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Abstract

The main objective of speech enhancement is to improve the overall quality and
intelligibility of degraded speech. Speech enhancement has been studied for many years, and
numerous enhancement algorithms have been developed. However, these traditional techniques
tend to improve the signal-to-noise ratio (SNR) of the signal at the expense of losing some
intelligibility in the speech.

Recently, a new enhancement technique was developed which achieves a better
compromise between improved SNR and intelligibility. The algorithm appears to be successful
by identifying and modeling stationary regions in the time-frequency plane. This time-frequency
segmentation permits the algorithm to bypass certain problems encountered in traditional
enhancement algorithms.

This thesis deals with the overall improvement of this enhancement system, in terms of
computational efficiency and the quality and/or intelligibility of its output. The procedure was
simplified by generalizing some of its modeling assumptions. The enhanced speech quality and
intelligibility was improved by relaxing the algorithm's modeling constraints at high frequency
regions. Informal tests showed that these modifications provided some perceptual improvements
compared to previous incarnations of the algorithm.
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Chapter 1

Introduction

Degradation of speech due to additive noise occurs in many types of situations.

Disturbances of this type may vary from low-level office noise in a normal phone

conversation to high volume engine noise in a helicopter or airplane. In general, additive

noise reduces intelligibility and introduces listener fatigue. Speech degraded by noise

also affects the performance of speech recognition and speech coding systems, which

may have been developed assuming a noise-free speech input. For these reasons,

enhancing speech is desirable.

Speech enhancement has been an active area of research for more than 20 years.

Its main objective is to improve perceptual aspects of degraded speech signals, such as

quality and intelligibility. Various enhancement methods have been developed over the

years, each with its benefits and disadvantages. A common problem of traditional

methods is the introduction of substantial artifacts in the processed speech.

The ideal enhancement procedure would maximally reduce noise while

minimizing the distortion and artifacts added to the signal. The usual approach of

enhancement algorithms is to seek a compromise between these opposing goals over the

entire spectrum of fixed length segments in the signal. However, a new enhancement

technique introduces the idea of exploiting local time-frequency characteristics of speech

to achieve a better trade-off. By segmenting speech into stationary regions in time-

frequency, the stationarity constraints posed by traditional enhancement algorithms are

met and better quality speech is produced.
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To achieve an even better compromise between quality and noise reduction, this

new enhancement system was modified to identify and model general characteristics of

speech. In this manner, better models of each time-frequency region were obtained and

more of the original speech came through without any added artifacts. This thesis

presents a detailed look of this speech enhancement procedure as well as the various

modifications made to simplify it and obtain better quality speech.

1.1 Problem

The problem of enhancing speech degraded by noise is seen in a large number of

scenarios. This makes it necessary for researchers to establish a number of assumptions

before the enhancement system is developed. For example, they must define the type of

noise interference, the way the noise interacts with the speech signal, and the number of

channels available for enhancement. Different types of noise include competing

speakers, background sounds from an office environment, traffic, wind or random

channel noise. The noise might affect the original signal in an additive, convolutional or

multiplicative manner and it may be dependent or independent of the original speech.

Also, more than one channel of speech information could be used in the enhancement

process, since auxiliary microphones can be employed to monitor the noise source while

others monitor the degraded speech.

This thesis studies the specific scenario of speech degraded by additive noise with

only a single channel of information available. The degraded signal is expressed as

y[n]= s[n]+ z[n] (1.1)

where s[n] is a speech sequence, and z[n] is a noise sequence which is independent of

s[n]. Another assumption is that the sequence z[n] represents stationary noise. That is,

the noise is assumed to maintain the same characteristics throughout the duration of the

signal (as opposed to non-stationary noise whose characteristics change throughout the

11
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Speech Enhancement by Modeling of Stationary Time-Frequency Regions

duration of the signal.) Also, the noise power spectrum is assumed known and can be

estimated using segments of no speech activity within the signal. For simplicity, it will be

assumed that the noise power spectrum is white, but the results extend to colored

background noise.

1.2 Objective

Speech enhancement in general has the objective of improving the overall quality

and intelligibility of degraded speech. Speech quality is a subjective measure reflected in

the way the signal is perceived by the listeners [2]. It is related to the pleasantness of the

signal sound or to the amount of effort incurred by the listener to understand the message.

On the other hand, intelligibility is the amount of information that can actually be

extracted from the speech signal by the listener. Although both measurements are

related, they are not exactly the same, since a lot of information could be extracted from a

speech signal, even if a lot of effort is needed to extract it.

Noise reduction is thought of as an improvement in the signal-to-noise ratio

(SNR) of a given signal. An improvement in SNR tends to increase the quality of the

degraded speech, but it does not guarantee an increase in intelligibility. Enhancement

systems improve the SNR of the speech signal, but their output tends to have reduced

intelligibility because some aspects of the original speech are lost in the process.

Furthermore, these systems usually add artifacts that reduce the quality of the signal,

regardless of any SNR improvement. The systems presented in the following chapters

are superior to more traditional enhancement procedures in that they remove less original

speech and produce no artifacts in the speech signal.

In general, intelligibility and quality are hard to quantify. For this reason, the

evaluation of the presented systems will be primarily based on informal listening. Other

more objective measurements like segmental SNR will also be used to evaluate the

system.

12
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1.3 Outline of Thesis

Chapter 2 presents a brief overview of traditional speech enhancement systems.

By understanding the strengths and weaknesses of each method, it is easier to see how the

new systems achieve better results.

Chapter 3 describes a novel speech enhancement system developed by Dr. Chang

Dong Yoo in 1996. This system is different from traditional techniques in that it uses

filtering and adaptive windowing to divide the signal into stationary time-frequency

regions. The chapter explains the algorithm used for segmenting the signal into

frequency bands. It also describes how a varying length window is produced following

the spectral characteristics of the speech signal. Finally, it demonstrates how each region

is modeled and enhanced by selective linear prediction and modified Wiener filtering.

Chapter 4 discusses the modifications made to the enhancement system presented

in Chapter 3. These changes were made primarily in the enhancement stages of the

algorithm. They were implemented to improve the computational efficiency of the

algorithm and the intelligibility of the enhanced speech.

Chapter 5 describes the performance of the modified speech enhancement system.

Segmental SNR and Itakura-Saito measurements are presented as well as results obtained

from subjective informal listening.

Finally, Chapter 6 presents a summary of the basic ideas presented. In addition, it

includes suggestions for future research.

13
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Chapter 2

Traditional Enhancement Techniques

2.1 Introduction

Various speech enhancement algorithms have been developed over the years. In

general, they are capable of producing acceptable speech for specific applications.

However, they also tend to introduce artifacts in the speech signal. Understanding the

strengths and weaknesses of some of these procedures can provide valuable insight in the

study of new speech enhancement algorithms. Therefore, a brief overview of these

traditional techniques is in order.

There are two major types of single channel enhancement systems: those

concentrated on the short-term spectral domain, and those based on different models of

speech. The short-term spectral domain algorithms find an estimate of the noise bias in

the degraded speech and subtract it to produce an enhanced version. The model based

algorithms focus on estimating clean speech model parameters from the degraded signal,

so that the problem of enhancing speech becomes one of parameter estimation. A brief

description of these two types of systems is now presented.

2.2 Short-Time Spectral Subtraction

Short-time spectral subtraction is based on subtracting a noise spectral density

estimate from the degraded signal to obtain an enhanced signal. The subtraction is

performed on a frame by frame basis, where each frame usually consists of windowed

speech 20 to 40ms in duration. The analysis window has a fixed length throughout the

process and the subtraction is implemented in the power spectrum, Discrete-Time Fourier

14



Transform (DTFT) or auto-correlation domain. The noise spectral density is estimated

by using areas of non-speech activity in the signal.

The windowed speech y,[n] is defined by

y,[n]= s,[n] + z,[n] (2.1)

where the subscript w indicates that the signal is obtained by applying a window function

w[n] to the degraded speech y[n] (i.e. yI[n] = w[n]-y[n]). The window is shifted in time

as other segments of the signal are analyzed.

From Equation (2.1), an estimate of the clean speech's short-time spectral

magnitude is found by

A 2 2 2

S W(co) = Y,(co) - E Z w(co) (2.2)

where Y,(o) and Z(o) are the Fourier transforms

,Z,(o)|2 is not directly available, it is estimated by

ensemble average.

The estimate ISw(o)l can be generalized by

of yw[n] and z,[n] respectively. Since

E[lZw(o)|12], where E[.] represents the

A a aa~

S W(co) = Y,(c) - c -E Zw(co) (2.3)

15
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Speech Enhancement by Modeling of Stationary Time-Frequency Regions

where constants a and c represent extra degrees of freedom used to enhance the algorithm

performance. The windowed speech estimate sw[n] is obtained by combining the

magnitude |S,(Co) with the phase of the noisy signal ZY,(o).

The most popular example of these techniques is called spectral subtraction.

Figure 2.1 shows the implementation of this enhancement algorithm.

Figure 2.1: Algorithm for spectral subtraction.

The figure shows how the subtraction of the noise bias takes place in the power

spectrum domain. In general, these subtraction techniques follow the same scheme.

Their main difference lies in the domain in which the subtraction takes place.

Short-time spectral subtraction techniques are useful in many applications due to

their general lack of complexity. However, they are not the most effective enhancement

procedures, since they tend to de-emphasize unvoiced speech and high frequency

formants. Furthermore, they introduce "musical tones" in the enhanced signal [1, 2], a

problem that leads to listener fatigue.

16
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2.3 Model Based Enhancement Systems

The second class of speech enhancement techniques includes systems based on

various speech models. These methods focus on estimating clean speech model

parameters from the degraded signal. They are generally considered more effective than

subtraction techniques, although each technique is limited by the underlying assumptions

of its model. Some examples presented here are the statistical model system, the dual

excitation (DE) model system, and the maximum a posteriori (MAP) system.

2.3.1 MAP Based Method

Figure 2.2 shows a traditional discrete model for short-time speech production.

This model represents speech as the output of a filter excited by a sequence with two

possible states. The excitation sequence uw[n] is modeled either by a periodic pulse train

for voiced speech or by random noise for unvoiced speech. The filter H(z) represents the

vocal track of the speaker and it is modeled with an all-pole transfer function given by

H (z) =G
kzP k (2.4)

1 - E ak - z~
k=1

where G, p and ai are the gain, order and linear prediction coefficients of the all-pole

model.

From Equation 2.4 and Figure 2.2 a difference equation for the all-pole model can

be derived:

s.,[n]= a.,s,[n-k]+G-u,[n]. (2.5)
k=1

17
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Equation 2.5 shows how each sample of the speech signal s,[n] is obtained from the

excitation input u,[n] and previous speech samples weighted by the corresponding linear

prediction coefficients.

Impulse Train

Voiced/ Digital Filter 0
Unvoiced U,[n] H(z) sn]

I2|

Noise Sequence

Figure 2.2: Traditional speech production model.

The linear prediction coefficients ai and the gain G are estimated from the noise

free signal by solving a set of linear equations. This process is known as the

autocorrelation or covariance method, depending on the set of initial conditions assumed

[3]. On the other hand, solving for these parameters in the presence of background noise

produces a set of non-linear equations, demanding substantial computational resources.

An alternate sub-optimal solution for the noisy speech case is presented in [4]. This

solution simplifies to the iterative two step algorithm presented in Figure 2.3. First, the

linear prediction coefficients are initialized by using the auto-correlation method on the

degraded speech. Then, the coefficients are used in a non-causal Wiener filter to enhance

the degraded signal. Finally, the output of the filtering process is used to calculate a new

set of linear prediction coefficients. The last two steps are repeated for a few iterations to

obtain an enhanced signal. The non-causal Wiener filter has the following frequency

response [5]

HS (m )=(2.6)
*P,(C9 ) + c- P,(Co)

18
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where P#Qo) is given by

PS(o) = 2

a,-e ('-j )
k =1

Also, Pz(o) is an estimate of the noise power spectrum and c is a constant that provides

the Wiener filter with an extra degree of freedom.

Initialize model
coefficients

Noisy speech Enhanced speech
y.[nl]

Figure 2.3: MAP algorithm.

This algorithm has been shown to increase the joint likelihood of the speech

sequence and the all-pole parameters after each iteration. Its main drawback is that all-

pole models are biased towards frequency components of high energy. In addition, the

speech within the analysis interval is assumed stationary during the estimation of the

model parameters. For an analysis window of fixed length, this assumption is false since

stationarity varies for different speech sounds and different speakers.

19
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2.3.2 Statistical Model-Based Speech Enhancement

In the statistical model-based speech enhancement method, the windowed speech

segment s,[n] is modeled as sound generated by one of a finite number of sub-sources.

Each sub-source represents a particular class of statistically similar speech sounds with a

particular power spectrum, a parametric probability distribution function pxs(s) and an

autoregressive process of a given order.

Speech segments are classified into different categories, each with its

corresponding estimator. Drucker [6] classifies segments into five categories: fricatives,

stops, vowels, glides, and nasals, as shown in Figure 2.4. Depending on how the

degraded speech segment is classified, different enhancing filters are used to remove the

noise. Another algorithm developed by McAulay and Malpass [7] classifies segments as

part of silent or non-silent states. A weighted sum of estimators for both states produces

the enhanced segments. The weighting coefficients are obtained from a posteriori

probabilities of the states given the noisy speech signal.

All sub-sources represent acoustic signals generated from a fixed configuration of

the vocal track. Each configuration is modeled as an all-pole filter. The transition from

one sub-source to another is modeled in a Markovian manner. Since these transitions are

hidden from the listener, the model is referred to as a Hidden Markov Model (HMM). In

addition, each sub-source has a unique spectral prototype for speech and noise, so Wiener

filters can be designed and used according to the error criterion and the probability

distribution of each prototype.

The main difference between this method and the others mentioned so far is that

the speech model parameters are estimated from training data of clean speech, instead of

estimating them directly from the degraded speech signal. However, this also proves to

be one of the method's biggest drawbacks, since it requires extensive "training" to

estimate the statistical parameters involved in the HMM. In addition, the recording

20



conditions of the test and training data must be similar. The algorithm also suffers from

the same limitations of the MAP method, since it employs an all-pole model of speech.

Noisy
speech

Nasal filter

Fricative filter
Enhanced

speech

Glide filter

Vowel filter

---------------------------------------- Classifier

Figure 2.4: "Five sub-sources" approach for statistical-model-based speech enhancement

2.3.3 Enhancement using the Dual-Excitation Model

The dual excitation (DE) model overcomes some of the limitations of other

speech models by decomposing the windowed speech signal s,[n] into co-existing voiced

and unvoiced components. The voiced component is denoted by v,[n] and the unvoiced

component by uj[n]. In the Fourier domain, the speech signal is expressed as

S,[0] = V,[W]+U,[o] (2.8)

where Sw(o), Vv(o), and Uw(o) are the DTFT's of s,[n], v,[n] and uw[n] respectively.

21

Traditional Enhancement TechniquesChapter 2



Speech Enhancement by Modeling of Stationary Time-Frequency Regions

Assuming the voiced component is periodic over the duration of the analysis

window, its pitch period can be used to model it as a harmonic series. Thus, V(o) is a

sum of various harmonics of the fundamental frequency oo. Following this assumption,

the mathematical expressions for v,[n] and V,(o) are

Al

v,[n] = jA,,wn]e ""O (2.9)

M

V,[] = jA,.W(w-mwo ) (2.10)
m=-M

where W(io) is the Fourier Transform of the window function w[n] and Am represents the

amplitude of the mth harmonic. W(o) is essentially a narrow band low-pass filter.

Since the DE model parameters are not known, they must be estimated from the

speech spectrum. The estimates of the fundamental frequency and the harmonic

amplitudes are obtained with an algorithm developed by Griffin [8]. This algorithm

minimizes the mean squared error between the original speech spectrum S"(o) and the

voiced speech spectrum V,(co) and ensures that the voiced component will contain all the

harmonic structure of the original speech.

The unvoiced spectrum U,(o) is estimated from the difference spectrum D,(co)

defined as

D, [cw]= S,[o] - V,[o]. (2.11)

In general, different types of smoothing are used on Dw(co)'s spectral magnitude to obtain

the magnitude of the unvoiced component |U,(o)l. This is done under the assumption

22



that the fine structure of |Uw(o)| doesn't need to be completely preserved due to the

inherent characteristics of unvoiced sounds. The phase of the unvoiced component

zUw(co) is often set equal to the phase of the difference spectrum or to the phase of the

reference noise signal.

The enhancement of the speech signal is performed on the voiced and unvoiced

components separately. Enhancement of the voiced component entails only the

modification of the harmonic amplitudes since the estimation error of the fundamental

frequency oo is assumed negligible. To modify the harmonic amplitudes Am, the basic

algorithm is to eliminate the m amplitude estimate if its value is less than the value of

effective noise at the corresponding frequency. The enhanced harmonic amplitudes Am

are given by

.AI 3  P-Z(mcoo)2
A 0 if |A, |< 3 -

Am = _ Neff (2.12)
A,, otherwise

where P,(o) represents the noise power density. The parameter Neff accounts for

windowing effects and is defined as

[ w 2 [n]

N.f = (2.13)

1w'[ n]

The enhancement of the unvoiced component U(o) is a two step process. First,

the harmonic bands where the voiced energy is substantially greater than the unvoiced

23
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energy are identified in the difference spectrum. In these bands, the voiced energy masks

the unvoiced energy. Therefore, the unvoiced energy can be eliminated without altering

the perceived speech. The enhanced difference spectrum D(o) is defined as

0

Dw (co)= D,r(0)
if E >3E

otherwise

where Evm and Euvm are the energies of the voiced and unvoiced components at the mth

harmonic. In the second step, a modified Wiener filter is applied on Dw(o) to remove

residual background noise where the spectrum has a low signal to noise ratio. The

Wiener filter is defined as

f WSS (0j)

if

1.0 -
a -E ZS (6)

E

where E[Zw (o)12] is an estimate of the noise power spectrum and E[Pw(o)12] is the

smoothed unvoiced spectrum. The subscript denotes the application of the window

function ws,[n]. Some typical values for et and 1 are 1.6 and 1 respectively.

24
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> 1
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The DE algorithm for speech enhancement has been shown to produce better

quality speech than spectral subtraction algorithms. However, this technique also

encounters problems due to its model assumptions. Its main drawback is the assumed

perfect periodicity of voiced speech. Since voiced speech sounds are only quasi periodic,

this assumption leads to inaccurate voiced/unvoiced decompositions.

2.4 Discussion

In this chapter, a brief overview of the more popular systems for speech

enhancement was presented. Each technique was described in terms of its functionality,

its benefits, and its main drawbacks. Spectral subtraction algorithms are simple and give

acceptable results for some applications, but introduce musical tones in the speech signal

and tend to de-emphasize high frequency content. Model-based systems perform better

in reducing noise than spectral subtraction systems. However, these systems are often

inadequate in representing speech due to their underlying model assumptions.

Since model based systems have been more successful, it might be beneficial to

think of ways to improve their performance. Recent work proposes that it might be

possible to overcome some of the shortcomings of model based systems by dividing

speech into stationary regions in the time-frequency plane and then enhancing each

region according to its spectral characteristics. This idea is the basis for a novel speech

enhancement system developed in [9] that was shown to produce better results than the

traditional enhancement systems in this chapter. A detailed description of this system is

presented in the next chapter.

25
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Chapter 3

Novel Speech Enhancement System

3.1 Introduction

Model-based systems are the best enhancement methods developed so far.

However, they have inherent disadvantages due to inadequacies in their models. To

overcome some of their shortcomings, a new approach for speech enhancement was

developed by Dr. Chang Dong Yoo in 1996 [2]. This system divides the time-frequency

plane of the speech signal into stationary regions and then models each region according

to its local spectral characteristics. This chapter will present a detailed description of this

algorithm.

3.2 Stationary Region Segmentation

The first step in the enhancement process is the identification of stationary time-

frequency regions. The segmentation of the time-frequency plane is achieved by two

main procedures: M-band decomposition of the signal, and application of an adaptive

analysis window. M-band decomposition separates speech into multiple frequency

bands. This is helpful because any variation in the speech characteristics can be isolated

to a given set of frequencies. Adaptive windowing allows maximum averaging of speech

segments while minimizing temporal smearing. Together, both processes produce longer

stationary analysis intervals that follow the spectral characteristics of the speech signal

across the time-frequency plane.

3.2.1 M-Band Frequency Segmentation

An M-band decomposition scheme is presented in Figure 3.1(a). The degraded

signal y[n] is divided into M channels y(i)[n] such that

26



Chapter 3 Novel SpeechEnhancement System

y' [n] = y[n]. (3.1)

Without loss of generality, yo1)[n] is the dc channel while y(k-~) [n] and yk)[n] are

contiguous channels (where y(k)[n] is higher in frequency).

By looking at Figure 3.1(a) it is clear that for Equation 3.1 to hold, the band-pass

filters must satisfy the relation

H j) (w) 1 (3.2)
j=1

where H(o) is the frequency response of the j' band-pass filter. An example is shown

in Figure 3.1(b).

There are various ways to achieve the M-band decomposition described above. In

the current system, the signal is separated into M frequency channels by a group of M-1

low-pass filters (LPF) connected in series. Figure 3.2 shows how the frequency channels

are obtained by subtracting the input and output of each LPF G (o). The filters are

designed so that any given G(h(wo) has a bigger pass-band than the next filter GN-1 (o).

The relationship between the low-pass filters G(Ao)) and the band-pass filters HO)(o) is

given by

171G'(co)[1 - G (o)] = H (j (w) (3.3)
i=j
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Noisy
signal
y[n]

HM(o)

-- 0M1

-- 0M

(a)

(b)

Figure 3.1: (a) Filter bank for decomposition of degraded speech into M-bands. (b) The

band-pass filters must add up to unity in the spectral domain.
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y[n] Y"'[nj

G(M)( 0)" G(M-2)() G1)

y()[n] y(M~1) y( 2
)[n]

Figure 3.2: M-band decomposition of noisy signal y[n]

by a series of M-1 low-pass filters.

To understand the M-band segmentation process better, take the example of

dividing a signal into M = 3 distinct channels. Assume that the input signal is simply an

impulse, so that each output channel in Figure 3.2(a) is composed of its corresponding

band pass filter frequency response Hl(o>). Figure 3.3 presents such a system. Notice

how the subtraction of each low-pass filter input and output produces the expected band-

pass filters.

A(H) H o

3)ILY))

Figure 3.3: Illustrative example of M-band decomposition for M = 3 channels.

3.2.2 Adaptive Analysis Window

After M-band decomposition is achieved, a varying length analysis window is

applied to each channel. Traditionally, a fixed length window is used on the whole signal
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and the windowed segments are assumed stationary. This assumption is not valid, since

stationarity varies for different classes of sounds and different speakers. An adaptive

length window is expected to do a better job in analyzing the speech signal.

Since the window's length varies according to the spectral characteristics of

speech, a method for quantifying spectral change in the signal is necessary. In this case,

spectral change is quantified by the normalized cross-correlation of the smoothed spectra

between different time intervals. This similarity measure between the two signal

segments yntn] = {y[nl], ..., y[nl + N -1]} and yn2[n] = {y[n2], ..., y[n2 + N -1]} is

denoted by Qy(n1,n2) and its mathematical expression is given by

ILF,,(cw).-F2(o) dco
Q, (n1, n2)= 2r I (3.4

max F ()2dw , F, (W)2d 4

where N is the sample length of the segments and F(o) is defined as

4 q+N-1 2

F, (co) fy[nte-i! dQj (3.5)
2r L n=q

Equation 3.5 denotes F,(o) as the smoothed or averaged discrete time Fourier transform

(DTFT) magnitude of the degraded signal y[n]. The smoothing process is necessary

because sudden changes in the spectrum can distort the cross-correlation measurement.

The parameter L is a resolution factor that determines the amount of smoothing. It

determines the range of frequency samples taken for averaging. Its value varies from

0.0057t to 0.05n, depending on the segment's SNR [9).
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Figure 3.4 shows the algorithm employed to determine each window's length. At

first, a small segment of length N (~ 1Oms) is taken from the noisy channel and its SNR

is estimated. This SNR information is used to set the parameters of the adaptive window

algorithm, such as the smoothing factor L, the similarity measure thresholds, the number

of samples N in each segment, and the amount of overlap between adjacent segments.

After these parameters are set, the smoothed spectra Fni(o) and Fe(o) of two channel

sections yni[n] and y2[n] are calculated with Equation 3.5. The normalized cross-

correlation of these smoothed spectra Qy(n1,n2) is found following Equation 3.4. If this

cross-correlation measurement is higher than the pre-determined thresholds, then the

smoothed spectrum Fn3(o) of an adjacent segment yn3[n] is found and compared to F. 1(o)

by calculating Qy(n1,n3). This process continues until the cross-correlation measurement

goes below the pre-determined thresholds or until the window's length reaches a

maximum of 150ms. When this happens, the length of the window is set and the process

starts all over again. The iterations continue until the complete time range of the

frequency channel is covered.

Once the window lengths are found for each channel, the windows are

constructed to satisfy the constraint

w [n]=1 Vn (3.6)

where wm®[n] is the adaptive window of the m* time interval and the kh channel.

Meeting this condition ensures that the original noisy signal can be recovered if no

enhancement is done. To preserve this constraint, two thresholds for the similarity

measure Qy(n1,n2) are used. The window's magnitude decreases from 1 to 0 in a

sinusoidal fashion starting the moment Qy(n1,n2) goes below the first threshold and until

it goes below the second threshold. The following window increases in magnitude during
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Noisy band
y'[n]

Take small segment of
length R, find its SNR

and set adaptive process
parameters.

Take segment y n2 [n]
and calculate its

smoothed spectrum
Fn2((o).

Change Y n2 [n] if cross-
correlation is above set

thresholds.

Figure 3.4: Algorithm to determine adaptive window length.
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the same time segment. For the kh channel of noisy signal y(k)[n], the mth frame is

denoted by ym.()[n] and is given by

y. [n]=y()[n]wm [n]. (3.7)

Another step in the time-frequency segmentation process is dividing y.(k)[n] with

three Kaiser windows. The Kaiser windows are used because the cross-correlation based

windows have very broad spectra that distort the spectra of the signal segments. Figure

3.5 shows an example. The shapes of the windows suggest that the middle Kaiser

window has narrower spectral characteristics than the cross-correlation based window

and the Kaiser windows at the edges. It is assumed that the segment selected by the

middle Kaiser window will dominate the whole region during overlap add re-assembly.

Under this assumption, using the three Kaiser windows will produce better results than

using the cross-correlation based windows alone. Notice how the Kaiser windows are

designed to add up to one inside the time segment chosen by the cross-correlation

window.

3.3 Enhancement of Stationary Regions

After all the stationary time-frequency regions are found, the signal to noise ratio

(SNR) of each region is estimated to determine certain parameters of the following

enhancement stages. Then an all-pole linear prediction model of the speech signal is

used in conjunction with a modified Wiener filter to model and enhance the stationary

time-frequency regions.

3.3.1 Local Signal to Noise Ratio Estimation and Parameter Settings

The proposed enhancement system requires SNR estimates of each channel's

windowed segment yn® [n], defined here as the Local Signal to Noise Ratio (LSNR) of
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Example of three Kaiser windows used to further divide the stationary

regions.

the time-frequency region. This LSNR will determine the order of the all-pole model, the

modified Wiener Filter parameters, and the number of iterations for the enhancement

process.

Using the known band-pass filters H(ko) composing the filter bank in Figure 3.1

and the window functions wm"k[n], it is possible to find an estimate of the LSNR of each

region. First, an estimate of the noise spectrum in the k* channel is defined by

S (CO) = IH(0) S2 S. (a) (3.8)
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where Szz(o) is the noise power spectrum prior to band decomposition of the degraded

signal.

Now, the LSNR estimate of the region ym(k)[n] is given by

(kkV 
- E E)Z 2k) dc

LSNR (m)~ 101g 10  1 2l IL2 (3.9)
-E JZ (o)do

where

E Z c = (S I W 2do (3.10)

and W m(k)((o) is the Fourier Transform of window wm(k)[n].

Equations 3.8 and 3.10 show how an estimate of the noise energy for each region

is found from Szz(o), by taking into consideration the effects of the filtering and adaptive

windowing processes. On the other hand, Equation 3.9 defines the LSNR estimate of the

region LSNRNk(m) in terms of the defined noise energy and the energy of the degraded

speech.

As discussed earlier, the LSNR information is used to set the all-pole model and

Wiener filter parameters in the system's enhancement stage. In general, regions with

high LSNR are modeled with a higher order all-pole model than low LSNR regions. It is

assumed that more original signal is present in high LSNR segments and therefore more

poles must be used to model these regions. Furthermore, regions with very low LSNR

are "erased" or "smoothed out" from the signal, since any speech information in them is

too noisy to be recoverable.
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Another criterion used to establish the model order and Wiener filter parameters is

the location of low LSNR regions in frequency. If a signal has low LSNR at high

frequency channels, it might be necessary to let some of that noise get through during the

enhancement stage if it is suspected that the region is part of an unvoiced sound [9].

These special cases are identified by comparing the LSNR of the region in question and

the LSNR of the same time segment at the base-band channel, as presented in Figure 3.6.

In this way, the system incorporates general speech knowledge of unvoiced sounds into

the enhancement process.

Region currently
frequency being enhanced

Compare estimated

Ch3 signal energy
in these regions

Normalize
to account for

bandwidth difference

Chl

time

Figure 3.6: Example of LSNR comparison of the same time segment in different

channels.

3.3.2 Selective Linear Prediction and Modified Wiener Filter

After selecting the model parameters, selective linear prediction (SLP) is used to

calculate the speech model coefficients for each time-frequency region. SLP is necessary
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since the degraded signal was segmented into M frequency bands and the linear

prediction coefficients inside each filter pass-band are necessary.

Suppose a filter H )(o) has a pass-band with a frequency range oi. o <(2. To

find the all-pole model coefficients with SLP, the spectral region [oi 102] gets mapped to

[0 n] using the linear conversion proposed by Makhoul [3]

(= .fO)(1  (3.11)
0)2 - Co

The linear prediction coefficients of the region are then calculated following the

iterative process in Figure 2.3. The number of iterations needed is determined by the

LSNR of the region and it is kept small (s 3 iterations) to minimize the model's bias to

frequency components of high energy. Afterwards, the stop-band regions are modeled

with low order models (^ 8 poles), and the modeled spectrum is pieced together.

Following the SLP model, a modified Wiener filter is used to enhance the region.

The Wiener filter Fw®(m,o) for the region in the kt channel and m" time interval is

defined by

F~k p(k) (in, CO)

T k) (COo)k + (k) ((m). pM))=) (3.12)
P(* (m, C)+ C() Z

where Ps®(m,o) and Pzk)(m,(o) are the region's SLP model and the noise spectrum

respectively. The order of the all-pole model P(k)(m,o) is varied depending on the

region's LSNR and the LSNR measurements found across frequency bands. The

parameter c(k)(m) is also varied according to local conditions. After filtering, the

enhanced segments are assembled into their corresponding frequency channels by the
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overlap add method. Finally, the M channels are added together to form the enhanced

signal s[n].

3.4 Overall Enhancement System

An overview of the overall system is shown in Figure 3.7. Degraded speech y[n]

enters the system and is decomposed into M = 3 frequency channels by an M-band filter

bank. The frequency channels have a frequency range of 0 to 1kHz, 1 to 3kHz, and 3 to

5kHz respectively. Figure 3.8 shows time plots of the 3 channels for the speech signal

"That shirt seems much too long", sampled at 10kHz and degraded with white noise at

15dB SNR.

y[n]

Figure 3.7: Developed enhancement system. The degraded speech signal y[n] is filtered

by H(')(w). Each channel y()[n] is then windowed adaptively by wo')[n] and enhanced by

the modified Wiener filters, according to each region's LSNR characteristics. The

enhanced speech output is S [n].
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Figure 3.8: Example of speech segmented into three frequency bands.

increase in frequency from top to bottom.

The channels

Afterwards, the channels get windowed according to their time-varying spectral

characteristics. Figures 3.9 (a) and (b) show examples of the cross-correlation based

windows used in two of the three channels. The three Kaiser windows mentioned are

applied after using the cross-correlation based windows, and only if the region is longer

than 1Oims.
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Figure 3.9: Example of adaptive length windows used in the first and third channels of

the speech signal "That shirt seems much too long", degraded with additive white noise

at an SNR of 15dB.
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In the next stage, the SLP and Wiener filter parameters are set using LSNR

information from the current region as well as from other frequency bands. The signals

q [n] in Figure 3.7 represent extra information from other frequency bands that might be

used while the SLP and Wiener filter parameters are being set. Regions with LSNR

30 dB are considered to have high SNR, hence a high number of poles (- 50) are used to

model them. Meanwhile, regions with LSNR s 1 dB are considered to have low LSNR.

These regions can be "smoothed out" by the Wiener filter or modeled with a small

number of poles (0 2), depending on the LSNR at other frequency bands.

After Wiener filtering the regions, each enhanced channel is assembled by

overlap-add. The channels are then added to obtain the enhanced speech signal 9[n].

Figures 3.10, 3.11 and 3.12 show spectrograms of the speech signal "That shirt seems

much too long." Figure 3.10 is a spectrogram of the clean speech signal without any

added noise. Figure 3.11 shows the same signal degraded by additive white noise at an

SNR of 15dB. Figure 3.12 is a spectrogram of the enhanced version of the signal,

obtained with the algorithm described in this chapter. Notice the similarities and

differences between the original and enhanced versions

Objective comparisons as well as informal listening between this and other

enhancement methods clearly show that this algorithm is preferable to traditional speech

enhancement systems [2, 9]. However, certain aspects of the algorithm could be

improved. For example, the adaptive window length could be constrained to have a

certain maximum value depending on initial SNR measurements. In addition, the

constraints on Wiener filters for high frequency/low LSNR regions could be relaxed to let

some of the original speech come through. These and other modifications could be

useful in improving the intelligibility of the speech output and increasing the algorithm's

computational efficiency.
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Figure 3.10: Spectrogram of the clean speech signal "That shirt seems much too long."
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Figure 3.11: Spectrogram of speech signal degraded by additive white noise at 15dB

SNR. This is an example a possible input to the system in Figure 3.7 (y[n].)
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Figure 3.12: Spectrogram of the enhanced speech signal. This is the system's output S[n]

with the input y[n] in Figure 3.11.
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Modifications to Novel Speech Enhancement System

4.1 Introduction

The enhancement algorithm presented in the last chapter performs better than

traditional algorithms. However, it has some disadvantages. For example, the thresholds

for the LSNR classification of regions and for estimating the analysis window length

must be defined very accurately. Any errors in setting these parameters can cause

inaccurate region models and artifacts in the enhanced speech. In addition, since the

analysis windows follow cross-correlation measurements, their shape is not very

symmetric. This greatly affects the spectral characteristics of the windowed regions and

causes the algorithm to make inaccurate LSNR decisions. Applying three Kaiser

windows partially solves the problem but it also reduces the computational efficiency of

the system. The algorithm also has some difficulty in modeling fricatives and plosives,

because the LSNR at the high frequency bursts of these sounds is usually very low and

the algorithm tends to smooth them out. These problems cause the system to work better

with certain sentences or certain types of speech depending on the specified parameters.

To compensate for some of the system's shortcomings, certain modifications were

made to increase its computational efficiency and improve the intelligibility of its output

speech. This chapter explains the modifications implemented and the advantages they

provide to the original algorithm.

4.2 Alterations to Stationary Region Segmentation Stage

As explained in the previous chapter, the stationary region segmentation of the

speech signal is achieved by a two step process. First, the degraded signal goes through a

filter bank to separate it into different frequency channels. Then, adaptive length
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windows and Kaiser windows are applied to each channel. The length of the analysis

windows is found using a cross-correlation based similarity measure.

The modified system presented here maintains the same M-band decomposition

set-up as its predecessor. A set of low-pass filters are designed to divide the signal in

three channels, with a frequency range of 0 to 1kHz, 1 to 3 kHz and 3 to 5 kHz

respectively (assuming a sampling rate of 10kHz.) The filtering scheme is the same as

that presented in Figure 3.2.

The only revisions in the stationary region segmentation stage were made in the

adaptive length analysis window. Chapter 3 explained how certain parameters of the

adaptive windowing process were set by SNR measurements from the first 10ms of

signal inside the emerging window. In the modified system, the maximum length of the

cross-correlation based window is also changed according to the initial SNR

measurement (previously, this length was fixed to 150ms.) This is done because high

SNR segments usually have voiced components that are modeled more accurately with

longer windows while low SNR regions must be kept short to keep the algorithm from

removing small spectral changes (like short plosive bursts.) Following this train of

thought, the system was changed so that a low initial SNR measurement sets a window

length constraint of 50ms. Also a high initial SNR measurement sets the maximum

window length to 150ms and a medium SNR measurement sets a maximum length of

looms.

Another big change in the adaptive windowing stage was the elimination of the

Kaiser windows. The Kaiser windows were introduced in the system because the spectral

characteristics of the cross-correlation based windows were undesirable and caused the

system to make wrong LSNR decisions. To eliminate them, the similarity thresholds

between the spectra of small segments were separated more to produce smother changes

in the analysis window's shape. The elimination of the three Kaiser windows increased

the system's computational efficiency significantly, since only one region model per

cross-correlation window was needed for enhancement instead of three.
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4.3 Modifications to Selective Linear Prediction Modeling and

Wiener Filtering Stages

The enhancement system in Chapter 3 finds an all-pole model of the signal inside

a channel specified frequency range. However, the modeling is performed using the

spectrum of the windowed noisy signal ym[n] = y[n]-wm(k)[n] instead of the filtered and

windowed signal y (k)m[n] yk)l[n]-wmk)[n]. This hinders computational efficiency, since

the noisy signal must be windowed and modeled. To simplify the algorithm, the speech

signal was modeled using only the filtered and windowed signal ykm[n]. The frequency

mapping in Equation 3.4 and the corresponding frequency range for each band-pass filter

were used in the selective linear prediction process.

Another improvement in computational efficiency was achieved by disregarding

the region models of each channel's stop band segment. Since the band-pass filters

attenuate the amount of energy in these regions, it is not necessary to use any poles to

model them. In addition, the Wiener filtering stage was integrated into the parameter

estimation process for the linear prediction model. Since only the filtered and windowed

signal y®mfn] was used in the parameter estimation, there was no need for an extra

Wiener filtering stage after the SLP modeling iterations. Figure 4.1 shows how the SLP

model and the Wiener filter stages were merged into one process.

The parameters for the Wiener filters were determined according to the LSNR of

the regions. The basic guidelines for setting these parameters followed two main ideas:

using noise masking at lower frequency regions and maintaining some of the noise at

high frequency regions. Since speech signals usually have high energy voiced

components at low frequency regions, there is no need to remove too much noise from

these regions, since the high energy voiced components will make the residual noise

perceptually undetectable (noise masking). At higher frequencies, the bursts of plosives

and fricatives must stand out from the rest of the noise, but the other speech segments

cannot be completely "erased" because there is a small amount of voiced energy at these

higher frequencies. Eliminating these areas makes the output speech sound muffled.

47

Modifications to Novel Speech Enhancement SystemChapter 4



Speech Enhancement by Modeling of Stationary Time-Frequency Regions

Filtered and
windowed noisy
signal y (k)[n]

Use Selective Linear
Prediction (SLP)

frequency mapping
from Eq. 3.11. Map
pass band of band-

pass filter.

Find SLP coefficients for
selected noisy region. Use

result of previous iteration or
initialize with original filtered

and windowed signal.

Assemble spectrum
with SLP model in

pass-band and "zero"
on stop band.

Use Wiener filter in Eq.
3.12 on y(kIm[n]. Construct

Wiener filter using
assembled spectrum and
noise estimate of region.

Continue process until
number of iterations has

been met. Otherwise,
output enhanced region.

Figure 4.1: Algorithm for finding SLP coefficients and

Wiener filtering of noisy regions.
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Therefore, it is desirable to relax the Wiener filter constraints on low LSNR regions at

higher frequencies (as compared to previous incarnations of the algorithm that removed

noise more aggressively in these regions). Following these ideas, the Wiener filter and

model parameters for the proposed enhancement system were set as follows:

1) At high frequency regions with low LSNR, low order models were used and

noise was removed moderately.

2) At high frequency regions with high LSNR, high order models were used and

noise was removed heavily.

3) At low frequencies regions with high LSNR, high order models were used and

noise was removed moderately.

4) At low frequency regions with low LSNR, low order models were used and

noise was removed heavily.

5) At regions with medium LSNR, parameters tend to vary according to extra

LSNR information from regions within the same time segment but at lower

frequency bands.

The modeling stage of the system was also altered in the thresholds that separate

low, medium and high LSNR regions. In general, regions at higher frequency bands now

have thresholds farther apart than regions at lower frequency bands. This scheme was

used because at lower frequency bands speech tends to have more voiced components

and higher SNR measurements, therefore sharper decisions between low or high LSNR

regions can be made. On the other hand, deciding between low or high LSNR regions at

high frequencies is harder due to the appearance of high frequency bursts from plosives

and fricatives. To help in the decision process, more high frequency regions are

classified as having medium LSNR so that information from lower frequency bands is

considered. This extra information is instrumental in making decisions on model and

Wiener filter parameters for high frequency regions. Figure 4.2 shows the general trends

of LSNR classification for a signal separated in three frequency channels.
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Figure 4.2: LSNR classification trends according to frequency channel.

4.4 Proposed System

Table 4.1 shows the algorithm's settings and parameters for the adaptive length

window process. As explained above, this is the only step from the stationary region

segmentation process that's different from the algorithm in Chapter 3. Notice how all the

parameters vary according to initial SNR measurements. Notice also how there are two

cross-correlation thresholds. Once the similarity measure goes below the high threshold

mark, the window starts to decrease in a sinusoidal fashion until it goes below the low

cross-correlation threshold. Recall that the window length will be determined either by

the cross-correlation thresholds or by the maximum length established. These parameters

are kept constant for all channels. Figures 4.3 (a) and (b) show examples of the windows

obtained with the parameter settings in Table 4.1.
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Table 4.1: Parameters for window length specification.
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SNR > 30dB SNR < ldB ldB SNR ! 30dB

High cross-correlation
1.0 1.0 0.75

threshold

Low cross-correlation
0.6 0.1 0.25

threshold

Segment length 15ms loms 15ms

Segment overlap 2ms 5ms 2ms

Frequency resolution

factor

Maximum window
150ms 50ms looms

length
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Figure 4.3: Example of adaptive windows of modified algorithm used in the first

and third channels of the speech signal "That shirt seems much too long." The signal was

degraded with additive white noise at a SNR of 15dB.
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The following tables show the chosen set of parameters for the SLP modeling and

Wiener filtering stages of the enhancement system. Each of the three bands has its own

set of linear prediction and Wiener filter parameters. Notice how the LSNR thresholds

change according to the frequency band.

LSNR > 30dB 5dB5 LSNR ! 30dB LSNR < 5dB

(High LSNR region) (Mid LSNR region) (Low LSNR region)

Model order 50 50 0

Number of iterations 3 2 3

Wiener filter weighting 1.0 1.0 1.0
factor

Table 4.2: Parameters for modeling and enhancement of regions in the first

frequency band.

LSNR > 35dB 1.5dB LSNR 35dB LSNR < 1.5dB

(High LSNR region) (Mid LSNR region) (Low LSNR region)

Model order 50 50 0

Number of iterations 3 2 3

Wiener filter weighting 1.25 1.0 0.85
factor

Table 4.3: Parameters for modeling and enhancement of regions in the second

frequency band.
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LSNR > 40dB 0.5dB LSNR 40dB LSNR < 0.5dB

(High LSNR region) (Mid LSNR region) (Low LSNR region)

Model order 50 50 0

Number of iterations 3 2 3

Wiener filter weighting 1.5 1.0 0.75
factor

Table 4.4: Parameters for modeling and enhancement of regions in the third

frequency band.

The model parameter values presented in these tables are not exclusive. For

regions with medium or low LSNR, the model order, Wiener filter, and number of

iterations for enhancement vary according to the LSNR of the same time region at

different bands. Figure 4.4 shows how the model and Wiener filter parameters are

assigned in these special cases. Notice how the modified algorithm uses information

from the base band channel as well as from previous lower frequency channels,

depending on the LSNR of the current region. In the previous algorithm, only the

information from the first band (base band channel) was used.

The next figures show an example of the results obtained with the modified

enhancement algorithm. Figure 4.5 is a spectrogram of the clean speech signal "That

shirt seems much too long" sampled at 10kHz. Figure 4.6 shows the same signal

degraded by additive white noise at an SNR of 15dB. Figure 4.7 is a spectrogram of the

enhanced version of the signal, obtained with the modified algorithm. Again, notice the

similarities and differences between the original and enhanced version. Also, compare

the spectrogram in Figure 4.7 with the spectrogram of the enhanced speech signal shown

in Figure 3.12. Note that the new enhancement algorithm produces a smoother speech

signal, with less abrupt transitions between spoken and silent segments.
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Figure 4.4: Diagram for parameter settings in low and medium LSNR regions using

LSNR information from other bands.
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Figure 4.5: Spectrogram of the clean speech signal "That shirt seems much too long."
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Figure 4.6: Spectrogram of speech signal degraded by additive white noise at 15dB SNR.
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Figure 4.7: Spectrogram of the enhanced speech signal.
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Chapter 5

System Evaluation

5.1 Introduction

In the previous chapter, a set of modifications for the speech enhancement system

presented in Chapter 3 were proposed. The original system used a filter bank and a set of

adaptive length windows to segment the speech signal into nearly stationary time-

frequency regions before enhancement. The modifications suggested in Chapter 4 were

geared towards simplifying the algorithm for increased computational efficiency as well

as achieving a better compromise between quality and intelligibility. These

modifications were made mostly in the adaptive windowing and modeling stages of the

process.

This chapter discusses the performance of the latest system. It will focus on

objective and subjective measurements to quantify improvements in quality and

intelligibility. The system will be compared to its previous incarnation, as well as to

traditional enhancement techniques.

5.2 Proposed Method Vs Traditional Methods

The proposed method will be compared in terms of quality, intelligibility and

computational efficiency to previously developed enhancement systems. The quality and

intelligibility will be evaluated in terms of objective measurements, such as segmental

SNR and the Itakura-Saito distance and subjective measurements, mainly the opinion of

experienced listeners. Comments on computational efficiency gains are also presented
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5.2.1 Objective Measures

The two main objective measures used in this thesis are segmental signal-to-noise

ratio (SNR) and the Itakura-Saito measure. Segmental SNR is the average SNR over

short segments of speech waveform. It is considered a good estimator of speech quality

because the segmentation in the SNR computation permits the measure to assign equal

weight to all portions of the speech signal [2]. However, this measure is not flawless. If

the speech has intervals of silence, any amount of noise will give rise to a large negative

SNR for those regions that could bias the overall measure. To solve this problem, the

silent frames could be identified and excluded from the computation or the SNR estimate

can be bounded with an arbitrary threshold (e.g., -5dB < sSNR < 25dB.)

The Itakura-Saito measure can be used to quantify dissimilarities between all-pole

models of the original and enhanced speech. Since the human auditory system is

relatively insensitive to phase distortion, many enhancement systems focus only on the

magnitude of the speech spectrum. Measures based on SNR do not provide a meaningful

measure of performance when the two waveforms differ in their phase spectra because

they obtain a distortion measure based on sample by sample differences in the original

and processed time-waveforms. The Itakura-Saito measure is sensitive only to variations

in the magnitude spectrum. Therefore, it is impartial to phase differences between the

original and enhanced speech signals. The distance measure is computed between sets of

Linear Prediction (LP) parameters estimated over synchronous frames in the original and

processed speech.

Figures 5.1 and 5.2 show plots of segmental SNR and Itakura-Saito measures for

the enhancement systems presented in Chapters 3 and 4. These results are compared to

the measurements obtained with other traditional speech enhancement systems. Notice

that the objective measures show the two novel enhancement systems performing better

than the traditional systems. In addition, the modified enhancement system of Chapter 4

shows a small improvement in both plots as compared to its previous implementation.
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Figure 5.1: Segmental SNR measures for traditional and novel speech enhancement

systems.
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Figure 5.2: Itakura-Saito measures for traditional and novel speech enhancement systems.
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5.2.2 Subjective Measure and Computational Efficiency

The main subjective measure used to evaluate the system was informal listening.

A small group of speech experts (~ 5) listened to speech signals degraded at SNR's

between 10 and 20 dB. In all the cases, it was agreed that the proposed system produced

speech that was more intelligible than the speech produced by the rest of the presented

enhancement algorithms.

It is important to point out the big computational improvement that the proposed

enhancement algorithm brings to the process. Simplifying the original algorithm

(presented in Chapter 3) by removing various steps in its windowing and modeling stages

reduced processing by a factor of 10. For example, the previous enhancement system

needed about 4.3 minutes to process 21 seconds of speech. The modified algorithm from

Chapter 4 needs 28 seconds to process the same signal in the same computer

environment. The systems were implemented in C, using Ultra 5 Sun Workstations with

a SunOS 5.6 operating system. Further advancements could make the system work at

real time speeds.
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Chapter 6

Summary and Future Research

6.1 Summary

This thesis considered the problem of reducing noise in degraded speech. It was

desired to develop a system that would maximize noise reduction while minimizing

speech distortion, always taking into consideration that noise reduction often leads to

speech distortion. To achieve this goal, a balanced tradeoff between these opposing goals

was targeted by exploiting local characteristics of stationary time-frequency regions.

This technique is very different from traditional enhancement techniques that try to

achieve this tradeoff over the entire fixed-length windowed speech segment.

The systems presented in this thesis exploit both time and frequency localized

properties of speech. Local characteristics are obtained from stationary regions selected

by decomposing the signal into different frequency bands and applying adaptive length

windows to each channel. The enhanced spectrum of each stationary region is estimated

with an all-pole model using Selective Linear Prediction (SLP), which allows the process

to model only the spectral region of interest. By modeling the local spectrum, either

independently or dependently of other time-frequency regions, and adjusting the model

and Wiener filter parameters according to each region's local signal to noise ratio, a

balanced tradeoff between noise reduction and speech distortion was achieved. The

proposed system does not suffer from tonal artifacts like spectral subtraction or from bias

problems like the MAP algorithm. Modifications were made in several stages of the

algorithm to improve its computational efficiency and the intelligibility of the enhanced

speech.

Results based on informal listening and objective measures such as segmental

SNR and Itakura-Saito distance indicate that the modified enhancement system
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performed better than traditional algorithms. The results also showed that the modified

system radically increased the computational efficiency of its previous incarnation and

improved to a lesser extent the quality of the output speech,

6.2 Future Research

The ideas presented as part of this new speech enhancement technique have

considerable potential for further research. For example, the time-frequency regions

could be identified using time-frequency representations or techniques other than M-band

segmentation and adaptive windowing. A few possibilities are the Wavelet transform,

the Garbor transform and the Wigner distribution. In addition, noise reduction in each

time-frequency segment could be implemented using a variety of different enhancement

techniques that may or may not include speech models, such as those based on noise

masking properties of speech. Finally, several other local characteristics of the time-

frequency regions can be used to determine model and Wiener filter parameters such as

the entropy or voicing state of the regions. More study of these and other alternatives is

necessary to further improve the described system.
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