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Abstract

The Cricket is the latest technology in behavior construction kits developed by the Episte-
mology and Learning Group of the MIT Media Laboratory. It is a tiny computer, the size
of a 9-volt battery, that is capable of handling two sensors, two motors and other sensors
and actuators through the Cricket Bus System. In this thesis, I designed, prototyped and
produced the Sound Sensor and the Voice Recorder, two sound devices for this system.
The Sound Sensor is a two-in-one clap sensor and volume sensor. The Voice Recorder is a
record and playback device that can be controlled through a user pushbutton interface and
through Cricket Logo, the programming tool the group developed for the Crickets. The
thesis also includes the field testing at a workshop I held in which children built Cricket
projects that used some of these sound devices.

Thesis Supervisor: Fred G. Martin
Title: Research Scientist, MIT Media Lab

2



Acknowledgments

I would like to thank God for allowing me to glorify Him by finishing this thesis, and for

giving me His peace and strength through it. I would also like to thank my family, especially

my father, who has always supported me and believed in me.

This thesis would not have been possible without my co-advisors, Fred Martin and

Mitchel Resnick, who have given me so much guidance and encouragement throughout this

year.

My thanks go to my fianc6, Ely Wilson, for his support and understanding, and to my

best friend, Irene Wilson, for believing that I could finish this thesis even before I began

believing it myself.

I would like to thank all of my friends who have been praying for me steadily from the

very beginning: the Ashdown Monday night Bible Study, my Campus Crusade womens'

group, and especially my dearest friends, Elissa Lee and Louisa Chiu.

I give thanks to my friends from the Epistemology and Learning group, especially

Bakhtiar Mikhak, Michelle Shook, Tim McNerney, Clint Sieunarine, and Chris Hancock,

without whose help, I would not have managed through the workshop.

3



Contents

1 Introduction

1.1 Constructionism . . .

1.2 Prior Work . . . . . .

1.2.1 LEGO/Logo .

1.2.2 Programmable

1.2.3 Crickets . . .

1.2.4 Cricket Bus .

1.3 Goals of this Research

Brick

2 The Sound Sensor

2.1 How the Sound Sensor Works . . . . .

2.2 How the Sound Sensor is Used . . . . .

2.3 Hardware . . . . . . . . . . . . . . .

2.4 Software . . . . . . . . . . . . . . . .

2.4.1 The Clap and Volume Functions

2.4.2 The Bus Protocol . . . . . . .

2.4.3 Cricket Logo Macros . . . . .

3 The

3.1

3.2

3.3

Voice Recorder

How the Voice Recorder Works . . . .

How the Voice Recorder is Used . . . .

Hardware . . . . . . . . . . . . . . .

3.3.1 Voltage Regulator Circuit . . .

4

8

8

9

9

9

10

12

13

15

15

17

18

21

21

24

26

28

28

30

31

33

. ..... ... ..

..... .... ..

.... .... ...

... ..... ...

... .... ....



3.3.2 Microprocessor Circuit . . . .

3.3.3 Record/Playback Chip Circuit .

3.3.4 Audio Amplifier Circuit . . . .

3.4 Software . . . . . . . . . . . . . . . .

3.4.1 The Main Loop and Button/Bus

3.4.2 The Record Sequence.....

3.4.3 The Playback Sequence . . . .

3.4.4 The Fast-Forwarding Sequence

Handling

4 Field Test: The Community Arts Center Workshop

4.1 Day by Day Narrative . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Technology Evaluation . . . . . . . . . . . . . . . . . . . . . . . .

4.3 Some Comments on Workshop-Based Learning . . . . . . . . . . .

5 Future Directions

5.1 Future Sound Sensors . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Future Voice Recorders . . . . . . . . . . . . . . . . . . . . . . .

5.3 Ideas for Future Sound Bus Devices . . . . . . . . . . . . . . . . .

A Sound Sensor Assembly Language Program

B Voice Recorder Assembly Language Program

C Cricket Logo Macros for the Sound Sensor and Voice Recorder

5

34

35

36

38

38

39

41

44

46

47

53

56

58

58

59

60

62

67

76



The Sound Sensor . . . . . . . . . . . . . . . . . . . . . . .

Sound Sensor Circuit Schematic . . . . . . . . . . . . . . . .

Sound Sensor Printed Circuit Board Layout: Component Side

Sound Sensor Printed Circuit Board Layout: Solder Side . . .

Sound Sensor Flowchart . . . . . . . . . . . . . . . . . . . .

Bus Protocol Flowchart . . . . . . . . . . . . . . . . . . . .

The Voice Recorder . . . . . . . . . . . . .

Voice Recorder Circuit Schematic . . . . . .

Voice Recorder Printed Circuit Board Layout:

Voice Recorder Printed Circuit Board Layout:

The Record Sequence State Diagram . . . .

The Playback Sequence State Diagram . . .

The Fast-Forwarding Sequence State Diagram

. . . . . . . . . .

Component Side .

Solder Side . . .

4-1 Mary's Dancing Car . . . . . . . . . . . . . . . . . . . . . . .

4-2 Steve's Plane . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

List of Figures

2-1

2-2

2-3

2-4

2-5

2-6

3-1

3-2

3-3

3-4

3-5

3-6

3-7

. . . . . 16

. . . . . 19

. . . . . 20

. . . . . 21

. . . . . 22

. . . . . 25

. . . . . 29

. . . . . 32

. . . . . 33

. . . . . 34

. . . . . 40

. . . . . 42

. . . . . 44

52

54



List of Tables

2.1 Sound Sensor Parts Listing. . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Voice Recorder Parts Listing . . . . . . . . . . . . . . . . . . . . . . . . 37

7



Chapter 1

Introduction

Constructionism is the belief that children learn most effectively when they are engaged in

design, construction and debugging activities. In the spirit of constructionism, the Episte-

mology and Learning Group of the MIT Media Lab has created the Crickets, an educational

technology that allows children to create mechanisms, creatures, and scientific instruments

while exploring a variety of concepts including sensing, control and systems. Crickets are

fully-programmable computational devices that can control motors and displays, receive

information from sensors, and communicate with one another via infrared light. For this

thesis, I developed sound input and output devices for the Crickets to widen the range of

possibilities that Crickets can be used in children's projects.

1.1 Constructionism

One of the themes in the research of the Epistemology and Learning Group is learning

through design. The group believes that learning does not just happen by transmitting

knowledge from the teacher to the student, but through an active construction of knowledge

in the mind of the student[10]. This theory of learning is called constructionism: "the idea

that people construct new knowledge with particular effectiveness when they are engaged

in constructing personally-meaningful products"[12], one that they can reflect upon and

share with others. The group's research is developing new technologies that aid children in

designing their own artifacts.
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1.2 Prior Work

The construction kit would come to mind as a technology that would support children as

designers. One role that the Epistemology and Learning Group sees for itself is to extend

this basic construction kit and to develop new generations of construction kits. One can

see the original LEGO system as a first-generation construction kit allowing children to

build structures. The second-generation kits allow children to build mechanisms with the

aid of gears, axles, motors and battery packs, new parts that come in LEGO's Technic set.

The third-generation construction kits allow children to build behaviors[ 11]. With LEGO's

new Mindstorms set, children can program behaviors into their mechanisms using its own

programmable computer. This set is the product of the group's research and collaboration

with the LEGO company.

1.2.1 LEGO/Logo

The group's research on behavior construction kits began with a project called LEGO/Logo,

developed primarily by Mitchel Resnick, Stephen Ocko, Brian Silverman, and Seymour

Papert[ I11]. With LEGO/Logo, children build machines out of LEGO bricks and LEGO

gears, motors, and sensors, then write computer programs, using a modified version of

Logo, to control the machines. The LEGO company developed a commercial version of

LEGO/Logo called "LEGO tc Logo."

The LEGO/Logo project has one big limitation: It has to be connected to a desk-

top computer. Children can build mobile creatures that can only go as far as the wire

connections will let them. The wires can also get tangled and twisted with rotating ma-

chines and creatures[14]. This problem led the group to develop the next technology: the

Programmable Brick.

1.2.2 Programmable Brick

The Programmable Brick solves the problem by putting the computer into a LEGO brick.

The Programmable Brick[5], developed primarily by Fred Martin, is about the size of a

child's juice box. Run by the Motorola 68HC1 1 processor and 32 kilobytes of RAM, it is
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capable of controlling up to four motors, and receiving input from up to six sensors. The

Brick can communicate by infrared light, and it can display information on its two-line

liquid-crystal display. It also includes a knob and two buttons for interacting directly with

the Brick.

Children still build their own machines and creatures using LEGO bricks, gears, motors,

and sensors, and they still write their programs (using a modified version of Logo called

Brick Logo) on a desktop computer, but the programs they write are downloaded to the

Programmable Brick, using a detachable cable, and then the Brick can be taken wherever

they want. The kids can then add the Programmable Brick to their LEGO machine/creature,

connect the motors and sensors, scroll through the downloaded programs with the knob,

press the start button and watch their creation come to life[6].

The LEGO company just recently released its commercial version of the Programmable

Brick, called the RCX Brick, which they include in the LEGO Mindstorms set.

1.2.3 Crickets

The latest technology developed by the Epistemology and Learning Group after the Pro-

grammable Brick are the Crickets. Crickets, which are roughly the size of a 9-volt battery,

are much smaller and lighter than the Programmable Brick. They are capable of controlling

fewer motors and sensors, but they are able to communicate to each other through infrared

communications. The latest version of the Crickets allow them to control a number of

input and output devices by daisy-chaining them to the Crickets. They are programmed

in Cricket Logo, and the programs are downloaded to the Cricket by infrared through an

Interface Cricket[3].

There are three versions of the Crickets so far: The Green Dot, Red Dot and Blue Dot.

The three versions of the Classic Cricket have the same standard components: [2]

* Microchip's PIC microprocessor

* 4 MHz ceramic resonator

* EEPROM memory
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* infrared transmitter and receiver

" two motor outputs with bi-colored LEDs to indicate the state

" two sensor inputs for resistive devices

* Piezo beeper

e on/off slide switch

* user pushbutton switch

" three LEDs indicating power-on, program running and infrared transmission in
progress

" 9-volt battery source

The original Green Dot Cricket family consisted of the Classic Cricket (also known as

the Sensor/Motor Cricket), the Display Cricket and interface crickets for Mac and PC, all

using Microchip's PIC 16C84 microprocessor. The Red Dot Classic Cricket was developed

with the PIC 1 6F84 microprocessor which has all the capabilities of the C84 but with flash

memory and double the size of data RAM, allowing the user's Cricket Logo programs to be

larger and more complex. The motor outputs were also enhanced, now able to source 1000

mA of current instead of the 150 mA in the Green Dot version.

The Blue Dot Classic Cricket uses the PIC16C715 microprocessor, allowing 16-bit

numbers, and a new infrared transmitter and receiver, for faster communication and less

noise sensitivity.

The Macintosh and PC interface crickets are equipped with a Macintosh or PC serial

connector and IR transmitters and receivers, and they transform the serial data from the

serial port of the desktop computer to an infrared signal, which can be received by the

Classic Crickets. The interface crickets did not undergo any changes until the Blue Dot

version. The IR transmitter and receiver were replaced and a DC power jack was added to

allow a DC adapter to supply the power.

The Green Dot Display Cricket has a row of 8 bi-colored LEDs as a bargraph display

along with three sensor inputs, but no newer versions were made because the Classic Cricket

was found to be the only one needed. The specialization of Crickets became unnecessary

with the development of the Cricket Bus System.
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1.2.4 Cricket Bus

One of the most significant additions to the Blue Dot Crickets is the Cricket Bus System.

Two Cricket bus ports with 9 volts, ground and a serial bus line allow the Blue Dot Crickets

to have a wider range of input and output capabilities, instead of just the two sensors and

two motor ports that are present in the previous versions. The Cricket bus devices are more

complex than the usual sensor or motor that are connected to the sensor and motor ports.

Each bus device has a microcontroller to communicate with the Blue Dot Classic

Cricket microcontroller via the serial bus line. It also has its own voltage regulator circuitry

to convert the global 9 volts from the Cricket bus, supplied by the Blue Dot Cricket's 9-volt

battery, to its local 5 volts. Each bus device also includes two Cricket bus ports: one to

connect to the Cricket bus network which has the Blue Dot Cricket at its center, and the

other to allow more bus devices to be part of the network. The only limit to the number of

Cricket bus devices that can communicate to the Blue Dot Cricket is the power required to

supply each of the bus devices and the signal degradation of the serial bus line due to the

capacitive loading of enough bus devices.

Cricket bus devices greatly extend the input and output capabilities of the Blue Dot

Classic Cricket. Several devices that have already been developed are:

3-Digit-Display is a 3-digit 7-segment LED display usually used to display sensor read-

ings, but can also be reprogrammed to display some alphanumeric characters.

Bar Graph Display replicates the functionality of the Green Dot Display Cricket.

Distance Sensor uses the same technology as those found in bathrooms, where the sink

can determine whether the faucet should turn on or not if it "sees" hands underneath

the faucet, and the toilet can determine whether to flush or not if it senses a person in

the stall.

Reflectance Sensor outputs a value corresponding to the reflectivity of the object it is

pointing to; it can be very useful, for example, to a LEGO car that follows a black

tape on a white surface.
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Heart Monitor is capable of counting the user's heart beats and calculating the heart rate,

using a commercial heart monitor worn around the user's chest.

Galvanic Skin Response (GSR) Sensor can be used somewhat like a lie detector by

measuring the amount of sweat that the skin produces as questions are asked over a

period of time.

MIDI device allows songs to be programmed into the Blue Dot Cricket which can then be

played through the MIDI device.

1.3 Goals of this Research

The purpose of this thesis is to augment the Cricket Bus System by developing Cricket bus

devices that are related to sound. With the exception of the MIDI device, none of the other

bus devices mentioned above deal with sound, making sound an under-explored area. I

believe that enhancing the sound capabilities of the Cricket System can expand the range

of activities that the children can use the Crickets with. One such activity that the sound

devices (as well as the already existing bus devices) can play a role in is the building of

scientific instruments, a charter of the Beyond Black Boxes project.

The Beyond Black Boxes project[13], funded by the National Science Foundation, is

a project that the Epistemology and Learning Group began that aims to open up the black

boxes of science to children by allowing them to make scientific investigations in their own

worlds, design their own experiments, and build their own scientific instruments for these

experiments. By involving the children in building their personalized scientific instruments,

the group expects them to be able to engage in more meaningful and motivating science-

inquiry activities. The Cricket technology is central in the designing of the children's

scientific instruments. Kids can use the Crickets with all kinds of sensors to gather data for

their experiments, including the bus device sensors mentioned above that were developed

strictly for this project:

For example, one group of students might use Crickets to build an "active
hamster cage" that monitors and responds to the activity of a pet hamster. An-
other group might create a "wearable instrument" that analyzes the relationship
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between a person's heartbeat and their level of exertion throughout a day. Other
students might build an autonomous submarine, equipped with a Cricket and
sensors, to investigate pollution levels at different depths and locations in a
nearby lake or harbor[13].

My research contributes to the Beyond Black Boxes project with the development

of sound-related Cricket bus devices that kids can use in their scientific experiments. For

example, a volume sensor on a Cricket can be used to measure the amount of noise pollution

that a person might be exposed to throughout the day. A child might place a Cricket with a

voice recorder on a tree branch and program the Cricket to begin recording when it senses

that a bird is present to record the chirps that it makes.

For this thesis, I designed, prototyped and produced two devices: a two-in-one sound

sensor, that functions as a clap sensor and a volume sensor, and a voice recorder. I have

also held a workshop with kids where they built projects using the Crickets and some of

these devices.

The following chapters discuss more in detail the technical development of the two

devices. Chapter 2 discusses the development of the sound sensor, and Chapter 3 focuses

on the voice recorder. Chapter 4 of this thesis talks about the 5-day workshop that I held

at the Community Arts Center, where the children built Cricket projects that use the sound

sensor and voice recorder. The last chapter, Chapter 5, discusses the future work that could

be done for the two devices and other devices for the Cricket Bus System.
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Chapter 2

The Sound Sensor

The purpose of the sound sensor is simply to sense sounds. But since there are always

sounds in the environment, it is important to distinguish between background noise and the

specific sounds that the user wants to focus on. Volume is the key factor that differentiates

these foreground sounds from the background sounds. Frequency is another quality of

sound that can be easily differentiated. The clap and volume functions use volume to

trigger the sensor, while the tone recognition function relies on the frequency of the input

sound.

2.1 How the Sound Sensor Works

The easily distinguishable difference in volume between a clap and other sounds is the

reason why the first implementation of the sound sensor is the clap-sensing function.

Claps are easily distinguishable by the high-amplitude impulse-like sound waves that they

produce. When the microphone hears a clap, or any other sound, a voltage signal in the

form of a broad impulse is generated. The signal is amplified by the microphone amplifier

circuit, and is then converted to a digital byte, using the analog-to-digital converter pin on

the microprocessor. The microprocessor has a threshold set where it registers a clap if the

value of the byte is above this threshold. In software, the value is exponentially decayed

if the microphone does not pick up any other sound within a small period of time. The

microprocessor then sends a binary 255 or 0 to the Cricket Bus whenever the Blue Dot
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Figure 2-1: The Sound Sensor

Classic Cricket asks for this sensor input.

The second function, the volume-sensing, can be derived from the integral part of the

clap-sensing function. The same process is used except the output is the digital byte given

by the A/D converter. There is no need to compare the value to a threshold. It is simply

passed along through the bus as a value ranging from 0 to 255 to the Blue Dot Cricket

whenever this sensor input is asked for.

Another quality of sound that can be easily differentiated is frequency or tone. A tone

recognition sensor can be implemented by a crude Fourier transform done in software with

the input signal and a set frequency. If the input frequency is about half a tone away from the

set frequency, the microprocessor registers it as a match. Ava Erickson, an undergraduate

student at Wellesley College successfully prototyped one of these. Unfortunately, her code

is written so that the device only responds to one tone, 1200 Hertz, a pitch that she can

naturally whistle. The whistle is important since it is a naturally-produced sound that is

close to a pure tone, which only has one frequency, while singing and speech have plenty of

overtones, higher frequencies that resonate with the base frequency. These overtones cause

the device to give false results.

The circuit for the clap sensor was designed by Ms. Erickson, but I designed the PCB

16



layout and wrote the assembly language code for the microprocessor for the two modes

of operation-the clap and volume sensors. Although the code for the tone recognition

function is already written, it is not yet integrated with the sound sensor.

2.2 How the Sound Sensor is Used

The sound sensor is used with the Blue Dot Crickets. It is attached to the Classic Cricket

by a bus connector. The software used to program the Blue Dot Crickets is Cricket Logo

version 1.2, which is run on Microworlds 2.0.3, a program developed by LCSI, a company

started by Brian Silverman, a member of the Epistemology and Learning Group.

The sound sensor is attached to 2 x 4 LEGO plates that come in two different colors,

green or blue. This is to differentiate between two sound sensors if two are plugged into

the same Cricket bus network. The clap and volume functions can be used by either color

and is differentiated in Cricket Logo in this way: green-clap?, green-volume?,

blue-clap? and blue-volume?. If there is only one device attached to the bus

network, either device will respond to the clap? or volume? functions.

For example, here is a procedure that uses the clap function with the blue sound sensor

so that motor A will turn on for 5 seconds when a clap is heard:

to hear-a-clap
loop [if blue-clap? = 255 [a, onfor 50]

end

The loop continually checks the blue clap sensor, and the sensor returns a 0 when no

clap or loud sound is heard. When the user claps, the sensor remembers this and outputs a

255 the next time the loop goes around. The motor turns on for 5 seconds. After returning

the 255, the sensor clears its memory and outputs a 0 when it is asked again.

The volume function works the same way, except that a greater than symbol should be

used instead of the equals symbol, since a range of numbers is returned. This sensor can be

good for sampling the volume level of a room with a Cricket and graphing it. This function

can be done with this procedure:

17



to take-volume-data

erase

beep

repeat 2500 [record volume? wait 2]

beep

end

This procedure erases all the data in the Blue Dot Cricket, beeps when it starts taking

data points, takes 2500 samples of the current volume, each separated by two tenths of a

second, then beeps again to indicate that it finished taking the data.

2.3 Hardware

The sound sensor consists of a microphone and biasing circuit, a voltage amplifying circuit,

and a microcontroller for processing the amplified signal.

The microphone amplifier circuit is taken directly from the student laboratory manual

for Harvard University's class on The Art of Electronics taught by professors Paul Horowitz

and Winfield Hill[1].

The electret microphone is connected to the Vdd of 5 volts through a 1.2 KQ and a 1

KQ resistor to result in a voltage divider. (See Figure 2-2.) The two capacitors, C2 and C3,

between the 1 KQ and 1.2 KQ resistors allow this node to be seen as an AC ground to the

small signals from the microphone, so that the input resistance seen by the AC signals is

smaller. The AC signals see 1.2 KQ, instead of the 2.2 KQ, in parallel to the microphone

resistance, while the DC voltage still sees a bias of 2.2 KQ above. The voltage signals at

this stage are very small and only range from tens to hundreds of millivolts. This voltage

divider is put through a DC coupling capacitor of 0.1 pF and is biased at 1.2V by the

resistive divider made by R3 and R4. This signal then goes to the positive input of the

MAX495, a single supply opamp from Maxim Integrated Circuits.

The opamp circuit amplifies the low-voltage signals from the microphone circuitry

using a non-inverted configuration. The negative input is connected to ground through a

1.5 KQ resistor, a 100 KQ potentiometer and a 4.7 pF capacitor connected in series. The

potentiometer allows the user to have access to the gain of the amplifier, thereby controlling
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Clap Sensor v1.1
Genee Lyn Colobong (geneelyn@mit.edu)
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Figure 2-2: Sound Sensor Circuit Schematic
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Figure 2-3: Sound Sensor Printed Circuit Board Layout: Component Side

the amplitude of the input signals and therefore the sensitivity of the device to its input. The

opamp has a 1 MQ feedback resistor connecting the output of the opamp to the negative

input, allowing amplifier gains from 10 to 1000. The output of the amplifier is then fed to

a pin of the microprocessor equipped with an analog-to-digital converter.

The signal processing from here on out is digital and handled by the microprocessor.

The microprocessor I used for this circuit is the PIC 16C715 from Microchip Technology,

simply for its analog-to-digital conversion capabilities [7]. The RBO/Interrupt input/output

pin of the microprocessor is tied to the bus line that is shared by all bus devices and the

Blue Dot Cricket. This allows changes on the voltage signal of the bus line to trigger an

interrupt on the microprocessor. A Cricket-standard 4 MHz ceramic resonator is used to

provide the clock signal.

Perhaps in the future, an 8-pin microprocessor also by Microchip Technology can be

used for this circuit instead. This can greatly reduce the size of the layout so that the board

becomes dominated by the microphone and potentiometer. The layout can be cut in half if

the PIC and other solder-mounted parts are placed on the opposite side of the through-hole

parts like the microphone, potentiometer and bus connectors. See Figures 2.3 and 2.3 for

the current layout.

Other parts that are included in the circuit are: two bus connectors that provide the +9

volts, ground and bus data signal, a 10 KQ resistor that ties the master clear pin of the
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Figure 2-4: Sound Sensor Printed Circuit Board Layout: Solder Side

microprocessor to Vdd to keep the microprocessor from resetting, decoupling capacitors of

0.1 pF from Vdd to ground on both the microprocessor and the opamp, and a power supply

decoupling capacitor of 47 pF between the output of the 5-volt regulator and ground.

Table 2.1 is a parts listing of the Sound Sensor design.

2.4 Software

After the signal is digitized by the analog-to-digital converter pin on the microprocessor,

the software manipulates the signal to provide the outputs for the clap sensor function, the

volume sensor function and the tone recognition sensor function. See Appendix A for the

actual assembly language program written for the sound sensor.

2.4.1 The Clap and Volume Functions

First, the A/D converter is enabled and the result, adres, is stored in the t2 register. Then

the A/D converter is enabled again, and this time the result is stored in the t1 register.

See Figure 2.4.1. The two registers are compared, and if the new value is greater than the

previous value, then the previous value, t2, is loaded with the new value. If the previous

value is greater, then nothing is done. This routine is repeated 120 times, and afterwards

the t2 register contains the largest value that was sampled for those 120 cycles.
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diminish:
t2 -> fade
fade = fade / 8
t2 = t2 - fade

Figure 2-5: Sound Sensor Flowchart
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store-values:
volume-answer = t2
above? = t2

above? = above? - threshold



Device Type
1206 SMT capacitor
tantalum cap
tantalum cap
tantalum cap
JST connector
potentiometer
1206 SMT resistor
1206 SMT resistor
1206 SMT resistor
1206 SMT resistor
resistor
ceramic resonator
+5v voltage reg
microprocessor

op amp
microphone

Value
0.1 pF
15 p-F
4.7 pF
47 tF

100 KQ
1.2 KQ
10 KK2
1 KQ
1 ME2
3.3 Mg
4 MHz
LM2931Z-5.0
PIC16C715

MAX495

References
C2 C4 C6 C7
C3
C5
C1
J1 J2
POTI
R2
R7
R1 R5
R4 R6
R3
U3
U4
Ul

U2
MIC 1

Price Ea.
0.355
0.2816
0.1974
0.5546
0.09
0.664
0.02955
0.0324
0.02955
0.02955
0.0235
0.9588
0.50
4.19

2.48
1.239

Catalog No.
PCC104BCT-ND
P2014-ND
P2011-ND
P2017-ND
JST B3B-PH-K
3352E-104-ND
P1.2KECT-ND
P1OKECT-ND
P1.OKECT-ND
Pl.OMECT-ND
3.3MEBK-ND
PX400SCT-ND
LM2931Z-5.0-ND
PIC16C715-04/

SO-ND
MAX495CSA-ND
P9931-ND

Table 2.1: Sound Sensor Parts Listing

Next, the value in t2 is loaded into the fade register, and fade is divided by

8. This value is subtracted from t2 and the result is the current volume, stored in

volume-answer, which ranges from 0 to 255. This number is given when the de-

vice is asked for its current volume. Under normal condition the volume hovers around

50.

To check for a clap or other loud sounds, the current volume is compared to a threshold

value, currently set to 128, and if the number is larger than the threshold, then the c lap bit

is set. If the number is lower than the threshold, nothing is done. The clap bit is cleared

later by the bus query routine. This allows the device to have a "memory," with which it

remembers if it heard a clap since the last time the device was queried.

The previous version cleared the c lap bit when the current volume is lower than the

threshold, but in that case, the device must be asked within tenths of a second that a clap is

given so that the sound sensor would register that a clap is heard. This is fine if the sensor

bus query is also in a tight loop that continually checks if a clap is heard or not. But this is

not often the case, since more than one sensor is usually used in Cricket projects and all the

sensors must be checked repeatedly if they have been triggered. This results in big loops

that do not query the sound sensor often enough to be able to register a split-second clap.
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Supplier
Digikey
Digikey
Digikey
Digikey
Heiland
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey

Digikey
Digikey



With the way the clap function is currently implemented, the user can wait seconds or

minutes between queries and still be able to determine if a clap was heard within that time

period.

This process from the 120 samples to the determination of the volume and clap bit forms

the main loop of the program and is continually repeating, renewing the current volume

value and resetting the c lap bit based on the new volume level.

2.4.2 The Bus Protocol

The bus line is usually +5 volts or high. Whenever a command or data is sent through the

bus, it is preceded by 100 microseconds of a low or zero volts. This allows all the bus

devices connected to the bus network to finish whatever interrupt routine they may be in

so that they may be syncopated with the bus line when the actual 9-bit command or data is

sent.

In the case of the sound sensor, the bus data line is attached to the interrupt pin (RBO/INT)

of the microprocessor so that the main loop of the program can be interrupted when there

is activity on the bus line. This is not usually how the bus data is handled with other bus

devices.

With all the other bus devices made before the sound sensor, the main loop of the

program consisted of checking the bus line for a byte and then determining whether the

byte represented a command or data. Most of the time, the processor is stuck in the

bus - tyi loop waiting for a byte to come in. The real work for the sensor is usually done

during interrupts. The processor would be set up to handle a timer interrupt, and it is during

these interrupts where the sensor would actually process the signals and put the resulting

value into a result register. Whenever the correct bus command was sent, the number in

this result register would be stored into the bus-data register, and the bus-tyo code

would handle the serial transferring of the data from bus -data to the bus line, the bus

bit of the bus -por t register.

With the sound sensor, the main loop of the program is the actual sensor signal process-

ing, from the A/D converting of the signal on the input pin to the storing of the resulting
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YES

NO

Figure 2-6: Bus Protocol Flowchart
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value into the volume-answer register and the determination of the clap bit. The bus

line, attached to the interrupt pin, signals the processor to interrupt when a low is detected

on the bus line. The bus is handled during this interrupt and it either disregards the byte, if

it is data or a wrong command, or loads the result register onto the bus -dat a register and

outputs it serially to the bus line if the byte corresponds to the correct bus commands.

The 9-bit byte that is read from the bus bit of the bus -port register is loaded onto the

bus -data register and the carry bit of the s tatus register. The carry bit determines

whether the byte is a command or data. Data is usually ignored by the bus devices, and

usually only concerns the Blue Dot Cricket since it is usually the result given by some sensor

on the bus network. The commands are checked, by comparing the byte in the bus -data

register with the name of the device.

There are usually four names for each device, corresponding to the color of the LEGO

brick it is attached to, usually red, blue, yellow, or white. This scheme allows for four of

the same device to be attached to the bus network and be distinguishable from each other.

As previously discussed, the sound sensor comes in only two colors, green and blue, but a

third name is used to be able to refer to both. The hex value $68 refers to the green sensor,

the $69 refers to the blue sensor, and $6a refers to both.

If the names match, then the program waits for another byte to be read. This second

byte determines the function that the sensor is being asked to do. Currently, the sound

sensor responds to either the clap function, which is designated by a second byte of $01, or

the volume function, which is a second byte of $02. When the clap function is called for,

the processor checks the clap bit and loads either a 255 or a 0 onto the bus -data register

if the clap bit is set or cleared, respectively. Then the clap bit is cleared, as previously

discussed. If the volume function is wanted, the volume-answer register is loaded onto

the bus -dat a register.

2.4.3 Cricket Logo Macros

To get the sound sensor to the point where kids can actually use it in their Cricket Logo

projects, macros are written in the Cricket Logo compiler. The compiler is loaded upon
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startup of the Cricket Logo page of Microworlds 2.0.3. See Appendix C for the compiler

macros.

These macros define the Cricket Logo commands given earlier as actual bus commands

and bytes. For example, the Cricket Logo command blue-c lap? is a macro for:

bsend $169 output bsr $01

The first byte sent is the name of the device, in this case, $169. The actual name of the

device is $69, but the $169 is sent so that the carry bit would be set. The set carry

indicates to all the bus devices on the network that each device should check if this bus

command is for them, instead of ignoring it as if it was a data byte. The macro bsend is

used whenever the Blue Dot Cricket sends a byte and does not expect a value to return.

The next byte sent corresponds to the function being queried, which in this case is the

clap function. The macro bsr is used when the Cricket sends the byte and expects a byte

in return. The byte returned, in this case, is 0 if there was no clap and 255 if there was a

clap. The macro output takes this returned byte as the output of the whole function, so

that the macro blue-clap? acts as a variable that equals either 0 or 255.
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Chapter 3

The Voice Recorder

The voice recorder is a device that can record messages and play them back under program

control. A microphone on the device allows it to record messages, while a speaker connected

to the device allows the user to hear the played back messages.

The voice recorder is capable of recording messages of variable lengths, storing a

total length of 60 seconds. The messages can be stored in the ISD record/playback chip

indefinitely, but they can be written over through a Cricket Logo command.

The voice recorder is useful for automated playback of messages, since the Cricket can

control when to play which message.

3.1 How the Voice Recorder Works

The voice recorder uses the PIC16F84 microprocessor and the ISD2560 record/playback

chip. It has a three-pushbutton interface for play, record, and message number. It has a

microphone, a speaker, an audio amplifier circuit with a volume knob, headers for the bus

cables, and the necessary voltage regulator circuit for converting the 9 volts from the bus to

5 volts. The circuit is similar to the microcontroller/pushbutton mode circuit given in the

ISD2500 data sheet[4], but it includes the audio amplifier and the Cricket bus circuitry.

The record/playback chip is the central component of the voice recorder. It is the chip

that records and plays back the messages. The ISD is quite flexible, and has many modes

of operation. In order to control the chip properly, many input/output lines from the mi-
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Figure 3-1: The Voice Recorder
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croprocessor must be used to toggle the different pins of the ISD2560. The microprocessor

tells the record/playback chip when to record, playback or fast-forward through messages,

by receiving the input from the different buttons pressed or the Cricket Logo bus commands

and toggling the correct ISD input lines.

The ISD chip stores all the recorded data on chip. At the end of each recording, an End-

Of-Message (EOM) marker is stored at that address. An EOM output pin detects when an

EOM marker is is reached during playback or fast-forwarding, allowing the microprocessor

to know when a specific message is reached or when a message has reached its end.

3.2 How the Voice Recorder is Used

There are two user interfaces to the voice recorder: a direct manipulation pushbutton

interface, and a software interface. For the pushbutton mode, a record button, REC, allows

the user to record a message while holding down the button. A play button, PLAY, plays

back the current message. A message number button, MSG#, is used for fast-forwarding to

different messages. Pressing MSG# once will reset the message pointer to the first message.

The number of times that the MSG# is pressed will move the pointer to the beginning of

that message number. Pressing PLAY afterwards will playback that message number.

Playing back a message can be done by pressing the PLAY button or through a Cricket

Logo command that also specifies which message is to be played. Playback of a specific

message can also be accomplished through the pushbutton mode by fast-forwarding through

the messages before the specific message the user wants to play and then pressing the PLAY

button. The user can also cycle through the recorded messages by pressing the PLAY button

once in the beginning and then at the end of each message. The unrecorded space, if there

is any, at the end of the recorded messages is treated as a single message and it is finished

at the end of the 60 seconds. Pressing the play button then will replay the first message.

The Cricket Logo interface currently has the record-over Cricket command imple-

mented, which allows the user to start recording from the beginning of the message space,

effectively "erasing" the messages that are recorded over. Also, a play command allows

the Cricket to play back a certain message.
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The voice recorder keeps track of the number of messages recorded, and whenever the

REC button is pressed to begin a recording of a new message, the device increments this

number and fast-forwards to that message number, so that the new recordings are always at

the end of the previously recorded messages. The record-over Cricket command sets

this number to zero so that the next recorded message will be placed in the beginning of the

message space.

To demonstrate the play command, here is an example of a Cricket Logo procedure.

This procedure checks the clap sensor, and plays back the 5-second long message, message

3, whenever a clap is heard.

to sayhi
loop [ if clap? = 255 [play 3 wait 50] 1
end

The command play 3 plays the 3rd message, and the wait 50 command waits for 5

seconds so that subsequent claps would not try to play the 3rd message again while it is

already playing.

3.3 Hardware

The circuit for the voice recorder consists of the voltage regulator circuitry, the micropro-

cessor circuitry, the record/playback chip circuitry, and the audio amplifier circuitry. The

voltage regulator circuit is a Cricket-standard circuit used to provide the power from the bus

to the whole chip. The only difference is that in the voice recorder, the power and ground

are separated into analog and digital. The microprocessor part consists of the connection

of control lines to the record/playback chip and to the LED and pushbutton switches. The

circuit for the ISD record/playback chip is taken directly from the ISD manual1 , which pro-

vides the exact capacitor and resistor values for the decoupling and biasing of the different

pins. The audio amplifier circuit is taken from the LM386 data sheets[9], also to provide

the exact component values for the decoupling and biasing of the amplifier.

IISD2500 Application Example-Design Schematic. ISD, pg. 1-100.
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Voice Cricket 1.1
MIT Media Lab (C) 1999
Genee Lyn Colobong
March 1, 1999
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Figure 3-2: Voice Recorder Circuit Schematic
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Figure 3-3: Voice Recorder Printed Circuit Board Layout: Component Side

3.3.1 Voltage Regulator Circuit

The voltage regulator circuit uses the LM2931Z-5.0 5-volt regulator to turn the +9 volts

from the Cricket bus to the +5 volts that the microprocessor and ISD chip require. The

audio amplifier, on the other hand, uses +9 volts straight from the power supply. A 1 KU

resistor to a red LED from Vdd to ground serves as the "power" indicator, showing that the

device is either on or off. A 47 pF capacitor provides power supply decoupling for the +5

volts. See Figure 3.3 for the voice recorder circuit schematic.

As mentioned earlier, the power and ground are separated into analog and digital parts,

only meeting here at the base of the voltage regulator. This is evident in the solder side of

the printed circuit board layout. See Figure 3.3.1. The reason for the separation is to keep

the digital noise from interfering with the analog components of the circuit. The analog

ground is expanded to become a ground plane to further reduce the noise2.

2Good Audio Design Practices. ISD, pg. 4-75.
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Figure 3-4: Voice Recorder Printed Circuit Board Layout: Solder Side

3.3.2 Microprocessor Circuit

The microprocessor, the PIC16F84 from Microchip Technology[8], has 13 input/output

pins. Three of these pins, RA2 to RA4, are each tied to one end of the three pushbutton

switches and also to a 10 KQ pullup resistor, provided by the resistor pack, up to the digital

Vdd. The other end of the switches are tied to the digital ground. These input pins are then

inverted, providing a low when a switch is pressed. A green LED and a 1 KQ resistor to the

digital Vdd is tied to the output pin RA1. This pin is also inverted in that a low is required

to light the LED. The bus data line is connected to a regular input/output pin, RB 1, since

the bus is implemented normally so that it does not need to interrupt the microprocessor.

The RBO/Interrupt pin and the rest of the seven I/O pins are dedicated to the control of

the ISD chip. RBO/Int is an input pin connected to the End-Of-Message (EOM) pin since

this signal needs to interrupt the microprocessor. Another input pin is tied to the Overflow

(OVF) pin. The other six pins are output pins are connected to the Playback/Record (P/R)

pin, the Power Down (PD) pin, the Chip Enable (CE) pin, and the three controlled mode

pins, AO, A4 and A6.
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The microprocessor also uses the Cricket-standard 4 MHz ceramic resonator as a clock

input, and the 10 Ki resistor from MCLR to the digital Vdd, provided by the 10 KG x 5

resistor pack.

3.3.3 Record/Playback Chip Circuit

The record/playback chip circuit has the ISD2560 as its main component. The 2500 series

was chosen because it was used previously and successfully in another project within the

group. The 60-second version was chosen over the other lengths because it was long enough

to hold a substantial amount of messages, and the quality of the output was better than with

the longer versions. The 2500 series uses the same amount of memory allocation for the

different recording lengths, but the sampling rate is changed to accomodate the different

lengths. The slower the sampling rate, the less information is stored during the recording,

but the longer the recording length can be.

As discussed earlier, several control lines of the ISD2560 are connected to the in-

put/output pins of the microprocessor. These pins control exactly what the record/playback

chip does, telling it exactly when to start recording, stop recording, start playing back,

reset, and fast-forward. The ISD also has ten address pins (AO to A9) that can correspond

to the exact address of the message space. This was not too useful for the voice recorder

application though, since the messages are treated as units of message space that are not

separable.

The other use for these address pins are as mode selectors. The 2500 series is capable

of operating in several modes. The modes available are MO-message cueing, M1-delete

EOM markers, M3-message looping, M4-consecutive addressing, M5-CE-level activated,

and M6-push-button mode. The modes that I thought would be useful to control are modes

0, 4 and 6, so these pins are tied to microprocessor output pins, while the rest are either tied

to digital ground to not ever be used.

The Vccd and Vcca are digital and analog power supply pins for the ISD. Each pin

has a 0.1 tF power supply decoupling capacitor to ground, C9 and C 10. C11, the 22 pF

capacitor on the Vcca line, is another bypass capacitor for the analog Vdd.
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The Chip Enable line has a 0.001 puF capacitor, C15, connecting it to the digital Vdd.

This is to prevent "unexpected records" that can occur during power up. If the P/R pin

happens to power up on the recording setting, and CE goes high slower than the Vccd of the

chip, due to loading and capacitance, a short recording might occur and an EOM marker

might be placed immediately after it. This effectively moves the addresses of the previously

recorded messages up by one, and the first message is no longer the first recorded message,

but a blip of sound instead. The capacitor tying the control pin to Vccd would bring the pin

voltage up with Vccd, since the voltage across a capacitor cannot change instantaneously. 3

The 0.1 pF capacitor, C13, and the 5.1 KQ resistor, R8, that tie the Analog Input pin to

the Analog Output pin provides an additional low frequency pole to help the cutoff at the

low end of the voice passband. If a microphone is not used, the input signal would be fed

directly to the Analn pin, and the AnaOut pin would provide the preamplifier output.

The AGC is the Automatic Gain Control input, which adjusts the gain of the preamplifier

dynamically. R7 and C 12, the resistor and capacitor tied to the pin in parallel provide the time

constants used to determine the "attack" and "release" time for the gain of the preamplifier.

The MicRef and Mic lines are connected to the two ends of the microphone through

0.1 pF decoupling capacitors, C7 and C8. The capacitors also provide single-pole low-

frequency cutoff and common mode noise rejection. The resistors, R4, R5 and R6, are bias

resistors for the microphone. C6, the 220 piF capacitor, reduces the power supply noise of

the analog Vdd.

3.3.4 Audio Amplifier Circuit

The audio amplifier circuit amplifies the output from the ISD record/playback chip and

feeds it to the speaker. The low-voltage signal from the SP+ pin of the ISD chip goes

through an AC coupling capacitor, C14, and the 50 KQ potentiometer to the positive input

of the LM386 amplifier. The potentiometer serves as a volume knob, reducing or enlarging

the resistance of the input signal to give a louder or softer output. The negative input of

the amplifier is tied to ground. The amplifier is set to a gain of 20, which is accomplished

3Unexpected Record. ISD, pg. 4-24 to 4-25.
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Table 3.1: Voice Recorder Parts Listing

by leaving the two gain pins, pins 1 and 8, not connected. This is the lowest gain that the

amplifier is able to accommodate, and I did not find the circuit to need any more gain than

20. This is partly due to the +9 volts that the LM386 uses for a supply voltage, allowing

the output to be amplified to up to +9 volts. The output of the amplifier goes through a 220

piF capacitor to one side of the 3-pin header, which connects to the plus side of the speaker.

The other side of the 3-pin header is tied to ground, also grounding the negative side of the

speaker. The 0.047 puF capacitor and 10 Q resistor are for filtering. The 10 puF and 0.1 p-F

capacitors provide power supply decoupling for the +9 volt supply voltage.

Table 3.1 is a parts listing of the voice recorder design.
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Device Type
1206 SMT capacitor
1206 SMT capacitor
1206 SMT capacitor

tantalum cap
tantalum cap
tantalum cap
tantalum cap
tantalum cap
3-pin female header
JST connector
hi-eff LED, red
hi-eff LED, green
microphone

potentiometer
1206 SMT resistor
1206 SMT resistor
1206 SMT resistor
1206 SMT resistor
1206 SMT resistor
resistor pack
pushbutton switch
ceramic resonator
voice rec/play chip
+5V voltage reg
audio amplifier
microprocessor

Value
0.001 pF
0.047 pLF
0.1 pF

10 pF
22 pF
220 tF
4.7 pF
47 pF

HLMP1700
HLMP1790

50 KQ2
10 KG
IOQ
1 KQ
470 KQ
5.1 KQ
10 KQ x 5

4 MHz
ISD2560G
LM2931Z-5.0
LM386
PIC16F84

References
C15
C5
C3 C7 C8 C9

CIO C13 C14
C4
Cli
C2 C6
C12
C1
J3
J1 J2
LEDI
LED2
MICi
POTI
R4 R6
R2
RI R3 R5
R7
R8
RP1
SWl SW2 SW3
U4
U5
U2
U3
U1

Price Ea.
0.158
0.304
0.4054

0.336
0.459
4.35
0.272
0.708
0.083
0.09
0.282
0.282
1.239
1.00
0.051
0.096
0.051
0.096
0.096
0.15
0.2294
1.159
8.6352
0.5252
0.3252
4.19

Catalog No.
PCC102BCT-ND
PCC473BCT-ND
PCC104BCT-ND

P2013-ND
P2015-ND
540-220M06
P2024-ND
P2017-ND
929974-01-03
JST B3B-PH-K
HLMP-1700QT-ND
HLMP-1790QT-ND
P9931-ND
3352E-503-ND
4 P1OKECT-ND
P1OECT-ND
4 P1.OKECT-ND
P470KECT-ND
P5.1 KECT-ND
264-10K
SW400-ND
PX400SCT-ND
ISD2560G-ND
LM2931Z-5.0-ND
LM386M-1-ND
PIC16F84-04/SO-ND

Supplier
Digikey
Digikey
Digikey

Digikey
Digikey
Mouser

Digikey
Digikey
Richey
Heiland

Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Mouser

Digikey
Digikey
Digikey
Digikey
Digikey
Digikey



3.4 Software

The assembly language code for the microprocessor can be broken up into four parts: the

main loop and button/bus handling, the record sequence, the playback sequence, and the

fast-forwarding sequence. See Appendix B for the actual assembly language program for

the voice recorder.

3.4.1 The Main Loop and Button/Bus Handling

The main loop consists of checking for the low in the bus data line, meaning that a byte is

coming in, and checking the three buttons for a low, meaning one of the three buttons is

pressed. Usually, the main loop would spend most of its time waiting for the bus line to go

low, but in the case of the voice recorder, the pushbutton inputs are just as important as the

bus inputs, so the loop checks the four input lines at the same rate.

Bus Handling

When a byte arrives on the bus and is loaded onto the bus-data register, the carry bit

is checked to see if the byte corresponds to a command or data. If it is a command, it is

checked to see if it has the correct name. The voice recorder comes in four names (in hex

below), corresponding to four colors: $54 for red, $55 for blue, $56 for yellow and $57 for

white. This is the usual way that a bus device is named. If the name does not match, then

it returns back to the main loop.

If the name does match, a second byte is received. Currently, there are only two

Cricket Logo commands that can be given to the voice recorder. If it is the record-over

command, then an $ff is received and the msgnum register, which contains the number of

messages recorded on the device, is cleared and written on the EEPROM of the PIC 16F84.

It must be written on the EEPROM so that the device does not forget the number of

messages it has when powered down. Upon startup, the device reads this information from

the EEPROM and stores it again in the msgnum register.

Any other number received as the second byte corresponds to the message to be played

back, which is the only other Cricket Logo command that the voice recorder can receive.
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This number is stored into the nthmsg register and is reduced by one, so that play 1,

which means "play the first message" to the user, will be read as "play the zeroth message

in the message space", which is in fact the first message. Then some initialization is done:

resetting the chip by pulsing the PD pin, resetting the state bits, checking the pnbit if

more initialization is required, and setting the P/R pin to play. If the number in nthmsg is

larger than zero, then the bus f f bi t bit of the bits register is set and the code branches

to the fast-forward section, to fast-forward to the beginning of the next message, and jumps

back when it checks if the bus f fbit is set. The bus f fbit is cleared and nthmsg is

decremented. This is repeated until the number in nthsmsg is zero. Then it jumps to the

play sequence to playback the message that the pointer is currently pointing to. Then the

code returns back to the main loop.

Button Handling

The buttons are also checked to see if they have been pressed. If REC is pressed, then the

code branches to the record sequence and begins recording. If PLAY or MSG# is pressed,

then some state bits are checked to see which part of the playback or fast-forwarding

sequences it should jump to.

The device is initialized so that the P/R is set to play, modes 0 (the message-cueing

mode) and 4 (the consecutive addressing mode) are cleared, and mode 6 (the pushbutton

mode) is set. All the other state bits in the bi ts register are cleared.

3.4.2 The Record Sequence

The record sequence is currently only accessed through the pushbutton mode, by actually

holding down the REC button to record a message. In the record section, the msgnum

register is loaded to see how many messages have been recorded on the device since the last

time the record-over Cricket Logo command was sent. If the number is not zero, then

the code branches to record2 which fast-forwards through the messages until the pointer

is set to the end of the last message, so that this to-be recorded message will be recorded at

the end of the current message space.
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Figure 3-5: The Record Sequence State Diagram
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In record, the P/R pin is set to record, and mode pins 4 and 6 are set. The green

LED is turned on, and the chip enable line is pulsed to start the recording. The wai trec

loop waits until the button is no longer pressed or an overflow occurs. When the button is

let go, the stop-recording sequence begins. CE is pulsed again to stop the recording, the

msgnum register is incremented and written onto the EEPROM, the mode 4 pin is cleared

to disable consecutive addressing, the P/R is switched to the safer play state, and the green

LED is turned off. If an overflow occurs, meaning that the chip has reached the end of

its 60-second message space, the code branches to recovf, which goes through the same

stop recording sequence without waiting for the button to be let go.

The r e c ord2 code is the same as the re c ord code, but it contains the fast-forwarding

loop rec f f which is repeated the same number of times as there are number of messages

in the msgnum register. The fast-forwarding process will be explained more in detail under

the Fast-Forwarding Sequence section.4

The record sequence does not change any of the state bits, though mode bits 0 and 4

are toggled to allow the fast-forwarding in record2. The fast-forwarding sequence relies

heavily on the correct setting of these two modes.

3.4.3 The Playback Sequence

Pressing the PLAY button immediately brings the code to playinit. The playinit

checks the f fbit of the bits register to see what state the device is currently in. If

f fbi t is set, then the device has just been fast-forwarded, and the message space pointer

is currently pointing to a message other than the first message. If the f fbi t is not set,

then the message pointer is pointing to the beginning of the message space, and the play

sequence would begin playing back the first message.

The playback section consists of play, which ends in playloop, playnext1,

also ending in playloop, and then the three ending branches stop, playeom, and

playovf, which ends the playback sequence.

The ordinary play sequence already has P/R set to play, and it clears the resetbit.

4The record2 code would not have been possible without the ISD Application Notes and Design Manual
on Circuit Examples, page 4-61, in the ISD Data Book.
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ffbit = 0

Figure 3-6: The Playback Sequence State Diagram
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The playnext2 code follows, which has the actual playback sequence, turning on the

green LED, and pulsing CE to start playing the first message. While the message is playing,

the code is stuck in playloop, checking to see if the PLAY button is pressed again, if

the end of the message is reached, or if the chip has reached the end of its memory space.

Pressing the PLAY button while the message is in the middle of being played back signals

the device to stop playing the first message and reset. The end of the message is signaled

by a low on the EOM pin of the ISD, and the overflow is signaled by a low on the OVF

pin. In the s top branch, the device is reset, the mode and state bits are reset to their initial

settings, and the green LED is turned off. In the playeom branch, the message ends and

all that has to be done is turn the green LED off. In the playovf case, a pulse on CE

resets the message space pointer, and the green LED is turned off.

If the device is already pointing to a message other than the first, then the mode bits

are configured to a different setting, allowing the fast-forwarding to have occurred. This

current setting can not be disrupted, or else the device will return back to the beginning

of the address space. In playnext1 the f fbit is cleared and the pnbit is set, going

into another state. The message is played back, by branching to playnext2 and the code

returns to the main loop.

All subsequent playbacks play the message after the one just played. But since the

device was fast-forwarded to get to the first played back message the mode bits are still set

to the unusual settings. This is changed when another button is pressed, a bus command is

given, or the message is stopped in the middle of its playback. If the MSG# is pressed, then

the code branches to resetmodes since the pnbit is still set. The record code also

reinitializes the state bits and sets the mode bits to the settings that allow it to record. The

bus command, which leads to playnnth, also clears the state bits and makes a branch to

resetmodes if the pnbit is set. The stop code also reinitializes the state and mode

bits.
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Figure 3-7: The Fast-Forwarding Sequence State Diagram

3.4.4 The Fast-Forwarding Sequence

A low on the MSG# line allows the code to branch to msginit. The msginit checks

two bits to see which state the device is currently in. If the two bits are cleared, then it is

the first time that the MSG# is pressed and the code branches to reset which points the

pointer to the beginning of the message space.

The reset code turns on the green LED, sets the resetbit, resets the mode bits if

the pnbi t is set, waits a millisecond so that the lit green LED can be seen, reinitializes the

message space pointer to the beginning, and turns off the green LED.

If either the resetbit or f fbit is set, then the code branches to fastf, which

means that the MSG# button was already pressed at least once before. If the resetbit is

set, then the pointer should be fast-forwarded so that it is pointing to the beginning of the
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second message. If the f f bi t is set, then the pointer is already pointing to the beginning

of a message other than the first one, and it should be fast-forwarded again to point to the

message after that. In f astf, the resetbit is cleared, the mode pins are set so that the

fast-forwarding is enabled, (mode 6 is cleared, and modes 4 and 0 are set,) and CE is pulsed

to begin the fast-forwarding.

At this point, the RBO interrupt is enabled. The low on the EOM pin can occur anytime

depending on the length of the message being fast-forwarded. In the meantime, the eombi t

is polled in f f loop. When the interrupt occurs, the eombi t is set in the int -routine,

and the code returns to the f f loop which it can now exit. The RBO interrupt is disabled,

the eombi t is cleared and mode 0, the message cueing mode, is returned to its normal state.

The green LED is turned on and off to show the user that the device has fast-forwarded to

the next message. The bus f fbit is checked to see if this was for a bus command, and

the code returns if the bit is set. If it is not set, then the f fbit is set signifying that the

pointer is now pointing to the beginning of a message other than the first.
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Chapter 4

Field Test: The Community Arts

Center Workshop

The workshop was held at the Community Arts Center in Cambridge, Massachusetts with

six or seven 10- to 12-year-old children. It consisted of five 2-hour afternoon sessions

spread out over three weeks in April 1999. The Center runs an afterschool program for the

children with set classes from 3 to 5pm, and the workshop became a replacement for one

of these classes, photography, for the three week period.

The photography teacher was forced to cancel the class, and as a result, the children that

I worked with didn't actually express interest in Cricket Logo, but were somewhat forced

to participate in the workshop due to the situation. There were six children signed up for

the Cricket workshop, but towards the end, only four remained. The seventh child joined

us for the second day and was able to create something in the span of two hours, but she

didn't return for the following days.

The goal was to introduce the children to Cricket Logo and have them build their own

LEGO creations that operated with a program and had behaviors that are related to sound.

This workshop would be the first time that the children would get to work with the Sound

Sensor or the Voice Recorder. Incorporating these devices into their Cricket projects would

easily result in a LEGO creation that could respond to sound or output sounds.

The children who attended the workshop were: Steve, John, Gene, Mary, Samantha,
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Lisa and sometimes Molly.1 The group consisted of three boys and three girls. The

children who remained until the end are the three boys, Steve, John and Gene, and one girl,

Mary. The children came from neighboring schools, and they regularly attended the CAC

afterschool program. Steve went to a nearby private school, while the other children went

to a public school.

Beth Rochefort was my main contact at the CAC, and she provided me with the children

and the rooms. I thought that she would be able to participate in the workshop as well, but

she had her own kids to look after, leaving me to supervise the six children by myself.

4.1 Day by Day Narrative

On the first day of the workshop, the Community Arts Center was not able to let me use the

computer lab. Instead, Beth let me share a somewhat large room with another group. The

space was accomodating, but the computers were lacking. Only one computer was useable,

leaving me with only two computers for the day, since I had brought only one laptop. I

anticipated having three computers so that the six kids can break into three groups, but this

was not the case. Instead, we had a laptop and a desktop that needed to be shared among

six children. This situation meant that only two kids could type at a time, and that four kids

would have to watch patiently at a time. This proved to be difficult with 10- to 12-year-olds.

The materials I brought to the workshop are the Crickets, red (small) and gray (high-

powered) motors, and a variety of sensors such as light, touch, temperature, and reflectance.

I also brought plenty of 3-digit displays and sound sensors, and three or four voice recorders

and speakers. For building materials, I brought a big tub of LEGO parts, but I quickly learned

that the collection of LEGO parts was missing some very important key parts that our lab

had run out of. These parts included axles longer than 4 inches and axle connectors, which

are necessary when using the gray motors. The lack of these key parts made for some

creative solutions, but often resulted in frustration for the children.

I began the workshop by showing them a demo of the BopIt game, built by Chris

Hancock and Bakhtiar Mikhak, graduate students from the Epistemology and Learning
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Group. The Cricket version of the BopIt game consisted of two mechanisms: a lever that is

bopped, or pressed, and a handle that is twisted. The Cricket that controls the BopIt picks

one of the two mechanisms randomly, and the voice recorder would either say "Bop It!" or

"Twist It!" depending on which device the user is to bop or twist. A timer begins running

as soon as the Cricket chooses one of the mechanisms and if the user's response is too slow,

then the user loses. The children received it with delight, crowding around the game to

watch each other play.

After showing them the BopIt, the rest of the day was introduction and experimentation.

The children split up with girls on the laptop and boys on the desktop. The boys were

immediately envious of the laptop, and the children did not seem at all interested in sharing

and working together. Nevertheless, we went through the motor commands, then began

experimenting with the sensors.

Steve seemed to be the most interested in Cricket Logo of the six kids. He was able

to learn the motor and sensor commands very quickly, but his LEGO building skills were

lacking. After having the kids control a motor attached to a Cricket through Cricket Logo, I

had them build a car with LEGO pieces so that they were able to control their own creation

instead of just a motor. Steve couldn't seem to see the next step in the building process,

and he was always frustrated because he didn't know how to get to the finished product.

As soon as he was able to control his car-like creation with the simple motor commands,

he started over with the sensors, and didn't bother to add the sensors to his car. He didn't

even modify or improve his LEGO car, as the other kids were more inclined to do. He then

played with the sensors to see what kind of numbers they produced, by attaching a 3-digit

display to the cricket and roaming around the room to measure light, sound, temperature,

etc.

The other children did not show the same enthusiasm. John immediately mentioned

that he did not have any interest in the Crickets or programming. He spent some of his time

with the hardware, connecting the sensors, motors, and bus devices to the Crickets in all

sorts of ways.

The girls found some interest in the voice recorder. They quickly learned the push-

button interface, and began recording messages and sounds. I noticed that the girls could
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immediately get meaningful play out of the voice recorder. The girls did not have to learn

how to program it in order to use it, unlike the other devices. Samantha is a shy girl and

I couldn't get her to actually say her own messages while I was teaching her how to use

it. She ended up using the voice recorder to say hello messages to her friends, and also to

record notes to herself that day. Lisa and Mary recorded little songs that they played on the

piano.

The second day was much more productive. First, I was able to use the computer lab,

giving me access to six computers. I did not bring enough interface Crickets though, so the

children had to share five computers between them. I encouraged them to work with each

other, but maybe the scenario of the first day made them realize how much they value having

their own Cricket Logo station. Still, the five computers greatly improved the productivity

for that day.

Second, I had brought with me several Cricket-savvy colleagues from the Epistemology

and Learning Group, Fred Martin, Bakhtiar Mikhak and Michelle Shook, so that the teacher

to student ratio was almost 1:1. The children definitely made use of all of the available

help. The adults were found busy helping with everything from LEGO part searching to

Cricket Logo programming.

That day, I had the children begin working on a car-like project that would be controllable

by the environment around it. They basically had to build a LEGO car, attach the motor

and sensor to it, and program it to go forward when the sensor is triggered.

Everybody seemed to have a good time with the LEGO building. The LEGO parts were

spread out on the floor and the kids and adults sat around them building their cars. This

was not too easy a task, though, with the still-missing LEGO parts.

Lisa was able to make a pretty wide car by joining two or three short rods to form one

axle. But without the axle connector LEGO piece, she had to use the smallest 8-tooth gears

and stoppers to connect them. Though she managed to piece it together, she was not able

to attach a Cricket or any weight to her car because the axles were so frail. She ended up

starting over, following the design of one of the other kids.

Molly, who joined us only for that day, seemed very interested in the car-building

project. She was very apt in the LEGO building part, constructing a car that seemed strong
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and stable, and held the Cricket securely. I ran through the different sensors she could

use to control the car, and she lit up when I mentioned the clap sensor. With my help, we

incorporated the clap sensor to her car and we first programmed the Cricket to just turn

the motor on when a clap is heard. After downloading, she put her car on the floor and

clapped. It worked! The car slowly moved forward and kept moving until it almost hit a

chair. She was very excited to see her car work. I showed her how to use the wait and

reverse direction (rd) commands, and she began experimenting with the existing program

to get her car to do more interesting things. This process of programming and then testing

by putting the car on the floor and then clapping caught the attention of everybody in the

room. Soon, John and Gene started clapping to control her car. After this, all the children

wanted to use a clap sensor with their projects.

On the third day of the workshop, we were allowed to the use the computer lab again,

but this time, there was no other adult that was available to help with the workshop.

The children had saved their car projects from the previous day, so we spent the day

working on them.

Again, the children weren't as productive. Some of them were frustrated that I wasn't

able to help them with their problems immediately, and they told me so. Some of them got

bored and began looking for other software on the computers to keep them entertained.

Steve, Samantha and Lisa started playing with the turtles in Microworlds, which they

got to see at a recent visit to the Media Lab. Gene started playing with the voice recorder

and started recording some obscene sounds like supposed flatulations and heavy breathing.

Molly didn't join us that day, or for the rest of the workshop. So John, who found LEGO

building frustrating, took her project and tried to turn it into his own. He removed the

wheels and several of the bricks and turned it into a boat by adding a propeller on the

bottom. He would go to the bathroom with the boat and try and make it move, despite my

warnings that he shouldn't get the Cricket wet.

For the fourth day of the workshop, we were given an entirely new room. Without any

desktop computers whatsoever, I was forced to bring several laptops. This worked well

enough, since all the children preferred working with laptops over desktops. Several kids

that did not participate in the workshop were all of a sudden very interested in what our
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group was doing, encouraging the kids that I was working with to have more interest in the

workshop that day.

The children had a productive day, with the help of Cricket Logo experts, Tim McNerney

and Clint Sieunarine. Tim mentored Gene, spending the whole afternoon with him, and they

seemed to be the most productive group that day. Their finished product was a fast, smart

car that reversed direction and played one of Gene's messages depending on the number

of claps it heard. Based on Gene's wishes, Tim had the tough job of coming up with the

program that would count the number of claps it heard and respond to it. He suggested that

this functionality be added to the sound sensor so that the kids could use it easily in their

programs. He noted that it was the first thing that Gene thought of when they decided to

add both the clap sensor and the voice recorder to his car.

I had Mary and Steve think about the kinds of sensors that they wanted to add to their

projects. We put together a list of inputs and outputs that our Cricket workshop supported,

hoping that we could brainstorm together. I was not able to show them the volume function

of the sound sensor before, so I had them test it out. Because I was unprepared, I didn't

provide suggestions on how this command can be used in their projects, so the idea of

incorporating the volume sensor was abandoned.

Mary was inspired by the procedure called "to dance" from the Introduction to Cricket

Logo handout that I gave them that day. She rewrote the procedure for her car, changing

the sensor inputs. Her dancing car then needed some music to accompany the movements,

and instead of using the Cricket beep and note commands, I suggested that she use the

voice recorder to play the songs for her project. I thought that she might just sing into the

voice recorder, but her first thought was to record songs from the radio. She wasn't able

to record an entire song though since the device can only record 60 seconds long. The

recordings came out with enough clarity that the people in the room thought that somebody

had turned the radio on. She was able to integrate the voice recorder and speaker into her

dancing car, by making the LEGO base big enough to hold the devices, but then the little

red motor became too weak to move the dancing car back and forth. The next workshop

day, she changed the structure of her car so that she could use the bigger gray motors that

were powerful enough to withstand the weight of her dancing car.
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Figure 4-1: Mary's Dancing Car
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On the fifth day, I was the only adult again, but this time only four of the kids were

participating in the workshop. Lisa and Samantha preferred to be with Beth's group, instead

of working on their project. They were both working on a carousel, but neither really had

the interest of figuring out how to build it out of LEGO parts. And without help from other

adults, they got bored with the project and decided to do something else. Though I was the

only adult, I only had to work with Steve, John, Mary and Gene. This still proved to be

difficult, and the children still did not receive the help that they needed. Also, the kids were

quite sad that it was the last day and that they could not keep their projects.

Mary was able to finish her dancing car by making the base bigger so that it could hold

the Cricket, the voice recorder and the speaker. She then added a display on the front that

she wanted to use to display short words, but the displays that I had brought to the workshop

were not programmed to display alphanumeric characters, so she settled for displaying the

value of the volume sensor.

But Mary's desire to use the display as another communicating visual device shows

the Cricket's lack of text-displaying ability. Currently, some 3-digit displays have been

reprogrammed to be able to display alphanumeric characters. Perhaps the 3-digit displays

should be revised so that both functions can be performed by the same device.

Steve started on another project, an airplane, which had the ability of turning the propeller

while moving on the ground. He had two gray motors for the plane's two wheels and another

red motor for the propeller. He started experimenting with the use of two Crickets since the

Cricket is only able to handle two motors at a time. Looking at Figure 4.1, one can tell that

he stacked the two Crickets on top of each other. He wasn't able to incorporate any sensors

to his plane, so I wasn't sure what he had in mind, but this would have been an excellent

opportunity to show him the communication capabilities of the Cricket.

4.2 Technology Evaluation

During the testing of the devices and preparation for the workshop, the voice recorders were

not operating as planned. The pushbutton mode worked properly, but whenever the Cricket

Logo command play was sent to the device, the voice recorder would not reliably execute
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Figure 4-2: Steve's Plane
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the command. Also, the Blue Dot Cricket would often crash after sending the command.

The reason for this is that the voice recorder draws a lot of current from the Cricket

when playing back a message. In order to fix this problem, I had to give the voice recorder

its own power supply. I cut the +9 volt trace from the bus and soldered an on/off slide

switch between the +9 volts of the device to the plus lead of a +9-volt battery holder. The

minus lead was soldered to ground. This allowed the voice recorder power supply to be

separate from the Blue Dot Cricket power supply, and the voice recorder can draw as much

current as it wants.

I noticed that a certain startup sequence had to be followed or else the Cricket would

not boot up properly. The voice recorder must be turned on first, and then be followed by

the Cricket. The MIDI device, which also has its own power supply, must also be turned

on in this order whenever it is attached to a Cricket. Perhaps the Cricket cannot handle the

fluctuations in the ground signal (since the ground and bus line are still connected) when

the voice recorder or MIDI is powered up while it is already on.

Also, I noticed that while the kids were using the voice recorder, it would sometimes

crash. Power-cycling the device would not do anything. If it was turned off for a few

minutes, it would suddenly start working again when turned on. Often I had to cycle

through the available voice recorders whenever one that that was being used in a project

would suddenly stop working. This problem should be debugged and fixed for the next

version, which will include its own power supply and on/off switch.

Some possible ideas that came to mind for further development of the voice recorder

is that it could be a lot smaller. Smaller speakers can be used for some applications,

instead of the 6" x 6" x 2" black speakers that we currently use. These speakers provide

excellent sound quality, but perhaps the quality might be traded off for smaller size in

some applications. Also, removing the battery holder from the voice recorder can definitely

improve the weight. An idea suggested by Tim McNerney is to have a battery be a Cricket

bus device that doesn't have its own bus signal line. It can provide the +9 volts and the

ground to the other bus devices, so that the voice recorder would be smaller, and other

current-draining devices such as the 3-digit displays would not drain the Cricket power

supply.
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As for the sound sensor, I was showing Mary and Steve the volume function of the sound

sensor during the workshop, and I noticed that the analog sensitivity knob of the sound

sensor was wired the wrong way. In its current configuration, turning the knob clockwise

gives less sensitivity, and a turn counter-clockwise gives more sensitivity. This should be

revised in the next version.

4.3 Some Comments on Workshop-Based Learning

I learned a number of lessons through the course of this workshop. The first lesson is that

I cannot hold a workshop on my own. It's very hard to work with children. They have

short attention spans and too much energy, and when combined, the result is very chaotic.

It's difficult to keep them focused on the task at hand, and I learned that this alone requires

almost a one-on-one type of relationship with each child. So in order to have a somewhat

productive workshop, plenty of knowledgeable adults need to be at hand to help and mentor

the children. Otherwise, the children become frustrated because they don't receive the help

that they need.

Also, the children should be set up to work in groups. I failed to establish this on the first

day when I gave each child a Cricket of his own. If the children were separated into groups

of two, and were given one computer, one Cricket, and one adult helper, the workshop

would have been much more productive and manageable. In teams of two, the children can

feed off of each other's ideas, fostering more imagination and creativity for their projects.

They could also learn the valuable lesson of sharing and working together.

The format of the workshop I held allowed the children to become more selfish. The

children each expected to have their own laptop or desktop computer. And the children

became selfish with their ideas, too. Towards the end, it seemed as if the children were

accusing each other of copying their ideas.

Organized LEGO parts are very important to the life of the workshop. A lot of time gets

wasted when the children spend a lot of it pouring over the bin looking for a specific part.

Key LEGO parts, mostly the Technic pieces, need to be well sorted and separated from the

usual LEGO bricks. They are the most important parts when building projects requiring
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LEGO motors.

Also, art supplies should be included as materials for the workshop. They encourage

project creativity, leading children to develop more than just cars for their Cricket projects. I

regret not having plenty of materials for the workshop, but the format made it quite difficult

to have all the materials at hand all the time. The different rooms that we were given for

different days of the workshop took away any sense of a Cricket workshop home, where we

can leave all of our materials lying around and the children's projects can be undisturbed to

be worked on later. Had the workshop been held at the MIT Media Laboratory, where bins

and bins of LEGO bricks are sorted and art supplies are plenty, the workshop would have

had such a different feeling.

One more thing I learned is to always have plenty of ideas for the children before the

workshop. Plenty of project examples encourage the children to dream up their own creative

project ideas. The children really need to see plenty of examples of Cricket use before they

can even begin to think about what the Crickets are capable of. When I showed Mary and

Steve the volume function of the sound sensor, I was not prepared in giving them ideas on

how they could use it. The sensor was then quickly abandoned after the demonstration.
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Chapter 5

Future Directions

Future versions of the sound sensor and voice recorder can have more functions and capa-

bilities. The software can be expanded to allow these functionalities and more immediate

revisions of the hardware can also be made to improve these devices.

In general, the Cricket technology can benefit from future work on more sound bus

devices. The last section discusses different ideas for integrating more sound-related

technology to the Crickets.

5.1 Future Sound Sensors

For the sound sensor, the previously written tone recognition sensor can be integrated with

the clap and volume functions. The way that the tone recognition program is currently

written, it is only capable of detecting a frequency of 1200 Hz. This can be changed so that

the user can choose from a range of frequencies to be detected, so that the tone recognition

sensor can sense more than just one tone.

Another functionality to the clap sensor might be a clap counter. While Tim McNerney

was working with Gene at the workshop, he noticed that this was the first more advanced

application of the clap sensor that Gene thought of. This function could possibly be done

as a macro in Cricket Logo, or it could be done in the assembly language program of the

sound sensor.

Some revisions that could done to the hardware have been previously mentioned. First,
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the sensitivity knob can be wired the opposite way so that it follows the conventional rule

of rotation: clockwise for more sensitivity and counter-clockwise for less. Then, if an 8-pin

microprocessor is used, the whole board can be made smaller by placing the components

on both the component and solder sides of the board. All the surface mount components

could be placed on the solder side, for example, cutting down the board size to maybe half

its current size. This board may then be hot-glued to a LEGO part standing on its side, so

as to take less horizontal space.

5.2 Future Voice Recorders

The voice recorder can be expanded so that the Cricket can control more functions. The

"start-record" and "stop-record" bus commands can be implemented. With these new

functions, my opening example of use for the voice recorder pertaining to the Beyond

Black Boxes project can be realized: The voice recorder can be used to record bird chirps

when the Cricket senses that a bird is present.

Revisions that can be made to the board have already been mentioned in the previous

chapters. First, the power supply fix can be permanently added to the hardware, so that

the voice recorder would have its own power supply and on/off switch. Or, the power

supply can be made its own bus device providing power to the other devices as well as the

voice recorder. This power supply can be made efficient so that it is longer-lasting and

yet it remains small. This would allow the shape of the voice recorder to be more two-

dimensional, rather than 3-dimensional with the battery holder. It could then be hot-glued

to a LEGO part, standing sideways, and be a lot less obtrusive to whatever Cricket project

it is used for. With its current size, one can see how much space the voice cricket alone

takes by looking at the picture of Mary's dancing car (see Figure 4.1).

Of course, the most noticeable component of Mary's car is the big black speaker. As

mentioned before, these speakers provide great sound quality, so much that the children

all thought that someone had turned on a radio when Mary would test her car. But size

has become an important issue for me, ever since the workshop was held. The workshop

allowed the devices to be kid-tested, or practically evaluated, and I concluded that the
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smaller the devices are, the easier they are to incorporate into the Cricket projects. In my

opinion, depending on the Cricket project it is used for, the speakers' sound quality should

be traded for smaller size. If the project is to be mobile, as in Mary's case, smaller speakers

would be more reasonable than great sounding ones. If the project is an installation, as in

a door greeter or an art sculpture, better sound quality would be more appreciated than the

smaller size.

5.3 Ideas for Future Sound Bus Devices

Currently, the Cricket technology supports the clap and volume sensors, and the Cricket

Logo commands beep and note, and the MIDI synthesizer and voice recorder as sound

actuators. In the future, the following sensors and actuators can be developed to expand the

sound capabilities of the Crickets.

Voice recognition device Voice recognition software, like the ones used for hands-free

typing, can be used in making a bus device that is able to take a speech input and

then assemble it to form bus commands that would activate different actuators like

turning on a motor, or turning on the lights in a room. What child or adult would not

find this useful?

Voice synthesis device A commercial voice synthesizer can be used to make a bus

device that would allow children to type the English sentences as an argument to

a Cricket Logo macro, and then have the voice synthesizer say the words when

prompted by the Blue Dot Cricket. This bus device would really encourage children

to build robot-like projects.

Combined voice recorder and synthesis device This combines both types of voice

outputs into one device so that the device can take both oral and written inputs and

be able to say them back under program control.

Combined MIDI synthesizer and voice recorder device This can combine both types

of existing sound outputs for the Cricket technology into one device. The user can
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program different songs into the MIDI synthesizer and record the vocal part of the

songs into the voice recorder, and be able to output the completed song with vocals

under program control.
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Appendix A

Sound Sensor Assembly Language

Program

; **************** Constants ***************

[const @ 0]
[const status 3][const carry 0][const zero 2][const bank 5]
[const @@ 4]

[const porta 51
[const portb 6][const portb-ddr $86][const bus 0]
[const bus-port portb][const bus-port-ddr portb-ddr]
[const intcon $0b][const gie 7][const inte 4](const intf 1]
[const adcon $1f][const adgo 2]
[const adres $1e]
[const option 1] ; bank two
[const volumeidentity $28]
[const clapidentity $29]

[const frequency-identity $2b)

[const bus-data $2a]

[const testport portb][const testbit 3]

[const tl $20]

[const t2 $21]

[const counter $22]

[const fade $23]

[const threshhold $24]

[const above? $25]
[const delay $26]

[const temp $27]

[const bits portb][const clap-bit 3]

[const volume-answer $29]

[const loops $30]
[const quarterloops $31]
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[const ubtotal $33][const lbtotal $34]
[const ubtotal_90 $35][const lbtotal_90 $36]
[const ubanswer $37][const lbanswer $38]

[const int-a $40]

[const int-status $411
[const int-phase $42]

; ** Interrupt pointer

[bra start]

[nop][nop][nop]

[bra int-routine]

; **************** Main loop ********************

start

[bsr io-init]
loop

[ldan $55][sta adcon]

[bsr conversion]

[lda adres][sta t2]
[ldan 119][sta counter]

return

[ldan 1]
[subm counter]

[btss carry status]
[bra diminish]

[ldan $55][sta adcon]

[bsr conversion]

[lda adres][sta t1]

[lda t1][sub t2] ;t2 - t1
[btsc carry status]

[bra return]

[lda t1][sta t2]

[bra return]

diminish

[lda t2][sta fade]

[ror fade][ror fade][ror fade]
[ldan $1f][andm fade]

[lda fade][subm t2]

[bra store-values]

conversion

[btsc adgo adcon]

[bra conversion]

[rts]

store-values

[lda t2]
[sta volume-answer]

[sta above?]

[lda threshhold][subm above?] ;t2 - threshhold
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[btss carry status]
[bra below]

above [bset clap-bit bits]
below [bra loop]

**************** Bus interrupt routine *

int-routine

[bclr gie intcon]
[sta int-a]
[lda status][sta int-status]
[bclr bank status]

[bsr btyi20]
[btss carry status][bra iret]
[bsr dispatch]
[bra iret]

NAME

$68 - green

other sound sensors will be called
$69 - blue, $6a for both green and blue

disable interrupts

; store states

dispatch

[lda bus-data]
[xorn $68]
[btsc zero status][bra dispatch2]
[lda bus-data]
[xorn $6a]

[btsc zero status][bra dispatch2]
[rts]

is it for green?

is it for green and blue?

if not return

COMMANDS

bsend $168 send bsr $01 -- returns 255 if clap is heard since last query
bsend $168 send bsr $02 -- returns a value from 0 to 255 for volume
bsend $168 send bsr $03 -- returns 255 if frequency (~1200Hz) is detected

dispatch2

[bsr bus-tyi]
[lda bus-data]
[xorn $01] ; is it a clap command?
[btsc zero status][bra clap-cmd]
[lda bus-data]
[xorn $02] ; is it a volume command?
[btsc zero status][bra volume-cmd]
[lda bus-data]
[rts]

clap-cmd
[btss clap-bit bits]
[bra return-zero]
[bclr clap-bit bits]
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[ldan 255][sta bus-data]
[bra bus-tyo]

return-zero

[clr bus-data]
[bra bus-tyo]

volume-cmd

[lda volume-answer]
[sta bus-data]

[bra bus-tyo]

iret [lda int-status][sta status] ; load states
[swap int-a][lswap int-a]
[bclr intf intcon] clear the interrupt flag
[bset gie intcon] ; enable interrupts
[rti]

; * * Modified bus transmit and receive codes *

bus-tyi

[btsc bus bus-port]
[bra bus-tyi]

btyi20 [btss bus bus-port]
[bra btyi20]
[ldan 8][sta counter]
[bsr an-rts]

btyi30 [nop][nop][nop]
[ror bus-data]

[bclr 7 bus-data]
[btsc bus bus-port]
[bset 7 bus-data]
[decsz counter]
[bra btyi30]
[bsr an-rts][nop]
[bset carry status]
[btsc bus bus-port]
[bclr carry status]

an-rts [rts]

bus-tyo

[ldan bus-port-ddr][sta @@]
[bclr bus bus-port][bclr bus @]
[ldan 33][sta counter]

btyo20 [decsz counter]

[bra btyo20]

[bset bus bus-port]
[ldan 9][sta counter]
[bsr an-rts][nop][nop]

btyo50 [ror bus-data]

[bclr bus bus-port]
[btsc carry status]
[bset bus bus-port]
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[nop][nop][nop]

[decsz counter]

[bra btyo50]

[nop][nop]

[bset bus @]

[rts]

;** * Initialization code *

io-init
[bset bank status]

[clr adcon]

[bclr testbit testport]

[ldan $bf][sta option] set int on falling edge of RBO/INT pin
[bclr bank status]

[bclr testbit testport]

[bclr clap-bit bits]
[ldan $40][sta threshhold]

[clr delay]

[ldan 60][sta counter]

ioin20 [clra][bsr delay-loop]

[decsz counter][bra ioin20]

[bset inte intcon] enable RB0/INT interrupt

[bset gie intcon]

[rts]

delay-loop

[addn -1]
[btss zero status][bra delayloop]

[rts]
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Appendix B

Voice Recorder Assembly Language

Program

;****************** Constants ***************************

pic registers

[const @ 01

[const timer 1]

[const pcl 2]

[const status 3]

[const c 0][const z 2][const bank2 5]

[const @@ 41

[const porta 51[const porta-ddr $85]

[const portb 6][const portb-ddr $86]

[const eedata 8]

[const eeadr 9]

[const intcon $0b]

[const gie 7][const tOie 5][const inte

[const intf 1][const tOif 2]

option 1] ; bank two

eeconl 8][const eerd 0][const eewr

eecon2 9]
1][const wren 2]

[const counter $Oc] ; bit counter for byte in process
[const bus-data $Od]

[const identity $Oe]

[const rename-count $0f]
[const tO $10] ; timers
[const nthmsg $11]

[const bits $12]

[const eombit 0] [const busffbit 1] [const resetbit 2]

[const ffbit 3][const pnbit 4][const pn2bit 5]
[const int-a $13]
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[const int-status $14]
[const msgnum $15] ; to keep track of # of messages

[const msgtemp $16]

bus connection

[const bus-port portb][const bus 1]

[const bus-port-ddr portb-ddr]

ISD outputs/PIC inputs

[const eom-port portb][const eom 0] ; end of message

[const ovf-port portb][const ovf 4] ; overflow

[const recbutton-port porta][const recbutton 3]
[const playbutton-port porta][const playbutton 2]

[const msgbutton-port porta][const msgbutton 4]

ISD inputs/PIC outputs

[const green-led-port portal[const green-led 1]

[const playrec-port portb][const playrec 2] ; 0 to record, 1 to play
[const pd-port portb][const pd 3] ; power down
[const ce-port portb][const ce 5] ; chip enable
[const modeG-port portal[const mode0 0] ; fast forward mode
[const mode6-port portb][const mode6 6] ; pushbutton mode
[const mode4-port portb][const mode4 7] ; consecutive addressing mode

[bra start]

[nop][nop][nop]

[bra int-routine]

start [bsr io-init]

;****************** Main Loop ******************************

loop [btsc bus bus-port][bra button-loop] ; check for bus command

[bsr btyi20] ; get bus-data

[btss c status][bra loop] ; ignore data bytes

[bsr dispatch]

[bra loop]

button-loop ; pushbutton-mode loop
[btss recbutton recbutton-port][bsr record]

[btss playbutton playbutton-port][bsr playinit]

[btss msgbutton msgbutton-port][bsr msginit]

[bra loop]

playinit

[btss ffbit bits]
[bra play]

[bra playnextl]

msginit [btsc ffbit bits]

[bra fastf]

[btss resetbit bits]
[bra reset]

[bra fastf]
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NAME

$54 - red

3 other voice recorders will be called

$55 (blue), $56 (yellow), and $57 (white)

COMMANDS

bsend $154 bsend $nn -- play nn'th message

dispatch

[lda bus-data]

[xorn $54] ; is it for me?

[btss z status][rts]

[bsr bus-tyi]

[lda bus-data]

[xorn $ff]

[btsc z status][bra record-from-beginning]

playnnth

[lda bus-data] ; otherwise store nn

[sta nthmsg]

[bset pd pd-port][bclr pd pd-port] ; reset chip

[bclr resetbit bits]

[bclr ffbit bits]
[btsc pnbit bits][bsr resetmodes]

[bset playrec playrec-port] ; set to play

[dec nthmsg] subtract one from nthmsg so code will work
ff? [lda nthmsg]

[btsc z status][bra playnext2]

[bset busffbit bits]

[bsr fastf2]

[bclr busffbit bits]

[dec nthmsg]

[bra ff?]

record-from-beginning

[clr msgnum]

[clr eedata]

[bset bank2 status]

[bset wren eeconl]

[ldan $55][sta eecon2]

[ldan $aa][sta eecon2]

[bset eewr eeconl]

[bclr wren eeconl]

[bclr bank2 status]

[rts]

PUSH-BUTTON MODE

play button will play current message.

on power-up, play button will play first message.
record button must be held down while recording the entire message.
record will put message at the end of the previously recorded messages.
msg# will reset if pressed once.
msg# will fastforward to the 2nd message if pressed twice.
to the 3rd, if pressed three times, and so on.
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; press play to hear that message.
; pressing record after fastforwarding will reset.

RECORDING -- FOR PUSH-BUTTON MODE ONLY

record is for recording the 1st message
record2 is for recording subsequent messages, requiring fast-forward mode
waitrec is the loop that waits until the message being recorded is done
recovf is for when the end of the address space is reached while recording

*********************** Recording Sequence

record [ldan $ff][bsr delay-loop]; wait about 1 msec to avoid switch bounce
[bclr resetbit bits]

[bclr pnbit bits]
[bclr ffbit bits]
[lda msgnum]

[btss z status][bra record2]

[bset pd pd-port][bclr pd pd-port]

[bclr playrec playrec-port]

[bset mode4 mode4-port]

[bset mode6 mode6-port]

[bclr green-led green-led-port]

[bclr ce ce-port][bset ce ce-port] ; pulse ce low to start reco
waitrec [btss ovf ovf-port][bra recovf]

[btss recbutton recbutton-port] ; loop until button is no longer low
[bra waitrec]

[ldan $ff][bsr delay-loop]; wait about 1 msec to avoid switch bounce
recovf [bclr ce ce-port][bset ce ce-port] ; pulse ce low to stop recor

[bsr write-msgnum]

[bclr mode4 mode4-port]

[bset playrec playrec-port]

[bset green-led green-led-port]

[rts] ; go back to start loop

record2 [bset pd pd-port]

[bset mode4 mode4-port]

[bset mode6 mode6-port]

[bclr pd pd-port]

[bset playrec playrec-port]

[bset mode0 modeO-port]

[lda msgnum][sta msgtemp]

recff [bclr ce ce-port][bset ce ce-port]

[bclr intf intcon]
[bset inte intcon]

[bset gie intcon]

ffloop2 [btss eombit bits][bra ffloop2]
[bclr gie intcon]

[bclr inte intcon]

[bclr eombit bits]

[decsz msgtemp][bra recff]

[bclr mode0 modeG-port]
[bclr playrec playrec-port]

[bclr green-led green-led-port]

[bclr ce ce-port][bset ce ce-port]

; wait for eom interrupt
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waitrec2

[btss ovf ovf-port][bra recovf]
[btss recbutton recbutton-port] ; loop until button is no longer low
[bra waitrec2]
[ldan $ff][bsr delay-loop]; wait about 1 msec to avoid switch bounce
[bclr ce ce-port][bset ce ce-port] ; pulse ce low to stop record
[bsr write-msgnum]
[bclr mode4 mode4-port]
[bset playrec playrec-port]
[bset green-led green-led-port]
[rts]

write-msgnum

[inc msgnum]
[lda msgnum]

[sta eedata]

[bset bank2 status]
[bset wren eeconl]
[ldan $55][sta eecon2]
[ldan $aa][sta eecon2]
[bset eewr eeconl]
[bclr wren eeconl]
[bclr bank2 status]
[rts]

PLAY STUFF

play is for pushbutton play
playnext2 is for play after fast-forwarding in pushbutton or bus command
playloop is the loop that looks for end-of-message markers or overflows.
playeom is for when an end-of-message marker is reached.
playovf is for when the end of the message memory is reached

************************** Play Sequence ***************************

play [btss playbutton playbutton-port]; loop until button is no longer low
[bra play]
[ldan $ff][bsr delay-loop]; wait about 1 msec to avoid switch bounce
[bclr resetbit bits]

playnext2

[bclr green-led green-led-port]
[bclr ce ce-port][bset ce ce-port] ; pulse ce low to play

playloop

[btss playbutton playbutton-port][bra stop]
[btss eom eom-port][bra playeom]
[btss ovf ovf-port][bra playovf]
[bra playloop]

playnext1

[btss playbutton playbutton-port]; loop until button is no longer low
[bra playnext1]

[ldan $ff][bsr delay-loop]; wait about 1 msec to avoid switch bounce
[bclr ffbit bits]
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[bset pnbit bits]
[bra playnext2]

stop [btss playbutton playbutton-port]; loop until button is no longer low
[bra stop]

[ldan $ff][bsr delay-loop]; wait about 1 msec to avoid switch bounce
[bclr ce ce-port][bset ce ce-port] ; pulse ce low to pause

[bset pd pd-port][bclr pd pd-port)

[bclr playrec playrec-port]

[bset playrec playrec-port]

[bsr resetmodes]

[clr bits]

[bset green-led green-led-port]

[rts]

playeom [bset green-led green-led-port]

[rts]

playovf [bclr ce ce-port][bset ce ce-port]; pulse ce low to reset and play
[bset green-led green-led-port]

[rts] ; go back to playloop

RESET AND FAST-FORWARD STUFF

reset is called when MSG# is pushed once

fastf is called when the MSG# is pushed the second, third, etc. times
fastf2 is for fast-forward bus command.
ffloop just waits for the eom interrupt to happen.

button? is also a loop that waits for the next button to be pressed.

if record is pressed, not allowed, so it just resets and gets out of mode0.
if play is pressed, then branch to playnextl which then branches to playnext2
if msg# is pressed, then fast-forward again by branching to fastf.
int-routine is branched to when the eom interrupt occurs.

busreset is for reset bus command
busff is for fast-forward bus command, which branches to fastf2 then
back before button? loop.

************************ Fast-forward Sequence ************************

reset [btss msgbutton msgbutton-port] ; loop until button is no longer low
[bra reset]

[bclr green-led green-led-port]

[bset resetbit bits]

[btsc pnbit bits][bsr resetmodes]

[ldan $ff][bsr delay-loop]; wait about 1 msec so green LED can be seen
[bset pd pd-port][bclr pd pd-port] ; JUST ADDED

[bset green-led green-led-port]

[rts]

resetmodes

[bclr pnbit bits]
[bclr mode4 mode4-port]

[bset mode6 mode6-port]
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[rts]

fastf [bclr resetbit bits]
[bclr green-led green-led-port]

fastfl [btss msgbutton msgbutton-port] ; loop until button is no longer low

[bra fastfl]

fastf2 [bclr mode6 mode6-port] branch here if bus command
[bset mode4 mode4-port] ; disable mode6 and enable mode0
[bset modeG mode0-port]

[bclr ce ce-port][bset ce ce-port] ; pulse ce

[bclr intf intcon]

[bset inte intcon]

[bset gie intcon]

ffloop [btss eombit bits][bra ffloop] ; wait for eom interrupt
[bclr gie intcon]

[bclr inte intcon]

[bclr eombit bits]

[bclr mode0 mode0-port]

[bset green-led green-led-port]

[btsc busffbit bits][rts] end here if play nnth command

[bset ffbit bits]

[rts]

INTERRUPT STUFF

one kind of interrupt -- RBO

int-routine

[bclr intf intcon]

[bset eombit bits]

[rti]

; for rb0/int interrupt

BUS STUFF

the form of a byte is
100 usec low time (to allow for interupt latency)

start bit(l) + 8 data bits + stop bit (0 for cmnd 1 for data)
each bit is exactly 10 usec long. The bits should be sampled in the
middle (this code samples between 4 and 7 usec in)

return a byte in bus data

also return the inverse of the stop bit in the carry

commands have a 0 stop bit -> carry set

data has a 1 stop bit -> carry clear

************************** Bus Handling ************************

bus-tyi [btsc bus bus-port][bra bus-tyi]
btyi20 [btss bus bus-port][bra btyi20]

[ldan 8][sta counter]
[bsr an-rts]

btyi30 [nop][nop][nop]

[ror bus-data]
[bclr 7 bus-data]

[btsc bus bus-port]

; for for sync edge
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[bset 7 bus-data]
[decsz counter]

[bra btyi30]
[bsr an-rts][nop]
[bset c status]
[btsc bus bus-port][bclr c status]

an-rts [rts]
; no stop bit -> carry clear

; send a byte down the bus. the stop
; of a data byte

; input in bus-data
bus-tyo [ldan bus-port-ddr][sta @@]

[bclr bus bus-port][bclr bus
[ldan 33][bsr delay-loop]

btyo20 [decsz counter][bra btyo20]
[bset bus bus-port]
[ldan 9][sta counter]
[bsr an-rts][nop][nop]

btyo50 [ror bus-data]

[bclr bus bus-port]
[btsc c status]

[bset bus bus-port]
[nop][nop][nop]
[decsz counter]

[bra btyo50]
[nop][nop]

[bset bus @]
[rts]

bit is always 0

@]

; give receiver a chance to sync

start bit

bit -> carry

; delay for a*4 usec

delay-loop

[addn -1]

[btss z status]

[bra delay-loop]

[rts]

io-init [clr eeadr]
set data direction bits

[bset bank2 status]
[bset eerd eeconl]
[bclr green-led green-led-port]
[bclr playrec playrec-port]
[bclr pd pd-port]
[bclr ce ce-port]
[bclr mode0 modeG-port]
[bclr mode4 mode4-port]
[bclr mode6 mode6-port]
[bset eom eom-port]
[bset ovf ovf-port]
[bset recbutton recbutton-port]
[bset playbutton playbutton-port]
[bset msgbutton msgbutton-port]
[ldan $87][sta option]
[bclr bank2 status]

; identity is at ee addr 0

set TMRO to / 256 = 3.9 Hz
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set default output states

[bset green-led green-led-port]

[bset playrec playrec-port]

[bclr pd pd-port]
[bset pd pd-port][bclr pd pd-por

[bset ce ce-port]

[bclr mode0 mode0-port]

[bclr mode4 mode4-port]

[bset mode6 mode6-port]

[clr nthmsg]

[clr bits]
[lda eedata][sta msgnum]

[clr msgtemp]

[bclr 6 option]

[ldan 60][sta counter]

ioin20 [clra][bsr delay-loop]
[decsz counter][bra ioin20]

[rts]

; pulse pd high

; set interrupt to falling edge

another level of power up timer
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Appendix C

Cricket Logo Macros for the Sound

Sensor and Voice Recorder

to handle-play

let [nargs 1] pass2-argloop ; parse argument to play
add-and-count [number $154] 3 ; length of list associated with this
command

add-and-count [prim bsend] 1

add-and-count [prim bsend] 1
end

to handle-record-over

add-and-count [number $154] 4

add-and-count [prim bsend] 1

add-and-count [number $ff] 1

add-and-count [prim bsend] 1

end

to handle-green-clap?

add-and-count [number $168] 4

add-and-count [prim bsend] 1

add-and-count [number 1] 1

add-and-count [prim bsr] 1

end

to handle-blue-clap?

add-and-count [number $169] 4
add-and-count [prim bsend] 1

add-and-count [number 1] 1

add-and-count [prim bsr] 1

end

to handle-clap?

add-and-count [number $16a] 4
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add-and-count [prim bsend] 1
add-and-count [number 1] 1
add-and-count [prim bsr] 1
end

to handle-green-volume?

add-and-count [number $1681 4
add-and-count [prim bsend] 1
add-and-count [number 2] 1
add-and-count [prim bsr] 1
end

to handle-blue-volume?
add-and-count [number $169] 4
add-and-count [prim bsend] 1
add-and-count [number 2] 1
add-and-count [prim bsr] 1
end

to handle-volume?

add-and-count [number $16a] 4
add-and-count [prim bsend] 1
add-and-count [number 2] 1
add-and-count [prim bsr] 1
end

to setup

setup-specials [( ) ... play record-over green-clap? blue-clap? clap?
green-volume? blue-volume? volume?]
put "|(| "outputs? "true put ") "outputs? "false

put "play "outputs? "false
put "record-over "outputs? "false
put "green-clap? "outputs? "true
put "blue-clap? "outputs? "true
put "clap? "outputs? "true
put "green-volume? "outputs? "true
put "blue-volume? "outputs? "true
put "volume? "outputs? "true
end
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