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Abstract

The Plainville landfill, located in Plainville, Massachusetts, has been the subject of study
for several groups in recent years. A contaminant plume is exiting the landfill, which
may pollute drinking water wells located downgradient of the site. It is hypothesized that
groundwater intrusion into the landfill may be hastening the production of the
contaminated leachate that is leaking into the subsurface. This study addresses this
possibility and investigates a solution to this problem.

Two methods used to ascertain whether groundwater intrusion into the landfill is
occurring were to compare the landfill liner levels with the groundwater table elevation
and to utilize a landfill water balance model. Both methods require knowledge of the
construction of the landfill. The first method also used water level data from observation
wells surrounding the landfill. The monthly amount of leachate collected over the years
and precipitation data were used in the second method. The Hydrologic Evaluation for
Landfill Performance (HELP) model predicted amounts of leachate expected for 1993
through 1998 and for five years after closure. These results were compared to actual
leachate collection data for the site. This comparision demonstrated that about twice as
much leachate is being collected than is predicted by the HELP model.

If groundwater is indeed entering the landfill, one method - as suggested by Prof. Patricia
Culligan and Prof. Charles Harvey - to mitigate the plume formation is to decrease the
amount of leachate produced by pumping upgradient of the landfill to lower the
groundwater table. The feasibility of adopting this strategy was tested using a
groundwater model of the area, developed with MODFLOW. Output from the
groundwater model demonstrates that this solution is unrealistic; the pumping rates
would be too high and the surrounding area would become dry.

Because few construction data were available, the results of this study may not be
accurate. However, both methods strongly support the possibility of groundwater
intrusion. In addition, pumping upgradient of the landfill was not shown to be a feasible
solution. However, further study needs be done to fully support this theory.

Thesis Supervisor: Professor Patricia Culligan
Title: Professor of Civil and Environmental Engineering
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1. INTRODUCTION

Landfills have been a mainstay of American society throughout history.

Municipal, industrial and sometimes hazardous wastes have, and continue to be, disposed

of in such facilities. Only during the last twenty years have Americans begun to realize

that while landfills consolidate and remove waste from the public view, they may also be

a source of hidden danger to the surrounding water and air supplies. Landfills throughout

the country have been leaking contaminants into their surrounding water and air. The

United States Environmental Protection Agency (EPA)estimates that of 55,000 landfills,

approximately 75% are polluting the groundwater (Westlake, 1995).

One such landfill is the Plainville landfill, the largest in the state of

Massachusetts. The relationship between the landfill and the local groundwater table is

the focus of this study.

1.1 DESCRIPTION

The Plainville landfill is located

approximately seventy miles southwest of

Boston, Massachusetts in the town of

Plainville (Figure 1-1). The Plainville landfill

covers close to one hundred thirty-nine acres

in Plainville, forty acres in Wrentham and one

acre in Foxborough. The actual landfill

footprint occupies about ninety-two acres in

Plainville. The remaining acreage consists of

support buildings, sedimentation ponds, and

an old quarry (Figure 1-2). FIGURE 1-1: PLAINvILLE, MASSACHUSETTS

6



FIGURE 1-2: SrrE LOCATION

It is hypothesized that groundwater T

intrusion into the landfill may be increasing N
leachate production, and consequently the Plainvilk

amount of leachate contaminating the Landfill

groundwater. Detected by quarterly testing of
Plume

local monitoring wells, the contamination plume

starts at the southwest corner of the landfill and "

extends downgradient, in a southwesterly

direction (Figure 1-3). One reason why

controlling the leachate is important is because
Lake

the plume is heading towards public drinking Mirimichi 7

water wells.

FIGURE 1-3: PLUME DIRECTION
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This study investigates the possibility of groundwater intrusion into the landfill by

utilizing two methods to determine how likely this theory is. In addition to this

investigation, the study also tests and suggests appropriate measures to fix this problem in

order to reduce the potential size of the contamination plume.

1.2 METHODOLOGY

A three stage approach was used for this study. First, the feasibility of the

groundwater intrusion hypothesis was evaluated by comparing the liner elevation with

water levels in observation wells surrounding the landfill. Next the predicted leachate

production levels, computed using the HELP software package, were compared with

those actually measured in the field. Finally, in order to investigate means to mitigate

potential intrusion, and subsequently lessen the volume of the contamination plume, a

groundwater model of the area created in MODFLOW was used to test different

strategies for lowering the groundwater table.

1.3 OUTLINE

The following chapters present the background information and the results of this

study. In Chapter 2, general background information on landfills is provided. Chapter 3

describes background information on the Plainville landfill pertinent to this study.

Chapter 4 focuses on the elevation of the landfill liner in relation to the local groundwater

table. The use of, and results from, the HELP software package are presented in Chapter

5. Chapter 6 focuses on the feasibility of lowering the groundwater table upgradient of

the landfill in order to prevent groundwater intrusion into the landfill. Finally, Chapter 7

summarizes conclusions and recommendations from this study.
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2. BACKGROUND ON LANDFILLS

Landfills are specifically designed to hold certain types of waste. There are three

types of landfills - namely, "dilute and attenuate," "containment," and "entombment".

This chapter focuses on municipal solid waste containment landfills because this type

describes the Plainville landfill.

2.1 WASTES

Municipal solid waste is generated by single family and multiple family

households. It embodies food waste, yard waste, glass, metals, and others. The average

percent composition of municipal refuse is shown in Table 2-1.

TABLE 2-1: AVERAGE PERCENT COMPOSITION OF MUNICIPAL REFUSE

Waste % By Weight
Paper 40.0
Yard 17.6
Metal 8.5

Plastics 8.0
Food 7.4
Glass 7.0
Other 11.6

Source: Daniel, 1993

2.2 DESIGN

The objectives for the design of a landfill are:

" To contain waste to protect the environment and human health
" To minimize risk by at least using minimum technology
* To minimize leaks

In regard to the last point, no liner material known to mankind is forever impermeable to

all chemicals (Daniel, 1993). Unless an inward hydraulic gradient exists, chemicals

within a landfill will move via advection or diffusion through liner materials. Thus, for

the third point, total prevention is not possible.

The objectives are upheld for landfill design by using an engineered lining system

and cover system.
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2.2.1 Liner Technology

Lining systems have two components - liners and drainage layers. Liners are

designed to be low-permeability barriers that slow down liquid or gas flow. Drainage

layers have a higher permeability and direct flow towards a collection point. The

combination of a drainage layer and collection points is known as the leachate collection

system (LCS).

Liner technology has improved over the past thirty years. Until the middle of this

century, wastes were dumped openly on land and in water. In the 1940's, the concept of

a sanitary landfill was developed that specified a disposal area and utilized daily cover,

but still did not have a lining system to protect the local groundwater. Finally, in the

1970's, liner systems were implemented (Daniel, 1993). One of the first technologies

that is still prevalent today is the compacted clay liner (CCL). This type of liner was used

in the original cells of the Plainville landfill. As technology improved with time, the

Plainville landfill expanded using geomembranes. Today, the Resource Conservation

and Recovery Act (RCRA) requires that MSW landfills have the following liner

configuration:

Drainage Layer Height >= 0.3 m

Geomembrane > 0.6 mm
Composite Liner Compacted Clay Liner >= 0.6 m

k<=1x10 9 m/s

I// I/ / / / I/ / / / /

FIGURE 2-1: MSW LANDFILL REQUIREMENTS

2.2.1.1 Compacted Clay Liners

A typical system with a compacted clay liner is shown in Figure 2-2.
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LCS: 12" thick
k > 10~4 m/s

CCL: 2-12" thick
k < 10-9 m/s

Slope: 2.5-3%

FIGURE 2-2: COMPACTED CLAY LINER SYSTEM

Construction of compacted clay liners occurs in six stages - processing, surface

preparation, placement, compaction, protection, and quality control testing. In the first

step, stones are removed, clumps of soil are broken down, and the material is wet or dried

to achieve correct water content. During the next step of surface preparation, a stable

base is created and each lift of soil liner is ensured to bond to neighboring lifts.

Placement must maintain a 2% slope and the soil is prepared for compaction.

Compaction is done with a number of passes of a roller. Compacted soil needs to be

protected from freezing and drying out. Finally, quality control testing involves verifying

materials and design (Culligan, 1999).

Among the disadvantages of using compacted clay liners are the difficulty of

construction, susceptibility to chemical attack, and negative impacts from freezing and

thawing. An alternative liner type that has been developed is the geomembrane (GM).

2.2.2.2 Geomembrane

Although geomembranes also have disadvantages - such as a high leakage rate if

holes exist, difficulty in maintaining slope stability, and no sorptive capacity,

geomembranes fill a very volume of the landfill, are flexible, and have a low

permeability.

Care must be taken in choosing the type of geomembrane; common choices are

butyl rubber, chlorinated polyethylene, chlorosulfonated polyethylene, ethylene-

propylene rubber, high-density polyethylene, medium, low- and very low-density
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polyethylene, linear low-density polyethylene, and polyvinyl chloride (Bagchi, p. 162).

The type of geomembrane should be chosen for its compatibility with the waste and its

biological and thermal resistences.

Geomembranes must be installed carefully in order to be effective. Most

important is the seaming of the sheets of synthetic membranes. Improper sealing of

adjacent membranes would allow leachate to readily escape, no matter how low the

permeability of the membrane material itself.

Combining a geomembrane with a compacted clay liner removes some of the

disadvantages of both liner types. This is the type of system used in the later cells of the

Plainville landfill. Figure 2-3 shows a typical combined system.

LCS: 12" thick

Waste k >10-4 m/s

GM: > 0.02" thick
k - 1013 m/s

O O

CCL: 2-12" thick
k < 10~9 m/s

Slope: 2.5-3%

FIGURE 2-3: COMBINED GEOMEMBRANE AND CLAY LINER SYSTEM

2.2.2 Capping

The goals of landfill closure, according to the EPA, are to minimize the

infiltration of water into the landfill and to maintain the integrity of the cover during the

post-closure period by minimizing cover erosion (Westlake, 1995). Possessing a thirty

year design life, cover systems usually have five components - surface, protection,

drainage, barrier, and gas collection layers (Figure 2-4).
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Surface Layer: 4-6" top soil

Protection Layer: 1-3.5 ft, silty-loam

Drainage Layer: sand/gravel, k >= 10-4 m/s, slope ~ 3%

Barrier Layer: 2 ft, k <= 10-9 m/s

Gas Collection Layer: sand/gravel/geotextiles

FIGURE 2-4: COMPONENTS OF COVER SYSTEM

The uppermost layer, the surface layer, has a number of functions. Typically,

four to six inches deep, it promotes vegetative growth and evapotranspiration and thereby

reduces surface erosion. The surface layer usually is made of top soil and may have

some geosynthetic erosion control systems.

The underlying layer is the protection layer. It serves to store water for plant

growth, protects the underlying layers from animals and plants, and prevents the barrier

layer from drying out. Ranging from one to three-and-a-half feet deep, the layer is a

silty-clay soil.

Next is the drainage layer. It functions to drain away the infiltrating water,

dissipates seepage forces, and improves slope stability. Made of sand or gravel and

possibly containing geotextiles, the layer typically has a hydraulic conductivity on the

order of 10-4 m/s and a slope of around 3%.

Under the drainage layer is the barrier layer. The most critical part of the cover

system, this layer minimizes infiltration to the underlying waste and reduces gas

percolation. The minimum thickness is two feet and maximum hydraulic conductivity is

10-9 m/s. Although many options exist in terms of materials (i.e. geomembranes,

geosynthetic clay liners, combinations), this study focuses on municipal solid waste

landfills and subsequently, emphasis is on compacted clay liners and a combination of

geomembrane with clay liner.
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The final layer of the cover system is for gas collection. Made of sand, gravels, or

thick geotextiles, this layer provides a stable base for the construction of the barrier layer

and transmits gas to collection points (Culligan, 1999).

2.2 LEACHATE PRODUCTION

Leachate is defined as the soluble components of waste and soluble intermediates

and the products of waste degradation which enter the water as it percolates through the

waste (Westlake, 1995). It is produced in the following ways:

e Consolidation of fluid bearing waste
e Biodegradation of organic matter
e Leaching action and water movement through waste

The amount of leachate depends on water availability, landfill surface conditions,

the state of the refuse, and the surrounding strata conditions. Water availability depends

on precipitation, surface runoff, groundwater intrusion, irrigation, liquid waste disposal,

and refuse decomposition. The surface conditions vary with vegetation, cover material,

surface topography, and local weather. The maximum moisture content a soil can retain

affects the refuse state. The surrounding strata depends on water levels (Westlake, 1995).

Leachate treatment can either be done on-site via recirculation or direct treatment,

or off-site at a wastewater treatment plant via physical, chemical, and biological

processes. The pre-closure generation can be described with the following:

L= P + S - E - FC

where: L, = leachate volume
P = precipitation
S = pore-fluid "squeeze"
E = evaporation

FC = field capacity

After closure, the leachate generation can be described by:

L,=P-R-ET-AS

where: L, = leachate volume
P = precipitation
R = runoff

ET = evapotranspiration
AS = change in soil moisture (Culligan, 1999)
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The rate of leachate production depends on the rates of these variables. In addition,

leachate percolation may be retarded by ion-exchange, precipitation and dissolution,

generation of insoluble complexes, generation of colloids, flocculation and filtration

(Westlake, 1995).

Water balance modeling is used to predict the amount of leachate produced at a

landfill site. This method is good for designing liners, the leachate collection system, and

the liner/cover slope. The two models most often used are Water Balance Modeling

(WBM) and Hydrologic Evaluation of Landfill Performance (HELP). While the WBM

can predict leachate generation rates, the HELP model accounts for more complex

scenarios and subsequently, has become the "model of requirement". A description of

this model can be found in Chapter 5, Section 1. In this study, HELP was chosen as the

model to predict leachate generation at the Plainville site.
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3. PLAINVILLE LANDFILL

The Plainville landfill may be generating the contamination plume in two ways - a

leak in the landfill liner may be allowing leachate to escape from the landfill, and

groundwater infiltration into the landfill may be hastening the production of this leachate

(Figure 3-1). If these statements are true, lowering the groundwater table before it

reaches the landfill may be a more effective means of alleviating contamination at the site

than direct remediation. The following chapters will discuss the feasibility of

groundwater intrusion into the landfill, and alternative strategies for eliminating

contamination at the site using basic construction plans of the landfill, a landfill

performance computer model, and a model of the area developed by the Master of

Engineering Plainville Project group. In this chapter, the focus is on the landfill history.

FIGURE 3-1: GROUNDWATER INFILTRATION SCHEMATIC

3.1 CHANGES TO LINER AND LEACHATE COLLECTION SYSTEM

Construction of the landfill was completed by Camp, Dresser and McKee, Inc.

(CDM) on September 12, 1975. The design included a groundwater protection and

leachate collection system that consisted of "18-inches of compacted silty clay

material.. .to seal the ground surface and seal the leachate." On top of this clay liner, "an

18-inch layer of permeable material will be placed on the impermeable material to

16



provide a channel for leachate flow and mechanical protection to the impermeable

layer... Leachate collection piping consisting of 4-inch perforated PVC piping will be

installed on the impermeable layer" (Roy F. Weston, 1997). The landfill was designed

for disposal of 750 tons of refuse per day. As the landfill grew in size, expansion of the

site was necessary.

A number of landfill expansions included new leachate and liner designs. In

1985, approximately 21.5 acres of the landfill

... was constructed with 1.5- to 2.0-foot thick silt liner and
perimeter leachate collection system. Liner materials consisted of plant
washings from the on-site quarrying operation. The permeability of this
material was reported at less than 1 x 10-5 centimeters per second (cm/sec).
Washings from the quarrying process were also used for daily and
intermediate cover as well as secondary liner and base material for
synthetic liners placed in expansion areas. New basal liner areas were
constructed of imported clay that ranged from 1 x 10-5 to 1 x 10-7 cm/sec
in permeability (Roy F. Weston, 1997).

In August 1987, while incorporating Belcher Street into the landfill, an additional

sedimentation basin was added, existing underground concrete leachate collection tanks

were replaced with a centrally located aboveground fiberglass tank, and a geomembrane

was added (Roy F. Weston, 1997). About thirty-six acres of the landfill have this

composite membrane-soil groundwater protection system. In the summer of 1989,

because Golder Associates, Inc. (GAI) reported that the integrity of the old leachate

system was suspect (Golder Associates, Inc., 1990), the old concrete underground storage

tanks were replaced with 13,000-gallon fiberglass aboveground storage tanks in an

improved leachate storage facility, and older concrete leachate lines were slip-lined with

PVC pipe (Roy F. Weston, 1997). In March 1990, three 13,000-gallon aboveground

storage tanks were installed and one 30,000-gallon underground storage tank was

removed (Roy F. Weston, 1997). Also at this time, new leachate sewers were installed

between the landfill and the storage facility (DeFeo, Wait & Pare, Inc., 1992). A final

cover, consisting of a low permeability (1 x 10-7 cm/sec) barrier soil, a permeable

drainage layer above the barrier soil and a vegetative/protective layer above the drainage

layer, was installed as cells of the landfill were closed (DeFeo, Wait & Pare, Inc., 1992).

17



3.2 OPERATION

3.2.1 Refuse

The Plainville landfill is largely a municipal waste landfill. Examples of the

sources of the waste are show in Table 3-1.

TABLE 3-1: SOURCES OF WASTE AT THE PLAINVILLE LANDFILL

Waste Disposal
May 1993 - April 1994

Material Non-MSW & non-
M Combustibles (tons) MSW (tons)

Ash 46643 ----
Soil/Grit 29462 ----

Industrial Residues 16853 ----
C & D 9761 ----

MSW from Municipal Contract ---- *122284
MSW from Brokers ---- *14584

Waste from Laidlaw Collection/Hauling 51819 72582
Divisions

MSW from Other Collection/Hauling ---- *190746
Companies

Incinerator By-Pass Waste ---- 36983
MSW from Private Generators ---- *754

Total 154538 437933
Percentage of Total 26.10% 73.90%

*No effort has been made to separate non-combustibles from these categories.
Source: DeFeo, Wait & Pare, Inc., 1994.

3.2.2 Leachate

3.2.2.1 Trend Over Years

Presently, leachate is collected and disposed off-site. Figure 3-2 shows the

amounts of leachate collected from January 1992 until January 1999. Note that there is

no strong correlation between precipitation and leachate. At best, a three-month lag can

be discerned between July 1993 to January 1995. More recent measurements do not

show any strong correlation. The amount of leachate may therefore be controlled by

another source, such as groundwater infiltration.
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Plainville Landfill Leachate and
Providence, RI Precipitation

12 5

10 Leachate 4.510- 4 ci
8-+- Precipitation 3.5 G)

CF 3 % %
.2 6 2.50 '

2
:E4 2

5-

2 -0.5
0 0

FIGURE 3-2: LEACHATE AND PRECIPITATION

Source: Cushing, Goins & Kirschner, Inc., 1999.

3.2.2.2 Leachate Monitoring

The Plainville leachate samples are tested for various compounds. Table 3-2

summarizes some of the substances detected in leachate samples, leachate composite

samples, and leachate collection tanks. A number of these compounds also exist in the

groundwater plume: 1,1 -dichloroethane, 1, 1-dicholorethlyene, 1,2-dichloroethane, 1,2-

dichloropropane, benzene, chromium, ethylbenzene, iron, lead, tetrachloroethylene,

toluene, zinc among other constituents (Foster Environmental, 1996).

TABLE 3-2: SUBSTANCES IN LEACHATE FROM PLAINvILLE

Analytical Summary: Plainville Sanitary Landfill
Substances Reported by GAl as Detected in Leachate Samples,
Leachate Composite Samples, and Leachate Collection Tanks

From 26 June 1981 to 1990 (concluded)
1,1-dichloroethane Benzene Iron

1,1 -dichloroethylene Chlorobenzene Lead
1,2-dichloroethane Chloroform Manganese

1,2-dichloropropane Chromium Methylene Chloride
2-butanone Cyanide Tetrachloroethylene

4-methylphenol Diethylphthalate Toluene
Acetone Ethylbenzene Zinc

Source: Roy F. Weston, 1997.
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3.3 CURRENT STATUS

Using eight years of quarterly monitoring results, comprehensive studies by

CDM, Goldberg, Zoino, and Associates (GZA), and GAI document a plume of

groundwater contamination in the southwest corner of the landfill (Golder Associates,

Inc., 1990). In addition, the Massachusetts Department of Environmental Protection's

1984 Site Inspection report for the Plainville Sanitary Landfill for the Environmental

Protection Agency concluded that trace organics have been detected in the landfill

leachate and monitoring wells (Roy F. Weston, 1997).

Analytical data from.. .the southwest corner of the main landfill
have consistently shown anomalously high concentrations of
several parameters, including alkalinity, ammonia, chloride,
iron, manganese, total dissolved solids, and the presence of
some organic compounds (Golder Associates, Inc., 1990).

According to Eckenfelder who also conducted a study at the site, the groundwater

flows across the landfill in a southwesterly direction, starting as infiltration in highlands

north and east of the property and travelling southwest through shallow fractured bedrock

towards thicker outwash deposits (Roy F. Weston, 1997).
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4. LINER LEVEL VERSUS GROUNDWATER TABLE

4.1 HYPOTHESIS

A major concern is that the groundwater table is within the landfill. Although

some people have claimed that the area was dry while the landfill was constructed, others

are skeptical. Resource Systems, Inc. claimed that "at no time has it been excavated

below the water table" (Resource Systems, 1974). However, John C. Collins, director of

the Environmental Health Division of the Massachusetts Department of Public Health,

says that the "locus of the proposed landfill is a very difficult site with... groundwater and

surface water problems" (Collins, 1974). It is hard to determine who is correct.

However, the liner system is questionable. The following excerpt comes from a letter to

Mr. George Crombie, the regional director of the EPA, from Mr. Jonathan I. Brucks:

The existing Landfill liner cross section is based on
design drawings, from the 1970's, in the DEP SERO file. I
have never seen any documentation that this design is the
actual liner system in place nor that is through out the Landfill.
In fact there is documentation strongly suggesting that certain
locations 'of the Landfill were constructed with substandard
liners or no liners at all.' (Brucks, 1984)

This chapter will discuss the feasibility of groundwater intrusion into the landfill

by using basic construction plans of the landfill and well data.

4.2 DETERMINATION OF LINER ELEVATION

No original construction reports were available at the company library of CDM in

Cambridge, MA and few were found at the Department of Environmental Protection in

Plainville, MA. To estimate the elevation of the liner, the best option was therefore to use

a cross-section produced by Eckenfelder as seen in Figure 4-1. Figure 4-2 shows the area

of the landfill where the cross-section has been drawn. The slice goes west to east

through the middle part of the landfill; the bottom liner elevation ranges from about 162

to 181 feet.
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FIGURE 4-2: LOCATION OF CROSS-SECTION

4.3 DETERMINATION OF GROUNDWATER TABLE

A number of observation and monitoring wells exist around the landfill to enable

good estimation of the water level below the landfill. The water elevation data from May

1996 were used as recent springtime data in order to incorporate the highest possible

water elevations during the year (Eckenfelder, 1998).

Wells MW-20DR and GZ-3R, upgradient of the landfill, have a water level

elevation higher than the bottom of the liner as do wells MW-9S and GZ-1 IC,

downgradient of the landfill. Figure 4-3 shows a schematic representation of these data.

One interpretation of these elevations is that the landfill liner is intact and that it is

causing the underlying aquifer to be confined. However, the water levels also indicate

that the groundwater intrusion is likely, given that there is at least one leak in the liner

from which the plume must be escaping.
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FIGURE 4-3: WATER LEVEL ELEVATION (MAY 1996)

4.4 CONCERNS

Because it is impossible to pinpoint physically the location of a leak(s) in the

landfill base that may be permitting groundwater to enter the landfill, an indirect method

for confirming its existence needs to be utilized. One such method is to compare the

actual amount of leachate collected with the amount predicted by a landfill water balance

model. If more leachate is exiting the landfill leachate collection system than is

predicted, groundwater flow through the landfill probably occurs. This is discussed in

Chapter 5.
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5. ESTIMATING LEACHATE PRODUCTION USING HELP

This chapter will discuss the feasibility of groundwater intrusion into the landfill

using a landfill performance computer model. This model can estimate groundwater

infiltration by doing a mass balance of the water going into and coming out of the

landfill. The industry standard that was used to do this is Version 3 of the EPA's HELP

model.

5.1 DESCRIPTION OF PROGRAM

Developed by the US Army Corps of Engineers Waterways Experimental Station

for the US EPA, the HELP computer program is a quasi-two-dimensional hydrologic

model of water movement across, into, through, and out of landfills (Schroeder et al,

1994). The program accepts various input parameters including weather, soil and design

data in order to account for processes such as surface storage, snowmelt, runoff,

infiltration, evapotranspiration, soil storage, lateral drainage, vertical drainage, and

leakage through a landfill liner. The model evaluates landfill systems that have different

combinations of vegetation, cover soils, lateral drainage layers, low permeability barrier

soils, and synthetic geomembrane liners. It provides a rapid, economical tool for

screening landfill designs by estimating amounts of runoff, evapotranspiration, drainage,

leachate collection and liner leakage for different landfill scenarios (Culligan, 1999).

5.2 PARAMETERS

The HELP program contains an extensive database of weather data for about 100

cities. The default values for Providence, Rhode Island were selected for use at the

Plainville site. Descriptions of the soil and design data used in this study follow.

5.2.1 Liner Systems

Due to the lack of available information on the construction of the landfill, a

number of assumptions were made in setting up the model. One unknown was the type

of liner, geomembrane, or soil barrier underlying parts of the landfill. Given that

geomembrane liners decrease leakage into the subsurface, and therefore increase leachate

collection more so than clay liners, modeling using geomembrane liners should predict
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the maximum amount of leachate that can be potentially collected from a leachate

collection system. Therefore, comparing this information to the amount of leachate

actually collected at the Plainville site should give the strongest case scenario for arguing

the presence of groundwater infiltration into the landfill.

Figure 5-1 describes the configuration for the original liner system. Silt washings

which had a maximum saturated hydraulic conductivity of 1 x 10-5 cm/sec formed the

impermeable liner (Eckenfelder, 1997). Above this was placed an eighteen inch

permeable layer (Eckenfelder, 1997). The drainage system has a two percent slope

(CDM, 1979). From Figure 4-1, the landfill was estimated to be 100 feet high. The

cover system includes an 18-inch thick, compacted, low-permeability soil layer which

has a maximum conductivity of 1 x 10-7 cm/sec (DeFeo, Wait & Pare, Inc., 1993). The

drainage layer is twelve inches thick and has a minimum conductivity of 1 x 10-3 cm/sec

(DeFeo, Wait & Pare, 1993). Above this is the vegetative support layer that has a

hydraulic conductivity no more than 7 x 10-4 cm/sec (Cushing, Goins & Kirschner, Inc.,

1997).
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12" Sandy Silt, k = 5.2 x 10~4 cm/s

12" Well Graded Sand, k = 5.8 x 10-3 cm/s

18" Barrier Soil, k = 1.0 x 10-7 cm/s

1200" Municipal Waste, k = 1.0 x 10-3 cm/s

18" Well Graded Sand, k = 5.8 x 10-3 cm/s

18" Barrier Soil, k = 1.0 x 10-7 cm/s

FIGURE 5-1: ORIGINAL LINER SIMULATION PROFILE

Figure 5-2 shows the configuration for the new liner system with the

geomembrane. The only difference is that a synthetic flexible membrane (60-mil high

density polyethylene) is incorporated in the liner (Eckenfelder, 1997). Running these

scenarios for five years after capping produced the data listed in Table 5-1.
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18" Well Graded Sand, k = 5.8 x 10-3 cm/s

18" Barrier Soil, k = 1.0 x 10-7 cm/s

FIGURE 5-2: LINER SYSTEM WITH GEOMEMBRANE

TABLE 5-1: LEACHATE PREDICTED BY HELP FIvE YEARS AFrER CAPPING

Annual Predicted Leachate Per Inch
Liner Type Precipitation (xl 04 gallons)

Barrier Soil System 3.93

Geomembrane Liner 10.4

The predicted amounts of leachate for the original liner system and the later system with

the geomembrane have a factor of 2.6 difference. Interest lies in the maximum amount of

leachate that can be collected. Therefore, modeling the entire landfill with the

geomembrane system is considered sufficient for this study.

Another use of this five-year prediction after capping is to determine how long it

would take for the landfill to produce the amount of leachate predicted by the model.

This was determined by fitting a curve to the last few months of leachate collection data
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in order to extrapolate to the amount predicted by HELP (Figure 5-3). Inserting the

amount predicted with the geomembrane system - an average of 8,600 gallons of

leachate per inch precipitation per month - into the exponential equation shows that it

would take 18.5 months after the downward trend starts to reach the leachate amount

predicted by the HELP model. This means that this amount will be reached in March

2000, about three years earlier than predicted. Because the landfill is producing more

leachate than predicted, the possibility of groundwater intrusion is likely.

FIGURE 5-3: LEACHATE TREND AFTER CAPPING

5.2.2 Acreage Over Time

Another unknown in the construction of the landfill is the rate of landfill

expansion. To estimate how the landfill acreage changed over time, a linear progression

of expansion was assumed. In other words, the landfill is known to have covered sixty

acres in 1987 and 88.5 acres in 1998 (Southeast Region web site); thus, for eleven years,

the landfill acreage increased by about 2.6 acres per year. Figure 5-4 shows the assumed

landfill acreage since 1987.
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FIGURE 5-4: ESTIMATED ACREAGE

5.2.3 Coverage Over Time

Parts of the landfill were capped at

different times. Figure 5-5 shows a capping

schedule sketched by Roy F. Weston (1997).

Based on a report describing the capping of

the North Face (DeFeo, Wait & Pare, Inc.,

1993), the cells at the north and south of the

landfill are assumed to have been capped in

1993. Using this drawing, the areas of the

cells were determined. These areas of

coverage were combined with acreage at the

time of capping in order to determine

percentage of landfill capped in a particular

year (Figure 5-6). These numbers served as

inputs to the HELP program.

1993
(assured)

FIGURE 5-5: LANDFILL CAPPING SCHEDULE
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FIGURE 5-6: LANDFILL COVERAGE

5.3 RESULTS

The model was run for individual years 1993 through 1998 (Appendix A). Figure

5-7 shows the average annual amount of leachate predicted by the HELP model and the

mean amount of leachate collected. Appendix B contains the calculations on a monthly

basis. Because the amount of leachate predicted is only a fraction of that collected,

groundwater infiltration into the landfill is considered a strong possibility (Table 5-2).
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Actual vs. Predicted Leachate Amounts
(Yearly Average)
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FIGURE 5-7: PREDICTED VS ACTUAL LEACHATE AMOUNTS

TABLE 5-2: COMPARISON OF PREDICTED AND ACTUAL LEACHATE AMOUNTS

Predicted Leachate (per inch
Year precipitation)/Actual Leachate (per

inch precipitation)

1993 0.39
1994 0.64
1995 0.74
1996 0.38
1997 0.45
1998 0.55

average 0.53

5.4 OTHER POSSIBLE CAUSES OF LEACHATE DISCREPANCY

If groundwater infiltration cannot account for the leachate discrepancy, some

other possible reasons lie in the model assumptions and program limitations. Because

construction reports could not be obtained, gross assumptions about the landfill

expansions and the capping schedule were made. This could make a difference in the

predicted leachate amount; however, these variations did not affect the predicted amounts

for 1993 - 1998 as seen in Figure 5-7. The other unknowns were the types of lining
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systems that exist. One type for the entire landfill was assumed here, but in reality many

exist as the landfill base. These systems could greatly change the amount of leachate

predicted. Also, the amount of leachate collected at the Plainville landfill may be from

some parts of the landfill that were not filled at the time. This would result in a high

leachate collection due to precipitation over an area where there is no waste to store

water. Accurate construction reports would determine if any of these cases are true.

Although the majority of the discrepancy is probably due to the gross assumptions

of the construction, these limitations of the HELP program are worth noting. In terms of

the scope of this study, the following limitations apply:

e Underprediction of the surface runoff coefficient due to use of daily time increment.
Averaging the rainfall rate from a short intense rainfall over the daily time increment
causes the underprediction because the intensity is lowered.

e Uncertainty in synthetic liner leakage fraction. This assignment depends on hole size,
depth of leachate ponding, and saturated hydraulic conductivity (Culligan, 1999).
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6. FEASIBILITY OF LOWERING THE GROUNDWATER TABLE

Given that the liner may be below the groundwater table and that groundwater

flow through the landfill may be likely, one possible solution to alleviating the spread of

contamination from the landfill would be to lower the water table before it reaches the

landfill by pumping water from the aquifer (Figure 6-1). This chapter will discuss the

feasibility of implementing this solution and alternative strategies for eliminating

contamination at the site using a MODFLOW model of the area developed by the author

and other members of the Plainville Project group (Appendix C).

Q

Landfill Liner

FIGURE 6-1: PuMPING GROUNDWATER UPGRADIENT

6.1 DIFFICULT ANALYTICAL SOLUTION

The complex groundwater system in the landfill vicinity prevents an analytical

solution for determining hypothetical locations and extraction rates of pumping wells.

Due to the steep slope of the groundwater table and the thinness of the aquifer under the

landfill, the Theim equation for unconfined aquifers cannot be applied to this situation.

The water elevation data presented in Section 4.3 indicates that the water level on the east

side of the landfill is approximately thirty feet above that on the west side. This causes a

large groundwater flow that is difficult to incorporate using mathematical techniques for
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determining necessary well drawdown and thus, pumping rate. In addition, superposition

of drawdown due to the no flow till area to the east of the landfill would need to be

quantified. Consequently, a groundwater model of the area was utilized to determine the

locations and extraction rates of pumping wells.

6.2 USE OF MODFLOW MODEL

Because the groundwater enters the landfill at the northeast, a series of three

pumping wells were simulated north of the landfill. Figure 6-2 indicates the locations of

these extraction wells. The model shows that large amounts of pumping will not be

enough to support the proposed solution. A pumping rate of 1,000 gallons per minute per

well could not lower the groundwater table below the landfill liner.

Extraction i
8 Wells

8L4

5a 6054 5W56600 5"00 5? 18
4
00 588%d'

FIGURE 6-2: LOCATIONS OF EXTRACTION WELLS
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6.3 EFFECTS ON AREA

According to the model, much of the surrounding area would go dry (Figure 6-3).

This solution is undesirable because many people inhabit/utilize the immediate vicinity.

For example, the cranberry bogs would go dry.

Boundary

FIGURE 6-3: RESULTS ON OUTWASH LAYER FROM PUMPING UPGRADIENT

Not only would the normal water availability be disturbed, but also lowering the

groundwater table may hasten leaching of contaminants from the landfill. Already, there

have been contaminants detected in wells northeast of the landfill. Lowering the

groundwater table would form a hydraulic gradient that would cause leachate to flow

downgradient, away from the landfill. However, whether or not the contaminant

spreading is worse than groundwater infiltration cannot be discerned from the results of

this simulation.

6.4 OTHER SOLUTIONS

Pumping upgradient of the landfill will not only cause undesirable effects on the

local area, but it is also a worse solution compared to extraction for the remediation
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system. The extraction rate of water to be pumped, treated, and reinjected is less than

that necessary for lowering the groundwater table upgradient (Woodworth, 1999).

Another solution that was investigated was a french drain system which would

divert groundwater away from the landfill. A french drain was installed in the northwest

portion of the landfill in 1975, but it is presently closed (Connick, personal

communication). The MODFLOW model was used to test this solution. A constant head

boundary across the northern part of the landfill represented the french drain (Figure 6-4).

Its height was at the elevation of the landfill liner. The simulation did not lower the

groundwater table below the landfill liner due to the large change in landfill liner

elevation from the north to the south (Figure 6-5).

Other solutions for lowering the groundwater table should be tested. One other

suggestion would be to employ a vertical cutoff wall to surround the landfill and prevent

further contaminant spreading.

U

"i

L L

FIGURE 6-4: FRENCH DRAIN SCEN ARIO
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FIGURE 6-5: MODEL CROSS-SECTION FOR FRENCH DRAIN SYSTEM
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7. CONCLUSIONS

7.1 RESULTS

Groundwater may be entering the Plainville landfill. When the water table was

extrapolated through the landfill, the May 1996 water elevation data from observation

wells on opposing sides of the landfill indicated that the water table is above the landfill

liner. Although gross assumptions were made for the landfill configuration, data

generated by the HELP model also demonstrated the possibility of groundwater intrusion.

This conclusion was reached by comparing the difference between the actual amount of

leachate collected at the site with that predicted by the water balance model. After

normalizing the leachate collected by the amount of precipitation, it was noted that the

HELP model predicted 47.5% less leachate collection than is being observed at the site.

Since the possibility of groundwater infiltration into the landfill was high, a

couple of solutions to this problem were investigated using a groundwater model of the

area. One solution involved installing a number of groundwater pumping wells upstream

of the landfill to lower the groundwater table below the base of the landfill liner. The

MODFLOW model predicted that lowering the groundwater table by pumping upgradient

would cause parts of the surrounding area to go dry. It also demonstrated that the rate of

water removal would have to be enormous in order to achieve the desired level of

dewatering.

The second solution involved representing a french drain system at the northern

part of the landfill to divert the groundwater before it reaches the landfill. Results from

the model show that this system would not work because of the large change in landfill

liner elevation from the north to the south. The drain system would have to be as deep as

the lowest liner elevation of the landfill.

7.2 RECOMMENDATIONS

Because few construction data were available, the results of this study may not be

accurate. Ideally, the elevation of the liner needs to be measured directly, as does the

water level under/in the landfill. However, since it is not feasible to install wells within a

filled landfill, detailed construction reports need to be resurrected and reviewed. Water
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level data from all around the landfill should be utilized to estimate the water elevation

under/in the landfill area.

Detailed construction reports would also be useful in setting up and rerunning the

HELP model to perform a more accurate water balance. The analysis should include the

various phases of expansion and capping, in addition to a complete knowledge of the

lining and capping systems over the years. Only then can a firm conclusion be made as

to whether or not groundwater is entering the landfill.

If groundwater is entering the landfill, lowering the groundwater table by

pumping upgradient of the landfill is not recommended due to the enormous quantity of

water that would need to be extracted and reinjected under this scheme. In addition, the

solution would result in negative drying effects on the surrounding area. The solution of

employing a french drain system is not recommended either due to the small effect on the

water table when the model was run. The current and proposed remediation systems

could be a good alternative (Woodworth, 1999). Another suggestion for preventing

groundwater from entering the landfill is implementing a vertical cutoff wall to prevent

further contaminant spreading.

Additional work can be done with the groundwater model of the area. The

MODFLOW model was developed with layers representing the landfill liner and cap in

mind. This customization would allow the user to represent the landfill barrier system

and alter its hydraulic conductivity. Flexibility in changing the properties of the lining

system would facilitate testing of a number of different hypotheses. One suggestion

would be putting a contaminant source in the landfill and rerunning the upgradient

pumping to see how readily the contaminant would be drawn to the lower hydraulic

gradient. Another scenario would be to determine what the conductivity of the liner

would need to be in order for contaminants to begin escaping. Impacts on the

groundwater of potential expansions of the landfill could be predicted. This model and

the HELP program provide ample opportunity to support the groundwater intrusion

hypothesis in addition to many other theories.
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9. APPENDICES

Appendix A: HELP Results

Original Liner System - Five Years After Capping:

** **

** **

** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** HELP MODEL VERSION 3.05 (30 MARCH 1996) **

** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** **

** **

PRECIPITATION DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA4.D4
TEMPERATURE DATA FILE: U:\EMCHEN\PLAINV-\HELP3\DATA7.D7
SOLAR RADIATION DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA13.D13
EVAPOTRANSPIRATION DATA: U:\EMCHEN\PLAINV-1\HELP3\DATA1l.D l1
SOIL AND DESIGN DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA1O.D10
OUTPUT DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\OUTDATA.OUT

TIME: 17:12 DATE: 5/ 3/1999

TITLE: Plainville Landfill - Original Liner System

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE
COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 7

THICKNESS = 12.00 INCHES
POROSITY = 0.4730 VOL/VOL
FIELD CAPACITY = 0.2220 VOL/VOL
WILTING POINT = 0.1040 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3322 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.520000001000E-03 CM/SEC

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 5.00
FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.
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LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 12.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4382 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 530.0 FEET

LAYER 3

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000001000E-06 CMISEC

LAYER 4

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 18

THICKNESS = 1200.00 INCHES
POROSITY = 0.67 10 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

LAYER 5

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 18.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0685 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 100.0 FEET

LAYER 6
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TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000001000E-06 CMISEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 7 WITH A
POOR STAND OF GRASS, A SURFACE SLOPE OF 2.%
AND A SLOPE LENGTH OF 530. FEET.

SCS RUNOFF CURVE NUMBER = 82.40
FRACTION OF AREA ALLOWING RUNOFF = 100.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 88.500 ACRES
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 5.312 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 6.987 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 1.320 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 376.249 INCHES
TOTAL INITIAL WATER = 376.249 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
PROVIDENCE RHODE ISLAND

STATION LATITUDE = 41.73 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 121
END OF GROWING SEASON (JULIAN DATE) = 290
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
AVERAGE ANNUAL WIND SPEED = 10.60 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 64.00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 65.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 72.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 70.00 %

NOTE: PRECIPITATION DATA FOR PROVIDENCE RHODE ISLAND
WAS ENTERED FROM THE DEFAULT DATA FILE.

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
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28.20 29.30 37.40 47.90 57.60 66.80
72.50 71.10 63.50 53.20 43.40 32.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

AND STATION LATITUDE = 41.73 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1974 THROUGH 1978

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

PRECIPITATION

TOTALS 6.19 2.98 3.95 2.75 3.21 3.10
3.56 4.08 4.37 4.82 2.78 4.93

STD. DEVIATIONS 2.07 0.30 1.11 0.52 1.25 1.31
2.62 2.27 2.21 1.87 2.13 0.98

RUNOFF

TOTALS 4.097 2.225 3.988 0.806 0.032 0.027
0.314 0.289 0.109 0.237 0.663 1.091

STD. DEVIATIONS 2.895 1.590 2.361 0.798 0.061 0.033
0.636 0.399 0.150 0.274 1.180 1.854

EVAPOTRANSPIRATION

TOTALS 0.689 0.644 0.862 3.000 3.410 4.537
2.701 2.727 3.026 2.358 1.309 0.757

STD. DEVIATIONS 0.175 0.093 0.335 0.339 1.089 1.631
1.020 1.828 0.531 0.369 0.144 0.176

LATERAL DRAINAGE COLLECTED FROM LAYER 2

TOTALS 0.3357 0.2728 0.3315 0.4705 0.4624 0.3679
0.2999 0.3182 0.3276 0.4049 0.4222 0.4594

STD. DEVIATIONS 0.0417 0.0610 0.0767 0.0484 0.0153 0.0476
0.0138 0.0913 0.0891 0.0767 0.1320 0.0544

PERCOLATION/LEAKAGE THROUGH LAYER 3

TOTALS 0.1607 0.1403 0.1638 0.1977 0.1878 0.1615
0.1511 0.1573 0.1535 0.1739 0.1841 0.1941

STD. DEVIATIONS 0.0109 0.0166 0.0188 0.0172 0.0100 0.0122
0.0021 0.0210 0.0155 0.0199 0.0384 0.0208

LATERAL DRAINAGE COLLECTED FROM LAYER 5

TOTALS 0.0732 0.0556 0.0587 0.0649 0.0757 0.0711
0.0635 0.0563 0.0523 0.0555 0.0626 0.0742

STD. DEVIATIONS 0.0103 0.0045 0.0106 0.0117 0.0116 0.0102
0.0078 0.0045 0.0090 0.0067 0.0128 0.0210
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PERCOLATION/LEAKAGE THROUGH LAYER 6

TOTALS 0.1082 0.0968 0.1071 0.1039 0.1076 0.1041
0.1073 0.1071 0.1035 0.1070 0.1038 0.1076

STD. DEVIATIONS 0.0017 0.0001 0.0003 0.0003 0.0003 0.0003
0.0002 0.0001 0.0003 0.0002 0.0004 0.0006

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

DAILY AVERAGE HEAD ON TOP OF LAYER 3

AVERAGES 9.2594 8.5156 9.9680 16.8722 14.0595 10.4901
7.7988 8.8553 9.0702 11.6856 14.4725 15.1255

STD. DEVIATIONS 1.9516 3.1355 3.2144 3.0337 1.7056 2.1569
0.3583 3.5921 2.7289 3.3941 6.7788 3.5534

DAILY AVERAGE HEAD ON TOP OF LAYER 6

AVERAGES 0.3564 0.3022 0.2883 0.3292 0.3717 0.3608
0.3115 0.2765 0.2652 0.2725 0.3175 0.3640

STD. DEVIATIONS 0.0469 0.0246 0.0522 0.0594 0.0569 0.0517
0.0381 0.0219 0.0456 0.0328 0.0647 0.1031

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1974 THROUGH 1978

INCHES CU. FEET PERCENT

PRECIPITATION 46.72 ( 3.815) 15009677.0 100.00
RUNOFF 13.879 ( 3.8014) 4458573.00 29.705
EVAPOTRANSPIRATION 26.021 ( 1.4874) 8359284.00 55.693
LATERAL DRAINAGE COLLECTED 4.47294 ( 0.24822) 1436955.370 9.57353

FROM LAYER 2
PERCOLATION/LEAKAGE THROUGH 2.02582 ( 0.06710) 650803.812 4.33589

LAYER 3
AVERAGE HEAD ON TOP 11.348 ( 0.994)

OF LAYER 3
LATERAL DRAINAGE COLLECTED 0.76378 ( 0.03792) 245367.219 1.63473

FROM LAYER 5
PERCOLATION/LEAKAGE THROUGH 1.26419 ( 0.00186) 406127.875 2.70577

LAYER 6
AVERAGE HEAD ON TOP 0.318 ( 0.016)

OF LAYER 6
CHANGE IN WATER STORAGE 0.241 ( 3.0542) 77432.61 0.516

PEAK DAILY VALUES FOR YEARS 1974 THROUGH 1978

(INCHES) (CU. FT.)
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PRECIPITATION 4.78 1535599.000
RUNOFF 3.524 1132030.0000
DRAINAGE COLLECTED FROM LAYER 2 0.01955 6279.10840
PERCOLATION/LEAKAGE THROUGH LAYER 3 0.007935 2549.00830
AVERAGE HEAD ON TOP OF LAYER 3 23.988
MAXIMUM HEAD ON TOP OF LAYER 3 32.77
LOCATION OF MAXIMUM HEAD IN LAYER 2

(DISTANCE FROM DRAIN) 167.8 FEET
DRAINAGE COLLECTED FROM LAYER 5 0.00332 1065.62231
PERCOLATION/LEAKAGE THROUGH LAYER 6 0.003497 1123.38892
AVERAGE HEAD ON TOP OF LAYER 6 0.505
MAXIMUM HEAD ON TOP OF LAYER 6 0.91
LOCATION OF MAXIMUM HEAD IN LAYER 5

(DISTANCE FROM DRAIN) 9.8 FEET
SNOW WATER 6.35 2041157.1200
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4658
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0880

*** Maximum heads are computed using McEnroe's equations. *

Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.

FINAL WATER STORAGE AT END OF YEAR 1978

LAYER (INCHES) (VOL/VOL)

1 3.7882 0.315
2 5.2583 0.4382
3 7.6860 0.427
4 350.4000 0.292
5 1.2218 0.0679
6 7.6860 0.4270

SNOW WATER 1.414

Geomembrane System - Five Years After Capping:

** **

** **

** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **

** HELP MODEL VERSION 3.05 (30 MARCH 1996) **

** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** **
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** 
*

PRECIPITATION DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA4.D4
TEMPERATURE DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA7.D7
SOLAR RADIATION DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA13.D13
EVAPOTRANSPIRATION DATA: U:\EMCHEN\PLAINV~1\HELP3\DATA1l.D11
SOIL AND DESIGN DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA12.D1O
OUTPUT DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\OUTDAT12.OUT

TIME: 17:16 DATE: 5/ 3/1999

TITLE: Plainville Landfill - 1987 Liner System

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE
COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 7

THICKNESS = 12.00 INCHES
POROSITY = 0.4730 VOL/VOL
FIELD CAPACITY = 0.2220 VOL/VOL
WILTING POINT = 0.1040 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3322 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.520000001000E-03 CMISEC

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 5.00
FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 12.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4382 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 530.0 FEET

LAYER 3

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
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POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000001000E-06 CMISEC

LAYER 4

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 18

THICKNESS = 1200.00 INCHES
POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

LAYER 5

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 18.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0794 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CMISEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 100.0 FEET

LAYER 6

TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 4.00 HOLES/ACRE
FML PLACEMENT QUALITY = 3 - GOOD

LAYER 7

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
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INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000001000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 7 WITH A
POOR STAND OF GRASS, A SURFACE SLOPE OF 2.%
AND A SLOPE LENGTH OF 530. FEET.

SCS RUNOFF CURVE NUMBER = 82.40
FRACTION OF AREA ALLOWING RUNOFF = 100.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 88.500 ACRES
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 5.312 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 6.987 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 1.320 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 376.445 INCHES
TOTAL INITIAL WATER = 376.445 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
PROVIDENCE RHODE ISLAND

STATION LATITUDE = 41.73 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 121
END OF GROWING SEASON (JULIAN DATE) = 290
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
AVERAGE ANNUAL WIND SPEED = 10.60 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 64.00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 65.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 72.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 70.00 %

NOTE: PRECIPITATION DATA FOR PROVIDENCE RHODE ISLAND
WAS ENTERED FROM THE DEFAULT DATA FILE.

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

28.20 29.30 37.40 47.90 57.60 66.80
72.50 71.10 63.50 53.20 43.40 32.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

AND STATION LATITUDE = 41.73 DEGREES
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AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1974 THROUGH 1978

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

PRECIPITATION

TOTALS 6.19 2.98 3.95 2.75 3.21 3.10
3.56 4.08 4.37 4.82 2.78 4.93

STD. DEVIATIONS 2.07 0.30 1.11 0.52 1.25 1.31
2.62 2.27 2.21 1.87 2.13 0.98

RUNOFF

TOTALS 4.097 2.225 3.988 0.806 0.032 0.027
0.314 0.289 0.109 0.237 0.663 1.091

STD. DEVIATIONS 2.895 1.590 2.361 0.798 0.061 0.033
0.636 0.399 0.150 0.274 1.180 1.854

EVAPOTRANSPIRATION

TOTALS 0.689 0.644 0.862 3.000 3.410 4.537
2.701 2.727 3.026 2.358 1.309 0.757

STD. DEVIATIONS 0.175 0.093 0.335 0.339 1.089 1.631
1.020 1.828 0.531 0.369 0.144 0.176

LATERAL DRAINAGE COLLECTED FROM LAYER 2

TOTALS 0.3357 0.2728 0.3315 0.4705 0.4624 0.3679
0.2999 0.3182 0.3276 0.4049 0.4222 0.4594

STD. DEVIATIONS 0.0417 0.0610 0.0767 0.0484 0.0153 0.0476
0.0138 0.0913 0.0891 0.0767 0.1320 0.0544

PERCOLATION/LEAKAGE THROUGH LAYER 3

TOTALS 0.1607 0.1403 0.1638 0.1977 0.1878 0.1615
0.1511 0.1573 0.1535 0.1739 0.1841 0.1941

STD. DEVIATIONS 0.0109 0.0166 0.0188 0.0172 0.0100 0.0122
0.0021 0.0210 0.0155 0.0199 0.0384 0.0208

LATERAL DRAINAGE COLLECTED FROM LAYER 5

TOTALS 0.1811 0.1525 0.1659 0.1686 0.1830 0.1751
0.1709 0.1636 0.1560 0.1626 0.1662 0.1814

STD. DEVIATIONS 0.0117 0.0047 0.0106 0.0118 0.0118 0.0104
0.0080 0.0046 0.0091 0.0068 0.0128 0.0212

PERCOLATION/LEAKAGE THROUGH LAYER 7

TOTALS 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

DAILY AVERAGE HEAD ON TOP OF LAYER 3

AVERAGES 9.2594 8.5156 9.9680 16.8722 14.0595 10.4901
7.7988 8.8553 9.0702 11.6856 14.4725 15.1255

STD. DEVIATIONS 1.9516 3.1355 3.2144 3.0337 1.7056 2.1569
0.3583 3.5921 2.7289 3.3941 6.7788 3.5534

DAILY AVERAGE HEAD ON TOP OF LAYER 6

AVERAGES 0.8828 0.8286 0.8143 0.8551 0.8982 0.8878
0.8384 0.8027 0.7909 0.7978 0.8429 0.8901

STD. DEVIATIONS 0.0484 0.0253 0.0519 0.0599 0.0579 0.0528
0.0392 0.0225 0.0460 0.0334 0.0649 0.1041

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1974 THROUGH 1978

INCHES CU. FEET PERCENT

PRECIPITATION 46.72 ( 3.815) 15009677.0 100.00
RUNOFF 13.879 ( 3.8014) 4458573.00 29.705
EVAPOTRANSPIRATION 26.021 ( 1.4874) 8359284.00 55.693
LATERAL DRAINAGE COLLECTED 4.47294 ( 0.24822) 1436955.370 9.57353

FROM LAYER 2
PERCOLATION/LEAKAGE THROUGH 2.02582 ( 0.06710) 650803.812 4.33589

LAYER 3
AVERAGE HEAD ON TOP 11.348 ( 0.994)

OF LAYER 3
LATERAL DRAINAGE COLLECTED 2.02696 ( 0.03851) 651169.562 4.33833

FROM LAYER 5
PERCOLATION/LEAKAGE THROUGH 0.00087 ( 0.00001) 277.950 0.00185

LAYER 7
AVERAGE HEAD ON TOP 0.844 ( 0.016)

OF LAYER 6
CHANGE IN WATER STORAGE 0.241 ( 3.0547) 77481.62 0.516

PEAK DAILY VALUES FOR YEARS 1974 THROUGH 1978

(INCHES) (CU. FT.)

PRECIPITATION 4.78 1535599.000
RUNOFF 3.524 1132030.0000
DRAINAGE COLLECTED FROM LAYER 2 0.01955 6279.10840
PERCOLATION/LEAKAGE THROUGH LAYER 3 0.007935 2549.00830
AVERAGE HEAD ON TOP OF LAYER 3 23.988
MAXIMUM HEAD ON TOP OF LAYER 3 32.77
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LOCATION OF MAXIMUM HEAD IN LAYER 2
(DISTANCE FROM DRAIN) 167.8 FEET

DRAINAGE COLLECTED FROM LAYER 5 0.00678 2179.14380
PERCOLATION/LEAKAGE THROUGH LAYER 7 0.000003 0.91353
AVERAGE HEAD ON TOP OF LAYER 6 1.032
MAXIMUM HEAD ON TOP OF LAYER 6 1.75
LOCATION OF MAXIMUM HEAD IN LAYER 5

(DISTANCE FROM DRAIN) 15.1 FEET
SNOW WATER 6.35 2041157.120
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4658
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0880

*** Maximum heads are computed using McEnroe's equations. *

Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.

FINAL WATER STORAGE AT END OF YEAR 1978

LAYER (INCHES) (VOL/VOL)

1 3.7882 0.3157
2 5.2583 0.4382
3 7.6860 0.4270
4 350.4000 0.2920
5 1.4184 0.0788
6 0.0000 0.0000
7 7.6860 0.4270

SNOW WATER 1.414

1993:

** **

** **

** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** HELP MODEL VERSION 3.05 (30 MARCH 1996) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** **

** **
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PRECIPITATION DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA4.D4
TEMPERATURE DATA FILE: U:\EMCHEN\PLAINV-\HELP3\DATA7.D7
SOLAR RADIATION DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA13.D13
EVAPOTRANSPIRATION DATA: U:\EMCHEN\PLAINV-1\HELP3\DATA11.Dll
SOIL AND DESIGN DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA93.D1O
OUTPUT DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\OUTDAT93.OUT

TIME: 17:27 DATE: 5/3/1999

TITLE: Plainville Landfill - 1993

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE
COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 7

THICKNESS = 12.00 INCHES
POROSITY = 0.4730 VOL/VOL
FIELD CAPACITY = 0.2220 VOL/VOL
WILTING POINT = 0.1040 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3889 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.520000001000E-03 CM/SEC

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 5.00
FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 12.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4382 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 530.0 FEET

LAYER 3

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
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INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0. 100000001000E-06 CM/SEC

LAYER 4

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 18

THICKNESS = 1200.00 INCHES
POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

LAYER 5

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 18.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0807 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 100.0 FEET

LAYER 6

TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 4.00 HOLES/ACRE
FML PLACEMENT QUALITY = 3 - GOOD

LAYER 7

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000001000E-06 CM/SEC
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GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 7 WITH A
POOR STAND OF GRASS, A SURFACE SLOPE OF 2.%
AND A SLOPE LENGTH OF 530. FEET.

SCS RUNOFF CURVE NUMBER = 82.40
FRACTION OF AREA ALLOWING RUNOFF = 29.9 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 75.600 ACRES
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 5.992 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 6.987 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 1.320 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 377.150 INCHES
TOTAL INITIAL WATER = 377.150 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
PROVIDENCE RHODE ISLAND

STATION LATITUDE = 41.73 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 121
END OF GROWING SEASON (JULIAN DATE) = 290
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
AVERAGE ANNUAL WIND SPEED = 10.60 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 64.00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 65.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 72.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 70.00 %

NOTE: PRECIPITATION DATA FOR PROVIDENCE RHODE ISLAND
WAS ENTERED FROM THE DEFAULT DATA FILE.

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

28.20 29.30 37.40 47.90 57.60 66.80
72.50 71.10 63.50 53.20 43.40 32.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

AND STATION LATITUDE = 41.73 DEGREES
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AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1974 THROUGH 1974

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

PRECIPITATION

TOTALS

STD. DEVIA

4.45 3.04 4.51 2.86 2.74 3.28
1.64 3.10 6.15 2.79 1.56 4.54
TIONS 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

RUNOFF

TOTALS 1.646 1.113 1.995 1.341 0.000 0.003
0.000 0.057 0.066 0.053 0.000 0.008

STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

EVAPOTRANSPIRATION

TOTALS 1.174 0.863 0.868 2.635 2.896 5.616
1.665 0.818 3.916 2.683 1.502 1.010

STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

LATERAL DRAINAGE COLLECTED FROM LAYER 2

TOTALS 0.4558 0.4476 0.4790 0.5266 0.4835 0.3751
0.3040 0.2603 0.4104 0.4307 0.3815 0.4853

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH LAYER 3

TOTALS 0.1960 0.1889 0.2034 0.2178 0.2027 0.1620
0.1518 0.1451 0.1716 0.1713 0.1602 0.2005

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LATERAL DRAINAGE COLLECTED FROM LAYER 5

TOTALS 0.1854 0.1712 0.2025 0.1979 0.2085 0.1927
0.1812 0.1673 0.1590 0.1691 0.1634 0.1728

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH LAYER 7

TOTALS 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

DAILY AVERAGE HEAD ON TOP OF LAYER 3

AVERAGES 15.4501 17.6981 16.7126 20.4185 16.5993 10.5788
7.9074 6.7689 12.2751 11.2452 10.2534 16.2307

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DAILY AVERAGE HEAD ON TOP OF LAYER 6

AVERAGES 0.9096 0.9299 0.9939 1.0038 1.0233 0.9769
0.8893 0.8209 0.8062 0.8298 0.8286 0.8482

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1974 THROUGH 1974

INCHES CU. FEET PERCENT

PRECIPITATION 40.66 ( 0.000) 11158243.0 100.00
RUNOFF 6.281 ( 0.0000) 1723702.62 15.448
EVAPOTRANSPIRATION 25.645 ( 0.0000) 7037670.50 63.071
LATERAL DRAINAGE COLLECTED 5.03979 ( 0.00000) 1383059.500 12.39496

FROM LAYER 2
PERCOLATION/LEAKAGE THROUGH 2.17124 ( 0.00000) 595848.687 5.33999

LAYER 3
AVERAGE HEAD ON TOP 13.512 ( 0.000)

OF LAYER 3
LATERAL DRAINAGE COLLECTED 2.17106 ( 0.00000) 595799.750 5.33955

FROM LAYER 5

PERCOLATION/LEAKAGE THROUGH 0.00092 ( 0.00000) 252.696 0.00226
LAYER 7

AVERAGE HEAD ON TOP 0.905 ( 0.000)
OF LAYER 6

CHANGE IN WATER STORAGE -0.094 ( 0.0000) -25803.00 -0.231

PEAK DAILY VALUES FOR YEARS 1974 THROUGH 1974

(INCHES) (CU. FT.)

PRECIPITATION 2.17 595508.750
RUNOFF 1.011 277422.0000
DRAINAGE COLLECTED FROM LAYER 2 0.01955 5365.71289
PERCOLATION/LEAKAGE THROUGH LAYER 3 0.007937 2178.09180
AVERAGE HEAD ON TOP OF LAYER 3 24.000
MAXIMUM HEAD ON TOP OF LAYER 3 32.787
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LOCATION OF MAXIMUM HEAD IN LAYER 2
(DISTANCE FROM DRAIN) 167.8 FEET

DRAINAGE COLLECTED FROM LAYER 5 0.00676 1854.82056
PERCOLATION/LEAKAGE THROUGH LAYER 7 0.000003 0.77782
AVERAGE HEAD ON TOP OF LAYER 6 1.028
MAXIMUM HEAD ON TOP OF LAYER 6 1.74
LOCATION OF MAXIMUM HEAD IN LAYER 5

(DISTANCE FROM DRAIN) 15.1 FEET
SNOW WATER 1.63 446360.6560
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4658
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0880

*** Maximum heads are computed using McEnroe's equations. *

Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.

FINAL WATER STORAGE AT END OF YEAR 1974

LAYER (INCHES) (VOL/VOL)

1 4.5734 0.3811
2 5.2583 0.4382
3 7.6860 0.4270
4 350.4000 0.2920
5 1.4522 0.0807
6 0.0000 0.0000
7 7.6860 0.4270

SNOW WATER 0.000

1994:

** **

** **

** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** HELP MODEL VERSION 3.05 (30 MARCH 1996) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** **

** **

PRECIPITATION DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA4.D4
TEMPERATURE DATA FILE: U:\EMCHEN\PLAINV-I\HELP3\DATA7.D7
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SOLAR RADIATION DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA13.D13
EVAPOTRANSPIRATION DATA: U:\EMCHEN\PLAINV-\HELP3\DATA11.Dll
SOIL AND DESIGN DATA FILE: U:\EMCHEN\PLAINV-\HELP3\DATA94.DlO
OUTPUT DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\OUTDAT94.OUT

TIME: 17:52 DATE: 5/ 3/1999

TITLE: Plainville Landfill - 1994

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE
COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 7

THICKNESS = 12.00 INCHES
POROSITY = 0.4730 VOL/VOL
FIELD CAPACITY = 0.2220 VOL/VOL
WILTING POINT = 0.1040 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3895 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.520000001000E-03 CM/SEC

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 5.00
FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 12.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4382 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 530.0 FEET

LAYER 3

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000001000E-06 CM/SEC

LAYER 4
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TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 18

THICKNESS = 1200.00 INCHES
POROSITY = 0.67 10 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CMISEC

LAYER 5

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 18.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0807 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 100.0 FEET

LAYER 6

TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CMISEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 4.00 HOLES/ACRE
FML PLACEMENT QUALITY = 3 - GOOD

LAYER 7

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000001000E-06 CMISEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
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SOIL DATA BASE USING SOIL TEXTURE # 7 WITH A
POOR STAND OF GRASS, A SURFACE SLOPE OF 2.%
AND A SLOPE LENGTH OF 530. FEET.

SCS RUNOFF CURVE NUMBER = 82.40
FRACTION OF AREA ALLOWING RUNOFF = 28.9 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 78.200 ACRES
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 5.999 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 6.987 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 1.320 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 377.157 INCHES
TOTAL INITIAL WATER = 377.157 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
PROVIDENCE RHODE ISLAND

STATION LATITUDE = 41.73 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 121
END OF GROWING SEASON (JULIAN DATE) = 290
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
AVERAGE ANNUAL WIND SPEED = 10.60 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 64.00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 65.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 72.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 70.00 %

NOTE: PRECIPITATION DATA FOR PROVIDENCE RHODE ISLAND
WAS ENTERED FROM THE DEFAULT DATA FILE.

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

28.20 29.30 37.40 47.90 57.60 66.80
72.50 71.10 63.50 53.20 43.40 32.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

AND STATION LATITUDE = 41.73 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1974 THROUGH 1974
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JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

PRECIPITATION

TOTALS 4.45 3.04 4.51 2.86 2.74 3.28
1.64 3.10 6.15 2.79 1.56 4.54

STD. DEVIATIONS 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

RUNOFF

TOTALS 1.632 1.095 1.947 1.323 0.000 0.003
0.000 0.055 0.064 0.051 0.000 0.008

STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

EVAPOTRANSPIRATION

TOTALS 1.194 0.869 0.848 2.635 2.896 5.627
1.665 0.818 3.910 2.680 1.498 1.009

STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

LATERAL DRAINAGE COLLECTED FROM LAYER 2

TOTALS 0.4559 0.4476 0.4791 0.5268 0.4838 0.3752
0.3037 0.2600 0.4107 0.4313 0.3823 0.4861

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH LAYER 3

TOTALS 0.1960 0.1889 0.2034 0.2179 0.2028 0.1620
0.1517 0.1451 0.1717 0.1715 0.1603 0.2009

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LATERAL DRAINAGE COLLECTED FROM LAYER 5

TOTALS 0.1854 0.1712 0.2026 0.1980 0.2086 0.1927
0.1813 0.1673 0.1590 0.1692 0.1635 0.1730

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH LAYER 7

TOTALS 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

65



DAILY AVERAGE HEAD ON TOP OF LAYER 3

AVERAGES 15.4569 17.6986 16.7131 20.4291 16.6219 10.5786
7.8994 6.7614 12.2883 11.2702 10.2738 16.2857

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DAILY AVERAGE HEAD ON TOP OF LAYER 6

AVERAGES 0.9099 0.9301 0.9941 1.0039 1.0236 0.9772
0.8895 0.8209 0.8062 0.8301 0.8290 0.8489

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1974 THROUGH 1974

INCHES CU. FEET PERCENT

PRECIPITATION 40.66 ( 0.000) 11541992.0 100.00
RUNOFF 6.178 ( 0.0000) 1753694.12 15.194
EVAPOTRANSPIRATION 25.649 ( 0.0000) 7280982.00 63.083
LATERAL DRAINAGE COLLECTED 5.04248 ( 0.00000) 1431387.500 12.40156

FROM LAYER 2
PERCOLATION/LEAKAGE THROUGH 2.17204 ( 0.00000) 616569.375 5.34197

LAYER 3
AVERAGE HEAD ON TOP 13.523 ( 0.000)

OF LAYER 3
LATERAL DRAINAGE COLLECTED 2.17163 ( 0.00000) 616450.750 5.34094

FROM LAYER 5
PERCOLATION/LEAKAGE THROUGH 0.00092 ( 0.00000) 261.448 0.00227

LAYER 7
AVERAGE HEAD ON TOP 0.905 ( 0.000)

OF LAYER 6
CHANGE IN WATER STORAGE -0.087 ( 0.0000) -24715.26 -0.214

PEAK DAILY VALUES FOR YEARS 1974 THROUGH 1974

(INCHES) (CU. FT.)

PRECIPITATION 2.17 615989.187
RUNOFF 0.983 279047.1250
DRAINAGE COLLECTED FROM LAYER 2 0.01955 5550.24756
PERCOLATION/LEAKAGE THROUGH LAYER 3 0.007937 2252.99976
AVERAGE HEAD ON TOP OF LAYER 3 24.000
MAXIMUM HEAD ON TOP OF LAYER 3 32.78
LOCATION OF MAXIMUM HEAD IN LAYER 2

(DISTANCE FROM DRAIN) 167.8 FEET
DRAINAGE COLLECTED FROM LAYER 5 0.00676 1918.96143
PERCOLATION/LEAKAGE THROUGH LAYER 7 0.000003 0.80470
AVERAGE HEAD ON TOP OF LAYER 6 1.028
MAXIMUM HEAD ON TOP OF LAYER 6 1.74
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LOCATION OF MAXIMUM HEAD IN LAYER 5
(DISTANCE FROM DRAIN) 15.1 FEET

SNOW WATER 1.63 461711.6250
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4658
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0880

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.

***** **** ****E*****E ****U *****U ****E *****E ***** *****.**** ****..*****

FINAL WATER STORAGE AT END OF YEAR 1974

LAYER (INCHES) (VOL/VOL)

1
2
3
4
5
6
7

4.5870
5.2583
7.6860

350.4000
1.4525
0.0000
7.6860

0.3823
0.4382
0.4270

0.2920
0.0807
0.0000
0.4270

SNOW WATER 0.000

1995:

**

**

**

**

**

**

**

**

**

**

**

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE
HELP MODEL VERSION 3.05 (30 MARCH 1996) **
DEVELOPED BY ENVIRONMENTAL LABORATORY

USAE WATERWAYS EXPERIMENT STATION **
FOR USEPA RISK REDUCTION ENGINEERING LABORATORY

**

**

**

**

**

PRECIPITATION DATA FILE: U:\EMCHEN\PLAINV-\HELP3\DATA4.D4
TEMPERATURE DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA7.D7
SOLAR RADIATION DATA FILE: U:\EMCHEN\PLAINV-\HELP3\DATA13.D13
EVAPOTRANSPIRATION DATA: U:\EMCHEN\PLAINV-\HELP3\DATA11.Dl1
SOIL AND DESIGN DATA FILE: U:\EMCHEN\PLAINV-\HELP3\DATA95.D1O
OUTPUT DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\OUTDAT95.OUT
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TIME: 17:58 DATE: 5/ 3/1999

TITLE: Plainville Landfill - 1995

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE
COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 7

THICKNESS = 12.00 INCHES
POROSITY = 0.4730 VOL/VOL
FIELD CAPACITY = 0.2220 VOL/VOL
WILTING POINT = 0.1040 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3905 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.520000001000E-03 CM/SEC

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 5.00
FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 12.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4382 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 530.0 FEET

LAYER 3

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.1000000010OOE-06 CM/SEC

LAYER 4

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 18
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THICKNESS = 1200.00 INCHES
POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CMISEC

LAYER 5

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 18.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0808 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CMISEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 100.0 FEET

LAYER 6

TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 4.00 HOLES/ACRE
FML PLACEMENT QUALITY = 3 - GOOD

LAYER 7

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000001000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 7 WITH A
POOR STAND OF GRASS, A SURFACE SLOPE OF 2.%
AND A SLOPE LENGTH OF 530. FEET.
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SCS RUNOFF CURVE NUMBER = 82.40
FRACTION OF AREA ALLOWING RUNOFF = 28.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 80.800 ACRES
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 6.011 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 6.987 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 1.320 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 377.169 INCHES
TOTAL INITIAL WATER = 377.169 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
PROVIDENCE RHODE ISLAND

STATION LATITUDE = 41.73 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 121
END OF GROWING SEASON (JULIAN DATE) = 290
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
AVERAGE ANNUAL WIND SPEED = 10.60 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 64.00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 65.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 72.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 70.00 %

NOTE: PRECIPITATION DATA FOR PROVIDENCE RHODE ISLAND
WAS ENTERED FROM THE DEFAULT DATA FILE.

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

28.20 29.30 37.40 47.90 57.60 66.80
72.50 71.10 63.50 53.20 43.40 32.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

AND STATION LATITUDE = 41.73 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1974 THROUGH 1974

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

PRECIPITATION

TOTALS 4.45 3.04 4.51 2.86 2.74 3.28
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1.64 3.10 6.15 2.79 1.56 4.54
STD. DEVIATIONS 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

RUNOFF

TOTALS 1.621 1.079 1.903 1.306 0.000 0.003
0.000 0.053 0.062 0.049 0.000 0.007

STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

EVAPOTRANSPIRATION

TOTALS 1.215 0.874 0.848 2.635 2.896 5.660
1.665 0.818 3.908 2.680 1.497 1.009

STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

LATERAL DRAINAGE COLLECTED FROM LAYER 2

TOTALS 0.4582 0.4476 0.4791 0.5271 0.4842 0.3751
0.3014 0.2579 0.4100 0.4304 0.3814 0.4858

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH LAYER 3

TOTALS 0.1968 0.1889 0.2034 0.2180 0.2030 0.1621
0.1514 0.1447 0.1714 0.1713 0.1602 0.2007

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LATERAL DRAINAGE COLLECTED FROM LAYER 5

TOTALS 0.1858 0.1715 0.2028 0.1981 0.2088 0.1929
0.1813 0.1671 0.1588 0.1689 0.1633 0.1728

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH LAYER 7

TOTALS 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

DAILY AVERAGE HEAD ON TOP OF LAYER 3

AVERAGES 15.5891 17.6990 16.7133 20.4463 16.6527 10.5872
7.8398 6.7084 12.2390 11.2360 10.2507 16.2607

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DAILY AVERAGE HEAD ON TOP OF LAYER 6

AVERAGES 0.9117 0.9320 0.9952 1.0046 1.0244 0.9780
0.8895 0.8202 0.8052 0.8290 0.8280 0.8481

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1974 THROUGH 1974

INCHES CU. FEET PERCENT

PRECIPITATION 40.66 ( 0.000) 11925742.0 100.00
RUNOFF 6.083 ( 0.0000) 1784149.25 14.960
EVAPOTRANSPIRATION 25.704 ( 0.0000) 7539194.00 63.218
LATERAL DRAINAGE COLLECTED 5.03825 ( 0.00000) 1477739.370 12.39117

FROM LAYER 2
PERCOLATION/LEAKAGE THROUGH 2.17173 ( 0.00000) 636977.687 5.34120

LAYER 3
AVERAGE HEAD ON TOP 13.519 ( 0.000)

OF LAYER 3
LATERAL DRAINAGE COLLECTED 2.17210 ( 0.00000) 637086.625 5.34211

FROM LAYER 5
PERCOLATION/LEAKAGE THROUGH 0.00092 ( 0.00000) 270.193 0.00227

LAYER 7
AVERAGE HEAD ON TOP 0.905 ( 0.000)

OF LAYER 6
CHANGE IN WATER STORAGE -0.106 ( 0.0000) -31095.52 -0.261

PEAK DAILY VALUES FOR YEARS 1974 THROUGH 1974

(INCHES) (CU. FT.)

PRECIPITATION 2.17 636469.750
RUNOFF 0.958 280861.0310
DRAINAGE COLLECTED FROM LAYER 2 0.01955 5734.78320
PERCOLATION/LEAKAGE THROUGH LAYER 3 0.007937 2327.90796
AVERAGE HEAD ON TOP OF LAYER 3 24.000
MAXIMUM HEAD ON TOP OF LAYER 3 32.78
LOCATION OF MAXIMUM HEAD IN LAYER 2

(DISTANCE FROM DRAIN) 167.8 FEET
DRAINAGE COLLECTED FROM LAYER 5 0.00676 1984.17786
PERCOLATION/LEAKAGE THROUGH LAYER 7 0.000003 0.83200
AVERAGE HEAD ON TOP OF LAYER 6 1.029
MAXIMUM HEAD ON TOP OF LAYER 6 1.74
LOCATION OF MAXIMUM HEAD IN LAYER 5

(DISTANCE FROM DRAIN) 15.1 FEET
SNOW WATER 1.63 477062.7190
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MAXIMUM VEG. SOIL WATER (VOL/VOL)
MINIMUM VEG. SOIL WATER (VOL/VOL)

0.4658
0.0880

*** Maximum heads are computed using McEnroe's equations. *

Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.

FINAL WATER STORAGE AT END OF YEAR 1974

LAYER (INCHES) (VOL/VOL)

1
2
3
4
5
6
7

4.5808
5.2583
7.6860

350.4000
1.4522
0.0000
7.6860

0.3817
0.4382
0.4270

0.2920
0.0807
0.0000
0.4270

SNOW WATER 0.000

1996:

**

**

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE
HELP MODEL VERSION 3.05 (30 MARCH 1996) **
DEVELOPED BY ENVIRONMENTAL LABORATORY

USAE WATERWAYS EXPERIMENT STATION **
FOR USEPA RISK REDUCTION ENGINEERING LABORATORY

**

**

PRECIPITATION DATA FILE: U:\EMCHEN\PLAINV-\HELP3\DATA4.D4
TEMPERATURE DATA FILE: U:\EMCHEN\PLAINV-\HELP3\DATA7.D7
SOLAR RADIATION DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA13.D13
EVAPOTRANSPIRATION DATA: U:\EMCHEN\PLAINV-\HELP3\DATA11l.D11
SOIL AND DESIGN DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA96.D1O
OUTPUT DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\OUTDAT96.OUT

TIME: 18: 7 DATE: 5/ 3/1999
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TITLE: Plainville Landfill - 1996

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE
COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 7

THICKNESS = 12.00 INCHES
POROSITY = 0.4730 VOL/VOL
FIELD CAPACITY = 0.2220 VOL/VOL
WILTING POINT = 0.1040 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3690 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.520000001000E-03 CM/SEC

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 5.00
FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 12.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4382 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 530.0 FEET

LAYER 3

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.1000000010OOE-06 CM/SEC

LAYER 4

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 18

THICKNESS = 1200.00 INCHES
POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
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WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

LAYER 5

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 18.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0802 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 100.0 FEET

LAYER 6

TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 4.00 HOLES/ACRE
FML PLACEMENT QUALITY = 3 - GOOD

LAYER 7

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000001000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 7 WITH A
POOR STAND OF GRASS, A SURFACE SLOPE OF 2.%
AND A SLOPE LENGTH OF 530. FEET.

SCS RUNOFF CURVE NUMBER = 82.40
FRACTION OF AREA ALLOWING RUNOFF = 58.6 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 83.400 ACRES
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EVAPORATIVE ZONE DEPTH = 15.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 5.753 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 6.987 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 1.320 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 376.902 INCHES
TOTAL INITIAL WATER = 376.902 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
PROVIDENCE RHODE ISLAND

STATION LATITUDE = 41.73 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 121
END OF GROWING SEASON (JULIAN DATE) = 290
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
AVERAGE ANNUAL WIND SPEED = 10.60 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 64.00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 65.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 72.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 70.00 %

NOTE: PRECIPITATION DATA FOR PROVIDENCE RHODE ISLAND
WAS ENTERED FROM THE DEFAULT DATA FILE.

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

28.20 29.30 37.40 47.90 57.60 66.80
72.50 71.10 63.50 53.20 43.40 32.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

AND STATION LATITUDE = 41.73 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1974 THROUGH 1974

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

PRECIPITATION

TOTALS 4.45 3.04 4.51 2.86 2.74 3.28
1.64 3.10 6.15 2.79 1.56 4.54

STD. DEVIATIONS 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
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RUNOFF

TOTALS 2.033 1.424 3.094 1.081 0.000 0.006
0.000 0.112 0.129 0.102 0.000 0.014

STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

EVAPOTRANSPIRATION

TOTALS 0.674 0.761 0.912 3.162 2.878 5.587
1.665 0.818 3.933 2.684 1.504 1.011

STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

LATERAL DRAINAGE COLLECTED FROM LAYER 2

TOTALS 0.3846 0.4358 0.4673 0.5502 0.4816 0.3746
0.3040 0.2602 0.4069 0.4167 0.3617 0.4748

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH LAYER 3

TOTALS 0.1727 0.1851 0.1995 0.2258 0.2018 0.1618
0.1518 0.1451 0.1700 0.1689 0.1572 0.1969

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LATERAL DRAINAGE COLLECTED FROM LAYER 5

TOTALS 0.1787 0.1601 0.1942 0.1954 0.2069 0.1915
0.1805 0.1669 0.1584 0.1679 0.1617 0.1703

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH LAYER 7

TOTALS 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

DAILY AVERAGE HEAD ON TOP OF LAYER 3

AVERAGES 11.4732 16.9785 16.0611 21.8209 16.4461 10.5445
7.9066 6.7675 11.9871 10.8367 9.7219 15.6151

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DAILY AVERAGE HEAD ON TOP OF LAYER 6

AVERAGES 0.8770 0.8700 0.9530 0.9908 1.0154 0.9712
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0.8859 0.8189 0.8032 0.8238 0.8199 0.8355
STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1974 THROUGH 1974

INCHES CU. FEET PERCENT

PRECIPITATION 40.66 ( 0.000) 12309491.0 100.00
RUNOFF 7.995 ( 0.0000) 2420272.00 19.662
EVAPOTRANSPIRATION 25.590 ( 0.0000) 7747119.50 62.936
LATERAL DRAINAGE COLLECTED 4.91846 ( 0.00000) 1489023.750 12.09655

FROM LAYER 2

PERCOLATION/LEAKAGE THROUGH 2.13652 ( 0.00000) 646814.187 5.25460
LAYER 3

AVERAGE HEAD ON TOP 13.013 ( 0.000)
OF LAYER 3

LATERAL DRAINAGE COLLECTED 2.13254 ( 0.00000) 645610.812 5.24482
FROM LAYER 5

PERCOLATION/LEAKAGE THROUGH 0.00091 ( 0.00000) 274.275 0.00223
LAYER 7

AVERAGE HEAD ON TOP 0.889 ( 0.000)
OF LAYER 6

CHANGE IN WATER STORAGE 0.014 ( 0.0000) 4092.86 0.033

PEAK DAILY VALUES FOR YEARS 1974 THROUGH 1974

(INCHES) (CU. FT.)

PRECIPITATION 2.17 656950.187
RUNOFF 1.608 486697.5310
DRAINAGE COLLECTED FROM LAYER 2 0.01955 5919.31836
PERCOLATION/LEAKAGE THROUGH LAYER 3 0.007937 2402.81567
AVERAGE HEAD ON TOP OF LAYER 3 24.000
MAXIMUM HEAD ON TOP OF LAYER 3 32.78
LOCATION OF MAXIMUM HEAD IN LAYER 2

(DISTANCE FROM DRAIN) 167.8 FEET
DRAINAGE COLLECTED FROM LAYER 5 0.00670 2028.82922
PERCOLATION/LEAKAGE THROUGH LAYER 7 0.000003 0.85145
AVERAGE HEAD ON TOP OF LAYER 6 1.019
MAXIMUM HEAD ON TOP OF LAYER 6 1.73
LOCATION OF MAXIMUM HEAD IN LAYER 5

(DISTANCE FROM DRAIN) 15.0 FEET
SNOW WATER 1.63 492413.719
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4658
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0880

*** Maximum heads are computed using McEnroe's equations. *

Reference: Maximum Saturated Depth over Landfill Liner
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by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.

FINAL WATER STORAGE AT END OF YEAR 1974

LAYER (INCHES) (VOL/VOL)

1 4.4380 0.3698
2 5.2583 0.4382
3 7.6860 0.4270
4 350.4000 0.2920
5 1.4470 0.0804
6 0.0000 0.0000
7 7.6860 0.4270

SNOW WATER 0.000

1997:

** **

** **

** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** HELP MODEL VERSION 3.05 (30 MARCH 1996) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** **

** **

PRECIPITATION DATA FILE: U:\EMCHEN\PLAINV-l\HELP3\DATA4.D4
TEMPERATURE DATA FILE: U:\EMCHEN\PLAINV-\HELP3\DATA7.D7
SOLAR RADIATION DATA FILE: U:\EMCHEN\PLAINV-\HELP3\DATA13.D13
EVAPOTRANSPIRATION DATA: U:\EMCHEN\PLAINV-1\HELP3\DATAl 1.Dll
SOIL AND DESIGN DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA97.D1O
OUTPUT DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\OUTDAT97.OUT

TIME: 18:10 DATE: 5/3/1999

TITLE: Plainville Landfill - 1997

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE
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COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 7

THICKNESS = 12.00 INCHES
POROSITY = 0.4730 VOL/VOL
FIELD CAPACITY = 0.2220 VOL/VOL
WILTING POINT = 0.1040 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3497 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.520000001000E-03 CMISEC

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 5.00
FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 12.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4382 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CMISEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 530.0 FEET

LAYER 3

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000001000E-06 CMISEC

LAYER 4

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 18

THICKNESS = 1200.00 INCHES
POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

LAYER 5
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TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 18.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0798 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 100.0 FEET

LAYER 6

TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 4.00 HOLES/ACRE
FML PLACEMENT QUALITY 3 - GOOD

LAYER 7

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000001000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 7 WITH A
POOR STAND OF GRASS, A SURFACE SLOPE OF 2.%
AND A SLOPE LENGTH OF 530. FEET.

SCS RUNOFF CURVE NUMBER = 82.40
FRACTION OF AREA ALLOWING RUNOFF = 82.1 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 86.000 ACRES
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 5.522 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 6.987 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 1.320 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 376.663 INCHES
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TOTAL INITIAL WATER
TOTAL SUBSURFACE INFLOW

= 376.663 INCHES
= 0.00 INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
PROVIDENCE RHODE ISLAND

STATION LATITUDE = 41.73 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 121
END OF GROWING SEASON (JULIAN DATE) = 290
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
AVERAGE ANNUAL WIND SPEED = 10.60 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 64.00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 65.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 72.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 70.00 %

NOTE: PRECIPITATION DATA FOR PROVIDENCE
WAS ENTERED FROM THE DEFAULT DATA FILE.

RHODE ISLAND

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

28.20 29.30 37.40 47.90
72.50 71.10 63.50 53.20

57.60 66.80
43.40 32.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

AND STATION LATITUDE = 41.73 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1974 THROUGH 1974

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

PRECIPITATION

TOTALS

STD. DEVIA

4.45 3.04 4.51 2.86 2.74 3.28
1.64 3.10 6.15 2.79 1.56 4.54

TIONS 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

RUNOFF

TOTALS 2.510 0.944 3.398 1.055 0.000 0.008
0.000 0.157 0.180 0.142 0.000 0.018

STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
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0.000 0.000 0.000 0.000 0.000 0.000

EVAPOTRANSPIRATION

TOTALS 0.620 0.708 0.703 3.150 2.879 5.533
1.665 0.817 3.940 2.687 1.508 1.012

STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

LATERAL DRAINAGE COLLECTED FROM LAYER 2

TOTALS 0.3680 0.3956 0.4446 0.5445 0.4795 0.3733
0.3037 0.2600 0.4039 0.4058 0.3483 0.4670

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH LAYER 3

TOTALS 0.1683 0.1751 0.1922 0.2238 0.2006 0.1614
0.1517 0.1451 0.1685 0.1673 0.1551 0.1941

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LATERAL DRAINAGE COLLECTED FROM LAYER 5

TOTALS 0.1748 0.1543 0.1881 0.1891 0.2026 0.1888
0.1788 0.1659 0.1575 0.1667 0.1602 0.1683

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH LAYER 7

TOTALS 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

DAILY AVERAGE HEAD ON TOP OF LAYER 3

AVERAGES 10.7336 15.0864 14.8043 21.4771 16.2499 10.4727
7.8995 6.7614 11.7286 10.5542 9.3603 15.1316

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DAILY AVERAGE HEAD ON TOP OF LAYER 6

AVERAGES 0.8577 0.8385 0.9232 0.9591 0.9944 0.9574
0.8775 0.8140 0.7985 0.8182 0.8125 0.8261

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1974 THROUGH 1974

INCHES CU. FEET PERCENT

PRECIPITATION 40.66 ( 0.000) 12693240.0 100.00
RUNOFF 8.411 ( 0.0000) 2625888.25 20.687
EVAPOTRANSPIRATION 25.222 ( 0.0000) 7873744.50 62.031
LATERAL DRAINAGE COLLECTED 4.79402 ( 0.00000) 1496596.500 11.79050

FROM LAYER 2
PERCOLATION/LEAKAGE THROUGH 2.10323 ( 0.00000) 656585.000 5.17271

LAYER 3
AVERAGE HEAD ON TOP 12.522 ( 0.000)

OF LAYER 3
LATERAL DRAINAGE COLLECTED 2.09535 ( 0.00000) 654126.750 5.15335

FROM LAYER 5
PERCOLATION/LEAKAGE THROUGH 0.00089 ( 0.00000) 278.350 0.00219

LAYER 7
AVERAGE HEAD ON TOP 0.873 ( 0.000)

OF LAYER 6

CHANGE IN WATER STORAGE 0.134 ( 0.0000) 41832.96 0.330

PEAK DAILY VALUES FOR YEARS 1974 THROUGH 1974

(INCHES) (CU. FT.)

PRECIPITATION 2.17 677430.625
RUNOFF 1.628 508197.6250
DRAINAGE COLLECTED FROM LAYER 2 0.01955 6103.85303
PERCOLATION/LEAKAGE THROUGH LAYER 3 0.007937 2477.72363
AVERAGE HEAD ON TOP OF LAYER 3 24.000
MAXIMUM HEAD ON TOP OF LAYER 3 32.78
LOCATION OF MAXIMUM HEAD IN LAYER 2

(DISTANCE FROM DRAIN) 167.8 FEET
DRAINAGE COLLECTED FROM LAYER 5 0.00655 2044.87817
PERCOLATION/LEAKAGE THROUGH LAYER 7 0.000003 0.85996
AVERAGE HEAD ON TOP OF LAYER 6 0.996
MAXIMUM HEAD ON TOP OF LAYER 6 1.69
LOCATION OF MAXIMUM HEAD IN LAYER 5

(DISTANCE FROM DRAIN) 14.8 FEET
SNOW WATER 1.63 507764.750
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4658
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0880

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.
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FINAL WATER STORAGE AT END OF YEAR 1974

LAYER (INCHES) (VOL/VOL)

1
2
3
4

4.3238
5.2583
7.6860

350.4000

0.3603
0.4382
0.4270

0.2920

5 1.4431 0.0802

6
7

0.0000 0.0000
7.6860 0.4270

SNOW WATER 0.000

1998:

**

**

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE
HELP MODEL VERSION 3.05 (30 MARCH 1996) **
DEVELOPED BY ENVIRONMENTAL LABORATORY

USAE WATERWAYS EXPERIMENT STATION **
FOR USEPA RISK REDUCTION ENGINEERING LABORATORY

**

**

**

**

**

PRECIPITATION DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA4.D4
TEMPERATURE DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA7.D7
SOLAR RADIATION DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA13.D13
EVAPOTRANSPIRATION DATA: U:\EMCHEN\PLAINV-1\HELP3\DATA11.D11
SOIL AND DESIGN DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\DATA98.D1O
OUTPUT DATA FILE: U:\EMCHEN\PLAINV-1\HELP3\OUTDAT98.OUT

TIME: 18:12 DATE: 5/ 3/1999

TITLE: Plainville Landfill - 1998

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE
COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1
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TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 7

THICKNESS = 12.00 INCHES
POROSITY = 0.4730 VOL/VOL
FIELD CAPACITY = 0.2220 VOL/VOL
WILTING POINT = 0.1040 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3322 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.520000001000E-03 CM/SEC

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 5.00
FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 12.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4382 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH 530.0 FEET

LAYER 3

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000001000E-06 CM/SEC

LAYER 4

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 18

THICKNESS = 1200.00 INCHES
POROSITY = 0.67 10 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

LAYER 5
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TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 2

THICKNESS = 18.00 INCHES
POROSITY = 0.4370 VOL/VOL
FIELD CAPACITY = 0.0620 VOL/VOL
WILTING POINT = 0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0794 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.579999993000E-02 CM/SEC
SLOPE = 2.00 PERCENT
DRAINAGE LENGTH = 100.0 FEET

LAYER 6

TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 4.00 HOLES/ACRE
FML PLACEMENT QUALITY = 3 - GOOD

LAYER 7

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16

THICKNESS = 18.00 INCHES
POROSITY = 0.4270 VOL/VOL
FIELD CAPACITY = 0.4180 VOL/VOL
WILTING POINT = 0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000001000E-06 CM/SE

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 7 WITH A
POOR STAND OF GRASS, A SURFACE SLOPE OF 2.%
AND A SLOPE LENGTH OF 530. FEET.

SCS RUNOFF CURVE NUMBER = 82.40
FRACTION OF AREA ALLOWING RUNOFF = 100.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 88.500 ACRES
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 5.312 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 6.987 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 1.320 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 376.445 INCHES
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TOTAL INITIAL WATER = 376.445 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
PROVIDENCE RHODE ISLAND

STATION LATITUDE = 41.73 DEGREES
MAXIMUM LEAF AREA INDEX = 4.50
START OF GROWING SEASON (JULIAN DATE) = 121
END OF GROWING SEASON (JULIAN DATE) = 290
EVAPORATIVE ZONE DEPTH = 15.0 INCHES
AVERAGE ANNUAL WIND SPEED = 10.60 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 64.00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 65.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 72.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 70.00 %

NOTE: PRECIPITATION DATA FOR PROVIDENCE RHODE ISLAND
WAS ENTERED FROM THE DEFAULT DATA FILE.

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

28.20 29.30 37.40 47.90 57.60 66.80
72.50 71.10 63.50 53.20 43.40 32.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR PROVIDENCE RHODE ISLAND

AND STATION LATITUDE = 41.73 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1974 THROUGH 1974

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

PRECIPITATION

TOTALS 4.45 3.04 4.51 2.86 2.74 3.28
1.64 3.10 6.15 2.79 1.56 4.54

STD. DEVIATIONS 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

RUNOFF

TOTALS 2.835 0.613 3.626 0.750 0.000 0.009
0.000 0.192 0.219 0.172 0.000 0.021

STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
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0.000 0.000 0.000 0.000 0.000 0.000

EVAPOTRANSPIRATION

TOTALS 0.619 0.708 0.699 3.145 2.677 5.695
1.662 0.815 3.946 2.691 1.512 1.013

STD. DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

LATERAL DRAINAGE COLLECTED FROM LAYER 2

TOTALS 0.3647 0.3802 0.4377 0.5338 0.4773 0.3688
0.3017 0.2583 0.4006 0.3959 0.3374 0.4597

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH LAYER 3

TOTALS 0.1672 0.1698 0.1907 0.2202 0.1993 0.1604
0.1514 0.1448 0.1671 0.1658 0.1535 0.1916

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LATERAL DRAINAGE COLLECTED FROM LAYER 5

TOTALS 0.1711 0.1518 0.1847 0.1856 0.1998 0.1867
0.1774 0.1649 0.1565 0.1656 0.1589 0.1667

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH LAYER 7

TOTALS 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

DAILY AVERAGE HEAD ON TOP OF LAYER 3

AVERAGES 10.5403 14.0990 14.5525 20.8451 16.0244 10.2982
7.8472 6.7171 11.4723 10.2963 9.0677 14.7106

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DAILY AVERAGE HEAD ON TOP OF LAYER 6

AVERAGES 0.8398 0.8246 0.9062 0.9413 0.9807 0.9468
0.8703 0.8093 0.7938 0.8126 0.8056 0.8180

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1974 THROUGH 1974

INCHES CU. FEET PERCENT

PRECIPITATION 40.66 ( 0.000) 13062229.0 100.00
RUNOFF 8.438 ( 0.0000) 2710742.50 20.753
EVAPOTRANSPIRATION 25.181 ( 0.0000) 8089603.00 61.931
LATERAL DRAINAGE COLLECTED 4.71620 ( 0.00000) 1515102.620 11.59911

FROM LAYER 2
PERCOLATION/LEAKAGE THROUGH 2.08185 ( 0.00000) 668803.437 5.12013

LAYER 3
AVERAGE HEAD ON TOP 12.206 ( 0.000)

OF LAYER 3
LATERAL DRAINAGE COLLECTED 2.06976 ( 0.00000) 664920.312 5.09040

FROM LAYER 5
PERCOLATION/LEAKAGE THROUGH 0.00088 ( 0.00000) 283.265 0.00217

LAYER 7
AVERAGE HEAD ON TOP 0.862 ( 0.000)

OF LAYER 6
CHANGE IN WATER STORAGE 0.252 ( 0.0000) 80803.95 0.619

PEAK DAILY VALUES FOR YEARS 1974 THROUGH 1974

(INCHES) (CU. FT.)

PRECIPITATION 2.17 697123.375
RUNOFF 1.898 609747.2500
DRAINAGE COLLECTED FROM LAYER 2 0.01953 6273.96143
PERCOLATION/LEAKAGE THROUGH LAYER 3 0.007929 2547.25854
AVERAGE HEAD ON TOP OF LAYER 3 23.959

MAXIMUM HEAD ON TOP OF LAYER 3 32.74
LOCATION OF MAXIMUM HEAD IN LAYER 2

(DISTANCE FROM DRAIN) 167.7 FEET
DRAINAGE COLLECTED FROM LAYER 5 0.00646 2075.44727
PERCOLATION/LEAKAGE THROUGH LAYER 7 0.000003 0.87391
AVERAGE HEAD ON TOP OF LAYER 6 0.983
MAXIMUM HEAD ON TOP OF LAYER 6 1.67
LOCATION OF MAXIMUM HEAD IN LAYER 5

(DISTANCE FROM DRAIN) 14.7 FEET
SNOW WATER 1.63 522525.344
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4658
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0880

*** Maximum heads are computed using McEnroe's equations. *

Reference: Maximum Saturated Depth over Landfill Liner
by Bruce M. McEnroe, University of Kansas
ASCE Journal of Environmental Engineering
Vol. 119, No. 2, March 1993, pp. 262-270.
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FINAL WATER STORAGE AT END OF YEAR 1974

LAYER (INCHES) (VOL/VOL)

1 4.2266 0.3522
2 5.2583 0.4382
3 7.6860 0.4270

4 350.4000 0.2920
5 1.4397 0.0800
6 0.0000 0.0000
7 7.6860 0.4270

SNOW WATER 0.000
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Appendix B: Calculated Monthly Leachate Amounts

Ara eihtVoum (u olmeHELP pred/HELP Rel actual/real pred/act
Year Month (are Area (sq in) Hight Volume (cu Vlume Actual (gal) precip pre cip (in) galreai (per in)

(are)(i) in ga)(in) (galin pre/in

1993 Jan 75.6 474211584 0.1854 87918828 380601 unknown 4.45 85528 2.42 unknown unknown
Feb 75.6 474211584 0.1712 81185023 351450 1614638 3.04 115609 5.06 319098 0.36
Mar 75.6 474211584 0.2025 96027846 415705 2015588 4.51 92174 6.99 288353 0.32
Apr 75.6 474211584 0.1979 93846472 406262 4334103 2.86 142050 5.02 863367 0.16
May 75.6 474211584 0.2085 98873115 428022 1496046 2.74 156212 1.12 1335755 0.12
Jun 75.6 474211584 0.1927 91380572 395587 596681 3.28 120606 1.4 426201 0.28
Jul 75.6 474211584 0.1812 85927139 371979 255402 1.64 226816 2.18 117157 1.94
Aug 75.6 474211584 0.1673 79335598 343444 156429 3.1 110788 1.23 127178 0.87
Sept 75.6 474211584 0.159 75399642 326405 125482 6.15 53074 4.08 30755 1.73
Oct 75.6 474211584 0.1691 80189179 347139 126813 2.79 124423 3.55 35722 3.48
Nov 75.6 474211584 0.1634 77486173 335438 137211 1.56 215024 3.35 40959 5.25
Dec 75.6 474211584 0.1728 81943762 354735 286269 4.54 78135 5.76 49699 1.57

total 4076167 11144662 36.21 1434912 39.74 3634245 0.39

1994 Jan 78.2 490520448 0.1854 90942491 393690 275974 4.45 88470 5.53 49905 1.77
Feb 78.2 490520448 0.1712 83977101 363537 471933 3.04 119585 2.1 224730 0.53
Mar 78.2 490520448 0.2026 99379443 430214 2028213 4.51 95391 7.19 282088 0.34
Apr 78.2 490520448 0.198 97123049 420446 2302847 2.86 147009 2.07 1112486 0.13
May 78.2 490520448 0.2086 102322565 442955 988952 2.74 161662 2.98 331863 0.49
Jun 78.2 490520448 0.1927 94523290 409192 429866 3.28 124754 2.7 159210 0.78
Jul 78.2 490520448 0.1813 88931357 384984 235496 1.64 234746 1.34 175743 1.34
Aug 78.2 490520448 0.1673 82064071 355256 169053 3.1 114599 6.43 26291 4.36
Sept 78.2 490520448 0.159 77992751 337631 153192 6.15 54899 4.12 37183 1.48
Oct 78.2 490520448 0.1692 82996060 359290 112717 2.79 128778 0.4 281793 0.46
Nov 78.2 490520448 0.1635 80200093 347187 134748 1.56 222555 5.34 25234 8.82
Dec 78.2 490520448 0.173 84860038 367359 612391 4.54 80916 4.58 133710 0.61

total 4611742 7915382 40.66 113422 44.78 176762 0.64
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Area Height Volm (cu Volm HELP pred/HELP Rel actual/real p red./actYear Month (are Area (sq in) oume (cu Voume Actual (gal) precip preHP preR (in) aaprecip ed it
(in) (gal/in) (gal/in) (e n

1995 Jan 80.8 506829312 0.1858 94168886 407658 1313727 4.45 91608 3.67 357964 0.26
Feb 80.8 506829312 0.1715 86921227 376282 808324 3.04 123777 3.14 257428 0.48
Mar 80.8 506829312 0.2028 102784984 444957 1175847 4.51 98660 2.03 579235 0.17
Apr 80.8 506829312 0.1981 100402887 434645 674693 2.86 151974 3.34 202004 0.75
May 80.8 506829312 0.2088 105825960 458121 410396 2.74 167197 2.83 145016 1.15
Jun 80.8 506829312 0.1929 97767374 423235 303918 3.28 129035 2.89 105162 1.23
Jul 80.8 506829312 0.1813 91888154 397784 194945 1.64 242551 1.17 166620 1.46
Aug 80.8 506829312 0.1671 84691178 366628 132290 3.1 118267 1.8 73494 1.61
Sept 80.8 506829312 0.1588 80484495 348418 132405 6.15 56653 4.06 32612 1.74
Oct 80.8 506829312 0.1689 85603471 370578 238617 2.79 132824 6.37 37459 3.55
Nov 80.8 506829312 0.1633 82765227 358291 337360 1.56 229674 5.1 66149 3.47
Dec 80.8 506829312 0.1728 87580105 379135 369530 4.54 83510 2.18 169509 0.49

total 4765731 6092052 40.66 117209 38.58 157907 0.74

1996 Jan 83.4 523138176 0.1787 93484792 404696 1399226 4.45 90943 5.02 278730 0.33
Feb 83.4 523138176 0.1601 83754422 362573 2024788 3.04 119268 2.19 924561 0.13
Mar 83.4 523138176 0.1942 101593434 439798 1920993 4.51 97516 2.71 708854 0.14
Apr 83.4 523138176 0.1954 102221200 442516 2356062 2.86 154726 4.88 482800 0.32
May 83.4 523138176 0.2069 108237289 468560 1719187 2.74 171007 2.44 704585 0.24
Jun 83.4 523138176 0.1915 100180961 433684 822981 3.28 132221 2.17 379254 0.35
Jul 83.4 523138176 0.1805 94426441 408772 553650 1.64 249252 5.57 99399 2.51
Aug 83.4 523138176 0.1669 87311762 377973 424218 3.1 121927 2.19 193707 0.63
Sept 83.4 523138176 0.1584 82865087 358723 385110 6.15 58329 5.72 67327 0.87
Oct 83.4 523138176 0.1679 87834900 380238 516149 2.79 136286 6.2 83250 1.64
Nov 83.4 523138176 0.1617 84591443 366197 730765 1.56 234741 2.38 307044 0.76
Dec 83.4 523138176 0.1703 89090431 385673 2213719 4.54 84950 6.59 335921 0.25

total 4829403 15066848 40.66 118775 48.06 313501 0.38
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Area Height Volume (cu Volume HELP pred/HELP Re actual/real pred/actYear Month (acres) Ae sin (n)n)ga) Actual (gal) precip pei Real (n precip (e nAra sqin in i) ga)(in) (gal/in) (a/n

1997 Jan 86 539447040 0.1748 94295343 408205 1575134 4.45 91731 4.27 368884 0.25
Feb 86 539447040 0.1543 83236678 360332 1285576 3.04 118530 1.93 666102 0.18
Mar 86 539447040 0.1881 101469988 439264 1044860 4.51 97398 4.86 214992 0.45
Apr 86 539447040 0.1891 102009435 441599 2455569 2.86 154405 4.69 523575 0.29
May 86 539447040 0.2026 109291970 473125 1272208 2.74 172674 2.69 472940 0.37
Jun 86 539447040 0.1888 101847601 440899 703729 3.28 134420 2.24 314165 0.43
Jul 86 539447040 0.1788 96453131 417546 452283 1.64 254601 1.44 314085 0.81

Aug 86 539447040 0.1659 89494264 387421 332364 3.1 124975 6.32 52589 2.38
Sept 86 539447040 0.1575 84962909 367805 306379 6.15 59806 0.97 315855 0.19
Oct 86 539447040 0.1667 89925822 389289 339278 2.79 139530 1.8 188488 0.74
Nov 86 539447040 0.1602 86419416 374110 411651 1.56 239814 6.06 67929 3.53
Dec 86 539447040 0.1683 90788937 393026 519017 4.54 86570 2.84 182752 0.47

total 4892621 10698048 40.66 120330 40.11 266718 0.45

1998 Jan 88.5 555128640 0.1711 94982510 411180 767303 4.45 92400 6.55 117145 0.79
Feb 88.5 555128640 0.1518 84268528 364799 1115516 3.04 120000 5.58 199913 0.60
Mar 88.5 555128640 0.1847 102532260 443863 1589453 4.51 98417 5.86 271238 0.36
Apr 88.5 555128640 0.1856 103031876 446025 1153145 2.86 155953 4.91 234856 0.66
May 88.5 555128640 0.1998 110914702 480150 1508622 2.74 175237 6.05 249359 0.70
Jun 88.5 555128640 0.1867 103642517 448669 1823523 3.28 136789 9.62 189555 0.72
Jul 88.5 555128640 0.1774 98479821 426320 1855220 1.64 259951 1.37 1354175 0.19
Aug 88.5 555128640 0.1649 91540713 396280 567000 3.1 127832 2.39 237238 0.54
Sept 88.5 555128640 0.1565 86877632 376094 383246 6.15 61153 2.3 166629 0.37
Oct 88.5 555128640 0.1656 91929303 397962 369653 2.79 142639 3.78 97792 1.46
Nov 88.5 555128640 0.1589 88209941 381861 282902 1.56 244783 2.76 102501 2.39
Dec 88.5 555128640 0.1667 92539944 400606 262772 4.54 88239 1.27 206907 0.43

total 4973808 11678355 40.66 122327 52.44 222699 0.55
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Appendix C: Groundwater Modeling

This appendix describes the development of a computer groundwater model using

the United States Geological Survey (USGS) Modular Finite-Difference Ground-Water

Flow Model (MODFLOW) (McDonald and Harbaugh, 1988). This method of analysis

was chosen so that quantitative groundwater predictions could be made in the Master of

Engineering Plainville Landfill Project's three areas of study. Three other groundwater

models have been developed previously for portions of the area of concern. One of the

models was developed by Eckenfelder Inc. (1998), one by Dufresne-Henry Inc. (1997),

and another by Whitman and Howard (1996). These models were reviewed in detail

during the development and construction of the model reported here.

C.1 PURPOSE

The purpose of this model is to provide a tool for the three areas of study for the

Master of Engineering Plainville Landfill project. Using this model, local effects of

lowering the groundwater table, via pumping upgradient of the landfill, will be

determined. Radiuses of influence of the extraction wells of the remediation system will

be established. Furthermore, the possibility of contamination reaching proposed drinking

water wells will be examined.

C.2 CONCEPTUAL MODEL

The model area embodies typical New England geology. The stratified-drift

aquifer consists of outwash that has been deposited by glacial meltwaters when glaciers

retreated from New England (USGS, 1984). These depositions created small, permeable

valley-filled aquifers in most of Massachusetts.

Plainville, Massachusetts is located within the Taunton River Watershed. The

regional topography in the vicinity of Plainville is characterized by numerous north to

south trending buried glacial outwash valleys that are underlain by bedrock. These

outwash valleys constitute highly productive aquifers that provide groundwater resources

in the region. The elevations in this area range from 450 feet above sea level at the top of

the landfill to approximately 125 feet above sea level in the outwash valley.
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The glacial outwash valley consists of glacial outwash that overlies fractured

bedrock beginning north of the cranberry bogs and trending southward from Rabbit Hill

Pond towards Lake Mirimichi. The glacial outwash consists of fine to coarse sand, some

gravel, and little to trace amounts of silt and clay. These outwash deposits increase from

as little as eight feet thick to approximately fifty feet thick in the vicinity of Lake

Mirimichi. The outwash conductivity ranges from 150 ft/d to 290 ft/d (Eckenfelder,

1998). The bedrock, which underlies the outwash valley, consists primarily of Dedham

Granite with a small area to the east of the landfill underlain by Wamsutta Formation

sandstone and conglomerate (Eckenfelder, 1994). Approximately the top ten feet of the

bedrock is fractured and provides groundwater resources to the Plainville area. The

hydraulic conductivity within the fractured bedrock ranges from virtually no flow at

0.00003 ft/d, to 148 ft/d (Eckenfelder, 1998). Glacial till borders the outwash valley on

both the west and east. The glacial till is virtually nonconductive - hydraulic conductivity

ranges from 3.1 ft/d to 45 ft/d - and consequently fences in this valley channeling the

groundwater flow through the outwash layer (Eckenfelder, 1998). There are also several

lenses of relatively coarse-grained glacial till within and beneath the glacial outwash of

this valley. A typical cross-section is shown in Figure C-1.

FIGURE C-1: OUTWASH VALLEY CROSS SECTION
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C.3 DATA COLLECTION

In addition to visiting the site, the group members gathered data from previous

studies performed in the area. These data included quarterly reports on chemicals

detected in observation wells and ground and surface water elevation measurements,

borehole data providing information about the site geology, previous studies done by

various consulting companies, and background information on the history of the site.

USGS maps of the area were also utilized (Williams & Willey, 1973; Williams & Willey,

1987).

C.4 MODEL DESCRIPTION

The USGS MODFLOW, an industry standard for groundwater flow modeling,

was used in conjunction with the user-friendly interface developed by Waterloo

Hydrogeologic, Inc. MODFLOW determines the distribution of hydraulic head and

groundwater flow field over time and space.

MODFLOW is described by its authors as a modular computer program for three-

dimensional groundwater flow modeling (McDonald and Harbaugh, 1988). The code is

structured into independent subprograms or modules. One or more modules together

make a "package". These packages address specific aspects of the groundwater system.

The MODFLOW packages used for the Plainville project include:

* Basic package - establishes basic model structure and computer code bookkeeping
and output instructions.

e Block-centered flow package - establishes geometry and hydraulic properties of
model grid.

e River package - represents river underlain by variable permeability bottom.
* Recharge package - specifies the rate of rainfall recharge into the surface of the

modeled area.
* Well package - represents pumping/injection or observation wells.
* Preconditioned Conjugate-Gradient Package (PCG2) - solves simultaneous equations

produced by the model using a two tier approach.

The code provides computational options. MODFLOW can be used for steady

state or transient simulations; for this study, the model was run in steady-state mode to

evaluate long-term average behavior of the groundwater system. In vertical geometry,
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MODFLOW allows representations as three-dimensional, quasi-three-dimensional, or

two-dimensional. This study utilized the three-dimensional capability.

C.5 MODEL DEVELOPMENT

Steps were followed in order to transform the conceptual model into input for the

MODFLOW computer program. Preparation for the three-dimensional numerical model

included the following:

e Subdividing the horizontal area into a grid of computational elements
* Representing the underlying geology
* Specifying boundary conditions
* Assigning physical properties to the model cells

C.5.1 Horizontal Model Area

The model area and finite-difference grid is shown in Figure C-2. Natural

boundaries were chosen to define the model. To the east and west, no-flow boundaries

were delineated by the low conductivity till deposits. The outline of these boundaries

was determined from subsurface geology USGS map (Williams & Willey, 1973) and a

USGS topographic map of the area (USGS, 1987).
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FIGURE C-2: MODEL AREA AND FINITE DIFFERENCE GRID

The northern boundary and southern boundaries were set at a sufficient distance so that

the heads specified at these edges would not affect any evaluation in this study.

The numerical grid consisted of 155 rows and 135 columns. The grid was further

refined over the areas of interest - namely, the landfill, remediation site, and drinking

water wells by Lake Mirimichi. The resolution of these cells ranged from about 3,700

square feet to 60,000 square feet. For proper solution convergence, the requirement that

the difference in area between adjacent cells must not exceed 50% was followed.

C.5.2 Vertical Model Area

A cross-section of the model is shown in Figure C-3. This is a close-up of the area

from west to east through the landfill. Locations of wells and the elevations of the
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bottom of the outwash layer were input into Surfer, a program used to interpolate

surfaces. Surfer does grid-based contouring and three-dimensional surface plotting of

graphics; in this project, Kriging was used for interpolation. In addition to the bottom of

the outwash layer, another interpolated surface was the ground-surface elevation; these

data came from both borehole data and USGS maps (Williams & Willey, 1967; Williams

& Willey, 1970). These two grid files were imported as layers in the MODFLOW model.

FIGURE C-3: MODEL LAYERS

Other layers were added to the model, keeping in mind what adjustable

parameters or boundaries would be needed in the future. A ten foot fractured bedrock

layer was added below the outwash layer because the site of the landfill used to be a rock

quarry. Within the outwash layer, a thin layer was added to allow for a landfill liner. In

addition, a thin layer over the entire region was allotted for a landfill cap and the river

cells. These provided flexibility for analysis on problems of the landfill. Figures C-4 is a

plan view of the model. Figures C-5A and C-5B show additional cross-sections through

the model.
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FIGURE C-4: PLAN VIEW WITH CROSS SECTION LOCATIONS

FIGURE C-5A: N-S CROSS SECTION OF MODEL

101



FIGURE C-5B: W-E CROSS SECTION OF MODEL

C.5.3 Model Boundary Conditions

No flow zones were identified which followed the till outlines (Figure C-6).

Although the landfill area sits on till according to the USGS report (Williams and Willey,

1973), that boundary was not assigned as no flow because the plume exits from the

landfill, and because the underlying rock is fractured due to rock quarry operations.

Lake Mirimichi, Turnpike Lake, Rabbit Hill Pond, Rabbit Hill Stream, the

cranberry bogs, and Witch Pond as well as other tributaries were represented using the

MODFLOW river package (Figure C-7). River stage elevation was defined as the

surface elevation. As required by the river package, conductances of the streambed were

assigned to individual cells using the following formula:

C KLW
M

where C = conductance
K = conductivity of the river bed material (2 ft/d for rivers, 0.5 ft/d for

lakes)
L = length of reach through cell

W = width of river in cell
M = thickness of river bed (1ft for rivers, 5ft for lakes) (Dufresne-Henry,

Inc. 1997)
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FIGURE C-6: TILL BOUNDARIES

FIGURE C-7: RIVER, LAKE, AND CONSTANT HEAD BOUNDARIES

C.5.4 Hydraulic Parameters

Preliminary values for aquifer parameters, such as hydraulic conductivity and

recharge, were assigned according to accepted values for the geology and the area. These

values are summarized in Table C-i.

TABLE C-1: INITIAL PARAMETERS

Layer K,= K, (ft/d) K. (ft/d)
1 250 25
2 250 25
3 250 25
4 0.5 0.05
5 0 0
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C.5.5 Precipitation Recharge

Groundwater recharge initially was assigned as twenty-one inches per year, half

of the average annual rate of precipitation over Massachusetts (USGS, 1984).

C.6 MODEL CALIBRATION

After creating a running model, calibration is done to ensure that the model is

representative of the site. Adjustments of the parameters are usually made until head level

reproduction is acceptable. Of the quarterly reports, the date chosen for calibration

purposes was June 1996. The month of June was chosen because it is between the wet

and dry seasons. The 1996 data was the latest available. Observation wells were placed

in the model and these data were entered as observed elevations of the water table (Figure

C-8). The model was rerun and the output provided an option to graph program-

predicted groundwater levels in these wells versus observed values. A one to one

correlation is desired. After adjustment of certain parameters, the final correlation is

shown in Figure (C-9). The mean error was 1.45 feet; mean absolute error was 1.92 feet;

RMS error was 2.05 feet. The end values for model parameters are given in Table C-2:

TABLE C-2: PARAMETERS FOR CALIBRATION

Layer Kx = Ky (ft/d) Kz (ft/d)
1 250 25
2 250 25
3 250 25
4 1 0.1
5 0 0

Landfill 25 2.5

At landfill, recharge = 1"/yr
Elsewhere, recharge = 21"/yr
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FIGURE C-8: OBSERVATION WELL LOCATIONS

FIGURE C-9: CALIBRATION CURVE
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Calibration was reached when the recharge rate over the landfill was set to one in/yr and

the hydraulic conductivities Kx and Kz for layers 1, 2, and 3 at the landfill were 25 ft/d

and 2.5 ft/d, respectively. The groundwater flow output can be seen in Figure C-10.

52000 56000 600C
FIGURE C-10: MODEL OUTPUT

C.7 SENSITIVITY ANALYSIS

A sensitivity analysis was performed to evaluate the degree to which the base case

values represent a unique solution. Various input parameters were changed to assess

their impact on the model. If changing one parameter does not change the base case

output, then the model is not sensitive to that particular parameter. Conversely, if the

model is sensitive to a given parameter in this analysis, then that parameter needs to be

close to the base case value for the model to remain in calibration. Sensitivity analysis

was performed under steady-state conditions.

The sensitivity analysis was conducted by varying one input parameter at a time

and comparing the predicted heads with those of the calibrated 'base-case' simulation.
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Parameters such as the recharge through landfill, the areal recharge, and each of the

hydraulic conductivities of layers 2, 3 and 4 were varied by values between ten and a

thousand percent of the base case. The results are tabulated in Table C-3.

Of the five parameters evaluated, the least sensitive was the recharge through the

landfill, the areal recharge, and the hydraulic conductivities in layer 4. The most sensitive

parameter was the hydraulic conductivity of layer 2.

TABLE C-3: RESULTS OF STEADY-STATE SENSITIVITY ANALYSIS

Decreasing Base Increasing

Recharge Through Landfill (in/yr) 0.1 0.5 1 2 10
Change Factor 0.10 0.50 1.00 2.00 10.00
Mean Error 1.40 1.41 1.45 1.43 1.51
Mean Absolute Error 1.90 1.90 1.92 1.91 1.97
RMS Error 2.01 2.02 2.05 2.03 2.11

Areal Recharge (in/yr) 4.2 10.5 21 31.5 42
Change Factor 0.20 0.50 1.00 1.50 2.00
Mean Error 1.07 1.20 1.45 1.62 1.83
Mean Absolute Error 1.66 1.75 1.92 2.07 2.26
RMS Error 1.76 1.86 2.05 2.19 2.37

Hydraulic Conductivity in Layer 2 25 125 250 500 2500
(ft/day)

Change Factor 0.10 0.50 1.00 2.00 10.00
Mean Error 4.57 2.83 1.45 2.37 Error
Mean Absolute Error 5.09 3.29 1.92 2.77 Error
RMS Error 5.59 3.67 2.05 3.16 Error

Hydraulic Conductivity in Layer 3 25 125 250 500 2500
(ft/day)

Change Factor 0.10 0.50 1.00 2.00 10.00
Mean Error 1.46 1.52 1.45 1.88 Error
Mean Absolute Error 1.94 1.98 1.92 2.30 Error
RMS Error 2.07 2.12 2.05 2.50 Error

Hydraulic Conductivity in Layer 3 0.1 0.5 1 2 10
(ft/day)

Change Factor 0.10 0.50 1.00 2.00 10.00
Mean Error 1.42 1.41 1.45 1.43 1.58
Mean Absolute Error 1.90 1.90 1.92 1.91 2.04
RMS Error 2.02 2.01 2.05 2.04 2.18
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C.8 LIMITATIONS

In evaluating model results, the following simplifications should be noted:

1. Homogeneity of subsurface geology. The model simplifies the actual region and
geologic parameters. Not only can the hydraulic conductivity vary within sediment
type, but also it is not homogeneous throughout a particular layer. A few patches of
till lenses have been detected in boreholes.

2. Steady-state simulation. The model is calibrated for a steady state simulation; it does
not take into consideration the seasonal effects of precipitation and groundwater
recharge.

3. Fixed properties for lakes and rivers. All river cells were assigned the same
conductivities for riverbed. Also, same conductivities were given to the lake cells.

4. Assumed till boundaries and fractured bedrock extent at the landfill. Where the till
ends around the landfill and how thick and extensive the fractured bedrock layer is
was up to the discretion of the modeler. Historical knowledge and current plume
situation were taken into account in developing this simple, yet representative model
of the area.
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