
Texture-Based Statistical Models for Object

Detection in Natural Images

by

Thomas D. Rikert

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Play 20, 1999,

© Thomas D. Rikert, MCMXCIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and ENG
distribute publicly paper and electronic copies of this thesis

document in whole or in part. MASSACHUSETTS INSTITUTE
OF TECHNOL

J*Ir

A u th or
Dem :rtmpnt of Electrical Engineering and Computer Science

May 20, 1999

C ertified by
Paul A. Viola

Associate Professor of ElectriQal. Ejgineering and Computer Science
ThrMk ,a'pervisor

Accepted by........
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

Texture-Based Statistical Models for Object Detection in

Natural Images

by

Thomas D. Rikert

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 1999, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Texture is an important cue for detecting objects that undergo shape deformation,
pose changes, and variations in illumination. We propose a general statistical model
which relies on texture for learning an object class from a set of example images.
Once the model learns the distribution of the object class images, it can then be used
to classify new images according to their membership in the class. The distribution
of images is captured by a set of feature vectors which have been shown to produce
good texture detection and synthesis results [4]. Our statistical model uses these
feature vectors for classification and can handle larger variations in the appearance
of the object class than previous approaches. We estimate the distribution of feature
vectors for an object class by clustering the data and then forming a mixture of
Gaussian model. The mixture model is further refined by determining which clusters
are the most discriminative for the class and retaining only those clusters. After
the model is learned, test images are classified by computing the likelihood of their
feature vectors with respect to the model. We present excellent results in applying
our technique to face detection and car detection.

Thesis Supervisor: Paul A. Viola
Title: Associate Professor of Electrical Engineering and Computer Science

2

Acknowledgments

This research was supported by Compaq Computer Corporation's Cambridge Re-

search Laboratory through the MIT EECS VI-A Internship Program. It was also

supported by NTT Electronics Corporation through a grant to Professor Paul Viola

at the MIT Artificial Intelligence Laboratory.

I would like to thank Paul Viola for his enthusiasm, good humor, and encourage-

ment during this research and my undergraduate years at MIT. He has challenged

me to think with both creativity and precision in our many conversations. Work-

ing alongside him has enriched my education with new ideas and research problems.

He played a major part in making MIT a fun and exciting place for me to grow

academically and personally.

I could not have asked for a better company advisor than Mike Jones at Compaq.

Mike has been a great teacher and co-investigator. Many of the insights in this

thesis arose from our conversations, and his examples of good technical writing have

helped me in composing this thesis. In addition, the Compaq Cambridge Research

Lab (CRL) has been a supportive and fun place to work each summer. Thanks to

director Bob lannucci and all of the researchers there for creating such an outstanding

environment.

My academic advisor, Professor Patrick Winston, has encouraged me to pursue

my goals even when the odds were against me. His confidence in my abilities means

a great deal to me.

Special thanks to Jeremy De Bonet for providing several figures for this document,

and L.J. Ruell and Gene Preble for collecting the face database used in this research.

I am grateful to my officemate Dan Snow for provided feedback on this document. I

wish him the best as he continues his MIT career. Also thanks to Linda Ungsunan

and my brothers at Phi Kappa Theta for their support throughout all my years at

MIT.

Finally, I want to acknowledge my Lord, Jesus Christ, for making this all worth-

while and for giving me the strength to do it. "Christ does not destroy reason; he

3

dethrones it." - Soren Kiekegaard

4

Contents

1 Introduction

1.1 Problem Statement

1.2 Contributions

1.3 Document Overview

2 Statistical Models of Natural Images

2.1 Distributions of image pixels

2.2 Distributions of image features

2.3 Density estimation .

2.3.1 Parzen-window density estimators

2.3.2 Clustering .

2.3.3 Gaussian mixture models

2.4 Conclusion .

3 Texture Analysis and Synthesis

3.1 Properties of image texture

3.2 Texture analysis .

3.2.1 Multi-scale, multi-orientation wavelet transform

3.2.2 Parent vectors

3.3 Texture synthesis .

3.3.1 Distance functions

3.3.2 Choosing thresholds

3.3.3 Synthesizing structured images

11

11

14

15

16

. 17

. 17

. 18

. 18

. 19

. 19

. 20

21

. 21

. 22

. 23

. 25

. 26

. 27

. 28

. 29

3.4 Discussion .

4 The Statistical Model

4.1 Overview

4.2 Estimating the distribution

4.2.1 Clustering algorithm

4.3 Discriminative analysis

4.4 Discussion

5 Classification

5.1 Evaluating the mixture model

5.1.1 Comparing distributions:

5.2 Bernoulli trials

5.3 Discussion

sets of vectors

6 Results

6.1 Face Detection .

6.1.1 Building the face model

6.1.2 Correlating clusters with perceptual features

6.1.3 Face classification results

6.1.4 Bernoulli trial results

6.2 Car detection .

6.3 Image database retrieval

7 Conclusion

7.1 Sum m ary .

7.2 Future W ork. .

7.3 Discussion .

References

6

31

32

32

34

35

37

39

41

41

43

44

45

47

. 47

. 48

. 49

. 50

. 53

. 53

. 55

59

59

59

61

63

List of Figures

1-1 A jacket hanging on the wall is easily recognized by its shape. 12

1-2 A jacket tossed on the floor undergoes complex shape deformations.

The patterns of different colored regions and different types of material

are still recognizable, however. 12

1-3 A face with extreme variations in illumination is a difficult case for

many template-based techniques. Some features, such as the right eye,

are washed out and may cause a detector looking for two eyes to fail. 13

1-4 This image shows the same face after a change in pose. The structure of

the face changes significantl: one eye is occluded and the lines around

the nose and chin dominate the shape. The hair and skin texture is

still clearly visible, however. 14

3-1 Oriented derivative filters are applied to an image to produce subbands

highlighting edges and ridges at several different angles. This example

has a fixed scale. See figure ?? for an example decomposition over

both scale and orientation. 23

3-2 The oriented filters can also be applied to downsampled versions of the

input image to produce subbands at different resolutions. 24

3-3 Illustration of parent vector structure. The grids represent an image

pyramid. Each pixel is associated with a set of filter values capturing

local features. The chain of line segments show the pixels whose filter

values make up a single parent vector. 26

7

3-4 The smaller images on the left were input to the synthesis algorithm.

Note that the larger synthesized images do not contain tiled versions

of the original texture and instead have new patterns that are percep-

tually close to the original. 29

3-5 Texture synthesis examples using a set of face images as input textures.

See text for an explanation. 30

3-6 Texture synthesis examples showing the effect of thresholds. See text

for an explanation. 31

4-1 An outline showing construction of the model. A target class model

(faces) and background model are built independently, producing a

large number of clusters for each class. Discriminative analysis pro-

duces a final model with a small number of clusters drawn from both

classes. 33

4-2 Snapshots of the clustering algorithm operating on randomly gener-

ated data points in two dimensions. It begins with all the data points

(circles) as single population clusters. Neighboring points are then

clustered together, represented by the squares. After a pass has been

made through all the data, the algorithm repeats by merging neighbor-

ing clusters from the previous iteration. In this figure, the area of the

boxes is proportional to the variance of the cluster, and the thickness

of the box walls is proportional to the population of the cluster. Each

histogram bar corresponds to the population of one cluster. 36

8

4-3 The discriminative analysis procedure. The images on the left axis rep-

resent the face and background training data. For the "Face Clusters"

and "Background Clusters" columns, we count the number of face vec-

tors that are near each face cluster, and then count the number that

are near each background cluster. The procedure is repeated for the

background image vectors. This results in four histograms, where each

bar corresponds to the vector count for one cluster. We then calculate

the difference between the face cluster histograms, and then the back-

ground cluster histograms. Only clusters with histogram differences

greater than the threshold are retained for the model. 38

6-1 Example face images from the training set. 48

6-2 Example background images from the training set 48

6-3 Receiver operating characteristics curve for a test set of 266 frontal

faces and 2500 non-faces using the mixture of Gaussians classifier. Note

that to focus on the interesting part of the graph, the correct detection

rate axis begins at 50% . 50

6-4 A cluster was chosen from the face model and compared to all par-

ent vectors in each test image. The white boxes show the postion in

each image where a parent vector was near the cluster. This cluster

apparently represents a lip-corner feature. 51

6-5 Results for two more face clusters. Again, the white boxes show the

position in each image where a parent vector was near the cluster. The

top set of images shows responses for a cheek cluster while the bottom

set shows responses for an eye-corner cluster. 51

6-6 Example non-frontal face images which the face detector correctly clas-

sified . 5 2

6-7 Receiver operating characteristics curve for a test set of 266 non-frontal

faces and 2500 non-faces. 53

9

6-8 Receiver operating characteristics curve for a test set of 266 frontal

faces and 2500 non-faces using the Bernoulli classifier. Note that to

focus on the interesting part of the graph, the correct detection rate

axis begins at 50% . 54

6-9 Receiver operating characteristics curve for a test set of 118 non-frontal

faces and 2500 non-faces using the Bernoulli classifier. The perfor-

mance of the Bernoulli detector is much worse than the mixture model

in the non-frontal case% . 54

6-10 Eight of the 24 example cars used to train the car detector. 55

6-11 Receiver operating characteristics curve for a test set of 24 side views

of cars and 200 non-cars. 56

6-12 An example detection by the preliminary system 57

6-13 Notice that the center of the face has been detected, as well as a second

region centered on the hair and ear. We suspect the that the training

data contained enough examples of hair and ears for the model to

respond to these textures in a test image. 58

6-14 Another example where more than one patch of the face was found by

the m odel. 58

10

Figure 1-1: A jacket hanging on the wall is easily recognized by its shape.

Figure 1-2: A jacket tossed on the floor undergoes complex shape deformations. The

patterns of different colored regions and different types of material are still recogniz-

able, however.

12

Chapter 1

Introduction

1.1 Problem Statement

This thesis is a response to an engaging scientific question that has its roots both

in computational vision and visual psychology: "What underlies the human ability

to recognize objects under deformation and changes in pose?" Take for example

the recognition of a jacket casually tossed to the floor. Somehow the almost infinite

variation in appearance is easily captured by the observer's model of the jacket. It

seems unlikely that recognition of the jacket's image is based on purely geometric

reasoning. It also seems unlikely that the observer has built a complex model of

jacket deformation painstakingly acquired over many thousands of examples.

Similarly, the appearance of a human face changes drastically as it rotates from

a frontal to a sidelong view. The frontal view contains several features such as the

eyes, nose, and mouth. These features are arranged in a symmetric pattern which

has consistent proportions in most frontal images. When the face is viewed from an

oblique angle, this symmetric pattern becomes distorted or is no longer visible. The

arragement of features in the image has changed and some features, such as an eye,

may be occluded. Furthermore, the structure of the image may be dominated by the

shape of the nose and chin. What is common to both views, however, is the texture

of the hair, skin, and iris. A recognition system incorporating these textural features

may be more successful than using structure alone.

11

Figure 1-3: A face with extreme variations in illumination is a difficult case for many
template-based techniques. Some features, such as the right eye, are washed out and
may cause a detector looking for two eyes to fail.

The hypothesis of this research is that object recognition under these very difficult

conditions relies on texture recognition. Motivation for the texture-based approach

of this investigation has come from recent successes in texture representation and

recognition [8, 4, 25, 19]. Each of these approaches can be used both to recognize

texture as well as generate novel images. Based on the quality of these generated

textures, it is clear that these four approaches have gone far beyond the previous

state of the art in texture modeling. Taken together these new results have destroyed

classical distinctions between textons, noisy textures and highly structured patterns.

We extend the ideas from texture modeling to handle typical images containing

an object and background. This new general statistical model is capable of learning

an object class from a set of example images and correctly classifying new images

according to their membership in the class. The model represents both the textural

and structural characteristics of the target object using a distribution of feature vec-

tors which have been shown to produce good texture detection and synthesis results.

The feature vectors capture the joint occurence of local features at multiple scales,

and also characterize the distribution of edges and ridges at different orientations in

the image.

Research findings in cognitive science provide a biological motivation for our

example-based technique [131. After viewing several examples, people can accurately

group images of similar-looking objects together despite differences in pose, lighting,

size, and image quality. People learn which variations are allowable, and which are

13

Figure 1-4: This image shows the same face after a change in pose. The structure of
the face changes significantl: one eye is occluded and the lines around the nose and
chin dominate the shape. The hair and skin texture is still clearly visible, however.

superfluous for recognizing the target image class . The enormous amount of variation

among even familiar objects like human faces makes this a challenging and interesting

problem for study in cognitive science as well as computer vision.

One can imagine several useful applications for this classification system. For

example, a system robust to different pose, illumination, and image quality could

search through a collection of images from the World Wide Web. Because images

on the Web come from many different sources, searching techniques must handle

unpredictable variations robustly. This is currently a major problem for state-of-the-

art systems. Similarly, a system which runs in real-time could track objects whose

shape and reflectance change as their orientation with respect to the camera changes

through time.

1.2 Contributions

The main contribution of this thesis is the investigation of a new framework for object

class detection based on an extended texture model (e.g. face or car detection). The

advantage of this approach is that it can handle larger variations in the appearance of

the object class than previous techniques. Starting from the De Bonet and Viola tex-

ture model, we will extend it to allow learning from hundreds or thousands of images.

In order to do this we must eliminate much of the complexity in the density model.

Complexity is removed in two ways: i) using unsupervised approaches to cluster the

14

feature space; ii) using a supervised approach to maximize the discriminative ability

of the density estimate.

The validity of the approach is tested using two different image classes: pictures of

human faces and cars. We have constructed an image database of both target images

and background images in order to measure how well the statistical model can find

target objects in novel test images.

There are several questions this thesis addresses. First, what is a good measure of

the distance between two high-dimensional feature vectors? This distance metric is

critical in grouping together vectors to form a distribution. Second, can an optimal

distribution for detection be extracted from the original feature vector distribution?

Because noise and other image artifacts introduce errors, some peaks in the density

may be distractors and decrease classification rates. Some peaks may arise from

features that occur commonly in both the target class and background images, and

therefore provide little information for discriminating a novel image. Thirdly, do

peaks in the density correspond to perceptual features in the image, or are they

related to subtle image characteristcs? Our results answer each of these questions.

1.3 Document Overview

This document is divided into seven chapters. Chapter 2 summarizes previous work

on statistical models for natural images. In Chapter 3, we introduce several prereq-

uisite concepts from texture analysis and synthesis before proceeding to discuss our

statistical model in Chapter 4. Different procedures for computing the probability of

a novel test image are described in Chapter 5. In Chapter 6, the experimental setup

and results are presented. Finally, Chapter 7 draws conclusions from our findings and

suggests interesting directions for future research.

15

Chapter 2

Statistical Models of Natural

Images

Detecting objects in images is difficult because future image inputs are not known per-

fectly at the time of system design, and the space of all possible images is enourmous.

The future inputs can only be characterized in terms of their "typical" or "likely"

behavior using some statistical model. A statistical modeling approach can provide

a principled mechanism for learning which properties of images are important for

recognition and which are not by comparing statistical measurements from different

images. Statistical object recognition is a means of handling, or perhaps ignoring, the

wide variations that are observed in natural images. This chapter reviews previous

work in statistical models and lays the groundwork for our texture-based approach.

We use the term "natural images" to describe pictures taken of the physical world

using the visible light spectrum, and at a scale accessible with an everyday camera.

We do not, for example, consider synthetic images such as computer graphics or

photographs taken in the infrared spectrum. We suspect that these images will have

different statistical distributions of pixels and features than images commonly found

in databases or on the World Wide Web.

16

2.1 Distributions of image pixels

Many of the strongest results of statistical modelling are in face detection and recog-

nition. One criticism of these approaches, however, is that they attempt to model the

entire image as a single rigid patch - making it difficult to model changes in pose and

feature location [22, 21, 15]. More recently, these technique have been generalized to

include schemes for modelling deformations in the image plane [1, 9, 6, 11]. These

techniques not only learn a set of allowed variations in the image values, but also a set

of allowed variations in pixel location. Nevertheless reliable detection and recognition

of images across a wide variety of images is not yet a solved problem.

A number of more general statistical models of recognition have also been pro-

posed: [23, 17, 2]. These attempt to model the appearance of localized features and

then separately model feature location. While these are steps in the right direction,

these approaches often require a great deal of compute time both for model learning

and for image recognition.

2.2 Distributions of image features

Most previous approaches attempt to model the distribution of images directly. Our

approach instead attempts to model the distribution of multi-scale features. von

der Malsburg and colleagues have shown excellent results on face recognition using

a similar set of multi-scale features [10, 24]. Recently, Papageorgiou et al. have

proposed multi-scale features for object class detection [12]. They use Haar wavelets

computed at particular positions in the image to form feature vectors for a support

vector machine classifier. Our approach is much more radical in its disregard for

feature location.

Schiele and Crowley's work on multidimensional receptive field histograms [16]

also has some similarities to our work. They also look at the distribution of feature

vectors formed from filter responses at different scales. Their focus differs in that

they are looking at building models of single objects as opposed to object classes.

17

Also their feature vectors do not use the multi-scale, multi-orientation feature vector

structure that we use. Furthermore, they use fairly low dimensional feature vectors

which makes the use of histograms practical.

2.3 Density estimation

We have chosen to model the distribution of multi-scale image features. How can

we construct the distribution? As we noted previously, image pixel distributions and

image feature distributions are difficult to model directly and are not always well-

approximated by parametric distributions. According to Duda and Hart [5], most

practical problems involve multimodel densities which are nonparametric. There are

several common techniques for estimating nonparametric densities from example data.

2.3.1 Parzen-window density estimators

De Bonet and Viola [2] have been successful at modeling image textures by building

nonparametric distributions of vectors using a simple Parzen-window density estima-

tor. Preliminary experiments for this thesis used a Parzen-window density estimator

for grouping together similar multi-scale feature vectors. The basic idea is to place a

hypercube cell around each sample in space, and see how many other data points fall

within the cell. If we let h, be the length of an edge of a hypercube in our density

space, then its volume is given by

Vn = hi d(2.1)

If we define a window function as

(U)= j j (2.2)
0 otherwise

then #(u) defines a unit hypercube centered at the origin. Thus, the number of

samples in this hypercube is given by

18

k $ #) (2.3)

and averaging n samples over the volumn V, we obtain the estimate

1 41 x-x~ 24p I n X -hi) (2.4)
ni=1 Vn n

2.3.2 Clustering

We found clustering to produce good distributions in a flexible and reasonably efficient

manner. The particular algorithm used for this research is presented in Chapter 4.

In simplest terms, clustering is grouping similar data points together. A clustering

procedure summarizes the data by describing groups of samples points instead of the

individual points themselves. We would expect that samples in the same cluster will

be more similar than samples in different clusters.

A distribution can be built from clusters by tracking the individual statistics

of each cluster. For example, we can keep track of the mean and variance of a

cluster's population or coordinates. A critical component of clustering algorithms

is the distance function which measures similarity between data points. In high

dimensional spaces, it is difficult to visualize distances between data points, so an

error criterion such as the sum-of-squared error can be used to form minimum variance

partitions.

2.3.3 Gaussian mixture models

Mixture models have often been applied to unsupervised learning problems where we

are given unlabeled sample points [5]. They arise when an observation x is believed

to obey the probability law P(x) = Ep(xjwj)P(class = i). It may be convenient

and computationally efficient to approximate pc(xlwi) with a parametric form. The

Gaussian parametric density is often used because of its tractability.

Fitting a mixture of Gaussian models is closely related to clustering. A mul-

tidimensional Gaussian kernel may be placed at the mean of each cluster in high-

19

dimensional space, with variance in each dimension equal to the variance of the clus-

ter in that dimension. The set of Gaussian kernels forms a mixture model probability

distribution. One example of this technique appears in [14].

2.4 Conclusion

Statistical models have emerged as a powerful approach to handling large variations

in images. Some techniques have modeled the distribution of pixel values, while

others have modeled vectors encoding features in the image. Density estimation from

observed data lies at the heart of statistical model building, and we outlined three

techniques that have been applied to image analysis: Parzen windows, clustering, and

mixture models. These concepts will be used in the coming chapters. Chapter 3 will

discuss the application of Parzen windows to texture synthesis, while clustering and

mixture models will be presented as part of our statistical model in Chapter 4.

20

Chapter 3

Texture Analysis and Synthesis

As noted in Chapter 1, we suspect that texture may be an important cue for detecting

objects through shape deformation, pose changes, and variations in illumination. This

chapter reviews the properties of image texture that may assist in detection, and

techniques for analysis and synthesis of texture. This background is important since

the feature vectors used to construct our statistical model in the next chapter are the

same feature vectors which have been shown to produce excellent synthesis results.

Our framework follows De Bonet and Viola [4] in that it models the distribution

of "parent vectors" obtained from many training images. The parent vectors are

a collection of filter responses at different scales of a steerable image pyramid [18].

Understanding how parent vectors are constructed and how they have been applied

to texture analysis and synthesis will provide intuition on why they are useful for our

detection task.

3.1 Properties of image texture

A texture can be viewed as a sample from a probabilistic distribution. In other words,

the texture is generated from a stochastic process that outputs some pattern subject

to random perturbations. Two example textures generated by the same process will

appear similar to a human observer, even when the examples have obvious differences

in shape and color. We desire a similar "perceptual invariance" property for our

21

object detection system. When an object is viewed from different angles or under

different illumination, the pattern of shape and color also changes.

The idea of stationarity, or spatial invariance, characterizes this property that

we wish to model. The distribution of features may be stationary such that fea-

tures depend only on relative spatial position. Texture patches generated by the

same stochastic process appear similar to a human observer even though the exact

arrangement of the features may be different in each patch. By considering a struc-

tured image as a texture, we can still recognize the image even when its constituent

features have been spatially rearranged or some features are missing. Recall the ex-

ample in Chapter 1, where a face rotates from a frontal to profile view. The spatial

location of features, such as the eyes, changes and at some point one eye becomes

occluded. Nevertheless, the general patterns in the face (appearance of eyes, nose,

mouth, chin) are still evident and can be used for detection.

Another property that can be used to characterize texture is the joint occurence

of local features at multiple resolutions. Texture is particularly interesting because

features appearing at low resolutions influence features appearing at higher resolu-

tions. Analyzing the joint occurence of features across different resolutions reveals

the structure of a texture in the form of cross-scale dependencies. Two textures that

contain the same object should have similar cross-scale dependencies. This property

will also help us match objects in the model to objects in a test image.

3.2 Texture analysis

There has been significant work on filtering a texture to characterize the properties

discussed above. Several multi-scale transforms have proven useful for decomposing

an input texture into subbands which reveal cross-scale correlations [18]. We have

chosen the steerable wavelet transform, also known as the "steerable wavelet pyra-

mid."

22

Figure 3-1: Oriented derivative filters are applied to an image to produce subbands
highlighting edges and ridges at several different angles. This example has a fixed
scale. See figure 3-2 for an example decomposition over both scale and orientation.

3.2.1 Multi-scale, multi-orientation wavelet transform

Multi-scale wavelet models have proven to be an effective technique for modeling nat-

ural images. They assume that the underlying stochastic processes generating the

image are statistically independent. This is a reasonable assumption since the coeffi-

cients of wavelet transformed images are uncorrelated and low in entropy. For texture,

however, we realized that significant cross-scale dependencies exist. The coefficients

on the same scale may be independent, but we would expect that coefficients across

scales are not independent. To capture this dependency, we will use the notion of

parent vectors, discussed in the next section.

It is also interesting to note that we defined texture as the result of a single stochas-

tic process. We can then imagine a natural image as the sum of many independent

stochastic processes, each contributing different textures to the image.

23

Figure 3-2: The oriented filters can also be applied to downsampled versions of the
input image to produce subbands at different resolutions.

24

Figure 3-1 shows an image of a face transformed by a bank of oriented filters

into a series of subbands. Figure 3-2 shows the combination of multi-orientation

and multi-scale filtering where the oriented filters have been applied to a recursively

downsampled version of the original image. We have found this transform to produce

good feature vectors. The hypothesis is that images which are perceptually alike have

similar distributions of features over the subbands of orientations and frequencies.

Schemes for recognizing textures [2, 4, 5] and denoising images [8] have demonstrated

success using this "steerable pyramid."

3.2.2 Parent vectors

Parent vectors are computed from the steerable pyramid wavelet transform. We will

use the same notation as in [4]. First, a Gaussian pyramid is created from an input

image I: Go = I, G1 = 2 4 (g 0 GO) and Gi+1 = 2 4 (g 0 G.), where 2 4 downsamples

an image by a factor of 2 in each dimension and g is a low pass filter. At each level

of the pyramid, a series of filter functions are applied: F = f, 0 G, where the fi's

are oriented derivative filters. For every pixel in an image define the parent vector of

that pixel:

V(x, y) =F (x, y), FO' (x, y), . . . , X F)N

Fl([X []Fj J), F)2 2 2 2 2 2

(3.1)

where M is the top level of the pyramid and N is the number of features.

As depicted in figure 3-3, each parent vector corresponds to exactly one pixel in

the original image, and stores the wavelet coefficient for each scale and orientation at

that pixel location. The high-pass and low-pass residual values are also included in

the vector.

25

Figure 3-3: Illustration of parent vector structure. The grids represent an image
pyramid. Each pixel is associated with a set of filter values capturing local features.
The chain of line segments show the pixels whose filter values make up a single parent
vector.

De Bonet and Viola's texture recognition work modeled the distribution of parent

vectors using a Parzen window density esimator. The Parzen density estimator,

while quite flexible, requires time proportional to the quantity of training data. In

our experiments we will use over 1000 training images. If trained in a naive fashion,

the resulting density estimator would require many minutes to evaluate. Instead

of the Parzen window model, we will use a clustering algorithm to find significant

clusters of parent vectors from hundreds of training images. From these clusters a

mixture of Gaussian model is used to approximate this distribution of parent vectors.

Approximating the distribution is the focus of Chapter 4.

3.3 Texture synthesis

We have established that texture plays an important role in detection. Synthesis is a

means for visualizing the feature vector distribution we are attempting to construct.

It is worthwhile to understand texture synthesis since it reveals how well our feature

vector representation is capturing the signature properties of the texture. Using our

analysis results, we can build a model of the underlying stochastic process generating

a particular texture. This model can then be used to generate synthetic texture

26

perceptually similar to the original. This section brielfy describes techniques for

texture synthesis.

The synthesis procedure also reveals which areas of the images are considered

similar by the distance function. If the synthesis results are reasonable to a human

observer, then we have confidence that the distance function is grouping together

parent vectors which contribute to similar perceptual features.

Texture has an interesting property: it contain regions which differ by less than

some discrimination threshold, and randomization of these regions does not change

the perceived characteristics of the texture. In other words, at some low resolution

texture images contain regions whose difference measured by some distance function is

small. Reorganizing these low frequency regions, while retaining their high frequency

detail will not change its textural characteristics yet will increase its visual differ-

ence [3]. De Bonet takes advantage of this property for synthesizing new textures.

Rearranging feature location at low resolutions while retaining their high resolution

structure corresponds to moving whole textural units.

There have been several recent successes in texture representation and recognition

in addition to De Bonet. [8, 4, 25, 19]. The Heeger and Bergen technique is perhaps

the most efficient of the four, but it has some difficulty in modelling highly structured

patterns. While Zhu, Wu and Mumford is the most formal and well grounded of the

four, it currently lacks an efficient algorithm for learning and recognition. The De

Bonet and Viola approach combines the efficiency and simplicity of the Bergen and

Heeger model with the modeling power of Zhu, Wu and Mumford.

3.3.1 Distance functions

In Chapter 4, we will build our parent vector distribution using clustering. We can

influence how clusters are constructed by choosing a distance function which reflects

our intuition of what vectors should be similar and which should be dissimilar. Un-

fortunately it is difficult to visualize vector proximity in the high dimensional feature

space. One way to overcome this problem is to test distance functions in the synthesis

task, and find which distance function results in the most reasonable synthesis results

27

according to a human observer. If the synthesized images looked reasonable, then the

distance function is probably matching vectors coming from corresponding features.

We experimented with several distance functions for texture synthesis within the

DeBonet framework. The function nearO checks if all the dimensions of the vectors

satisfy the distance function D(). The following D() gave the best results for synthe-

sis, and also produced clusters which gave the best results in detection experiments.

The function measures the distance between two vectors by normalizing the absolute

distance by the sum of the absolute values of each component.

near (vi,v 2) {
flag = 1

for k=1 to d

if D(v1[k],v 2 [k]) > Tk then

flag = 0

return flag

}

where d is the dimension of the parent vectors, {Tk} is a set of thresholds and

D(vI[k],v 2 [k]) = vi.k (3.2)
iv1[k]| + Ivi[k]|I + 1.

3.3.2 Choosing thresholds

The distance function can be parameterized by a set of adjustable thresholds. One

possibility for setting detection parameters is to reuse the same values that produce

good synthesis results. This follows our reasoning for choosing a distance function.

There is the added complexity that we must choose a combination of thresholds. We

may use different thresholds for different frequencies and different orientations, or use

the same threshold for all vector components.

Choosing thresholds is difficult without any prior information. If the threshold is

too large, then vectors will be grouped together coursely and fine variations in the

28

Figure 3-4: The smaller images on the left were input to the synthesis algorithm.
Note that the larger synthesized images do not contain tiled versions of the original
texture and instead have new patterns that are perceptually close to the original.

distribution are not resolved. If the threshold is too small, then vectors which are

actually quite similar remain separated and the clustering algorithm is unable to find

patterns which summarize the data. Either situation results in a distribution that

does not accurately reflect the true feature vector distribution. Figure 3-4 shows two

examples of texture synthesis using De Bonet's technique with reasonable thresholds

and the distance function in equation 3.2.

3.3.3 Synthesizing structured images

In this investigation, we are interested in understanding texture as a means to rec-

ognize structured images of a particular class. To find which regions of a structured

image have similar texture, we input face images to this texture synthesis framework

29

Figure 3-5: Texture synthesis examples using a set of face images as input textures.
See text for an explanation.

and examined the outputs. Figure 3-4 shows some examples. Each of these images

was synthesized from a texture model built from many face images as described in

[3]. Notice how features (such as eyes or nose) in one face are replaced by correspond-

ing features from another face. From this figure it appears that the parent vector

representation does capture some important structure even for face images.

To help illustrate the influence of thresholds on grouping parent vectors, figure 3-6

shows three synthesis results. In (a), the thresholds for low-frequency components of

the parent vectors were set very larger, while all other thresholds are small. Thus,

the synthesis algorithm is free to rearrange the low frequency components but leaves

the high frequency components almost identical to the original image. Note that

a right-half chunk of the face overlaps a left-half chunk, aligned by the eye region.

This indicates that the distance function found parent vectors from the right eye

similar to the left eye. We conclude that this distance function is satisfying because

it is matching vectors from corresponding perceptual features. Similarly in (b), only

the middle frequency thresholds are large, so smaller textural blocks are rearranged.

Notice again that within each block, all perceptual features are coherent. Finally, (c)

shows an image where only high frequency thresholds are large. The high frequency

detail of the image is lost while the overall structure is preserved.

30

(a) (b) (c)

Figure 3-6: Texture synthesis examples showing the effect of thresholds. See text for
an explanation.

3.4 Discussion

Texture has interesting properties that provides important cues for detecting objects

in images despite shape deformation or occlusion. Parent vectors capture important

properties of texture, such as the joint occurence of local features at multiple resolu-

tions. They can also measure the distribution of edges and ridges in an image across

different orientations. The stationarity property of texture allows us to rearrange par-

ent vectors to introduce visual variation while maintaining the overall appearance of

the original texture. Finally, texture synthesis is a testing ground for finding distance

functions and thresholds that produce good distributions for detection.

31

Chapter 4

The Statistical Model

Drawing on the idea of parent vectors presented in Chapter 3, this chapter describes

in detail our new statistical model for detecting objects in images. The focus is on

constructing the model from many example images. Evaluating a novel test image

using the model is treated as a separate topic in Chapter 5.

4.1 Overview

The basis of our framework is using a mixture of Gaussian model to estimate the

distribution of parent vectors from a large set of example images of an object class.

Our method for building a model can be divided into four steps:

1. Apply multi-scale, multi-orientation filters to the training images to produce

parent vectors.

2. Find clusters of similar parent vectors.

3. Find an optimal subset of clusters for detection.

4. Build the final model as a mixture of multidimensional Gaussian kernels cen-

tered on each cluster, with weight proportional to the population in the cluster

and mean and variance proportional to the mean and variance of the cluster.

32

Target Background

Best Discriminators

Figure 4-1: An outline showing construction of the model. A target class model
(faces) and background model are built independently, producing a large number of
clusters for each class. Discriminative analysis produces a final model with a small
number of clusters drawn from both classes.

The same procedure is used to build an out-of-class (or background) model. The

out-of-class model is combined with the in-class model using Bayes' rule to yield the

probability of in-class given a parent vector. To classify a test image, the parent

vectors of the test image are computed. Then the average probability of the parent

vectors from the test image is computed. If this percentage is above some threshold,

the test image is classified as in-class. We have also experimented with another

method for evaluating the probability of a test image using histogram statistics. It is

discussed in detail in Chapter 5 along with the mixture model evaluation procedure.

33

Beginning with the clustering algorithm, each of the steps in building a model is

described in detail below.

4.2 Estimating the distribution

The model we build to represent an object class is an estimate of the distribution

of parent vectors from a set of example images of the object class. To estimate the

distribution of parent vectors, a clustering algorithm is first run on the data and then

the resulting clusters can be used to build a mixture of Gaussian model as in [14].

We have found the standard k-means algorithms [7] for clustering to be too com-

putationally expensive for our purposes. The problem is we have many data points

and the data requires many clusters to estimate it well. For example, we have a

training set of over 1 million parent vectors in a 26 dimensional space that requires

hundreds of thousands of clusters to represent it well. To speed things up, we can take

advantage of the fact that we have a good idea of the maximum distance that should

be allowed between data points belonging to the same cluster. Based on experience

with a wide variety of images, we have determined a set of distance function thresh-

olds that produce good synthesis results. Using this distance, we take a bottom-up

approach to clustering which starts with every data point as its own cluster and then

combine clusters which are close together according to our distance function. We use

the same nearO function that worked well for synthesis, show below for convenience,

to determine if two parent vectors are close.

near (vi,v 2) {
flag = 1

for k=1 to d

if D(vi[k],v 2[k]) > Tk then

flag = 0

return flag

}

34

where d is the dimension of the parent vectors, {Tk} is a set of thresholds and

v1[k] - v[]
D(vI[k],v 2 [k]) = . (4.1)

Ivi[k]I + |v1[k]| +

4.2.1 Clustering algorithm

The following pseudo code describes our clustering algorithm:

N = number of parent vectors

M = number of clusters

Let VI,V2,...,VN be the list of N d-dimensional parent vectors

M = N;

Make a cluster for each parent vector with mean pit =vi and variance or =

0

do {

for i=1 to M-1

for j=i+1 to M

if near(i, j) then {

combine cluster i and j

(keeping track of the

mean, variance and

population count)

M = M - 1

}
} until the decrease in M is insignificant

The resulting clusters are used to build a Gaussian mixture model to generalize

the distribution by placing a multidimensional Gaussian kernel at the center of each

cluster. Popat and Picard [14] use a similar procedure to model distributions ob-

tained from images although their features are different from our parent vectors. The

probability of vector v in the model for class C is given by

35

ititiaifization find clusters merge clusters

13

44 0U ~00

.... ...

Cluster populationi
histogrami

Figure 4-2: Snapshots of the clustering algorithm operating on randomly generated

data points in two dimensions. It begins with all the data points (circles) as single

population clusters. Neighboring points are then clustered together, represented by

the squares. After a pass has been made through all the data, the algorithm repeats

by merging neighboring clusters from the previous iteration. In this figure, the area

of the boxes is proportional to the variance of the cluster, and the thickness of the box

walls is proportional to the population of the cluster. Each histogram bar corresponds

to the population of one cluster.

36

M d

Pc(v) = E wm 1 km,i(v[i]) (4.2)
m=1 i=1

where the kernel k is the one-dimensional Gaussian

1 (v[i] - p mi) 2

km,i(v~i]) =z ~ (4.3)

and wm = Popm/N where Popm is the number of parent vectors in cluster m.

4.3 Discriminative analysis

The clustering algorithm eventually produces a set of feature clusters. If the number

of parent vectors in the training set is large (say over one million) then the number

of clusters will often also be large (sometimes hundreds of thousands). We wish to

reduce the number of clusters for two reasons: 1) to improve the accuracy of the

model by keeping only clusters which discriminate between in-class and out-of-class

parent vectors and 2) to increase the speed of evaluating test images by having fewer

clusters to examine.

We use discriminative analysis to achieve this. The idea is to take a set of in-class

and out-of-class training images and create two histograms showing how many times

parent vectors from each set fall near an in-class cluster. Then we keep only those

clusters which have a significantly larger count for in-class parent vectors than for out-

of-class parent vectors. This reduces our in-class model to the most discriminative

clusters. We can use the same method to reduce the number of clusters in both the

face model and the non-face model.

There are many possible tests to determine whether the count for in-class parent

vectors is "significantly" more than the count for out-of-class vectors. The test we

are currently using is as follows. Let histc[il be the count of in-class parent vectors

which are near cluster i. Let histc[i] be the count of out-of-class parent vectors which

37

Examples

Histogram difference

Face Clusters Background Clusters

Figure 4-3: The discriminative analysis procedure. The images on the left axis rep-
resent the face and background training data. For the "Face Clusters" and "Back-
ground Clusters" columns, we count the number of face vectors that are near each face
cluster, and then count the number that are near each background cluster. The pro-
cedure is repeated for the background image vectors. This results in four histograms,
where each bar corresponds to the vector count for one cluster. We then calculate
the difference between the face cluster histograms, and then the background cluster
histograms. Only clusters with histogram differences greater than the threshold are
retained for the model.

38

Threshold

are near cluster i. Then if
histc li]

> 8(4.4)histc(il + histc[i]

then cluster i is a discriminative cluster and therefore retained. The threshold 0 can

be any real number between 0 and 1. We used a value of 0.8 in the experiments

presented in Chapter 6

Figure 4-3 illustrates the discriminative analysis idea. The images on the left axis

represent training data. The training image parent vectors are compared to both the

target class clusters and background class clusters. Each histogram bar represents

a cluster, with height proportional to the number of training vectors that are close

to the cluster center in feature space. Clusters that have similar response to both

sets of training data do not help discriminate the class membership of the image, so

those clusters are thrown out of the model. A threshold can be set to decide whether

the difference in response for the two classes is great enough to help discriminate.

In figure 4-3, the clusters corresponding to the histogram bars above the threshold

will be kept in the discriminative model, while the clusters whose histogram bars are

below the threshold are discarded.

4.4 Discussion

Our statistical model clusters parent vectors from many example images using a mod-

ified k-means algorithm. This is in constrast to De Bonet and Viola, who build their

distribution of parent vectors using a Parzen density estimator. The Parzen density

estimator requires time proportional to the quantity of training data to evaluate a new

test image. Our clustering algorithm, on the other hand, summarizes the distribution

using a small number of clusters in order to increase the efficiency of evaluation. We

chose to use a mixture of Gaussian model on top of the clusters in order to generate

a smooth and tractable density estimate for evaluating test images.

The discriminative analysis step in our model-building process is one of the most

interesting products of this research. It improves the accuracy of the model by keep-

ing only clusters which discriminate in-class and out-of-class parent vectors. It also

39

increases the speed of evaluating test images by having fewer clusters to examine.

Discriminative analysis can be viewed as a kind of filter which improves the signal to

noise ratio in the distribution we have built from many noisy example images.

40

Chapter 5

Classification

Given our statistal model in Chapter 4, how do we decide whether a novel image

contains the target object? What is the trade-off between high detection rates and

the number of misclassifications? This chapter presents two different classification

procedures which compute the probability that a test image contains the target object.

Chapter 6 presents the experimental results of these procedures.

We found that the mixture of Gaussian model gives the best detection rates but

is expensive to compute. The second approach gives nearly as good results using only

histogram statistics, and is significantly less costly to compute.

5.1 Evaluating the mixture model

The previous chapters have described how we build distributions of parent vectors

from example in-class and out-of-class images. We would expect to get the best clas-

sification performance by using information from both distributions in our evaluation

procedure. The probability of a parent vector in a single class mixture of Gaussian

model is computed using equation 5.1. To exploit information from both in-class and

out-of-class mixture models, we combine them using Bayes rule. The in-class and

out-of-class mixture models for a class C give P(vC) = Pc(v) and P(vlC) = PO(v).

41

We can use Bayes rule to yield

P(v|C)P(C)
P(CIV) - .(l~pc (5.1)

P(v|C)P(C) + P(v|C)P(C)

This equation gives the probability of class C given a single parent vector v.

The priors P(C) and P(C) can be chosen arbitrarily such that P(C) + P(C) = 1.

The choice does not effect the receiver operating characteristics curve which expresses

the relationship between correct detections and false positives for classifying parent

vectors [7].

Although the Gaussian mixture model has good performance (as demonstrated in

Chapter 6), it also has several unsatisfying properties:

1. The final mixture model is in fact not an accurate approximation of the true

distribution of parent vectors. Recall that part of the model building process is

to throw out the clusters which are not good discriminators. The final mixture

model is constructed using only a small subset of the all the clusters representing

the distribution. Consequently, the distribution using all the clusters and the

distribution using the subset of clusters may have very different shapes. In

essence, we do not refine the mixture model in the sense of improving its ability

to model the actual distribution of parent vectors. We instead reshape the

distribution so it has the best discriminative power.

2. Because the best discriminating distribution may not accurately represent the

true parent vector distribution, the mixture model is not a useful distribution

for synthesizing new examples of the target class. We confirmed this hypothesis

with synthesis experiments under the De Bonet framework. If we used the

mixture model distribution as the example texture distribution, the synthesis

outputs were noisy and did not contain any recognizable features.

3. The Gaussian function is expensive to compute, and the computation must be

performed for each test vector. For example, a 32 x 32 pixel test image requires

1024 Gaussian evaluations. This may take several seconds on a Pentium II class

42

machine, which makes the evaluation method impractical for searching through

an image database.

An alternative technique which does not use a mixture model is described in 5.2.

Before this discussion, however, we need to understand how sets of parent vectors are

evaluated.

5.1.1 Comparing distributions: sets of vectors

The question remains of how to use this probability model to determine if a set of

parent vectors from a test image are more likely to come from an in-class image than

an out-of-class image. De Bonet and Viola [4] suggest comparing the distribution

of parent vectors from a test image against the in-class model distribution using the

Kullback-Liebler (KL) divergence. The problem with this idea in our case is the

distribution from a single test image will probably not look like the distribution from

a large set of training images. The reason is the parent vectors from an image are

not independent of each other. They form a tree structure. The model distribution is

more like a collection of these trees than like a single tree. Thus, the two distributions

will probably not be similar.

Instead of comparing distributions, we have used the simple idea of calculating

the average probability of C given each of the parent vectors in a single test image

and then thresholding this value to classify the image. Thus, if

Y-1 P(Clvy)
=1N > t (5.2)

for some threshold t then the image is classified as belonging to C, otherwise it is

classified as C.

The average probability can be viewed as one of many possible statistics we could

calculate. If we estimate the distribution of a statistic for the training data, we could

then evaluate the likelihood of this statistic computed for a test image. Using multiple

statistics to evaluate test images could produce more accurate tests for a classifier.

The next section discusses alternative statistics for evaluating the probability of a

43

test image.

5.2 Bernoulli trials

The mixture model classification requires the evaluation of many Gaussian density

functions. An alternative approach is to examine a statistic of the clusters directly.

Ideally, we would like a scalar-valued statistic which is fast to compute and has good

discriminating power.

One approach is to imagine each cluster as casting a "vote" about the class mem-

bership of a particular parent vector. The vote can be either for in-class membership

or out-of-class membership. We constrain the cluster votes to be independent in order

to simplify the probability calculation. Under these two constraints, the "vote" is like

a flip of a biased coin, and can be modelled by a Bernoulli trial. The bias of the in-

class coin is the in-class response of the cluster normalized by the sum of the in-class

and out-of-class response, similar to the structure of the Bayes' rule formulation in

equation 5.1.

The bias of the coin is determined by two statistics: the number of in-class vectors

close to the cluster and the number of out-of-class vectors close to the cluster. These

statistics are obtained from the training data; we simply count the number of training

vectors that are near each cluster. Let hist'z[i] be the count of in-class parent vectors

which are near in-class cluster i. Let histS[i] be the count of out-of-class parent

vectors which are near in-class cluster i. These numbers bias the coin such that it

lands with a vote for in-class with probability

hist'li]
P,[i] = C(5.3)histbji] + hist [i(]

and lands with a vote for out-of-class with probability 1 - PI]

Continuing the analogy, we can flip another biased coin whose probabilities depend

on the out-of-class cluster histograms:

44

hist (i]
PONi = it 1* (5.4)histO[fi] + histo[i]

We see that the bias of the in-class coin is the in-class response of the cluster

normalized by the sum of the in-class and out-of-class response. An analogous rela-

tionship holds for the out-of-class coin. Since these trials are independent, the total

probability of the image belonging to the target class can be expressed as the sum of

the log likelihood expressions. Let Hc[i) be the number of test vectors near in-class

cluster C'[i] and H0 [i] be the number of test vector near out-of-class cluster C'[il,
then the probability that the test vector is an in-class vector is

P(C) - E; H0 [il log(PI[i]) - E_1H0 [i] log(P[i]) (5.5)

where M is the number of in-class clusters and MI is the number of out-of-class

clusters. If P(C) > t for some threshold t then the image is classified as belonging to

C, otherwise it is classified as C.

The Bernoulli idea is an approximation to the Bayes' rule computation using the

Gaussian mixture model. The cluster histograms in equations 5.3 and 5.4 approximate

the Bayes formula in equation 5.1 using a set of discrete observations.

This evaluation procedure is much cheaper to compute at run-time than the mix-

ture of Gaussians. It is a scalar sum of logarithms, and does not require the Bayes

rule computation. Experiments indicate that the Bernoulli trial method is an order

of magnitude faster than evaluating the mixture model on typical data sets. Classi-

fication and speed performance are presented in detail in Chapter 6.

5.3 Discussion

There are many possible statistics for evaluating a test image. The mixture of Gaus-

sian model and Bernoulli trials are two implementations. The mixture model is well-

characterized since it is a smooth, parameterized distrubtion that can be evaluated

using Bayes rule in a principled way. It is expensive to compute however, and does

45

not actually model the true distribution of parent vectors in the target class. Results

in Chapter 6, however, demonstrate the good performance of the mixture model.

The Bernoulli evaluation procedure is much faster to compute, but relies on less

formal reasoning. It also requires extra training data in the form of cluster response

histograms. Chapter 6 will show that its performance is also very good, though

slightly behind the mixture model.

Both evaluation procedures, however, make the inaccurate assumption that parent

vectors occur independently. This assumption may simplify the probability calcula-

tions, but probably decreases classification performance. Parent vectors from a test

image form trees with implicit dependencies between vectors, and in a formal sense

should not be evaluated independently.

On the other hand, there is a benefit to evaluating parent vectors independently.

Adjacent parent vectors will share values in their low-resolution components because

of their tree-like structure in the pyramid transform. We can then analyze vectors

starting with lowest resolution components, and reuse the calculations when we en-

counter adjacent vectors which overlap with the first vector we operated upon. We

take advantage of this property in our distance function nearO, which compares par-

ent vectors starting with the lowest resolution components. If the lowest resolution

components are not with threshold, we do not have to check the higher frequency

components of the vector.

46

Chapter 6

Results

This chapter presents results using the statistical model from Chapter 4 and the two

evaluation procedures from Chapter 5. The experimental data included images of two

target objects, human faces and cars, and background images randomly selected from

the World Wide Web. In the experiments, we took a group of the target object images

and computed their probability in the model. Then, we computed the probabilities of

a large number of background images using the same model with the same parameters.

We saw that the probabilities for the target class images were consistently higher than

the probabilities for the background class images.

Because the probabilities are a continuum of floating-point values, we need to set

a threshold for determining a test image's class membership. We show a series of

receiver operating characteristic graphs which illustrate the detection and misclassi-

fication trade-offs associated with a particular threshold. The system is flexible in

that the threshold can easily be moved to satisfy different performance criteria.

6.1 Face Detection

The majority of our experiments involved the face test set. We think this is an in-

teresting domain for several reasons. As we noted in Chapter 1, some features of a

face have similar appearance through pose and illumination changes, while other fea-

tures are deformed or occluded. Currently there is no general-purpose face detection

47

Figure 6-1: Example face images from the training set.

strategy which robustly handles these types of changes. Our model, on the other

hand, takes advantage textural properties and allows for features in the image to be

rearranged or missing. We show that our model built from frontal face views has

good performance detecting non-frontal faces as well.

6.1.1 Building the face model

We have built a model of faces from a set of 1060 face images cropped from pho-

tographs found on the World Wide Web. The faces were chosen to be approximately

frontal. There were small variations in scale as well as large variations in lighting

and image quality. Each face image was scaled to be 32 x 32 pixels, converted to

gray scale and then histogram equalized to reduce the variations from lighting. Some

example face images are shown in figure 6-1 (shown before histogram equalization).

To build a background model of non-face images, we selected windows of random

size and position from a set of Web images which did not contain people in them.

The windows were then scaled to be 32 x 32 pixels and histogram equalized as with

the faces. We used 1016 such non-face examples.

Figure 6-2: Example background images from the training set.

48

The parent vectors for each of the example faces and non-faces were computed

as described in section 3.2.2. This yielded 1,085,440 (= 1060 x 32 x 32) face parent

vectors and 1,040,384 (= 1016 x 32 x 32) non-face parent vectors. We used parent

vectors with 4 scales and 6 oriented edge filters per scale. Including the high and low

pass residuals, this resulted in parent vectors with 26 components.

To construct face and non-face models we first applied the clustering algorithm

described in section 4.2 to the two sets of parent vectors separately. For the face model

we used a threshold of 0.7 for all T in the function nearO. For non-faces we used a

threshold of T = 0.8 for all i. As also discussed in section 4.2, these thresholds were

motivated from our experience with texture synthesis which used the same nearO

function. Although the synthesis results provided us with a good starting point for the

thresholds, ultimately the values T = 0.7 and T = 0.8 were chosen since they gave the

best end-to-end classification results. In comparison, the best synthesis results used

values in the range T = 0.1 to 0.4. Thus, setting the thresholds still requires some

trial and error experimentation. The clustering algorithm yielded 351,615 different

clusters for the face parent vectors and 155,222 different clusters for the non-face

parent vectors.

Next we applied discriminative analysis as discussed in section 4.3 to reduce the

number of clusters and improve the models. This analysis yielded a face model with

1447 clusters and a non-face model with 483 clusters. A mixture of Gaussian model

was built from these clusters as described in section 4.2. With these numbers of

clusters, evaluating a 32 x 32 pixel image requires approximately 3 seconds on a

Pentium II 300 mHz machine.

6.1.2 Correlating clusters with perceptual features

We can improve our intuition for the cluster-based model by verifying that some

clusters correspond to particular perceptual features in a face. In other words, does

a cluster encode a feature in the image such as an eye or lip that is useful for face

detection? To test this hypothesis, we collected a new set of 266 face images and

computed the parent vectors for these images. We then selected a parent vector

49

ROC curve for face detector on frontal faces

095-

&9 -

.0

0.75 - - -

o 00.75-

-0.7

-Q 065
0

0.6

055

0 005 01 015 02 025 0.3 035 o4 o45 0.5
Probability of false detection

Figure 6-3: Receiver operating characteristics curve for a test set of 266 frontal faces
and 2500 non-faces using the mixture of Gaussians classifier. Note that to focus on
the interesting part of the graph, the correct detection rate axis begins at 50%.

cluster from the model and highlighted test image regions containing parent vectors

from within this cluster. Cluster membership was determined using the distance

function and thresholds defined before. Figure 6-4 shows the location where a "lip

cluster" responds in several face images. While this cluster only responds to 6% of the

test faces, in almost every case the response is localized near the lip region. In each

of the remaining faces their is no response. Although this is a small percentage of

faces, together the 1447 clusters provide enough coverage to detect most faces. Figure

6-5 shows the responses for two other clusters. The eve-corner cluster responds to

approximately 30% of the faces, while the cheek cluster responds to about 4% of the

faces.

6.1.3 Face classification results

To test the model we collected a new set of face and non-face images from the Web

and preprocessed them as before. We used the same 266 face images from section

6.1.2 and 2500 non-face images in the test set. For each image, the parent vectors

50

Figure 6-4: A cluster was chosen from the face model and compared to all parent
vectors in each test image. The white boxes show the postion in each image where
a parent vector was near the cluster. This cluster apparently represents a lip-corner
feature.

Figure 6-5: Results for two more face clusters. Again, the white boxes show the
position in each image where a parent vector was near the cluster. The top set of
images shows responses for a cheek cluster while the bottom set shows responses for
an eye-corner cluster.

51

Figure 6-6: Example non-frontal face images which the face detector correctly classi-
fied.

were computed and then the test in equation 5.2 was applied to classify the image.

The results are shown as a receiver operating characteristics curve (ROC curve)

in figure 6-3. The ROC curve shows promising preliminary results. For example, we

get 90% correct detection with a false positive rate of 1.2% or 70% correct detection

with 0.28% false positives.

The above ROC curve demonstrates performance on independently selected patches.

There is no redundancy in this dataset. We believe that when placed in an end-to-end

system this detector will demonstrate improved detection and rejection rates. One

obvious refinement is to let the system bootstrap its non-face training set by adding

false positive images into the non-face training set and relearning the model.

Classifying non-frontal faces

The main advantage of our framework for object detection is that it should be able

to handle more variability than most other classifier-based methods. With faces this

means that we expect parent vectors for frontal face images to be similar to parent

vectors for non-frontal faces. To test this, we evaluated our face detector on a set

of non-frontal faces, some of which are shown in figure 6-6. We used the same face

detector just described which was trained on frontal faces. The preliminary results

support the robustness of our framework. The ROC curve for a test set of 118 non-

frontal faces and the same set of 2500 non-faces is shown in figure 6-7. The results

are surprisingly good considering that non-frontal faces were not used in the training

set. For example we get a correct detection rate of 80% with a false positive rate of

5% or a correct detection rate of 60% with a false positive rate of 1.2%. These results

52

ROC curve for face detector on non-frontal faces

0.9 -

0.8-

0

0 .6 - -. .. .-. .- -. .- -. .--. .- -.

o5 12347.0

~0.4
Cz

Probability of false detection

Figure 6-7: Receiver operating characteristics curve for a test set of 266 non-frontal
faces and 2500 non-faces.

should be improved by including non-frontal faces in the training set.

6.1.4 Bernoulli trial results

In addition to the Gaussian mixture model classification procedure, we evaluated face

test images using Bernoulli trials outlined in section 5.2. We used the same 266 face

images and 2500 non-face images as in the mixture model trials. For each image,

the parent vectors were computed and then the test in equation 5.5 was applied to

classify the image. The same 118 non-frontal faces were used in the non-frontal trials.

Evaluating one 32 x 32 image takes approximately 0.3 seconds on Pentium II 300

mHz machine. This is about an order of magnitude improvement over the Gaussian

evaluation time.

6.2 Car detection

As a second example, we also learned a model for side views of cars. We only had

a database of 48 car images available for this experiment. However, since all the

53

ROC curve for Bernoulli face detector on frontal faces

0 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 0.5
Probability of false detection

Figure 6-8: Receiver operating characteristics curve for a test set of 266 frontal faces
and 2500 non-faces using the Bernoulli classifier. Note that to focus on the interesting
part of the graph, the correct detection rate axis begins at 50%.

ROC curve for Bernoulli face detector on non-frontal faces

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Probability of false detection

Figure 6-9: Receiver operating characteristics curve for a test set of 118 non-frontal
faces and 2500 non-faces using the Bernoulli classifier. The performance of the
Bernoulli detector is much worse than the mixture model in the non-frontal case%.

54

0
o00 85

0.8

C007
0

CO)

07
ca
-CL 6

0.9

0.8

0
00.7

0.6

805

0.4

-0.3
0

0.8 0.9

Figure 6-10: Eight of the 24 example cars used to train the car detector.

cars were photographed under similar conditions, our intuition was that this should

be sufficient to learn a model. We split the set into 24 training images and 24 test

images. We also used a set of 1024 non-car images to build a background model. The

image size used was 52 pixels in width by 16 pixels in height. Figure 6-10 shows a

few example cars. All of the car images were acquired by taking photographs of toy

cars.

The parent vectors consisted of the values from 6 oriented edge filters computed

over 3 scales. Including the high and low resolution residuals, the parent vectors

contained 20 components each. Initial clustering of the car parent vectors yielded

12,295 clusters using a threshold of Ti = 0.5 in the distance function of equation 3.2.

Initial clustering of the parent vectors from the 1024 non-car images yielded 32,405

clusters using a threshold of Ti = 0.8. After discriminative analysis, the car model

contained 1229 clusters and the non-car model contained 1001 clusters.

This model was then tested on a test set of 24 car and 200 non-car images. The

resulting ROC curve is shown in figure 6-11. The results are very good. Only 1 false

positive was made with 100% correct detections.

6.3 Image database retrieval

It is difficult to compare the face detection results with those of Sung and Poggio or

Rowley and Kanade. These systems process entire images; first decomposing them

into a set of overlapping patches at multiple scales, and then classifying each patch.

There are ten's of thousands of such patches in each image, most containing only

background. While it is a daunting task to reject each and every background patch,

it is important to point out that since they overlap, many of the patches are highly

redundant. A patch that is correctly rejected because it does not contain a face is

55

0
0.85

_0
0.8

o 0.75
0

0.7

Co
-00.65
0

0.6

0.55

ROC curve for car detector

0 0.05 0.1 0.15 0.2 0.25 0.3
Probability of false detection

Figure 6-11: Receiver operating characteristics curve for a test set of 24 side views of
cars and 200 non-cars.

very likely to be rejected if it shifted by a single pixel. A similar issue arises in the

detection of faces. Since a single face will appear in many overlapping patches, there

will be many opportunities to detect it.

While a complete system for detecting objects in uncropped images is still under

development, at this point the computational complexity can be estimated. The

first step is to form the image pyramid using convolution and downsampling. This

requires roughly 1000 operations per pixel. After that, each parent vector of the

image must be compared to the clusters in the face and non-face models. In most

experiments there are 2000 clusters and 26 dimensions in a parent vector. A naive

algorithm would require 2000 x 26 = 52, 000 operations per pixel. Recall however

that the image parent vectors are arranged in a tree such that comparisons at low

resolutions levels can be reused at higher resolutions. By clever bookkeeping this can

be reduced to 2000 x 6 = 12, 000 operations per pixel. Finally, estimates from pixels

in a region must be aggregated into a score for an entire patch. Once again by clever

bookkeeping, this should require just a few operations per pixel. In the final analysis

for a given scale, searching every overlapping patch requires something like 15,000

56

Figure 6-12: An example detection by

operations per pixel - or about 10' operations for a 256 x 256 pixel image. With

additional refinement, our goal is to scan an image in seconds.

We have implemented a prelimary system for scanning entire images. See figures

6-12, 6-13, and 6-14 for several detection examples.

57

the preliminary system

Figure 6-13: Notice that the center of the face has been detected, as well as a second
region centered on the hair and ear. We suspect the that the training data contained
enough examples of hair and ears for the model to respond to these textures in a test
image.

Figure 6-14: Another example where more than one patch of the face was found by
the model.

58

Chapter 7

Conclusion

7.1 Summary

We have presented a new approach to detecting classes of objects which is based

on De Bonet and Viola's recent technique for representing textures. The results we

have obtained for face detection and car detection are very promising. They show

that object detection for an object class with large variations can rely on texture

recognition.

7.2 Future Work

Several interesting research questions arise from our current results. Our future work

in this area will focus on implementing a face detector that searches over positions and

scales. We also intend to improve the computational expense of the method to make

it a practical solution for object detection. In particular, the following improvements

will help improve the accuracy and efficiency of the model:

1. Enable learning in the statistical model. Currently the model is constructed

from a large number of example images and does not modify cluster statistics

as test data or new training examples are presented. When new data is classified

correctly, statistics from the test images can be used to update the cluster means

and variances or the histogram counts.

59

2. Hierarchical search. When performing a multi-scale search on a large image, a

small, fast model could be used find candidate locations containing a concen-

tration of signature parent vectors. Next, a larger more accurate model can

be applied to these candidate locations. By chaining a series of increasingly

complex models together, we can apply the most expensive model to only the

most promising locations in the image.

3. Use color information. The first implementation of the model used only gray

scale images. Building the model with color information should help in dis-

crimination since it places additional constraints on parent vector values in the

clustering and evaluation procedures.

Future experiments

In this section we suggest several specific experiments that will help us better under-

stand the strengths and limitations of this statistical model. There are many open

questions regarding this research.

1. Build models using different multi-scale transforms. The steerable wavelet pyra-

mid used in this research is an overcomplete representation [18] that is expensive

to compute. Since we do not require the transform to be invertible, we could

use a simpler multi-scale transform. The Gaussian pyramid, for example, would

be a good candidate since it can be computed very quickly.

2. Histogram normalization through parent vector normalization. If a large image

is scanned for the target object by computing the probability of individual

patches, it is unclear how to histogram equalize the patches of the image. One

solution is to normalize the coefficients in the parent values directly instead of

normalizing the original intensity values in the image.

3. Rotation-invariance through parent vector normalization. Robustness to rota-

tion in the plane is a difficult problem. When the image rotates, the orientation

60

of the lines and ridges changes, and this redistributes the energy in the sub-

bands of a multi-orientation transform. The total energy is preserved since no

new features are created. However, the components of the parent vectors will

be reordered.

If training images of target class happens to have a handful of trademark parent

vectors that consistently appear in a particular orientation, then the statistical

model will find a cluster of vectors with similar values associated with a par-

ticular orientation. When a novel image is encountered that has these same

trademark values appearing at a different orientation subband, then we could

postulate that the novel image is just an instance of the target class which has

been rotated. We can use this information to rotate the test image back to the

canonical orientation the model was trained on.

This technique builds in rotation-invariance to the model and requires a minimal

amount of computation compared to other techniques for rotation-invariance [2].

4. Scale-invariance through parent vector normalization. We may be able to in-

clude scale invariance using an idea similar to the rotation-invariance normal-

ization. In this case, however, we look for a few trademark values appearing in

a scale subband. If a novel test image has the trademark values appearing in a

different scale subband, then we can use this information to rescale the image so

that the trademark values are moved into the scale subband the model learned

during training.

7.3 Discussion

In addition to these experimental issues, there are number of parameters which we

chose during this research which may not be optimal. We used a fixed model size of 32

x 32 pixels. A lower resolution model may have better performance because the high-

frequency details could be overwhelmed by noise artifacts. Moreover, there are fewer

scales in the multi-scale transform so the parent vectors will be of lower dimensionality.

61

Evaluating a test may be faster in some cases because of the reduced dimensionality.

On the other hand, using higher resolution images may improve performance since

more detail is available in the features to help discriminate between the target and

the background.

There are several parameters in the clustering algorithm which are also ad hoc.

The choices for the distance function and parameters are still not formally justified.

We have trained a model on frontal faces and tested it on non-frontal faces with

good results. If we were to train a new model using both frontal and non-frontal

examples, we would hope that the non-frontal images would provide more examples

of ears, hair, or other features that are not as visible in the frontal images. These

features would become part of the library of textures in the model in addition to the

textures extracted from frontal views. We would imagine that the overlap in features

between the frontal and non-frontal faces would reinforce the model and improve

detection rates for both views.

This thesis has demonstrated the usefulness of texture in object detection. It is a

flexible method robust to the rearrangement of features, occlusion, and variation in

lighting. There are many possibilities for improving this general model for application

in a wide range of detection problems. It has the potential to solve several hard

computer vision problems with the principled tools of statistics.

62

Bibliography

[1] D. Beymer, A. Shashua and T. Poggio, "Example Based Image Analysis and Synthesis",

A.I. Memo 1431, MIT, 1993.

[2] M.C. Burl, T.K. Leung, P. Perona, "Face Localization via Shape Statistics", in Pro-

ceedings of the International Conference on Automatic Face and Gesture Recognition,

1995, pp. 154-159.

[3] J. De Bonet, "Multiresolution sampling procedure for analysis and synthesis of texture

images," in Computer Graphics. ACM SIGGRAPH, 1998.

[4] J. De Bonet and P. Viola, "Texture recognition using a non-parametric multi-scale

statistical model," In IEEE Conference on Computer Vision and Pattern Recognition,

1998.

[51 R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. John Wiley and

Sons, 1973, pp. 85-89.

[6] G.J. Edwards, C.J. Taylor and T.F. Cootes, "Interpreting Face Images using Active

Appearance Models" in Proceedings of the 3rd International Conference on Automatic

Face and Gesture Recognition, IEEE, 1998, pp. 300-305.

[7] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, Inc., San

Diego, CA. 1990.

[8] D. Heeger and J. Bergen, "Pyramid-based texture analysis/synthesis," In Proceedings

of A CM SIGGRAPH, August 1995, pp 229-238.

63

[9] M. Jones and T. Poggio, "Multidimensional Morphable Models: A Framework for Rep-

resenting and Matching Object Classes" in International Journal of Computer Vision,

Volume 29, No. 2, August 1998, pp. 107-131.

[10] M. Lades, C.C. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburg, R.P.

Wurtzand W. Konen, "Distortion Invariant Object Recognition in the Dynamic Link

Architecture", IEEE Transactions on Computers, Vol 42, No 3, March 1993, pp. 300-

311.

[11] B. Moghaddam, C. Nastar and A. Pentland, "Bayesian Face Recognition using De-

formable Intensity Surfaces" in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 1996.

[12] C. Papageorgiou, M. Oren and T. Poggio, "A General Framework for Object Detec-

tion," in Proceedings of the 6th International Conference on Computer Vision, January

1998, pp 555-562.

[13] S. Pinker. How the Mind Works. John Wiley and Sons, 1997, pp. 85-89.

[14] K. Popat and R. Picard, "Cluster-based probability model and its application to image

and texture processing," IEEE Transactions on Image Processing, Vol. 6, No. 2, Feb

1997, pp. 268-284.

[15] H. Rowley, S. Baluja, T. Kanade, "Human Face Detection in Visual Scenes," Technical

Report CMU-CS-95-158R, CMU, 1995.

[16] B. Schiele and J. Crowley, "Recognition without Correspondence using Multidimen-

sional Receptive Field Histograms" M.I. T. Media Laboratory Perceptual Computing Sec-

tion Technical Report No. 453, December 1997.

[17] H. Schneiderman and T. Kanade, "Probabilistic Modeling of Local Appearance and

Spatial Relationships for Object Recognition", in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 1998, pp. 45-51.

64

[18] E. Simoncelli and W. Freeman, "The Steerable Pyramid: A flexible architecture for

multi-scale derivative computation," In Int'l Conference on Image Processing, Vol III,

pp. 444-447, Washington, D.C., October 1995.

[19] E. Simoncelli and J. Portilla, "Texture Characterization via Joint Statistics of Wavelet

Coefficient Magnitudes," in Proceedings of the Fifth International Conference on Image

Processing, 1998.

[20] E. Simoncelli and R. Buccigrossi, "Embedded Wavelet Image Compression Based on

a Joint Probability Model," in IEEE International Conference on Image Processing,

1997.

[21] K. Sung and T. Poggio, "Example-based learning for view-based human face detec-

tion", A.I. Memo 1521, MIT, December 1994.

[22] M. Turk and A. Pentland, "Face Recognition Using Eigenfaces" in IEEE Conference

on Computer Vision and Pattern Recognition, 1991, pp. 586-591.

[23] P. Viola, "Complex Feature Recognition: A Bayesian Approach for Learning to Rec-

ognize Objects", A.I. Memo 1591, MIT, November, 1996.

[24] L. Wiskott, J.M. Fellous, N. Kruger and C. von der Malsburg, "Face Recognition by

Elastic Bunch Graph Matching", International Conference on Image Processing, Vol. I,

1997.

[25] S. Zhu, Y. Wu and D. Mumford, "Filters, Random Fields and Maximum Entropy

(FRAME) - Towards A Unified Theory For Texture Modeling" in International Journal

of Computer Vision, Vol 27, No 2, March 1998, pp. 107-126.

65

