Throughout the simulation, the events are

executed at the specified times.

A. 8.3 Combined Simulation

Event based and state based simulation can be combined to create situation based

simulation. In this type of simulation, an action will be taken if a certain state is

105

encountered, similar to state based simulation. However, the state that triggers these

actions will be created for only limited time spans, using event based simulation. In other

words, things will happen in particular situations that are come and go. This type of

simulation is very flexible, but it also suffers form one drawback: there is no way to

guarantee that the state created will trigger the action.

As an example, consider this situation. An event is used to set the state of a piece of

track to indicate that there are trespassers near the track. This is done at time tl, and

remains there until time t2. The intention is that a train that passes that track will inspect

the state of the track, determine there are trespassers there, and initiate an action.

However, there is no way to guarantee that the train arrives at that track between t 1 and

t2. In reality, a situation based simulation can only create the probability that something

will happen, but cannot ensure that it does happen.

A.9 Messaging Layer

The messaging layer has a very simple purpose.: it allows communications via a standard

messaging system between any two objects that declare themselves to be potential

message recipients. A good analogy is a telephone directory. If you list yourself in the

directory, you indicate to other people a means to contact you, and they may do so. The

messaging layer works similarly. It provides a means for an arbitrary object to become

"listed", and it provides a repository to store those listings, as well as a means of

accessing them.

A. 9.1 Becoming a Message Recipient

Notifying the system that a particular object can receive messages is a very simple

procedure. The class of which the object is an instance must simply implement the

messageable interface. Then, at some point, the object must register itself with the

message registry.

106

A. 9.2 Message Registry

The message registry is a listing of all the objects that have indicated that they can

receive messages. It acts as a kind of switchboard. To illustrate, assume that object A

wants to send a message to objects B. Also assume that object B implements the

messageable interface. In this case, object A would contact the message registry, specify

the name of object B, and supply a message. The registry would then retrieve the listing

for object B (containing it's location) and send the message to it. Object B could then

react to the message in any way it saw fitting.

A. 9.3 Messages

The actual information exchanged via the messaging layer is described by a large set of

classes that are derived from the root class message. This class can be extended in almost

any way desired, and use to transmit an arbitrary amount and variety of data, while

organizing that data in a standard manner. The description of how this works is

complicated without making frequent references to the soure code. Therefore, please

refer to the source file message.java for a more complete description.

A. 10 Interface Layer

This is the highest level layer and it is the one with which the user directly interacts. The

visual layout and operation of the layer has already been described in considerable detail

in section 4. The means by which objects are selected was only briefly mentioned. That

facility is described in detail in this section.

Any object that has a visual representation can be selected by clicking on that image on

the screen. A train can be selected by clicking on its ID number, a track can be selected

by clicking on its image, etc. By selecting the object, it is made available to any task that

requires an object as a parameter, for instance the execution of an operation, or the

completion of a message.

107

The framework that allows the selection of objects using their on screen images (screen

objects), even if these images move, is based on a system of zoning. This is discussed in

the context of how a display screen is broken into zones, as well as how a screen object

associates itself with one of these zones.

A. 10.1 Screen Partitioning into Zones

Each display area is first partitioned into a regular grid. This is the most course zoning

used and the rectangular zones involved are never used directly to locate features on the

screen.

A. 10.2 Categorical Sub-Partitioning

Each of the coarse rectangular zones is further partitioned into categorical zones, each of

which handles certain types of objects. For instance, track zones are used to locate track

images, while train zones are used to locate train ID numbers. These zones are a bit

abstract since they do not actually have any physical dimensions. Rather they are simply

groupings for the further sub-zones.

A. 10.3 Spatial Sub-Partitioning

Within each categorical zone, there are multiple spatial zones. These divide the area

within each course grid zone into non-overlapping shapes, each of which is considered to

be a spatial zone. These are the smallest zones, and they are not subdivided any further.

A. 10.4 Mapping a Zone to an Object

While the previous three sections have discussed three types of zoning, a zone is, strictly

speaking, a fully qualified triple. That is, a fully qualified zone must specify the spatial

zone, the categorical zone, and the screen zone.

Zones are mapped to screen objects under the assumption that there is only one screen

object for each spatial zone. When a screen object is given to a display (when the local

108

display registers with the central relay, see section A.7) it is asked to create a list of

zones. If it is not a screen object that wants to be selectable from the display, it is free to

return a null set of zones. Otherwise, it must return the set of zones that will encompass

its location on the screen.

These zones are then stored in the display, and each fully qualified zone points to the

object that created it. When a user clicks on the display area, a test is done to see if the

click falls within a zone, and if so, the zone is used to access the associated screen object.

It is then considered to be selected.

At this point, it makes sense to explain the need for the three levels of partitioning. There

are on the order of 1000 screen objects in a typical simulation, meaning than any one

display will display several hundred. If all of them create only a single zone to locate

themselves, it would require a check of hundreds of zones each time the mouse was

clicked. This is impractical.

To solve this, the zones to be checked are narrowed down in a hierarchical manner. First,

the mouse click is located inside one of the top level screen zones. This is an O(k)

operation because the screen zone names are obtainable directly from the position of the

click. Then, within a single screen zone, the categorical zones are checked. This is also

an O(k) operation because the category of object that needs to be selected is known ahead

of time (e.g. route clearing operation requires the selection of a poke point). Lastly, the

mouse clicked is located within one of the spatial zones. This requires a check on about

10 zones on average, which is computationally manageable.

When screen objects move, they are asked again what zones they wish to be mapped to.

The screen object is responsible for updating the position and/or type of zones it

associates itself with so that it will remain selectable in it's new position.

109

A. 11 Directory Structure

There are two main directory hierarchies involved in the train simulator at present. While

the source files can be configured to use other directories, it is simpler to just keep the

structure as it stands now.

The first branch starts at c:\jdkl. .x where x anything between 5 and 7 inclusive. Only

the subdirectories pertinent to the simulator are listed, although there are others. It is

organized as:

+ jdkl.1.x

- bin (the directory containing the compiler, rmi-compiler, and interpreter)

- docs (the directory containing the Java documentation)

The second branch starts at c:\kawa, and deals with the simulator source, data, and record

files. It is organized as:

+ kawa (the directory containing the IDE used for this project)

+ projects (root directory for all source, data, record files)

+ railsim (all source code excluding message set)

- messages (source code for message set)

- railterm (train data files)

- railserver (physical, visual, and event data files)

- records (recordings of simulator)

A. 12 Data File Formats

The various data files used by the simulator adhere to fixed formats. There are currently

four categories of data files: physical information files, visual information files, event

files, and train files.

110

A. 12.1 Physical Information Files

The purpose of these files is to provide the simulator with physical descriptions of the

passive objects that constitute the simulation environment. Examples of this type of data

include the dimensions of track segments, the organization of interlockings and stations,

etc. Within this category of file, there are always at least two files used by the simulator.

The reason for this is maintaining compatibility between this simulator and another

simulator the models the train engineers perspective. The only difference between the

two files is that the first one is restricted to listing objects that are found in the other

simulator, while the second can list all objects including ones specific to this simulator.

In either case, the format is the same, based on the following pattern. The '<' and '>'

symbols are not actually typed in the data file; text that appear between them should be

considered variables that can take on different values.

<class name> <instance number>

<tag 1> <value 1>

<tag n> <value n>

This structure can be repeated any number of times, but there must be a line containing

only the word "end." For each instance of this structure, the information is interpreted in

the same way. The class name specifies one of the subclasses of the localWorldObject

class. A new instance of the class is created, and the data is read from, one data member

at a time, until the new instance has been initialized. Each tag is a character string, and

each value can by anything (text, numerical, or other formats). The newly instantiated

object will interpret the data as it is programmed to. To see what tag is mapped to what

data member of the each class, it is simplest to just read the documented source files.

A. 12.2 Visual Information Files

The visual information files serve to define how the objects found in the physical

information files will appear on screen. In some cases, the physical objects have no

111

screen representation. For those that do, this file provides the data necessary to display

them. For each physical information file, there is one of these files, with the same name,

but a ".dis" extension. They are based on the following structure.

obj <full object name>

<tag 1> <value 1>

<tag n> <value n>

This structure can be repeated as many times as needed, and again, the last line must

contain only the word "end." The tag-value pairs work in the familiar way, but the object

is instantiated differently. The physical object found in the first file type will declare a

screen object to represent it on screen. It will assign a name to this screen object based

on a rule (see the documented source files for how this is done for each object). This

name goes in the <full object name> field of this data file. It is not necessary that the

order of the screen objects match the order of their respective physical objects. As long

as each screen object declared by a physical object is defined in this file, the order is not

important.

A.12.3 Event Files

These files define the events used to create the simulation capability described in section

A.8.2. There are various types of events, all derived from scheduledEvent, that can be

defined in this file. See the source files for a description of each event. In the event file,

there is one entry, structured as follows, for each event that will occur.

<event class>

<tag 1> <value I>

<tag n> <value n>

112

The event class specifies which event is to be created. There is no need to distinguish

different instances of the event, because they are not referred to directly. An instance is

simply created, and initialized with the data defined by the tag-value pairs. Again, see

the individual event source files for a description of what tags and data is required in this

file. The newly created event is then placed in the event scheduler, which executes it at

the time specified.

A.12.4 Train Files

The train files are used to define the initial positions and schedules for the trains in the

simulation. They do not contain data for any other objects. Each entry starts with:

<train class> <train number>

where the train class is currently lumpedTrainlmpl, but in the future could be any other

train class derived from the root class trainlmpl. The train number is a unique identifier,

but this is not the same as the train's identification number. The detailed structure of the

data that follows is specified in the source files lumpedTrainlmpl.java, trainlmpl.java,

and schedule.java.

113

Appendix B Train Schedules

The train schedules for both scenarios are included in this appendix. These describe the

nominal paths the trains travel, specifying both locations and times. Along with the

territory maps and the train delay charts, these schedules provide a picture of how trains

actually moved, where they were held up, and where they made up time.

114

Train Schedule for Scenario 1

3

A1l

A1l

A1l

51

D1

D1I

1: 26PM

217PM

12:58 PM

1:34 PM

220PM

1:06 PM

1:21 PM

1:08 PM

1:35 PM

12:42 PM

ar 1 15 PM

- -

z

0

2

-

12" PM

1:50PM

1:29PM

2:04 PM

1:23 PM

A2 1 1:21 PM I A3 1 1:14PM TA4 1:07PM A5 1:00PM A-t3

A2 2:12PM A31 205PM A4 1:58PM -AS 1:51PM

A2 1:03PM A3 I 1:10PM A4 1:17PM A5I 1:24PM

I:23PM

214PM

11 Mn.

A3 1:46PM A4 1:53PM I ASI 2:00PM

831 2:05PM

B4 1 1:21 PM

C3 I1:10 PM C4 1: 05 P M C5 1:01 PM

C3 1:19 PM IC4 1:24 PM IC5 1:28 PM

D3 1:21 PM ID4 I1:17PM jD5 1:10PM

D3 12:56 PM ID4 1 :00PM ID5 1:07PM

1 100

3 104

B6 2:04PM B7 1:57PM R4t 1:55PM B8 1:50PM 4 02

1:24 PM 56 1:26 PM 57 1:33 PM S-t 1:35 PM 8 1:37PM

1:09PM D6 1:03PM D7 1:01 PM D8 12:58PM

1:18PM D6 1:18PM D7 1:21 PM D8 1:24PM

300

0

7

7 1400

or. 1:15 PM 1 5 1225EQ

A-t2

A-t1

D-t2

z

:

115

2

C2 1:19PM

02 1:165PM

D2 12:52PM

113

1171 3

4

2231 6

7

A-t1

3311 8

8

441! 8

A7 12:49 AM

A7 1:37PM

A7 1:38PM

A7 2:13PM

A6 12:56 AM

A6 1:44PM

A6 1:31 PM

2:06 PMA6

B5

Q

z- ID

O
z

o

e -
z

0 -

z

0

225EGI 5

Train Schedule for Scenario 2

1 4:31PM A1 4:28PM A2 4:26PM A3 4:19PM A4 4:12PM A5 4:05PM A-t3

1 5:2 M A1l 5:29PM IA21 5:27PM IA3 1 5:20 PM A4 5:13PM IA5 5:06 PM A-t3

:0 193 2 4:32PM Al 4:35PM A2 4:37PM A3 4:44PM A4 4:51PM A5 4:58PM A-1

505P4 AS1 :287PM A 1 4P8M 14 4:13 PM BL-ti

0 291 4 50PM B1 4:05PM 52 4:11PM B3 4:6PM NS

4 4:PM 1 4:23PM C2 4:19PM C3 4:16PM C4 4:11PM C5 4:07PM N

8 4:5M 4:54PM C2 4:50PM C3 4:47PM C4 4:42PM C5 4:38PM

O 393 7 4:22 PM C1 4:26PM C2 4:30 PM C 3 4:33 PM C 4 4:38 PM C 5 4:42 PM N

0 z ~10 4:54 PM Di1 4:52 PM D2 4:44PM D 3 4:40 PM D 4 4:36 PM D5 4:29 PM D-t1

491 8 3:54 PM DI 3:56 PM D2 4:4P D3 4: 08P M D 4 4:12PM DS 4:19 PM NS-ti

360E 8 a. 4:0 PM To Yard

8

4:04PM A6 3:5-M A7 3: 52P8M 1 120

5: 05 PM A6 4:57 PM A 4:0m 1 124

5:0M 6 5:02 PM A7 5:9P

41P 5 4:09PM B36 4:08PM B7 14:01 PM jBR-t3l 3:59 PM BO 3:45 PM 4 24

z

E)6 4:17 PM 87 4:24 P M BER-t2l 4:33 P M 138 4:35 P M

83 0

8 13640

8 8

4:28PM D6 4:19PM D7 4:16PM D8 4:13PM 10 482

4:20 PM D 6 4:20 PM D7 4:23 PM D8 4:26PM

ar 4:40 PM Yard 360EQ
* ums

116

Appendix C Territory Map

This map shows the territory in which the simulation was carried out. This is a fictitious

track layout, but it was created to appear realistic to a dispatcher. The displays were

created by simply taking screen snapshots without any trains.

117

118

SGI Workstations for In-Cab Simulator

- PC's for Dispatching Simulator

"C

EIJ Desk Space

Shelf Space

cLID
0z

I

References

[1] Amtrak CETC System Documentation. Amtrak Railroad, internally published.

[2] Santanu Basu. Guide to the System Architecture and Operation of the MIT/Volpe
Train Dispatcher Simulator. Project Report, Volpe Transportation Systems Center.
Cambridge, MA, 1999

[3] Luc Cassady-Dorion. Industrial Strength Java. New Riders Publishing. New York,
NY, 1997

[4] Edward John Lanzilotta. Dynamic Risk Estimation: Development of the Safety State
Model and Experimental Application to High-Speed Rail Operation. PhD Thesis.
Massachusetts Institute of Technology. Cambridge, MA, 1995

[5] Carl D. Martland. Modeling Railroad Line Performance. Railroad Applications
Special Interest Group Newsletter. 1995

[6] Patrick Naughton. Java, The Complete Reference. O'Reily. New York, NY, 1996

[7] Emilie Roth, Nicolas Malsch. Understanding How Train Dispatchers Manage and
Control Trains. Volpe Transportation Systems Center Report. 1998

[8] Brotherhood of Locomotive Engineers Web Site (www.ble.org)

[9] Cato Institute Web Site (www.cato.org/pubs/pas/paOI2.htnl)

[10] Federal Rail Administration Web Site (www.fra.dot.gov)

[11] Developer.com Web Site (www.gamelan.com)

[12] JavaWorld Web Site (www.iavaworld.com)

120

