
Three-Dimensional Tether Awareness Trainer

by

David H. Manowitz

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 21, 1999

@ 1999 David H. Manowitz. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science

May 21, 1999

Certified by
Nathaniel I. Durlach

Senior Research Scientist
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committerg raduate Theses

Three-Dimensional Tether Awareness Trainer
by

David H. Manowitz

Submitted to the Department of Electrical Engineering and Computer Science

May 21, 1999

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

It is important that pilots of underwater remotely operated vehicles (ROVs) learn
an awareness of the position of their tethers as they pilot their vehicles. Thus, a three-
dimensional tether model that is computable in real time is a vital part of a computer-
based training system for ROV pilots. This thesis presents such a tether model and a
discussion of its implementation. Due to the constraint of real-time computation, a full
physical model of the tether is not developed. However, this model attempts to capture
two important behavioral components of a real tether. First, it computes the position of
the tether when it is only acted upon by a current. Second, it determines the effects of
interactions between the tether and other objects in the undersea environment. At least in
these regards, a reasonable approximation can be made.

Thesis Supervisor: Nathaniel I. Durlach
Title: Senior Research Scientist, M.I.T. Research Laboratory of Electronics

2

Acknowledgments

I would like to thank a number of people for their help on this thesis. First and

foremost, I would like to thank my supervisor Nat Durlach for his support and ideas.

Many of the ideas for this thesis were proposed by Nat. I am also grateful to Stewart

Harris and Jason Fritz of Imetrix, Inc. and Barbara Fletcher, formerly of Imetrix, and

currently of the Space and Naval Warfare Systems Center. They were invaluable for their

ideas and feedback on the tether model. They were my link between the simulation and

the real world. Additionally, Nick Pioch and Bruce Roberts of BBN have provided me

with support, ideas, and not least, conference rooms to meet with the rest of the team. I

would like to thank Tom Wiegand, Matt Esch, and Jonathan Zalesky for their work last

year, which gave me a very good starting point for this thesis. Last, but certainly not

least, I am indebted to the Department of Naval Research for funding this project so that I

would not be financially indebted to anyone else.

I also want to recognize my family and friends. Although they did not help

directly with this work, they provided me with support and encouragement when I needed

it. They also provided me with a break from my work when I needed it, and sometimes

even when I did not.

3

Contents

1 Introduction ... 8

1.1 Background .. 8

1.2 Previous W ork Perform ed.. 9

1.2.1 Outline of W ork ... 9

1.2.2 Open-W ater M odel... 10

1.2.3 Collision M odel... 12

1.3 Design Overview .. 15

1.3.1 Project Goals ... 15

1.3.2 Thesis Goals ... 15

1.3.3 Thesis Constraints .. 16

1.4 Thesis Scope.. 17

2 Three-Dim ensional Conversion ... 18

2.1 Introduction ... 18

2.2 V-Shaped M odel.. 19

2.3 Catenary M odel.. 20

2.3.1 Initial Conversion... 20

2.3.2 Perform ance Enhancem ent... 22

2.4 Depth Calculation.. 23

2.4.1 Linear Depth Change.. 23

2.4.2 Nonlinear Depth Change ... 24

2.5 Sum m ary ... 26

4

3 Collision Resolution.. 27

3.1 Introduction ... 27

3.2 Basis for Collision Detection: RAPID and V -Collide... 28

3.2.1 RA PID .. 28

3.2.2 V-Collide ... 29

3.3 Extending the Collision Detection .. 30

3.3.1 M odifications to V -Collide ... 30

3.3.2 ivCollide ... 31

3.4 Collision Point M easurem ent .. 31

3.5 M odifications to Collision Resolution .. 35

3.5.1 A ddressing the Errors.. 35

3.5.2 A ddressing the Realism Problem s.. 39

3.5 Sum m ary ... 42

4 Conclusions .. 44

4.1 Synopsis... 44

4.2 Future W ork .. 45

4.2.1 V alidation and V erification... 45

4.2.2 Dynam ic M odeling ... 47

Appendix A: Class Structure... 49

Appendix B : M ore Tether Illustrations ... 51

References ... 53

5

Figures

Figure 1-1: Catenary tether model developed by Matt Esch in Matlab [2]...................... 11

Figure 1-2: Illustration of tether splitting upon collision ... 12

Figure 1-3: Two-dimensional tether trainer developed previously 13

Figure 2-1: Initial development of 3D tether model (V-shaped), showing ROV, tether

and environm ent ... 18

Figure 2-2: V-shaped model in two dimensions .. 19

Figure 2-3: Three dimensional catenary model... 21

Figure 2-4: Tether after calculating 2D shape and following the three inverse

ro tatio n s .. 2 6

Figure 3-1: Creating object-oriented bounding box hierarchy by dividing and

bounding groups of polygons in the object .. 29

Figure 3-2: Line segment-triangle intersection test.. 32

Figure 3-3: Tether collision, with intersecting triangles highlighted, and average

collision point and average collision normal shown .. 34

Figure 3-4: Collision point showing where tether will be broken so as to avoid

further collisions at this point... 34

Figure 3-5: Incorrect tether splitting due to "back side" collision 36

Figure 3-6: Tether splitting that would immediately cause another collision..............37

Figure 3-7: Tether sliding along point of collision.. 40

Figure 3-8: Tether wrapped around oil platform after multiple collisions...................42

6

Figure A-1: Major classes that comprise the tether model and collision detection,

and their relationships .. 49

Figure B-1: V-shaped model showing linear depth change .. 51

Figure B-2: V-shaped model showing nonlinear depth change 51

Figure B-3: Catenary model showing linear decrease in depth..................................... 52

Figure B-4: Catenary model showing nonlinear depth change 52

7

1 Introduction

1.1 Background

Underwater remotely operated vehicles (ROVs) have become an important tool in

the exploration of the seas. These tools have been recently brought to the public's

attention through their role in exploring the sunken remains of the RMS Titanic in real

life and in the movie Titanic. Before these events brought ROVs to the public's eye and

once they have faded from it, the ROV has been and will continue to be a valuable tool in

underwater reconnaissance, inspection, and exploration.

Piloting an ROV is a skill that takes a great deal of training. A pilot must be able

to handle the vehicle even when it is being driven off course by currents and must be

aware of the vehicle's surroundings. For the most part, training to pilot an ROV requires

time piloting a real ROV; however, since there are not many vehicles available, and they

are often needed for real missions, it can be hard to arrange for training. As a result of

this difficulty, using a virtual environment (VE) simulator can be extremely beneficial for

training. In addition to providing a simulation, a VE trainer can also incorporate

intelligent tutoring to give guidance to a novice pilot. Using a VE trainer, a pilot-to-be

can learn the various skills needed: maneuvering, sonar reading, and tether awareness,

among others [4].

All ROVs are connected to their point of origin-usually a ship or dock-via a

cable or tether that carries power and control signals to the vehicle, and video, sonar, and

other signals from it. Since radio waves do not travel well through water, the tether is the

main link between an ROV and its launching point. As the ROV travels underwater, the

8

tether is affected by currents and can become entangled around objects. Additionally, the

pilot should be aware of the length of tether in the water: too much tether makes

entanglements likely; too little prevents the pilot from suitable exploration. Thus, in

training people to pilot ROVs, awareness of one's tether is an essential skill that must be

acquired.

A pilot should have a general idea of where the tether is located and be sensitive

to signs of a tether entanglement. Thus, a VE trainer should have a model of the tether

available to determine the behavior of the tether. This model of the tether must conform

to at least the gross characterization of the tether's behavior. In particular, the model

should exhibit two main behaviors. First, it should bend in the direction of the current

when the current velocity is greater than zero. Second, it should wrap around objects

when the tether collides with an obstacle and the ROV does not move away from the

obstacle. The models developed in this thesis and the previous work all conform to these

behaviors. Alternate methods for determining tether position based on a tether

instrumented with physical sensors are discussed in [2]. However, all the methods

developed so far use an analytical model to predict the tether position.

1.2 Previous Work Performed

1.2.1 Outline of Work

Last year, our group developed a quasi-static model of a tether in open water [2]

and a two dimensional model of a tether in a constrained environment [12]. The main

concerns in designing the representation of the tether are faithfulness to the form of a real

tether and the ability to make the necessary computations in real time. As one might

9

conjecture, it is not possible to get an exact representation of a real tether in real time or

even near-real time, so the compromise implicit in the tether models is that they should be

computable as fast as possible and should give an accurate depiction of the major features

of the tether, such as general curvature and collision response.

1.2.2 Open-Water Model

In determining the model for the tether in open water, it is assumed that the

motions of the ROV and tether are small compared to the velocity of the current, which is

assumed to only have nonzero velocity in the standard Cartesian xy-plane. This is often a

valid assumption, as ROVs are generally limited to relatively low speed. With this

assumption, the tether is modeled as a static approximation that changes slightly every

time-step of the simulation-a quasi-static approximation. Dynamic systems techniques

can be used to construct a tether model, but, in general, these algorithms are too slow for

the simulation.

Two classes of models studied to determine an appropriate one for the static

approximation are finite-element models and assumed-equation models. The finite-

element models attempt to determine the position of the tether by first dividing it into a

number of small pieces. Then, given the tether's length and the forces acting upon each

segment, the model iterates to find a solution that results in a force equilibrium. The

assumed-equation models start by presuming that the tether will form a certain shape, and

then, given the length of the tether and direction of the current, the model attempts to find

values of the shape parameters such that the length of the tether will be as close to the

10

min Len= 63.9611; cabLen= 100; cat Len= 99.9998; a= 12.3341; i= 1.0778

100

y axis -100 -100
x axis

camn IT

1-1: Catenary tether model developed by Matt Esch in Matlab [2]

given length as possible. It can be shown that a cable being acted upon by a constant

force such as gravity or a uniform current will in fact form a catenary, with an equation of

the form f (x) =A cosh A + ys (for a two dimensional model), as illustrated in

Figure 1-1. The catenary assumption is further confirmed by comparing results obtained

11

Figure

obstacle

Before tether splitting After tether splitting
Figure 1-2: Illustration of tether splitting upon collision, showing point where first
segment of tether is fixed in place.

with this model to results obtained with the finite-element model: the results are almost

identical. Since the two models produce essentially the same results and the assumed-

equation model is computable in many fewer operations than the finite-element model,

the assumed-equation model has been chosen as the preferred static tether model [2].

1.2.3 Collision Model

The quasi-static tether model gives a good approximation to the shape of a tether

in a current, but only when the tether is in open water. When there are other objects

around with which the tether can become entangled, modifications must be made to the

model. When the tether collides with an obstacle in the water, it is assumed that the

tether breaks into two pieces, each like a separate tether, at the point of collision.

However, only the piece between the ROV and the collision point can move; the other

piece is fixed in place, as shown in Figure 1-2. This is not a realistic assumption; often

the tether will slide once a collision has occurred, but implementing frictional effects can

be quite complicated, especially when predicting the position of the tether without

12

ROV

information about the forces on segments of the tether, so they have not been included

thus far.

Once collisions have occurred and the tether has begun to wrap around an object,

the pilot should be able to free the vehicle by driving the vehicle back around the obstacle

or obstacles on which the tether is caught. Thus, the simulation must allow for the tether

to unwrap from these objects. This factor has also been incorporated into the tether

model. When the angle between two segments (measured with normal towards the object

wrapped around) is greater than 180 degrees, the tether "de-collides" at that point and the

two segments are rejoined, thereby allowing the pilot to free the vehicle.

Figure 1-3: Two-dimensional tether trainer developed previously (showing V-shaped
model)

13

Along with the model of the tether in an unconstrained environment, a trainer

using a two dimensional model incorporating collisions was developed last year and is

depicted in Figure 1-3. It embodies the tether-splitting and joining idea, but it restricts the

tether collisions to specific bounding points predefined for each object in the simulation.

In addition to the catenary model described earlier, two simpler models can be

used in this trainer. The simplest model is just a straight line between the starting point

and the ROV, which is divided upon collisions like the other models. This model can be

used when there is no current-a situation that may prevent the other models from

converging to a solution-and is simple to use in debugging the collision responses.

However, it is the most unrealistic in that it does not have a constant length. It can grow

and shrink up to the point when the ROV reaches the tether length.. More realistic than

the straight line model, but less so than the catenary model, is a V-shaped model. This

model uses two straight lines to form a V-shape that is constrained to have the correct

length. It can be thought of as a limiting case of the catenary. It gives the general shape

that the tether will attain in a current given its length, yet it is still a very simple model to

compute. The last type of model that can be used in this program is the catenary model,

but the implementation developed last year tends to be unstable in that as the position of

the vehicle changes, the predicted position of the tether sometimes changes drastically.

Finally, in this simulation, when the tether collides with an obstacle, the sub-

tethers formed are taken to be the same shape as the single tether segment had been [12].

As a result, this implementation has been useful in providing a basis on which to build the

three dimensional model, but it still lacks many of the features needed in the full

implementation.

14

1.3 Design Overview

1.3.1 Project Goals

The overriding goal of this project has been to develop a three-dimensional

graphical and analytical model of an ROV tether that approximates the behavior of a real

tether and is computable in real time. Since some trade-off is needed between the

computational complexity of the model and the degree to which it matches a real tether,

two main features of a tether have been focused upon: the general shape in open water in

the presence of a current and the wrapping of the tether around an obstacle when the ROV

drives around the object. Since it is hard to determine exactly the position that a real

tether forms as an ROV drives about, the accuracy of the model is judged by the opinions

of experienced ROV pilots. Although experiments could be done in which a tether is

instrumented with various types of sensors and measurements of its position can be made,

no such experiments have been done as of yet (at least not to the author's knowledge),

and performing such an experiment would be a considerable undertaking. As a result,

only the general behavior of the tether can be measured, but it is felt that more detailed

conformity may not be needed for substantial training benefit.

1.3.2 Thesis Goals

The original goal of this thesis was to extend the part task trainer to a three-

dimensional model. However, in creating a full three-dimensional version of the model,

it was determined that a number of the assumptions in the existing model were

problematic in that they were too unrealistic. As a result, the goal of this thesis has

shifted to creating a three-dimensional tether model that attempts to remove some of the

15

shortcomings of the previous version, with the eventual goal of incorporating the model

into a part-task trainer.

1.3.3 Thesis Constraints

The main constraints of this tether model design are that it be computable in real

time, that it be implemented in a portable fashion, and that it be easily integrated with the

existing core of the TRANSoM system. The first constraint has been realized by

implementing a quasi-static, rather than a fully dynamic design. Additionally, even

though the catenary is treated as an equation model, it is implemented as a piecewise

linear graphical form, rather than an implicit surface or other similar model. As a

consequence of the second restriction, the design is implemented in such a way that it

avoids reliance on features of the computer system on which it is implemented.

Furthermore, the software is implemented in C++ using Open Inventor, V-Collide, and

other libraries that are available on or easily ported to various computer systems [11, 6].

Lastly, to ensure that the model is easily added to the core testbed system, a small, well-

defined interface to the tether model has been designed into the Tetherdisplay class and a

few methods in the TTether3D class (see Appendix A for more detailed class reference).

Since the existing TRANSoM core has been implemented using Scheme, rather than

C++, the interface has been constructed so that the tether functions can be used either

from another C++ program or from Scheme code by the use of the Header-to-Scheme

program [4, 8]. Thus, these considerations are reflected in the implementation of the

tether model.

16

1.4 Thesis Scope

There are two main components to the thesis work. First, the extension of the

current tether model to three dimensions is discussed in chapter 2. Along with the new

collision resolution system, problems with the existing collision model and possible

solutions are described in chapter 3. Finally, in chapter 4 a summary of the thesis and

several ideas for extending the work performed in the thesis are presented.

17

2 Three-Dimensional Conversion

2.1 Introduction

Although converting the tether model from two to three dimensions may seem

like a trivial task, this is not necessarily the case. Since the straight line (rubber band)

model only uses the starting point of the tether and ROV position as endpoints and can,

therefore, change length as the ROV moves, it has been trivial to change it by adding a

third coordinate to the model. However, both the V-shaped and catenary models use the

starting point, ROV position, current direction, and tether length to determine the tether

shape, so additional factors must be considered.

Figure 2-1: Initial development of 3D tether model (V-shaped), showing ROV, tether and
environment. Tether diameter exaggerated for clarity.

18

2.2 V-Shaped Model

In two dimensions, the basic premise of the V-shaped model is to give an

approximation to the shape the tether forms when it is effected by a current by forming a

V-shape out of two links, given the length of the segment. The model begins by

assuming the current is directed in the positive-Y direction using standard Cartesian axes,

or the negative-Z direction using Inventor's axes. If this is not the case, all points in the

segment are rotated through the angle that the current must be rotated through to align it

as desired and rotated back at the end. The remaining steps in obtaining the parameters

for the V-shaped model are illustrated in Figure 2-2 and described below.

First, the changes in position between the ROV and its starting point in the plane

of the current, dx and dz in Inventor coordinates, are computed. Then, the angle 0 that

would be formed by the tether if it were fully extended to length L with change in the x-

direction of dx, is determined (i.e. such that dx = L -cos 6). Next, the remaining side of

the right triangle formed by a leg of length dx and hypotenuse of length L is calculated;

starting pt, dx
current

0 direction
11

N

L-11
ROV L sin 0 starting pt.

ROV
Figure 2-2: V-shaped model in two dimensions.

19

this leg has length L -sin 9. The bend in the tether is effectively a measure of how much

dz deviates from L -sin 9. The length of tether from the starting point to the bend point is

given by

L dz
L - - . (Equation. 2-1)

2 2sin9

This equation can be derived by noting that when dz = 0, the tether should be bent

L
exactly in the middle, so 1l = -. Next, when the tether is fully extended against the

2

current, dz = L -sin 9, and 1 should be 0. When the tether is fully extended with the

current, dz = -L -sin 9, and 11 should be L. It is easily shown that equation 2-1 satisfies

these three constraints and is a linear function of the ratio dz as desired [12].
L -sin'a

Thus, the tether correctly forms a V-shape given its length and the current's direction.

2.3 Catenary Model

2.3.1 Initial Conversion

In two dimensions, when a tether is subject to a uniform current and is allowed to

x - xs
come to equilibrium, it will naturally form a catenary: f (x) = A coshX A)+ ys.

Thus, it is natural to use this shape for the quasi-static model. Again, the two-

dimensional model assumes that the current is flowing in the positive-Y direction using

standard Cartesian axes, or the negative-Z direction using Inventor's axes. If not, the

points are rotated as in the V-shaped model.

However, unlike the V-shaped model, the parameters in the catenary equation

20

Figure 2-3: Three dimensional catenary model. Tether diameter exaggerated for clarity.

cannot be solved for directly. There are three of these parameters. First is the scaling

factor, A. Next, the horizontal shift, xs is the horizontal point at which the catenary

achieves its minimum value. Last, the vertical shift, ys, compensates for the vertical

position of the end points, but it can be calculated from the other two. Since the scaling

factor is both inside and outside the hyperbolic cosine, the parameters cannot be

determined algebraically.

As a result, the parameters must be determined numerically. Let (xo, yo) be the

starting point of the tether, and let (x1, yi) be the position of the ROV. The parameters are

solved for by the minimization of the magnitude squared error function

e = el + e2 , (Equation 2-2)

21

2

where el = Y1 - Acosh(X AjXSJ+ C) (Equation 2-3)

e2 = s - A sinh * A >-sinh(A ,})J (Equation 2-4)

s is the desired length of the tether, and c = yo - A cosh 4 . Thus, the difference

between the desired and actual endpoints and the desired and actual length is minimized

by minimizing this function. Currently, the Nelder-Mead simplex model as implemented

in Matlab version 5.2 is used to perform the minimization [2, 7].

2.3.2 Performance Enhancement

This function was initially tested only on tethers of short length (i.e. s = 5), but

when tested on tethers of long length (i.e. s = 100), errors on the order of 1084 were being

reduced to zero, taking a very long time! Thus, if yi is less than one, the relative error

A cosh(x A x)+ c2

e, = 1-J is used instead of Equation 2-3 in Equation 2-2.

A sinh(* A - sinh(xOXS2

Similarly, if s is less than one, e2 = !- s is used

instead of Equation 2-4 in Equation 2-2. The same parameters are obtained, and the

intermediate errors are much smaller than with the absolute calculations, resulting in a

much faster convergence of the simplex method.

22

To further decrease computation time, the previous values of A and xs are used as

initial guesses in the next minimization calculation, as in the Matlab version, but several

additional steps have been taken to further speed up the computation. First, rather than

use fixed values as the initial guesses for A and xs, the initial guesses are computed as a

function of the length of the tether: xs1 , =(3-log1 (length)+log2 (length)1)3 and

A =, = xsi,,. Although this function has been obtained by trial and error, it seems to

give reasonable initial guesses, while not being very hard to calculate. An additional

decrease in time is obtained by decreasing the error tolerance from 0.01% to 0.5%. These

steps put together result in a speedup of two to five times over the original Matlab code,

considering only the number of iterations of the minimization function-not even the

speed increase in porting from Matlab to C++.

2.4 Depth Calculation

From this result, a three dimensional rendition needed to be constructed. Simply

eliminating the depth coordinate before the calculation and adding it back in at the end

would not produce the correct result.

2.4.1 Linear Depth Change

Originally, the depth of the tether was desired to be a linear function of the length

along the tether: a point further on the tether should have a depth linearly related to

points closer to the starting point. For the initial V-shaped model, the third dimension was

ignored and 1 was computed as in the two-dimensional version. However, the

23

coordinates of the bend point were altered so that the length restriction was satisfied in

three dimensions. Letting the change in depth of the tether from the starting point to the

ROV (or between collision points) be dy, 1 and L were defined as above, with

ratio = 11 . If the difference between the x and z coordinates of the bend point
L

(determined in two dimensions) and the starting point were dxb and dzb, respectively,

and dxb was held fixed while dzb was redefined to dzb = 112 -dxb 2 -(ratio dy) 2

then the tether would form the correct shape with length 1 between the starting and bend

points and dyb = ratio -dy. A problem in implementing this algorithm was that roundoff

errors could cause the tether's length to be reported as longer than it really was, so when

computing ratio, the length of the tether was taken to be 0.95L. Attempts to use a similar

method for the catenary model were unsuccessful. However, it was later decided that a

linear change in tether depth would not always be desirable, so a new method of

computing the depth was needed.

2.4.2 Nonlinear Depth Change

To allow for nonlinear depth effects, a method originally implemented in Esch's

catenary model has been implemented for both the V-shaped and catenary models [2].

Once the endpoints have been translated to move the start point to the origin and then

rotated to aligned the current correctly, the tether undergoes two more rotations.

The first of these rotations compensates for the "sag factor." The sag factor is a

coefficient between -1 and 1 which represents the tendency of the tether to sink (negative)

or float (positive). The sag factor is currently defined as buoyancy times (1 - relative

24

current magnitude). At the moment, the buoyancy is another coefficient between -I and

1, but it could be adjusted to reflect real units. The relative current magnitude is

calculated by dividing the current magnitude by the maximum allowed current

magnitude. The sag factor is determined in this manner because the tether has less of a

tendency to sink or float in the presence of a strong current, as the current provides a

lifting force, but in a weak current, the buoyancy of the tether is the primary cause of

sinking or floating behavior. Once the sag factor is calculated, it is multiplied by Z, and
2

this angle is use to compute first rotation, performed around the x-axis (thus rotating in

the yz-plane in Inventor or standard Cartesian coordinates).

The second of these rotations aligns the tether with the xz-plane in Inventor

coordinates or the xy-plane in Cartesian coordinates. This enables the V-shape or

catenary models to be run in two dimensions, where they are much easier to understand

and implement. This rotation is set up by calculating the angle in the appropriate plane

(xy for Inventor, xz for Cartesian) that the end point of the segment forms with the

origin-just an inverse tangent calculation. Then the endpoints are rotated through the

negative of this angle about the correct axis (z in Inventor, y in Cartesian) to result in the

corresponding two dimensional model. Upon calculation of the model, the three inverse

rotations are performed in reverse order, and the model assumes a correct three

dimensional form, as illustrated in Figure 2-4. For more illustrations of the depth effects

of the tether, see Appendix B.

25

a.) Catenary in 2D b.) After rotation to restore depth

0~0'

-20--- -20, --- -

-40-- ...- -40---

0 0 50 0

y axis -50 -50 x axis -50 -50 x axis

c.) Depth and sag factor added d.) Final shape after current adjustment

01 0,
-20 - -

50 500

Y axis -50 -50 x axis Y axis -50 -50 x axis

Figure 2-4: Tether after calculating 2D shape and following the three inverse rotations.
Arrow shows the current direction. Shapes along edges are projections onto xy and xz
planes.

2.5 Summary

With these models implemented in three dimensions, models have been developed

that predict the shape of the tether in open water. According to ROV pilots, the models

are realistic, given that a current has been acting on the tether for some time. However,

this has only been part of the work in developing the full three-dimensional tether model.

Improved collision detection and resolution is also needed.

26

3 Collision Resolution
3.1 Introduction

An important factor in piloting an ROV is being aware of tether entanglements.

As a result, a trainer for ROV pilots should be able to simulate these entanglements, so it

must have some way of determining when the tether has come into contact with another

object. In the two-dimensional model, collision identification is a relatively simple task.

All objects in the virtual world are preassigned bounding points that form a convex hull

around them, and then the tether can only collide with these points. Since this constraint

is too limiting in three dimensions, an improved method for detecting and reacting to

collisions is needed. This new method is based on the V-Collide system from the

University of North Carolina in Chapel Hill with some custom modifications. Using V-

Collide, a tether collision with any point of another model can be determined correctly.

Additionally, once a tether collision has been identified, the tether model must

react in a reasonable manner to the collision. The initial idea for the tether's response to a

collision was to have the tether split into two segments of the same model type at the

point of collision, and then the segment attached to the ROV would be allowed to move,

but the other segment would be fixed in place (as though the contact had infinitely high

friction or stickiness). However, after trying this method for a little while, it has become

clear that this idea is too restrictive and under some conditions even leads to gross

absurdities, such as the tether model becoming stuck far inside an object. Thus, some

new concepts have been added to the collision resolution to fix the errors and to attempt

to add some dynamic behavior to the collision.

27

Lastly, the tether model must provide some mechanism for allowing the tether to

free itself from a collision. A collision is regarded as invalid, and the two segments on

either side of the collision are rejoined, when the angle between the two segments is

greater than or equal to 185 degrees. Originally, this number had been 180 degrees, but

there were some problems with collisions becoming undone too quickly. With all these

factors taken into account, the tether model should exhibit reasonable behavior upon

collisions with objects in the environment.

3.2 Basis for Collision Detection: RAPID and V-Collide

3.2.1 RAPID

V-Collide is based on another system, also developed by the University of North

Carolina, called RAPID, with modifications to improve its speed. RAPID uses a

hierarchy of object-oriented bounding boxes to accurately and quickly determine if two

objects overlap. Object-aligned bounding boxes are rectangular shapes that enclose all

the vertices in an object. In contrast to axis-aligned bounding boxes, in which the axes of

the boxes are aligned with the global coordinate axes, object-aligned boxes have their

axes oriented along the dimensions of the objects they enclose. As a result of this

property, an object-aligned box around an object will be no larger than an axis-aligned

box around the same object. RAPID takes the coordinates of the vertices that comprise

an object and computes a tree of bounding boxes, as shown in Figure 3-1. This tree

extends from boxes that contain two triangles up to one that surrounds the entire object,

and it is this tree that is used in the intersection computation [5].

28

Figure 3-1: Creating object-oriented bounding box hierarchy by dividing and bounding
groups of polygons in the object [5]

RAPID uses the hierarchical setup of the boxes to accelerate the collision

detection. It checks to see if two objects intersect by checking if the object-level

bounding boxes overlap. If not, the objects do not intersect. If so, then the tree of boxes

is traversed until either it is determined that no lower-level boxes intersect, in which case

the objects are separated, or until triangles in the object models are determined to be

overlapping. In this manner, RAPID can give a list of intersecting pairs of triangles (each

object contributing one triangle to the pair) [10].

3.2.2 V-Collide

V-Collide uses RAPID as its underlying collision-resolution engine. V-Collide

has better performance than RAPID, though, because it only checks for collisions among

those objects that are close together. Thus, pairs of objects that are far apart in the world

do not contribute time to the collision detection, as they are never tested. As distributed

by UNC, V-Collide only reports whether a pair of objects is colliding or not, rather than

returning a list of all triangles in each model that are in contact. However, with a few

modifications, V-Collide can be made to return lists of intersecting triangles for all pairs

of colliding objects, just as RAPID does [6].

29

3.3 Extending the Collision Detection

3.3.1 Modifications to V-Collide

As mentioned above, several modifications to V-Collide have been made to

enable the reporting of pairs of intersecting triangles. Additionally, several other methods

are added for convenience. For a complete description of V-Collide functions, see the V-

Collide user's manual, [6]. The main change to V-Collide is the addition of intersecting-

triangle-pair reporting. As triangles are added to an object model, V-Collide numbers

each triangle consecutively so that they each have unique ids. This can easily be extended

to allow the object creator to specify the id of each triangle as it is added, but it was felt

that sequential numbering would be most often used, so it has been implemented by

default. Also, modifications have been made to the report structure generated by V-

Collide when performing a collision query. In addition to relating the ids of impacting

objects, two arrays of triangle pointers are returned, one for each object. The

corresponding pairs in the lists are the triangles in each object that are in contact. To

support this change, further modifications had to be made to a few of the other classes

(such as PairData and NBody), but they are only minor.

Along with the report structure change, a few new methods have been appended

to the VCollide (and underlying VInternal) class. Since the ROV simulation only tests

for collisions between the ROV or tether and other objects, most pairs of objects should

not be tested during the collision query. Thus, a method to deactivate all pairs of objects

has been created. Furthermore, since the tether object is not treated as a rigid body-it

changes shape every time-step of the simulation, it seemed unwieldy to create a new

object for the tether every time-step. Additionally, since V-Collide gives every new

30

object a unique id, this could potentially exhaust the number of ids available, while most

numbers would be wasted for just one time-step. Thus, a method has been implemented

that takes an existing object and resets it by destroying its RAPID model, but keeping its

id and other properties, such as current transformation. Finally, a method to check

whether two objects collided in the most recent collision check has been added. These

modifications to the V-Collide software itself enable more powerful collision resolution.

3.3.2 ivCollide

Besides the modifications to the V-Collide code, a wrapper class has been

developed for easy use of Open Inventor models with V-Collide. This class is called

ivCollide. This class has members to automatically add an Inventor scene graph to V-

Collide as a single object and to update an object's transformation using an Inventor

SoTransform. The conversion of an Inventor scene graph to a V-Collide object is based

on a sample program from the Inventor distribution that decomposes an object into its

primitive triangles and manipulates the triangles [9]. The transform alteration simply

converts the transformation matrices from one format to another. As a result, this class

makes interfacing between Open Inventor and V-Collide simple.

3.4 Collision Point Measurement

Unlike the relatively simple case of an ROV collision, where the only information

needed is which object the ROV hit, a tether collision is more complicated. As the tether

splits into two segments upon a collision, the point at which the collision occurs must be

calculated. The basic idea of this algorithm is to use the pairs of colliding triangles to

31

determine the point of collision.

Once V-Collide determines that the tether has collided with another object, the

pairs of intersecting triangles are returned. The triangles from the tether in the impact

will be called the tether triangles, and the triangles from the other object will be called the

other triangles. Lastly, it is assumed that each tether link (the part between two adjacent

points) will be part of at most one collision, so only one link is examined at a time if

more than one tether collision is found.

For each pair of triangles, each edge of the tether triangle in the pair is tested for

intersection with the other triangle. This is computed via a test for intersection between a

line segment (the edge of the tether triangle) and a plane (the plane of the other triangle).

Let vi, v 2, and v3 be the vertices of the other triangle, and let R, and R2 be the endpoints of

the edge of the colliding tether link. Furthermore, let il = - Ni, L= t ii+ , (where t

VI

n

P uL

R,

V3

Figure 3-2: Line segment-triangle intersection test. The line segment is determined by
points R1 and R2. The triangle has vertices vi, V2, andv3.

32

ranges from 0 to 1), iS2 = v 2 =2 -l i31 = v 3 , 232 -vT3 ', and ui= 21 x s3, as

shown in Figure 3-2, and let i = (x, y, z) be any point in the plane of the triangle. Arrows

over variables indicate vectors or explicit treatment of points as vectors. By the equation

of a plane, 5-(2-i)=0, but i must also lie on I, so it must be true that

i -(t ii + R, - i3)= 0. After simple algebra to solve for t, it is found that t = _.-.
u -n

This determines the intersection of the line with the plane of the triangle.

However, it is necessary to determine the intersection of the line segment with the

triangle, which is not quite the same. First, this calculated t value is checked to see if it is

within the range 0 to 1. Next, the point p is checked to see if it is actually within the

bounds of the triangle by testing to see if it can be written as p = a 32, + 8 32, where a

and $ are both in the range 0 to 1. The actual code to perform this check does so by first

projecting the triangle onto a plane and then performing the check [1]. Thus, if the

calculated point passes these tests, it is considered to be the intersection point between

that link of the tether and that other triangle. As long as the diameter of the tether is

small, this is a reasonable calculation.

Once the program determines that a tether triangle edge has in fact intersected the

other triangle, the intersection point is added together with the other intersection points

for the link. Additionally, the normal vector to the other triangle is added together with

the other collision normals for the link, and the plane of the other triangle is saved. Then

the collision point and normal sums are divided by the number of points in the single link

collision to get an average collision point and normal. Finally, the distance from the

33

Figure 3-3: Tether collision, with intersecting triangles highlighted, and average
collision point (sphere) and average collision normal (cylinder) shown.

Figure 3-4: Collision point showing where tether will be broken so as to avoid further
collisions at this point.

34

average collision point p to each of the saved planes is computed using the distance

formula d = Iii- + DI, where the equation of the plane is ii (x,y,z)+D =0, and

||||= 1. The maximum of these distances is calculated and the point of collision is

moved this distance plus N/2 times the radius of the tether along the average normal.

This last step is taken so that when the tether is split at the collision point, the tether

segments will not start out in a collision. At this point the tether is broken at the

computed point, as described earlier.

3.5 Modifications to Collision Resolution

After the three-dimensional collision point computation had been worked out, the

tether model still needed modifications. The collision resolution would cause errors

sometimes, and ROV pilots felt that the collision response was too unrealistic at times.

3.5.1 Addressing the Errors

As mentioned previously, when the tether collided with an object, it split into two

sub-tethers. The initial idea was to have the sub-tethers each be of the same type of

model (i.e. both catenary or both V-shape). However, it was quickly learned that in two

cases, this procedure could cause serious errors in the model. In one case, when the tether

collided with the back side of an object (relative to the current direction), it might come

unstuck right away. Also, when a catenary or V-shaped model was created at the point of

collision, one or more of the segments adjacent to that point might immediately collide

with the object. Since the tether would be taut for the first collision, such incidents

35

generally did not occur then (although due to roundoff error and similar factors, they

sometimes would). They tended to occur on later collisions. The errors were fixable,

although the fixes created problems of their own.

The first problem occurs when the tether collides with the back side of an object,

relative to the direction of the current. Splitting the tether into two V-shaped or catenary

segments will cause an error due to the attempt to unwrap the tether after the split occurs.

After splitting, the current will cause the tether to form two segments as illustrated in

Figure 3-5. Since the angle between the two segments is much greater than 180 degrees,

on the next time step the tether will rejoin at the collision point, and then the next

collision will be detected incorrectly. In such a scenario, as the ROV moves, successive

tether collisions will be detected and then immediately rejoin further and further into the

object until finally the tether gets stuck in the object, and the simulation gives

unpredictable results.

In fact, such an action should never happen, as the current could not effect the

tether on the back side of the object in this manner because the object would shield the

tether
tether

obstacle obstacle

current current
direction direction

Before tether splitting After tether splitting
Figure 3-5: Incorrect tether splitting due to "back side" collision. This collision would
be undone in the next time-step.

36

tether from the current, neglecting turbulence. Consequently, the second segment of the

tether should be a straight-line segment. Thus, after a collision occurs, the model is tested

to see if it would rejoin right away, and if so, the second model is changed to a rubber

band one and recalculated.

The other case in which symmetrical tether splitting causes a problem is when one

or both of the segments resulting from a collision would now cause another collision, as

shown in Figure 3-6. When the model predicts this type of situation, the next tether

collision will be detected far inside the object. The collision analysis in the tether model

assumes that collisions will be detected within close proximity to the surface of the object

that the tether has run into. Also, it presumes that the tether is nearly perpendicular to the

surface of the object when the collision occurs. As long as the ROV and tether move

slowly, this conjecture is a reasonable one to make. However, when the tether model

jumps and violates this supposition, then the collisions response is unrealistic.

To correct for this discrepancy, after a collision is registered and the adjoining

segment models have been run, another collision check is run. If a collision is detected

tether tether

obstacle obstacle

ROV ROV

current current
direction direction

Before tether splitting After tether splitting
Figure 3-6: Tether splitting that would immediately cause another collision

37

this time, one of the two segments is recomputed as a rubber band model. If no collision

is detected this time, the segment just changed must have been responsible for the

collision. If another collision is detected, the other segment or both are responsible for

the collision, and another collision check is made. Once the segment or segments

responsible for the new collision have been determined, the model type of the responsible

segment or segments is changed to rubber band, and the original collision resolution ends.

This procedure assumes that changing a model type to rubber band will fix the

problem. That assumption may not be realistic, but so far it has always worked. This is

likely due to the fact that when such a situation arises, the average collision point may be

too far inside the object for an accurate response, but, presumably, there is a direct line

between the collision point and the ROV.

Both of these problems are fixed by changing one or more tether segments from

catenary or V-shaped models to rubber band models. However, since the rubber band

model can change length, it is not a very realistic model. Furthermore, it can cause other

problems. For example, consider a collision that resolves into a segment which causes

another collision, so that the last segment is made into a rubber band model (as would

happen to the collision in Figure 3-6). If the ROV flies toward the obstacle and then back

to the left, so that the collision is invalidated, then sometimes the rejoined segment will

be created through the obstacle. This problem is partially solved by only allowing the

segments adjoining the collision point to rejoin when the angle between them is

significantly greater than 180 degrees; currently 185 degrees is used. However, the

fundamental problem is that using the rubber band model is very unrealistic, yet so are

other alternatives.

38

3.5.2 Addressing the Realism Problems

Since the rubber band model is unrealistic, one may ask why it is used at all.

However, in some cases, such as acting as a temporary model while the tether is wrapping

around an object, the rubber band model functions well. Additionally, always using

catenary or V-shaped models is unrealistic as well. One of the fundamental assumptions

of the tether model is that between collision points the tether acts as if a current has been

acting on it for a long time, so that the forces acting on the tether will come to

equilibrium. On the other hand, when a collision occurs, it is not feasible for the tether to

immediately form a catenary shape, but as the model currently exists, it does not take into

account much dynamic behavior. For example, in a real ROV system, the end of the

tether closer to the vehicle will move directly with the vehicle, but tether further back will

take some time before it begins to move. As a result, a model that adds some dynamic

adjustment to the collision response, while maintaining the quasi-static overall model, has

been developed to address these concerns.

The approach that has been taken to resolve these issues is to allow the tether to

slide along the point of collision. When sliding is allowed and the tether collides with an

object, it is almost as if there is no friction at the point of collision in that the length of the

tether is kept constant by allowing slack to move freely between the two segments at the

collision point, as illustrated in Figure 3-7. Since there is negligible friction at the point

of collision in this plan, the tether forms only one bend: the longest segment forms a

catenary or V-shape, while the other segments are treated as rubber band models.

However, the total length of the tether is kept constant.

39

tether
tether

obstacle obstacle

ROV
ROV

ROV motion current ROV motion
direction direction direction

ROV Pulling Tether Slack

tether

obstacleobstacle

ROV

ROV motion current
direction direction

Current Picking Up Tether
Tether sliding along point of collision

ROV motion
direction

Slack

Assuming that the catenary or V-shaped segment is farthest from the ROV, this

constraint is maintained by ensuring that the last rubber band segment-which is the only

one that can move-is only as long as the actual distance between the ROV and the

collision point. As the ROV moves away from the point of collision, the rubber band

segment is extended, while the length of the bent segment shrinks. This transform only

40

current
direction

tether

current
direction

Figure 3-7:

takes place if the bent segment is not actually taut already; if so, the ROV is not allowed

to move. In real life, often the ROV is able to pull the tether along the object the tether

has collided with, so this extension to the existing model is reasonable.

In addition to this change, a similar modification has been made so that when the

ROV moves closer to the point of collision, the length of the rubber band segment is

shortened, while the bent segment is lengthened. This scenario is not quite as realistic as

the ROV pulling the tether. However, if there is little friction at the point of collision and

the current is strong, then it may be able to pick up this slack.

Although it is unrealistic to assume that the tether gets stuck to an object as soon

as they collide, it is also implausible to believe that friction between the tether and other

object is insignificant. Therefore, the model has been modified yet again. The tether is

assumed to be in one of two states. In one state, there is no friction between the tether an

the object, so the tether will slide. In the other state, there is infinite friction between the

tether and the other object, so the tether is stuck. Additionally, when the tether is stuck,

attempting to pay out tether (put more tether in the water) will not have any results. In

real life, it is common for extra tether to have no effect when the ROV is truly stuck, so

not letting out any more tether simulates this effect. To switch between the states, two

criteria have been investigated. One criterion is that the tether becomes stuck after a

certain number of collisions have occurred. The other criterion is that the tether becomes

stuck after the angle between the normal vectors of the first and last collision exceed a

given angle. For the most part, the angle criterion appears to be a better measure of when

the tether should be stuck, but it is not perfect, so in some cases it may be augmented with

41

Figure 3-8: Tether wrapped around oil platform after multiple collisions. All segments
after initial (on left side) are rubber band.

a check for the number of collision points. With these last modifications, the model

approaches the behavior of a dynamic model, but it still does not achieve that.

3.5 Summary

With this improved collision detection, tether collisions are now accurately

reported with any point of any object in the world. The initial method of breaking the

tether upon a collision had been to make two identical-type segments. However, this

method results in tether models that give errors or are unrealistic. Attempts to address

this problem by allowing some segments to use the rubber band model have been

relatively successful. Further efforts to increase the realism of the collision model by

42

allowing the tether to slide along the point of collision have also been rather successful,

but a full dynamic model is really needed for realism.

43

4 Conclusions
4.1 Synopsis

Modeling the tether of an underwater ROV has been a complicated task. Despite

this difficulty, it is important that ROV pilots be aware of the location of their tethers, so

some kind of a reasonable tether model must be developed for use in a training simulator.

Initial work on such a model began last year, with the creation of a three-dimensional

model for use in the absence of collisions with other objects and a two-dimensional

collision response. Nonetheless, a design that could react to collisions in three

dimensions was needed.

As detailed in chapter 2, the conversion of the open-water V-shaped and catenary

models was largely a matter of transformations. The three-dimensional problem was

transformed to an equivalent two-dimensional problem. This two-dimensional problem

was solved analytically for the V-shaped model or numerically for the catenary model.

Upon completion of these calculations, the model was transformed back to three

dimensions. Additionally, several parts of the catenary model were changed to make the

computation more efficient. With these modifications, the three-dimensional conversion

was completed.

Chapter 3 described the changes necessary in updating the collision detection and

resolution. First, the existing collision detection scheme, in which predefined bounding

points marked where the tether could collide with other objects, had to be replaced with a

much less restrictive system that allowed the tether to collide with any other object at any

point. Next, the response of the model to the collisions needed modifications so that

44

tether segments were allowed to have different model types. In some cases, this change

was necessary to correct errors. Unfortunately, using the variable-length rubber band

model exacerbated some problems with unrealistic behavior in the tether collision

response. As a result, an attempt was made to keep the tether length constant, regardless

of the type of model used. With these alterations in place, a less restrictive and more

realistic collision response has been created, but some shortcomings still exist.

4.2 Future Work

There are two main directions in which the work presented in this thesis can be

continued. First, the existing model could use further validation and verification.

Second, the model can be improved by creating a full dynamic model, rather than the

quasi-static model that is used currently.

4.2.1 Validation and Verification

So far, the performance of the tether model has been based upon the judgment of

expert ROV pilots and some mechanical theory. Although they can provide some

guidelines for analyzing the behavior of the tether model, more detailed metrics are

needed in two regards. Initially, one may consider trying to measure the deviation of the

tether model from the physical behavior of a real tether. For example, a real ROV can

move through a predetermined course in a given environment, and the position of the

tether can be recorded. Then, the same ROV movements can be fed to the simulation,

and the difference in tether positions can be determined. However, a number of

challenges face such a measure. First, measuring the position of the tether, even at a

45

small number of points along its length can be a daunting task. Perhaps the tether could

be instrumented with a set of acoustic transponders, and receivers on the surface of the

water could pick up the signals. Unfortunately, to get measurements of enough points on

the tether to make an accurate comparison, the signals may cause too much interference

for them to be picked up by the receivers. Secondly, the simulator is a much more

controlled environment than the real ocean, so it may be hard to determine how exactly

the tether was being acted upon by the current. Thus, it is not likely that a detailed

measurement of real tether behavior will occur (at least not soon).

Since the tether model is ultimately intended to be used to help pilots increase

their awareness of a real tether's position, a better metric may be to measure the

performance benefit from using the tether model in a simulator. Such a benefit could be

measured by having a group of people perform a situational awareness test using a real

ROV after training with the real ROV, while another group takes the same test after

training with the simulated ROV and tether, and a third group could take the test without

training. A similar test has been conducted to test the effectiveness of the intelligent

tutoring system of the TRANSoM system [3]. If the simulated tether model shows

enough training benefit, then despite its sometimes unrealistic behavior, it can be

considered useful for its intended purpose.

Clearly, much work remains to be done to determine the adequacy of the tether

model. Since the goal is not to be the most accurate tether model, but to be a reasonable

model for training use, measurements of its adherence to a physical tether and its

usefulness for training are both relevant.

46

4.2.2 Dynamic Modeling

As mentioned in the previous section, the tether model as it stands may be

realistic enough to function as a training aid. However, if it is determined that this is not

so, or if a more realistic model is desired for some other tether modeling application, a

fully dynamic model is needed. This type of model begins by treating the tether as a large

number of small, connected segments. It then determines the position of the tether by

considering the effect of the forces, such as the current and ROV motion, at the points on

the tether where they are applied. Once each segment has been affected by some force,

the effects are propagated throughout the tether until an equilibrium is reached. Thus,

one part of the tether may move differently than others during a given time-step.

During the initial investigations into the tether model, a finite element model of

the tether in a steady current had been examined, and it ran too slowly to be used in the

simulation [2]. Although it was not the same as a dynamic model of the tether, the

computation requirements were similar. Both treated the tether as numerous small

segments and operated on all the pieces iteratively until an equilibrium was found. Thus,

it seemed as if a dynamic model of the tether would also be very slow, as well as harder

to formulate.

On the other hand, the limits of the quasi-static model have been reached. It has

provided a decent idea of the tether shape in open water, but once the tether starts to wrap

around objects, important assumptions are being violated. In the quasi-static model, it is

assumed that the current has been acting on the tether for a while at each time step. Even

in the absence of tether collisions, as the ROV moves around, this assumption is being

violated. However, the shape of the tether is not changing by much. On the other hand,

47

when the tether is wrapping around an object, the shape changes drastically. This is why

many of the unrealistic behaviors are seen.

As a result, if further extensions to the tether model are to be made, a dynamic

model must be used to achieve realistic behavior. With the increasing speed of

computers, the computation time may not even be as much of a bottleneck as it had

previously been.

48

Appendix A: Class Structure
TetherDisplay

At least one method

ivCollid~e in A calls at least

TTe ther 3D ITone method in B

VWollide___IF 4 1 E [----NWE]
TTetherSegment3D A contains an

RAPID instance of B

Figure A-1: Major classes that comprise the tether model and collision detection, and
their relationships

e TetherDisplay: This class maintains the graphical tether model. It is the only class

that directly modifies the Inventor scene graph of the tether model, via the

update method. It is also the only class that changes the VCollide representation

of the tether. After checking for collisions using VCollide, the

resolveCollisions method is used to check for and respond to tether collisions.

e TTether3D: This class represents the analytical tether model as a whole. It has

methods to set and get various properties of the tether model. It also has the

RunModel method that is called by the application to update the tether model

after changing some feature such as the end point. During collision response

checking, it will update the graphical tether model and check for immediate

collisions using VCollide.

" TTetherSegment3D: This class models a segment of tether, which is a piece between

two collision points or an end point and a collision point. It is responsible for

computing the position of the points within the segment, based on the type of

model used. This information is extracted by the TetherDisplay class to

49

compute the locations of the vertices of the graphical model. When the

RunModel method in the TTether3D class is invoked, the local RunModel

method is called for every tether segment that has changed since the last time-

step.

" ivCollide: This class is the interface for easily adding Open Inventor scene graphs to

VCollide. It includes the addInventorObj method to add an Inventor object to

VCollide or to modify an existing one. Also, there is the updateTransform

method, which updates the VCollide transformation from an Inventor

SoTransform.

" VCollide: The main collision detection library. Modified version includes methods

to add, modify, or remove objects in the database. Also, has method to perform

collision test and to get reports of results. For more information, see [6].

e RAPID: The basis for VCollide. No methods are used by tether model; only data

structures are. See [10] for more information.

50

Appendix B: More Tether Illustrations

Figure B-1: V-shaped model showing linear depth change.

Figure B-2: V-shaped model showing nonlinear depth change: the first link has a steeper
slope than the second.

51

Figure B-3: Catenary model showing linear decrease in depth.

Figure B-4: Catenary model showing nonlinear depth change.

52

References
[1] Didier Badouel. "An Efficient Ray-Polygon Intersection." Graphics Gems. Ed.

Andrew S. Glassner. Boston: Academic Press, 1990. 390-393.

[2] Matthew E. Esch. "Determining the Position of Underwater Tethers in Real Time,"

M.Eng. thesis. MIT, Cambridge, MA. 1998.

[3] Barbara Fletcher. "TRANSoM ROV Pilot Training: Test Results." Underwater

Intervention 1998 Conference Proceedings.

<http://copernicus.bbn.com/Transom/>

[4] Barbara Fletcher and Stewart Harris. "Development of a Virtual Environment

Based Training System for ROV Pilots." Oceans 1996 MTS/IEEE Conference

Proceedings. Sept. 23-26, 1996. Fort Lauderdale, FL.

[5] S. Gottschalk, M. Lin and D. Manocha. "OBB-Tree: A Hierarchical Structure for

Rapid Interference Detection." Proceedings ofACM Siggraph 1996. Aug. 4-9,

1996. New Orleans, LA. <http://www.cs.unc.edu/-dm/collision.html>

[6] Thomas C. Hudson, et. al. "V-COLLIDE: Accelerated Collision Detection for

VRML". VRML 1997 Conference Proceedings. Feb. 24-26, 1997. Monterey,

CA. <http://www.cs.unc.edu/-geom/collide.html>

[7] Mathworks, Inc. Function fmins.m implemented in Matlab v5.2.

<http://www.mathworks.com>

[8] Kenneth B. Russell. "The Header2Scheme Home Page."

<http://www-white.media.mit.edu/-kbrussel/Header2Scheme/>

[9] Paul S. Strauss. "Vortex." Distributed as sample program vortex.c++ with Open

Inventor version 2.1. <http://www.sgi.com/Technology/Inventor/>

53

[10] UNC Research Group on Modeling, Physically-Based Simulation and Applications.

"RAPID User's Manual." Included as part of RAPID library from

<http://www.cs.unc.edu/-geom/OBB/version201.html>

[11] Josie Wernecke. The Inventor Mentor: Programming Object-Oriented 3D

Graphics with Open Inventor, Release 2. Reading, Mass.: Addison-Wesley, 1994.

[12] Jonathan L. Zalesky. "A Part-Task Trainer for Underwater Tether Modeling,"

M.Eng. thesis. MIT, Cambridge, MA. 1998.

54

