
PRODUCT DEVELOPMENT PROCESS CAPTURE & DISPLAY

USING WEB-BASED TECHNOLOGIES

by

NADER SABBAGHIAN

B.S. Electrical Engineering
Carleton University (Canada), 1993

Submitted to the Sloan School of Management and the School of Engineering
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN ENGINEERING & MANAGEMENT

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1999
@ 1999 Massachusetts Institute of Technology, All Rights Reserved

Signature of A uthor...
System Design & Management Program

December 15, 1999

Certified by..
Earll Murman

Professor of Aeronautics and Astronautics
Thesis Supervisor

Certified by..
Steven Eppinger

Associate Professor of Management Science
Thesis Supervisor

A ccepted by
Thomas Magnanti
Institute Professor

Codirector, System Design and Management Program

M&CAVES
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

APR 1 2 1999

LIBRARIES

PRODUCT DEVELOPMENT PROCESS CAPTURE & DISPLAY

USING WEB-BASED TECHNOLOGIES

by

NADER SABBAGHIAN

Submitted to the Sloan School of Management and the School of
Engineering on December 15, 1999 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in
Engineering and Management

ABSTRACT

The goal of this research is to define a distributed knowledge capture method used for
modeling the product development process. A Web-based solution is proposed to enable
rapid collection, continuous update and clear display of organizational and task
interactions in large projects.

Modeling the product development process in large projects is a complex exercise
requiring numerous participants and the coordination and clarification of vast amounts of
collected information. Currently, this is performed through group meetings or an
interview-base process, where participants attempt to integrate their fragmented
knowledge of the overall development process. Web technology is used in the proposed
approach to address the limitations of present process modeling practices.

A Web-based prototype system has been developed to validate the approach. The system
is equipped with 'push' data capture and on-line multi-user issues resolution capabilities.
It utilizes a multi-tiered, data-driven Design Structure Matrix (DSM) configuration to
present collected information. The prototype system has been developed on the
Windows NT platform using Java, Active Server Pages (ASP), MS SQL-Server RDBMS
and JDBC middleware.

KEY WORDS

integrated product development, design for integration, re-engineering, concurrent
engineering, product development, design structure matrix, web technology, process
modeling, distributed knowledge collection, cooperative design, cooperative information
sharing

ACKNOWLEDGEMENTS

This work was made possible through the guidance and support of many. First and
foremost I would like to thank MIT's Center for Innovation in Product Development, its
consortium of industrial partners and the National Science Foundation for providing me
with the opportunity to conduct research in this area.

Infinite thanks to my academic advisors Professor Steven Eppinger and Professor Earll
Murman for their valuable and continuous guidance over the last two years. I was also
blessed with the precious advice of Dr. David Grose, a researcher with great experience
at the Boeing Company. I would like to acknowledge his extensive contribution to my
work and greatly thank him for openly sharing his tremendous knowledge and wisdom.

I am also enormously grateful to the Boeing Commercial Airplane Group, and especially
to Mr. Waltt Gilette, Mr. Brian Jobes and members of the Configuration & Engineering
Analysis group.

I would also like to thank my friends and colleagues at MIT for their contributions and
guidance. Many thanks go to Tyson Browning, Maria Carrascosa, Shaun Abrahamson,
Giammario Verona, Philipp Schierstaedt, Johannes Kuster, Stephen Donnelly and others.

Finally, a special thanks to my family and friends for their support and love. I am grateful
to my father Nezam, my sister Negin, my best friend Alessandro, and especially to my
lovely fiance Valeria.

This work is dedicated to the loving memory of my mother who has been and will
continue to be the greatest source of inspiration in my life.

BIOGRAPHICAL NOTE

The author has been a research assistant with M.I.T.'s Center for Innovation in Product
Development since January 1997, working on the applications of Internet Technology in
the area of product development process modeling. Mr. Sabbaghian is a native of
Tehran, Iran and has lived in Italy, Canada and the United States. He has a Bachelor
degree in Electrical Engineering conferred by Carleton University (Ottawa, Canada) in
May 1993. Mr. Sabbaghian has four years of work experience in North America with
Andersen Consulting and has worked as summer associate with the European operations
of McKinsey & Company.

Address correspondence to:

Nader Sabbaghian
27 Danaher Drive Phone: (613) 825-9802
Nepean, Ontario Fax: (613) 825-7528
Canada K2J 3Y5 Internet: nad@alum.mit.edu

TABLE OF CONTENTS

1 IN TR O D U CTIO N ...- ...- .. ---------........ 11

1.1 PROBLEM STATEMENT...- . -------------......... 11

1.2 RESEARCH BACKGROUND ..- - 12

1.2.1 Role ofInform ation Technology... 12

1.2.2 D ata Collection Techniques ... 14

1.2.3 An Internet-based D istributed Approach ... 16

1.2.4 Process Modeling at the Boeing Commercial Airplane Group (BCA G)...........................17

1.3 THESIS O VERVIEW ... 20

2 DESIG N STRU C TU R E M ATRIX (D SM) .. 21

2.1 D SM O VERVIEW ... 21

2.1.1 Param eter-based DSM 21

2.1.2 Team -based DSM .. 22

2.1.3 Task-based DSM .. 23

2.2 THE DATA-DRIVEN D SM ... 24

2.3 M ULTI-TIERED CONFIGURATION..26

2.4 A COM BINED APPROACH...27

2.4.1 Internal Interaction...27

2.4.2 External Interaction .. 28

2.4.3 Boundary Interaction .. 29

1.5 CHALLENGES IN M ODELING LARGE PROJECTS .. 30

1.5.1 D ata Collection ... 30

1.5.2 Representation...31

1.5.3 M odel Q uality..32

1.6 SUM MARY ... 33

3 M O D ELIN G APPR O A CH ... 35

3.1 D ISTRIBUTED D ATA COLLECTION..35

3.1.1 Task D ecomposition..35

3.1.2 Autom atic Notification .. 38

3.2 U SABILITY ... 39

3.2.1 DSM Layout...39

3.2.2 Inter-level Navigation..40

3.2.3 Auxiliary Screens...41

3.2.4 Task H ierarchy View ... 43

3.2.5 Task Entry Interface .. 44

3.2.6 Personalized M essage Board... 45

3.3 M ODEL INTEGRATION..46

3.3.1 Data D isconnects .. 46

3.3.1.1 Nomenclature .. 46
3.3.1.2 Timing ... 47
3.3.1.3 Information obsolescence .. 47
3.3.1.4 Information omission... 47
3.3.1.5 Incomplete model..47

3.3.2 Online Issue Resolution... 47

3.3.2.1 Online discussion... 48
3.3.2.2 Adjustment to existing model... 48
3.3.2.3 Delegation to modeling team ... 48

3.3.3 Inter-level D isparity .. 49

3.3.4 Data Entry Validation... 50

3.3.4.1 DSM dimension... 50
3.3.4.2 Redundant output deliverable... 50
3.3.4.3 Field size ... 50

3.4 SUMMARY ... 5 1

4 W EB-BASED PRO TO TYPE..52

4.1 REQUIREMENTS ANALYSIS .. 52

4.1.1 Requirements Definition... 52

4.2 SYSTEM M ETRICS AND SPECIFICATIONS .. 55

4.3 HIGH-LEVEL DESIGN CONCEPT.. 58

4.3.1 User Interface.. .. 58

4.3.2 Batch Process..61

4.3.2.1 Detect Data Disconnect ... 62
4.3.2.2 Detect Inter-Level Disparities.. 62
4.3.2.3 Prepare Issues..64
4.3.2.4 Update database...64
4.3.2.5 Send Notification...65

4.3.3 Data Repository...66

4.4 SOFTWARE ARCHITECTURE...68

4.4.1 Run-time environment ... 68

4.4.2 Development Environment .. 69

4.5 SUMMARY ... 69

5 CO NCLUSIONN .. 71

5.1 SUMMARY ... 71

5.2 DIRECTIONS FOR FUTURE W ORK ... 72

5.2.1 Pilot deployment.. 72

5.2.2 Structural analysis...73

5.2.3 Behavioral analysis ... 73

5.2.4 Software Enhancements .. 74

6 BIBLIO GRAPH Y .. 77

APPENDIX A - REQUIREMENTS DEFINITION ... 80

APPENDIX B - CONFIGURATION INSTRUCTIONS .. 82

A PPEND IX C - PR O G R AM M O DU LES...84

D .1 ACTIVE SERVER PAGES..84

D .2 JAVA APPLETS..96

D .3 JAVA A PPLICATIONS...109

TABLE OF FIGURES

Figure 1-1 Exemplars of Knowledge Systems 1221... 13

Figure 1-2 Model acquisition attributes ... 14

Figure 1-3 A Classification of CSCW systems [refj..16

Figure 1-4 Distributed web-based modeling cycle.. 17

Figure 1-5 CFID's multi-tiered top-down/bottom-up modeling approach... 18

Figure 1-6 Quotes from BCAG management on the topic of program planning 19

Figure 2-1 Sample Task-based Design Structure Matrix .. 24

Figure 2-2 Sample Data-driven DSM displaying explicit information flow...................25

Figure 2-3 Sample DSM Multi-tiered configuration..26

Figure 2-4 Sample Internal interaction .. 28

Figure 2-5 Sample External interaction ... 28

Figure 2-6 Sample Boundary interactions ... 29

Figure 3-1 Change flow during DSM breakdown .. 37

Figure 3-2 Sample DSM in Web-based tool...39

Figure 3-3 Sample 4-level dependency visualization... 40

Figure 3-4 Sample auxiliary screen depicting task information flows..42

Figure 3-5 Sample auxiliary screen depicting task interactions... 42

Figure 3-6 Sample task hierarchy view .. 43

Figure 3-7 Sample task information entry sequence... 44

Figure 3-8 Sample user web page .. 45

Figure 3-9 Sample data disconnect resolution page ... 48

Figure 3-10 Deliverable inheritance during decomposition.. 49

Figure 4-1 Requirements-Specifications matrix for Web-based system...56

Figure 4-2 Top-level view of prototype system.. 58

Figure 4-3 User Interface Screen Flow for Web Prototype..59

Figure 4-4 Batch Process Flow Diagram...61

Figure 4-5 Addressing inter-level disparity caused by inter-level interaction 63

Figure 4-6 Sample e-mail Notification Message .. 65

Figure 4-7 Data Repository Diagram ... 66

Figure 4-8 Web server configuration.. 68

Figure 5-1 Example of an alternative DSM visualization technique...76

TABLE OF TABLES

Table 2-1 Common DSM classifications..21

Table 2-2 Simple taxonomy of system element interactions... 22

Table 2-3 Example of spatial interaction quantification scheme .. 22

Table 2-4 Information flow classifications ... 23

Table 3-1 Estimated magnitude and scope of modeling effort at each level.......................................36

Table 4-1 Target specifications for Web-based system..57

Table 4-2 Recognized issue types ... 64

Table 4-3 Field descriptions for DSM related tables..67

Table 4-4 File types utilized in the prototype system .. 69

1 INTRODUCTION

1.1 Problem Statement

There is mounting pressure in all industries to reduce the cost and time required to

develop increasingly sophisticated products. Meanwhile, fast changing marketplaces,
intense competition and rapid technological evolution have magnified the dynamic nature

of product development, creating further need for flexibility and responsiveness in project

management. Defining and coordinating development teams and activities under such

circumstances is a real management challenge, especially in large engagements [3, 8].

Today's large product development programs can be characterized by the participation of

thousands of designers, divided into hundreds of cross-functional teams, working on

hundreds of thousands of tasks over a period of several years. Aircraft, satellite systems

and automobiles are typical examples of products requiring development projects of such

magnitude. The challenge in these programs is to overcome the tremendous complexity

involved in planning and executing large numbers of interconnected and dynamic design

[3, 6, 8] and development tasks. Success usually depends on management's ability to

collect and process a considerable amount of continuously changing information for

efficient decision making. Identifying instances of task iteration (planned or unplanned)

is critical in reducing complexity and increasing program efficiency [7, 18, 21]. This

important aspect of planning is most often neglected because of insufficient data

collection and poor means of representation. Traditional project management tools

provide a simplified view through the use of precedence network models and are unable

to capture the iterative nature of the development process [1, 7].

This research attempts to address implementation issues related to the Design Structure

Matrix modeling methodology. This matrix-based technique has proven to be an effective

tool for planning and managing product development programs through information flow

analysis [1, 7, 8, 15, 17, 18, and 21]. It is capable of intuitively representing complicated

dependencies among numerous project entities and raising visibility on potential

iterations in the development process.

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 e Page 11Introduction Nader Sabbaghian

1.2 Research Background

The product development process is defined as "the sequence of steps or activities that an

enterprise employs to conceive, design and commercialize a product" [21]. Large product

development programs involve hundreds or even thousands of activities performed by

individuals with a variety of skills and intellectual capabilities. This type of

organizational knowledge is considered by many researchers as the most strategic asset,

source of economic value and key to competitive advantage [20, 22]. In analyzing the

knowledge creation process, researchers Nonaka and Takeuchi [20] point out that their

are two types of knowledge: explicit and tacit. The former relates to the "codified"

knowledge, one that is quantifiable and transmittable in a systematic language. The latter

refers to "personal" knowledge, one that is context specific and difficult to formalize and

communicate. The researchers point out that it is through interactions among these two

types knowledge (referred to as four modes of "knowledge conversion") that human

knowledge is created and expanded.

Modeling the product development process entails tapping into the tacit and explicit

knowledge of a vast population of experts in the organization. This is an enabling

exercise in knowledge conversion according to the Nonanka-Takeauchi framework.

Structuring activities and information flows into comprehensible representations provides

key insights on the dynamics of product creation hence contributing to organizational

knowledge in the critical area of product development.

Furthermore, numerous studies in the area of knowledge management have pointed out

that flexible, quick and equal access to information throughout the organization is a

necessary condition for the advancement of knowledge [5, 9, 13, 14]. Indiscriminate

availability of information and the creation of technology infrastructures to enable

information sharing is the central theme in many studies on project coordination

mechanisms [4, 10, 14, 19].

One can therefore easily conclude that organizations can greatly benefit from a more

detailed understanding of their product development process and better ways to share and

promote this aspect of their knowledge.

1.2.1 Role of Information Technology

Recent advancements in information technology, especially the area of distributed

computing have created entirely new opportunities in the area of knowledge

management. The development of network technologies and the emergence of the

Massachusetts Institute of Technology - Center for Innovation in Product Development

Nader Sabbaghian Introduction12/16/98 * Page 12

Internet as the leading collaborative tool have led to important steps towards the creation

of a seamless communication environment. The word seamless alludes to the so-called

"five-anys" signifying the creation of an environment that enables members to

communicate anything in anyway, with anyone located anywhere in the world at anytime

[14]. Prof. Halal [22] refers to such systems as "intelligent infrastructures" alluding to

their ability to capture and distribute existing knowledge across organizations and

facilitate learning. Examples of successful deployment of such intelligent infrastructures

are presented in Figure 1-1 below.

W~Pa4kaird

Acporate IS unit is putting management procedures and personnel practices
onto a www site and Lotus Notes. A system called Knowledge Links supports
product divisions with purchasing services, engineering data, market
intelligence, and best practices. All this is unified by a "World Innovation
Network" that allows employees to probe each other's experiences on what
works.

Merrill Lynch
The world's largest security borker helps its eighteen thousand account
managers operating in five hundred offices serve their millions of clients with
a computer network that stores the firm's knowledge base about securities,
financial forecasts, and the like.

Andersen Consulting
Andersen uses a global network called Knowledge Xchan# A
experiences and best practices of its worldwide consulting -praotice.

Figure 1-1 Exemplars of Knowledge Systems [221

According to Prof. Halal: "An intelligent infrastructure consists of a corporate wide

information system and a web of close working relationships connecting entrepreneurial

units to common pools of share knowledge. The result is a central nervous system that

leverages ordinary learning to powerful new levels, forming an intelligent organization"

However, current knowledge systems in the area of product development program

planning, execution and process management fail to qualify as so-called forms of

intelligent infrastructure. Factors contributing to their inability to gain widespread

acceptance as catalysts of process-driven learning in organizations include [12]:

Massachusetts Institute of Technology - Center for Innovation in Product Development

Introduction Nader Sabbaghian 12/16/98 # Page 13

" single user, standalone implementations

* poor means of process representation

" steep learning curve combined with a lack of adequate performance support

" cumbersome entry of process information

A number of innovative approaches have been developed using Network technologies to

address the above deficiencies of conventional process modeling tools [8 , 9, 16]. These

approaches, despite taking advantage of the ease of information distribution and using

creative process representation techniques, maintain the existing paradigm of centralized

model creation and data management and therefore can not be considered fully

distributed knowledge systems.

1.2.2 Data Collection Techniques

Typically process related information is obtained through extensive interviews with

various experts in the organization. Cross-functional meetings are organized and

facilitated by a small team of process modelers. These individuals are generally

responsible for the coordination of data collection activities as well as entry, analysis and

validation of gathered information.

concurrency

4redundancy

4 concurrenc

T redundancy

Centralized Distributed

DATA ENTRY

Figure 1-2 Model acquisition attributes

The process of model acquisition can be characterized by the two dimensions presented

in Figure 1-2. This space-time matrix categorizes model acquisition approaches

supporting either single or multiple point data entry and allowing users to interact either

in real-time (synchronously) or in a time-independent fashion (asynchronously). The

lower-left quadrant reflects the most common approach where data is collected

Massachusetts Institute of Technology - Center for Innovation in Product Development

Introduction12/16/98 # Pagee 14 Nader Sabbagzhian

asynchronously and entered by a select group of individuals (referred to previously as

"process modelers"). This data collection approach heavily relies on the process modeling

team, with information providers playing mostly a passive role in the in model

construction. This synchronous data acquisition approach is logistically difficult to carry

out and is therefore time consuming. Significant effort is spent facilitating interactions

among users in order to resolve data integration issues. There is little concurrency in data

collection, since separate team meetings need to be scheduled and facilitated by the

process modeling team. In addition, data is prepared twice. The first time by individual

information providers in preparation for data collection meetings, and subsequently by

process modelers for entry into the information system used for modeling.

The upper left quadrant of Figure 1-2 illustrates situations where process modeler's obtain

information through individual contacts (through interviews) with the target audience or

through the preparation of surveys that are individually and remotely compiled.

Information continues to be centrally managed. Process related data is passed from target

individuals to the modeling team who structures and compiles it for entry into appropriate

information systems for further analysis. This scenario presents a higher degree of

concurrency, due to the fact that data can be collected in waves by requesting data from a

group of participants simultaneously (e.g. sending out an e-mail survey). However, due

to the lack of distributed means of information entry, the degree of data entry redundancy

remains the same as the previous case. Once again, participants must first compile data

in surveys or other forms of documentation, which are then passed to the modeling team

for entry into the appropriate tools for process analysis.

The top-right quadrant in Figure 1-2 refers to the modeling approach recommended in

this research. In the asynchronized-decentralized scenario the role of data collection

coordinators is minimized and model construction relies on the direct participation and

interaction among the various experts in the organization. Data providers play a much

more active role in model construction and a higher degree of concurrency is achieved

through the availability of distributed data entry. Redundancy is reduced, with users

providing information directly to an information system's central model repository. The

three examples of knowledge systems reported in Figure 1-1 also utilize this approach for

distributed knowledge management.

The above framework for the modeling process is drawn from Mariani and Roden's

analysis of information models used by Computer Supported Cooperative Work (CSCW)

information systems [11]. They present a groupware space-time matrix that characterizes

cooperative systems according to the geographical location of the users and the form of

Massachusetts Institute of Technology - Center for Innovation in Product Development

Introduction Nader Sabbaghian 12/16/98 e Page 15

interaction supported. Figure 1-3 presents this framework highlighting the effectiveness

of existing CSCW systems in addressing the two dimensions of cooperative information

modeling. The concept of cooperative system developed in this research for the purposes

of product development process capture is aligned with the recommended approach for

the implementation of a remote-asynchronous CSCW relying on a combination of

messaging and web-based conferencing.

Co-Authoring Message Conferencing
rgumentatio Systems Systems

Meetin Conferencin
- Rooms

Co-located Remote

LOCATION

Figure 1-3 A Classification of CSCW systems [refJ

1.2.3 An Internet-based Distributed Approach

The product development modeling process can be characterized by the cycle presented

in Figure 1-4. As stated previously, process modeling is an iterative mechanism by

which the knowledge of a group of experts is collected and integrated to obtain a tangible

representation of the activities and information flows at play during product development.

Through the use of Web-based technologies this research attempts to accelerate this cycle

while reducing the amount of resources required for the coordination and facilitation of

the model creation process.

Data collection requests are initiated by the modeling group with the intent of gaining

further detail on a series of high-level program activities. The web-based system enables

every engaged participant to initiate requests to other experts in the organization in order

to obtain further detail on various areas of the process. From this user-driven activity

decomposition mechanism an increasingly detailed picture of the process emerges.

A distributed and cross-platform web-based interface provides the means for the

collection of required data consisting of: task names, corresponding responsible

Massachusetts Institute of Technology - Center for Innovation in Product Development

Introduction12/16/98 * Pagee 16 Nader Sabbaghian

12/16/98 e Page 17

individuals/teams and, deliverables used and produced. Gathered information is stored in

a central repository. During modeling's Validation phase collected process data is

analyzed to ensure its accuracy and consistency. The system's Notification mechanism

provides the means of introducing automation in the contact management component of

modeling. A rule-based system is designed to diagnose situations requiring user

intervention and construct targeted hyper-link enabled electronic messages to request

participation in the issue resolution process.

Data Capture

Issue Resolution Validation

Notification

Figure 1-4 Distributed web-based modeling cycle

The aim of this framework is to reduce the time and effort required by the modeling team

to pursue process-related data across the organization. Internet technologies are quite

suitable for achieving this goal by easily providing the capabilities required to actively

engage a large geographically dispersed group of information providers.

1.2.4 Process Modeling at the Boeing Commercial Airplane Group (BCAG)

BCAG's efforts in the area of product development process modeling over the last few

years can be traced to the Cross Functional Integrated Design (CFID) group. This

process improvement team headed by Dr. David Grose has strived to promote process

thinking through the development of process mapping and analysis tools and their

deployment in numerous pilot projects throughout the organization. Most notably Dr.

Grose and his team have developed a software system based on the so-called "data

driven" process modeling approach that requires the explicit definition of information

flow among activities in the model. Each task is modeled together with its specific

Massachusetts Institute of Technology - Center for Innovation in Product Development

Introduction Nader Sabbaghian

information requirements and outputs. Dependencies are solely defined through the

matching of "required" and "produced" deliverables.

The tool utilizes a multi-tiered Design Structured Matrix (DSM) representation to

overcome challenges related to model size and complexity. The modeling exercise (as

seen in Figure 1-5) begins with defining decision gates and presenting their dependencies

in a tier 1 DSM. Rows within this matrix expand to the next level DSM representing

program milestones and, the decomposition process creates as many levels of

increasingly detailed DSMs until individual tasks are identified. In this approach,

deliverables or data entities also follow a similar hierarchical pattern. The decomposition

process for model construction occurs in a top-down fashion. The program schedule, on

the other hand, is produced from the bottom-up with designers providing estimates on

each identified task.

Top-down
Planning

Decision Gate

Senir MmntProgramSenir Mmnt Milestones Engineering A
Prora Mgnt Processes Detailed

Team Leads Activities

Bottom-up
Scheduling

Figure 1-5 CFID's multi-tiered top-down/bottom-up modeling approach

Over the last few years CFID's modeling activities have been confined to a group of

relatively small engagements. Interest in the above approach is growing as program

managers and chief engineers become increasingly aware of its benefits in alleviating

resource and schedule pressures. Despite management's enthusiasm, so far there has

been no coordinated effort for a program-wide deployment of the tool.

Interviews with members of the CFID team have revealed some of the difficulties

encountered in their modeling initiatives, specifically as they relate to the data collection

issue. Dr. Grose's team maintains that product development teams are presently unable to

readily provide the necessary information for data-driven model construction. The CFID

Massachusetts Institute of Technology - Center for Innovation in Product Development

Introduction12/16/98 e Page 18 Nader Sabbaghian

team spends a significant amount of time assisting each group in defining its processes

and data requirements at various levels of abstraction in the model hierarchy. Frequently

this turns into a coaching exercise in "process" and "system" thinking. Clarifications are

needed on concepts such as "task", "data", "milestones" which are often used

interchangeably. In addition, each participating team requires a certain level of

background training on DSM theory and visualization techniques. Experience

demonstrates that users find it difficult to adapt to matrix representations of process

elements and dependencies.

The CFID team has observed a number of interesting trends over the course of their

process modeling experience at BCAG. They point out the prevalent use of deadline

driven scheduling (i.e. tell me "when" you want it for, and I'll tell you "how long" it will

take) and ad-hoc sequencing of tasks (according to the way it has "always" been done)

during the planning process. They also highlight a general tendency to ignore task

iterations in the process. Iterations are acknowledged and understood but do not appear

explicitly in any of the program plans. Consequently, the CFID team maintains that

using existing tools and techniques it is difficult to assess the impact of iteration on

schedule and cost.

During the summer of 1997 a series of interviews with Boeing senior management

further demonstrated the need for alternative approaches and more sophisticated tools in

the area of program planning. Figure 1-6 presents a series of insightful comments

captured during the interviews. The quotes refer to the interviewees overall assessment of

current planning practices at BCAG.

spnsa lot of effort developing and executing SCHEDUL ES...
Planning would account for resource constraints,

anigrequirements, morale, .. etc. Boeing does not do enough
and lacks the skills and tools to do it effectively on all programs."

"We need to look at how we define milestones. We spend a lot of effort doing the
work, but we don't have the modeling tools to do the job well. We find Microsoft
Project the answer to everything."

"We look at history, squeeze history into the current market requirmenS and'
assume we can accomplish with less resources and cost. Results arq
and probably expected due to ever increasing regulato Pr
complexity of products. We MANAGE!!"

Figure 1-6 Quotes from BCAG management on the topic of program planning

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 @ Page 19Introduction Nader Sabbaghian

1.3 Thesis Overview

The goal of this thesis is to present an improved approach for the construction and

visualization of large process models with the aid of web-based technologies. Chapter 2

of this work provides readers with sufficient theoretical background on the Design

Structure Matrix (DSM) modeling methodology as well as details on the multi-

tiered/data-driven variation used in this research. The web-enabled distributed and

asynchronous modeling approach is presented in Chapter 3. The approach is synthesized

into the three main topics of data collection, representation and integration. Techniques

and concepts used to address each of these functional areas are presented in detail. The

objective is to provide an implementation independent concept of the proposed

cooperative process modeling system. For information on how this approach was

translated into a working web-based prototype readers can refer to Chapter 4. Here, the

prototype system development process is presented in detail starting from the outline of

requirements and specifications to the tool's high-level design and software operating

environment. Chapter 5 concludes by summarizing the outlined approach, presenting

feedback received and lessons learned during prototype development and, discussing

directions for further research on the role of the internet as the enabling technology for

process analysis in product development.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Nader Sabbaghian Introduction12/16/98 # Page 20

2 DESIGN STRUCTURE MATRIX (DSM)

2.1 DSM Overview

Donald Steward introduced the Design Structure Matrix in 1981 as a generic matrix-

based framework for information flow analysis [7]. It consists of an N-square diagram

showing the interaction of each element with every other element in the model. By

reading across a row, one can observe these interactions through the cell contents

corresponding to each cross-referenced column. The matrix configuration serves as a

powerful visualization tool for the analysis of very complicated dependencies. Various

conventions are used to define the content of the DSM cells. These conventions usually

depend on the model type and the nature of the problem being tackled. The most

common uses of DSM and their applications are summarized in Table 2-1 below [1].

Approach Application

Parameter-based modeling System architecture analysis, product re-design

Team-based modeling Organizational structure analysis, team design

Task-based modeling Project planning, PD process analysis

Table 2-1 Common DSM classifications

This research focuses on issues related to the deployment of the task-based DSM

modeling approach.

2.1.1 Parameter-based DSM

This type of modeling is used to analyze system architecture based on parameter

interrelationships. A parameter-based DSM is constructed through explicit definition of a

system's decomposed elements and their interactions. A systematic taxonomy and a

quantification scheme assist in the analysis by categorizing types of interactions among

system elements and associating an appropriate weight to each. Table 2-2 and Table 2-3

present the classification of interactions and an example of a quantification scheme

proposed by Pimmler and Eppinger [15].

Massachusetts Institute of Technology - Center for Innovation in Product Development

Design Structure Matrix (DSM) Nader Sabbaghian 12/16/98 # Page 21

Interaction Description

Spatial Associations of physical space and alignment; need for
adjacency or orientation between two elements

Energy needs for energy transfer/exchange between two elements

Information needs for data or signal exchange between two elements

Material needs for material exchange between two elements

Table 2-2 Simple taxonomy of system element interactions

Type Value Description

Required +2 Physical adjacency is required for functionality

d+1 Physical adjacency is beneficial but not absolutely necessary for
functionality

Indifferent 0 Physical adjacency does not affect functionality

Undesired -1 Physical adjacency causes negative effects but does not prevent
functionality

Detrimental -2 Physical adjacency must be prevented to achieve functionality

Table 2-3 Example of spatial interaction quantification scheme

The parameter-based

systems that reduce

matrix can be manipulated to cluster elements into a set of sub-

the overall system's coordination complexity. This can be

accomplished by clustering highly interactive elements into subsystems while attempting

to reduce inter subsystem interactions. Several clustering heuristics have been developed

for parameter-based DSM analysis [15, 17, 18]. Further studies have provided links and

insights to task allocation and Integrated Product Team (IPT) structures [2].

2.1.2 Team-based DSM

This approach is used for organizational analysis and design based on information flow

among various organizational entities. Individuals and groups participating in a project

are the elements being analyzed (rows and columns in the matrix). A Team-based DSM

is constructed by identifying the required communication flows and representing them as

Massachusetts Institute of Technology - Center for Innovation in Product Development

Design Structure Matrix (DSM)12/16/98 * Page 22 Nader Sabbaghian

connections between organizational entities in the matrix. For the modeling exercise it is

important to specify what is meant by information flow among teams. Table 2-4 presents

several possible ways information flow can be characterized [1].

Flow Type Possible Metrics

Level of detail Sparse (documents, e-mail) to rich (models, face to
face)

Frequency Low (batch, on time) to high (on-line, real-time)

Direction One-way (monologue) to two-way (dialogue)

Early (preliminary, triggers the process) to late (ends
Timing the process)

Table 2-4 Information flow classifications

Once again, the matrix can be manipulated in order to obtain clusters of highly

interacting teams and individuals while attempting to minimize inter-cluster interactions.

The obtained groupings represent a useful framework for organizational design by

focusing on the predicted communication needs of different players.

2.1.3 Task-based DSM

This research will focus on the task-based use of the Design Structure Matrix. Figure 2-1

shows a sample task-based DSM. Tasks appear identically labeled in rows and columns

of the matrix and are arranged top-down according to their sequence of execution. Each

marked cell represents a task dependency. The convention adopted in this research

regards row elements as information "providers" and column elements as information

"dependents" or "receivers". For example, in Figure 2-1, the marked cell found at row 2,
column 4 represents an information provided by Task 2 to Task 4.

Three types of task interactions can be observed from the matrix. In Figure 2-1, Tasks 1

and 2 are "independent" since no information is exchanged between them. These tasks

can be executed simultaneously (in parallel). Tasks 3, 4, and 5 are engaged in a

sequential information transfer and are considered "dependent". These tasks would

typically be performed in series. Tasks 7 and 8, however, are mutually dependent on

information. These are "interdependent" or "coupled" tasks often requiring multiple

iterations for completion.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Design Structure Matrix (DSM) Nader Sabbaghian 12/16/98 * Page 23

Marked cells below the diagonal represent iterations in the process. This occurs when an

activity is dependent on information from a task scheduled for a later execution. Such

scenarios often lead to rework and are undesirable. A number of algorithms have been

developed [7, 8, 18, 20] to minimize such instances of iteration (below diagonal marked

cells) by re-arranging the sequence of tasks in the process. Methods are also available on

how to handle iterations in the process that cannot be eliminated through re-sequencing.

Figure 2-1 Sample Task-based Design Structure Matrix

DSM models using simple binary representations strictly display the existence of a

dependency between two tasks without providing additional information on the nature of

the interaction. Further studies have extended the basic DSM configuration by capturing

additional facts on the development process. For example, the so-called numerical DSM

adds task duration in the diagonal elements, and replaces marks with numbers in the off-

diagonal cells each representing the degree of dependency between two tasks [7].

2.2 The Data-driven DSM

This research utilizes a DSM modeling technique pioneered by Dr. David Grose at

Boeing called the Data-Driven approach. The method consists of creating process

models through explicit capture of information exchange between project tasks.

Deliverables/data produced and used by each activity are obtained in order to create a

task-based DSM. A dependency (marked cell) is created once a task's output is defined

as input to another task in the process. Figure 2-2 presents a sample DSM constructed

using explicit information flow. As seen, the dependency between tasks 5 and 7 in the

DSM results from task 5 producing deliverable P required by task 7.

Massachusetts Institute of Technology - Center for Innovation in Product Development

0 L - co0)

Task1 0e ~Tamk
Task2 - 0Independent
Task3 *1 _ -

Task Task4 5 - Dependent TF }+| Tas +
Sequence Task5 -e

Task6 7 Couped

Task7l jo Ipe - .
Task8 I * 2

Task9 Den

Task Dependency

Design Structure Matrix (DSM)12/16/98 e Page 24 Nader Sabbaghian

The practice of explicitly defining information interfaces among tasks presents several

benefits. The model enables management to identify inaccuracies in the constructed

model and inefficiencies in the process prior to task sequencing analysis. From the

modeling exercise certain tasks emerge as producing deliverables that are not required

anywhere else in the process. These tasks are candidates for elimination since the model

can clearly prove their lack of contribution to the project outcome. Similarly, other

activities claim to utilize deliverables that are not produced anywhere in the process. In

this scenario, since no activities are scheduled to produce the deliverables in question,

required data becomes unavailable at the time of a task's execution introducing additional

unplanned work, and therefore causing delays during project implementation.

Redundancy is also easily identified anywhere a deliverable appears as the output of

multiple tasks.

Requires Produces

Tl t ske Ae oeTask3 l
Task4 *1 0
Task5

Task6
Task7 6

Task8
Task9 -

Figure 2-2 Sample Data-driven DSM displaying explicit information flow

Overall, this approach has demonstrated a remarkable ability to detect inconsistencies in

projects by highlighting redundant and obsolete activities in the process. Management

can obtain a detailed understanding of each project's information requirements at all

levels and can therefore ensure that activities are appropriately planned to address

internal project needs. Using the data-driven modeling approach managers can take a

closer look at the planned activities prior to scheduling and resource allocation. The

more analytically rigourous method also ensures that DSM resequencing analysis is

Massachusetts Institute of Technology - Center for Innovation in Product Development

Design Structure Matrix (DSM) Nader Sabbaghian 12/16/98 * Page 25

performed on an accurate model, one whose marked cells correspond to proven

interactions among tasks.

2.3 Multi-tiered Configuration

Presenting very large models in a single matrix is challenging. When constructing

models comprised of hundreds of tasks, the intuitiveness provided by the DSM

representation diminishes. It becomes increasingly difficult to identify interfaces by

observing the off-diagonal elements of a very large matrix. The method therefore loses its

advantage of simplicity and becomes increasingly difficult to grasp.

Figure 2-3 Sample DSM Multi-tiered configuration

A very large DSM can be effectively structured into a hierarchy of smaller DSMs. This

configuration avoids problems related to presenting extremely large matrices by shifting

the focus to smaller ones, obtained through hierarchical decomposition. It also provides

Massachusetts Institute of Technology - Center for Innovation in Product Development

Design Structure Matrix (DSM)12/16/98 * Page 26 Nader Sabbaghian

the flexibility to analyze the process at different levels of detail. This multi-tiered

approach was developed by Dr. Grose at Boeing and has been adopted by this research as

an effective strategy for both data capture and presentation. Figure 2-3 provides a sample

view of this multi-tiered approach.

The modeling effort begins from the highest level activities and deliverables in a project

(called Level 1). Next, each high-level task is further decomposed into a set of sub-tasks

forming a series of level 2 DSMs. The decomposition process continues until the

appropriate level of detail for analysis is obtained. A typical case may entail beginning

from a set of overall program activities performed by major groups and performing multi-

level decompositions all the way to a set of tasks performed by individual team-members

in the project. In the example presented in Figure 2-3, the first two tasks in each matrix

are decomposed to provide additional detail through the construction of lower level

DSMs. The first two tasks of each of these Level 2 matrices are once again broken down

into Level 3 DSMs leading to the creation of an increasingly refined model.

2.4 A Combined Approach

This research adopts both the data-driven and the multi-tiered methods for the

construction and display of large-scale DSM models. The combined strength of the two

techniques leads to increased model accuracy, better visualization and the creation of a

structured approach to multi-user data collection. All matrices in the multi-tiered

configuration are created through explicit definition of deliverables (or information)

being exchanged among their tasks. These dependencies are carried through the

decomposition process maintaining a consistent representation of information flow at

higher and lower level matrices. There are three possible forms of information exchange

in this structure: Internal, External and Boundary interactions.

2.4.1 Internal Interaction

This form of interaction simply refers to information being exchanged within a single

matrix. Marked cells within individual matrices throughout the model represent task

dependencies created by this type of interaction. For example, the exchange of

deliverable a between tasks 5 and 7 in Figure 2-4 is internal as represented by the

marked cell in position (5,7).

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 e Page 2 7Design Structure Matrix (DSM) Nader Sabbaghian

12/16/98 e Page 28 Nader Sabbaghian Design Structure Matrix (DSM)

Tsk 5 Ts

Task1 10
Task2 ire 2
Task3 ' 10
Task4 V,1
Task5 10
Task6 0 0
Task I I 1 1
Task8 1 1 1

Figure 2-4 Sample Internal interaction

2.4.2 External Interaction

This consists of information being exchanged between two or more matrices. When high-

level tasks are broken into lower-level matrices, the internal interactions between such

tasks are represented by exchange of information between their corresponding

decomposed matrix. In the case of the internal exchange of deliverable a in Figure 2-4

becomes an external exchange between two matrices, obtained from the decomposition of

tasks 5 and 7 (see Figure 2-5).

Task 5 Task 7
Decomoosition Decomoosition

Task1

Task2 e 2- ape xenlineato

Task3 -GO

Task4 -4
TaskS 0 0
Task6 0
Task7 4
Task8 0 0
Task9 0

Figure 2-5 Sample External interaction

In lower-level matrices these interactions appear as deliverable exchanges between sub-

tasks and are therefore not visible by looking at each decomposed matrix separately. In

Figure 2-5 deliverable a is produced by a sub-task in the decomposed matrix of Task 5

and used by a sub-task in the decomposed matrix of Task 7. When looking at the overall

model in its lowest level of detail, external interactions can be interpreted as instances of

Massachusetts Institute of Technology - Center for Innovation in Product Development

dependencies among tasks that are positioned relatively far from each other. These are

generally marked cells that are located far from the DSM's diagonal. The impact of such

configuration on the visualization aspects of the approach is discussed later on in section

3.2.2.

It is important to clarify that throughout this research the labels internal and external are

not used as attributes of deliverables in a model but strictly relate to interactions among

tasks. The terminology referred to deliverables can become quite confusing since in

certain cases a deliverable can be engaged in both an internal (link between adjacent sub-

tasks) as well as external interactions (link between sub-tasks in different matrices).

2.4.3 Boundary Interaction

This information exchange occurs at the boundaries of the model interfacing with entities

outside the project. In each engagement a number of dependencies relate to interactions

with entities that are not explicitly defined in the model such as customers, suppliers,

regulatory agencies, outside contractors etc. Information is provided and received from

such entities and must be accounted for in the modeling exercise.

onctor

Customer

Suppliers

Media

Figure 2-6 Sample Boundary interactions

In Figure 2-6, for example, deliverables p, X, 8 are inputs and 6, *,

to the overall process relating to interactions with outside groups.

destination of these dependencies is not present within the model and

y are outputs

The origin or

they appear as

Massachusetts Institute of Technology - Center for Innovation in Product Development

Design Structure Matrix (DSM) Nader Sabbaghian 12/16/98 * Page 29

required deliverables not produced by any defined activity, or outputs for which there are

no internally defined needs.

2.5 Challenges in Modeling Large Projects

Modeling large projects, in the order of thousands of tasks, requires the participation of

many individuals from numerous functional areas [3, 8]. In these programs, it is clearly

unrealistic to assume that any one individual is capable of outlining all required activities,

organizational responsibilities and information dependencies in detail. As the size and

complexity of a project grows so does the number of experts and team leaders that need

to be consulted in order to complete the various pieces of the process modeling puzzle

[4].

The modeling exercise requires a high degree of interaction among its many participants

primarily for data integration purposes. Agreements must be reached on the role of tasks,

the terminology and content for outlined deliverables as well as boundaries of

responsibility. The intent is to assemble fragmented knowledge of an often-complex

development process by tapping all available sources of know-how in the organization.

Coordinating this participatory model creation process with a large group of information

providers is challenging.

2.5.1 Data Collection

Currently DSM models are created by contacting individual team members as subject

matter experts in one or more areas of the product development process. Typically, a

small team of process modelers engages in information gathering through surveys and

face to face interviews with target individuals as well as examination of existing project

documentation. Frequently, it is necessary to bring together a group of experts from

various domains through several group meetings. This alternative is especially needed

when dealing with existing processes that are only partially understood by any one

individual in the organization, or when attempting to model completely new processes.

Once data is collected, it is entered in a DSM modeling tool or simply in a spreadsheet

program (such as MS Excel) for analysis. Integration of collected data requires further

rounds of consultation and meetings with data collection participants. Members of the

modeling team facilitate such meetings with the goal of bringing closure to integration

issues created from the first round of data gathering. The data collection and issue

Massachusetts Institute of Technology - Center for Innovation in Product Development

Design Structure Matrix (DSM)12/16/98 # Page 30 Nader Sabbaghian

resolution continues through several iterations until a mutually agreeable process model

is created.

The biggest challenge in DSM data collection is to reduce the time required to complete

the process modeling exercise. This means reducing the total time duration from the

beginning to the end of a large-scale modeling initiative. Currently, using the above

technique, a significant amount of effort is required for a typical modeling team of 5 to

10 full-time professionals to construct models in the order of thousands of tasks. A

burdening overhead is needed to organize an increasing number of team meetings for

data collection and issue resolution. Larger groups of people must be brought together

increasing the likelihood of schedule conflicts and therefore introducing significant

delays in the model creation process. On one hand, not all parties invited to attend a

modeling issue resolution meeting are needed or consulted during the meeting. On the

other hand, the absence of one key individual could lead to a stall in addressing issues on

the meeting's agenda. This is partly due to the fact that modelers, without a detailed

knowledge of the process being modeled, must attempt to coordinate issue resolution

meetings, and often fail to invite key individuals or request the presence of those having

little to do with the issues being discussed.

Current data collection methods based primarily on a synchronous participatory approach

clearly run into problems when dealing with very large models requiring the involvement

of a large number of individuals. Typically, modeling a data driven DSM of around one

hundred tasks is a two-month exercise. It is therefore not difficult to conclude that an

alternative approach is needed if five to ten thousands tasks are to be modeled using the

DSM methodology.

2.5.2 Representation

Currently DSM models are constructed and available for analysis only to a small group of

experts in an organization. This is partly due to the lack of distributed and user friendly

tools for the dissemination of DSM models. Also the high learning curve associated with

this methodology is a significant barrier to its widespread adoption in organizations. The

majority of professionals are quite familiar with traditional GANT or PERT view of

processes promoted by increasingly popular tools such as Microsoft Project or Primavera.

However, very few are familiar with the matrix-based process representation used by the

DSM methodology. Introduction of tools aimed at supporting newcomers with features

that partially translate the matrix to more familiar visualizations is one way of

overcoming users' inertia.

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 # Page 31Design Structure Matrix (DSM) Nader Sabbaghian

Successful adoption of DSM means expanding its use beyond the current circle of DSM

specialists and into the much larger group of managers, team leaders and functional

experts. Increased awareness easily translates into a higher degree of user participation in

data collection and most importantly a better understanding of the methodology's

capabilities and benefits. There is also the critical issue of ownership in the analysis.

Insights resulting from DSM modeling often point to a need for radical changes in the

way projects are historically conducted. In this case, managers asked to undergo changes

are the same ones that participated in the analysis which led to such changes and fully

understand its underlying rational.

Providing adequate visualization for DSM models in very large programs is problematic.

As explained in section 2.3 the intuitiveness of the DSM representation is lost when

viewing matrices in the order of hundreds or perhaps thousands of tasks. The multi-tiered

configuration provides a plausible solution to this problem by fragmenting the matrix into

a series of smaller DSMs at different levels of detail. This maintains the user-friendliness

of small DSMs while allowing users to easily navigate through the overall model and

access increasing level of detail in a particular area. However, constructing the

hierarchical task structure in a way that is familiar to users is challenging. One must

decide what criteria to adopt for grouping tasks and how to ensure correct representation

of inter-task information flow at various levels of abstraction. An appropriate method of

inter-level navigation must be used, one that guarantees no loss of information during

aggregation and decomposition operations.

2.5.3 Model Quality

Typically, DSM models are constructed by outlining all necessary activities and asking

individuals responsible for each to identify inter-task dependencies. This is accomplished

by specifying, for each task, all other activities that provide it information and all those

that are dependent on its deliverables. In very large projects, however, it is sometimes

difficult for individuals to accurately pinpoint the originator of information they require

or the recipients of deliverables they produce. This leads to a situation where DSM

models' accuracy becomes highly dependent on participants' knowledge of the origins

and destination of deliverables. This knowledge becomes fuzzy with the growing

number of participants and the increasing variety of functional disciplines involved in a

project. Experience in large projects has demonstrated that the conventional

origin/destination based approach to data collection leads to the compilation of partially

accurate information resulting in deterioration of DSM model quality. Certain

Massachusetts Institute of Technology - Center for Innovation in Product Development

Design Structure Matrix (DSM)Nader Sabbagahian12/16/98 e Page 32

dependencies appear where there are no tangible exchanges of information while other

critical interactions are not represented at all. Sequencing and other forms of DSM

analysis are therefore performed on models, which poorly reflect the dynamics of

projects being examined.

The data-driven approach, presented in section 2.2, addresses this issue by ensuring that

interactions in the DSM are represented only in cases where output deliverables match

input requirements. Participants are asked to focus their attention on defining the needs

and outcomes of their activities. A more accurate model can be obtained by explicitly

collecting input and output information and using these to construct DSM task

dependencies. Identifying instances of task redundancy and obsolescence in a project is

another important aspect of the capabilities of a data-driven DSM. As explained in

section 2.2, the method is able to detect unnecessarily planned tasks by highlighting their

lack of contribution to the project's final outcome. These may relate to obsolete tasks

whose presence in the schedule is justified solely through historic means and without a

clear understanding of their role in the project's advancement. The data-driven method

provides the capability to challenge past assumptions. It simply requires that each

planned activity justify its presence by specifying its contribution to the program's

outcome.

The dynamic nature of product development leads to frequent changes to the process

Therefore, a static model could often be an inaccurate one. Factors such as unexpected

change in project scope, customer requirements or market environment may lead to tasks

or deliverables becoming obsolete or new ones being added. Accommodating such

changes in order to maintain model accuracy is also requires laborious effort. In large

projects, understanding the impact of changes and ensuring its timely communication to

interested parties is quite challenging. Without a detailed map of how all the activities

are connected in a project it becomes clearly difficult to perform quick re-planning and

re-allocation of resources in response to a change.

2.6 Summary

This chapter presented an overview of the Design Structure Matrix modeling

methodology by outlining its most common applications in the area of product

development. The task-based variation, being the focus of this research, was further

analyzed and its strengths and weaknesses explored. The modeling approach used in this

thesis was presented in detail as a combination of the data-driven and multi-tiered

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 * Page 33Design Structure Matrix (DSM) Nader Sabbaghian

configurations. The various forms of interactions and dependencies were described to

provide readers with the necessary understanding of topics later discussed in this thesis.

Finally the methodology was analyzed within the context of modeling large-scale

projects. Issues and obstacles related to the scale-up of DSM modeling were explored to

provide a clear picture of the problems tackled in this research.

Massachusetts Institute of Technology - Centerfor Innovation in Product Development

Nader Sabbaghian Design Structure Matrix (DSM)12/16/98 e Page 34

Modeling Approach Nader Sabbaghian 12/16/98 @ Page 35

3 MODELING APPROACH

This chapter presents a distributed and asynchronous modeling approach to address the

previously outlined limitations of DSM use in large projects. The method is implemented

through a Web-based prototype system with the following overall objectives:

" To reduce data collection effort by efficiently engaging a large number of participants

in the modeling exercise.

* To promote DSM adoption in project planning and management by providing

distributed and user-friendly access to very large DSM models.

Internet technology was chosen as the most suitable infrastructure for the proposed

system due its ease of deployment, cross platform capabilities and flexibility in data

capture.

3.1 Distributed Data Collection

The most distinctive characteristic of this approach is that process modeling is no longer

solely performed by a team of specialists. The responsibility for model construction and

update is delegated to various individuals throughout the organization. The intent is to

enable a relatively small team of model coordinators to effectively carry out overall

administration and coordination functions required for modeling activities in a very large

project.

3.1.1 Task Decomposition

The coordination team kick-starts the modeling exercise by constructing the first level

imatrix through information collected from a small group, usually comprised of high-level

management possessing a broad view of the development process and its goals. The top-

level DSM would typically contain roughly 10 to 20 major activities or overall program

milestones. In addition to deliverables, outcome of decision gates or various types of

authorizations may be included in the list of input and output information elements for

each entity in this matrix. After collecting data through group meetings or interviews, the

model coordination team enters the first DSM in the web-based system.

From this point onward the modeling activity can be delegated to a larger group of

professionals. This is accomplished by assigning the decomposition of each task in the

top-level matrix to suitable individuals in the organization. The Level 2 series of matrices

Massachusetts Institute of Technology - Center for Innovation in Product Development

would typically cover around 200-300 tasks collected from ten to twenty mid to high-

level managers in the organization. Each manager is responsible for the entry and update

of required tasks and deliverables in the web-based system.

The process of decomposition through delegation may continue until the desired level of

detail is reached in all areas of the model. At each level, participants can break down any

task in their DSM, either on their own or by appointing the decomposition to others in the

organization. Each sub-level DSM can easily be assigned to the person most familiar

with the dynamics of the process in question. Table 3-1 presents a summary of estimates

on the number of tasks and individuals involved in constructing a 4-Level model.

Level 1 Level 2 Level 3 Level 4

Approx. number of tasks 10 -20 200 - 300 3,000 - 4,000 40,000+
being modeled

Approx. number of
participants involved in 5-7 10-20 200-300 1,000+

data collection_____________________

MajorApprox. Modeling Scope Overall Project g pion Small teams Individuals
groups/divisions

Table 3-1 Estimated' magnitude and scope of modeling effort at each level

In order to ensure that a consistent and adequate level of detail is provided, participants

are instructed to decompose each activity into a matrix of between 10 to 20 sub-tasks.

Modeling experience at Boeing [ref. notes] has shown that this is an ideal policy. DSM's

of 10x10 magnitude or less tend not provide the adequate level of detail and their

activities should either be incorporated in a higher level DSM or further refined. Matrices

having more than 20 tasks attempt to provide too much detail for the level of abstraction

in question. Their "surplus" activities should be further clustered or moved to the next

level of decomposition.

The top-down approach is used solely to initiate model creation at each level. A multi-

tiered DSM is continuously refined through changes triggered in either direction.

Assumptions made at a higher level can be challenged once further detail is available

through task decomposition. Lower level matrices may reveal interactions not accounted

for when developing higher tier processes. Two steps, as seen in Figure 3-1, characterize

calculated assuming an average of 15 tasks per matrix at each level and a range of ±20% rounded

Massachusetts Institute of Technology - Center for Innovation in Product Development

Modeling Approach12/16/98 e Page 36 Nader Sabbaghian

Modeling Approach Nader Sabbaghian 12/16/98 e Page 37

the creation of each new level. First, during task decomposition, the higher-level matrix

("Level n" in Figure 3-1) drives the creation of lower-level matrices ("Level n+1" in

Figure 3-1). This is accomplished by specifying which tasks must be broken-down by

which individual in the organization and, what input/output deliverables must be

inherited by the new sub-tasks. Subsequently, during model refinement, information

compiled in the newly created lower-level matrices may trigger changes in the parent

DSM that could in turn require revisions in the decomposed sub-tasks. Therefore while

model decomposition is top-down, model refinement is an iterative process between the

parent DSM and its group of lower-level DSMs.

Level n+1 Level n+1

Level n Level n

Decomposition Refinement

Figure 3-1 Change flow during DSM breakdown

A simple example can demonstrate this point. In a certain DSM, task 1 and task 3

interact by exchanging deliverable a. This deliverable is produced by task 1 and

uniquely used by task 3. Suppose both tasks are decomposed therefore requiring sub-

tasks 1.x (as output) and 3.x (as input) of the lower-level DSMs to inherit a. In this case,
the individual responsible for the construction of the 3.x DSM concludes that deliverable

a is not required. Consequently, the owner of the parent DSM not only must remove a

from task 3 but also from task 1, the activity that produces a. Finally, this last change

must also be reflected in the DSM breakdown of task 1 requiring the removal of

deliverable a as an output of a sub-task 1.x.

In the above scenario, change was initiated by a lower-level DSM (3.x) leading to

modifications to its parent DSM that in turn forced alterations to another lower-level-

Massachusetts Institute of Technology - Center for Innovation in Product Development

DSM (1.x). As witnessed, the situation required interaction and intervention by three

modeling participants at two levels, each responsible for separate but related DSMs.

All areas of the model are accessible to the user community in a read-only mode. The

modeling team has editing rights to the entire model, while each participant is capable of

modifications to matrices he/she originally created. This ensures needed discipline and

control over potential changes to the model.

3.1.2 Automatic Notification

Internet technology is used in this approach to proactively engage users in the data

collection process. The system's web interface allows users to initiate the decomposition

process. Participants can navigate to their DSM (where they have editing capabilities)

and select a task for breakdown. Once the delegation option is chosen, the user is asked to

select a candidate that will be responsible for the construction the activity's sub-matrix.

The system then automatically generates an e-mail to the target individual requesting

his/her cooperation in the modeling activity. The e-mail contains information such as the

user ID and password needed to logon the system as well as a hyperlink to the web-

application's home page. Upon accessing the system, the user is greeted with

information aimed at ensuring a full understanding of process modeling and its benefits.

A web page, acting as a personalized message board, is dynamically created for each

participant in the modeling process. This page is utilized for communication purposes

relating requests and displaying issues and announcements to users in the DSM modeling

community. Upon login, the user is presented with details of the task decomposition

request in his/her web page. When choosing to create the requested DSM model, the

participant navigates through a series of screens that prompt him/her to enter all tasks and

corresponding responsible individuals/teams in the process. Upon completion of task

entry for the model, the user proceeds to the definition of existing interfaces by

specifying input and output information elements for each outlined activity.

The e-mail notification mechanism is also used to remind participants of any follow-up

adjustments to their DSMs or any additional information required to resolve model

integration issues (discussed later in section 3.3). Details of all these requests are posted

on the participant's web page with appropriate links to areas of the system designed to

assist in the issue resolution process.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Nader Sabbaghian Modeling Approach1 2/16/98 * Page 38

3.2 Usability

This section presents some of the visualization techniques used in the web-based tool to

present the multi-tiered DSM model and to support its previously outlined data collection

functions. To successfully engage users in the modeling exercise and promote the use of

DSM methodology, the tool is equipped with an easy to operate user interface. A number

of key features have been introduced to achieve this goal. These are summarized as

follows:

3.2.1 DSM Layout

Users are able to quickly pinpoint the dependency represented by each cell in the matrix.

As seen in Figure 3-2, when positioning the mouse over a particular cell, the two

corresponding tasks are highlighted. In the illustrated example, the two tasks "Define

High-Level Specs" and "Perform High-Level Design" are highlighted when pointing to

the cell depicting their interaction. With this interface design, users no longer have to

visually trace the cell's row and column coordinates in order to read a task dependency,

an activity that becomes increasingly problematic with the growing size of the matrix

being analyzed. Moreover, this approach eliminates the need to place coordinate labeling

in the first row and column of the matrix.

Responsible Group Task Name Level 2
Marketing Group Gather Customer Requirements X X
Configuration Team Define High-Level Spcsi X X

erification Develop Test Plan
Research & Development Grou Perfrom Feasibility Studies X X X
Manufacturing & Operations Define Manufacturing Plan X
Engineering Perform High-Level Dsign

Certification Certify Poduct X
Engineering Perform Detailed-Design X X X

erification Execute Product Test X

Operations Execute Assembly Test

Launch Team Develop Launch Plan

Figure 3-2 Sample DSM in Web-based tool

A visual distinction is made between feed-forward and feedback dependencies. When

positioning the mouse over an iterative cell (one below the diagonal) the corresponding

tasks are highlighted in red, while the color green is used for to highlight selected feed-

forward dependencies (cells above the diagonal). The neutral color gray is used to when

hovering over the "Task Name" column or diagonal elements in the matrix.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Modeling Approach Nader Sabbaghian 12/16/98 a Page 39

The individual or group responsible for the execution of each activity is presented in its

corresponding row. For example, according to Figure 3-2 the activity "Gather Customer

Requirements" is performed by the "Marketing Group", while "Perform Feasibility

Studies" is the responsibility of the "Research & Development Group".

Activities are reported in the matrix from top to bottom according to the user-specified or

computed order of execution. Clustered black and white stripes in the second (narrow)

column indicate which tasks the user has planned for parallel execution. In Figure 3-2,

for example, the user has indicated his/her intention of simultaneously executing tasks

"Execute Product Test" and "Execute Assembly Test".

3.2.2 Inter-level Navigation

Marked elements in the diagonal of each matrix indicate that the corresponding task has

been decomposed and therefore the existence of a lower level DSM. For instance, in

Figure 3-2,"Develop Test Plan" and "Define Manufacturing Plan" have been further

decomposed into detailed subtasks. By simply clicking on the marked diagonal element

for each activity users are able to access its lower level matrix representation. Navigation

through various levels of a model is restricted to the task decomposition scheme defined

during data collection (see section 3.1.1). Accordingly, users are capable of viewing one

matrix of approximately 10 to 20 tasks at a time.

Entire Model
close Viewing Requires

intera n dependency navigation
In area: to:

Level 1 AB T CT

Level 2
SDistant

interaction Level 3

Level 4 ETAL

Figure 3-3 Sample 4-level dependency visualization

For every DSM, graphical representation of dependencies is limited to internal

interactions (see section 2.4.1). At each level, exchanges between tasks in two separate

matrices can be viewed by examining the relationship between their parent tasks at a

higher level DSM. External interactions are therefore visible by climbing through the

model's hierarchy of increasingly abstract activities. Figure 3-3 illustrates the visibility

Massachusetts Institute of Technology - Center for Innovation in Product Development

Modeling Approach12/16/98 # Page 40 Nader Sabbaghian

range for dependencies found in different areas of a sample 4-level model. As seen in

this figure, dependencies among closely scheduled tasks are easily visible at the most

detailed set of DSMs (level-4). On the other hand, in order to view an interaction between

two very distant tasks in the model one must navigate to the top level DSM (level-1). For

example, point B in the model in Figure 3-3 represents an external interaction between

two distant level-4 matrices. By navigating to level-3 or level-2, the dependency

continues to be external since it remains between tasks in two separate matrices at each

level. However, at the top level DSM, the deliverable responsible for this information

exchange is represented as an internal interaction and can therefore be seen by users.

In order to provide visibility to all dependencies among detailed tasks one must either

display the entire matrix or allow users to zoom-in to any off diagonal location in the

model. Displaying a DSM composed of thousands of tasks at a scale that is readable on a

typical computer screen (800x600 resolution) is clearly not feasible. On the other hand,
providing a window to off-diagonal locations in the model requires the presentation of

different sets of tasks in the row and column positions. This would mean a departure

from the consistent and intuitive n-square representation of matrices in the system. The

dependency visualization topic is further discussed in Chapter 5 where alternative

approaches are explained and analyzed in detail.

3.2.3 Auxiliary Screens

Two pop-up windows have been designed to provide a graphical representation of the

information flow and assist users in editing the matrix content. These are especially

useful in supporting the large portion of DSM-novice users by translating matrix

dependencies into the more familiar graph flow representation. The screen in Figure 3-4

is used to display information requirements and output for a given activity. This window

appears each time an activity in the "Task Name" column of a matrix is selected (see

Figure 3-2). The task is presented in a box, with arrows indicating its defined

information flow. Below each arrow a list box includes all required deliverables under

the title "Inputs" and all outcomes under the title "Outputs". Authorized users (see

Section 3.1.1) are able to add and remove deliverables or information elements from

these lists. Arrows are only displayed when the list of input or output deliverables

involved in the task information flow is populated.

Massachusetts Institute qf Technology - Center for Innovation in Product Development

Modeling Approach Nader Sabbaghian 12/16/98 a Page 41

12/16/98 e Page 42 Nader Sabbaghian Modeling Approach

Figure 3-4 Sample auxiliary screen depicting task information flows

The screen in Figure 3-5, displays the task interaction pop-up window. This window is

accessible by selecting any off-diagonal element in the matrix and is used to present a

potential interaction between two tasks. An arrow indicates the existence and direction of

an information transfer between the two activities. A list box labeled "Data Exchange"

contains the names of specific information elements being exchanged. Information

entities can be added or removed from this list (by authorized users only). To create a

dependency a user can simply click on its corresponding off-diagonal element in the

matrix and use this graphical interface to specify the data exchange between the two

activities in question.

Figure 3-5 Sample auxiliary screen depicting task interactions

A pop-up window is provided to add, edit or delete deliverables or information elements

in the model. This screen is displayed each time the "Add" option is selected in the

"Input", "Output" or "Data Exchange" list boxes of the auxiliary windows. All

Massachusetts Institute of Technology - Center for Innovation in Product Development

Modeling ApproachNader Sabbaghian12/16/98 v Page 42

I

Modeling Approach Nader Sabbaghian 12/16/98 e Page 43

deliverables in the system's repository are listed alphabetically and, users are able to

search for a particular information element in order to view its description for additional

information.

3.2.4 Task Hierarchy View

The web-based system is capable of presenting the overall task decomposition scheme in

an easy to operate interface. As seen in Figure 3-6, using this task-only view, users can

navigate through the model by scrolling through the list of activities and obtaining further

detail on their corresponding sub-task configurations. This screen provides a macro

representation of the model clearly identifying the relationships between low and high

level tasks. Its function is complementary to the DSM inter-level navigation (see section

3.2.2) in that it acts as a map for quickly pinpointing and tracing the location of a task in

the model.

El- The TeS1 Proect

Def~hie HJI-L evel specs
l D~ev'elop Tet Plan

D M,)nufactunnoq fest plan
Develoio Sy stemr Test Plan
r)- I rift 4-1 tI u, ture~ Vetticll i

Dev upoy .1-ai to-aU plan
C Sales forces autornation lesl

Dev test script for SAKF
Dw~e -vot for aE odule
Dlev fiel Itest plan
Dlewv sstem siress latst

1.- i-: I~T') rrr ~ 4- . . I I ' d -ti 1

De tine Manufactunng Plan

IB lortonn Detaled Design
iE.Xecuet PrOduct lost

-E t AssrmtlVy Teost
E)

Devlon Advertising Carnapaign
Poricim k- Readiness Test
Pro oare Promotional Mateil
Trairn St .,A Partnerl

Figure 3-6 Sample task hierarchy view

Modeling participants can easily switch between the task hierarchy and the DSM view.

Once a task is selected (for example, "Develop Launch Plan" in Figure 3-6) its

corresponding DSM can be viewed by simply selecting the "View" option on the

window. Similarly, users engaged in a DSM view can access the task-only representation

with a single click.

Massachusetts Institute of Technology - Center for Innovation in Product Development

3.2.5 Task Entry Interface

The task entry interface addresses the first step in DSM construction as outlined in

section 3.1.1. It is comprised of a main screen and two auxiliary pop-up windows. Users

access the main task entry screen by following the link in the model creation request

posted to their web page. As shown in Figure 3-7, activities are added by clicking on the

"Add" button and providing the task name and responsible individual information in the

appropriate entry fields on the "Task Information Entry" auxiliary screen. Each added

task is placed in the task list box of the main screen and given the sequential order by

default. Users can easily modify the default sequence of execution by entering a new

number in the "Sequence" column for each task. The same number must be given to

activities that are planned for parallel execution in the model. The information entered

for each task can be edited using another auxiliary pop-up screen. Activities can also be

completely removed from the list. When task entry is complete, users advance to the

next stage in data entry for information exchange definition by selecting "Save" in the

main screen.

Pert. Prelim. Trade Studies Deoo ln OFe~ianu

Dev Product Architecture A .

Determine major tradeoffs
Create HL CAD model^
Specify major sub-systems En10en Te

Figure 3-7 Sample task information entry sequence

This interface is modeled after the "wizard" approach frequently used in popular

Windows applications as an effective way to engage novice users in data collection. In

this case a concise view of the DSM tasks and their sequence in the process is presented

in the main screen while supporting functions such as task addition, editing deleting are

accomplished through auxiliary pop-up screens.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Modeling Approach12/16/98 * Page 44 Nader Sabbaghian

3.2.6 Personalized Message Board

This is an important interface as it addresses the core theme of collaborative problem

solving during the modeling process. This page is created for each user engaged in the

modeling exercise with the goal of presenting issues and requests that are received from

various participants and the system's automated verification process. Communication is

structured and presented through hyper-linked text for access to supporting screens and

functions. Figure 3-8 displays a sample page containing both issues and requests.

:Nader Sabbagh an's Home

Figure 3-8 Sample user web page

Model creation requests are presented separately from the issue resolution records. The

model creation request contains the name of the task being decomposed and the

requestor's name. The task name is linked to its corresponding DSM allowing users to

analyze the activity in question and its interactions at the higher-level matrix before

engaging in data entry. The user name is linked to the requestor's e-mail address and, if

selected, will launch the participant's default mail browser automatically placing "Model

Creation" in the Subject and the requestor's e-mail in the To fields. This feature allows

users to quickly contact the requestor for possible clarifications. The participant can

proceed to the task entry pages (see section 3.2.5) by selecting the hyper-link "Create

Model".

Issue resolution records follow a similar scheme with all displayed tasks linked to their

corresponding DSM and all participant names e-mail enabled. Issues delegated to other

members of the organization are presented with a message indicating their pending status

(see task "Perform High-Level Design" in Figure 3-8).

Massachusetts Institute of Technology - Center for Innovation in Product Development

Modeling Approach Nader Sabbaghian 12/16/98 * Page 45

For those having no pending issues or requests, the message board page is simply skipped

during login. If users choose to access the page from other areas of the system, a brief

message is displayed informing them that there are no outstanding issues or requests.

3.3 Model Integration

Integrating information received at different times from a large group of dispersed

individuals is a major challenge in this approach. One of the biggest issues is the general

lack of a commonly understood terminology for teams, deliverables and tasks, the basic

ingredients of the Data-Driven model. This often leads to inconsistencies requiring

further interaction among participants for a negotiated resolution. The system's goal is

identify such scenarios and devise an effective communication mechanism for such

negotiations to take place through exclusive involvement of necessary participants.

The proposed prototype addresses two major integration issues labeled Data Disconnect

and Inter-level Disparity. Several batch processes perform periodical analysis of the

collected data in order to detect such inconsistencies. A set of procedures and interfaces

are then responsible for facilitating issue resolution through direct user involvement.

Each scenario is explained as follows:

3.3.1 Data Disconnects

This occurs when a task's output is not an input to any other task in the process. In

essence, there are no customers for the information being generated. Similarly, a Data

Disconnect occurs when a task's input is not generated by any other activity in the model.

In this case information is requested that is not being produced anywhere in the defined

process. This clearly does not apply to boundary interactions (see section 2.3) where the

input and output information exchange takes place with entities outside the model. The

above situations can be attributed to one of the following:

3.3.1.1 Nomenclature

Interaction has been defined but not detected because of the difference in terminology

used for the same information element. For example, Task A defines "Center of Gravity"

as an information requirement while Task B indicates " C.G." as it's deliverable. Clearly,
this nomenclature difference needs to be resolved for this interaction to appear in the

matrix (from Task B to Task A).

Massachusetts Institute of Technology - Center for Innovation in Product Development

Modeling Approach12/16/98 e Page 46 Nader SabbaghMian

3.3.1.2 Timing
Disconnect is present because of other participants' delay in providing data for the

modeling exercise. It is unlikely to expect a coordinated response from all participants

once data collection requests have been e-mailed. Clearly, users assigned to processes

that are poorly understood or never before documented require additional time for data

entry. Others may require more time to familiarize themselves with the DSM
methodology and the web-based system's interface and functions.

3.3.1.3 Information obsolescence
For output data disconnects the scenario marks the existence of a process inefficiency.

The output information element is deemed obsolete since there is no evidence of its use

by another task in the process. This may be caused by changes to certain activities'

required deliverables. It may also indicate the presence of a historically relevant, but at

that time unnecessary deliverable.

3.3.1.4 Information omission
For input data disconnects the scenario relates to the absence of an activity responsible

for the creation of information deemed necessary. This also flags the existence of a

process inefficiency. If undetected, required information will not be available at the time

of task execution leading to delays in the process.

3.3.1.5 Incomplete model

When modeling a process for the first time or during task decomposition it is difficult to

fully define all activities and their scope. Therefore tasks and deliverables are sometimes

left out of the model by mistake.

3.3.2 Online Issue Resolution

Upon detecting a Data Disconnect, the prototype system creates an "issue" record for the

affected participant. Users with outstanding issues are periodically notified via e-mail to

request their participation in its resolution. The personalized message board, accessed by

each user upon login, presents each participant with his/her data disconnect issues. By

selecting the appropriate link on this page the data disconnect screen is presented

detailing in words and graphics the missing dependency as seen by the example in Figure

3-9.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Modeling Approach Nader Sabbaghian 12/16/98 a Page 47

12/116/98 # Page 48 NdrSbaha oeigApoc

Figure 3-9 Sample data disconnect resolution page

The user is asked to engage in issue resolution through one of the following courses of

action:

3.3.2.1 Online discussion

The user identifies the participant likely to be the recipient or provider of the information

element in question. This option triggers the creation of an "issue" for the specified

participant who is then drawn into the on-line discussion through the same notification

mechanism and web interface. Users are required to enter a comment each time this

option is chosen. All comments are stored in the "issues" repository and are presented to

users each time an issue is evoked. The history of the issue includes all comments as

well as the e-mail hyper-linked name of individuals involved in various stages of the

issue resolution process.

3.3.2.2 Adjustment to existing model
The data disconnect can be addressed by the participant without the need for other users'

intervention. By choosing this option, the participant is transferred to the affected matrix

where he/she can proceed with modifications necessary to resolve the issue.

3.3.2.3 Delegation to modeling team

When the first two options are not applicable, the user can pass the issue to the model

coordination team. The resolution of the issue in question will then be delegated to one

of the model coordinators. Providing comments is also mandatory if this option is

Massachusetts Institute of Technology - Center for Innovation in Product Development

Modeling ApproachNader Sabbagahian12/16/98 e Page 48

chosen. Comments provided by the user are once again attached to the issue for future

reference during issue resolution.

3.3.3 Inter-level Disparity

Interactions reported in the multi-tiers of matrices must be consistent across different

levels. Once a task is decomposed, the lower level matrix must inherit as external

interactions (see section 2.3) the input and output information flow of the parent task. In

essence, the lower level matrix provides additional details on the parent task and is

therefore required to be consistent with its information interactions. Figure 3-10 presents

a sample decomposition of a task with its input and output information requirements. As

seen in this figure, information elements 0 and o used and produced by Task 5 must also

be present as inputs and outputs in the decomposed (lower level) matrix.

Upon detecting an inter-level inconsistency the system generates an "issue" for the

participant responsible for the lower level matrix. The participant is then notified via e-

mail and presented with the issue upon logon through his/her user page. The problem is

clearly explained and the user is asked to either add the missing information element(s) to

the lower level matrix, or resolve the inconsistency by contacting the owner of the parent

task. In fact, discussions may lead to the resolution of the issue by simply removing the

data element(s) in question from the parent task.

Figure 3-10~ Deivral ine ine duin decopostio

TaskS.2 1

Task5.3 M01
TaskS.4

Task5.5 e
TaskS.6 e
Task5.7 ee
Task5.8
as -e

T sk5 5o

Figure 3-10 Deliverable inheritance during decomposition

There are also cases where task decomposition leads to the discovery of new external

interactions. These interactions are initially unknown to the process modeler for the

higher level matrix and are exposed as a result of a more detailed analysis through

Massachusetts Institute of Technology - Center for Innovation in Product Development

Modeling Approach Nader Sabbaghian 12/16/98 # Page 49

decomposition. The system identifies such instances and proceeds with its resolution by

simply adding the newly found information elements to the list of inputs and outputs of

the parent task. The owner of the parent matrix is notified of the change in the model

through his/her user page upon system logon.

3.3.4 Data Entry Validation

To ensure that a number of basic modeling guidelines are followed, the data collection

interface performs a first pass, on-line validation on entered information. Examples of

such data entry guidelines are presented as follows:

3.3.4.1 DSM dimension

Users are required to limit the number of tasks presented in a matrix to 20. This measure

is critical to ensure that each layer in the decomposition represents a reasonably

comparable level of abstraction thus preventing users from combining detailed and high-

level tasks.

3.3.4.2 Redundant output deliverable

Two tasks are prevented from generating the same deliverable. Users are notified when

attempting to add as output a deliverable being already produced by another task in the

model. In this case, additional information is provided to assist a participant in resolving

the potential conflict. This includes facts on the source of output and the individual

currently claiming ownership of the data/deliverable in question. It must be noted,
however, that not all scenarios point to the existence of redundancy in the process.

Certain information is sometimes deliberately created by multiple sources in order to

capture different opinions or obtain results using distinct approaches. Such cases can

easily be incorporated in the model by simply assigning different names or version

numbers to the deliverable in question.

3.3.4.3 Field size
In order to present captured data in a consistent and readable format users are invited to

provide short-names for fields exceeding limits set by the system's graphical display. For

example, a limit of 30 characters is placed on "Task Names" in order to adequately fit a

20x20 matrix in the lowest acceptable screen resolution (800x600 pixels).

Massachusetts Institute of Technology - Center for Innovation in Product Development

Nader Sabbaghian Modeling Approach12/16/98 a Page 50

3.4 Summary

This chapter presented a distributed and asynchronous knowledge collection and

presentation approach through the use of Web-based technologies and a multi-tiered

Design Structure Matrix (DSM) configuration. The method relies on the direct

involvement of a large group of geographically dispersed participants for the creation and

continuous update of the matrix-based model. The section outlined various user interface

features developed to provide an improved process analysis framework to project

managers, team leaders and other product development users engaged in the modeling

exercise. Functions designed to resolve complex integration issues during data collection

were discussed in detail, and their role in facilitating on-line interactions among DSM

data collection participants were highlighted. This chapter is a useful synthesis of the

major ideas and concepts explored in this research to address the obstacles outlined in

chapter 2.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Modeling Approach Nader Sabbaghian 12/16/98 * Page 51

4 WEB-BASED PROTOTYPE

This chapter outlines the steps leading to the development of the web-based software

concept. It attempts to provide a clear picture of the prototyped solution, its functionality

and technical architecture. The software development environment is also briefly

discussed.

4.1 Requirements Analysis

Several sources have been used in this research to gain an understanding of user needs for

a large-scale distributed process modeling and project-planning tool. Middle to top-level

managers primarily involved in project planning and scheduling are considered the target

users for the system. A group of such users were interviewed at the Boeing Commercial

Airplane Group during the summer of 1997. The discussions led to significant insight to

existing planning practices as well as challenges faced in managing new and derivative

commercial airplane programs. These are typically multi-billion dollar engagements

requiring the participation of thousands of professionals over a period of several years.

The commercial airplane programs therefore provide an ideal setting for the study of

large-scale, complex product development projects requiring a notable amount of

coordination and planning.

Discussions with Dr. David Grose and members of his CFID (Cross Functional

Integrated Design) team were another very useful source for requirements analysis. The

CFID team has had extensive experience in DSM-based process modeling at Boeing and

has developed DSM-based tools for process analysis. Through this interaction the author

was able to grasp the major challenges faced by DSM process modelers as well as the

strengths of their existing approach. The author was able to observe the CFID team in

action by attending process modeling team meetings and interviewing users previously

involved in DSM-based modeling.

4.1.1 Requirements Definition

All the above information led to the development of eleven categories of high level

requirements, each explored in further detail. These categories with their corresponding

set of detailed needs are presented in Appendix A. Each high-level requirement is also

briefly described as follows:

Massachusetts Institute of Technology - Center for Innovation in Product Development

Web-based Prototype12/16/98 a Page 52 Nader Sabbaghian

I Access

The data collection effort requires the participation of a large number of

individuals. All users provide data directly to the system and will therefore

require access. Data is collected and presented to individuals in different

geographical locations. All features of the tool are available to remote access

users. Users are able to access the same version of the tool with all its features

from all PC computing platforms. System access is hardware independent

requiring only access to the company Intranet and the capability to run specified

Web browsers.

II Data Capture

The system is capable of collecting Task related information as well as

information required to establish dependencies among tasks. The data capture

functionality is scaleable and is able to support very large development models (in

the order of thousands of tasks) as well as small ones (under 100 tasks). The

system eliminates the need for cross-functional team meetings currently required

for DSM data collection. Data collection is performed in a distributed and

asynchronous mode. The system is able to identify users that need to be

consulted on a particular issue and contact them to collect the necessary

information. The system is equipped with an intuitive and user-friendly graphical

interface for data collection. No formal (instructor) training is required to become

proficient with the system for data entry. A hierarchical scheme is adopted to

integrate the vast amount of tasks being collected and the required level of

abstraction (whether high-level tasks or detailed tasks) is clarified to users during

data collection. Data syntax and type validation is performed and the system is

able to ensure that only recognized data elements in the correct format are

entered. The system provides an acceptable performance (response time) during

remote data collection.

III Interfaces

The system is capable of interfacing with common scheduling software as well as

existing DSM task based modeling tools.

IV Presentation

The system can clearly present large matrices (on the order of hundreds of

thousands of tasks) and provide users with maximum viewing flexibility. The

system is capable of intuitively presenting inter-task information flow as well as

Massachusetts Institute of Technology - Center for Innovation in Product Development

Web-based Prototype Nader Sabbaghian 12/16/98 # Page 53

feed-forward and feedback scenarios. Hierarchical task roll-up and alternative

views of the process are provided to assist users in the analysis.

V Reporting

Users are able to print all available DSM views as well as all information

displayed through the system's interface. Matrices can be graphically exported

for integration into presentations and reports.

VI Validation

Users benefit from a dictionary of existing project deliverables when entering

information. They could also add new deliverables and attributes to the

dictionary. The system is capable of detecting inconsistencies in the model and

reporting the nature of the problem to the appropriate process stakeholder. First

level validation (syntax, field length, field type etc.) is performed upon data entry.

VII Security

The system is capable of providing an environment for secure transactions over

the Internet and is adequately protected against break-ins.

VIII Search/Retrieve

Users are able to perform a variety of data inquiries such as deliverable usage, list

of tasks for a specific group or individual, history of modifications to the data etc.

The system provides an acceptable response time during user search/retrieve

operations.

IX Analysis

Sequencing can be performed on captured model in order to minimize iterations

in the process. Users are able to adopt the resulting sequencing scheme by saving

the new (re-sequenced) model. The system is able to easily accommodate

existing sequencing algorithms. Impact of changes to the process are

automatically analyzed and presented to users ("what if' capability)

X System Maintenance

The system is equipped with administration functions that provide access to all

reference data as well as user management.

XI Performance Support

Users are able to utilize on-line support features and help functions to become

familiar with the system's functionality and interface.

Massachusetts Institute of Technology - Centerfor Innovation in Product Development

Nader Sabbaghian Web-based Prototype12/16/98 @ Page 54

4.2 System Metrics and Specifications

Due to this research project's time and resource constraints the above outlined list of

requirements (also see Appendix A) was further reduced to a subset of high priority needs

to be addressed through the development of a prototype system. Each requirement was

ranked according to its importance in addressing the research question primarily focusing

on the data collection coordination and DSM-based visualization aspects. A subset of 30

requirements (out of a total of 54) was chosen to define the scope of the prototyping

exercise. These requirements were subsequently analyzed in detail in order to develop

specific set of specifications for the software development process. First, a list of metrics

was drafted and the relationship of each metric to the requirements was determined. The

resulting needs-metrics analysis can be found in the matrix in Figure 4-1. The rows of

the matrix correspond to needs considered within scope and the columns of the matrix

correspond to metrics used to determine the degree to which the system satisfies such

needs. This exercise served to ensure that all requirements be addressed and provided the

team with an intuitive visual representation of the impact of each metric on requirements

during the design phase.

The development of system specifications was the last step in the process. A set of

assumptions was made regarding the system's operating environment, users' computing

environment and process modeling dynamics. All available information was then

synthesized to come-up with target values for each metric (results are presented in Table

4-1). For example, it was assumed that users employ a graphical e-mail package (such as

Eudora or MS Mail) which enables the system's notification mechanism to present a

WWW hyperlink in the message body. Other examples include assumptions regarding

the users' minimum screen resolution, reasonable upper and lower limits on the size of

each DSM and number of users simultaneously accessing the system. The target

specifications presented in Table 4-1 are the first point of reference in the development of

a feasible concept for the distributed web-based system.

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/15/98 * Page 55Web-based Prototype Nader Sabbaghian

12/15/98 * Page 56 Nader Sabbaghian Web-based Prototype

Bu!ippe sjunooejesn~ 1 2 1 -- S

SSOBJ1PV t ---- - -- -- - --

potqiew Butouenbes)Nsel IenueIN

ewl esuodsej eGeu1eiGtpieeS

rspie'j sljnseJ LJpJB6e

siaeaweied qojees elqel!8AV 1
C'4 sejru sseooe welsAS

CN; uipe io; sejru ssaooe jasn

dnoj6 elqsuodsaJ jol sialoweuo jo joqwnu xe~q

C14 weu jsej ieJl 8owe5I jo jaqwnu xeyJ

ezis Ilao XUi8eVJ eininoniis Oi!se(]

uo!suawip xujeV4 ainpnuiS uB!SeQ 0

CO!PLJ8 pqa uopileInfstA Auo-Nsej1

uounjoseJ ueens wnwiiy 0

LA IB'AJGIU U011epIeA 40188
Ln Sieieweled UO!18p!IeA tLoIeg1

sialowejed UO!;ep!JSA eW!1ijeam0 00

eaje WOOZ xJle~J 9snjnorujS u6!sea
2poiiiew Uo!1sodwooep 3isej1 * *

ewi esuodsei Aiue Eea

o ~~seinqp;;e jueweje eiea - - -]
sejnquiije Nse. I

Aijue elep U! Aoueploid io; paJifbeJ 6Uuej.i

POL41OW UO!OJJON S 0 0 0@

LA, 4edeo Builepow iueweie eisa,

Ai!oedeo Bu!iepow N'se1 S

swiojpeld 6uIindwoo epquedwoo 4

potqjew AI!A!109UUOO 0

saesn jo jeqwnu wnwixejy1 0 *
suoi volljpds walsS-

C E E E

E0 E

,% 1 79 Cu

CL E F 9(21) 1 -
F p 0G

Masschuett Inttt5fTcnlg; etrfr noaini rdc eeomn

42

E

Ci)

Web-based Prototype Nader Sabbaghian 12/16/98 * Page 57

System specifications Requirements Target
I Maximum number of users L1, L2 Less than 2,000 users

2 Connectivity method L2 IntemetWodd Wde Web - Network, dial-up connectivity

3 Compatible computing platforms L3 All major platforms: Wndows, Macintosh, Unix, Sun OS

4 Task modeling capacity R11, 11.2 Less than 100,000 tasks

5 Data element modeling capacity 1.2, VL2 Less than 100,000 data elements

6 Notification method L 1, L2, 1113,111.4 Electronic mail with hyperlink to Web-system

7 Training required for proficiency in data entry T5 Less than 15 minutes of self-training

8 Data entry tracing attributes 1L6 User ID, time and date of transaction

9 Task attributes ILI, H.6 Name, description, task executor (team or individual), task abstraction, task sequence of execution

10 Data element attributes Ill, II6, IL10, VI.2 Name, description, creators user ID

11 Data entry response time 19 Less than 5 seconds

12 Task decomposition method 113, 11.4 Performed by task owner or delegated to another user for decomposition

13 Design Strucuture Matrix zoom area IV.2 Zoom areas centered around DSM's diagonal

14 Real-time validation parameters HL8, II0, V1-VL4 Duplicate data element outputs, field length & type vaidation for data elements & tasks, matrix edit
ownership, comments entry for issues, login-ID and password verification

15 Batch validation parameters IL 10, VI.3 Data disconnects (input and output), inter-level disparity(top-down,bottom-up)

16 Batch validation interval VI.3 Every 2 business days

17 Minimum screen resolution IV.5 800x00 pixels or higher

18 Task-only visualization method IV.9 Using MS file explorer graphical model

19 Design Structure Matrix dimension 1.7, IV.2 Each matrix is comprised of 10-20 tasks

20 Design Strucuture Matrix cell size IV.5 12x12 pixels

21 Max number of characters for task name IV.5 Shortname 30 characters; Longname 50

22 Max number of characters for responsible group IV.5 Shortname 15 characters; Longname 40

23 Print page layout for Matrix V.1, V.2 Web browser-enabled printing

24 User access rules for editing VL 1, VL.2 Each Design Structure Matrix can be edited by no more than one user, data elements are universally
accessible for editing

25 System access rules VI.6, VIL4 Only users with valid ID's and password are allowed access

26 Available search parameters VIL I Data element name in the data dictionary

27 Search results fields VIIL I Ust-box, alphabetical order

28 Search/retrieve response time VIII.2 Less than 5 seconds

29 Manual task sequencing method IXI User defined by assigning ascending numerical values to indicate sequence

30 System Administrator access Xl System administrator has univeral access to all data in the system

31 User accounts editing X2, X3 System administrator is the only user to manage accounts

Table 4-1 Target specifications for Web-based system

Massachusetts Institute of Technology - Center for Innovation in Product Development

Web-based Prototype Nader Sabbaghian 12/16/98 # Page 57

4.3 High-level Design Concept

Requirements-specifications analysis led to the development of a prototype concept,

which can be characterized by three top-level components as shown in Figure 4-2. The

user interface sub-system includes all the necessary modules designed to collect

modeling data from participants and display information in structured formats. Activities

such as integration of data received from multiple participants, user notification and

routine data maintenance are performed through a set of periodically scheduled batch

processes. The Data Repository interfaces with the other two components and is

designed to efficiently store all data necessary to support the modeling activity.

Data
Reposito

Figure 4-2 Top-level view of prototype system

An overview of each of each of the above sub-systems is provided in the following

sections.

4.3.1 User Interface

Comprised of a series of interactive web pages with embedded and stand-alone Java

components for advanced user interface functionality (see Figure 4-3). This set of linked

screens provide a graphical interface for users to intuitively engage in the following

activities:

* login system and manage user accounts

* view, add and edit DSMs

" provide information aimed at resolving integration issues

" obtain introductory information on the prototype and DSM-based process modeling

Massachusetts Institute of Technology - Center for Innovation in Product Development

Web-based Prototype12/16/98 * Page 58 Nader Sabbaghian

Web-based Prototype Nader Sabbaghian 12/15/98 e Page 59

.4C 0. I E zi

VE4.0

CC

19w

0 1!

an

an

___ Ab:w

Massachusetts Institute of Technology - Centerfor Innovation in Product Development

Figure 4-3 displays the system's overall user interface design. Gray panels represent

interactive web pages developed with or without embedded Java applets. The embedded

applets are active components delivering additional interactive functionality within the

same web page. Certain parts of the system require a higher degree of user interactivity

and thus are prime candidates for the implementation of embedded applets. This

approach eliminates the need for re-loading a fresh web page each time a new view (data

representation) is requested by the user. In addition, a series of Java applet windows

(white panels in Figure 4-3) are designed to support the embedded elements. These

standalone (pop-up) screens further extend the functionality of each web page and deliver

a familiar look and feel of a typical graphical user interface (GUI) windows-based

application.

Introductory information on the system is accessible through its home page. This

material is aimed at explaining the system's overall functionality and providing

background information on the process modeling technique used. The goal is ensure that

first time users become acquainted with the basics of DSM-based modeling and its

potential benefits in the area of large-scale project planning and coordination.

Users access the system through the login screen. This is the application's primary site

and a link to its address is provided in all automated e-mail correspondence. Upon

successful login, the user's home page is presented. This page is capable of displaying

hyperlink-enabled messages specific to each user. Requests, issues and action items are

posted to this page and participants are asked to take action or explore further details by

clicking on the appropriate link embedded in the outlined message. Users with System

Administrator profile will also be able to access the account management screens in order

to add, edit, or delete active users.

Each component of the multi-tiered Design Structure Matrix is presented as an embedded

applet linked to series of supporting Java pop-up windows. Matrices are constructed by

isolating all tasks that share the same parent task (or no parent task in the case of the top-

level matrix) and analyzing their information exchange in order to place the appropriate

marks in the DSM. The system matches input and output deliverables among task

groupings and translates each interaction into its corresponding matrix coordinates for

DSM visualization.

The pop-up screens allow users to obtain further details on inter-task information flow,
edit the matrix, add new deliverables and delegate task decomposition, all from the same

web page (see Figure 4-3). The functionality of the matrix and its supporting Java pop-

Massachusetts Institute of Technology - Center for Innovation in Product Development

Web-based Prototype12/15/98 * Pagze 60 Nader Sabbaghian

ups is explained in detail in Chapter 3.2. The task hierarchy view (see Figure 3-6)

provides a faster alternative for navigating through the model. The entire model's task

decomposition scheme is presented as a tree structure through an embedded applet

without any additional information on each task (such as deliverable I/O, ownership etc.).

Data retrieval is therefore limited to task names and relative location in the model

hierarchy. Users can quickly move through the tree structure, select a particular task and

easily access its corresponding DSM for further detail and analysis.

A series of web pages are designed to guide the participant through the issue resolution

process. These interfaces are designed to explain the issue at hand, provide participants

with a number of options and capture their feedback for further analysis.

4.3.2 Batch Process

The system's batch process is comprised of five steps as outlined in Figure 4-4. The

components are all written in Java and built into a Java application capable of running on

any computing platform. The process can be executed manually or as a regularly

scheduled job on the system's host server. Access to this process is restricted to members

of the model coordination team. Several data collection and validation functions were

identified as being most suitable for batch execution, among these data-disconnect, inter-

level disparity and notification mechanisms.

Detect Data Detect Inter- Prepare Update Send
Disconnects Level Issues Database Notifications

Disparities

Figure 4-4 Batch Process Flow Diagram

It is logical to assume that users will not provide the requested data simultaneously. The

challenge in integrating such time-fragmented arrival of information is clear, especially

when the validation process attempts to identify key issues and facilitate direct contact

between parties capable of resolving them. Once a request for data collection is made,

different time delays are expected with some users responding immediately, others in a

few hours or perhaps days. Since data validation for integration purposes depends on the

Massachusetts Institute of Technology - Center for Innovation in Product Development

Web-based Prototype Nader Sabbaghian 12/16/98 a Page 61

timing of the arrival of information, it can not be performed in a real-time. Users must be

given enough time to respond to a data collection request before the system attempts to

validate the overall model for data-disconnect identification. It would be best to

minimize the data disconnect scenario outlined in part (b) of section 3.3.1.2 (related to

timing) by ensuring that users have been given a reasonable chance to respond before

initiating follow-up e-mail inquiries for validation purposes.

A similar argument applies to the Inter-Level Disparity case (see section 3.3.3). One can

not assume that users will provide all the modeling information required to construct a

DSM in a single data entry session. Participants may initially only provide partial

information about their process and require further consultation with their peers to

complete the full picture. Above issues together with a lack of real-time criticality in a

process modeling tool clearly point-out that multi-user validation functions such as those

discussed in sections 3.3.1 and 3.3.3 are best performed periodically.

The five steps in the batch process are explained in their sequential order of execution as

follows:

4.3.2.1 Detect Data Disconnect
The system scans through output deliverables of every task in the model attempting to

find a matching input deliverable to complete a dependency. A straight string comparison

is performed in this search. Once the entire repository is traversed, task-deliverable

combinations left without a companion are marked as input or output data disconnects

(see section 3.3.1). The process also determines the nature of the dependency by

examining the relative position of the origin and destination tasks in the model.

Dependencies among tasks with the same parent task are marked as internal while all

others are tagged as external (see section 2.4).

4.3.2.2 Detect Inter-Level Disparities
Inter-level disparities were discussed earlier in section 3.3.3. Task decomposition

requires consistency of dependencies among activities at various levels. The batch

process checks the information flow of each decomposed task to ensure that an instance

of each deliverable exists at the lower-level DSM. Instances of high-level deliverables

not inherited by lower-level DSMs are flagged as top-down inter-level disparities.

Adjusting this inaccuracy requires the addition of missing deliverables to the suitable

sub-task at the lower-level matrix. It therefore requires the involvement of the participant

responsible for modeling the DSM in question.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Nader Sabbaghian Web-based Prototype12/16/98 * Page 62

The same inheritance consistency check is performed for parent DSMs. External

interactions among lower level DSMs are analyzed to ensure that an instance of the

information exchange exists at their corresponding parent tasks. Adjusting the model for

this bottom-up inter-level disparity does not require user intervention because the task

with missing information is clearly identifiable by the batch process. Therefore,
deliverables engaged in external interactions but not recognized by their parent tasks are

automatically added to the parent activity's list of inputs or outputs.

Instances of interactions between high-level and low-level tasks are also addressed in this

process. These are situations where a deliverable is exchanged exclusively between tasks

residing in two separate levels in the model. Deliverable P in Figure 4-5 is an example of

such scenario. During the first step of the batch process (section 4.3.2.1) such

interactions are flagged as external since they are simply diagnosed as connections

between tasks not belonging to the same DSM. Once this is done, the bottom-up inter-

level disparity is detected and the parent task is updated with the missing deliverable.

Level 3
Level 2-

Le R11I

Upda parent
tAck wi

114pdate pa

Figure 4-5 Addressing inter-level disparity caused by inter-level interaction

The process may entail multiple updates across the model hierarchy as shown in Figure

4-5. In this example, deliverable P being exchanged between tasks in a level-1 and level-

3 DSM causes the batch process to record the presence of an external interaction. Next,

since p is not found among the inputs and outputs of the parent task to the level-3 DSM,
it is added to the level-2 activity. The process repeats itself because of the newly created

inter-level interaction between levels 2 and 1 causing another p update, this time to list of

deliverables of the parent task to the level-2 matrix.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Web-based Prototype Nader Sabbaghian 12/16/98 a Page 63

Such interactions among high-level and low-level tasks typically occur when an

unacknowledged higher level dependency is surfaced at the lower-level matrices through

model decomposition.

4.3.2.3 Prepare Issues
For each issue detected by the first two phases of the batch process a record is prepared

for submission to the data repository. This record contains information required for the

issue resolution process such as the target user and data on the deliverable and task in

question. Each issue is assigned a unique issue ID for tracing purposes. Anytime an

issue is delegated to another individual in the organization a new record is created and is

easily traceable to its parent through the issue ID.

Code Description Created by

01 Input data disconnect Batch process
(input deliverable not produced in the model)

02 Output data disconnect Batch process
(output deliverable not used in the model)

03 Top-down inter-level disparity Batch process
(decomposed DSM missing inherited deliverables)

04 Bottom-up inter-level disparity Batch process
(parent DSM missing lower-level deliverable)

06 Delegated issue User delegation via issue
resolution interface

09 Model creation request User delegation via task
decomposition interface

Table 4-2 Recognized issue types

The web-based system utilizes a set of six codes to identify the issue type. As seen in

Table 4-2, four of these are created during this stage of the batch process and their

corresponding codes incorporated in the issue record.

4.3.2.4 Update database

The previous steps in the batch process affect a number of tables in the data repository.

All necessary database maintenance activities are performed at this stage. Deliverables

are added to list of input/outputs of decomposed tasks as indicated by the bottom-up

inter-level discrepancy analysis. Task dependencies are updated to reflect the correct

Massachusetts Institute of Technology - Center for Innovation in Product Development

Nader Sabbaghian Web-based Prototype12/16/98 * Page 64

interaction type (whether internal or external. Existing issue records are revised and

their status updated. Newly created issues are added to the repository.

4.3.2.5 Send Notification
The last step in the web system's batch process is the notification mechanism. The

system scans the list of existing issues and obtains information on the contact person for

each. An e-mail is compiled (as seen in Figure 4-6) for each target participant containing

a link to the system's web page together with the user's login ID and password

information. Newly created issues and requests resulting from the previous steps of the

batch process are posted to each participant's message board and are available upon login

(see section 3.2.6). The system's anti-Spam checking ensures that at every batch run no

more than one message is sent to each affected user.

From: Abby@MIT.EDU
Date: Mon, 9 Nov 98 10:46:50 EST
Subject: Abby - data capture request
Apparently-To: nad@mit.edu

Your participation has been requested in creating/updating a process model
for Test Project.

Please access page http://design.mit.edu/Abby/default.asp

Your login information is as follows:

User ID: nad
Password: 1111

Thank you for your contribution.

--Abby

Figure 4-6 Sample e-mail Notification Message

The creation of customized E-mails for every type of issue or request was considered

during the design phase. This approach although feasible, presented two major

weaknesses. First of all, with each batch run, users whose involvement was necessary in

multiple instances would have either received several different messages or, a very long

e-mail detailing each issue. Secondly, the option would have been redundant with the

system's user page (see section 3.2.6) presenting details, which would be once again

displayed upon system login. The personalized message board could not be eliminated

from the application in favor of customized e-mails since it meant providing access to

system's on-line issue resolution solely through user's e-mail interface. It was considered

necessary to provide users with the flexibility of accessing the system directly through

Massachusetts Institute of Technology - Centerfor Innovation in Product Development

Web-based Prototype Nader Sabbaghian 12/16/98 * Page 65

the browser (by typing the URL) or through the link provided in the message content of

their notification e-mails.

Finally, a separate interface is developed for the stand-alone execution of the notification

mechanism. The model coordination team has the flexibility of excluding this stage of

the batch process in case frequent validation runs are deemed necessary. By disabling the

system's automated notification module the team is also able to observe the results of the

batch process before requesting user involvement.

4.3.3 Data Repository

The web-based prototype utilizes a relational database configuration for information

storage and retrieval. Figure 4-7 outlines the details and relationships among the tables

used in the system. Scalability is the most important factor considered during database

design. For this purpose, four tables are designed to store information required for the

construction of a large scale multi-tiered DSM. Task data is stored separately from

information flow data. For each activity in the system one record is entered in the

DSMMaster table (see Figure 4-7) containing all unique attributes while multiple records

are entered in the IO table denoting the activity's defined information flow. Table 4-3

presents the list of fields and descriptions for the tables involved in DSM information

storage.

Figure 4-7 Data Repository Diagram

Massachusetts Institute ofTechnology - Center for Innovation in Product Development

Web-based Prototype12/16/98 e Pagee 66 Nader Sabbaghian

To better understand the dynamics of how a DSM is stored in the repository consider a

task defined with 3 input and 2 output deliverables. This scenario will be represented by

one entry in the DSMMaster table and five records in the 10 table (three for the input

deliverables and two for the output deliverables). By joining the two tables the list of

inputs and outputs for each task is easily obtained. This design places no limits on the

number of deliverables assigned to each task and is easily scaleable. The 10 table is

designed to be thin since it is expected to be far larger than any other table in the database

(approximately one order of magnitude larger than DSMMaster table which represents

the total number of tasks in the model). It is designed to contain strictly numerical field

which are linked to appropriate reference tables during program execution.

Field Description

DSM Master table
TaskID Unique system generated sequential key for each task
UserlD User ID for the task owner (linked field to UserProfile table)
ParentlD Task ID of the parent task (set to zero for level 1 tasks)
Flag Indicates the existence of a decomposed DSM (if set to 1)
TaskName Short Short name of the task
TaskName Long Long name of the task
Responsible Short Short name of the team/individual responsible for task execution
ResponsibleLong Long name of the team/individual responsible for task execution
Rank Task's ascending order of execution
Lvl Task's decomposition level (Top level = 1)

10 table
Ind Unique system generated sequential key for each data flow
Task ID Task ID (linked field to the DSM Master table)
DataElementlD ID for the 1/O data element (linked field to DataDictionary table)
Type Indicates whether the data element is being produced (1) or used (0)
Extint Indicates whether record relates to external (1) or internal (0) interaction

DataDictionary table
DataElementlD Unique system generated sequential key for each data element
Name Given name for data element (deliverable)
UserlD User ID for the data element owner (linked field to UserProfile table)
Description Description provided for each data element

UserProfile table
UserlD Unique system generated sequential key for each user
Name User's full name (first and last separated by a space)
Email User's e-mail address
Password Password used to access the system
LoginlD ID used to log into the system

Table 4-3 Field descriptions for DSM related tables

Massachusetts Institute of Technology - Center for Innovation in Product Development

Web-based Prototype Nader Sabbaghian 12/16/98 @ Page 67

4.4 Software Architecture

The prototype system was developed by a group of three developers at the laboratories of

MIT's Center for Innovation in Product Development (CIPD). The team utilized a

combination of development tools and services. In the overall two environments were

configured and explained in detail as follows:

4.4.1 Run-time environment

The prototype system is configured on a server computer connected to the World Wide

Web (WWW). The production environment required for deployment is presented in

Figure 4-8. The web server utilizes Microsoft Windows NT Server (version 4.0) as its

operating system and Microsoft Internet Information Server (version 1.1) for Internet

connectivity services such as WWW and Active Server Pages (ASP). Microsoft SQL

Server (version 6.5) handles all database management functions on the server.

Remote client

Remote client

e

Remote cil

Web Server

Application Files

dBAnywhere

Figure 4-8 Web server configuration

Table 4-4 displays the types of application files residing on the system. Connectivity

from Java files (applets and applications) to the SQL server database management system

is accomplished through the Java DataBase Connectivity (JDBC) protocol using

Symantec's middleware tool dBAnywhere. Database connectivity from ASP files was

accomplished using standard SQL Server drivers provided by Visual Interdev.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Nader Sabbaghian Web-based Prototype12/16/98 @ Page 68

I

Web-based Prototype Nader Sabbaghian 12/16/98 e Page 69

Type Description/Use

HTML files display of static web pages

ASP files creation of interactive web pages

Java applet class files used for browser embedded execution

Java application class files used for standlone execution using the Java Development Kit (JDK)

Java library class files all vendor developed support libraries (Sun, Symantec etc.)

Table 4-4 File types utilized in the prototype system

The system can easily be replicated on any other web-server using the five steps outlined

in Appendix B of this thesis. The instructions include the setup of the operating

environment as well as required modifications to ASP and Java files. Modifications to

the code relate to server specific (database or www) references such as domain name and

IP addresses, which are unique to each operating environment.

4.4.2 Development Environment

A set of software development tools were used to construct the prototype web system. A

multi-user integrated development environment was configured using Microsoft Visual

Interdev (version 1.0). The tool managed a single web project containing database files,

HTML, ASP, Java class files and other multi-media component used for the application.

Using Visual Interdev each developer was able to work on files residing the development

web server from any connected computer. Visual Interdev also provided the team with

version control services enabling multi-developer work on the same collection of files.

Symantec Visual Cafe' (version 2.5) was used for the development of the system's Java

components. The system's HTML pages were developed using Microsoft FrontPage

(version 98) and the database management system was configured using Microsoft's SQL

Enterprise Manager. All these tools were accessible through Visual Interdev's project

workspace, which presented developers with an overall view of the system and a

seamless interface for enhancements or new component design.

4.5 Summary

This chapter presented the various steps taken in this research to transform concepts and

ideas presented in chapter 3 into a working prototype system. Areas of work leading to

the development of the web-based software were reported in detail, including

Massachusetts Institute of Technology - Center for Innovation in Product Development

Web-based Prototype Nader Sabbaghian 12/16/98 * Page 69

requirement analysis, conversion of requirements to system specifications and the

conception of target metrics for the system. The tool's high-level design concept was

structured in the main areas of User Interface, Data Repository, and Batch Process. Each

area was thoroughly discussed by focusing on the critical aspects of the prototype's

design. Finally, the set of software development tools and sub-systems required for the

design and execution of the system were presented. The overall goal of this chapter is to

provide readers with relevant information on the design process used in this research as

well as the web-based prototype's technical characteristics and architecture.

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 # Page 70 Nader Sabbaghian Web-based Prototype

5 CONCLUSION

5.1 Summary

This thesis presented an approach for the deployment of Internet technologies to facilitate

the collection and dissemination of knowledge on the product development process. The

research highlighted inefficiencies in existing data collection techniques and the immense

coordination challenges faced when attempting to apply these techniques to tap into the

knowledge of a large group of geographically dispersed individuals. It has also

emphasized the inadequacy of commonly adopted project planning tools in providing

management with an adequate picture of the product development process for effective

decision making.

A web-based process modeling approach was developed to overcome current data

collection barriers. It attempts to engage a large number of geographically dispersed users

in a virtual forum for the construction of a model representing their activities and

interactions. The approach is presented as a transition from the conventional

synchronous data gathering and centralized data management to an asynchronous-

decentralized configuration through the use of web-based distributed data collection and

on-line discussion methods.

Combinations of existing concepts from the Design Structure Matrix DSM modeling

methodology were adopted. In particular, the "data-driven" approach to DSM modeling

was drawn from Dr. Grose's many years of process modeling experience at the Boeing

Commercial Airplane Group (BCAG). The benefits of this analytically rigorous

approach to process modeling were discussed by focusing on the method's ability to

pinpoint "black holes" (information generated that is never used) and "miracles" (required

information that is never produced) [12].

A user defined task hierarchical scheme was proposed to introduce structure in the data

collection process and resolve issues related to the visualization of very large matrices.

The method entails gradual involvement of individuals in the organization's chain of

command starting from top-management, in the definition project milestones, to

designers outlining detailed activities performed in the product development process.

Enhanced web-based user interfaces were proposed to facilitate DSM adoption among

the vast majority of novice users. Among these the introduction of familiar graph-based

process representations in conjunction to the DSM matrix-based process view. The

Massachusetts Institute of Technology - Center for Innovation in Product Development

Conclusion Nader Sabbaghian 12/16/98 a Page 71

concept of a personalized message board was also presented as a means to structure

known user interactions for the purposes of model integration.

A web-based prototype system was successfully developed to further explore the

concepts presented previously. The system development exercise was presented in detail

starting from requirements and specifications analysis to high-level design and software

architecture.

5.2 Directions for Future Work

The web-based prototype was demonstrated numerous times to CIPD industrial partner

delegations, MIT students and faculty as well as members of other academic and research

institutions. The modeling approach was also presented and discussed at CIPD, LAI and

the IEEE SMC '98 seminars. Feedback received from these sessions and the lessons

learned from the prototyping exercise have led to definition of the following areas of

future work:

5.2.1 Pilot deployment

There is value in determining the effectiveness of the web-based approach in reducing the

time and effort required to construct a task-based DSM model of the product

development process. The approach presented in this thesis attempts to eliminate the

bottlenecks in data collection which make large-scale DSM modeling unattainable.

Major areas of overhead are addressed through a combination of automation techniques

and distributed computing. The benefits are clear but not compelling unless a

quantitative analysis is done through real life pilot implementations of the web-based

system.

Scaled-down models comprised of approximately 200-400 activities requiring the

participation of 20-30 professionals at a sponsoring company would be the recommended

setting. Ideally, such experiments would involve two sample areas of the sponsoring

organization's product development process. These two areas must be comparable in

terms of size (no. of activities) and the number of experts required for data collection.

One project must be modeled using the current centralized and asynchronous technique

while the other using the Web-based prototype. Equal number of resources must also be

allocated to each modeling initiative (typically 2 model coordinators would suffice). The

modeling exercise is complete for each project once a target number of modeled activities

is reached with a certain percentage of outstanding integration issues (e.g. 300 tasks, 5%

Massachusetts Institute of Technology - Center for Innovation in Product Development

ConclusionNader Sabbaghian12/16/98 e Page 72

of which continue to be associated with data collection issues). The time to completion

of each modeling exercise can therefore be measured and comparisons between the two

approaches made.

Conducting several such experiments could provide enough empirical evidence on the

potential efficiencies gained from the proposed web-based data collection mechanism.

Extrapolating from data obtained in these experiments one may also be able to predict

with increasing accuracy the time and resources required to construct large-scale DSMs

using either technique.

5.2.2 Structural analysis

This research has presented a systematic approach to task decomposition, one that begins

with users' preconceived notion of how all the thousands of project tasks are aggregated

in a group of top-level activities. This approach is adopted at each level of

decomposition with modelers subjectively present the next stage of task aggregation. This

scheme however useful in introducing structure in data collection may not reflect the

optimal clustering of tasks for visualization. The ideal representation of a task-

hierarchical model should emerge from a sequencing followed by a clustering analysis to

ensure that highly interactive group of ten or fifteen tasks are aggregated at each level in

a bottom-up fashion.

Follow-up studies are needed to perform a comparative analysis between the subjective

top-down task decomposition structure used for model creation and the optimal task

aggregation scheme emerging from clustering and sequencing analysis on the lowest

level set of DSMs in the model. This work may lead to interesting insights on the

differences between the task decomposition scheme emerging from the modelers

perspective and the one based on a systematic approach of minimizing interfaces among

task clusters.

5.2.3 Behavioral analysis

Assumptions on users' willingness to participate in the scheme outlined in this research

remain to be tested. It is important to explore whether the proposed approach provides

the correct human computer interface for the target audience and type of information

collection in question. Users' response to the virtual forum and automated aspects of

issue resolution must be analyzed. In particular as this relates to the negotiation process

for convergence on a common terminology for deliverables and other forms of

information exchange among project participants. It is also interesting to observe users'

Massachusetts Institute of Technology - Center for Innovation in Product Development

Conclusion Nader Sabbaghian 12/16/98 a Page 73

rate of response to the periodic e-mail solicitations generated by the system to validate

the effectiveness of the "push" technique used in this research.

The type of insights gained from data-driven DSM-based modeling are likely to point

towards radical changes in the design process and question existing organizational

structures. This could potentially be the largest barrier towards a successful modeling

exercise. Organizational change often leads to conflict and participants may stall the

process once there is a realization that information they provide could lead to undesired

side-effects. Further studies could explore potential conflicts of interest arising among

modeling participants and the impact of these scenarios on the successful implementation

of the DSM modeling exercise.

5.2.4 Software Enhancements

The following features were identified as potential areas of improvement to the system's

functionality:

* Task dependencies are currently determined through a process of input and output

deliverable matching. This mechanism is performed through a simple string

comparison and could be further refined with pattern matching algorithms.

* The deliverable search mechanism could be enhanced to provide additional search

features. This provides much needed assistance to participants wanting to locate a

deliverable based on parameters such as the teams or individuals producing or using

the deliverable, or a particular notation in the deliverable's description. Currently the

list of deliverables is simply presented alphabetically. Alternatives must be explored

to provide users with a categorization of such information and further facilitate the

search process. These features can reduce the number of data disconnects stemming

from terminology issues.

* Improved coordination features can be introduced by providing additional contact

information and contact management functionality throughout the system. This may

also include integration of modeling information with existing groupware where

actual deliverables could be stored. Users can not only see tasks and deliverable

exchanges but also access the content of the deliverable through especially provided

links.

* Current Internet infrastructure hinders seamless worldwide deployment of the system.

Firewalls present in practically every organization prevent the system's Java classes

Massachusetts Institute of Technology - Center for Innovation in Product Development

Conclusion12/16/98 a Page 74 Nader Sabbagzhian

from communicating with a remote database database. Suggestions to overcome this

aggravation include: collecting data through ASP calls only, deploying the server

behind a company firewall (problems with suppliers and other outside entities will

persist), introducing features that would allow users to grant applets permission to

exit firewall etc.

* Lack of standards in Web browsers leads to compatibility issues. Currently, the tool

can only be deployed on Netscape Navigator version 4.06 or above (current release of

Navigator is 4.5). There are several issues when using Microsoft Internet Explorer.

These relate to the look and feel of web pages and the deployment of embedded Java

applets. Standards are gradually solidifying in the browser market, however the effort

can be placed to ensure that the application has the same look and feel across existing

combinations of browser-operating system.

* Security must also be considered. Information being modeled with this system is

quite sensitive in nature since it deals with the organization's biggest asset: it's

knowledge. Secure transactions for database access beyond firewall and more

sophisticated authentication mechanism for login and the use of encrypted e-mail are

some alternatives that should be further explored.

" Providing users with maximum flexibility in the visualization of the multi-tiered

DSM is another important area of work. Enabling high-level or detailed views of

activities in very large models may entail a change of resolution of up to 1000 times

(assuming a 4-level model). Navigation is currently structured according to a user

specified task decomposition scheme emerged during model construction. This inter-

level navigation method, as discussed in section 3.2.2, limits the ability of users to

explore off-diagonal interactions to their desired level of detail. Alternative

approaches could be introduced to provide enhanced visualization functionality aimed

at more sophisticated DSM users. One possible approach is currently being explored

by Shaun Abrahamson, another graduate student at MIT's Center for Innovation in

Product Development (CIPD). As a member of the DOME project, Shaun has

developed a dynamic range DSM visualization technique which provides users with a

multi-view interface for navigation. A sample of this scheme can be seen in Figure

5-1. There are three views presented to the users. The first (top right corner)

provides a map of the entire matrix using a 200x200 pixel display. Although the

resolution can not accommodate a 10,000 node square matrix, it is sufficient to

provide users with means of identifying potential areas of interest based on the

Massachusetts Institute of Technology - Center for Innovation in Product Development

Conclusion Nader Sabbaghian 12/16/98 * Page 75

12/16/98 * Page 76 Nader Sabbaghian

displayed patterns of interaction. The second view (left of the screen) is closest to the

conventional views other than that it allows for the representation of any element with

any other element in the model. This is a departure from DSM's N-square paradigm

since rows and columns could represent different areas of the model. The third and

final view (bottom right) is simply a list of all dependent activities for the selected

element, providing the highest level of resolution.

SPomrarmnce&Max otl Ime
SPerformranceiNoOfL~s

OPerformanclo~ad
" Cfterformarnce

f) HoriZontal MembernenghHortz
o EI*ionzontalMember

DHonzontal MembelCostHorz
O Diagonal MembersLengthoiag

o 0 Dragonal Member

Q Diagonal MemberFCrt
0 Diagonal MemberJCosalag
D ForceaCableTension

0 [AForces
[inch 2JLM1ime

D PerformanceTotarnme
D Wrnch 2A*rnps
O Batery- 2205O AHrlBafTme

O PerarmancealrmmeRaIo
D SaltWableTensionRao

ForcesForceOnTruss
0 ForcesiForceDlag

...

... ..

L

It
................................

Figure 5-1 Example of an alternative DSM visualization technique

Massachusetts Institute of Technology - Center for Innovation in Product Development

Conclusion

jr,!
r f r-, i

6 BIBLIOGRAPHY

[1] T. R. Browning. "An Introduction to the Use of Design Structure Matrices for

Systems Engineering, Project Management, and Organization Planning", Working

Paper, #WP97-001-18, Feb. 98, M.I.T. Lean Aircraft Initiative, Cambridge, MA

[2] T. R. Browning."Systematic IPT Integration in Lean Development Programs",
Master of Science in Technology Policy and Master of Science in Aeronautics and

Austronautics, June 1996, Chapter 4

[3] A. H. Bond and R. J. Ricci. "Cooperation in Aircraft Design", Research in

Engineering Design. 1992 Vol. 4, pp. 115-130.

[4] R. A. Carbtree, M. S. Fox and N. K. Baid. "Case Studies of Coordination

Activities and Problems in Collaborative Design". Research in Engineering

Design. (1997) 9: pp. 70-84

[5] M. Case and S. C-Y Lu. "Discourse Model for Collaborative Design". Computer

Aided Design. Vol. 28, No. 5 pp. 333-345, 1996

[6] G. A. Dirks. "Aircraft Configuration Optimization Considering Structural

Flexibility". American Institute ofAeronautics and Astronautics. AIAA-96-4107-

CP. pp. 1085-1087

[7] S. D. Eppinger et al. "A Model-Based Method for Organizing Tasks in Product

Development", Journal ofEngineering Design. Vol. 6, pp. 1-13, 1994.

[8] D. L. Grose, The Boeing Company. "Reengineering The Aircraft Design

Process", American Institute ofAeronautics and Astronautics, 1994.

[9] C. C. Madni and A. M. Madni. "Web-enabled Collaborative Design Process

Management: Application to Multichip Module Design". IEEE International

Conference on Systems Management & Cybernetics. 1998 pp. 2625-2530

[10] T. W. Malone and K. Crowston, (1994). "The interdisciplinary study of

coordination". Computing Surveys, 26(1), 87-119.

[11] J. A. Mariani and T. Rodden. "Cooperative Information Sharing: Developing a

Shared Object Service", The Computer Journal. Vol. 39, No. 6 1996 pp 455-470

Massachusetts Institute of Technology - Center for Innovation in Product Development

Bibliography Nader Sabbaghian 12/16/98 a Page 77

[12] W. L. McCoy and A. M. Madni. "Process Support for IPPD-Enabled Systems

Engineering. IEEE International Conference on Systems Management &

Cybernetics. 1998 pp. 2585-2590

[13] G. R. Olsena, M. Cutkosky, J. M. Tenenbaum, T. R. Gruber. "Collaborative

Engineering based on Knowledge Sharing Agreements". ASME Database

Symposium, Sept 11-14, 1994

[14] B. Prasad, F. Wang and J. Deng. "Towards a Computer Supported Cooperative

Environment for Concurrent Engineering". Concurrent Engineering: Research

and Applications. Vol. 5, No. 3 , Sept. 1997

[15] T. U. Pimmler and S. D. Eppinger. "Integration Analysis of Product

Decompositions", ASME Conference on Design Theory and Methodology, 1994

DE-Vol 68, pp 343-351

[16] A. 0. Salas and J. L. Rogers. "A Web-based System for Monitoring and

Controlling Multidisciplinary Design Projects". NASA Technical Memorandum

TM-97-206287. December 1997

[17] R. P. Smith and S. Eppinger. "A Predictive Model of Sequential Iteration in

Engineering Design", MIT Sloan School of Management Working Paper 1360,
March. 1996.

[18] D. V. Steward. "The Design Structure System: A Method for Managing the

Design of Complex Systems", IEEE Transactions on Engineering Management.

August 1981, pp. 71-74.

[19] C. Stogdill, A. M. Madni and C. C. Madni. "ProcessWeb TM : Web-enabled Process

Support for Planning and Formation of a Virtual Enterprise". IEEE International

Conference on Systems Management & Cybernetics. 1998 pp. 2591-2596

[20] H. Takeuchi and I. Nonaka. The Knowledge Creating Company, Oxford

University Press, NewYork, 1995, Chapter 3 , pp. 56-95

[21] K. T. Ulrich and S. D. Eppinger. Product Design and Development, McGraw-

Hill, NewYork, 1995, Chapter 12, pp. 260-282

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 a Page 78 Nader Sabbaghian Bibliography

[22] J. Halal. The InfiniteResource, John Wiley & Sons, Inc., NewYork, 1993

[23] E. Rechtin. System Architechting, Prentice-Hall Inc., NewJersy, 1991, Chapter 3,

pp. 52-72

Massachusetts Institute of Technology - Center for Innovation in Product Development

Bibliography Nader Sabbaghian 12/16/98 a Page 79

APPENDIX A - REQUIREMENTS DEFINITION

System Description

A web-based software tool for supporting planning operations on large-scale product development projects.
The tool is used to collect information on scheduled tasks and inter-task interactions from a large audience
of managers and team representatives . The information is used to create an accurate and timely map of the
development process. It helps organizations identify iterations in the process and reduce unnecessary
rework due to inadequate sequencing of activities in the schedule.

I Access
1 The system can be easily accessed by large number of users (in the order of thousands)
2 The system can be easily accessed by geographically dispersed users

3 The system is available on most common computing platforms (PC, MAC, UNIX etc.)

II Data Capture
1 The system captures information in the following categories:

-Task information
-Input / Output data elements
-Team or individual responsible

2 The system is capable of handling data capture for large development programs (on the order of
hundred thousands tasks) as well as small ones

3 The system provides DSM data capture without the need for cross-functional team meetings
4 The system can actively query specific users for specific information at a specific time
5 The user requires little or no training to enter data
6 The system is capable of tracing all entered information to its source

7 The system assists users in providing information at the correct level of abstraction
8 The system provides a first level of validation upon data entry
9 The system has an acceptable response time during data capture
10 The system contains a data dictionary (definition of data elements including attributes)

III Interfaces

1 The system is able to obtain task information from most common scheduling tools (e.g. Microsoft
Project)

2 The system is able to produce output for most common scheduling tools (e.g. Microsoft Project)

IV Presentation
1 The system provides full flexibility for viewing DSM models
2 The user is able to zoom in and out of a specified area

3 The system is capable of presenting very large matrices (on the order of hundred thousands tasks)
4 The system can automatically aggregate tasks for maximum viewing quality

5 The system takes advantage of the available screen resolution to maximize viewing quality
6 The user can specify a hierarchical task roll-up scheme for viewing
7 The system has a default hierarchical task roll-up scheme for presentation
8 The system can present task completion status through a color coding scheme
9 The system can provides a task only roll-up view and navigation

V Reporting
1 The system is capable of printing all available views of a DSM model

2 The system is capable of printing all information displayed on-line

Massachusetts Institute of Technology - Center for Innovation in Product Development

Nader Sabbaghian Appendix A - Requirements Definition12/16/98 # Page 80

3 The user can copy, paste or save a DSM model in a graphical format for integration into a
presentation or report etc.

4 The system is capable of formatting DSM models for large printers/plotters

VI Validation
1 The user selects 1/0 data elements from a standard data dictionary
2 The user can add new data elements to the data dictionary
3 The system identifies data discrepancies (inconsistencies) in the model
4 The system provides a first level of validation upon data entry
5 The system ensures that only trained (certified) users be able to enter data

VII Security
1 The system is capable of securely collecting information through the Internet
2 Data collected in the system is adequately protected against break-in
3 Access to the system can be limited to a pre-defined group of users
4 Several user security profiles can be setup with different levels of access

VIII Search/Retrieve
1 The user can inquire on the following:
2 Data element usage
3 Data element backward chaining
4 Task location
5 List of tasks for a responsible group/individual
6 History of modifications to the model
7 The system has an acceptable response time during inquiries

IX Analysis
1 The user is able to manually sequence/re-sequence activities (scenario analysis)
2 The system automatically re-sequences activities to minimize iterations
3 The user is able to save each sequencing scheme
4 Future (more sophisticated) sequencing algorithms can be easily added to the system
5 The user can analyze the impact of potential upstream changes on downstream tasks in the model

("what if' capability)

X System Maintenance
1 The system administrator is able to easily access all reference data for modification
2 The system administrator is able to create, modify or delete user profiles
3 The system administrator is able to activate/de-activate users

XI Performance Support
1 The system is equipped with on-line help
2 The system is equipped with on-line tutorial

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix A - Requirements Definition Nader Sabbaghian 12/16/98 a Page 81

APPENDIX B - CONFIGURATION INSTRUCTIONS

Step 1) Cofiguration Web-server

The following software components must be installed on the web-server:

* Miscrosoft Windows NT 4.0 (including service pack 3)

* Microsoft Internet Information Server

e Visual Cafe' dBanywhere 1.1

* Microsoft SQL Server 6.5

Step 2) Move application files

All application files are compressed in the file "abby.zip" (approximately an 8.5 M-byte file). This file

must be unzipped in the root web directory of the server (typically //InetPug\wwwroot\ directory). At this

point the folder "abby" and all its sub-folders must appear and be accessible via a browser on the www.

Step 3) Install database files

The database file for this application has been backed-up and compressed in a file named

"abbydatabase.zip" in the folder: "//abby\database backup". The following steps must be followed for the

applications's database installation:

1.unzip the file abbydatabase.zip

2. copy the unzipped file "abbydatabase.dat" into the "backup" directory of SQL server (generally

found in (//MSSQL\Backup

1. launch SQL Enterprise manager

2.create a new back-up device by right clicking on the "back-up devices" folder and selecting

''create new"

3. specify the directory and filename for the "abbydatabase.dat" file found in the bacup directory

and press OK

4. restore the databases in the newly created backup device by right-clicking on the device and

selecting the "restore" option

At this point, two databases should be added to SQL server. These can be viewed in the "databases" folder

as "abby" and "MainAbbyDB". The table "MainAbbyDB contains information used to connect to various

databases each representing a different project being modeled. The field "SystemName" must be changed

if the database name "abby" is modified or if another replica of the "abby" database is made.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Nader Sabbaghian Appendix B - Configuration Instructions12/16/98 a Page 82

Step 4) Perform code changes to accomodate new environment

The ASP file "default.asp" must be modified to reflect the new location of the database management

system. The change affects a series of session variables defined in this file relating to data connectivity.

First of all, all six references to the current database server "design" must be changed to the new database

server name (this can be done through a simple string search and replace function). Secondly, the new user

names and passwords must be entered in the three instances of session dataconnection variables.

There are also changes to the Java files to reflect the new server environment. The table below outlines the

changes required to appropriate lines within each affected file. Once changes are made to the Java file

these must be recompiled to class files. These newly compiled class files must replace the old ones in their

corresponding folder.

File Line Code to be modified

abby\DataCapture\FrontEnd\AbbyDBC 11 String url="jdbc:dbaw://design:8889/SQLServer/design/" + Project;
onnectionjava

abby\DataCapture\FrontEnd\AbbyDBC 16 con=DriverManager.getConnection(url,"sa","gromit7O");
onnection.java

abby\DataCapture\FrontEnd\AbbyPane 277 app.getAppletContexto.showDocument(new
2.java URL("http://design.mit.edu/Abby/user/home.asp"));

abby\DataCapture\FrontEnd\AbbyPanel app.getAppletContexto.showDocument(new

2.java 399 URL("http://design.mit.edu/Abby/dsm/dsm.asp?Lvl="+lev+"&ParentID="+par
entld));

abby\DataCapture\MailServer\AbbyDB 11 String url="jdbc:dbaw://design:8889/SQLServer/design/Abby";
Checkerjava_______________________________________

abby\DataCapture\MailServer\AbbyDB 41 String message=checkString(rs.getString(3))+",\n"+" Please go to the Abby
Checker.java Website: http://design.mit.edu\n"+

Abby\DataCapture\MailServer\AbbyM 67 "Please access page http://design.mit.edu/Abby/default.asp \n\n\n"+
ailServerjava

abby\Presentation\AbbyDBConnection. 10 String url="jdbc:dbaw://design:8889/SQLServer/design/" + Project;

abby\Presentation\AbbyDBConnection. 16 con=DriverManager.getConnection(url,"sa","gromit70");
java

abby\Presentation\TasklPopUpjava 102 imgArrowl.setlmageURL(new
java.net.URL("http://design.mit.edu/abby/Presentation/arrow.gi'));

abby\Presentation\TasklPopUp.java 111 imgArrow2.setimageURL(new
____j III java.net.URL("http://design.mit.edu/abby/Presentation/arrow.gif'));

abb\Prsenatin\ask~opp~jva 20 imngTaskl setlmageURL(newabby\Presentation\TaskPopUpjava 120 Java. net. URL("http:/design.mit.edu/abby/Presentation/oval.gif'));

abby\Presentation\Task2PopUp.java 123 imgArrowl.setImageURL(new
java.net.URL("http://design.mit.edu/abby/Presentation/arrow.gif'));

abbyPreenttio\Tas2Po~p~ava 132 imgTaskl.setlmnageURL(new
abby\Presentation\Task2PopUpjava 132 java.net.URL("htp://design.mit.edu/abby/Presentation/oval.gif'));

abbyPreenttio\Tas2Po~p~ava 161 imgTask2.setlmnageURL(newabby\Presentation\Task2PopUpjava 161 1java.net.URL("http://design.mit.edu/abby/Presentation/oval.gif'));

Step 5) Start your engines

At this point the application is ready for deployment. Accessing the file "default.asp" through a browser

shoud display the system's login screen. User ID and password information are contained in the

"UserProfiles" table of the "abby" database.

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 * Page 83Appendix B - Configuration Instructions Nader Sabbaghian

12/16/98 * Pag'e84 Nader Sabbaghian Appendix C - Program Modules

APPENDIX C - PROGRAM MODULES

D.1 Active Server Pages

The following modules are written in a combination of HTML and VB-Script and are used to create interactive web pages.

/default.asp

Home page of the application. Performs session initialization and accesses the main database to present

available projects for user access. Includes standard login script. and links to introductory HTML pages. User

permission is established and navigation is directed to user's home page if any issues are found in the issues

database. The user home page is by-passed if there are no issues and the user's DSM is presented.

< Response.Expires = 0 ->

Session.Timeout - 120
==Visual InterDev Generated - DataConnection startspan==

Session("PersonalConnectionString") = "DRIVER=SQL Server;SERVER=design;UID=sa;APP=Microsoft(R) Windows NT(TM) Operating
System;WSID-design;LANGUAGE=usenglish"

Session("Personal ConnectionTimeout") = 15
Session("Personal~CommandTimeout") 30
Session("PersonalRuntimeUserName") - "sa"
Session("PersonalRuntimePassword") - "gromit7O"

'--Project Data Connection
Session("MainAbbyDB_ConnectionString") = "DRIVER=SQL Server;SERVER=design;UID=sa;APP=Microsoft (R) Developer

Studio;WSID=INFORMATION;DATABASE=MainAbbyDB;LANGUAGE=usenglish"
Session("MainAbbyDBConnectionTimeout") = 15
Session("MainAbbyDBCommandTimeout") - 30
Session("MainAbbyDB RuntimeUserName") - "sa"
Session("MainAbbyDB RuntimePassword") = "gromit70"

'--Project Data Connection
Session("DataConnConnectionString") = "DRIVER=SQL Server;SERVER=design;UID=sa;APP=Microsoft(R) Windows NT(TM) Operating

System;WSID=design;LANGUAGE=us english"
Session("Data Conn ConnectionTimeout") - 15
Session("Data~Conn~CommandTimeout") - 30
Session("Data~Conn~RuntimeUserName") - "sa"
Session("DataConnRuntimePassword") = "gromit70"

'==Visual InterDev Generated - DataConnection endspan==
Set up initial DSM display variables
Session("CellHeight") - 12
Session("CellWidth") 160
Session("Padding") - 3
Session("FontSize") = 10
Session("Offset") - 2
Session("MenuSpace") = 35

If Request("Action") = "LOGIN" Then
Response.Cookies("LoginID") = Request.Form("LoginID")
Response.Cookies("LoginID").Expires - Date + 14
Response.Cookies("Project") - Request.Form("Project")
Response.Cookies("Project") .Expires - Date + 14
SQLQuery - "SELECT * FROM MasterTable WHERE SystemName - '" + Request("Project") +
Set MainAbbyDB - Server.CreateObject("ADODB.Connection")
MainAbbyDB.Open Session("MainAbbyDBConnectionString") , Session("MainAbbyDBRuntimeUserName"), Session("MainAbbyDBRuntimePasswrd")
Set RSSysAdminCheck = MainAbbyDB.Execute(SQLQuery)
Session("Data Conn ConnectionString") - "DRIVER={SQL Server);SERVER-design;UID-abby;APP=Microsoft (R) Developer

Studio;WSID=INFORMATIONDATABASE." + Request ("Project")
Session("ProjectName") = Trim(RSSysAdminCheck("ProjectName"))
Session("Project") = Request("Project")
Session("isSysAdmin") - "false"
Set DataConn = Server.CreateObject("ADODB.Connection")
Data Conn.Open Session("DataConn ConnectionString"), Session("DataConn RuntimeUserName"), Session("Data ConnRuntimePassword")
SQLQuery = "SELECT * FROM UserProfile WHERE LoginID='" + Request("LoginID") + "' AND Password='" + Request("Password") +
Set RSLogin - DataConn.Execute(SOLQuery)
If (not RSLogin.EOF) Then

Session("UserID") - RSLogin("UserID")
Session("LoginID") = RSLogin("LoginID")
Session("Name") = Trim(RSLogin("Name"))
Session("Password") - RSLogin("Password")
If (Trim(RSSysAdminCheck("LoginID")) - Request("LoginID")) Then

Session("isSysAdmin") - "true"
End If
RSLogin.Close
RsSysAdminCheck.Close
MainAbbyDB.Close
'SET UP INITIAL DSM AND CHECK IF USER HAS ISSUES.
SQLQuery - "SELECT * FROM DSMMaster WHERE UserID=" + FormatNumber(Session("UserID"),0) + " ORDER BY Lvl, TaskID"
Set RSDSM = Data Conn.Execute(SQLQuery)
If (not RSDSM.EOF) Then

Session("InitialLvl") - FormatNumber(RSDSM("Lvl"),0)
Session("InitialParentID") - FormatNumber(RSDSM("ParentID"),0)

Else
Session("InitialLvl") = 1
Session("InitialParentID") - 0

End If

Massachusetts Institute of Technology - Center for Innovation in Product Development

Module:

Description:

Appendix C - Program Modules Nader Sabbaghian 12/16/98 @ Page 85

RSDSM.Close
SQLQuery = "SELECT * FROM Issues WHERE UserID=" + FormatNumber(Session("UserID"),O)
Set RSIssues = DataConn.Execute(SQLQuery)
If (not RSIssues.EOF) Then

RSIssues.Close
DataConn.Close
Response.Redirect "user/home.asp"

Else
RSIssues.Close
Data Conn.Close
Response.Redirect "dsm/dsm.asp?Lvl" + FormatNumber(Session("InitialLvl"),O) + "&ParentID=" +

FormatNumber(Session("InitialParentID") ,O)
End If

End If
RSLogin.Close
RSSysAdminCheck.Close
DataConn.Close

End If

<iResponse.Expires = O>

Warn=""
If (Request("Action") = "LOGIN") Then

Warn="Invalid Login!

 Please try again..."
end ifi>
<html>
<head>
<link REL="stylesheet" HREF="StyleSeets/mystyles.css" TYPE="text/css">
<title></title>
</head>
<body background="dgrey042.jpg">
<p> <img erc-"aclr.gif"
width="43" height="42" alt="a cr .gif (3367 bytes)"><img src="b clr.gif" width="43"
height="42" alt="b clr.gif (3670 bytes)"><img src="b_clr .gif" width="43" height="42"
alt="b clr.gif (3670 bytes)"a><img src="v clr.gif" width="43" height="41"
alt="y_clr.gif (3259 bytes)"></p>
<div align="center"><center>
<table border="3" width="70%">

<tr>
<td width="100%"><p align="center">

<applet code="fphover.class" codebase="_fpciass/" width="130" height="24">

<param name="text " value="About Abbv">
<param name= "'overcolor" value="#9BECEA">
<param name= "textcolor" value=" FFFF">
<param name="effect" value="glow">
<parm name="url" value="aboutabby.htm" valuetype="ref">
<param name=" font" value="Dialog">
<param name="fontstyle" value= "old">
<param name= "fontsize" value="14">
<param name="bgcolor" value="#92rCFA">
<param name="color"" value=" 4#366D6D">

</applet>

<applet code="fphover.class" codebase=" fpc'ass/" width="130" height="24">

<param name= "text" value="The Team"Y'>
<param name="hovercolor" value= "#9BECRA1">
<param name="textcolor" value= "#FFFFF">
<param name="effect" value="'ow">
<param name="url" value="team. htm valuetype="ref">
<param name="font" value="Dialog">
<param name=" fontstyle" value="old" >
<param name="fontsize" value="14">
<param name= "bgcolor" value= "#9EEEA">
<param name= "color" value="#366D6D" >

</applet>

<applet code="fphover.cl'ass" codebase="_fpciass/" width="1301" height="24">

<param name="text" value="The Project">
<param name="hovercolor" value= "#9BECEA">
<param name="textcolor" value="#FF'F'F>
<param name=l"effect" value="gl9ow" >
<param name="url" value="project.ht'" valuetype="11ref">
<param name= "fent" value= "Dialog">
<param name=" fontstyle" value="bold">
<param name="fontsize" value="14">
<param name="bgcolor" value="#9ECEA" >
<param name='"color" value=""#366D6D">

</app(let>
</p>
<div align="center"><center><table border="0" width="534" height="179" cellpadding="15">

<tr>
<td width="293" height="1" align="center"><form method="POST" action="default.asp">

<table border="-" width="102%" cellpadding="30" cellspacing="1">
<tr>

<td width="94%"><div align="left"><h5>Enter Your User ID

<input type="text" name="LoginID" size='"12" value=" <-Request.Cookies("LoginID")> ">
</h5>
</div><div align="left"><h5>Enter Your Password

<input type= "password" name="Password" size="121"> </h5>
</div><div align="left"><h5>Select Your Project

<select name="iroject" size="1" >

<I 'Get Info for Combo Box
Set MainAbbyDB = Server.CreateObject("ADODB.Connection")
MainAbbyDB.Open Session("MainAbbyDB_ConnectionString"), Session("MainAbbyDBRuntimeUserName"), Session("MainAbbyDBRuntimePassword")
SQLQuery = "SELECT * FROM MasterTable"
Set RS = MainAbbyDB.Execute(SQLQuery)
While (not RS.EOF)

If ((Request("Project") - Trim(RS("SystemName"))) OR (Request.Cookies("Project") = Trim(RS("SystemName")))) Then
Response.Write ("<option selected value='" + Trim(RS("SystemName")) + "'>" + Trim(RS("ProjectName")) + "</option>")

Else
Response.Write ("<option value='" + Trim(RS("SystemName")) + "'a" + Trim(RS("ProjectName")) + "</option>")

End If
RS.MoveNext

Wend
RS.Close
MainAbbyDB.Close

> </select></h5>
</div></td>

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 e Page 86 Nader Sabbaghian Appendix C - Program Modules

<td width="100%"><div align="cen.ter"><center><h5><big><%=Warnt></big></h5>
</center></div></td>

</tr>
</table>
<div align="center"><center><p>< input type="submit" value="LOGIN" name="Actionl"
width="00"></p>
</center></div>

</form>
</td>

</tr>
</table>
</center></div></td>

</tr>
</table>
</center></div>
<p align= "center" ><small>This tool requires Netscape
Navigator 4.06 - Click here </small><img src="netscapenowanim.gif"
alt="nescape nowanim.gif (1194 bytes)" WIDTH="90" HEIGHT="30"> <small>to
get the latest version</small>

</p>
</fonts </bodv> </html>

Module:

Description:

/user/home.asp

User home page where issues and requests are posted. All outstanding issue records for the user are

analyzed, formatted and presented in a tabular format. Various fields in the table are hyperlinked to provide

users with additional information on each issue. Users can navigate to their DSM, the model's task hierarchy

view. The system administrator is given access to the user accounts page.

<'@ LANGUAGE="VBSCRIPT" %>
<, Response.Expires = 0 t>
<script LANGUAGE="VBScript" RUNAT="Server">
<html>
<head>
<link REL="stylesheet" HREF="../StyleSheets/mystyles.css" TYPE="text/css">
<title><%=Session("Name")%>'s Home</title>
<meta name."Microsoft Border" content=1"none">
<meta name="Microsoft Theme" content="none">
</head>
<body background="../dgrey042.jpg">
<script Language-"JavaScript">
function openAssign(s) {

window.open(s, 'Assign', 'width=400,height-400')

function openRequest(s)
window.open(s, 'Request', 'width=400,height=240')

function openDeny(s)
window.open(s, 'Deny', 'width=400,height-400')

</script>
<p> </P>
<div align="center"><center>
<table border="3" width="90%">

std width="10"><p align="center">

<If Session("isSysAdmin")="true" Then

Response.Write "<applet code="+"fphover.class"+" codebase-"+"../_fpclass/"+" width="+"130"+ " height="+"24"+">"
Response.Write "<param name="+"text"+" value="+"Accounts "+">"
Response.Write "<param name."+"hovercolor"+" value="+"#9BECEA"+">"
Response.Write "<param name="+"textcolor"+" value="+"#FFFFFF"+">"
Response.Write "<param name="+"effect"+" value="+"glow"+">"
Response.Write "<param name="+"url"+" value="+"../sysadmin/usersList.asp"+" valuetype="+"ref"+">"
Response.Write "<param name="+"font"+" value="+"Dialog"+">"
Response.Write "<param name="+"fontstyle"+" value="+"bold"+">"
Response.Write "<param name="+"fontsize"+" value="+"14"+">"
Response.Write "<param name="+"bgcolor"+" value="+"#9BECEA"+">"
Response.Write "<param name="+"color"+" value="+"#366D6D"+">"
Response.Write "</applet>

End If>
<applet code="fphove r.class" codebase="../_fpclass/" width="130" height="24">

<param name="text" value="View My DSM">
<param name="Lovercolor" value="#9BECEA">
<param name= "textcolor" value=",#FFFF">
<param name="effect" value="g.ow">
<param name="uri"
value=".. /d/dsm.asp?Lvl= <=Session("InitialLvl") >&am;ParentID=<%=SesSiOn("InitialParentID")I>"
valuetype="ref">
<param name="font" value="Dialog">
<param name="fontstyle" value="bold">
<param name="fontsize" value="14">
<param name="bgcolor" value="#r9bECEA">
<param name="color" value="#36D6D">

</applet>

<applet code="fphover.class" codebase="../ _pclass/" width="130" height="24">

<param name""text" value= "View Hierarchy">
<param name="hovercolor" value="#9BECEA">
<param name="textcolor" value="#FFFFFF">
<param name="effect" value="glow">
<param name="url" value="heirarchy.asp" valuetype="ref">
<param name="font" value="Dialog">
<parami name."f ontstyle" value= "bold">
<param name="fontsize" value="14">

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 * Page 87

<param name="bgcolor" value="9BECEA">
<param name="color" value="#366D6D">

</applet>

<applet code="fphover.class" codebase="../_fpclass/" width="130" height="24">

<param name="text" value="Logout">
<param name="hovercolor" value="#9EECEA">
<param name="textclcor" value="#FFFFFF">
<param name="effect" value="glow">
<param name="urI" value="../default.asp" valuetype="ref">
param name="font" value="Dialog">
<param name="fontstyle" value-"bold">
<param name="f'ntsize" value="14">
<param name="bgcolor" value="#9BECEA">
<param name="color" value="#366DGD">

</applet>
</p>
<p>

</P>
<hl><%=Session("Name")%>ls Home

</h1>
<p>< '

Set Data Conn = Server.CreateObject("ADODB.Connection")
DataConn.Open Session("Data Conn ConnectionString"), Session("Data Conn RuntimeUserName"), Session("Data_Conn_RuntimePassword")
SQLQuery = "SELECT * FROM ISSUES WHERE UserID=" + FormatNumber(Session("UserID"),O) + " ORDER BY Type DESC, TaskID DESC"
Set RSIssues = DataConn.Execute(SQLQuery)
MoveOn=0
If (RSIssues.EOF) Then

Response.Write("<h5>

<center>You currently have no issues.</center>

</h5>")
Else

While (not RSIssues.EOF) AND (MoveOn = 0)
If (RSIssues("Type") = "9") Then

Response.Write("<H5>Please create a model for the following tasks</H5>")
Response.Write(chr(10) + chr(13))
Response.Write("<TABLE BORDER=l CELLPADDING=10>")
Response.Write("<TR><TH><H5>Task</TH><TH><HS>Requested By</TH><TH><H5>Action</TH></TR>")
Do While (RSIssues("Type") = "9")

Response.Write(chr(13))
SQLQuery = "SELECT * FROM DSMMaster WHERE TaskID=" + FormatNumber(RSIssues("TaskID"),0)
Set RSTaskInfo = Data Conn.Execute(SQLQuery)
Response.Write("</h5><TR><TD>")
Response.Write("<A HREF=../dsm/dsm.asp?Lvl=")
Response.Write(FormatNumber(RSTaskInfo("Lvl"),O))
Response.Write("&ParentID=" + FormatNumber(RSTaskInfo("ParentID"),0)+"><u>")
Response.Write(Trim(RSTasklnfo("TaskName Long")) + "</TD>")
SQLQuery = "SELECT * FROM UserProfile WHERE UserID=" + FormatNumber(RSIssues("Originator"), 0)
Set RSOriginator= DataConn.Execute(SQLQuery)
Response.Write("<TD><a HREF='mailto:")
Response.Write(Trim(RSOriginator("Email")) + "?subject=Model Creation'><u>" + Trim(RSOriginator("Name")) + "</TD>")
Response.Write("<TD>")
Response.Write("<a HREF=datacapture.asp?Lvl=")
Response.Write(FormatNumber(RSTasklnfo("Lvl"),O) + 1)
Response.Write("&ParentID=" + FormatNumber(RSIssues("TaskID"),0) + "><u>")
Response.Write("Create Model</TD>")
Response.Write("</TR>")
RSIssues.MoveNext
If RSIssues.EOF Then

Exit Do
End If
RSOriginator.Close
RSTaskInfo.Close

Loop
Response.Write("</TABLE>")
Response.Write("

")

Else
MoveOn = 1

End If
Wend

End If
LastTask =
If (not RSIssues.EOF) Then

Response.Write("<H5>Please resolve the following issues:</H5>")
Response.Write(chr(10) + chr(13))
Response.Write("<TABLE BORDER=1 CELLPADDING=10>")
Response. Write("<TR><TH><h5>Deliverable</TH><TH><h5>Task</TH><TH><h5>Action Created By</TH><TH><h5>Action</TH></TR>")
While (not RSIssues.EOF)

SELECT CASE RSIssues("Type")

CASE "1", "2", "3"
Do While ((FormatNumber(RSIssues("Type"),0) = "1") OR (FormatNumber(RSIssues("Type"),0) = 2) or (FormatNumber(RSIssues("Type"),0) = "3"))

If ((RSIssues("Type") = "3") and (FormatNumber(RSIssues("TaskID"),O) = LastTask)) Then
Else

Response.Write(chr(10) + chr(13))
SQLQuery = "SELECT * FROM DataDictionary WHERE DataElementID=" + FormatNumber(RSIssues("DataElementID"),0)
Set RSDE = DataConn.Execute(SQLQuery)
SQLQuery = "SELECT * FROM DSMMaster WHERE TaskID=" + FormatNumber(RSIssues("TaskID"),O)
Set RSDSM = DataConn.Execute(SQLQuery)
SQLQuery = "SELECT * FROM UserProfile WHERE UserID=" + FormatNumber(RSIssues("Originator"),0)
Set RSOriginator = DataConn.Execute(SQLQuery)
Response.Write("<TR><TD><H2>")
If (RSIssues("Type") - "3") then

Response.Write("<center>N/A</center>")
Else

Response.Write(Trim(RSDE("Name")))
End If
Response.Write("</TD>")
Response.Write("<TD><u><A HREF=../dsm/dsm.asp?Lvl=" + FormatNumber(RSDSM("Lvl"),0) + "&ParentID=" +

FormatNumber(RSDSM("ParentID"),0) + "><u>" + Trim(RSDSM("TaskName Long")) + "</u></TD>")
Response.Write("<TD><u>Model Coordinator</TD>")
Response.Write("<TD>")
If (RSIssues("Type")= "3") Then

ChildLevel=RSDSM("Lvl")+1
Response.Write("<A HREF=../dsm/dsm.asp?Lvl=" + FormatNumber(ChildLevel,0) + "&ParentID=" +

FormatNumber(RSIssues("TaskID"),0) + ">")
Response.Write("<u>View Details</u>")
LastTask = FormatNumber(RSIssues("TaskID"),O)

Else

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 a Page 88 Nader Sabbaghian Appendix C - Program Modules

SELECT CASE RSIssues("Status")
Case 0,1

Response.Write("<A HREF-assign.asp?IssueID=" + FormatNumber(RSIssues("IssueID"),0) +
Response.Write("<u>View Details</u>")

Case 2
Response.Write("Waiting for response from <u>" +

Trim(RSOriginator("Name")) + "</u>")
Case 3

Response.Write("<A HREF:assign.asp?IssueID=" + FormatNumber(RSIssues("IssueID"),0) + ">")
Response.Write("<u>View Details</u>")
Response.Write(" (Request Denied by <A HREF'rmailto:" + Trim(RSOriginator("Email")) + "?subject=Request Denial'>"

+ Trim(RSOriginator("Name")) + ")")
Case 4

Response.Write("<h5>Adressed by you")
END SELECT

End If
Response.Write("</TD></TR>")
RSDE.Close
RSDSM.Close
RSOriginator.Close

End If
RSIssues.MoveNext
If RSIssues.EOF Then

Exit Do
End If

Loop
CASE "5", "6"

Do While ((FormatNumber(RSIssues("Type"),O) = "5") OR (FormatNumber(RSIssues("Type"),0) = "6"))
SQLQuery = "SELECT * FROM DataDictionary WHERE DataElementID=" + FormatNumber(RSIssues("DataElementID"),O)
Set RSDE - DataConn.Execute(SOLQuery)
SQLQuery = "SELECT * FROM DSMMaster WHERE TaskID=" + FormatNumber(RSIssues("TaskID"),O)
Set RSTask = DataConn.Execute(SQLQuery)
Response.Write ("<TR><TD><H2>")
Response.Write(Trim(RSDE("Name")) + "</TD>")
Response.Write("<TD><H2><A HREF=../dsm/dsm.asp?Lvl=" + FormatNumber(RSTask("Lvl"),0) + "&ParentID=" +

FormatNumber(RSTask("ParentID") ,0) + "><u>" + Trim(RSTask("TaskNameLong")) + "</u></TD>")
Response.Write("<TD><H2>")
SQLQuery = "SELECT * FROM UserProfile WHERE UserID=" + FormatNumber(RSIssues("Originator"),O)
Set RSOriginator = Data Conn.Execute(SQLQuery)
Response.Write("<A HREFimailto:" + Trim(RSOriginator("Email")) + "><u>" + Trim(RSOriginator("Name")) + "</u></TD>")
RSOriginator.Close
Response.Write ("<TD><H2>")
SELECT CASE RSIssues("Status")
Case 0,1

Response.Write("")
Response.Write("<u>View Details</u>")

Case 2
Response.Write("<h5>Waiting for response from <u>" +

Trim(RSOriginator("Name")) + "</u>")
Case 3

Response.Write("")
Response.Write("<u>View Details</u>")
Response.Write("<h2>(Request Denied by <A HREF-'mailto:" + Trim(RSOriginator("Email")) + "?subject=Request Denial'><u>"

+ Trim(RSOriginator("Name ")) + "</u>)")
Case 4

Response.Write("<h2>Adressed by you")
END SELECT
Response.Write("</TD>")
Response.Write("</TR>")
RSIssues.MoveNext
If RSIssues.EOF Then

Exit Do
End If
RSDE.Close
RSTask.Close

Loop
End SELECT

Wend
Response.Write("</TABLE>

")

End If
RSIssues.Close
Data Conn.Close

</tr>
</table>
</center></div>
<p aligns "center"> </p> </body></html>

Module: /user/hierarchy.asp

Description: Presents model's task hierarchy through the embedded applet"presentation.Appletl.class". Users can navigate

to the DSM view or home page or logout the system.

numTasks = 0
Set Data Conn = Server.CreateObject("ADODB.Connection")
DataConn.Open Session("Data_ConnConnectionString"), Session("DataConnRuntimeUserName"), Session("DataConnRuntimePassword")

SQLQuery = "SELECT * FROM DSMMaster"
Set RSCount - DataConn.Execute(SQLQuery)
While (not RSCount.EOF)

RSCount .MoveNext
numTasks - numTasks + 1

Wend
RSCount .Close
DataConn.Close

<htmnl>

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 e Page 89

<link REL="stylesheet" HREF=". ./ScyleSlets/myetyles.css" TYPE="text/css">
<title></title>
</head>

<body background=" ../dgrey 042 . j pg">

<p> <irmg
src="../b clr.gif" width="43" height="42" alt="b-clr.gif f3670 bytes)"> </p>
<div align=" center"><center>

<table border="3" width="70%">
<tr>

<td width="100'"><p align="center">

<applet code="fphover.class1" codebase="../__fpclass/" width."130" height="24">

<param name="text" value="View My DSM">
<param name= "hovercolor" value= "#9BECEA">
<param name."t extcollor" value="#FFFFFF">
<param name=<"effect" value=l"glow">
<param name="uri"
value=",../dsmt,/dsmr. asp? Lyl= <k=Session(",InitialLvl")%>:& Parent1D= < z=Session(,"I nitialParentID") >"1
valuetype="ref">
<param name. "font" value="Dialog">
<param name="fontstyle" value= "bold">
<param name="fontsize" value="14">
<param namea"bgcolor" value="#93BECEA">
<param name=1"color" value=" #366D6D">

</applet>

<applet code="fphover. class" codebase="../_fpclass/" widtha"130" height="24">

<param name="text" value="My Hone">
<param name= "hovercolor" value="#9BECEA">
<param name=" textcolor" value= "#FFFTFF">
<param name'effect" value=" glow">
<param name=1"ur" value= "hoe.as " valuetype="ref'>
<param name="font" value= >
<param namea"fontstyle" value="bold">
<param name="fontsize" value="14">
<param name= "bgcolor" value= "#9BECEA">
<param name<"color" value="#366D6D1">

</applet>

<applet code="fphover.class" codebase=".. / _pclass/" width="130" height="24">

<param name=" text" value="Logout">
<param name=",hovercolor" value="#,9EECEA"'>
<param name="textcolor" value="#FFFFFF">
<param name"effect" value="gloaw"'>
<param name="url" value="../default.asp" valuetype="ref">
<param name."font" value="Dialog">
<param name=" fontstyle" value="bold">
<param name="fontsize" value="14">
<param name="bgcolor" value=" #9ECEA">
<param name="color" value=1"#366D6D">

</applet>
</p>
<hl><%=Session("ProjectName")%I> Task Hierarchy</hl>
<p align=1"center">
<applet code="Presentation.AppletI.class" codebase="../" width="350" height="470">

<param name=Project" value="<%=Sessiont"Project")%>">
<param name="numTasks" value="<!=numTasks%>">
<param name="ProiectName" value=" <=Session("ProjectName")v>">
<param name="UserTD" value="< Session("UserID") >">

</applet>

 </td> </tr></table></center></div></body></html.>

Module: /user/assign.asp

Description: Page created to describe a data disconnect scenario for both input and output dangling dependencies. Three

option buttons are provided with a comment box. Validation is performed to ensure comments are provided

for options 2 and 3. A combo box containing all users in the database is provided for issue delegation.

Msg = "Please select a course of action:"
Warn =""
Set DataConn = Server.CreateObject("ADODB.Connection")
DataConn.Open Session("DataConn_ConnectionString"), Session("DataConn_RuntimeUserName"), Session("DataConnRuntimePassword")

SQLQuery = "SELECT * FROM Issues WHERE IssueID=" + Request.QueryString("IssueID")
Set RSIssues = Data Conn.Execute(SQLQuery)
If (Request("ActionChoice") = "") Then

Warn
Else

If (Request("ActionChoice") = "C2") Then
If (Request("UserChoice") = "-42") Then

Warn = "Please select a valid user."
End If
If ((Request("Comments") = "") and (Warn='")) Then

Warn = "Please enter a comment."
End If

ElseIf (Request ("ActionChoice") - "C3") Then
If (Request("Comments") = "") Then

Warn = chr(13) + "Please enter a comment."
End If

End If
End If
If Request("Action")=" OK " Then

If Warn = "" Then
SELECT CASE Request("ActionChoice")

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 a Page 90 Nader Sabbaghian Appendix C - Program Modules

CASE "Cl"
SQLQuery - "UPDATE Issues SET Status=4 WHERE IssueID." + Request("IssueID")
Set RSUpdate = Data Conn.Execute(SQLQuery)
SQLQuery - "SELECT ParentID, Lvl FROM DSMMaster WHERE TaskID=" + FormatNumber(RSIssues("TaskID"),0)
RSDSM - Data Conn.Execute(SQLQuery)
Target = "..7dsm/dsm.asp?ParentID=" + FormatNumber(RSDSM("ParentID"),O) + "&Lvl=" + FormatNumber(RSDSM("Lvl"),0)
Response.Redirect Target

CASE "C2"
If (RSIssues("Type") = "1") Then

NewType = "5"
Else

NewType = "6"
End If
SQLQuery - "UPDATE Issues SET Status=2, Originator =" + FormatNumber(Request("UserChoice"),O)
SQLQuery - SQLQuery + " WHERE UserID =" + FormatNumber(Session("UserID"),0)
SQLQuery - SQLQuery + " AND TaskID -" + FormatNumber(RSIssues("TaskID"),0)
SQLQuery = SQLQuery + " AND DataElementID =" + FormatNumber(RsIssues("DataElementID"),0)
Set RSUpdate = Data_Conn.Execute(SQLQuery)

SQLQuery = "INSERT INTO Issues VALUES(" + FormatNumber(Request("UserChoice"),O) +
SQLQuery - SQLQuery + FormatNumber(Session("UserID"),O) +
SQLQuery = SQLQuery + FormatNumber(RSIssues("TaskID"),0) +
SQLQuery = SQLQuery + FormatNumber(RSIssues("DataElementID"),0) + ", " + NewType + ", 0, 0, 0,
SQLQuery = SQLQuery + FormatNumber(RSIssues("IssueID"),O) + ")"
Set RSInsert = Data_Conn.Execute(SQLQuery)

SQLQuery = "SELECT IssueID FROM Issues WHERE ParentIssuelD=" + FormatNumber(Request.QueryString("IssueID"),0)
Set RSNewIssue = DataConn.Execute(SQLQuery)

Set cmdTemp = Server.CreateObject("ADODB.Command")
Set cmdTemp.ActiveConnection = Data Conn
Set rsTemp = Server.CreateObject("ADODB.Recordset")
cmdTemp.CommandText = "SELECT * FROM Comments"
cmdTemp.CommandType =1
rsTemp.Open cmdTemp, ,1,3
rsTemp.AddNew
rsTemp("IssueID") = FormatNumber(RSNewlssue("IssueID"),0)
rsTemp("ParentIssueID") = FormatNumber(Request.QueryString("IssueID"),0)
rsTemp("FromID")= FormatNumber(Session("UserID"),0)
rsTemp("ToID")= FormatNumber(Request("UserChoice"),O)
rsTemp("Comments")= Request("Comments")
rsTemp.Update
rsTemp.Close
Response.Redirect "home.asp"

CASE "C3"
SQLQuery = "UPDATE Issues SET Status=4 WHERE IssueID=" + Request("IssueID")
Set RSUpdate = Data_Conn.Execute(SQLQuery)
SQLQuery - "INSERT INTO Comments VALUES(" + FormatNumber(Request.QueryString("IssuelD"),O) +
SQLQuery - SQLQuery + FormatNumber(Request.QueryString("IssueID"),0) +
SQLQuery - SQLQuery + FormatNumber(Session("UserID"),0) +
SQLQuery - SQLQuery + "-1, ."
SQLQuery = SQLQuery + Request("Comments") +
Set RSInsertComment = DataConn.Execute(SQLQuery)
Response.Redirect "home.asp"

END SELECT
End If

ElseIf Request("Action")="Cancel" Then
RSIssues.Close
Response.Redirect "home.asp"

End If
SQLQuery = "SELECT Name FROM DataDictionary WHERE DataElementID=" + FormatNumber(RSIssues("DataElementID"),0)
Set RSDE = Data_Conn.Execute(SQLQuery)
SQLQuery = "SELECT TaskNameLong, TaskName_Short FROM DSMMaster WHERE TaskID=" + FormatNumber(RSIssues("TaskID"),0)
Set RSTask = DataConn.Execute(SQLQuery)
If (RSIssues("Type") = "1") Then

IO = "input"
PUpres = "produces"
PUing = "producing"
PUpast - "produce"

Else
ID - "ouput"
PUpres . "uses"
PUing . "using"
PUpast = "use"

End If

<html>
<head>
<link REL="sLylesheet" HREF=". ./StyleSheets/mystyles.css" TYPE="text/css">
<title></title>
</head>
<body background="../dgrey042.jpg">
<p> </p>
<div align="center"><center>

<table border="3" width="30%">
<tr>

<td width="IC"0">

<table border="." ALIGN="CENrER">

<tr>
<td align="CENTER"><img src="../Presentation/Oval.gi" alt="Oval.gif (533 bytes;"
WIDTH="I96" HEIGHT="67"></td>
<td alibn="CENTER"><img src=". ./images/arrow.GIF" alt="<%=Trim,RSDE("Name"))'>"
WIDTH="133" HEIGHT="42"></td>
<td align="C:ENTER"><img src-". ./Presentation/Oval.gif" alt="Cval.gif (533 bytes)"
WIDTH=".96" HEIGHT="67"></td>

</tr>
<tr>

<td ALIGN="CENTER"><h2><%If (RSIssues("Type") = "1") Then
Response.Write("?????")

Else
Response.Write(Trim(RSTask("TaskNameShort")))

End If
M> </o2>

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 e Page 91

</td>
<td align="CENTER"><i><=Trim(RSDE("Name ")f) ></i> </td>
<td align="CENITTER"><If (RSIssues("Type") = "2") Then
Response.Write("<h2>?????")

Else
Response.Write (Trim(RSTask("TaskNameShort")))

End If

</td>
</tr>

</table>
<h15>There are no tasks in the model that <%=PUpast%> deliverable: <i><^r=Trim(RSDE("Name"))></i>

</h5>
<form method= "POS'T" onsubmit="r eturn FrontiPage FormlValidator(this)"
name="FrontPage_Forml">

<table border="-" width="1100">
<tr>

<td width="60%'"><h5><u><%=Msg%></u></l5>
<h2><input type="radio" value="Cl" name="ActionChoice"> I will fix this </h2>
<h2><input type="radio" name="ActionChoice"
<iIf (Request("ActionChoice") = "C2") Then

Response.Write("checked ")
End If%>value="C2">

The person <%Response.Write(PUing + " ")*> this deliverable is <select name="UserChoice" size="1">
<option value="-42">Please Choose.. .</option>

Set Data Conn = Server.Createobject("ADODB.Connection")
DataConn.Open Session("DataConnConnectionString"), Session("DataConnRuntimeUserName"), Session("DataConnRuntimePassword")

SQLQuery = "SELECT * FROM UserProfile"
Set RSUsers = DataConn.Execute(SQLQuery)
While (not RSUsers.EOF)

If (FormatNumber(RSUsers("UserID") ,0) = FormatNumber(Request("UserChoice") ,0)) Then
Response.Write ("<option selected value='" + FormatNumber(RSUsers("UserID"),0) + "'>" + Trim(RSUsers("Name")) + "</option>")

Else
Response.Write ("<option value='" + FormatNumber(RSUsers("UserID"),0) + "'>" + Trim(RSUsers("Name")) + "</option>")

End If
RSUsers .MoveNext

Wend
RSUsers .Close

</select></h2>
<p>

<input type="radio" name="ActionChoice"
<'If (Request("ActionChoice") = "C3") Then

Response.Write("checked ")
End If">

value="C3"> I do not know who <Response.Write (PUpres + " ") > this deliverable </p>
<h5><u>Comments:</u>

<!--webbot bot='Validation" startspan S-DiEplay-Name="Cortents" I-Maximum-Length="250" -- ><!-webbot
bot="validation" ndspan -- ><textarea rows="7" name=-Comments" cols="40">< =Request ("Comments") -></textarea></h5>
<h5><input type=submit" value=" OK " name="Action"> <input
type="uUbmit" value="Cancel" name="Action"></h5>
</td>
<td width= "40%"><div align="center"><center><h5><r=Warn></h5>
</center></div></td>

</tr> </table> </form> </td> </tr></table></center></div></body></html>

Module: /user/request.asp

Description: Page created to describe a data disconnect scenario that has been assigned by another user for both input and

output dangling dependencies. Three option buttons are provided with a comment box. Previous comments

are presented separately with hyper-linked origin and destination information Validation is performed to

ensure comments are provided for options 2 and 3. A combo box containing all users in the database is

provided for issue delegation.

Msg = "Please select a course of action:"
Set Data Conn = Server.CreateObject("ADODB.Connection")
DataConn.Open Session("DataConnConnectionString"), Session("DataConnRuntimeUserName"), Session("DataConnRuntimePassword")

SQLQuery = "SELECT * FROM Issues WHERE IssueID=" + Request.QueryString("IssueID")
Set RSIssues = Data_Conn.Execute(SQLQuery)

If (Request("ActionChoice") = "") Then
Warn =

Else
If (Request("ActionChoice") = "C2") Then

If (Request("UserChoice") = "-42") Then
Warn = "Please select a valid user."

End If
If ((Request("Comments") = "") and (Warn="")) Then

Warn . "Please enter a comment."
End If

ElseIf (Request("ActionChoice") = "C3") Then
If (Request("Comments") = "") Then

Warn = chr(13) + "Please enter a comment."
End If

End If
End If
If Request("Action")=" OK " Then

If Warn = "" then
SELECT CASE Request ("ActionChoice")

CASE "Cl"
SQLQuery - "UPDATE Issues SET Status=4 WHERE IssueID=" + Request("IssueID")
Set RSUpdate = Data_Conn.Execute(SQLQuery)
SQLQuery = "SELECT ParentID, Lvl FROM DSMMaster WHERE TaskID=" + FormatNumber(RSIssues("TaskID"),0)

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 a Page 92 Nader Sabbaghian Appendix C - Program Modules

RSDSM - Data Conn.Execute(SQLQuery)
Target = "..7dsm/dsm.asp?ParentID=" + FormatNumber(Session("InitialParentID"),0) + "&Lvl=" +

FormatNumber(Session("InitialLvl"),0)
Response.Redirect Target

CASE "C2"
SQLQuery = "UPDATE Issues SET Originator =" + FormatNumber(Request("UserChoice"),0)
SQLQuery = SQLQuery + " WHERE IssuelD -" + FormatNumber(RSIssues("ParentIssueID"),0)
Set RSUpdate = DataConn.Execute(SQLQuery)

SQLQuery = "UPDATE Issues SET Originator = " + FormatNumber(Session("UserID"),0)
SQLQuery = SQLQuery + ", UserID = " + FormatNumber(Request("UserChoice"),0)
SQLQuery - SQLQuery + " WHERE IssuelD = " + FormatNumber(Request.QueryString("IssueID"),0)
Set RSUpdate2 = DataConn.Execute(SQLQuery)

Set cmdTemp . Server.CreateObject("ADODB.Command")
Set cmdTemp.ActiveConnection - Data Conn
Set rsTemp = Server.CreateObject("ADODB.Recordset")
cmdTemp.CommandText = "SELECT * FROM Comments"
cmdTemp .CommandType =1
rsTemp.Open cmdTemp, ,1,3
rsTemp.AddNew
rsTemp("IssuelD") - FormatNumber(Request.QueryString("IssueID"),0)
rsTemp("ParentIssueID") = FormatNumber(RSIssues("ParentIssueID"),0)
rsTemp("FromID")= FormatNumber(Session("UserID"),0)
rsTemp("ToID")= FormatNumber(Request("UserChoice"),0)
rsTemp("Comments")= Request ("Comments")
rsTemp.Update
rsTemp.Close
Response.Redirect "home.asp"

CASE "C3"
SQLQuery = "UPDATE Issues SET Status=4 WHERE IssueID=" + Request("IssueID")
Set RSUpdate = Data Conn.Execute(SQLQuery)
SQLQuery = "INSERT INTO Comments VALUES(" + FormatNumber(Request.QueryString("IssueID"),0) +
SQLQuery = SQLQuery + FormatNumber(RSIssues("ParentIssueID"),0) +
SQLQuery = SQLQuery + FormatNumber(Session("UserID"),0) +
SQLQuery = SQLQuery + "-1, '
SQLQuery - SQLQuery + Request("Comments") +
Set RSInsertComment = DataConn.Execute(SQLQuery)
Response.Redirect "home.asp"

END SELECT
End If

ElseIf Request("Action")="Cancel" Then
RSIssues.Close
Response.Redirect "home.asp"

End If
SQLQuery = "SELECT Name FROM DataDictionary WHERE DataElementlD=" + FormatNumber(RSIssues("DataElementID"),0)
Set RSDE = Data Conn.Execute(SQLQuery)
If (RSIssues("Type") = "5") Then

PU = "produce"
PUpres - "produces
PUing - "producing"
PUpast = "produced"

ElseIf (RSIssues("Type") = "6") Then
PU - "use"
PUpres = "uses
PUing = "using"
PUpast = "used"

End If
SQLQuery = "SELECT TaskName Long, TaskNameShort FROM DSMMaster WHERE TaskID=" + FormatNumber(RSIssues("TaskID"),0)
Set RSTask = DataConn.Execute(SQLQuery)

<html>
<head>
<link REL="stylesheet" HREF="../StyleSheets/mnystyles.css" TYPE="text/css">
<title></title>
</head>
<body background="../dgreyO42. jpg">
<p> </p>
<div align= "center"><center>
<table border="3" width="90%">

<t.r>
<td width="IC00">

<table border= "0" ALIGNa"CENTER">

<tr>
<td align="CENTER"><img src="../Presentation/Oval.gif" alt="Oval.gif (533 bytes)"
WIDTH""196" HEIGHT="67"></td>
<td align="CENTER"><.cirg src="../images/arrow.GIF" alt="<%=Trim(RSDE("Name"))>"
WIDTH="138" HEIGHT="42"></td>
<td align="CENTER"><img src="../Presentation/Oval.gif" alt="Oval.gif (533 byLes)"
WIDTH="196" HEIGHT="67"></td>

</tr>
<tr>

<td ALIGN="CENrER"><h2><If (RSIssues("Type") - "5") Then
Response.Write("YOUR PROCESS")

Else
Response.Write(Trim(RSTask("TaskNameShort")))

End If
'> </h2>

</td>
<td align="CENTER"><i><=Trim(RSDE("Name"))></i> </td>
<td align="CEN TER"><a'If (RSIssues("Type") = "6") Then
Response.Write("<h2>YOUR PROCESS")

Else
Response.Write(Trim(RSTask("TaskNameShort")))

End If

</td>
</tr>

</table>

SQLQuery = "SELECT Name FROM UserProfile WHERE UserID=" + FormatNumber(RSIssues("Originator"),0)
Set RSUsers - Data_Conn.Execute(SQLQuery)

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 a Page 93

<h5><=RSUsers("Name")%> has indicated that one of your processes <xResponse.Write(PUpres + " deliverable:" + " <i>" +
Trim(RSDE("Name"))+ "</i>"f)%>

</h5>
<form method="FOST" onsubmit="return Front!iageFormi_Validator (this)"
name= "FrontPage Forml">

<table border="0" width="1005">
<tr>

<td width="6O%"><hS><u><%=Msg.></u></h5>
<h2><input type="radio" value="Cl" name="Act ionChoice"> I <Response.Write(PU + " " + "this deliverable")?> and will add it to my process

</h2>
<2><input type=""radio" name="Acti'onChoice" value="C2"> The person <tResponse.Write(PUing + " " + "this deliverable ")> is <select
name="UserChoice" size="1">

<option selected value="-'2">Please Choose...</option>

Set Data Conn = Server.CreateObject("ADODB.Connection")
DataConn.Open Session("DataConnConnectionString"), Session("DataConnRuntimeUserName"), Session("DataConnRuntimePassword")

SQLQuery = "SELECT * FROM UserProfile"
Set RSUsers = Data_Conn.Execute(SQLQuery)
While (not RSUsers.EOF)

Response.Write ("<option value='" + FormatNumber(RSUsers("UserID"),O) + "'>" + Trim(RSUsers("Name")) + "</option>")
RSUsers.MoveNext

Wend
RSUsers .Close

</select> </h2>
<h2><input type="radio" name="ActionChoice" value="C3"> I do not know who <Response.Write (PUpres + "this deliverable")!> </h2>
<k5><u>Comments:</u>

<!-webbot bot-="Validation" startspan S Display-Name="CommenCns" I-Maximum-Length="250" ->!webbot
bot="Validation" endspan -- ><textarea rows="7" name="Corments" cols="40"><=Request("Comments")></textarea></h5>
<p> </p>
<h5><fonit face="Arial" color="#000000"><input type=,submit" value=" OK " name="Action"> <input
type=" submit" value= "Cancel" name= "Action";</h5>
<h5><4=Warn%></h5>
</td>
<td width="40%" align="top" align="left"><%

SQLQuery = "SELECT ParentIssueID FROM Comments WHERE IssueID=" + Request("IssueID")
Set RSCommentl = DataConn.Execute(SQLQuery)

SQLQuery = "SELECT * FROM Comments WHERE ParentIssueID=" + FormatNumber(RSCommentl("ParentIssueID"),0) + "ORDER BY CommentID DESC"
Set RSComment = DataConn.Execute(SQLQuery)

While (not RSComment.EOF)
SQLQuery = "SELECT Name, Email FROM UserProfile WHERE UserID=" + FormatNumber(RSComment("FromID"),O)
Set RSFrom = DataConn.Execute(SQLQuery)
Response.Write("----------------------------------
")
Response.Write ("From: " + Trim(RSFrom("Name")) + "
")
SQLQuery = "SELECT Name, Email FROM UserProfile WHERE UserID" + FormatNumber(RSComment("ToID"),0)
Set RSTo = Data Conn.Execute(SQLQuery)
Response.Write ("To: " + Trim(RSTO("Name")) + "
")
Response.Write ("Comments: " + RSComment("Comments")+"
")
Response.Write("---------------------------------
Response.Write("

")
RSComment .MoveNext

Wend

</td> </tr> </table> </form> </td> </tr> </table> </center></div> </body> </html>

Module: /user/datacapture.asp

Description: Presents the data capture main embedded applet "DataCapture.FrontEnd.AbbyApplet.class" used to present

entered tasks for addition, deletion, editing and sequence definition.

Set Data Conn = Server.CreateObject ("ADODB.Connection")
DataConn.Open Session("DataConnConnectionString"), Session("DataConnRuntimeUserName"), Session("DataConnRuntimePassword")
SQLQuery = "SELECT TaskNameLong FROM DSMMaster WHERE TaskID=" + Request.QueryString("ParentID")
Set RSDSM = Data Conn.Execute(SQLQuery)
TaskName = Trim(RSDSM("TaskNameLong"))
RSDSM.Close
Data Conn.Close
Set KSDSM = Nothing

<html>
<head>
<iink REL="stylesheet" HREF="../StyleSheets/mysty e.css" TYPE"text/css">
<title></title>
</head>
<body background=", ./dgrey042.jpg">
<p> </p>
<div align="1center "><center>
<table border="3" width="70'>

<tr>
<td width="Ofc11><p align="center">

</p>
<p align="cnte" >
<applet code="fphover.class" codebase="../_fpclass/" width="130" height="24">

<param name="text" value= "View My DSM" >
<param name="hovercolor" value="#9BECEA">
<param name="textcolor" value="#4FFFFFF">
<param name="effect" value="glo">
<param name="uri"
value=". ./dsm,,/ dsm. aspLv1.l= < -Sessi-'on; "1Ini tialLvl")> & Parenlt.1D <I =Sess ion(" InitialParent ID"1)%>
valuetype=""ref" >
<param name=" oni" value=" Dialog">
<param name="fontstyle" value="bold">

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 # Page 94 Nader Sabbaghian Appendix C - Program Modules

<param name="fontsize" value="14">
<param name="bgcolor" value="#9B.ECEA">
<paran name="color" value="#366D6D">

</applet>

<applet code="fphover-class" codebase="../_fpclass/" width="l30" height="24">

<param name="text" value."My Home">
<param name=" overcolor" value="#9BECEA">
<param name="textcolor" value="4FFFFFF">
<param name="effect" value="glow">
<param name="url" value="home.asp" valuetype="ref">
<param name="font" value="Dialog">
<param name="fontstyle" value="bold">
<param name="fontsize" value="14">
<param name="bgcolor" value="#9BECEA">
<param name="color" value=1"#3G6D6D">

</applet>
</P>
<hl>Model Creation for <*=TaskName></hl>
<p align="center">
<applet code="DataCapture.FrontEnd.AbbyApplet.class" codebase="../" width="399"
height="5

5
2">

<param name="ParentlD" value="< =FormatNum-ber(Request.QueryString("ParentID") 0):>">
<param name="Lvi" value="< FormatNutnber(Request.QueryString("Lvl"), 0)>">
<param name="User1D" value="< =FormatNumber'Session("UserID"), 0)*>">
<param name="Project" value="<%=Session("Project")%>">
<param name=-"askName" value="< =TaskName;r>">

</applet>
</td> </tr> </table> </center></div> </body></html>

Module: /dsm/dsm.asp

Description: Presents the data capture main embedded applet "DataCapture.FrontEnd.AbbyApplet.class" used to present

entered tasks for addition, deletion, editing and sequence definition.

Response.Expires = 0
If (Session("NewModel") = "true") Then

SQLQuery = "UPDATE MasterTable SET NewModel=0 WHERE SystemName = '" + Session("Project") +
Set MainAbbyDB . Server.CreateObject("ADODB.Connection")
MainAbbyDB.Open Session("MainAbbyDB_ConnectionString"), Session("MainAbbyDBRuntimeUserName"), Session("MainAbbyDBRuntimePassword")
Set RSSetOldModel = MainAbbyDB.Execute(SQLQuery)
MainAbbyDB.Close

End If
Lvl = Request.QueryString("Lvl")
ParentID - Request.QueryString("ParentID")

Set Data Conn - Server.CreateObject("ADODB.Connection")
Data Conn.Open Session("DataConnConnectionString"), Session("Data Conn RuntimeUserName"), Session("DataConnRuntimePassword")
SQLQuery = "SELECT * FROM DSMMaster WHERE ParentID=" + ParentlD + "~AND Lvl=" + Lvl + " ORDER BY Rank"
Set RSDSM = DataConn.Execute(SQLQuery)

If ((FormatNumber(RSDSM("UserID"),O) = FormatNumber(Session ("UserID"),O)) OR (Session("isSysAdmin") - "true")) Then
Session('AllowChange") = 1

Else
Session("AllowChange") = 0

End If
numTasks - 0
While (not RSDSM.EOF)

numTasks = numTasks + 1
RSDSM.MoveNext

Wend
Width - (2*Session("Padding")) + ((((Session("CellHeight") + Session("Offset"))*numTasks))-Session("Offset")) + ((2
(Session("CellWidth"))+Session("Offset"))) + ((Session("CellHeight")/2) + Session("Offset"))
Height = (2*Session("Padding")) + (((Session("CellHeight") + Session("Offset"))*numTasks)-Session("Offset")) +
(Session("CellHeight")+Session("Offset"))+ Session("MenuSpace")
RSDSM.Close
DataConn.Close

IF Lvl=1 then
ParentTaskName= "Top Level decompostion"

Else

Set Data Conn = Server.CreateObject("ADODB.Connection")
DataConn.Open Session("DataConnConnectionString"), Session("DataConnRuntimeUserName"), Session("DataConn_RuntimePassword")
SQLQuery = "SELECT TaskName_Long FROM DSMMaster WHERE TaskID=" + ParentID
Set RSDSM = DataConn.Execute(SQLQuery)
ParentTaskName= RSDSM("TaskName_Long")
RSDSM.Close
DataConn.Close

End If

Messages.""
MsgTitle=""
MsgEnd=""
TableWidth."O"
If (Session("AllowChange") = 1) then

Set Data Conn = Server.CreateObject("ADODB.Connection")
DataConn.Open Session("DataConnConnectionString"), Session("DataConn_RuntimeUserName"), Session("DataConn_RuntimePassword")
SQLQuery - "SELECT DataElementID FROM Issues WHERE TaskID=" + ParentID + "AND Type= 3"
Set RSDSM = Data Conn.Execute(SQLQuery)
While (not RSDSM~EOF)

DataID = RSDSM("DataElementID")
SQLQuery = "SELECT Name FROM DataDictionary WHERE DataElementID=" + FormatNumber(DataID,0)
Set RSDSM2 = Data Conn.Execute(SQLQuery)
SQLQuery = "SELECT Type FROM 10 WHERE DataElementID=" + FormatNumber(DataID,0) +" AND TaskID=" + FormatNumber(ParentID,O)
Set RSDSM3 = Data Conn.Execute(SQLQuery)
if (RSDSM3("Type")=l) then

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 * Page 95

depType=" (Output)
else

depType-" (Input) "
end if
Messages = Messages + depType + "<i> + RSDSM2("Name") + "</i>
"
RSDSM2.close
RSDSM3 .close
RSDSM.MoveNext

Wend
RSDSM.Close
Data Conn.Close
If Messages<>"" then

MsgTitle="<h5>The following deliverables are required in your model:</h5>"
MsgEnd="Please add them to this matrix if you haven't done so already"
TableWidth="1"

End If
End If

<html>
<head>
<link REL="s tyles--eet" HREF=" ./StyleSheets/mystyles.css" TYPE="text/css">
<title></title>
</head>
<body background="../dgrey042.jpg">
<p> </p>
<div align= "center" ><center>

<table border="3" width="70%">
<tr>

<td width="100%"-><p align="1center"1>

</p>
<hl>Level <=Lvl9> - <=ParentTaskNamei> </hl>
<p align= "center">
<applet code="Presentation.DSMStart.class" codebase="../" width="<=Width4>"
height="<%=Height%>">

<param name="ParentnD" value."<1=FornatNumber (ParentlD, 0)9>">
<param name="Lvi" value="<%t=FormatNumber (Lvi, 0)i>">
<param name="numTasks" value="<%=FormatNumber (numTasks, 0) I>">
<param name="ellHeight" value="<=FormatNumberSession("CellHeight") 0)%>">
<param name="CeIlWidth" value="<r(=FormatNumber (Session("Cellwidth"), 0)%>">
<param name="Padding" value="<%=ormatumber Session("Padding") , 0);>">
<param name="FontSize" value."<%=FormatNumber(Session("FontSize") , 0)9>">
<param name="Offset" value="<>=FormatNumber Session("Offset") 0)>">
<param name="MenuSpace" value="<%=FormatNutber (Session'MenuSpace"), 0)9>">
<param name="User1D" value="<=FormatNumber 'Session("UserID"), 0) >">
<param name="AllowChange" value="<%=FormatNumber (Session("AllowChange"), 0)->">
<param name="Project" value="<e=Session("Project")*>">

</applet>
</p>
<dd align="center">

<table border="< i=TableWidth>" width="70%">

<tr>
<td width="100%1">

<%)=MsgTitle%> <blockquote>
<blockquote>

<'=Messagesi>
</blockquote>

</blockquote>
<p>

</p>
<h5><=MsgEndz>

</h5> </td> </tr> </table> <p>

 </p> </dd> </td> </tr></table></center></div></body></html>

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 * Page 96 Nader Sabbaghian Appendix C - Program Modules

D.2 Java Applets

Object

Description:

DataCapture.FrontEnd.AbbyDBConnection.class

This is a critical object used througout the system to provide database connectivity. It establishes

connectivity with the dbAnywhere middleware service. It returns con to calling object as a live connection to

the middlware.

package DataCapture.FrontEnd;

import java.sql.*;

public class AbbyDBConnection(

Connection con;

public AbbyDBConnection(String Project)

String url-"jdbc:dbaw://design:8889/SQLServer/design/" + Project;
System.out.println(url);
try {

String driverName = "symantec.itools.db.jdbc.Driver";
Driver driver = (Driver) Class. forName (driverName) .newInstanceo;
con=DriverManager.getConnection(url,"sa","gromit70");

catch (Exception e) {
System.out.println("Exception: " + e.getMessage());

public Connection getConnection()
return con;

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 * Page 97

Object DataCapture.FrontEnd.AbbyPanel2.class

Description: Task entry and edit object. Used throughout the sysetm as a pop-up or embedded applet. Performs series of

functions such as calls to supporting screens, storing entered data in the appropriate tables, editing and

removing of exisiting tasks etc.

package DataCapture.FrontEnd;

A basic extension of the java.applet.Applet class

import java.awt.*;
import java.applet.*;
import java.sql.*;
import java.util.*;
import Presentation.TaskRecord;
import Presentation.DERecord;
import java.net.*;
import symantec.itools.awt.ScrollingPanel;

public class AbbyPanel2 extends Panel

public int userId=l;
public int parentld=l;
public int level=l;
public AbbyApplet app;
public AbbyDialog ad;
public boolean submit=true;
public Vector newTasks=new Vector();
public Vector removedTasks=new Vectoro;
public String Project; //Mark added Project code
public boolean ContinueWithDelete=true; //Mark added DeleteWarning
public AbbyPanel2(AbbyApplet a)

this));
appea;
userId=app.userId;
parentId=app.parentId;
level=app.level;
Project=app.Project;
label2.setText(app.TaskName);
submit=true;

public AbbyPanel2(AbbyDialog d)
this));
ad=d;
userId=ad.userId;
parentId=ad.parentld;
Project=ad.Project;
level=ad.level;
int numTsks=ad.numTsks;
submit=false;
for (int i=0;i<numTsks;i++) {

Task t=new Task));
t.de=new Vector));
t.shortName=ad.tsks i].TaskNameShort;
t.longName=ad.tsks[i].TaskNameLong;
t.responsiblePersonShort=ad.tsks[i].ResponsibleShort;
t.responsiblePersonLong=ad.tsks[i].ResponsibleLong;
t.rank=ad.tsks[i].Rank;

//Nader 09/18/98
t.TaskID=ad.tsks[il.TaskID;
Vector vi=ad.des[i](0];
Vector vo=ad.des[i][1];
for(int j=0;j<vi.size();j++) {

DERecord dr=(DERecord)(vi.elementAt(j));
DataElement de=new DataElement(dr.Name,dr.Description,true);
t.de.addElement(de);

for(int j-0;j<vo.size();j++) {
DERecord dr=(DERecord)(vo.elementAt(j));
DataElement de=new DataElement(dr.Name,dr.Description,false);
t.de.addElement(de);

tsks.addElement(t);
listl.addItem(ad.tsks[i].TaskNameShort);
list2.addItem(String.value0f(ad.tsks[il.Rank));

public AbbyPanel2()

// This code is automatically generated by Visual Cafe when you add
// components to the visual environment. It instantiates and initializes
// the components. To modify the code, only use code syntax that matches
// what Visual Cafe can generate, or Visual Cafe may be unable to back
// parse your Java file into its visual environment.
// {INIT CONTROLS
setLayout(null);
setSize(411,552);
setFont(new Font("Dialog", Font.PLAIN, 14));
setBackground(new Color(12632256));
addButton = new java.awt.Button();
addButton.setActionComand("button");

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 a Page 98 Nader Sabbaghian Appendix C - Program Modules

addButton.setLabel("Add");
addButton.setBounds(304,110,84,38);
addButton.setBackground(new Color(12632256));
add(addButton);
removeButton = new java.awt.Buttono;
removeButton.setActionCommand("button");
removeButton.setLabel("Remove");
removeButton.setBounds(304,153,84,38);
removeButton.setBackground(new Color(12632256));
add(removeButton);
editButton = new java.awt.Buttono;
editButton.setActionCommand("button");
editButton.setLabel("Edit");
editButton.setBounds(304,196,84,38);
editButton.setBackground(new Color(12632256));
add(editButton);
labell - new java.awt.Label("Tasks:",Label.CENTER);
labell.setBounds(108,72,100,26);
labell.setFont(new Font("Dialog", Font.BOLD, 16));
add(labell);
label2 - new java.awt.Label("Abby Task Entry System",Label.CENTER);
label2.setBounds(1,12,408,51);
label2.setFont(new Font("Dialog", Font.BOLD, 16));
label2.setForeground(new Color(0));
add(label2);
submitButton = new java.awt.Buttono;
submitButton.setActionCommand("button");
submitButton.setLabel("Save");
submitButton.setBounds(304,240,84,38);
submitButton.setBackground(new Color(12632256));
add(submitButton);
quitButton = new java.awt.Button();
quitButton.setActionCommand("button");
quitButton.setLabel("Cancel");
quitButton.setBounds(304,288,84,38);
quitButton.setBackground(new Color(12632256));
add(quitButton);
list1 = new java.awt.List(4);
add(listl);
listl.setBounds(48,108,228,384);
listl.setBackground(new Color(16777215));
list2 - new java.awt.List(4);
add(list2);
list2.setBounds(22,108,24,384);
list2.setBackground(new Color(16777215));
list2.setEnabled(false);
label3 - new java.awt.Label("Sequence:",Label.CENTER);
label3.setBounds(0,72,72,26);
label3.setFont(new Font("Dialog", Font.BOLD, 12));
add(label3);
//))
System.out.println(l);

//DataCache.initialize(new AbbyDBConnection();
System.out.println(2);

//{(REGISTER LISTENERS
SymAction lSymAction - new SymActiono;
addButton.addActionListener(ISymAction);
removeButton.addActionListener(lSymAction);
editButton.addActionListener(lSymAction);
SymItem lSymltem = new SymItemo;
listl.addItemListener(lSymItem);
quitButton.addActionListener(lSymAction);
submitButton.addActionListener(lSymAction);
//M

// ((DECLARE CONTROLS
java.awt.Button addButton;
java.awt.Button removeButton;
java.awt.Button editButton;
java.awt.Label labell;
java.awt.Label label2;
java.awt.Button submitButton;
java.awt.Button quitButton;
java.awt.List listl;
java.awt.List list2;
java.awt.Label label3;
//))

public Vector tsks-new Vector(;
class SymAction implements java.awt.event.ActionListener

public void actionPerformed(java.awt.event.ActionEvent event)

Object object - event.getSourceo;
ew.hideo;
if (object == addButton)

buttonlAction(event);
else if (object -- removeButton)

button2 Action(event);
else if (object =~ editButton)

button3_Action(event);
else if (object -- quitButton)

quitButtonAction(event);
else if (object -- submitButton)

submitButtonAction(event);

void buttonlAction(java.awt.event.ActionEvent event)

setCursor(Cursor.getPredefinedCursor(Cursor.WAITCURSOR));
System.out.println("Mark 1");

TaskWizard twenew TaskWizard(this);
System.out.println("Mark 2");
tw.start();

System.out.println("Mark 3");
setCursor(Cursor.getPredefinedcursor (Cursor.DEFAULTCURSOR));

void button2_Action(java.awt.event.ActionEvent event)

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 e Page 99

setCursor(Cursor.getPredefinedCursor(Cursor.WAITCURSOR));
int pos=listl.getSelectedIndexo;
//Mark added If statement
if (pos > -1){
listl.delItem(pos);

int g=Integer.parseInt(list2.getItem(pos));
list2.delItem(pos);
Task tk=(Task)(tsks.elementAt(pos));
if (newTasks.contains(tk)) {

newTasks.removeElement(tk);

else
removedTasks.addElement(tk);

tsks.removeElementAt(pos);
for(int i=O;i<tsks.sizeo;i++) {

if (((Task)(tsks.elementAt(i))).rank>g)
Task t-(Task)(tsks.elementAt(i));
t.rank=t.rank-1;
tsks.removeElementAt(i);
tsks.insertElementAt(t,i);
list2.replaceItem(Integer.toString(t.rank),i);

setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULTCURSOR));

void button3_Action(java.awt.event.ActionEvent event)

setCursor(Cursor.getPredefinedCursor(Cursor.WAITCURSOR));
//Mark added If statement
if (listl.getSelectedIndex() > -1)

(new TaskInfoDialog(this, true, (Task) (tsks.elementAt(listl.getSelectedIndex())))).show();
setCursor(Cursor.getPredefinedCursor (Cursor.DEFAULTCURSOR));

class SymItem implements java.awt.event.ItemListener

public void itemStateChanged(java.awt.event.ItemEvent event)

Object object = event.getSource();
if (object == listi)

list1_ItemStateChanged(event);

void listiItemStateChanged(java.awt.event.ItemEvent event)

// to do: code goes here.
ew.hideo;
String in="";
try {

in=list2.getItem(list1.getSelectedIndex());

catch(Exception e) {
in="";

ew=new EditWindow(this,in,listi.getSelectedIndexo);
ew.show(getLocationOnScreen().x+24,getLocationOnScreen().y+108+list1.getSelectedIndex()*15);

EditWindow ew=new EditWindow(this, "",0);

void quitsutton Action(java.awt.event.ActionEvent event)

setCursor(Cursor.getPredefinedCursor(Cursor.WAITCURSOR));
setvisible(false);
try{
if (submit)

app.getAppletContext().showDocument(new URL("http://design.mit.edu/Abby/user/home.asp"));

else {
ad.hideo;

catch(Exception e) {
System.out.println(e.toString));

void submitButtonAction(java.awt.event.ActionEvent event)

AbbyDBConnection aDBc=new AbbyDBConnection(Project);
Connection con=aDBc.getConnectiono;
/*try {

PreparedStatement pst2=con.prepareStatement("INSERT INTO DataDictionary " +
"VALUES (?,1"+userId+",?)");

Vector des=DataCache.getNewElementso;
System.out.println("HERE "+des.sizeo);
for(int y=0;yedes.size);y++) {

DataElement de=(DataElement)(des.elementAt(y));
System.out.println("DENAME: "+de.name);
pst2.setString(l,de.name);
pst2.setString(2,de.description);
pst2.executeUpdate();

pst2.close);

catch (Exception e)
System.out.println(e.toString());

}*/
if (submit)

PreparedStatement pst=null;
try {

int lev=level;
String s="INSERT INTO DSMMASTER " + "VALUES ("+userId+","+parentId+

pst=con.prepareStatement(s);
PreparedStatement st=con.prepareStatement("SELECT TaskID FROM DSMMASTER "+

"WHERE TaskNameShort LIKE ?");
int x=O;
while (x<tsks.size()

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 e Page 100 Nader Sabbaghian Appendix C - Program Modules

Task t=(Task)(tsks.elementAt(x));
pst.setString(l,t.shortName);
pst.setString(2,t.longName);
pst.setString(3,t.responsiblePersonShort);
pet.setString(4,t.responsiblePersonLong);
pst.setInt(5,t.rank);
pst.executeUpdate();
x++;

System.out.println("Done DSMMaster");
//con.commit(;

/*X=O;
Vector tIDs=new Vectoro;
while (x<tsks.size() {

Task t=(Task)(tsks.elementAt(x));
st.setString(l,t.shortName);
ResultSet rs=st.executeQuery(;
//con.commit(;
rs.next();
tIDs.addElement(new Integer(rs.getInt(l)));
x++;

x=O;
while (x<tsks.size()

Task t=(Task)(tsks.elementAt(x));
int y=O;
Vector rts=new Vector();
PreparedStatement st2=con.prepareStatement("SELECT DataElementID FROM DATADICTIONARY "+

"WHERE Name LIKE ?");
while(y<t.de.sizeo)) {

DataElement de=(DataElement) (t.de.elementAt(y));
st2.setString(l,de.name);
ResultSet rs2=st2.executeQuery(;
System.out.println(de.name);
rs2.next();
System.out.println(de.name);
ResultType2 rt2-new ResultType20;
rt2.dID=rs2.getInt(1);
rt2.tID=((Integer)(tIDs.elementAt(x))).intValue();

if (de.input) rt2.input=O;
else rt2.inputl;
rts.addElement(rt2);

y++;
//rs2.close(;

con.commit();
st2.close();
PreparedStatement pst3=con.prepareStatement("INSERT INTO 10 VALUES (?,?,?,9)");
for(int i=O;i<rts.sizeo;i++) {

ResultType2 rt2=(ResultType2)(rts.elementAt(i));
pst3.setInt(l,rt2.tID);
pst3.setInt(2,rt2.dID);
pst3.setInt(3,rt2.input);
boolean comd=false;
while (!comd)
try {

pst3 . executeUpdate();
comd=true;
System.out.println("Hit!");

catch (Exception e)
System.out.println("Missed!");

//pst3.close(;
x++;
//con, commit);

//pst.close);
//pst3.close();
//st.close(;
//st2.close(;
con.commit();*/
lev=lev;

app.getAppletContext).showDocument(new URL("http://design.mit.edu/Abby/dsm/dsm.asp?Lvl."+1ev+"&ParentID="+parentId));
PreparedStatement sm=con.prepareStatement("UPDATE DSMMaster SET Flag.l WHERE TaskID=?");
//Mark addition
PreparedStatement sm2=con.prepareStatement("DELETE FROM Issues WHERE Type=9 AND TaskID=?");
sm.setInt(l,parentId);
sm.executeUpdate();
sm2.setInt(l,parentId);
sm2.executeUpdate();

catch (Exception e)
System.out.println(e.toString();

else
System.out.println(removedTasks.size());
if (!removedTasks.isEmpty()){

(new DeleteWarning(this, true)).showo;

System.out.println("ContinueWithDeleteqq--" + ContinueWithDelete);
if (ContinueWithDelete)

System.out.println("CWDSTART");
try {

setCursor(Cursor.getPredefinedCursor(Cursor.WAITCURSOR));
//PreparedStatement npstlcon.prepareStatement("INSERT INTO NewTasks VALUES ("+
// userId+","+parentId+",?,?,?,?,"+level+")");
PreparedStatement npstl=con.prepareStatement("INSERT INTO DSMMaster VALUES ("+

userId+","+parentId+",O,O,?,?,?,?,?," + level + ")");
//PreparedStatement npst2.con.prepareStatement("INSERT INTO RemovedTasks VALUES (?,"+
// userId+")");
PreparedStatement npst2=con.prepareStatement("DELETE FROM DSMMaster WHERE TaskID=?");

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 * Page 101

PreparedStatement npst2b=con.prepareStatement("DELETE FROM 10 WHERE TaskID=?");
PreparedStatement npst2c=con.prepareStatement("DELETE FROM Issues WHERE TaskID=?");

PreparedStatement npst3=con.prepareStatement("INSERT INTO NewDEs VALUES (?,?,
userId+")");

PreparedStatement npst4=con.prepareStatement("INSERT INTO RemovedDEs VALUES (?,"+
userId+")");

// PreparedStatement npst5=con.prepareStatement("UPDATE DSMMaster SET Rank-? WHERE TaskName_Long LIKE ?");
//Nader 09/18/98
PreparedStatement npstN=con.prepareStatement("UPDATE DSMMaster SET Rank=?,

TaskName Short=?,TaskNameLong=?,ResponsibleShort=?,ResponsibleLong=? WHERE TaskID=?");

PreparedStatement nstl=con.prepareStatement("SELECT TaskID FROM DSMMaster "+
"WHERE TaskNameShort LIKE ?");

PreparedStatement nst2=con.prepareStatement("SELECT DataElementID FROM DataDictionary "+
"WHERE Name LIKE ?");

System.out.println("testO");
for(int i=0;i<removedTasks.size);i++) {

//Mark put the two following statements here to re-init for loop
System.out.println("testl");
nstl=con.prepareStatement("SELECT TaskID FROM DSMMaster WHERE TaskNameShort LIKE ?");
npst2=con.prepareStatement("DELETE FROM DSMMaster WHERE TaskID=?");
npst2b=con.prepareStatement("DELETE FROM 10 WHERE TaskID=?");
npst2c=con.prepareStatement ("DELETE FROM Issues WHERE TaskID=?");
System.out.println("test2");
Task rt=(Task) (removedTasks.elementAt(i));
System.out.println("this is the tname -- word -- " + rt.shortName);
nstl.setString(l,rt.shortName);
ResultSet rs=nstl.executeQueryO;
rs.next(;
System.out.println("this is the tid -- " + rs.getInt(l));
int tID=rs.getInt(l);
npst2.setInt(l,tID);
npst2.executeUpdate();
npst2b.setInt(l,tID);
npst2b.executeUpdate();
npst2c.setInt(l,tID);
npst2c.executeUpdate();
for (int j=O;j<rt.de.size();j++)

DataElement rd=(DataElement) (rt.de.elementAt(j));
nst2.setString(l,rd.name);
ResultSet rs2=nst2.executeQuery();
rs2.next);
int dID=rs2.getlnt(1);
npSt4.setInt(1,dID);

for(int i=O;i<newTasks.size);i++) {
System.out.println("test5");
Task nt=(Task) (newTasks.elementAt(i));
npstl.setString(l,nt.shortName);
npstl.setString(2,nt.longName);
npstl.setString(3,nt.responsiblePersonShort);
npstl.setString(4,nt.responsiblePersonLong);
npstl.setInt(5,nt.rank);
npstl.executeUpdate();
nstl.setString(l,nt.shortName);

/* for (int j=0;j<nt.de.size();j++) {
System.out.println("test8");
DataElement nd=(DataElement)(nt.de.elementAt(j));
nst2.setString(1,nd.name);
ResultSet rs2=nst2.executeQuery();
rs2.next();
int dID=rs2.getInt(1);
npst3.setInt(1,dID);
if (nd.input) {

npst3.setInt(2,O);

else
npst3.setInt(2,1);

npst3.executeUpdate();

System.out.println("test9");*/

for(int i=0;i<tsks.size);i++) {

Task t=(Task)(tsks.elementAt(i));

npstN.setlnt(l,t.rank);
npstN.setString(2,t.shortName);
npstN.setString(3,t.longName);
npstN.setString(4,t.responsiblePersonShort);
npstN.setString(S,t.responsiblePersonLong);
npstN.setInt(6,t.TaskID);

npstN.executeUpdate();

npst.closeoC
npstl.close);
npst3.close();
npst4.close);
npstN.closeo;
nstl.close();
nst2.close();

catch (Exception e)
System.out.println(e.toString());

setCursor (Cursor.getPredef inedCursor (Cursor .DEFAULTCURSOR));
ad.hideo;

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 v Page 102 Nader Sabbaghian Appendix C - Program Modules

Object DataCapture.Presentation.Loopz.class

Description: Main applet for displaying the DSM. Includes all user interface functions designed for the matrix such as,

color coordinate tracking, pop-up envokes, matrix layout, dependency populatoin, matrix editing calls, saving

matrix data, decomposition etc.

/*
A basic extension of the java.awt.Frame class

package Presentation;
import DataCapture.FrontEnd.AbbyDialog;
import java.awt.*;
import java.applet.*;
import java.sql.*;
import java.util.*;
import java.net.*;
import java.lang.*;

public class Loopz extends Panel
{

int Parent1D;
int Lvl;
int numTasks;
int CellHeight;
int CellWidth;
int Padding;
int FontSize;
int Offset;
int MenuSpace; //Should almost always be above 30--definitely always above 22.
int UserID;
boolean AllowChange;
String IntersectionChar;
String BreakdownChar
int maxTasks - 25;
boolean DataChanged=false;
DSMStart pFrame;
String Project;
Label [] aResponsible = new LabellmaxTasks];
Label [H aSerialParallel = new Label(maxTasks);

Label [] aTaskLabels = new Label[maxrTasks];
TaskRecord [] aTaskRecords = new TaskRecord[maxTasks];
Vector [][] aDataElements = new Vector[maxTasks](maxTasks];

Vector [][] aDiagonal = new Vector(maxTasks](2];
Label [][] aTasks = new Label(maxTasks][maxTasks];

public Loopz(DSMStart parent)

int i-0;
int j=O;
int k=O;

pFrame = parent;
//({INIT CONTROLS
for (i-0; i<maxTasks; i++)

aDiagonal[i](0] - new Vectoro;
aDiagonalfi)[1] = new Vectoro;
aTaskRecords(il = new TaskRecord();
for (j=O; j<maxTasks; j++)

aDataElements[i] [j]= new Vector));

ParentID = pFrame.ParentID;
Lvl - pFrame.Lvl;
numTasks - pFrame.numTasks;
CellHeight - pFrame.CellHeight;
CellWidth = pFrame.CellWidth;
Padding - pFrame.Padding;
FontSize = pFrame.FontSize;
Offset = pFrame.Offset;
UserID - pFrame.UserID;
MenuSpace = pFrame.MenuSpace;
AllowChange - pFrame.AllowChange;
IntersectionChar - pFrame.IntersectionChar;
BreakdownChar . pFrame.BreakdownChar;
//maxTasks = pFrame.maxTasks;
aTaskRecords - pFrame.aTaskRecords;
aDataElements - pFrame.aDataElements;
aDiagonal = pFrame.aDiagonal;
Project = pFrame.Project;
System.out.println("INLOOPZ -- " + Project);

setLayout(null);
//setVisible(false);
setSize((2*Padding) + (((CellHeight + Offset)*numTasks)-Offset) + (2 * (CellWidth+Offset)) + ((CellHeight/2) + Offset),

(2*Padding) + (((CellHeight + Offset) * numTasks)-Offset) + (CellHeight+Offset)+ MenuSpace);
resize((2*Padding) + (((CellHeight + Offset)*numTasks)-Offset) + (2 * (CellWidth+Offset)) + ((CellHeight/2) + Offset),

(2*Padding) + (((CellHeight + Offset) * numTasks)-Offset) + (CellHeight+Offset)+ MenuSpace);
setBackground(Color.white);
MatrixPanel - new java.awt.Panel();
MatrixPanel.setLayout(null);
MatrixPanel.setBounds(0,0, (2*Padding) + (((CellHeight + Offset)*numTasks)-Offset) + (2 * (CellWidth+Offset)) + ((CellHeight/2) +

Offset), (2*Padding) + (((CellHeight + Offset) * numTasks)-Offset) + (CellHeight+Offset));
MatrixPanel.setBackground(Color.black);
add(MatrixPanel);
//Write Responsible Header
lblResponsibleHeader = new java.awt.Label("Responsible Group",Label.CENTER);
lblResponsibleHeader.setBounds(Padding, Padding, CellWidth, CellHeight);
lblResponsibleHeader.setFont(new Font("Dialog", Font.PLAIN, FontSize));
lblResponsibleHeader.setBackground(Color.white);

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 a Page 103

+Offset))-Offs

MatrixPanel.add(lblResponsibleHeader);
//Write Serial/Parallel Header

lblSerialParallel = new java.awt.Label("",Label.CENTER);
lblSerialParallel.setBounds(Padding + (CellWidth +Offset), Padding , CellHeight / 2, CellHeight);
lblSerialParallel.setFont(new Font("Dialog", Font.PLAIN, FontSize));
lblSerialParallel.setBackground(Color.white);
MatrixPanel.add(lblSerialParallel);
//Write Task Name Header
lblTaskNameHeader = new java.awt.Label ("Task Name",Label.CENTER);
lblTaskNameHeader.setBounds(Padding + (CellWidth +Offset) + ((CellHeight/2) + Offset), Padding
lblTaskNameHeader.setFont(new Font("Dialog", Font.PLAIN, FontSize));
lblTaskNameHeader.setBackground(Color.white);
MatrixPanel.add(lblTaskNameHeader);
//Write Matrix Header
lblMatrixHeader - new java.awt.Label("Level " + Lvl ,Label.CENTER);
lblMatrixHeader.setBounds(Padding + (2*(CellWidth +Offset)+ ((CellHeight/2) + Offset)), Padding

et, CellHeight);
lblMatrixHeader.setFont(new Font("Dialog", Font.PLAIN, FontSize));
lblMatrixHeader.setBackground(Color.white);
MatrixPanel.add(lblMatrixHeader);
//Write Responsible Groups
for (i=0; i<numTasks; i++)

aResponsible[i] = new java.awt.Label(aTaskRecords[i).ResponsibleLong);
aResponsible[i].setBackground(Color.white);
aResponsible i].setFont(new Font("Dialog", Font.PLAIN, FontSize));
aResponsible(il.setBounds(Padding , Padding + (i* (CellHeight+Offset))
MatrixPanel.add(aResponsible[i]);

//Write Task Names
for (i=0; i<numTasks; i++)

aTaskLabels[i] = new java.awt.Label(aTaskRecords[i].TaskNameShort);
aTaskLabels[i].setBackground(Color.white);
aTaskLabels[il.setFont(new Font ("Dialog", Font.PLAIN, FontSize));
aTaskLabels[i].setBounds(Padding + (CellWidth+Offset) + ((CellHeight/2)

(CellHeight + Offset),CellWidth ,CellHeight);
MatrixPanel.add(aTaskLabels[i]);

//Write Serial/Parallel Strip
int LastRank = aTaskRecords[0].Rank;
boolean BlackSquare = true;
for (i=0; i<numTasks; i++)

CellWidth, CellHeight);

(numTasks * (CellHeight

+ (CellHeight+Offset),CellWidth , CellHeight);

+ Offset), Padding + (i *(CellHeiqht+Offset))+

aSerialParallel[i] = new java.awt.Label("");
aSerialParallel i].setPont(new Font("Dialog", Font.PLAIN, FontSize));
aSerialParallel[il.setBounds(Padding + (CellWidth+Offset), Padding + (i *(CellHeight+Offset))+ (CellHeight +

Offset),CellHeight/2 ,CellHeight + (Offset - 1));
if (LastRank == aTaskRecords[i].Rank)

BlackSquare = BlackSquare;
else

BlackSquare = !BlackSquare;
if (BlackSquare)
aSerialParallel[il.setBackground(Color.black);

else
aSerialParallel[i].setBackground(Color.white);

MatrixPanel.add(aSerialParallel[i]);
LastRank = aTaskRecords[i].Rank;

//Draw Matrix from aDataElements and aDiagonal Info

for (i=0; i<numTasks; i++)
for (j=0; j<numTasks; j++)

if (aDataElements[i][j].isEmpty0()
aTasks[i][j] = new java.awt.Label("", 1);

else
aTasks[i)j] = new java.awt.Label(IntersectionChar, 1);

if (i == j)

aTasks[i][j].setForeground(Color.white);
aTasks[i][j].setBackground(Color.blue);
if (aTaskRecords[i].Flag == 1)

aTasks[i)[j].setText(BreakdownChar);

else
aTasks[i][j].setBackground(Color.white);

aTasks[i][j].setFont(new Font("Dialog", Font.PLAIN, FontSize));
aTasks[i] (j] .setBounds(Padding + ((2*CellWidth)+Offset+Offset) + ((CellHeight/2) + Offset) + (j*(CellHeight+Offset)),

Padding + (i *(CellHeight+Offset)) + (CellHeight + Offset),CellHeight ,CellHeight);
MatrixPanel.add(aTasks[i][j]);

for (i=0; i<numTasks; i++)
for(j=O; j<numTasks; j++)

aTasks(i][j].repaint();
validate));
MatrixPanel.repaint();

//Add Menu Buttons
cmdBack = new java.awt.Button();

cmdBack.setLabel(new String ("Up"));
cmdBack.setBounds (0 * ((MatrixPanel.getBounds() .width - 74)/4) ,MatrixPanel.getBounds() .height + (MenuSpace-22),74,22);
cmdBack.setBackground(new Color(12632256));
if (ParentID == 0)

cmdBack.setEnabled(false);
else

cmdBack.setEnabled(true);
add(cmdBack);
cmdSave - new java.awt.Button();
cmdSave.setLabel('Save');
cmdSave.setBounds(3 * ((MatrixPanel.getBounds() .width - 74)/4),MatrixPanel.getBounds() .height + (MenuSpace-22),74,22);
cmdSave.setBackground(new Color(12632256));
cmdSave.setEnabled(false);
add(cmdSave);
cmdOptimize = new java.awt.Button();
cmdOptimize setLabel ("Sequence");
cmdOptimize.setBounds (2 *((MatrixPanel.getBounds().width - 74)/4),MatrixPanel.getBounds(.height + (MenuSpace-22),74,22);
cmdOptimize.setBackground(new Color(12632256));
//cmdOptimize.setEnabled(false);

Massachusetts Institute of Technology - Center for Innovation in Product Development

}

12/16/98 a Page 104 Nader Sabbaghian Appendix C - Program Modules

add(cmdOptimize);
cmdHome = new java.awt.Buttono;
cmdHome.setLabel("My Home");
cmdHome.setBounds (4 *((MatrixPanel.getBounds().width - 74)/4),MatrixPanel.getBounds().height + (MenuSpace-22),74,22);
cmdHome.setBackground(new Color(12632256));
cmdHome .setEnabled (true);
add(cmdHome);
cmdEdit = new java.awt.Button(;
cmdEdit.setLabel("Edit Tasks");
cmdEdit.setBounds(1 *((MatrixPanel.getBounds().width - 74)/4),MatrixPanel.getBounds().height + (MenuSpace-22),74,22);

cmdEdit.setBackground(new Color(12632256));
cmdEdit.setEnabled(AllowChange);
add(cmdEdit);

// REGISTER LISTENERS
SymWindow aSymWindow = new SymWindowo;
SymMouse aSymMouse = new SymMouseo;
//Listeners for Connections
for (i-0; icnumTasks; i++)

aTaskLabels[i].addMouseListener(aSymMouse);
aResponsible i].addMouseListener(aSymMouse);
for (j-0; j<numTasks; j++)

aTasks[i][j].addMouseListener(aSymMouse);

cmdSave.addMouseListeneraSymMouse);
cmdBack.addMouseListener(aSymMouse);
cmdoptimize.addMouseListener(aSymMouse);
cmdHome.addMouseListener(aSymMouse);
cmdEdit.addMouseListener(aSymMouse);
//)}

public void DeleteDEaDiagonal (nt TaskNum, DERecord DE)

int j, k;

for (j=O; j<2; j++)
for (k-0; k<aDiagonal[TaskNum][j].size(; k++)

if (((DERecord)aDiagonal[TaskNum][j].elementAt(k)).ID == DE.ID)

aDiagonal[TaskNum)j].removeElementAt(k);
break;

public DERecord FindDE_Database (String DEName)

DERecord FoundDE = new DERecordo;
AbbyDBConnection adbc=new AbbyDBConnection(Project);
Connection con=adbc.getConnection();
ResultSet rs=null;

Statement stmanull;
try

stm=con.createStatement();
String FindDE="SELECT *"+
" FROM DataDictionary\n"+
" WHERE Name LIKE '" + DEName + "'\n";
System.out.println(FindDE);
rs=stm.executeQuery(FindDE);
rs.next();
FoundDE.ID = rs.getInt("DataElementID");
FoundDE.Name = rs.getString("Name").trim();
FoundDE.UserID = rs.getInt("UserID");
FoundDE.Description . rs.getString("Description");
rs.close();

catch (Exception e)

System.out.println(e.toString();

return FoundDE;

public int FindTaskID_aTaskRecords (int Index)

int i;
for (i=O; i<numTasks; i++)

if (aTaskRecords[i].TaskID == Index)
break;

return i;

public void RestoreConnections)

int i, j, k;
int ii, jj, kk;
//Clear all current connections
for (i=0; i<numTasks; i++)

for (j=O; j<numTasks; j++)
aDataElements i][j].removeAllElements(;

//Cycle through all outputs, match them up with inputs
for (i=0; i<numTasks; i++)

for (k=O; k<aDiagonal[i][1].size(); k++)

for (ii-0; ii<numTasks; ii++)

for (kk=O; kk<aDiagonal[ii][0].size0; kk++)

if (((DERecord)aDiagonal~i][1l].elementAt(k)).ID == ((DERecord)aDiagonal[ii](0].elementAt(kk)).ID)

// ((DERecord)aDiagonal~ii][0].elementAt(kk)).OutputFrom - i;
aDataElementsi] [ii].addElement(aDiagonal[ii][0].elementAt(kk));

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 a Page 105

public void RefreshMatrix()

int i;
int j;

//ReDraw Matrix from aData~lements and aDiagonal Info
for (i=0; i<numTasks; i++)

for (j=0; j<numTasks; j++)

if (i != j) //Don't t

if (aDataElements[i][j].isEmpty())
aTasks[i][j].setText("");

else

ouch diagonals

aTasks[i][j].setText(IntersectionChar);

public void UpdateDatabase()

if (DataChanged)

int i;
int j;
int k;
AbbyDBConnection adbc=new AbbyDBConnection(Project);
Connection con=adbc.getConnectiono;

ResultSet rs=null;
Statement stm=null;
try

stm=con.createStatement();
String DeleteCall="DELETE FROM IO\n"+

FROM DSMMaster\n"+
WHERE IO.TaskID = DSMMaster.TaskID\n"+

" AND DSMMaster.ParentID=" + ParentID + " AND
System.out.println(DeleteCall);
rs=stm.executeQuery(DeleteCall);
stm=con.createStatement();
String InsertCall=" ";
for (i=O; i<numTasks; i++)

for (k=O; k<aDiagonal[i][0].sizeo; k++)

InsertCall += " INSERT INTO 10 VALUES
((DERecord)aDiagonal[i][0].elementAt(k)).ID + ",0,9)\n";

for (i=0; i<numTasks; i++)

for (k=o; k<aDiagonal[i][1].size(); k++)

InsertCall += " INSERT INTO 10 VALUES
((DERecord)aDiagonal[i][1).elementAt(k)).ID + ",1,9)\n";

System.out.println(InsertCall);
rs=stm.executeQuery(InsertCall);
rs.close();

DSMMaster.Lvl=" + Lvl;

//Loop to write back inputs

+ ((DERecord)aDiagonal[i][0].elementAt(k)).InputTo + "," +

//Loop to write back outputs

(" + ((DERecord)aDiagonal(i][1].elementAt(k)).OutputFrom +

catch (Exception e)

System.out.println(e.toStringo);

public synchronized void show()

move(50, 50);
super.show();

public void addNotify()

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSizeo;

super.addNotify(;
if (fComponentsAdjusted)

return;
// Adjust components according to the insets
setSize(insets().left + insets().right + d.width, insets().top + insets).bottom + d.height);
Component components[] = getComponentso;
for (nt i = 0; i < components.length; i++)

Point p = componentsfi].getLocationo;
p.translate(insets().left, insets().top);
components[il.setLocation(p);

fComponentsAdjusted = true;

// Used for addNotify check.
boolean fComponentsAdjusted = false;

//{DECLARE CONTROLS
java.awt.Label lblTaskNameHeader;
java.awt.Label lblResponsibleHeader;
java.awt.Label lblMatrixHeader;
java.awt.Label lblSerialParallel;
java.awt.Panel MatrixPanel;
java.awt.Button cmdSave;
java.awt.Button cmdBack;

java.awt.Button cmdOptimize;
java.awt.Button cmdHome;
java.awt.Button cmdEdit;

//I DECLAREMENUS
c/l
class SymWindow extends java. awt .event .WindowAdapter

Massachusetts Institute of Technology - Center for Innovation in Product Development

}

}

}

12/16/98 * Page 106 Nader Sabbaghian Appendix C - Program Modules

public void windowClosing(java.awt.event.WindowEvent event)

Object object = event.getSourceo;
if (object == Loopz.this)

FramelWindowClosing(event);

void FramelWindowClosing(java.awt.event.WindowEvent event)

class SymMouse extends java.awt.event.MouseAdapter

public void mouseclicked(java.awt.event.MouseEvent event)

Object object - event.getSource(;
if (object -- cmdSave)

cmdSave Clicked();
else if (object == cmdBack)

cmdBack Clicked();
else if (object == cmdEdit)

cmdEdit Clickedo
else if (object == cmdHome)

cmdHome Clickedo;
else if (object == cmdOptimize)

optimize(;
else

MatrixClicked(object);

public void mouseEntered(java.awt.event.MouseEvent event)

Object object - event.getSourceo;
for(int i-0; i<numTasks; i++)

if ((object == aTaskLabels(i]) || (object == aResponsible[i]))

aTaskLabels(i].setBackground(Color.lightGray);
//aResponsible[i].setBackground(Color.lightGray);
//aTaskLabelsli].setFont(new Font("Dialog", Font.BOLD, FontSize));

else

for (int j=O; j<numTasks; j++)
if (object == aTasks[i)[j])
{

if (i < j) {
aTasks[i][j).setBackground(Color.green);

aTaskLabels(i).setBackground(Color.green);
aTaskLabels[j].setBackground(Color.green.brighter());

else

if (i==j){
aTasks(i][j].setBackground(Color.lightGray);

aTaskLabels[i).setBackground(Color.lightGray);
aTaskLabels[j].setBackground(Color.lightGray);

else
aTasks[i)[j].setBackground(Color.red);

aTaskLabels(il.setBackground(Color.red);
aTaskLabels[j].setBackground(Color.red);

//aResponsiblei].setBackground(Color.lightGray);
//aResponsible[j].setBackground(Color.lightGray);

//aTaskLabels[i].setFont(new Font("Dialog", Font.BOLD, FontSize));

public void mouseExited(java.awt.event.MouseEvent event)

Object object = event.getSource(;
for(int i=0; i<numTasks; i++)

if ((object .- aTaskLabels[il) |1 (object == aResponsible~i]))

aTaskLabels[i].setBackground(Color.white);
aResponsible[il.setBackground(Color.white);

else

for (int j=0; j<numTasks; j++)
if (object == aTasks[i][j])

if (i == j)
aTasksi][(j].setBackground(new Color(255));

else
aTasksai][j].setBackground(Color.white);

aTaskLabels[il.setBackground(Color.white);
aTaskLabels[j].setBackground(Color.white);
//aResponsible[i].setBackground(Color.white);
//aResponsible j].setBackground(Color.white);
//aTaskLabels[i].setFont(new Font("Dialog", Font.PLAIN, FontSize));

void MatrixClicked (Object object)

for (nt i-0; i<numTasks; i++)

if (object -- aTaskLabels[i])

setCursor(Cursor.getPredefinedCursor(Cursor.WAITCURSOR));
TasklPopUp Pop = new TasklPopUp((aTaskRecords[i].TaskNameLong).trim(, Project);

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 - Page 107

Pop.setParents(this, aTaskRecords[i]);
Pop.WriteLabels((Vector)aDiagonal i][0].clone), (aTaskRecords[i].TaskNameShort).trim(),

(Vector)aDiagonal~i][1].cloneo);
Pop.show();
setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULTCURSOR));

else

for (int j=0; j<numTasks; j++)
if (object == aTasks[i][j])

if (i != j)

setCursor(Cursor.getPredefinedCursor(Cursor.WAITCURSOR));
Task2PopUp Pop = new Task2PopUp((aTaskRecordsCi].TaskNameShort) .trim() + " -- " + (aTaskRecords[j] .TaskNameShort) .trim(), Project);

Pop.setParents(this, aTaskRecords[i], aTaskRecords[j]);
Pop.WriteLabels((aTaskRecords[i] .TaskNameShort) .trim(), (Vector) aDataElements[i] [j] .clone(), (aTaskRecords[j] .TaskNameShort) .trim(),

(Vector)aDiagonal[i][1].cloneo, (Vector)aDiagonal[j][0].clone());
Pop.show();

setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULTCURSOR));

else

if ((aTaskRecords[i].Flag == 0) && (AllowChange)) //If no breakdown

(new BreakDownTask(this, true, aTaskRecords[i].TaskID, aTaskRecords[i].TaskNameLong)).show));

else if (aTaskRecords[i].Flag == 1) //must be a breakdown

try {
if (DataChanged){

setCursor(Cursor.getPredefinedCursor(Cursor.WAITCURSOR));

String nxtPage2="dsm.asp?Lvl=" + (Lvl+l) + "&ParentID=" + aTaskRecords(i].TaskID;
(new SaveChanges(this, true, nxtPage2)).showo;

setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULTCURSOR));

else(
setCursor(Cursor.getPredefinedCursor(Cursor.WAITCURSOR));

URL url = new URL (pFrame.getDocumentBase(), "dsm.asp?Lvl=" + (Lvl+1) + "&ParentID=" + aTaskRecords[i).TaskID);
pFrame.getAppletContext).showDocument(url);
setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULTCURSOR));

catch (Exception e) {
e.printStackTrace();

void cmdSave Clicked ()

setCursor(Cursor.getPredefinedCursor (Cursor.WAITCURSOR));
UpdateDatabase));
DataChanged = false;
cmdSave.setEnabled(false);
setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULTCURSOR));

void cmdEdit Clicked ()

setCursor(Cursor.getPredefinedCursor(Cursor.WAITCURSOR));
DataCapture.FrontEnd.AbbyDialog ad = new DataCapture.FrontEnd.AbbyDialog (UserID, ParentID, Lvl, aTaskRecords, aDiagonal, numTasks,

Project);
ad.show(;
validate));
setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULTCURSOR));

try

URL url = new URL (pFrame.getDocumentBase), "dsm.asp?Lvl=" + Lvl + "&ParentID-" + ParentID);
pFrame.getAppletContext().showDocument(url);

catch (Exception e)

e.printStackTrace();

void cmdHome Clicked ()
{ ~

System.out.println('data" + DataChanged);
if (DataChanged)

(new SaveChanges(this, true, "../user/home.asp")).show();
else

try

URL url = new URL (pFrame.getDocumentBase), "../user/home.asp");
pFrame.getAppletContext).showDocument(url);

catch (Exception e)

e.printStackTrace();

void cmdBack Clicked (

AbbyDBConnection adbc=new AbbyDBConnection(Project);
Connection con=adbc.getConnectiono;

ResultSet rs=null;
Statement stm=null;
try

stm=con.createStatement();
String ParentCall="SELECT * FROM DSMMaster\n"+

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 e Page 108 Nader Sabbaghian Appendix C - Program Modules

" WHERE DSMMaster.TaskID = + ParentID + "\n";
System.out.println(ParentCall);
rs=stm.executeQuery(ParentCall);
rs.next();

if (DataChanged){
String nxtPage="dsm.asp?Lvl=" + (Lvl-l) + "&ParentID-" + rs.getInt("ParentID");

(new SaveChanges(this, true, nxtPage)).show();

else{
URL url . new URL (pFrame.getDocumentBaseo, "dsm.asp?Lvl=" + (Lvl-l) + "&ParentID=" + rs.getInt("ParentID"));
pFrame.getAppletContext().showDocument(url);
rs.close();

catch (Exception e)

void optimize()
Vector TaskIds=new Vector();
Vector outsideInputs=new Vector();
Vector validInputs=new Vectoro;
Vector newOrder=new Vectoro);
Vector OutIds=new Vectoro;
for (int i=0; i<numTasks; i++)

Taskids.addElement(new Integer(aTaskRecords[i].TaskID));

for (int i=0; i<numTasks; i++)
Vector temp=aDiagonal[i][1];
for (int j=0; j<temp.sizeo; j++)

OutIds.addElement(new Integer(((DERecord) (temp.elementAt(j))).ID));

System.out.println("Num: "+numTasks);
for (int i=0; i<numTasks; i++) (

System.out.println(((Integer)(Tasklds.elementAt(i))).intValue());

for (int i-0; i<numTasks; i++)
Vector temp=aDiagonal[i][03;
for (int j=0; j<temp.size(); j++)

Integer deid=new Integer(((DERecord) (temp.elementAt(j))).ID);

if (!(OutIds.contains(deid))) (
outsideInputs.addElement(deid);

for (int i=0; i<numTasks; i++)
Vector temp=aDiagonalfi][0];
boolean test=true;
for (int j=0; j<temp.size(); j++)

DERecord der= (DERecord) (temp.elementAt(j));
if (!(outsideInputs.contains(new Integer(der.ID))) {

test=false;

if (test) {
newOrder.addElement((Integer)(TaskIds.elementAt(i)));
Vector temp2=aDiagonal(i](1];
for (nt k=O; k<temp2.size(); k++)

System.out.println(((DERecord) (temp2.elementAt(k))).ID);
validInputs.addElement(new Integer(((DERecord)(temp2.elementAt(k))).ID));

System.out.println("Entering while.");
for (int i=0; i<newOrder.size(); i++)

while (newOrder.size()<numTasks) (
for (int i-0; i<numTasks; i++)

Vector temp=aDiagonal(i][0];
boolean test=true;
for (nt j-0; j<temp.size(); j++)

DERecord der=(DERecord)(temp.elementAt(j));
boolean testl-true;
//System.out.println(der.OutputFrom + - + ((Integer) (TaskIds.elementAt(i))).intValue());
if (!(outsideInputs.contains(new Integer(der.ID)))

testl-false;

boolean test2-true;
if (!(validInputs.contains(new Integer(der.ID)))) {

test2=false;

if ((testl || test2)) {
test-false;

if (test) {
if (!(newOrder.contains((Integer)(TaskIds.elementAt(i))))) {

newOrder.addElement((Integer) (TaskIds.elementAt(i)));
Vector temp2=aDiagonal[i][1];
for (int k=0; k<temp2.size(); k++)

System.out.println(((DERecord) (temp2.elementAt(k))).ID);
validInputs.addElement(new Integer(((DERecord)(temp2.elementAt(k))).ID));

for (int i=0; i<numTasks; i++)
System.out.println(((Integer)(newOrder.elementAt(i))).intValue());

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 a Page 109

D.3 Java Applications

Object DataCapture.MailServer.AbbyMailServer.class

Description: This object checks the issues database, perpares a list of users to contact and customizes a message for each

person. Messages are then sent to the users. The module ensures that multiple messages are not sent to users.

package DataCapture.MailServer;
import java.net.*;
import java.util.*;
import java.io.*;
import DataCapture.FrontEnd.*;
import java.sql.*;
public class AbbyMailServer

String srvName;
String project = "abby";
Socket sock;
PrintStream ps;

public AbbyMailServer(String name)
srvName=name;

public void connect)
try {

sock=new Socket(srvName,25);

catch (Exception e) {
System.out.println("Connection to "+srvName+" failed.");

ps=null;
try{

psenew PrintStream(sock.getOutputStreamo);

catch (Exception e)
System.out.println("Unable to open socket for output.");

public void sendMessage(String rec, String mess)
connect);
System.out.println(rec+"\n"+mess);
String message="HELO \n"+"MAIL FROM: Abby\n"+"RCPT TO: "+rec+"\n"+"DATA\n"+

"Subject: Abby - data capture request\n" + mess + "\n.\nQUIT\n";
ps .print (message);

public void sendMessages)
try {
Connection con=(new AbbyDBConnection(project)) .getConnection(;
PreparedStatement ps=con.prepareStatement("SELECT UserID FROM Issues WHERE Type=? or Type<?");
ps.setInt(1,9);
ps.setInt(2,5);
ResultSet rs=ps.executeQuery();
Vector users=new Vector));
while (rs.next() {

Integer nw=new Integer(rs.getInt(1));
if (!(users.contains(nw))){
users.addElement(nw);

rs.close));
ps.close();
for(int x=O;x<users.size();x++) {

PreparedStatement ps2=con.prepareStatement("SELECT Email,LoginID, Password FROM UserProfile WHERE UserId=?");
ps2.setInt(l, ((Integer)(users.elementAt(x))).intValue();
ResultSet rs2=ps2.executeQuery(;
rs2.next();
sendMessage(rs2.getString(l),"\nYour participation has been requested in creating/updating a process model for Test Project.\n\n"+

"Please access page http://design.mit.edu/Abby/default.asp \n\n\n"+
"Your login information is as follows: \n\n"+
" User ID: " + rs2.getString(2) + "\n"+
"Password: " + rs2.getString(3) + "\n\n\n"+
"Thank you for your contribution.\n\n--Abby");

rs2.close();
ps2.close();

con. close ;

catch (Exception e)
System.out.println(e.toStringo);

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 # Page 110 Nader Sabbaghian Appendix C - Program Modules

Application DataCapture.BackEnd.Checker.class

Description: Performs the necessary data setup and maintenance activities before and after checking the model for

inconsistencies (through DataElementCheck.class). This entails preparing issues and updating the issues

database after each validation batch run.

// Checker uses the data from DataElementCheck to write
// Issues to the Issues table in the DB.

package DataCapture.BackEnd;

import DataCapture.FrontEnd.*;
import DataCapture .MailServer.*;
import java.util.*;
import java.sql.*;

public class Checker

DataCapture.FrontEnd.AbbyDBConnection adbc;
Vector issues;
Connection con;

public Checker)
adbc=new AbbyDBConnection("abby");
con=adbc.getConnection (;
issues=new Vector();

public void checkDE()
//Checks for hanging data elements and
//assigns internal/external values to all elements

try {
Vector iss4Pars=new Vector();
PreparedStatement pdst=con.prepareStatement("DELETE FROM ISSUES WHERE Type<? AND Status<2");
pdst.setInt(1,4);
pdst .executeUpdate (;
pdst.close();
PreparedStatement psst=con.prepareStatement ("SELECT DataElementID,TaskID,Type FROM Issues");
ResultSet psrs-psst.executeQuery(;
Vector issueIDs-new Vector();
while (psrs.next() {

ResultType2 rt2=new ResultType2 ();
rt2.dID=psrs.getInt(1);
rt2.tID=psrs.getlnt(2);
rt2.input=psrs.getInt(3);
System.out.println("In: "+rt2.dID+", "+rt2.tID+", "+rt2.input);.
issueIDs.addElement(rt2);

psrs.close);
psst.close();

issues=(new DataElementCheck(adbc)) .run));
System.out.println(issues.size));
//con=new AbbyDBConnection() .getConnection();
for (int i=0;i<issues.size); i++) {

Issue iss=(Issue)(issues.elementAt(i));
System.out.println(iss.Type+", "+iss.TaskID+", "+iss.DataElementID);
boolean contain-false;
for (nt j=0; j<issueIDs.size(); j++) {

ResultType2 isslD=(ResultType2) (issueIDs.elementAt(j));
if ((issID.dID==iss.DataElementID) && (issID.tID==iss.TaskID) && (isslD.input==iss.Type)) {

contain-true;

if (!contain)

PreparedStatement pstl-con.prepareStatement ("SELECT TaskNameShort,UserID FROM DSMMaster WHERE "+
"TaskID -

pst1.setInt(1,iss.TaskID);
ResultSet rs=pstl.executeQuery);
rs .next();
int rsi=rs.getlnt(2);
String tn=rs.getString(l);
pstl.close(;
rs.close();
PreparedStatement pst2=con.prepareStatement("SELECT Name FROM DataDictionary WHERE "+

"DataElementID =
pst2.setInt(l,iss.DataElementID);
ResultSet rs2-pst2.executeQuery();
rs2.next();
String dn=rs2.getString(l);
rs2.close();
pst2. close);
PreparedStatement upst=con.prepareStatement("SELECT Name,Email FROM UserProfile WHERE UserID -
upst.setInt(l,rsi);
ResultSet rs3=upst.executeQuery();
rs3.next);
String em=rs3.getString(2);
String un=rs3.getString(l);
rs3.close);
upst .close();
//System.out.println(iss.Type+", "+iss.TaskID+", "+iss.DataElementID);
if (iss.Type<4) {

if (iss.Type --3)
PreparedStatement pstN=con.prepareStatement("SELECT UserID FROM DSMMaster WHERE "+

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 a Page 111

"ParentID =
pstN.setInt(1,iss.TaskID);
ResultSet rsN=pstN.executeQuery(;
rsN.nexto;
rsi=rsN.getInt(l);
rsN.closeo;
pstN.close();

PreparedStatement ipst-con.prepareStatement("INSERT INTO Issues VALUES (?,?,?,?,?,?,?,?,?)");
ipst.setInt(l,rsi);
ipst.setInt(2,0);
ipst.setInt(3,iss.TaskID);
ipst.setInt(4,iss.DataElementID);
ipst.setInt(5,iss.Type);
ipst.setInt(6,0);
ipst.setInt(7,0);
ipst.setInt(8,1);
ipst.setInt(9,-l);
ipst.executeUpdate();
ipst.close(;

if (iss.Type==4) {
PreparedStatement psm=con.prepareStatement("SELECT ParentID FROM DSMMaster WHERE TaskID=?");
psm.setInt(1,iss.TaskID);
ResultSet psmrs=psm.executeQuery(;
psmrs.next(;
int pid=psmrs.getInt(1);
ResultType2 rs22=new ResultType2();
rs22.dID=iss.DataElementID;
rs22.tID=pid;
rs22.input=iss.DEType;
psmrs.close();
psm.close(;
iss4Pars.addElement(rs22);

/*Message m=new Message(iss);
AbbyMailServer ams=new AbbyMailServer("mit.edu");
ams.sendMessage(m.rec, m.mess); */

boolean no=true;
for (nt k=O; k<iss4Pars.size(; k++) {

ResultType2 pID=(ResultType2) (iss4Pars.elementAt(k));
PreparedStatement psm2=con.prepareStatement("INSERT INTO 10 VALUES (?,?,?,?)");
psm2.setInt(1,pID.tID);
psm2.setInt(2,pID.dID);
psm2.setInt(3,pID.input);
psm2.setInt(4,9);
psm2.executeUpdate();
psm2.close();
no=false;

//delete resolved issues
for (nt j=O; j<issueIDs.size(; j++)

ResultType2 issID=(ResultType2) (issueIDs.elementAt(j));
if ((issID.input==1) || (issID.input==2) ||(issID.input==5) 1| (issID.input--6)){

boolean contain=false;
for (nt i=0; i<issues.size(;i++){

Issue iss=(Issue)(issues.elementAt(i));
boolean dangling=true;
if ((iss.Type==3) || (iss.Type==4)){

dangling=false;

if ((issID.dID==iss.DataElementID) && (issID.tID==iss.TaskID) && (dangling)){
contain=true;

if (!contain){
PreparedStatement pdstD=con.prepareStatement("DELETE FROM ISSUES WHERE TaskID=? AND Type=? AND DataElementlD=?");
pdstD.setInt(1,issID.tID);
pdstD.setInt(2,issID.input);
pdstD.setInt(3,issID.dID);
pdstD.executeUpdate();
pdstD.close(;

//if (!no)
// this.checkDE();
//}

catch (Exception e)
System.out.println(e.toString();

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 e Page 112 Nader Sabbaghian Appendix C - Program Modules

Application DataCapture.BackEnd.DataElementCheck.class

Description: Scans the entire model and checks for data inconsistencies such as input and output deliverable disconnects

and inter-level disparities. Marked issues are returned to "Checher.class" for storage in the repository.

// This file contains the database search engine that looks
// problematic data.
package DataCapture.BackEnd;

import DataCapture.FrontEnd.*;
import java.sql.*;
import java.util.*;
public class DataElementCheck

Connection con;
public Vector issues=new Vector();
public DataElementCheck(AbbyDBConnection aDBC)

con=aDBC.getConnection();

public Vector run()
//System.out.println("Enter run");
try (

Vector in=new Vectoro;
Vector out=new Vector));
PreparedStatement istmt=con.prepareStatement("SELECT DataElementID,TaskID FROM 10 WHERE Type=?");
PreparedStatement pst=con.prepareStatement("SELECT ParentID, Lvl FROM DSMMaster WHERE TaskID = ?");

PreparedStatement pst2=con.prepareStatement("UPDATE 10 SET ExtInt=? WHERE "+ "DataElementID = ? AND TaskID =
//System.out.println("Enter irs");
istmt.setInt(1,0);
ResultSet irs=istmt.executeQuery();
Vector irt-new Vector));
while (irs.nexto) {

ResultTypel rl=new ResultTypel();
rl.DEID=irs.getInt(l);
r1.TID=irs.getInt(2);
irt.addElement(rl);

irs.close();
istmt.setInt(l,l);
ResultSet ors=istmt.executeQuery();
Vector ort=new Vector));
while (ors.next())

ResultTypel rl=new ResultTypel();
rl.DEID=ors.getInt(l);
rl.TID=ors.getInt(2);
ort.addElement(rl);

//Close unneeded connections
ors.close();
istmt.close();
boolean found;
boolean internalDE=false;
boolean update_parent=false;
int idID=O;
//System.out.println("Entering Loop");
int y=O;
int z=O;
while (y<irt.size()

System.out.println("Entered Loop");
idID=((ResultTypel) (irt.elementAt(y))).DEID;
found-false;
internalDE-false;
updateparent-false;
z-0;
while ((z<ort.size)) && (!internalDE))

int odID= ((ResultTypel) (ort.elementAt(z))).DEID;
if (idID==odID) (

System.out.println("In Here.");
found=true;
pst.setInt(l, ((ResultTypel) (irt.elementAt(y))).TID);
ResultSet rsl-pst.executeQuery();
rsl.next);
System.out.println("Herel");
int ipID-rsl.getInt(l);
int iLvl= rs1.getInt(2);
System.out.println("Here2");
pst.setInt(l, ((ResultTypel) (ort.elementAt(z))).TID);
ResultSet rs2=pst.executeQuery();
rs2.next);
System.out.println("Here3:"+((ResultTypel) (ort.elementAt(z))).TID);
int opID-rs2.getlnt(l);
int oLvl= rs2.getInt(2);
System.out.println("Here4");
rsl.close();
rs2.close);
if (ipID==opID) {

ResultTypel ri-new ResultTypel();
rl.DEID=idID;
rl.TID=((ResultTypel) (irt.elementAt(y))).TID;
in.addElement(r1);
internalDE=true;

if ((oLvl > iLvl) I (iLvl -= oLvl)) {
update_parent-true;

Z++;

//found connection but it is not an internal link
if ((found) && (!internalDE))

if (updateparent) {

Massachusetts Institute of Technology - Center for Innovation in Product Development

Appendix C - Program Modules Nader Sabbaghian 12/16/98 * Page 113

ResultTypel rlenew ResultTypel();
rl.DEID=idID;
ri.TID=((ResultTypel)(irt.elementAt(y))).TID;
out.addElement(r1);

if (!found) {
issues.addElement(new Issue(1,idID,O, ((ResultTypel) (irt.elementAt(y))).TID));

y++;

System.out.println("Exit Loop");
y=0;
Z=0;
while (y<ort.sizeo))

int odID=((ResultTypel) (ort.elementAt(y))).DEID;
found=false;
internalDE=false;
updateparent=false;
z=O;
while ((z<irt.size()) && (!internalDE))

idID=((ResultTypel)(irt.elementAt(z))).DEID;
if (odID==idID) {

found-true;
pst.setInt(l, ((ResultTypel)(ort.elementAt(y))).TID);
ResultSet rsl=pst.executeQuery();
rsl.next();
int opID=rsl.getInt(l);
int oLvl= rsl.getlnt(2);
pst.setInt(l, ((ResultTypel) (irt.elementAt(z))).TID);
ResultSet rs2=pst.executeQueryo);
rs2.next();
int ipID=rs2.getInt(l);
int iLvl= rs2.getlnt(2);
rs1.closeo);
rs2.close();
if (ipID==opID) {

ResultTypel rl=new ResultTypel();
r1.DEID=idID;
rl.TID C((ResuItTypel)(ort.elementAt(y))).TID;
in.addElement(rl);
internalDE=true;

if ((iLvl > oLvl) I (oLvl==iLvl)) {
update_parent-true;

z++;

//found connection but it is not an internal link
if ((found) && (!internalDE)) {

ResultTypel rl=new ResultTypel();
rl.DEID=idID;
rl.TID=((ResultTypel)(ort.elementAt(y))).TID;
out.addElement(rl);

//no connection found at all => dangling dependency
if (!found) {

issues.addElement(new Issue(2,odID,1, ((ResultTypel)(ort.elementAt(y))).TID));
//pst2.setInt(1,3);
//pst2.setInt(2,odID);
//pst2.setInt(3, ((ResultTypel)(ort.elementAt(y))).TID);

y++;

//Prepare 10 table for Internal/External flag update
//Clear all flags

PreparedStatement clrIO=con.prepareStatement("UPDATE 10 SET ExtInt=9");
clrIO.executeUpdateo);

//Set all external flags
for(int x=O;x<in.size();x++) {

ResultTypel rl=(ResultTypel) (in.elementAt(x));
pst2.setlnt(1,0);
pst2.setInt(2,rl.DEID);
pst2.setInt(3,rl.TID);
pst2.executeUpdate();

//Set all internal flags
for(int x=0;x<out.size(;x++) {

ResultTypel rl(ResultTypel)(out.elementAt(x));
pst2.setInt(l,l);
pst2.setInt(2,rl.DEID);
pst2.setInt(3,rl.TID);
pst2.executeUpdate();

pst.closeo);
Y st2.close);

catch (SQLException e)
System.out.println(e.toString());

//Parent-Child Check
//Checking for the Child to Parent Consistency

Vector exts=new Vector));
try {
PreparedStatement pstmt=con.prepareStatement("SELECT DataElementIDTaskID,Type FROM 10 WHERE "+

"ExtInt=l");
ResultSet rslt=pstmt.executeQueryo);
while (rslt.next() {

ResultType2 rt2=new ResultType2();
rt2.dID=rslt.getInt(l);
rt2.tID=rslt.getInt(2);
rt2.input=rslt.getInt(3);
exts.addElement(rt2);

rslt.close(;
pstmt.close();

Massachusetts Institute of Technology - Center for Innovation in Product Development

12/16/98 * Page 114 Nader Sabbaghian Appendix C - Program Modules

for (int x=O;x<exts.sizeo;x++) {
//System.out.println("Child check");
PreparedStatement pstml=con.prepareStatement("SELECT ParentID FROM

"TaskID=?");
pstml.setInt(l, ((ResultType2)(exts.elementAt(x))).tID);
ResultSet rst-pstml.executeQueryo;
rst.next();
int pID=rst.getInt(l);
PreparedStatement pstm2=con.prepareStatement("SELECT DataElementID

"TaskID=? AND Type=?");
pstm2.setInt(lpID);
pstm2.setInt(2, ((ResultType2)(exts.elementAt(x))).input);
ResultSet rst2=pstm2.executeQuery0;
boolean child-false;
while (rst2.next()

if (rst2.getInt(l)==((ResultType2) (exts.elementAt(x))).dID) {
child=true;

if (pID==O) {
child=true;

if

DSMMaster WHERE "+

FROM 10 WHERE "+

(!child) {
Issue is=new Issue(4, ((ResultType2) (exts.elementAt(x))).dID, ((ResultType2) (exts.elementAt(x))).input,

((ResuItType2)(exts.elementAt(x))).tID);
issues.addElement(is);

rst.close);
rst2.close);
pstml.close();
pstm2.close);

//Checking for the parent to child cosistency
Vector allDeps=new Vector();
PreparedStatement depnds=con.prepareStatement("SELECT DataElementID,TaskID,Type FROM 10 WHERE "+ "ExtInt < 3');
ResultSet rslt2=depnds.executeQuery(;
while (rslt2.next())

ResultType2 rt3=new ResultType2();
rt3.dID-rslt2.getlnt(1);
rt3.tID-rslt2.getInt(2);
rt3.input=rslt2.getInt(3);
allDeps.addElement(rt3);

rslt2.close();
depnds.close(;
for (int x=O;x<allDeps.size(;x++)

PreparedStatement pstm5=con.prepareStatement("SELECT Flag FROM DSMMaster WHERE "+
"TaskID=?");

pstm5.setInt(l, ((ResultType2)(allDeps.elementAt(x))).tID);
ResultSet rst5=pstm5.executeQuery();
rst5.next);
int flg=rst5.getInt(l);
rst5.close);
// System.out.println("Parent check");
if (flg==l) {

//System.out.println("Parent check2");
boolean parent=false;
PreparedStatement pstm3-con.prepareStatement("SELECT TaskID FROM DSMMaster WHERE ParentID=?");
pstm3.setlnt(l, ((ResultType2)(allDeps.elementAt(x))).tID);
ResultSet crs=pstm3.executeQuery();
Vector children=new Vector));
while (crs.next())

children.addElement(new Integer(crs.getInt(1)));

crs.close(;
pstm3.close);
for(int i'O;i<children.size();i++) {

PreparedStatement pstm4=con.prepareStatement("SELECT DataElementID FROM 10 WHERE TaskID=? AND Type=
System.out.println(((Integer) (children.elementAt(i))).intValue();
pstm4.setInt(l, ((Integer) (children.elementAt(i))).intValue));
pstm4.setInt(2, (((ResultType2) (allDeps.elementAt(x))).input));
ResultSet crs2=pstm4.executeQuery0;
while (crs2.next())

if (crs2.getlnt(l)==((ResultType2) (allDeps.elementAt(x))).dID) {
parent=true;

crs2.close);
pstm4.close);

if (parent)
Issue is=new

Issue(3, ((ResultType2) (allDeps.elementAt(x))) .dID, ((ResultType2) (allDeps.elementAt(x))) .input, (ResultType2) (allDeps.elementAt(x))) .tID);
issues.addElement(is);

//con.close(;

catch (SQLException e)
System.out.println(e.toString();

System.out.println("Exit run");
return issues;

Massachusetts Institute of Technology - Center for Innovation in Product Development

}

?");

