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Chapter 1

Introduction

The goal of this thesis is to determine and understand the impedance limits of the

beta prototype MIT-MANUS. MANUS-2, as it has become known, is a robot-aided

rehabilitation facility for use with patients who have suffered a stroke. A physical

description of MANUS-2 as well as a discussion of how the robot operates are covered

in chapter 2. The intention of this chapter is to give the motivation for developing

this type of technology as well as to explain the validity of using impedance as a

measure of robot performance.

1.1 Motivation

The leading cause of disability in the United States is cerebral vascular accident,

more commonly known as stroke. According to the National Stroke Association

(NSA), 730,000 Americans suffer a new or recurrent stroke every year. Of these

stroke victims, 570,000 survive and require rehabilitation. The estimated annual cost

of the care for these survivors is $30 billion [2]. The neurorehabilitation process is

labor-intensive, relying on a clinician working with a single patient. Labor-intensive

procedures are a primary application field of robotics. Research by Krebs et. al. [13]

has shown that robotics and information technology can be used to improve quality,

enhance documentation, and increase productivity of rehabilitation. The research by

Krebs et.al. has also shown that the excercise provided by the robot does indeed

14



influence the recovery of stroke patients. Furthermore, the use of robots has the

potential of decreasing the cost of care by increasing the efficiency of the clinician.

1.2 Impedance as a Performance Measure

MANUS-2 is designed for safe stable interaction with humans. Therefore, the dynam-

ics of the environment that the robot interacts with are unknown. The performance

of a robot interacting with an unknown environment is heavily reliant on the con-

troller. Research has shown (Hogan [10]) that impedance control can be used to

achieve stable interaction with unknown environments.

1.2.1 Impedance Control

This section is designed to give an overview of impedance control. The information

in this section is taken from Hogan's research, and the reader can refer to [10] for a

more in-depth understanding of this topic.

The first step in understanding impedance control is to view the point of interac-

tion between the manipulator and its environment as a mechanical interaction port.

In general, the interaction point between any two or more physical systems can be

viewed as an interaction port. In addition, the power flow between two or more phys-

ical systems can always be defined as the product of two conjugate variables, an effort

(e.g., a force), and a flow (e.g., a velocity). One should keep in mind that no one

system may determine both variables.

Equally important in understanding interaction are the definitions of impedance

and admittance. Physical system interaction port behavior may be described as an

impedance, which accepts flow (e.g., motion) inputs, and yields effort (e.g., force) out-

puts, or an admittance which accepts effort (e.g., force) inputs, and yields flow (e.g.,

motion) outputs. These two representations are interchangeable for linear systems,

but in general not interchangeable for nonlinear systems. As manipulation of the

environment by the robot is fundamentally nonlinear, these representations should

be interchanged only with care. Another point to be made about impedance and
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admittance is that if one of two phsyical systems on one side of an interaction port

is described as an admittance, the other physical system must be described as an

impedance and vice versa.

Next, it is important to understand that the environment almost always takes

on the form of an admittance as viewed by the manipulator. For all manipulatory

tasks that MANUS-2 will encounter, the environment will contain inertias and/or

kinematic constraints. These types of environments will accept forces and determine

their own motion in response to those forces. Therefore, these environments can

properly be viewed as admittances. Thus, the manipulator should assume the be-

havior of an impedance. Because the mechanical interaction with the environment

will change with different tasks, the manipulator should be adaptable. Therefore, the

controller should be capable of modulating the impedance of the manipulator as the

task changes.

The general strategy for controlling the manipulator is to control its motion and

to give it an impedance which is capable of dealing with deviations from that motion.

The desired impedance changes depending on the task at hand. Thus the larger

the range of achievable impedances, the wider the range of tasks/environments the

manipulator may safely and stably interact with.

Although the information presented to this point illustrates that impedance is im-

portant for stable interaction between a manipulator and its environment, it does not

promote a physical understanding of impedance. Many prefer to think of mechan-

ical impedance as a dynamic generalization of stiffness. This is similar to viewing

electrical impedance as a dynamic generalization of resistance.

Finally, the main distinction of impedance control is that it attempts to govern the

interactive behavior of a manipulator that is unaffected by contact with other physical

systems. Again, consider impedance as a generalized form of stiffness. Stiffness (at

the point of interaction) is a property of the manipulator which is independent of

contact with the environment. On the other hand, the force at that point is largely

dependent on contact with the environment. Therefore, force control (as well as

motion control) is sensitive to contact with the environment; impedance control need

16



not be.

1.2.2 An Impedance Control Example

A simple example of an impedance controller can be demonstrated using a single

degree of fredom linear actuator. This system can also be viewed as a one degree

of freedom manipulator. First, the actuator is assumed to be capable of producing

a force Fa. Also, the actuator has inherent mass (m) and inherent damping (b). A

model of this actuator is found in figure 1-1a. The simplest form of impedance control

which can be implemented is that which uses position feedback alone. This controller

consists of the following control law:

F, = k(xd - x) (1.1)

Where xd is the desired position, x is the actual position, and k is the controller

gain. This gain can be viewed as a stiffness for this control law. A block diagram

representation of this closed loop system is found in 1-1b.

m 1Fa, x(t)

b

a)

Inherent Actuator
Controller Dynamics
Gain

X() + __ __ x(s)Xd(S) k mS2 + bs

b)

Figure 1-1: a) Model of a 1 degree of freedom manipulator with inherent mass and
damping. b) Block Diagram of the same manipulator controlled using an impedance
controller with position feedback only.
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Assuming that this system can come into contact with another physical system,

the force of interaction Fit would also be applied directly to the mass m. The

mechanical impedance of the closed loop system in the Laplace domain is then defined

as Fi (s). This relation shows that the manipulator accepts velocity v as its input

and yeilds force Fit as its output. Setting the desired position equal to zero (Xd

0), and using the control law above allows us to solve for the impedance.

= ms + b + - (1.2)
v (s) s

Equation 1.2, illustrates that the controller gain k shows up explicitly in the

impedance of the manipulator allowing for limited modulation of the impedance. If

velocity is fed back along with the position, then the controller would be capable

of a more complete modulation of the manipulator impedance. One form for the

manipulator impedance of this one degree of freedom manipulator with position and

velocity feedback is given by the following equation.

Fit()= Ms + (b + bc) + - (1.3)
v(s) s

Where be is the controller's velocity gain.

This allows for two of the three impedance terms to be modulated via the con-

troller. Additional schemes, using force feedback to modulate the mass term, have

also been succesfully implemented.

It is important to keep in mind, that the environment that the robot interacts

with can affect the stability of the system. This idea of coupled stability will be

discussed further in chapter 4.
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Chapter 2

System Basics

The purpose of this chapter is to give the reader the basic information necessary to

understand the robotic system used in this thesis. Each component of the system will

be briefly described and the types of signals each component can generate and receive

will be discussed. The photograph in figure 2-1 shows the major components of the

system. The robot itself is composed of a four-bar-linkage and two actuator/encoder

packages. This construction allows for two degree of freedom motion in a plane.

Viewing the four-bar-linkage as an arm, the elbow motion is controlled by the upper

actuator, and the shoulder motion by lower actuator. This system is nonlinear as the

inertia of the four-bar-linkage (realized at the actuators) changes with configuration.

This nonlinearity is the most obvious, but others do exist. For example, the position

information is recorded using optical encoders that have a finite resolution. This

means that changes in endpoint position are recorded as small steps rather than a

continuous motion. Later in this thesis, the effect of such nonlinearities on robot

performance will be discussed.

The reader can gain a better understanding of how the robot is used by examining

figure 2-2. This figure illustrates a typical use of the robot. Through studies conducted

by the Newman Lab and Burke Rehabilitation Hospital in White Plains New York,

this type of robot has been implemented in the neuro-rehabilitation of patients who

have suffered a stroke.
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Figure 2-1: Photo of the System

2.1 How the System Works

Figure 2-3 shows a block diagram of the system components and their connections

to one another. For simplicity sake, the diagram includes just one of the actuator

packages rather than two. This block diagram is a good reference for understanding

how the system works. This section is designed to give the reader an overview of

the basic operation of the system while the remaining sections of this chapter go into

detail about each component of the system.

First, the computer is used as the real-time controller for the robot. Using the com-

puter, many different control laws may be implemented with relative ease. Based on

an experimental task and a control law, the computer calculates the desired Cartesian

forces. Then, the computer transforms these forces into the actual torque commands

to be sent to the actuators. These torque commands leave the computer through a

digital to analog (D/A) converter in the form of voltages. The voltages travel to servo

amplifiers and are converted into currents. Finally the actuator receives the current

and transforms it into mechanical torque. For an open loop system, this is the end

of the story, but the concern here is to have a stably controlled closed loop system.

The feedback for this system is in the form of the two actuator angles. Optical

encoders allow for the measurement of these angles, and the computer can use this
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Figure 2-3: Block Diagram of System Components

information to calculate the x-y position of the endpoint of the robot. The endpoint

positions are then used by the controller to calculate the desired Cartesian forces thus

closing the loop.

2.2 Computer

The computer being used is equipped with a Pentium II 200 MHz processor and 128

Mbytes of RAM. QNX version 4.24 is installed as the real-time operating system, and

C++ is the programming language used in the control software.

2.2.1 Input/Output

A ComputerBoards CIO-DAS1602/16 input/output board is installed in the com-

puter. Although the board is capable of digital input/output (DIO), analog to digital

(A/D) and digital to analog (D/A), only the D/A feature is used in this application.

The D/A converter on this board is setup for output of -10 to +10 volts, and has a

resolution of 12 bits.
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2.2.2 Counter Card

The USDigital PC7266 PC to Incremental Encoder Interface Card was chosen to

record information from the encoders. The card is capable of increasing the resolution

of the input signal by a factor of four. This results in a final resolution of 131072

cycles/revolution (17bit). The resolution will be addresed again in the section titled

Encoders and Interpolators.

2.3 Amplifiers

Figure 2-3 shows the output of the D/A card leading to a servo amplifier. This block

actually represents a servo amplifier along with its power supply. The Kollmorgen

PA08 power supply is used to supply the Kollmorgen SE06 Servo Amplifier. The SE06

is a three phase pulse width modulation (PWM) amplifier designed for use with three

phase brushless motors. The amplifier uses position information from the encoder

in the actuator package to ensure proper commutation. The amplifier is capable of

taking in voltage signals from the D/A card and converting them into corresponding

current signals to be applied to the actuator.

2.4 Common Mode Choke

A common mode choke was used to suppress noise from the pulse width modulation

in the amplifiers. The noise was corrupting position information and its magnitude

was attenuated using this choke. This choke is designed to create a large electrical

impedance to any signals that are common on all three phases of the amplifiers output

while imposing very low impedance to the intended three phase signal. This is possible

because the noise is at the same frequency and phase angle on all three lines, and the

intended three phase signals are at phase angles of 120' relative to one another. The

noise problem and the common mode choke are covered in more detail in Appendix

A of this thesis.
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2.5 Actuators

The actuators used in this system are Kollmorgen RBE 03013-C brushless three-phase

DC motors. These motors have linear torque constants on the order of 3.7 amp as

will be seen in more detail in the Characterization and Calibration chapter of this

thesis.

2.6 Encoders and Interpolators

Each actuator is outfitted with an optical encoder (Gurley Precision Instruments:

8235H-8192-CBQC-1000E). The output of the encoder leads to an interpolator (Gur-

ley Precision Instruments: HR2-4WC-BRD-PF). These encoder and interpolator

packages are shipped from Gurley Precision Instruments as a matched and calibrated

pair. The normal output from the encoder is 8192 cycles per revolution. The in-

terpolator is used to create signals at 4 times this resolution to give 32768 cyles/rev

(15 bit). Unfortunately, the amplifier can accept no higher than 25000 cycles/rev for

its commutation feedback loop. Therefore, the interpolators were custom built with

extra outputs at 8192 cycles/rev. These extra signals were fed to the amplifiers via

an interface card which is explained in the next section.

The 15 bit signal which leaves the interpolator travels to the counter card in the

computer. The counter card then uses its own quadrature interpolation scheme to

increase the resolution by a factor of 4. Thus the final resolution used in the feedback

loop is 17 bit or 131072 counts

2.7 Interface Card

Due to a limitation on the number of available connections on the interpolator, the

lower resolution signals were output as single ended rather than differential signals.

The single ended signals needed to be converted to differential using a line driver.

This conversion is the basic function of the interface card, it takes the 13 bit single
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ended signals from the interpolator, turns them into 13 bit differential signals and

sends them to the amplifier.

This concludes the description and function of the individual components of the

system. The remainder of the thesis will focus on the characterization of the perfor-

mance of the robot.
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Chapter 3

Characterization and Calibration

This chapter is devoted to the characterization of the system. The amplifiers and

actuators are the major components of the system which require calibration and

characterization. Although the position sensors themselves do not require calibration,

the geometry of the robot requires that the 2 degree of freedom (d.o.f.) position

measurements be calibrated.

Once the amplifiers, the actuators, and the 2 d.o.f. position were characterized, a

system identification (ID) was performed to obtain estimates of the physical param-

eters of the manipulator linkage.

3.1 Data Acquisition Calibration

The first step taken in the calibration procedure was to check the operation of the

data acquisition board in the computer. Two functions of this board were tested;

digital to analog (D/A), and analog to digital (A/D). The purpose of these tests

was twofold. The first objective was to calibrate the voltages being measured and

output by the card. The second objective was to understand the sequence in which

the output and measurement events took place relative to one another.

A digital multi-meter was used to adjust the dc offset of the cards input and

output channels to 0 ± 5 mV. Then full-scale voltages were checked for all channels.

The results showed that all channels were within 5 mV of their set point (± 10V) at
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full scale.

Next, a simple experiment was completed to verify the proper sequencing of input

and output signals from the card. The data acquisition software was written in the

following chronological order: First, read the data, then compute the desired output,

and finally, output the desired voltage. For the calibration tests in this chapter, the

system was operated open loop (i.e. the output is not based on what is being read).

This means that the input in response to a given output was actually recorded one

time step after the output. An example will better illustrate this idea. Assume the

sampling rate is 1000 Hz. Now assume the predetermined output voltage to be applied

to the system is 2.0 Volts and is to occur at t = 1.000sec. Therefore at t = 1.000, the

output will step from 0 to 2.0 Volts. Recall that the output is the final event in the

data acquisition sequence. Thus the response of the system to the step change can not

be recorded until the next time step (t = 1.001). The sampling sequence was verified

through a very simple experiment. One of the output (D/A) channels was connected

directly to one of the input (A/D) channels and this same test involving a step of 2.0

Volts at t = 1.000 was completed. Figure 3-1 shows that the data acquisition process

is indeed functioning as expected.

Data Acquisition Board

2-

1.5-

-- D/A out

0- A/D in

-11

0.5 -

0 - -- --- -

0.9995 1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035 1.004 1.0045
Time (sec)

Figure 3-1: Data Acquisition sequence: This plot shows that there is a one sample
difference between the output of the D/A and the input of the A/D.
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3.2 Amplifier Characterization

The amplifiers, as mentioned earlier, are three phase servo amplifiers. These units

receive voltages and output current proportionally. The constant of proportionality

from voltage to current is configurable using software. The constant has been set to

0.6 Vot. Although this value was not verified directly, any discrepancy in its value

has been accounted for in the actuator torque calibration.

The frequency response of the amplifier was also characterized. Because the ampli-

fiers are three phase, a custom three phase current sensor was designed and fabricated.

The current sensor is an analog device, and its output was sampled by an A/D card

in the computer.

The output from the current sensor was the output signal for this experiment. The

input was the command voltage coming from the computer's D/A card. This input

was set as a sine wave with amplitude 2 volts which corresponds to 1.8 amps. The

frequency of the wave was swept from 2 to 50 Hz. The data in this experiment was

recorded at a frequency of 1000 Hz. Figures 3-2 and 3-3 are Bode plots summarizing

the results of this experiment. Note that the amplitudes of these plots have been

scaled. This is because the measured current signal was that of a single phase of the

amplifiers output. The single phase measurement was used because only one out of

the three individual phase signals is guaranteed to be in phase with the command

signal. The magnitude of any one phase signal is dependent on position, and therefore

its actual amplitude has little meaning. However, the relative change in its amplitude

compared to that of the command signal as the frequency is swept gives a very

accurate measure of the amplifiers frequency response.

In examining figures 3-2 and 3-3 there is a rapid decrease in phase with an increase

in frequency. At the same time, there is no apparent decrease in amplitude. This is

strong evidence of a pure time delay. To verify that the phenomenon being observed

in these plots was indeed a pure delay, plots of phase versus frequency on a linear

scale were created. Pure delay follows equation 3.1 which is a straight line on a linear

plot.
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Figure 3-2: Bode plot of the upper amplifier frequency response; Actual current level:
1.8 amps; Amplitude scaled to 0 dB at 2 Hz
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Figure 3-3: Bode plot of the lower amplifier frequency response; Actual current level:
1.8 amps; Amplitude scaled to 0 dB at 2 Hz
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# = Tw (3.1)

Where # is the phase lag, T is the time delay and w is the frequency.

Figures 3-4 and 3-5 illustrate that the phase lag in the amplifiers can be charac-

terized as a pure time delay. In these figures the frequency is in ,d and the angle is

in rad, thus the slope of the line is in seconds. This is convenient as the slope of the

line is the time delay as noted in equation 3.1. Due to the order in which the data

is sampled, there is a one sample difference between the input and output signals

as they are recorded. This means that 1 msec of delay can be accounted for by the

sampling order, and the additional 1 msec is attributed to a pure time delay in the

amplifier.

The solid lines in figures 3-4 and 3-5 are not the best fit lines to the data pictured.

The best fit lines have slightly larger bias and better correlation coefficients. The lines

in the figures were determined by weighting the desired DC bias of zero with artificial

data points. The best fit line was then drawn in, and the correlation coefficient was

determined by checking the fit of all real data points to this new line.

3.3 Actuator Characterization and Calibration

The following three sections are focused on characterizing the actuators used in this

system. First, a static torque calibration was completed, and then a torque frequency

response. Finally, a position frequency response was determined. Note that because

the actuator is controlled via the amplifier, the amplifier is involved in the following

characterization of the actuators.

3.3.1 Static Torque Calibration

One important bit of information for any motor is its torque constant KT. In this

calibration, the KT's will be determined in metric units ( ).

The device used to measure torques for this experiment was the ATI Gamma
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Phase vs Frequency (Upper Actuator)
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Linear phase lag versus frequency for the upper amplifier:
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Linear phase lag versus frequency for the lower amplifier: This plot
demonstrates that the phase lag is created by a pure time delay
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six axis force transducer. The calibration for this transducer can be found in the

appendix of this thesis.

These tests were actually performed in a quasi static manner. This is to say that

the current was being applied to the actuator in a continuously varying manner at a

low frequency. In this case, the low frequency was 2.42 Hz for the lower actuator and

0.4 Hz for the upper actuator. The data for the lower actuator was taken first and a

problem was noticed, thus the frequency was lowered for the test on the upper actu-

ator. This problem arose from the test being quasi static, and is more appropriately

addressed in the section where the data is presented. The data for this test was also

sampled at 1000Hz.

Figures 3-6 and 3-7 show the data taken for this experiment. The reader should

note some oddities within these plots. First, the data forms an ellipse rather than

the expected straight line. This is due to the fact that the two signals being plotted

are sine waves at slightly different phase angles. From the amplifier characterization,

it is known that there exists 2 msec of delay between the input signal and the output

signal during the sampling. This 2 msec delay does create some phase difference at

the frequencies of 2.42Hz and 0.4Hz; 0.030 rad and 0.005 rad respectively. These

differences are not large enough to account for the magnitude of the minor axes of

the ellipses in these plots. In fact the magnitudes of the minor axes of the ellipses

(including the 2 msec delay) correspond to 0.072rad and 0.043 rad respectively for

the lower and upper actuators. The remainder of the phase difference comes from

an offset in phase angle which does not vary with frequency. The magnitude of this

offset angle has been estimated at 0.04 rad using the frequency response information

presented in the next section. When this offset is added to the phase differences

resulting from delay, the total amounts of phase difference are 0.070 rad for the

lower actuator and 0.045 rad for the upper actuator. These total phase differences

correspond well with what was actually observed during the experiment (0.072 and

0.043 rad). Because each of the ellipses are symmetric about their major axis, and

the phase differences are small, these phase difference cause no observable distortion

of the measured KTs.
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The offset in phase was an artifact of the setup of the force transducer software

and has since been corrected. Appendix B provides evidence that there is no time

offset between the input force and the ATI transducer's response. The offset phase

angle will be more clearly illustrated in the next section where the frequency responses

of the actuators are presented.

8

E

0

Torque vs Current (Upper Actuator)

-2- 01
Current (Amps)

2

Figure 3-6: The slope of this line is the KT for the upper actuator

3.3.2 Torque Frequency Response

A second experiment was conducted with the commanded current as the input and

the torque measured at the actuator as the output. This experiment was set up in

much the same way as the frequency response experiment for the amplifiers. Again,

the torque was measured using the ATI Gamma force transducer. The frequency was

swept from 2 to 50 Hz, and data was sampled at 1000Hz.

The results of this characterization experiment can be viewed in figures 3-8 and 3-

9. Again there is evidence of a pure delay, but this time it is expected. The amplifiers

are used to send the current commands to the actuators, and therefore any delay in

33



Torque vs Current (Lower Actuator)
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Figure 3-7: The slope of this line is the KT for the lower actuator

the amplifiers will show up in this experiment as well. To verify that the pure delay

is still 2 msec, the same technique used in the case of the amplifiers was employed

again. Refer to equation 3.1 and to figures 3-10 and 3-11 to see that the 2 msec delay

is verified. Again, note that 1 msec of delay is attributed to the sampling order used

in the experiment, and the other 1 msec is a pure delay exhibited by the amplifier.

As mentioned before, the lines in these linear phase versus frequency plots have

non-zero intercepts. This offset in phase is more clear in these plots than the elliptical

plots of figures 3-6 and 3-7. Again, this offset was due to an error in software setup

for the force transducer and has been corrected.

3.3.3 Position Frequency Response

For a complete characterization of the actuator packages, a frequency response using

commanded current as the input and position as the output was completed. This

experiment was performed in a similar manner to the torque frequency response test.

The major difference was that the rotor of the actuator was free to move in this
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Figure 3-8: Upper actuator frequency response; Actual current level: 1.8 amps; Actual

torque level: 6.71 Nm; Amplitude scaled to 0 dB at 2 Hz for easy comparison to

amplifier frequency response

experiment rather than being tied to ground through the force transducer as in the

last experiment. Of course this means that the output is no longer force, but rather

position. Another difference is that the frequency was swept from 2 to 100 Hz rather

than 2 to 50 Hz like the previous experiments. The reason for this change becomes

evident when the data is presented.

Viewing figures 3-12 and 3-13 allows the reader to become familiar with the fre-

quency response of the actuators using position as the output signal. These plots

show more interesting behavior than any of the frequency response plots presented

to this point. This behavior is to be expected as the actuator exhibits the dynamic

behavior of a mass being driven by a torque source. In addition, the actuator has

some friction and damping that must be accounted for.

As demonstrated by the torque frequency response, there is a 2 msec delay which

should be present on top of any dynamics that the actuator itself exhibits. This is

evident when looking at figures 3-12 and 3-13. From the magnitude plots, the corner
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Figure 3-9: Lower actuator frequency response Actual current level: 1.8 amps; Actual
torque level: 6.78 Nm; Amplitude scaled to 0 dB at 2 Hz for easy comparison to
amplifier frequency response
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Phase vs Frequency (Lower Actuator)
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Figure 3-11: Linear phase versus frequency of the lower actuator torque response;
The slope of this line is the delay in seconds

frequency of the actuator is observed to be less than 5 Hz. The data at more than one

decade above 5Hz (50 - 100 Hz) should ideally show no phase lag due to dynamics of

the actuator. Thus the delay must account for any additional phase lag above the 50

Hz point.

When viewing the phase in the 50 to 100 Hz region, a definite decrease in phase

with increasing frequency is observed. Again, this is expected because of the known

2 msec delay. This delay can again be verified using a similar technique to that

described in previous sections. In this case, care must be taken to avoid the section

of data where the actuator dynamics are creating phase lag. Therefore, just the last

five points (50 to 100 Hz) will be plotted on a linear phase vs. frequency plot. These

linear phase plots for each actuator are found in figures 3-14 and 3-15. Note the bias

of -3.142 in both of these plots; this is the expected value of the DC bias. From

the amplitude plot, a -40 dB/decade slope is observed from 5 Hz through 100 Hz.

From this information, the phase plot should be expected to asymptote to -180'

or -7 rad. The fact that the phase does not asymptote to -7r is due to the time
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Figure 3-12: Bode plot of the upper actuator frequency response with position as the
output
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Figure 3-13: Bode plot of the lower actuator frequency response with position as the
output
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delay in the system. Thus the best fit lines on a linear plot of phase versus frequency

should have a slope corresponding to the delay, and a bias of -Ir rad. In this case,

the best fit lines did not pass exactly through this point, so the lines were forced

through the intercept of -7r using the weighting technique described in section 3.2.

The correlation coefficients of the actual data to these forced lines were then checked,

and the results are reported in figures 3-14 and 3-15 . The correlation is above 0.98

which for this experiment is considered satisfactory. On the other hand, the slope of

the forced lines indicates a delay on the order of 1.8 msec rather than 2.0 msec. By

forcing the line to have the proper intercept, the slope was changed by about 10%.

With more care in data collection and more refined processing, this 10% could be

reduced.

Phase vs Frequency (Upper Actuator)
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Figure 3-14: Linear phase
actuator; The slope of this

versus frequency for the position

plot is the time delay in seconds
response of the upper
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Phase vs Frequency (Lower Actuator)
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Figure 3-15: Linear phase versus frequency for the position response of the lower
actuator; The slope of this line is the time delay in seconds

3.4 Two Degree of Freedom Position Calibration

Although the high resolution optical encoders used in this design required no cali-

bration, the geometry of the system required that a two degree of freedom position

calibration be completed. The object of this experiment was to determine the actual

lengths of links 1 and 2. Figure 2-2 illustrates the dimensions of the robot which are

in question for this experiment.

This calibration was completed with the use of an aluminum plate with a grid

of holes drilled through it. This grid of holes was created on a CNC mill and the

distance between centers of the holes is 1.000 inch and the distance between any two

holes on the plate is known within ± 0.005 inches. The end effector of the robot was

outfitted with a pointer which fit into the holes. This pointer fit into the holes with

no more than t 0.004 inches of play.

An array of 28 holes was selected in the area of the workspace. This array of holes

is represented by the small circles in figure 3-16. The distance between any two of
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these holes is known because of the precise layout of the grid. Next, the end point of

the robot was moved to each hole and the joint angles were recorded for each position.

Because the pointer does not fit exactly into the holes, the distance between any two

pointer positions is known only to within 0.013 inches (this the tolerance between

centers plus two times the clearance between the pointer and the hole). Using the the

known distances, and the measured angles, an unconstrained optimization was used

to solve for the two link lengths.

The results of this experiment are summarized in figure 3-16. The circles on the

plot represent the holes in the plate (the actual location), and the x's represent the

position measured by the robot. The two link lengths are 405.33mm and 487.93mm

respectively. These results demonstrate that the relative distance as measured by the

robot is known to within 0.015 inches. Recall that the total error in the calibration

fixturing is 0.013 inches. Thus with a more carefully designed calibration setup, the

accuracy of the robot could be shown to be much better.

2-DOF Position Calibration
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Figure 3-16: This plot summarizes the 2 DOF position calibration
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3.5 System Identification

A simple procedure described by Won [19] was used to characterize the physical

parameters of the two-link manipulandum. First, a basic modeling assumption is

made that treats the four bar linkage as a simple two bar linkage as seen in figure

3-17. It is also assumed that the losses in the joints of the robot can be accounted

for by a combination of coulomb and viscous friction. Measuring joint angles qi and

q2 with respect to the base frame leads to the following set of equations.

OH 12 ~
ri = H1141 + H 1 2#2 + W 2 q2 + bidi + Ffrsgn(41 ) (3.2)

Oq22

O H12 ~
T2= H 12 41 + H 22 42 + H + b2 42 + Ff 2 sgn(42) (3.3)

The Hij are the terms in the symmetric positive definite manipulator inertia tensor

given by the following.

H [ H 12  mFic2 + I1 + m 2l m 2l1 cos(q 2 - qi)
H (q) - 1 (3.4)

H 1 2 H 22 J m 2 l1 cos(q2 - q1) m 2c2 + I2 ]
where mi indicates the mass of a link, c. indicates the distance from the joint to the

center of mass of the link, and I, indicates the inertia of the actuator rotor.

The purpose of this section is to get estimates of the values of the Hij, the bi and

the Ff1 .

q1 Link 1

q2 Link 2

Figure 3-17: Modeling assumption: Treat the four-bar linkage as a simple two-bar
linkage.
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3.5.1 The Experimental Setup

The experiment was broken down into three parts. Each part consisted of a sub-

experiment in which one of the degrees of freedom was eliminated resulting in a

single equation of motion. In each case, the robot was configured to act like a simple

harmonic oscillator. This was accomplished by using the actuators as virtual springs.

The control law of equation 3.5 allows for the actuator to act like a torsional spring

where the stiffness is K (Nm/rad). For all the experiments, K = 1O' was used as

the stiffness.

T =K(qd - q) (3.5)

where qd is the equilibrium.

3.5.2 Locking the Elbow Joint

By locking the elbow joint in the absolute frame, an equation of motion involving

only qi is obtained.

ri = Hd1 ji + bi di + Ff sgn(4i) (3.6)

With the elbow locked, the simple control law of equation 3.5 was implemented

on the shoulder joint resulting in the following equation of motion.

H1 1 + bidi + FfAsgn(4 1 ) + Kqi = Kqd (3.7)

The shoulder was then displaced from its equilibrium position and released. The

oscillations were recorded and a simulation completed to find the best estimates of

H,11 bi, and Ff1 . The data and the simulation are shown in figure 3-18, and the best

fit parameters are listed below. Note that the data and the simulation differ at low

displacement as well as a slight offset in equilibrium. This may be due to the fact

that stiction has not been included in the model.
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HI1  = 0.349 kg-m 2

b1 = 0.222 ra

Ff = 0.099 Nm

H11
0.7

Data
0.6- - - Simulation

0.5-

0.4-

0.3-

0.2-

0.1 -

0 1 2 3 4 5 6 7 8
Time sec

Figure 3-18: This simulation gave the following estimates: H 1 = 0.349 (kg-m 2),
b1 = 0.222 Nm and Ff, = 0.099 (Nm).rad Ff 0.9(N)

3.5.3 Locking the Shoulder Joint

Similar to locking the elbow joint, locking the shoulder joint in the absolute frame

results in the following equation of motion. This equation describes the motion of

link 2 when link 1 is locked in the absolute frame..

H2242 + b242 + Ff 2sgn(42) + Kq 2 = Kqd (3.8)

The same control law as before was implemented and link 2 was displaced from its

equilibrium. The oscillations were recorded and the simulation returned the following

results. The data and the simulation are shown in figure 3-19.

H 2 2 = 0.246 kg-m 2

b2 = 0.181 Nmrad
sec

Ff2 = 0.139 Nm
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H22

Figure 3-19:

4
Time sec

This simulation gave the following estimates:

8

H22 -0.246 (kg-in 2),

b2= 0.181 and F 2 = 0.139 (Nm).

3.5.4 Locking the Elbow Joint in the Relative Frame

Referring back to equation 3.4, the only term left to identify is H 12. This is a con-

figuration dependent term, because H 12 = r 2 l1 c2cos(q 2 - qi). So the term that must

be found is actually the coefficient multiplying the cosine term (m 21ic 2). By locking

link 2 relative to link 1 the difference between angles qi and q2 is fixed. In this case,

the difference was fixed at:

q2 - qi = 0.4554 rad (3.9)

This difference being fixed enables us to write a new equation of motion.

H1*14 1 + b*41 + Fysgn(di) + Kqi = Kqd (3.10)

where b* and Fj are the viscous and coulomb friction associated with rotating both

actuators simultaneously, and H 1 is given by the following equation:

H*1 = Hu1 + H 2 2 + 2m 2 lic 2cos(q 2 - qi) (3.11)

Thus the term (m 211 c2) in question can be obtained by the following equation.
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- H*1 - (H1 + H 22 )
2cos(q 2 - qI)

(3.12)

The test was performed just as the previous two were conducted. The robot was

displaced from its equilibrium and the oscillations were recorded. A simulation was

then performed resulting in the following parameter estimates. The simulation and

the data are shown in figure 3-20.

H*1 = 1.028 kg-m 2

= 0.407 Nm
rad

=0.238 Nm

H12

0 1 2 3 4 5 6 7 8
Time sec

Figure 3-20: This simulation gave the following estimates:

b* = 0.407 Nm and Fh = 0.238 (Nm).rad Ff 023(N)
seC

H*1 = 1.028 (kg-m 2),

Using this H*1* and equation 3.12 the off-diagonal term of the inertia tensor can

be obtained.

m 21ic 2 =
1.028 - (0.349 + 0.246)

2cos(0.4554)
-0.241 (3.13)

Thus the H 12 term was obtained as:

H 1 2 = 0.241cos(q 2 - qI) (3.14)

The values of b* and Fj were expected to take on specific values. The actuators
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were expected to be the main contributors of viscous damping and coulomb friction.

This being the case, b* was expected to be approximately equal to the sum of b1 and

b2. Likewise, F was expected to be equal to the sum of F, and Ff2 . Both these

equalities are satisfactorily attained, and thus all joints not involving the actuators

add negligible amounts of damping and friction.

3.5.5 Results

Using the estimates for the Hij, the inertia tensor can be written as follows.

H (q [ 0.349 0.241cos(q 2 - q1) (3.15)
0.241cos(q2 - q1) 0.246

Another method, using an adaptive controller, was used to estimate the inertia

parameters, and it gave similar results. This method is outlined in appendix C of this

thesis.

Incorporating the estimates for the b, and the Ff1 allows us to rewrite equations

3.2 and 3.3.

+ + OH12 ~
T1 = H1i + H 1 2 42 + q2 + 0.22241 + 0.099sgn(di) (3.16)

ftq2

+ ± OH12 ~

T2 =H 12 4 1 +H 22 2 + O i +1 0.18142 + 0.139sgn(d 2) (3.17)
Oqi

where the Hij are given by equation 3.15.

3.6 Inertia, Damping and Friction Parameters: Func-

tions of Endpoint Position

In the previous section, joint-level estimates of inertia, damping and coulomb friction

were given. As most experiments will be designed in cartesian space, it is desirable to

transform the joint-level parameters into their cartesian counterparts. The details for
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how these transformations are carried out can be found in the thesis by Channarong

[4].

The results of the transformations are shown in three separate figures. Figure

3-21 shows the inertia parameteres, figure 3-22 illustrates the damping paramaters,

and figure 3-23 shows the coulomb friction paramaters. Some common traits are

found in all three figures. First, the large circle near the top of each figure represents

the actuators of the robot. Next, the large rectangle in each figure represents the

workspace. And finally, dotted lines represent arcs of constant radius (the distance

from the actuator axis to the endpoint of the robot). Note that the magnitudes of

each paramter change as a function of distance (between actuator axis and endpoint)

alone. Thus the magnitudes (given in small print in each figure) are the maximum

and minimum values of the parameter at that radius.

In addition to these similarities, there is one major difference between the figures

as well. The inertia and damping parameters are represented as ellipses while the

friction is illustrated as a parallelogram. Past research [4, 17] shows that the inertia

and damping of a two degree of freedom mechanism operating in a plane may be

understood as an ellipse. The vector (in any direction) from the center of the ellipse to

the surface of the ellipse is representative of the inertia or damping in that direction.

Statics and geometry show that the joint-level friction of this robot takes on the

shape of a parallelogram when projected to the endpoint. And much like the other

parameters, the vector from the center of the parallelogram to the surface of it (in

any direction) is representative of the friction in that direction.

48



Generalized Inertia Ellipsoids
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Figure 3-21: Generalized Inertia Ellipsoids
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Viscous Damping Ellipsoids
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Figure 3-22: Viscous Damping Ellipsoids
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Coulomb Friction Parallelograms
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Figure 3-23: Coulomb Friction Parallelograms
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3.7 Velocity Estimation

Velocity signals are desired for feedback in the closed loop control of the robot. As

there are no velocity sensors on this machine, velocity must be estimated. The sim-

plest approach to estimating velocity is to simply take the first difference of the

position signal. This is actually not a bad estimate at high velocities, but at low

velocities it causes problems. The problems arise from the fact that the position in-

formation is digital and at a finite resolution. Thus, there is a minimum measurable

change in velocity AVmin. This vdomin is quite easy to calculate as it depends on the

position sensor resolution and the sampling period alone.

AVmin T min (3.18)
T

Where AXmin is the smallest record-able change in position, and T is the sampling

period.

It is desirable to be able to measure infinitely small changes in velocity. Equation

3.18 shows that both increases in Axmin and decreases in T work to prohibit the

measurement of small velocity changes. Decreasing resolution is expected to cause

problems, but increasing the sampling rate would normally be expected to help the

velocity estimates. Lowering the sampling frequency however, is not an acceptable

means of getting better velocity estimates as it can cause other problems. Therefore,

the approach of keeping the sampling rate high and using a filter to enhance the

velocity estimates was adopted. Currently, the sampling rate is limited by the ATI

force transducer which can update no faster than 1066 Hz. The sampling rate has

been set to 1000 Hz to simplify calculations and avoid round-off error. Using this rate

and the resolution of the position sensor (131072 counts) a simulation was completed

for the first difference velocity estimator. The results of this simulation are shown in

figure 3-24.

The results in figure 3-24 show unsatisfactory performance of the velocity estima-

tor. Indeed, a filter is required to attenuate the high frequency noise (quantization

noise) on the velocity signal. Taking the simple approach, a first order filter was
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First Difference Simulation

3-U.2

0.1 -....-.

01

-0. 1 -. ..-.

0

0--0.2 -- Velocity-
Position

-0.3-

-0.41

02

Time (sec)

Figure 3-24: Simulation of the first difference velocity estimator: Sampling frequency
,Position resolution = 131072""

designed and applied to the first difference velocity estimate. The corner frequency

of 30 Hz (188.5 rad) was chosen for the filter. The trade-off between high frequency

attenuation and low frequency phase distortion was considered when making the cor-

ner frequency selection. The manipulator is designed for use with humans who can

generate velocities with a maximum frequency content on the order of 5 Hz. At 5

Hz, this filter creates 9.3' of phase lag (in theory; see figure 3-25). In general, the

movements being studied will contain frequencies on the order of 2 Hz, and the filter

creates less than 4' of lag at this frequency.

This filter can be described in the Laplace domain by equation 3.19. A plot of the

frequency response of this velocity estimator can be found in figure 3-25. Finally, the

simulation that was executed earlier was completed again for this filtered first differ-

ence velocity estimator. The results for this simulation show satisfactory performance

as illustrated in figure 3-26.
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v(s) As
(3.19)x(s) s + A

Where v is velocity, x is position, and A is the corner frequency of the filter in .

0
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Figure 3-25: Frequency response of the velocity estimator

The possibility that the filter could cause instability of the system was also inves-

tigated. For this investigation, the manipulator was considered in its simplified linear

form. Also, because the time delay is known to cause instability, it is eliminated from

the system in order to isolate the behavior of the filter. Figure 3-27 below shows

a block diagram of the system in this simplified form. The corresponding transfer

function (mapping actual position to desired position) for this system is given by

equation 3.20.

x(s) _ k(s + A) (3 20
Xd(s) Ms3 + (mA + b)s2 + (bA + bcA + k)s + kA

Where k and bc are controller gains, and m and b are the inherent mass and inherent

damping of the system respectively.
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Filtered First Difference Simulation

CD)

CO

a-)

0

ad

Cz

0

0

Figure 3-26:
frequency=

-0.4' 01 2
Time (sec)

Simulation of the filtered first difference velocity estimator: Sampling
1000 Hz, Position resolution = 13 10 7 2 """, first order cut-off 30 Hz.

Xd(S) x(s)

Figure 3-27: Block diagram of the simplified system. This block diagram was created
by considering a 1 d.o.f. system with the same linear characteristics of the manipulator
and ignoring any nonlinear characteristics
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Using the Routh Hurwitz Criterion for stability, this transfer function was con-

firmed to be stable for all positive values of k, bc, m, b, and A. Note, that the inherent

mass and damping (m and b respectively) are positive, and that the A value has been

chosen as 188.5 "d. Thus the system will remain stable for all positive values of k

and bc. Currently, there is no intention to set negative gains in the controller, so these

results show that the velocity estimator by itself is incapable of creating instability.

After establishing that the velocity estimator could not cause instability, it was

implemented on MANUS-2. A simple experiment was run to observe the action of the

filter. The procedure used in this experiment involved grasping the endpoint of the

robot and slowly moving it through the workspace. The results from this experiment

are in figure 3-28. It is clear from the plot that the filter performs as expected,

attenuating the unwanted high frequency noise.

First Difference Velocity Estimate

0.2 - -.-.-.-.-

0 .1 -.-. .-. .-. .-. .-. .-.

> -0.1 -

0 1 2 3 4 5

Filtered First Difference Velocity Estimate

0.2-

> 0.1

$-0.12
0 1 2 3 4 5

Time (sec)

Figure 3-28: Velocity Estimator Implementation: This plot demonstrates the ability
of the filter to attenuate unwanted high frequency noise on the velocity signal.

Another important consideration of the velocity estimator is its effect on the poles

of the system (denominator of eq. 3.20). The operator should know where the poles of

the system are under normal operating conditions. Normal operating conditions are

not extremely well defined at this point as the full realm of uses for this machine have
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not been explored. On the other hand, an earlier version of this sytem has been used

extensively in clinical experiments. During these experiments, the controller gains

were set to k = 100 [ and bc = 2 --. Also, the inherent mass and damping can be

estimated at m = 1 kg and b = 1.54- near the center of the workspace (approximated

from figures 3-21 and 3-22). Finally, for a cutoff of 30 Hz in the filter, A = 188.5.

Thus the three poles of the system are at -186.5, and -1.7 ± 9.9i. The response of

the system is dominated by the complex conjugate pair of poles. This pair of poles

corresponds to a natural frequency of w = 1.6 Hz and a damping ratio of ( = 0.17.
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Chapter 4

Impedance Limits

The purpose of this chapter is to experimentally determine the impedance limits

of the robot. Two seperate sets of tests were performed. The first was a group

of experiments used to determine the stability of the robot while the endpoint was

not in contact with an environment. This is called uncoupled stability. The second

group of tests was used to determine the stability of the robot while the endpoint was

interacting with some known environment. This is known as coupled stability, and in

these experiments, the robot was interacting with a spring. The reasons for choosing

a spring as the environment will be covered in the section on coupled stabilty. For

both the uncoupled and the coupled tests, the robot was considered unstable if it

exhibited sustained (i.e. not decreasing) oscillations during the test. Two types of

instability were discovered during the testing, and the oscillations were different for

each type. These two types of instability, as well as the oscillations defining them,

will be discussed later in this chapter.

Recall that the objective of this chapter is to determine the impedance limits for

this robot. As the controller uses only position and velocity feedback, the impedance

can be modulated using only position and velocity feedback gains. In the context

of the controller, position gain can be thought of as controller stiffness, and velocity

gain can be thought of as controller damping. Thus the task becomes defining the

range of controller stiffness (k) and controller damping (bc) for which the robot is

stable. More details on how the gains affect the system are covered in section 4.3 of
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this chapter.

4.1 Uncoupled Stability

Three separate experiments were conducted for determing the uncoupled stability

of the robot. Each of these experiments was conducted in a different location of

the workspace and consisted of several trials. Each of the trials was five seconds

in duration. For each trial, the endpoint was servoed to the desired position and

then stabilized by hand. Two seconds into the trial, a step in endpoint position was

commanded. The table below shows the locations and sizes of steps used for each of

the three tests. The locations are measured from the center of the workspace which

is 20" (.508m) from the center of the motor axis (see figure 2-2 for workspace layout).

Test Location Step
x y dx dy

1 0.200 0.226 0.005 0
2 0.269 0.138 0 0.005
3 0 0 0.002 0.002

Table 4.1: Locations and Directions of the step inputs used for uncoupled stability
testing

Figure 4-1 summarizes the results of the uncoupled stability tests. All three tests

report similar results which will be discussed in section 4.3 of this chapter.

4.2 Coupled Stability

Past research [20, 7, 6, 8, 14] has shown that a manipulator which is stable when

uncoupled may become unstable when coupled (to an environment). This coupled

instability depends on many things, most importantly, the controller and the dynamic

properties of the environment. As discussed in Chapter 1, impedance control is the

method of choice when faced with such interaction problems. Colgate [7] has shown

that for systems such as MANUS-2 using impedance control, an approximation to the

worst case environment is simply a spring. Colgate goes even further stating that the
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Uncoupled Stability

5 10 15 20 25 30
Damping (N/(m/s))

35 40 45

Figure 4-1: Uncoupled stability results

worst case stiffness for this spring is that which resonates at the Nyquist frequency

when coupled to the inherent mass of the system. That is to say; kenVworst = yqistm,

where WNyquist is half the sampling frequency and m is the inherent mass of the system.

For this system, the sampling frequency is 1000 Hz or 6283d, and the inherent mass

is on the order of 1kg (note: The inertia of the system is configuration dependent,

and 1kg is representative of the mass of the system with endpoint positioned near the

center of the workspace). Thus kenvwt =(3142)2(1) ~ 9, 872, 000 N. It is unrealistic

to create a test apparatus which has a stiffness of this magnitude. On the other hand,
an apparatus with more realistic stiffnesses can be used to gain some understanding

about the coupled behavior of the system.

4.2.1 Design of a Test Apparatus

The objective of this section is to give a brief overview of the design of the apparatus

used in coupled stability testing of MANUS-2. Two desired features of the test

apparatus were considered during the design phase. First, the apparatus should have
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a wide range of available stiffnesses. Second, it should be easy to use (i.e., changing

the stiffness should be easy). The sketch in figure 4-2 shows a design which is capable

of satisfying the design constrains. The adjustable support will allow for a wide range

of stiffnesses. If the procedure for moving the support is kept simple, changing the

stiffness is painless.

Thin
Applied Steel Beam
Force

Adjsutable
Simple
Support

Built-in
U port

Figure 4-2: Sketch of the variable rate spring test apparatus

This design concept was put to manufacture and the photo in figure 4-3 shows the

finished product. Note the quick release mechanism used for adjusting the support.

This apparatus was calibrated for 6 different positions (of the adjustable support), and

the results of this calibration are shown in the table below. Position 1 is actually the

stiffness of the apparatus with the support removed. This calibration was carried out

statically using the robot to measure deflection, and the ATI Gamma force transducer

to measure force.

4.2.2 Coupled Stability Tests

Tests were completed with the robot coupled to the spring aparatus. The robot was

outfitted with a disc that was able to come into contact with the spring. This disc

was manufactured so that it would contact the spring at a single point. Figure 4-4 is

a photograph of MANUS-2 interacting with the variable spring.
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Figure 4-3: Photo of the variable stiffness test apparatus
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Position Stiffness (;

1 1050
2 1883
3 3826
4 9842
5 34660
6 130900

Table 4.2: Calibrated stiffness values for the variable spring apparatus

Figure 4-4: Photo of MANUS-2 interacting with the variable spring

The procedure for the coupled experiments was similar to that for the uncoupled

experiments. The difference was that the robot was first servoed to a position where

it was deflecting the spring (by 1mm). Then the endpoint was stabilized by hand

and finally the step commmand was issued. This method insured that the endpoint

remained in contact with the spring for the duration of the test. The coupled stability

tests were completed for 2 locations in the workspace. These locations are the same

as the test 1 and 2 locations for the uncoupled robot (see table 4.1). The step sizes

were also kept the same as in the uncoupled case.

The results of the the coupled stability tests are summarized in figure 4-5. The

data in this plot has a great deal in common with data from the uncoupled case.
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These similarities as well as some differences will be discussed further in section 4.3

of this chapter.
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Figure 4-5: Coupled stability results

4.3 Discussion of Results and The Achievable Impedance

Range

The shape of the stable region in figures 4-1 and 4-5 suggests that there may be

two distinct types of instability; one stability threshold (Type 1) characterized by

the positive sloping edge of the stable region, and another stability threshold (Type

2) characterized by the negative sloping edge of the stable region. Based on this

evidence, the discussion of the results will be broken down into two sections; one for

Type 1 instability, and one for Type 2 instability.
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4.3.1 Type 1 Instability Threshold

First, one should understand the type of oscillations which defined the Type 1 in-

stability. As shown in table 4.1 steps of either 5mm or 2mm were imposed on the

system. When the oscillations were sustained at 5mm or 2mm (zero to peak) respec-

tively, the system was considered marginally stable. The points plotted in figures

4-1 and 4-5 (along the positive sloping edge of the stable region) represent points of

marginal stability for the system. If controller stiffness were increased slightly for a

given controller damping, the system would be unstable.

In order to understand the Type 1 instability threshold, a simple model was

proposed. This model includes the linear properties of the robot as well as the time

delay. The model was also reduced to a single degree of freedom. A block diagram of

this simplified system is shown in figure 4-6. This system is the same as that shown

in figure 3-27 except that now the delay is included. The transfer function for this

system (without the delay) is given by equation 4.1. The reason the delay is left out

is that frequency response is the tool to be used in this analysis, and the delay affects

only the phase aspect of the frequency response. Thus the phase lag due to the delay

can be added directly to the phase lag calculated during the frequency response.

x(s) k(s + A)
Xd(S) ns 3 + (mA + b)s 2 + (bA + bcA + k)s + kA

Where k and bc are controller stiffness and damping respectively, and m and b are

the inherent mass and damping of the system respectively.

Xd(S) e-s _ b X(S)

S+ bs

Figure 4-6: Block Diagram of the simplified system

The strategy used in this analysis is to set controller stiffness of the model to
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unity, and then use the frequency response to get the gain margin of the system.

This process is repeated for several values of controller damping in the range of the

Type 1 stability threshold. Using the gain margin, the maximum allowable controller

stiffness for the selected controller damping value can be calculated. The results of

this analysis (for the uncoupled robot) are shown in figure 4-7. The model fits the

actual data quite well.

Uncoupled Stability
7000 -

6000- * Data
Model

5000 -

z
(n 4000 -
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0

2000- Model Parameters:

m = 1 kg, b = 1.5 N/(m/s)

1000- T = 0.001 sec

0 '
0 1 2 3 4 5 6 7 8

Controller Damping N/(m/s)

Figure 4-7: Model for the uncoupled stability results

The physical explanation for these results is straight forward. For a fixed value of

controller damping, the system becomes more under-damped as the controller stiffness

is increased. As the system becomes more under-damped, the 1800 phase lag (the

relative order of the system is two) becomes very abrupt. Recall that the phase lag is

centered at the natural frequency of the system (i.e. -90' at the natural frequency).

Therefore, when the system is extremely under-damped, 1800 of phase lag can be

observed at just above the natural frequency. When the phase lag due to the delay

is added into the picture, the system has more than 1800 of phase lag rendering it

unstable.

This technique was also used in the case of the coupled robot. The new transfer

function becomes that of equation 4.2. The results for this analysis are shown in
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figure 4-8, and again the model fits the actual data very well.

x(s) k(s + A)

Xds) - ms 3 + (mA + b)s2 + (bA + bcA + k + kenv)s + (k + kenv)A

Where kenv is the stiffness of the environment.

Coupled Stability
9000

8000-

7000-

E6000

5000

1000-

01
0 7 8 9 10

Figure 4-8: Coupled stability results; Note: a higher damping value was used in the
coupled case to account for damping and friction added to the system by the variable
spring

4.4 Type 2 Instability Threshold

The second threshold of instability is slightly less intuitive than the first. This insta-

bility manifested itself in a peculiar way. Given a step input, the robot would exhibit

seemingly normal behavior as an underdamped system. A sample of such a time

response is shown in figure 4-9. Although the large amplitude oscillations are clearly

dying out in this figure, there is a component of vibration which is not decreasing. A

close up view of the last 0.2 seconds of the time response shows some higher frequency

activity (see figure 4-10). The power spectrum of the last two seconds of the time

response shown in figure 4-11 reveals that the frequency of this vibration is on the
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order of 200Hz. This 200 Hz component of vibration proved to be the source of the

type 2 instability. The Type 2 instability threshold is defined by the magnitude of the

200 Hz vibration. The points along the threshold were documented when the 200 Hz

vibration could be heard by the operator or could be felt when gripping the endpoint.

Upon further examination of the data at each of these points, it was discovered that

the power spectral density of the signal at 200 Hz averaged near 10-6.

x 10 -3 Uncoupled (k=9400, bc=38, fs=500)
3.5

3-

2.5-

2-

1.5-

0

0

>- 0.5

0

-0.5

-1

-1.5
0 1 2 3 4 5 6

Time (sec)

Figure 4-9: Type 2: Closed loop response to a step input

The dynamics of this robot (discussed thoughout this thesis) suggest the system

should never exhibit vibrations on the order of 200 Hz. One possibility for the origin of

these vibrations was the discrete time controller being used. As mentioned previously,

the controller is using a sampling frequency of 1000 Hz which means it is capable of

creating inputs at 200 Hz. To verify that the controller was not creating the vibrations

at 200 Hz, step input tests were conducted using sampling frequencies ranging from

500 to 2000 Hz. All of these tests showed the same results, significant vibrations on

the order of 200 Hz. This strongly suggested that the controller was not at fault.

Another possible origin of the high frequency oscillations was a structural mode of
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Uncoupled (k=9400, bc=38, fs=500)
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Figure 4-10: Type 2: Closed loop response to a step input (close up)
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Figure 4-11: Type 2: Spectrum
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vibration. This idea gave rise to the following hypothesis: If a structural mode with

a natural frequency of 200 Hz existed, it should be able to be excited by open loop

input from the actuators. This hypothesis was put to the test by inputing a square

wave through each actuator. This square wave had an amplitude of 4Nm (zero to

peak) and a period of 'sec. The square wave was applied to one actuator at a time

with the other actuator remaining inactive throughout the test. Figures 4-12 and

4-13 show the results of these open loop tests. In each figure, the upper plot shows

the response recorded by the position sensor of the upper actuator, and the lower

plot shows the response recorded by the lower sensor.

Open Loop: Square Wave Input 10Hz (Fs=1000)
6 0

a)

a-

3--

12-0
CD
a)

C. 180 190 200 210 220 230 240
Upper Actuator Only Supplying Input of +/- 4 Nm

X 10

a)

0 4 - --

3-

1 --Co
a)

a.180 190 200 210 220 230 240
Frequency (Hz)

Figure 4-12: Open loop Spectrum (square wave input to upper actuator)

In addition to these spectra, a time plot of the response of the system to the

square wave input is shown in figure 4-14. By looking closer at one of the peaks of

this plot, evidence of the higher frequency vibration can be seen. Figure 4-15 is a

close up view of one of the peaks shown in figure 4-14.

These plots show clearly that some form of structural vibration (on the order

of 200 Hz) is taking place. Furthermore, they suggest that the upper actuator is

70



Open Loop: Square Wave Input 10Hz (Fs=1000)
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Figure 4-13: Open loop Spectrum (square wave input to lower Actuator)

Time response: square wave input 10 Hz (Fs=1 000 Hz)
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Figure 4-14: Open loop Time Response (square wave input to Upper Actuator)
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Time response: square wave input 10 Hz (Fs=1000 Hz)
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Figure 4-15: Close up: Open loop Time Response (square wave input to Upper

Actuator)

the most likely culprit. This data led to another hypothesis regarding this behavior:

Compliance along the shaft of the upper actuator is the source of the structural

vibration at 200 Hz. This hypothesis was developed because the actuator shaft is

actually in several sections which are bolted together. Also, The upper actuator

shaft had exhibited problems in the past (bolts connecting two sections of the shaft

had worked themselves loose).

4.5 Simulating Type 2 Instability

In order to show that compliance along the actuator shaft could cause the robot to

exhibit the behavior seen in the stability experiments, a model was developed. This

model starts with the initial actuator model as a foundation and adds to it one degree

of freedom. The initial actuator model was that of just a mass with damping, and to

add a degree of freedom, another mass was attached via a spring and damper. A sketch

of the new model as well as the corresponding transfer function can be found in figure

4-16. In addition, a Bode plot of this new transfer function can be found in figure 4-17.
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For this Bode plot, the following parameter values were used: b = 1.5L, b2 = 2.0
S S

m = 0.1kg, m 2 = 0.9, k2 = 170000. These values were chosen using information

gained from previous experiments. The system identification experiments allowed for

the approximation of the total mass of the system at 1.0 kg near the center of the

work space. The geometry of the robot dictates that the linkage mass (m 2 ) is about

90% of the total mass of the robot. Likewise, the system identification experiments

allowed for the approximation of the actuator damping (b) at around 1.5L near the

center of the workspace. Finally, b2 and k2 were chosen such that the system would

have a lightly damped resonance at 200 Hz.

X2(t)

a)

Modified Robot Dynamics

G(s)

x(s)

x(s)
G(s) =

Fa(S)

Figure 4-16: a) simplified mechanical representation of the robot
pliance along the shaft b) the corresponding transfer function

system with com-

A simulation of the square wave input test was also completed to demonstrate

that the open loop transfer function could exhibit similar behavior to that seen in the

experiment. The simulated time response of the open loop system to the square wave

input is shown in figure 4-18. The power spectral density of this response was then

computed and is shown in figure 4-20, and by comparing this figure to figure 4-12 the
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Bode plot for the open loop system with shaft complince
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Figure 4-17: Bode plot of the open loop transfer function including shaft compliance;
The open loop zero-pair occurs at 69.2Hz and has a damping factor of ( = 0.0025
and the open loop pole-pair occurs at 218.7Hz with ( = 0.013

similarities between the model and the actual system can be identified. The model

and the system both have some vibration just above 200 Hz, but the model has lower

magnitude. The later simulations will show that the model parameters have been

tuned carefully enough to emulate the behavior of the system.

Next, the new transfer function was placed into the closed loop system. This

allowed for the simulation of the stability experiments involving step inputs. Simulink

(the MATLAB simulation engine) was chosen to complete these simulations. The

Simulink block diagram is shown in figure 4-21, and includes some new elements.

The two new elements are the zero-order hold, and the quantizer. The zero-order

hold allows for the integration of the continuous time robot dynamics with the digital

controller; it is the sampling frequency of the controller (0.001sec). The quantizer

simulates the effect of the discrete position sensor (the encoder). The quantization

step is 2.4 x 10-5 n. This step is the approximate linear distance traveled between

encoder counts. Also, notice that the model includes the time delay of 0.001sec. This

is the pure time delay of the amplifier as described in Chapter 3. Recall that the
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Simulated Time Resonse of the Robot to the Squre Wave input (10 Hz)
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Figure 4-18: Simulated time response of the modified
10 Hz square wave input; compare this simulation to
4-14
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the experimental data in figure

Simulated Time Resonse of the Robot to the Squre Wave input
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Figure 4-19: Close up: Simulated time
function to a 10 Hz square wave input;
data in figure 4-15

response of the modified open loop transfer-
compare this simulation to the experimental
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Figure 4-20: Power spectral density of the simulated response; compare this simula-
tion to the experimental data in figure 4-12

total delay discussed in Chapter 3 was 0.002sec, but 0.001sec was attributed to the

sampling order used during data collection. This is the reason 0.001sec is used in the

simulations.

Using this Simulink model, the stability experiments discussed earlier were simu-

lated. The controller stiffness (k) and damping (bc) could easily be adjusted and the

the Type 2 stability threshold estimated in much the same way that the experiments

were conducted on the robot. Figure 4-22 shows a typical time response for a point

on the Type 2 stability threshold. A close up of this time response is shown in figure

4-23. This time response clearly shows high frequency oscillations, and can be com-

pared with the experimental data shown in figure 4-10. Like the experimental data,

the power spectral density of the simulated response was computed. These results

are found in figure 4-24. Once again, the power spectral densitiy of the simulation

can be compared to that of the data (4-11) in order to see the distinct similarities.

The threshold of Type 2 instability was only loosely defined earlier in this chap-

ter. It was stated that the points along the Type 2 threshold contained a 200 Hz
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Figure 4-21: Block diagram used to simulate the complete system in Simulink

Simulated Time Resonse of the Robot: Step input
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Figure 4-22: Simulated time response to a step input of 5mm; compare this simulation

to the experimental data in figure 4-9
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Simulated Time Resonse of the Robot: Step input
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Figure 4-23: Close up: Simulated time response to a step input of 5mm; compare

this simulation to the experimental data in figure 4-10
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Figure 4-24: Power spectral density of the simulated time response to a step input of
5mm; compare this simulation to the experimental data in figure 4-11
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component of vibration with a power spectral density of 10-6 or greater. This power

spectral density calculation was determined using only the final second of data in the

five second test. This notion was justified because if the behavior is truly unstable,

the 200 Hz vibration should be increasing with time. Using this idea, one can more

firmly define the Type 2 instability threshold. For each value of controller damping bc

a point on the Type 2 instability threshold may be determined by finding the value of

controller stiffness k which results in a 200 Hz component of vibration with a power

spectral density of 10-6. Using this definition, the Simulink model was used to solve

for points on the Type 2 threshold. The results are shown in figure 4-25. This is a

repeat of the plot shown in figure 4-1 with the simulation results superimposed over

the data. Notice that the simulation accurately models both the Type 2 threshold

as well as the Type 1 threshold. This is because the model includes the time delay

which is the important factor in determining the Type 1 threshold. This model can

also be used to determine the maximum negative damping value. The simulations

showed that the value of -1.5k was the largest negative damping value which could

be simulated in a stable manner. This is exactly what was expected as the controller

should be able to apply as much negative damping as there is real physical damping

in the system (a notion pointed out by Colgate [7]). An experiment could be carefully

executed on the robot to verify that the model projections are correct.

The final useful aspect of the model is that it can be used to see how the individ-

ual parameters effect the stability thresholds. In this respect, the model should be

subjected to a rigorous sensitivity analysis to determine the most effective means of

improving the robot design. Although this thesis will not cover a complete sensitivity

analysis, the model was used to come up with a brief summary of how the individual

parameters effect the stability thresholds. First, the extra degree of freedom in the

robot should be eliminated. Without this degree of freedom, the robot would not

exhibit Type 2 instability. Next, decreasing time delay raises both Type 1 and Type

2 thresholds. Also, decreasing the quantization step raises the Type 2 threshold.

Contrary to intuition, increasing the sampling frequency lowers the Type 2 thresh-

old. This is due to the discrete velocity estimation being used. On this note, the
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Figure 4-25: Actual and Simulated stability thresholds

method of obtaining a velocity measurement is very crucial to stability of the robot.

Although it was not done in this thesis, alternative velocity (digital) estimators as

well as different types of velocity sensors should be investigated to determine which

is the best for obtaining stability with high damping values.

4.6 The Actual Endpoint Impedances

Although efforts were made to insure that MANUS2 will exhibit endpoint impedance

requested by the operator, there are many factors which may prevent it from doing

so. An experiment was conducted to show how accurately MANUS2 can exhibit the

endpoint impedances requested of it. The experiment was conducted in two parts;

one to measure the actual stiffness of the robot and the other to measure the actual

damping in the robot. The values tested were near the maximum allowable values

which were discussed earlier in this chapter.

For both tests the endpoint of the robot was first placed in the center of the

workspace. For the stiffness tests, controller stiffness (k) was then set to 5000[ andmn
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the controller damping (bc) was set to zero. The robot was then displaced in the x-

direction (small displacements were used to avoid saturation of the actuators). During

the test, both the x-displacement and x-force were measured. This test was then

repeated for the y-direction. The results of these stiffness experiments are illustrated

in figures 4-26 and 4-27.

Experimental Stiffness Measurement (X-Direction)
30

25 - Slope=5264-N/m

Bias = -0.07712 N

2 0- - - - .---- -
Correlation Coeff. =0.9994

10 - - - -.-

5 -..-..-

0 1 2 3 4 5
Displacement (m) x 10 3

Figure 4-26: Actual X-Stiffness: controller stiffness set at 5000Om

Figures 4-26 and 4-27 show that the x and y-stiffnesses were measured at 5264N
m

and 5206z respectively. These values are 4 to 5% higher than the set value of 5000O.

Although this error is satisfactorily small, some discussion of what errors were ex-

pected is necessary. The main sources of error in the stiffness measurement stem from

the calibration of the force sensor. The calibration of the ATI Gamma Force/Torque

sensor in Appendix B shows some error for both torque and force measurements (1%

for torque, and 2% for force). The error in the torque mesurements is reflected in the

robot's ability to accurately produce joint torques as the ATI was used to calibrate

the actuators. In addition, the ATI was used to measure the forces applied by the

robot during the stiffness experiments. Thus the expected error in applied torque is
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Experimental Stiffness Measurement (Y-Direction)
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Figure 4-27: Actual Y-Stiffness: controller stiffness set at 5000[

1% and the expected error in measured force is 2%. Therefore the force transducer

is capable of accounting for up to 3% of the error seen in the stiffness measurements.

For the damping tests, the controller used the following values: k = 0 and bc =

40n. The endpoint was then accelerated (by hand) in the x-direction and then

brought to a stop again. During this test, both the x-velocity and the x-force were

recorded. The test was again repeated in the y-direction. It is important to note that

the total damping which was expected at the endpoint was the value of be (40 N-)

plus the inherent damping and any static friction of the mechanism. The inherent

damping is configuration dependent, but can be approximated using figure 3-22. The

results of the damping experiments are shown in figures 4-28 and 4-29.

Figures 4-28 and 4-29 show that the x and y-damping values were measured at

44.2 - and 43.3 -g- respectively. After taking into consideration the inherent damp-
.sec sec

ing of the mechanism in each case, these values are 6% higher than set values. Again,

this small percent error is considered satisfactory. The peculiar loop created by the

data in each plot is believed to be due to the fact that the tests were not performed
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Experimental Damping Measurement (X-Direction)
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Figure 4-28: Actual X-Damping: controller damping set at 4042.- inherent damping

approximated at 1.64 .- : Expected total damping =41.6 M{
see sec

at constant velocity. The end point of the robot was slowly accelerated and then

decelerated again during the damping experiments. Thus some of the force went into

accelerating the mass of the manipulator links. The experiment was performed under

low acceleration (< 0.51), in hopes to eliminate this effect, but apparently it was

not eliminated completely. With the exception of this small quirk, the damping ex-

periments were a success as they demonstrate the ability of the robot to exhibit the

requested damping value.
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Experimental Damping Measurement (Y-Direction)
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Chapter 5

Conclusions

The main accomplishment of this thesis was the detailed characterization of the two

degree of freedom MANUS2 robot. This characterization provided a qualitative eval-

uation of the performance of every component which makes up the system. The

characterization also included the determination of the impedance limits of the robot

and pointed out the likely causes of these limits.

The results of the impedance testing suggest that some important details be kept in

mind when designing this type of robot. The discoveries made during the investigation

of the impedance limits are the foundation of these suggestions. First, as many

designers are aware, pure time delays are to be avoided. The research presented shows

that delays on the order of 1msec are enough to significantly limit performance. It

is easy to speculate that small time delays should cause no problems, but a careful

investigation is worthwhile. Also, designers should be careful to avoid extra structural

modes in their designs. This research showed that an unwanted structural vibration

was a serious limitation on robot performance. If at all possible, the actuator shafts

should be constructed of one continuous piece and not several segments joined by

bolts. Another important note; if a design is implementing digital sensors, the higher

the resolution the better. The resolution issue can often be deceiving. MANUS2

uses encoders with a resolution of 131072 counts. This may seem like an extremely

high resolution, but the experiments show that this resolution has a direct impact on

Type 2 instability. The resolution of the sensor is especially important when using
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the position information to estimate the velocity. These issues were touched on in

chapter 3, but more investigation as to the optimal method of filtering could certainly

prove worthwhile.
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Appendix A

Noise and Sensing: Effects of a

PWM Amplifier on Position

Sensing

Abstract

After several experiments, a solution to the sensing problem exhibited by the black

robot has been uncovered. The solution in the end turned out to be the installation

of a common mode choke on the outputs of the two three phase servo amplifiers. The

common mode choke was able to reduce magnetically broadcast noise created by the

high-energy Pulse Width Modulation (PWM) amplifiers. The magnetic broadcast

had previously induced noise on sensor signals to unacceptable levels.

A.1 Introduction

The writer,s first task at the Newman Lab was to assess and conquer the sensing

problems exhibited by the black robot, which Debo Adebiyi1 referred to as the beta

prototype. The robot will be refered to as just Beta for lack of a more descriptive

1Debo Adebiyi was a Master's Student in the Newman Lab. He designed and manufactured the
beta prototype
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name. Some preliminary experiments conducted by Debo and further experiments

by the writer concluded that the sensor signals were being corrupted by noise.

This appendix discusses the possible sources of this noise and concludes with a

solution to the noise problem. The objective of the appendix is to document what

was done to overcome the noise problem. In this sense, it is important not only to

discuss the solution, but also to explain the methods used to obtain that solution.

This should save time in trouble shooting noise problems in the future.

A.2 Background

A few words on the status of the robot in January 1998, when this work began, appro-

priate at this time. The entire system is composed of two identical subsystems; one

for the shoulder motion, and one for the elbow motion of the two-link manipulandum.

For simplicity sake, the system will be referred to as a singular actuator and sensor

package. The actuator package is composed of a Kollmorgen PA08 power supply,

and SEO6 3 Phase Servo amplifier as well as the Kollmorgen RBE 03013C frameless

3-phase DC motor. This Kollmorgen system is able to receive analog voltages from a

digital to analog (D/A) card in the computer.

Figure A-1 is a diagram showing the connections between system components.

The actuator was outfitted with a Teledyne Gurley optical encoder with 13bit/rev

resolution A, B and index signals. These buffered sine outputs from the encoder were

fed into a Teledyne Gurley interpolator with two types of output. The high-resolution

(15-bit/rev) quadrature output is fed to a counter card designed and built by Paul

Oppold 2. This counter card uses a quadrature interpolation scheme to increase the

resolution of the signal to 17 bit/rev. This 17 bit digital output of the counter is

scanned by a digital input/output (DIO) card in the computer. The low-resolution

(13 bit/rev) signals were output from the interpolator in the form of single ended

digital A, B, and index signals. These signals were fed into an interface card designed

2 Paul Oppold was an Undergraduate Research Opportunity Program (UROP) student in the
Newman Lab
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and built by Debo Adebiyi. The function of the interface card was to take the single

ended signals and create the corresponding differential signals to be fed back to the

amplifier for proper commutation.

Actuator Differential

InterpolatorCone :r

Single ended Computer
13 bit Differential

17 Bit
Encoe sin& Interface w/line driver

cosine Differential 13 bit )o DIO Card

D/A Card
Servo Amplifier -10 to +10OV

Figure A-1: Original layout of system components

The computer mentioned above is a Pentium with 100 MHz processor speed. It

is the computer dubbed Emulator by the lab as it was originally used for controlling

the Emulator. The D/A and DIO cards in the computer already had drivers written

for them and this proved to be a time saver for Debo. Although a newer computer

had been purchased, Debo used the Emulator computer to eliminate the need for

creating new drivers for the cards in the new computer. At the same time, the new

computer was being used to configure the Kollmorgen amplifiers. The amp has an

EPROM on board which stores parameters concerning the desired performance of the

drive system. Communication between the amp and the computer was executed via

a serial connection using ServoStar software provided by Kollmorgen. The ServoStar

software is a handy tool used in diagnosing problems with the system. The software

allows the user to adjust critical parameters associated with the actuator and sensing

package as well as operate the system in a velocity feedback mode. For example, the

user may enter such parameters as the resolution of the encoder and the maximum

velocity and current limits. In addition, the user may enter a velocity command and

watch how the actuator reacts to the input both physically and on the monitor where

the position and velocity information are displayed.
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A.3 Original Problems

There were two major problems with the system that pointed to the possibility of

noise corrupting the sensor signals. When using the ServoStar software to control the

actuator, the following problem was observed: Upon receiving a moderate velocity

command of 30 rpm, the actuator would often times ramp quickly to velocities above

400 rpm. In executing this action, the amplifier would violate either its maximum

velocity or maximum current setting and shut down. This led one to believe that the

feedback loop was disrupted in some way which caused an instantaneous step change

in the position which in turn caused the drive to output maximum current. Although

drawn out, this conclusion was reached in a logical manner. First, the assumption

was made that the sensor signals were indeed corrupted with noise. This noise was

observed using an oscilloscope and found to be spikes at regular intervals. A more

adequate description of the noise signals will be discussed in the noise section of this

document. The method the amplifier uses to read the position information is essen-

tially the counting of spikes; the interpolator outputs a digital signal at a frequncies

8192 (13 bit) times the velocity in rpm (see figure A-1). The noise spikes superimposed

on the actual signal could easily confuse the feedback loop of the amplifier.

This was not always the case; the drive would sometimes commutate correctly.

The operator was able to observe that the actuator followed the commanded velocity

via the read out on the monitor. When this was the case, one was led to believe

that the feedback loop was intact; otherwise, the drive would not be able to commu-

tate at a regulated velocity. Referring back to Figure A-1, this would indicate that

the low-resolution loop of the feedback was intact and working correctly. With the

low resolution loop intact, experiments were conducted to check the high-resolution

information. It was then discovered that the output of the counter card was still

corrupted. There were unexplainable jumps in the position information. Attempts

were made to shield the signal wires, and even the entire interpolator, but shielding

did not decrease the noise observed on any of the signal lines. In addition, the fact

that the feedback loop from the encoder to the amplifier seemed undisturbed points
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to a problem down stream of the interpolator (i.e. in the counter card, see figure

A-1).

A.4 Computer

The first change to the system was to set up the new computer to handle all the

tasks associated with operating the robot. In this process it was decided to purchase

different cards than those in the Emulator computer. This decision was made because

the cards in the Emulator were lower performance and at higher cost than those which

were purchased. One card purchased was a ComputerBoards card that has analog to

digital (A/D), digital to analog (D/A), and digital input/output (DIO) capability. A

counter card was also purchased from US Digital to replace the original. This choice

was made because it was not certain whether the original counter was operating

correctly, and it reduced the amount of external circuitry in the system. In addition,

the counter card was highly recommended by Michel Lemay3 who had used another

version of this card for reading encoders on his two-link manipulandum.

After purchasing the new cards, new drivers were written so that they could be

used in the QNX operating system. QNX has become the standard in the Newman

lab as it has proven to perform the best for real-time control. These drivers were

completed and then some simple tests demonstrated they were working properly.

The purchase of the new cards coupled with the development of the drivers allowed

for the robot to be controlled by just one computer. Previously, the windows (i.e.

Kollmorgen ServoStar) software was on one machine, and the QNX software was on

another.

3Michel Lemay was a Post Doctoral student in the Newman Lab. He worked extensively with
two link manipulandums similar to the beta prototype.
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A.5 Hardware

After the computer was set up with the new cards functioning, the previous problems

were reduced to the following: The index signal was corrupted with noise that caused

inadvertent indexing. At the same time, the A and B signals were corrupted with

similar noise but did not seem to be producing incorrect readings. This meant that

the incremental position information was available, but absolute position could not be

measured. After referring to The Art of Electronics4 for techniques on reducing noise,

it was decided that the signal circuitry should be rewired. The text emphasizes the

use of low impedance wiring especially large low impedance grounding-planes as well

as the use of twisted pair wiring for signal pairs. This called for the rewiring of the

interface card mentioned earlier. This task was needed regardless of noise problems,

as the original interface card was designed for only one drive system, and the robot

required two separate drive systems. This reference to the text did however allow for

the upgrade of the card during the rewiring. The new interface card incorporates a

large low impedance grounding-plane and low impedance twisted pair wiring.

In addition to the new interface card, all the signal cables were remade. The new

cables use the twisted pair technique mentioned above.

A.6 Noise

All the work done on the hardware was well justified, yet it provided no significant

change in the noise level on the index signal. This noise was recorded via an oscil-

loscope and a digital camera and is displayed in Figure A-2 below. This noise was

measured by simply connecting the scope leads across the ground and index wires

where they exit from the encoder. This 2 volt zero to peak noise is astounding, when

considering that the index signal output from the encoder is only 0.7 volts zero to

peak. Note that the trace shows no evidence of the actual index signal. This is be-

cause it is difficult to take a picture of the scope at the exact moment in time when

4 Paul Horowitz and Winfield Hill, The Art of Electronics, Second Edition (Cambridge Univer-
sity Press, 1989)
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the index bit fires.

20 psec/div

Figure A-2: Illustrates the noise on the index signal under the original setup

At this point, it is necessary to explain another measure that was taken in an

attempt to reduce the noise on the index signal. First, refer to Figure A-3 below to

see how the power and ground wires were routed in the original system. Notice that

the AC power supplying the servo amplifier is also directly connected the DC power

supply, which supplies all the signal circuitry with power. This gave rise to the idea

that the servo amplifier may be corrupting the AC power upstream of itself. This of

course means the DC power being supplied to the signal circuitry may be corrupted.

This was exactly the case. The scope leads were attached across the +5 volt and

ground wires where they exit from the encoder and the noise was measured. The

trace, shown in Figure A-4 below, is quite similar to that seen in Figure A-2. This

was promising as it pointed to the possibility of using a filter to reject noise in the

AC power supplying the DC power supply in turn decreasing the noise on the 5 volt

supply to the encoder. Refer to Figure A-5 to see the change in position of the RFI

filter in the system.

Unfortunately, this change with the filter had no effect on the noise. Needless

to say, this was both baffling and discouraging, but with a little more thought, the

following hypothesis was conceived.

Hypothesis: The servo (switching) amplifier creates large magnetic fields as a

byproduct of the large pulse width modulated (PWM) currents. These magnetic
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Figure A-3: This figure shows the original ground and power connections

fields induce current (and therefore noise) on all closed loops in the system.

Any two wires traveling between any two components of the system could pick up

the noise. One component acts as the transmitter of the signal and the other acts as

the receiver. Of course, the assumption is that the transmitter does not have infinite

output impedance and that the receiver does not have infinite input impedance. Thus

any such connection makes a closed loop whether the two wires are supplying power

or sending a signal. This is why the noise looks the same on the power supplied to the

encoder as it does on the encoder's output (e.g. the index signal). The area enclosed

by the loop is the dominant factor.

Looking back to Figure A-2, this noise signal can now be looked at more carefully.

Notice that the signal appears in groups of two spikes. Consider the possibility that

this group of two spikes is one cycle of a signal. Measuring the distance between the

start of one cycle to the start of the next cycle, the elapsed time or period of the

cycle is T ~ 60 to 65 psec. Using f = 1, we get a frequency of f ~ 15.4 to 16.6kHz.

Thus, it is very likely that the group of two spikes does represent the PWM frequency,

94



20 psec/div

Figure A-4: Noise on encoder power under the original setup

which is 16kHz. The first of the two spikes is the rising edge, and the second is the

falling edge of the PWM square wave. Each edge perturbs the system and the system

settles quickly before the next edge perturbs it once again. Depending on the current

demand, the time elapsed between rising and falling edges changes. On the contrary,

the time between two leading edges is fixed, and this is the PWM frequency. This

was enough evidence to pursue this hypothesis further.

If this new hypothesis were true, the RFI filter would have no effect. In fact, the

experiment, which verified that magnetic coupling was taking place, demonstrates

the inability of the RFI filter to decrease this type of noise. The experiment was set

up as follows. An external DC power supply was plugged in on a separate circuit

of the building power to assure that the AC supply of the robot was not coupled to

the DC supply. A small load (50 Q resistor) was driven with this power supply at 5

volts. This experiment was set up to simulate powering the encoder, which requires a

5 volt supply and draws around 100 mA. When connecting the scope leads across the

load powered by the external supply, a noise signal was observed. This noise signal

was nearly identical to that seen in Figure A-2. This shows that filtering of the AC

power upstream of the DC supply will have no effect on reducing this magnetically

coupled noise experienced at the encoder. What's more, this shows that a simple

system with no ground loops can be affected by magnetic coupling. Remember that

in order for voltage spikes to show up across the resistor, as in this experiment, a
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Figure A-5: Modified ground and power connections. Note: The actuator is con-
structed in the delta configurtion.

current must be induced. And, in order for a current to be induced, a loop must be

present. The loop in this case was that created by connecting the resistor across the

leads of the DC power supply. This creates a closed loop because the power supply

does not have infinite output impedance. It could be argued that the loop created

by the scope and the resistor is that in which the induced current appears. This is

highly unlikely because the input impedance of the scope is 1MQ/2OpF. To further

reduce this effect, the scope leads were twisted reducing the area enclosed by the

scope/resistor loop nearly to zero. The noise was then clearly being induced on the

larger loop, which was demonstrated as reducing or increasing the area enclosed by

the DC power supply/resistor loop changed the noise level.

This led to another simple experiment involving just the scope and a 50 ohm

resistor. The resistor was clipped between the two scope leads that created a small

loop in which current could be induced. In this experiment, the scope leads were not

twisted as some area was needed to induce current. In this case, the loop enclosed
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approximately the area of a 2 inch diameter circle. This loop could then be held

in the vicinity of different parts of the system to identify the areas broadcasting the

most noise. Figures A-6 through A-9 below show noise measured using this technique

at several different locations in the system. This information is difficult to quantify

as the information displayed is the voltage level corresponding to a current induced

on a loop external to the system. However, it is true that the voltages measured are

strongly correlated to the currents in the system as the current is creating a magnetic

field, which in turn induces the current on the oscilloscope/resistor measurement

device.

20 psec/div

Figure A-6: Noise at Servo-Amp Output

20 psec/div

Figure A-7: Noise along Servo-Amp to Motor Power Cable
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Figure A-8: Noise at Actuator

20 psec/div

Figure A-9: Noise along Actuator to Interface-Card Cable (Carries all feedback signals
from actuator to interface-card)
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A.7 The Filter

As the signal wiring had been completed using the twisted pair wiring described

earlier, there was little possibility to further reduce the area enclosed by any closed

loops in the system. The fact that the cable transmitting power to the actuator

was a major contributor to broadcast noise, eliminated the possibility of moving the

source further away from the signal circuitry. This left but one alternative, filter the

output of the amplifier to reduce noise generated by the pulse width modulation.

After all, the PWM frequency is 16 kHz, which is well above the bandwidth of the

actuator. What's more comforting is that the power sent to the motor is three phase,

but just one PWM signal creating noise. This means that the noise is present at the

same frequency and phase angle on all of the three lines while the three intended

signals have 1200 phase difference relative to one another. This type of noise is called

common mode noise and can be combated using a common mode filter sometimes

called a common mode choke.

After some discussion with Kollmorgen engineers, a Schaffner common mode choke

(Part # RD7137-36-0M5) was selected. This choke design starts with a ferrite toroid.

Ferrite is a metal with a very high magnetic permeability. Around this common core

three separate conductors are wrapped, one for each of the three phases. The coils

of each conductor cover one third of the toroid's surface with no overlap. The filter

is connected to the system such that positive current in each individual phase travels

in the same direction around the toroid. Figure A-10 below shows a simplified model

of the filter and the signals that pass through it.

The inductance pointed out in Figure A-10 is due in large part to the current

attempting to induce a magnetic field in the high permeability ferrite core. When

considering the three phase power, the essence of the filter becomes evident. The

three phases are 120' apart; that means the net (sum of the three phases) current at

any point in time is zero. To the filter, this means that no magnetic field is being

induced, and therefore the filter offers little inductance to the intended three phase

power. In fact, according to Schaffner engineers, the inductance realized by the three
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Figure A-10: Filter Model and 3 Phase Signals

phase power is the value given in the data sheet (0.5mH; the actual inductance along

a single conductor in the filter). The PWM noise on the other hand is at the same

phase on all three of the lines. Thus, it induces a magnetic field in the ferrite core and

the filter acts as a large inductance. According to Schaffner engineers, the inductance

realized by such "common mode" signals is on the order of 100 times (i.e., 50 mH)

the value given in the data sheet.

Now the results: Figure A-11 shows the noise measured on the index signal with

the filter in place. Compare this to the noise seen in Figure A-2, but keep in mind the

scales are different for each signal. The noise has been reduced from around 2 volts

zero-to-peak to about 0.3 volts zero-to-peak. This is quite nice. Now look to Figure

A-12 (compare to Fig. A-4) to see how the noise on the encoder power has been

reduced as well. Figures A-13, A-14, A-15 and A-16 are measures of noise recorded

using the scope and resistor as mentioned before. These figures show noise broadcast
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levels in the system with the filter in place and can be compared to their non-filtered

counterparts in figures A-6, A-7, A-8, and A-9.

20 psec/div

Figure A-11: Noise on index signal with the filter installed

CiJ

20 psec/div

Figure A-12: Noise on encoder power with the filter installed

Figures A-2 and A-11 are probably the most important since these measurements

are easier to quantify. The scope is actually connected across the index signal and

ground wires of the encoder. In comparing these plots, the improvement is around

a factor of 6 to 7. This is respectable, but further improvement is certainly more

desirable. Schaffner does make other models of this common mode choke, and other

models would attenuate the noise even further. The difference would be that the con-

ductors would be of a much smaller gage thus increasing both the inductance and the

resistance of the filter. The conductors in the model currently installed are 10 gage.
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Figure A-13: Noise at Servo-Amp Output (with filter)

20 psec/div

Figure A-14: Noise along Servo-Amp to Motor Power Cable (with filter)

C

20 ptsec/div

Figure A-15: Noise at Actuator (with filter)
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Figure A-16: Noise along Actuator to Interface-Card Cable with filter installed (Car-
ries all feedback signals from actuator to interface-card)

Measuring the resistance of this model from the input to the output of one phase, the

value is RF=2.75mQ and as displayed in Figure A-10, the inductance is LF=0.5mH.

In considering models with better attenuation, values upwards of RF=60mQ and

LF=12mH would be encountered. So, the issue is to discover the maximum values

of RF and LF that can be encountered without negative effects on the performance

of the system. Of course, this would require an analytical model and possibly some

experiments. The filter being used was chosen because it has the lowest available

values for RF and LF and thus the least likely chance of having negative effects on

the system. A speculation is that the values of RF and LF will need to remain

much lower than the values for the motor winding resistance and inductance which

are RM=7.7Q and LM=27mH respectively. Therefore, it may be possible to achieve

higher attenuation without disrupting performance.

As previously mentioned, the filter is designed to have little effect on the intended

three phase signals. Kollmorgen engineers assured that the filter would not have an

effect on the bandwidth of the amplifier.
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A.8 Analytical Model

As mentioned in the previous section, an analytical model would be very useful in

understanding exactly what is going on in the system. It is important to verify

that the filter is functioning in the desired manner. The filter should not affect the

dynamics of the system (i.e. the bandwidth). A means of checking the filters effect on

the system is the construction and manipulation of an analytical model. This model

would include the amplifier, the filter, the motor, and possibly some load.

To this point, no model has been derived, but some thought has been afforded

to this idea. There are some issues that must be understood in order to create the

model. First, the filter acts differently for common mode and non-common mode

signals. Also, the fact that the amplifier is a three phase source, and that the motor

is a three phase load, complicates things even more. Techniques for reducing three

phase systems to single phase equivalents do exist; however, in this case, reduction

is not possible because the filter requires the three separate phases to fully describe

its function. At this point, more research will need to be done before a model can be

developed.

A.9 Open Loop Control

The data in this section will demonstrate that the system is commutating correctly

and that feedback signals are indeed sent back to the control computer with no

corruption.

After lowering the noise level, some simple experiments were completed to demon-

strate that the system was working correctly. In the first experiment, an analog volt-

age of 0.2 Volts was sent to the servo amp that in turn generates a corresponding

constant current (0.10 amps in this case). This constant current should correspond

to a constant torque at the actuator for the duration of the five second test. The test

was completed for both positive and negative angular displacement. The following

plots show the results of this test in the positive direction:
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Figure A-17: Angular Displacement and Velocity (input of 0.2 V DC)
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Notice, in the displacement plot, that the actuator does not complete the first

full revolution before the position resets. This is because upon startup, the counter

is reset, and then the counter is reset again when it sees the index pulse. After the

index pulse has been triggered, the position measurements are absolute. Next notice

the noise on the velocity signal. Upon examining this noise, three frequencies become

apparent. One vibration component at one cycle per revolution is most likely due to

some form of mechanical friction that is position dependent. The second component

at 6 times per revolution is the ripple torque effect seen in most brushless drives.

And the third component at 39 times per revolution is due to cogging. Cogging is a

function of how many teeth or cogs there are in the motor. This motor has 39 cogs

and the permanent magnets have an attraction to the cogs.
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Appendix B

Force Transducer Calibration

During the course of the many experiments conducted for this thesis, a six axis force

transducer was used. The ATI Gamma FT3733-30/100 transducer was chosen for the

experiments requiring force or torque measurements. The experiments conducted in

this thesis required only three of the six available axes, and therefore only these three

axes were calibrated. Static calibrations were completed for the z torque axis as well

as the x and y force axes. An additional experiment was conducted to determine if

the response of the transducer exhibited any time delay.

B.1 Static Calibration

B.1.1 Z Torque Axis

Torques of known magnitude were applied to the transducer using a lever arm and

calibrated weights. First, the transducer was mounted with the xy-plane oriented

vertically. The lever arm was rigidly attached to the force transducer and the weights

were hung from a hole drilled in the lever arm. The distance between the center of

the hole and the center of the transducer was measured using calipers and was known

within +/- 0.005". Figure B-1 summarizes the results of this calibration experiment.

Note: the sensing range for torque in the z-direction for this transducer is -100 to 100

in.-Lbs.
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Figure B-1: ATI Force Transducer Calibration: Z Torqe axis

B.1.2 X and Y Force Axes

Much like in the torque experiment, calibrated weights were used to apply known

forces to the transducer. The transducer was first mounted with the x-axis oriented

vertically. Weights ranging from 3 to 21 Lbs. were then applied creating force in the

positive x-direction. This process was repeated for the negative x-direction as well as

both the positive and negative y-directions. The results for both directions came out

exactly the same, and are summarized in B-2. Note: The sensing range for forces in

the x and y-directions is -30 to 30 Lbs.

B.2 Dynamic Calibration

The final force transducer calibration experiment was designed to determine if there

was any time delay between the actual force being applied and the force recorded

108



X & Y Force Transducer Calibration
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Figure B-2: ATI Force Transducer Calibration: X and Y Force Axes

using the force transducer. To accomplish this, the force transducer was mounted on

the endpoint of the robot. The position sensors in the robot allow for the coordination

of an event involving both position and force. In this case, the event chosen was an

impact event. The idea was to move the arm of the robot such that the endpoint

contacted a rigid surface. To create a solid surface for the force transducer to contact,

a block of aluminum was mounted to the table. With position and force being recorded

simultaneously, the sharp changes in position upon impact should correspond with

peaks in the force. The forces and the displacements were all recorded at 1000 Hz

during this experiment. Figure B-3 illustrates the time history of this experiment.

It appears that the spikes in force do indeed correspond with the peaks in position.

Figure B-4 shows a close up view of the time history during the impact of the force

transducer with the surface. This plot demonstrates that there is no delay in the force

transducer as the force spike corresponds with the earliest peak in position. The table
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Figure B-3: ATI Force Transducer Calibration: Dynamic Response

below indicates the times of peak position and peak force for all five impacts recorded

in this test. All but one of the force peaks correspond to the position peaks. This

again is strong evidence that there is indeed no delay in the force transducer.

Time of Peak
Position Force

1.169 1.169
2.398 2.399
3.208 3.208
4.037 4.037
4.868 4.868

Table B.1: Times of peak position and peak force
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Figure B-4: ATI Force Transducer Calibration: Dynamic Response (Close up)
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Appendix C

Adaptive Control: A Physical

Implementation

Abstract

The purpose of this paper is to report the discoveries made during the implemen-

tation of an adaptive controller on a physical system. An adaptive controller was

designed and implemented on a two degree of freedom manipulator. Some model-

ing assumptions were made, and the implications of these assumptions are discussed.

The performance of the adaptive controller is also discussed. The parameter estimates

from the adaptive controller are shown to converge more quickly with more complex

trajectories. Furthermore, the parameter estimates agree with those obtained in the

System Identification section of this thesis.

C.1 Dynamic Model & Adaptive Controller

C.1.1 Dynamic Model

This section gives an overview of the dynamic modeling of the manipulator system

and the design of the adaptive controller.

Two major modeling assumptions were made. First, the four-bar-linkage was
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modeled as a simple two link assembly as shown in figure C-1. Next, the dynamic

model does not account for any viscous damping or coulomb friction at the joints.

This second assumption follows with that of Slotine and Li 1 in their case study

involving a two degree of freedom manipulator.

q1 Link 1

q2 Link 2

Figure C-1: The 4-Bar-Linkage was treated as a simple 2-Link Mechanism

Using these two modeling assumptions, the following dynamic equations of motion

can be derived for the two link manipulator using absolute joint angles.

ri = (mici + + m2l)1 + (m2l1ic2cos(q2 - 1))2 - m 2lic2sin(q2 - q1 )42 (C.1)

T2 = (m2lic 2cos(q2 - q1))#1 + (m2c2 + 12)42 + m 2lic2sin(q2 - 1)41 (C.2)

Where Ij denotes inertia of a link, 1j is the length of the link, cj is the distance

from the joint to the center of mass of the link, and m, is the mass of the link.

1Slotine, J.-J. E. and Li, W., Adaptive Control, A Case Study, LE.E.E Transactions on

Automatic Control, Vol. 33, No. 11, November 1988
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C.1.2 Controller Design

For the design of the adaptive controller, the equations of motion will be written in

the form of an unknown parameter vector a and the matrix Y which is independent of

the unknown parameters. From the equations of motion, three unknown parameters

can be identified.

ai = mici + 11 + m 2l1 (C.3)

a 2 = m 21ic 2  (C.4)

as = m2c2 +2 (C.5)

Thus, a = [ai a 2 a3 ]T

Also coming directly from the equations of motion is the definition of the Y ma-

trix. The components of Y are shown below.

Y1 = 4ir

Y12= cos(q 2 - qi)#2r - sin(q 2 - qi)d2

Y 13 =0

Y 2 1 =0

Y22 = cos(q 2 - qi)#1r + sin(q2 - qi)d
~~2r

Y23 - 2r

Y1 Y 12 Y13

Y 2 1 Y 22 Y 23

Where qr = d- A4 and A is a positive definite diagonal 2 x 2 matrix. This dr is

the "reference velocity" and is based on the desired velocity 4d and the tracking error

4(t) = q(t) - qd(t).

Note:
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A =A1 0
0 A2

Having defined the a vector and the Y matrix, the adaptation law can be written

as suggested by the course text 2.

a= -FYTs

1 0 0

0 2 0

o 0 0r13

(C.6)

I
Where F is the positive definite diagonal matrix above, and the vector s is a measure

of the tracking acurracy and is defined as

S=4-qr =q+AQ. (C.7)

Likewise, the course text suggests the following control law.

T= Y& - KDS (C-8)

Where KD is a positive definite diagonal gain matrix.

KDKD1 0
KD =[KiK ]

0 KD2

Because the vector a and the matrix Y have been defined, control law can be

written explicitly in the form of the following two equations:

ri = Ydi + Y 12 a2 - KD11 (C.9)

2 Slotine, J.-J. E. and Li, W., Applied Nonlinear Control, Prentice Hall Inc., New Jersey,

1991.
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72 = Y 22 a2 + Y23 6 3 - KD 2S 2  (C.10)

The above adaptation and control laws can be implemented on the manipulator

system via the computer and the C++ software mentioned earlier. The specifics of

the software are not necessary for understanding how the experiment was conducted

and are therefore not mentioned in this paper.

C.2 Experimental Results & Discussion

For all of the experiments performed, the same strategy was followed. This strategy

was to use the first second of a five second trial to move the endpoint of the manip-

ulator to the center of the workspace (qi = 0.464 rad., q2 = 2.409 rad.). Then the

remaining 4 seconds of the trial were used to implement a sinusoidal trajectory.

For both of the trajectories described below the following parameters were set in

the adaptive controller:

1= 0.2 F2 = 0.2 F3 = 0.5

A1 = 5.0 A2 = 5.0

KD1 - 5.0 KD2 = 5.0

The Fi were selected by maximizing parameter convergence during the complex

trajectory discussed below. The Aj and the KDj were chosen by increasing their values

as long as no instability was observed. In this case, instability arose in the form of

high frequency vibration (on the order of 200 Hz) when the A or KD parameters were

set too high.

C.2.1 Parameter Convergence

At first, a fairly benign trajectory was selected to observe that adaptation was taking

place. This benign trajectory was defined by the equations presented below (angles
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are in radians). This trajectory is requesting that the joint angles of the robot follow

sinusoidal paths at a frequency of 0.5 Hz and amplitude of 0.1 rad.

qdi = 0.464 - 0.1(1 - cos(rt))

qd2 = 2.409 + 0.1(1 - cos(7t))

(C.11)

(C.12)

Figures C-2 and C-3 show the tracking errors, command torques, and the param-

eter estimates for this trajectory. From the plots, the tracking errors (± 0.2 rad.)

remain low which indicates that the controller is working properly. Also, the param-

eters are changing, which suggests that they are indeed being updated in attempt to

reduce the tracking error. As expected, the parameters do not converge to constant

values at any point during the trial. This is expected because the trajectory is not

complex enough to require the parameters converge to their actual values.

Tracking Error 1 Tracking Error 2
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1 2 3 4 0 1 2 3
Time (sec) Time (sec)

Command Torque 1 Command Torque 1

1 2 3 4 0 1 2 3 4
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Figure C-2: Tracking errors and Command Torques during a benign trajectory
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Figure C-3: Parameter Estimates during a benign trajectory

Next, a more complex trajectory was implemented to see if the parameters would

converge to their actual values. In this trajectory, the frequency was increased to 2

Hz for qi and 1 Hz for q2 while the amplitudes were 0.1 rad. and 0.2 rad. respectively.

qdi 0.464 - 0.1(1 - cos(47rt)) (C.13)

qd2 2.409 + 0.2(1 - cos(27rt)) (C.14)

The results for this "complex" trajectory are shown in figures C-4 and C-5. This

tracking error is somewhat higher than expected, but ± 0.03 rad. is still reasonably

small. The parameters are changing more rapidly at the onset of the trajectory than

at the end which indicates that they indeed are converging. There is some oscilla-

tory behavior and possibly some drift to the parameter estimates. These problems

undoubtedly arise from one or more of the many sources of error in this experiment.
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These sources of error will be addressed later.

This section has shown that with more complex trajectories, the parameters do

converge, and that the adaptive controller has generally good behavior.

Tracking Error 1 Tracking Error 2
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Command Torque 1 Command Torque 2

1 2 3 4 0 1 2 3
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Figure C-4: Tracking errors and Command Torques during a complex trajectory

C.3 Sources of Error

This section is designed to highlight some of the more obvious sources of error involved

in the experiments conducted.

Recall the modeling assumptions made in the development of the dynamic equa-

tions of the manipulator. One was to neglect the coulomb and viscous friction in the

actuators, and the other was to treat the 4-bar-linkage as a simple 2 link mechanism.

The first assumption is believed to account for the majority of the tracking error in

the experiments. The second assumption is also a source of error, but most likely

contributes far less error than neglecting the losses in the system.
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Figure C-5: Parameter Estimates during a complex trajectory. Note, these estimates
agree with those given in chapter 3
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Another possible source of discrepancy is actuation error. In this system, the

actuators have been calibrated, and the torque constants determined experimentally.

Therefore, it is assumed that the actuators attribute very little error.

Velocity estimation and sampling rates also attribute error in these experiments.

The data is taken at a sampling frequency of 1000 Hz and the velocity is estimated

using a first difference. This means that quantization error can become a problem

especially at low velocities.

Finally, the PWM amplifiers have a known time delay of 1 msec. This delay can

cause problems with tracking trajectories. In fact, previous experiments have shown

this delay to be a limiting factor on the maximum gain settings of PD controllers

implemented on this manipulator. This may be the case for the gains of the adaptive

controller as well.

C.4 Conclusions

An adaptive controller was designed and implemented on a 2 degree of freedom manip-

ulator. This adaptive controller was shown to perform well despite the many sources

of non-parametric error. Using a "complex" trajectory, paramater convergence was

demonstrated.
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Appendix D

Low Sampling Frequency Stability

Testing

As discussed in chapter 4, the sampling frequency of 1000 Hz was sufficiently high

to render the variable spring aparatus useless in destabilizing the robot. Colgate's

research [7] claimed that a spring environment should have destabilized the robot.

This can be easily demonstrated by using a much lower sampling frequency and

repeating the stability tests described in chapter 4. Three tests were conducted using

a sampling frequency of 100 Hz ( the previous rate). The tests used the same

parameters as test 3 in table 4.1. The first test was conducted with the robot not

coupled to an environment. The second and third tests were conducted with the

robot coupled to the variable spring aparatus using stiffnesses of 1050y and 3826Nm m

respectively.

The results of the three tests are shown in figures D-1 through D-3. These figures

clearly demonstrate the ability of the spring to destabilize the robot. The model data

shown in these plots was the best fit achieved using the model for type 1 instability

discussed in chapter 4. Also note that these tests did not cover as large a range (of

controller damping) as the previous stability tests. This is because larger discrete time

steps allow for larger velocity changes between steps. These larger velocity changes

resulted in noticable discrete jumps in endpoint position (as felt by the operator)

when using large values of controller damping.
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Figure D-1: Uncoupled Stability: Fs=100 Hz
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Figure D-2: Coupled Stability: Fs=100 Hz, kenv = 1050Nm
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Stability Test (Fs=1 00 Hz)
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Figure D-3: Coupled Stability: Fs=100 Hz, kenv = 3826Nm
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