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Abstract

This research is motivated by two questions: (1) what is the spatial organization of hydro-
logic response resulting from the two-way coupling of the surface water and groundwater
systems? (2) how much should new research and operational hydrologic models incorporate
spatially distributed variables?

Distributed hydrologic processes are modeled using GSEM, a coupled groundwater-
surface water equilibrium model. Long-term integrations of a mixed numerical-analytical
treatment of two-way coupled groundwater flow and unsaturated soil moisture dynamics are
performed. GSEM calculates equilibrium evaporation, runoff, recharge, and depth to satu-
ration at each active cell in a two-dimensional horizontal grid. The model is applied to ten
study basins from diverse climates and landscapes. Surface features are captured by digital
topography at a grid resolution of 30 m. Mean annual climate characteristics are derived
from monthly Poisson storm parameters and pan evaporation records. Daily precipitation
and streamflow are assembled for use in flood-frequency analysis where available.

Patterns of subbasin variability exist in the spatial distribution of water table depth
(Z,). The water table is shallow in the riparian zone and deep near ridges. Formation of
an intermediate midline zone depends on climate, soil transmissivity, and slope. Hillslope
shape further influences Z., across the midline region. The spatial patterns persist even
under additional sources of variability, including vegetation and heterogenous soil depth
and texture. The exact relationship of Z, and fluxes to topographic indices differs between
basins. Dominant modes of interbasin variability are characterized using principal compo-
nent analysis. Four components, representing lateral moisture transport efficiency, basin
climatic wetness, midline extent, and relief, together explain 80 percent of the variance in
the original data. Stepwise regression reveals that basin climatic wetness and infiltration
capacity best predict the runoff ratio.

The dynamic runoff response of catchments is investigated by assuming equilibrium
hydrology is the most likely pre-storm condition. A probability distribution of runoff,
applicable to both lumped and distributed soil moisture, is derived. Observed time series
of precipitation and streamflow are divided into discrete events and aggregated into an
exceedence probability distribution. The variable-moisture derived distribution agrees well
with the observed distribution.
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Chapter 1

Introduction

1.1 Motivation

Topography and lithology combine with climate to influence local hydrologic conditions.
The influence is felt on both short and long time scales. Within individual storms, runoff-
generating saturated areas expand and contract in topography-based near-channel zones.
On longer time scales, physical factors govern the distribution of net recharge and discharge
zones with effects on the type of plant species, soil chemistry, and the occurrence of surface
water bodies. The interaction of the surface and subsurface hydrologic systems plays a key
role in determining the spatial variability of soil moisture and related fluxes.

This research is targeted at better understanding long-term surface water-groundwater
interaction and the effects of catchment characteristics on this interaction. The two-way
coupling of surface water and groundwater processes is best exemplified by the soil moisture
content at the ground surface. Soil moisture can result from either surface or subsurface
processes. Surface processes that affect soil moisture distribution are principally related
to the local difference between infiltration and evaporation. Saturated subsurface flow
redistributes moisture laterally; this brings moisture to the upper soil layers when the
water table approaches the ground surface. The amount of moisture at the soil surface
both governs and is governed by the magnitude and direction of these surface and subsurface
fluxes.

Catchment characteristics influence how a basin responds hydrologically to a given set
of forcing conditions. Surface topography drives the lateral redistribution of subsurface
moisture through gravity-driven saturated flow. A steep landscape will tend to have high

lateral transport and horizontal heterogeneity associated with the surface topography. The

presence of convergent and divergent regions further affects soil moisture levels beyond what

would be predicted by the downhill slope and thus directly impact local hydrology. Soil
properties also affect the rate of water movement within the soil: vertical conductivity is a

limiting factor for infiltration and recharge; horizontal conductivity governs lateral moisture
movement; and porosity and pore-size distributions govern the amount of capillary rise

above the saturated layer. The nature of the interaction between climate, physiography,
and hydrology and its effect on spatial variability in soil moisture and runoff have been the
focus of much field and modeling research.
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1.2 Organization

This thesis addresses several questions:

" Does a physically-based model identify a quantifiable spatial organization in hydro-

logic fluxes?

" What combination of physical and climatic features influences interbasin variability

in hydrologic response?

" What is the role of distributed information in estimating runoff response?

The thesis uses GSEM (Groundwater-Surface water Equilibrium Model), a distributed,
physically based model with coupled surface water-groundwater interaction, to generate

the equilibrium hydrology in a number of basins. GSEM is an extention of a groundwater-

surface water equilibrium model that was developed for a two-dimensional cross-section of

a simple hillslope (Salvucci 1994; Salvucci and Entekhabi 1995) and has been expanded

for application to natural topography (Ateljevich 1995; Levine and Salvucci 1999). Chap-

ter 2 describes the model assumptions and flux equations. Fluxes are integrated over a

stochastic distribution of wet and dry periods to generate the long-term average values.

The equilibrium conditions are used as the basis for all subsequent analysis.

The model is implemented over ten basins located in a range of climates and landscapes.

Chapter 3 summarizes the physical, lithologic, and climatic characteristics of the selected

basins. It includes the location and properties of field observations used in model assessment

and runoff-response analysis.
Chapter 4 presents the spatial structure of the water table position and hydrologic fluxes

within each basin. We investigate the spatial organization of hydrology within each basin

and the extent of and reasons for the formation of the midline zone. In Chapter 5, we relax

the initial assumptions of bare-soil and uniform soil properties. This allows examination

of the sensitivity of the equilibrium hydrology to perturbations in the basins' physical

characteristics.
The equilibrium hydrology is combined with geomorphologic and climatic features in

an investigation of the principal modes of variability between basins in Chapter 6. We use

principal component analysis to identify combinations of parameters that vary in unison

and explain a significant amount of the aggregated variance of the original dataset. Step-

wise regression allows identification of variable combinations which are highly correlated to

hydrologic fluxes.
Chapter 7 derives runoff frequency distributions based on the assumption that the equi-

librium distribution of soil moisture is the most likely condition prior to any storm. The

response curves are compared against observed data for two of the basins to verify model

performance and to identify the value of distributed hydrologic information in flood fore-

casting models.

1.3 Summary

It has long been known that most watersheds contain hydrologically distinct regions (e.g.,

Penman 1951; Toth 1962; Dunne and Black 1970a). The distinctions may occur over short

temporal scales (such as the expansion of runoff-contributing areas during a storm) or

over long temporal scales (such as the presence of persistent net recharge and discharge
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zones). This thesis seeks to combine characterization of long-term subbasin and interbasin
variability to advance our understanding of the interaction between geomorphology and
hydrology and its implications for basin-aggregated runoff response.
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Chapter 2

Groundwater-Surface water

Equilibrium Model (GSEM)

Precipitation occurring on the land surface may be partitioned into evaporation, runoff,
recharge to the groundwater zone, and changes in the soil moisture storage. The relative
magnitudes of these fluxes are important for many human activities, including agricul-
ture, flood control, water supply, and hydropower generation. Hydrologists have sought for
decades to model the surface water balance to better understand and predict the compo-
nents of the hydrologic cycle. Models are characterized by how the individual processes
and their interdependencies are represented. Many different approaches exist. The method
and assumptions employed in a model depend, among other things, on the model purpose

(e.g., for real-time flood mitigation, incorporation into a general circulation model, or irriga-
tion planning), the quantity and resolution of input data, and efficiency requirements (e.g.,
whether the model must be run in real time or on a limited budget). Below we describe
several different types of water balance models which have been used to characterize the
partitioning of hydrologic fluxes in a watershed. The structure of the model used in this
study is described in the context of this project's goals and available data.

2.1 Background

Field studies investigating relationships between spatially variable hydrology and physical

features have identified consistent patterns in diverse landscapes. Toth (1966) studied a

prairie in Canada and found evidence of persistent recharge and discharge zones, as identified

by long-term indicators of water availability such as vegetation and chemical concentrations

in the soil. Direct measurements of soil moisture have revealed that saturation tends to occur

in valley bottoms, swales, and other concave areas (e.g., Dunne and Black 1970a, 1970b;
Anderson and Burt 1978). This has led to efforts to quantify the relationship between soil

moisture and position on a hillslope or in a basin. Carson and Kirkby (1972) introduced

the contributing area per unit contour length, a, as an indicator of the amount of moisture

that will have aggregated from upslope areas and influence the soil moisture at a point.

The influence of local relief was incorporated with the division of contributing area by the

ground surface slope. This gave rise to a class of quasi-distributed models which use a

topographic index to predict hydrology (e.g., Kirkby 1975, 1978; Beven and Kirkby 1979;

O'Loughlin 1981, 1986).
At the same time as quasi-distributed models were being developed and refined, hydrol-
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Figure 2-1: Schematic of different watershed model types.

ogists have been working on watershed models that aggregate from the underlying physical
processes to the desired spatial scale. Initial watershed models were lumped, i.e., hetero-
geneity is incorporated implicitly through the calibration of basin-scale parameters (e.g.,
Burnash et al. 1973). With increases in computing power, the ability to model distributed
processes has grown. Distributed models often use detailed formulations to describe the
small-scale hydrologic fluxes, and numerical methods to solve for the hydrology in a three-
dimensional system (e.g., Abbot et al. 1986; Julien and Saghafian 1991; Garrote and Bras
1995).

2.2 Types of watershed models

A wide variety of models has been developed for the characterization and prediction of
watershed hydrology. Differences in the goals of the model developers (i.e., interest in flood
prediction versus characterization of the entire hydrologic cycle) have led to significant
differences between the models. Singh (1995) characterizes watershed models according
to process description, scale (both spatial and temporal), and technique. These are not
the only bases for classification; other differentiating criteria could include land use (e.g.,
forested, rangeland, or urban) and model use (e.g., planning, forecasting, or management).
We combine some of the relevant information from the three classification systems described
by Singh (1995) into a single schematic, shown in Figure 2-1. Our outline is designed to
illustrate the differences between some of the main models used by hydrologists. Below
we discuss the distinctions between the categories and cite examples of the different model
types.

Equilibrium models concern themselves with long-term mean water balance characteris-
tics as an indicator of how the equilibrium climate influences land surface hydrologic
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processes. An early climatonomy model was introduced by Lettau (1969); climaton-
omy is defined as "a study of man's physical environment that is significantly more
numerically and theoretically oriented than conventional climatology" (Lettau 1969,
p. 691). The model predicts mean monthly hydrology-evapotranspiration, runoff,
soil moisture, and change in storage-based on forcing by insolation and precipitation
and a response governed by the "evaporivity" of the environment and a parameterized
delay in evaporation and runoff. Lettau and Baradas (1973) modified the climato-
nomic model to incorporate the effect of soil moisture on model parameters, including
albedo, evaporivity, and residence time. One sample application of the model is an
examination of the relative role of rainfall and insolation on long-term features of
the water balance, in a study of the persistence of drought in the West Africa Sa-
hel (Nicholson and Lare 1990).

The Lettau climatonomy approach uses a simple model to examine equilibrium con-
ditions with a few forcing and response parameters. A more detailed model of the
physical processes governing the long-term average water balance was introduced by
Eagleson (1978a). The model rests on the assumption that an equilibrium soil mois-
ture, determined from the long-term balance of soil moisture inputs and outputs,
adequately represents the conditions prior to all storms and interstorms (Salvucci and
Entekhabi 1994b). The mean water balance is based on a linear average of forcing
or response characteristics; the equilibrium hydrology is determined from a stochastic
storm distribution applied to the equilibrium moisture state. Eagleson derived the
long-term average water balance for a single vertical soil column (Eagleson 1978b, c,
d, e, f g). Milly and Eagleson (1987) assembled a set of independent one-dimensional
soil columns with distributed soil characteristics to examine the effects of physical
spatial variability on the water balance. Salvucci and Entekhabi (1995) coupled the
Eagleson equilibrium model for unsaturated zone fluxes to Darcy flow in the satu-
rated zone to assess hydrologic conditions on a simple hillslope. The long-term water
balance generated by the equilibrium model provides both information on sources of
uncertainty in the water balance and a mechanism for examining long-term effects of
changes to climate and landscape characteristics influencing the hydrologic cycle.

Event-based models are designed to investigate the response of a basin to a single event.
Basins are modeled as the aggregate response of homogeneous sub-units. Units may be
distinguished by lithology, land cover or use, elevation, or any other defining physical
characteristic. Historic precipitation and streamflow records are used to calibrate
the model parameters. While these models may do well in predicting the hydrologic

response to individual events that fall within the range of the historic record, they

often fail to capture longer-term effects such as slow-response groundwater or climatic

variability.

Continuous models calculate a time series of hydrologic conditions based on a time series

of forcing conditions (i.e., rainfall, temperature, hours of sunlight). Unlike event-based

models, continuous schemes are able to incorporate the effects from prior conditions

on the response to storms. Soil moisture levels, for example, are kept track of over

interstorm periods, providing information on low-frequency effects in the calculation

of streamflow for any individual storm.

Conceptual models can be defined as models that "represent physical process dy-
namics using analytically tractable solutions to governing equations" (Troch
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1993). These models are generally used for forecasting of flood volumes and
levels; this information is valuable for engineering hydrology concerns such as
reservoir management and damage mitigation. The Sacramento Model, for ex-
ample, is the scheme used for catchment modeling in the operational National
Weather Service River Forecasting System (Burnash et al. 1973). HSPF is a
related model designed to integrate water quality processes into hydrologic mod-
eling (Johanson et al. 1980). The models may be run either as continuous or
event-based, depending on the desired output.

Because conceptual models are designed for operational purposes, they tend to
minimize data and computational requirements. Both input and output are spa-
tially lumped. A basin is separated into several hydrologic components, such as
saturated and unsaturated stores, deep groundwater, and surface storage. Simi-
larly to event-based models, calibration is based on historic records; general equa-
tions are solved by regression with time series of precipitation and streamflow.
Although the identification of hydrologic components is based on the physical
dynamics of the system, the parameters in conceptual models are often unre-
lated to a specific physical process or suite of processes. Consequently, it may
be difficult to use conceptual models to assess the sensitivity of the hydrologic
system to altered conditions such as climatic change or urbanization.

Quasi-distributed models are designed to incorporate the spatial variability of hy-
drologic processes without the intensive data and computational requirements of
a fully distributed model. This compromise is achieved by using principles of
hydrologic similarity between different locations in a basin. The distribution of
similar subunits of a basin may be characterized either explicitly or statistically,
as discussed below.

9 Explicit distribution: Models which calculate a physically-based index to
identify hydrologic similarity are considered to have an explicit distribution.
The most widely used quasi-distributed model is TOPMODEL (Beven and
Kirkby 1979), in which gridded digital elevation data are used to calculate
a topographic index; the index can then be utilized to predict saturated ar-
eas, runoff, and evaporation. O'Loughlin (O'Loughlin 1981, 1986) developed
TAPES-C, a related topography-based model in which a basin is subdivided
into hydrologically similar hillslope strips. An alternative basis for identify-
ing hydrologic similarity is land cover; this technique was incorporated into
the SLURP model (Kite 1978).
One concern with models based on topographic indices is that they may
fail to incorporate temporal variability; TOPMODEL and TAPES-C both
assume a series of steady-state solutions. Ladson (1990) found that weekly
measurements of soil water showed a seasonal pattern. Several models have
been developed to account for the lack of steady-state behavior in observed
soil moisture in some locations. Barling et al. (1994) introduced a "quasi-
dynamic" wetness index. Grayson et al. (1997) proposed a dual-index model
that has a criterion for the transition between wet and dry conditions. Based
on field data, they found support for two preferred states of soil moisture: a
wet state, during which lateral flow (nonlocal control) drives the hydrology;
and a dry state, during which the dominant fluxes are vertical, representing
control by local conditions.
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The quasi-distributed TOPMODEL framework for lateral moisture redistri-
bution was coupled to more detailed physical representation of soil-atmosphere
interactions by Famiglietti and Wood (1994a). They introduced the TOP-
MODEL based Land surface-Atmosphere Transfer Scheme (TOPLATS), a
continuous model which uses the TOPMODEL index for representing to-
pographic effects on the distribution of soil moisture, and a soil-vegetation-
atmosphere transfer scheme (SVAT) for representing vertical water and en-
ergy fluxes. The model has closely matched evaporation and runoff measure-
ments from a field project in the Kings Creek catchment in Kansas (Famigli-
etti and Wood 1994b; Peters-Lidard et al. 1997).

* Statistical distribution: The Variable Infiltration Capacity (VIC) model
proposed by Wood et al. (1992) uses a statistical distribution for storage
capacity. Instead of generating a distribution from physical characteristics,
the statistical distribution has a single parameter which can be determined
from calibration with historical records. The model was designed to allow
for heterogeneous conditions within a grid square in a general circulation
model without requiring extensive physical information. Sivapalan et al.
(1997) used a similar approach in developing a variable bucket capacity
model (VBC) based on a statistical distribution of the TOPMODEL topo-
graphic index. The topography-based distribution of soil moisture storage
used in the VBC model was originally implemented in a gamma distribution
for dimensionless flood frequency by Sivapalan et al. (1987).

Quasi-distributed models incorporate computationally-efficient ways of repre-
senting spatial heterogeneity in input and output. However, the explicitly-
distributed models have several limitations that can potentially compromise their
accuracy, including the following: (1) they require assumptions about the phys-
ical characteristics and processes defining hydrologic similarity; (2) the spatial
sphere of influence on a single location is limited by the extent of the topographic
index; and (3) sensitivity of the index to grid resolution and orientation may in-
fluence the model prediction. The limitations of statistically-distributed models
stem from the use of a single statistical distribution to represent the storage ca-
pacity in different landscapes and the sensitivity of the model to the calibrated
parameters.

Distributed models contain relatively detailed representations of the physical pro-
cesses occurring in a watershed, resolved in both time and space. In order to
capture the multiple processes, they are generally numerical models. For exam-
ple, the European SHE model (Abbot et al. 1986) is a finite difference model;

IHDM, the Institute of Hydrology distributed model (Calver and Wood 1995),
is a finite element model; and THALES (Grayson et al. 1995) can be either a

finite difference or finite element model along one-dimensional stream tubes. In

the United States, the distributed runoff model is CASC2D (Julie and Saghafian

1991; Ogden 1997) is used by both Army Corps of Engineers and Department of

Defense hydrologists. CASC2D has numerous built-in options for the representa-

tion of different physical processes, from interception, infiltration, and moisture

routing to erosion and sediment transport. Garrote and Bras (1995) developed

a distributed rainfall-runoff model for real-time forecasting in medium- to large-

scale watersheds. Their model incorporates heterogeneous rainfall and uses an
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elevation grid to characterize topographic influences on soil moisture and and
runoff.

One benefit of distributed models is that they do not require a long time series for
calibration. This makes them easy to test under different scenarios for the effects
of physical or climatic changes in part or all of the basin. Additionally, fully
distributed models do not depend on assumptions about hydrologic similarity,
steady-state, or the distance at which the influence of physical characteristics
becomes negligible. However, disadvantages of distributed models include the
need for numerous input parameters, intensive computational requirements, and
the questionable accuracy of process descriptions at the model scale.

2.3 Model description

We use a distributed equilibrium model which couples the processes in the saturated and
unsaturated zones. The computational demand is reduced by using a numerical-analytic
model instead of a fully numerical model (unsaturated fluxes are solved analytically). The
approach is designed to optimize the physical realism of the model with minimal data
requirements while providing distributed output that can be used in an examination of the
quality and influence of spatially organized hydrologic processes. This section describes the
rationale for the particular model attributes, the model assumptions, the main equations
for unsaturated and saturated fluxes, and the iteration procedure used to generate the
equilibrium hydrology.

2.3.1 Motivation

GSEM is a distributed, terrain-based, equilibrium model that allows the investigation of the
influence of complex topography on the spatial distribution of hydrology. Our motivation
for selecting the specific branches of the tree in Figure 2-1 in deciding to use a model of
this class is the following:

Equilibrium: GSEM characterizes the long-term water balance using an equilibrium frame-
work based on Eagleson's statistical dynamic formulation. The dynamic equilibrium
is maintained through the water table-dependent recharge flux which either drains to
or discharges from the saturated zone. The surface-atmosphere fluxes are balanced
through the assumption of long-term stationarity of the mean moisture state. The
equilibrium model is selected because it provides a climatic-scale overview of the water
balance. Analysis of individual events or shorter time scale hydrology would limit our
ability to consider the longer-term influence that groundwater has on rapid-response
components of the hydrologic cycle such as runoff.

Physical: One of the main goals of this work is to identify the signature of surface topogra-
phy in the distribution of water table depth and surface fluxes. It is therefore crucial

that we use a topography-based, physical model to incorporate landscape character-

istics. Furthermore, the hydrologic fluxes are based on soil hydraulic characterization

such that there are no tunable parameters in the model.

Distributed: There are several models in widespread use which take a semi-distributed
approach to physical watershed modeling. Our goal is to obtain distributed infor-

mation about the hydrologic characteristics of a basin without making assumptions
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Figure 2-2: Schematic of coupling between saturated and unsaturated zones. Z" is water
table depth; P is precipitation; E is evaporation; Rie is infiltration-excess runoff; Rse is
saturation-excess runoff; Qe is net recharge; and Qh, and Qh, are lateral influx and outflux
between a pixel and its neighbors.

about the similarity of the response at different locations. This allows investigation
of whether a fully distributed simulation supports the similarity relationships used in
other models.

Beyond the framework outlined in Figure 2-1 is the interaction between surface water
and groundwater processes. A fourth defining characteristic motivating the GSEM struc-
ture is the coupling of the unsaturated and saturated zones as illustrated in Figure 2-2.
Although surface water and groundwater vary over different frequencies in time and space,
groundwater anchors the soil moisture profile in the overlying unsaturated zone. Knowledge
of the soil moisture profile is often the key parameter to accurate characterization of surface

fluxes. In a continuous model, both recharge to the saturated zone and the influence of the

water table on surface fluxes simultaneously influence hydrology. The interdependence of

surface and subsurface processes are represented through the coupling of the two zones. In

the next section, we present a description of GSEM, including the main process and pa-

rameter assumptions, derivation of the main flux equations, and the technique for applying

the model to generate the equilibrium hydrology of a watershed.

2.3.2 GSEM assumptions

GSEM is based on the soil water dynamics model developed by Eagleson (1978a, b, c, d,
e, f, g) and modified by Salvucci (1994) for a finite water table. Key assumptions about

hydrologic processes include the following:

* Atmospheric forcing is represented by a Poisson series of rectangular pulses of pre-

cipitation with duration t, and constant intensity ir. Both duration and intensity

are exponentially distributed, with inverse mean values 6 and a, respectively. The
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time between storms, tb, is also exponentially distributed. During interstorm periods,
evaporation is limited by the potential evaporation rate ep.

" The Time Compression Approximation (TCA) is used to collapse a statistical sequence
of flux and concentration boundary conditions to one solution (Salvucci and Entekhabi
1994b). Flux boundary conditions exist when the soil is climate controlled, i.e., the soil
can either infiltrate water at the rate of precipitation during storms or evaporate water
at the atmospherically-demanded rate during interstorms. Concentration boundary
conditions exist when the rate of infiltration or evaporation is limited by the soil rather
than the atmospheric forcing; for example, a dry soil that cannot supply moisture
at the potential evaporation rate will have a concentration boundary condition. The
concept was extended to include transpiration following the Richard-Cowan framework
by Levine and Salvucci (1999b). Given the probability distributions of storm and
interstorm characteristics, the TCA integrates over the ensemble of possible storm
intensities and durations to determine the long-term annual equilibrium value of each
hydrologic flux. The equilibrium result is more realistic than that calculated from
annual mean precipitation and evaporation depths because it incorporates the cycling
of storm and interstorm events with the switching between soil- and climate-controlled
boundary conditions.

" The time-averaged soil moisture profile that transmits the long-term mean recharge is
used as the antecedent near-surface moisture profile before each storm and interstorm
event (Salvucci and Entekhabi 1994b). This steady moisture profile is equal to the
temporal mean moisture profile in linear soils and an adequate approximation of the
mean in nonlinear soils (Salvucci and Entekhabi 1994a).

" Flow in the unsaturated zone is treated as a one-dimensional (vertical) process through
a homogeneous soil. Both field observations and modeling studies (e.g., Freeze 1972;
Pan et al. 1997; Kim et al. 1997) have found that lateral unsaturated flow is insignif-
icant relative to saturated flow. Freeze (1972) concluded that subsurface flow is only
significant on convex hillslopes with high soil conductivities and deeply incised chan-
nels. Kim et al. (1997) found lateral unsaturated flow to be on average two orders of
magnitude less than saturated flow. Several modeling studies linking the unsaturated
and saturated zones have similarly assumed one-dimensional recharge (e.g., Orlandini
et al. 1996; Beverly et al. 1999; Sophocleous et al. 1999).

" Re-infiltration of runoff is negligible; precipitation is the only above-ground moisture
source. This assumption is reasonable in an environment where runoff generation is
dominated by saturation-excess rather than infiltration-excess, since saturation gen-
erally begins at the bottom of slopes and moves uphill in the absence of lithologic
irregularities.

In addition to the above assumptions about hydrologic processes, we make several assump-
tions about model climate forcing and physiographic parameters. In any physical model, it
is almost always possible to add finer resolution data. However, such improved resolution

of input data comes at a price. Finer-scale models take more time and more powerful com-

puters to run. High-resolution data are often unavailable or expensive to obtain for all of
the relevant parameters. Simplifying assumptions are made so that the model has reason-
able input and run-time requirements while maintaining physical realism. The assumptions
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allow us to focus on some key climatic and physiographic processes and their partial roles

in determining hydrologic response. These include the following:

" We neglect seasonality, using instead the Poisson parameters that give precipitation

and evaporation depths equal to the mean annual values. Admittedly, most environ-

ments outside the tropics have a seasonal cycle in precipitation, temperature, and solar

radiation (the latter two influence the potential evaporation rate). In this analysis,
we look at annual values instead of seasonal for two reasons:

1. When comparing the behavior in different basins, it is more straightforward to

consider just one temporal state than a range of states in each environment.

2. The expected value of soil moisture is assumed to represent the most likely an-

tecedent soil moisture distribution in a given climate at any time throughout the

year. If we used a seasonal cycle, generation of the flood-frequency curves would

require additional information about the time of year during which large or small

storms occur.

" The ground surface is assumed to be unvegetated. This assumption does not imply

that vegetation is unimportant in the surface water balance in natural environments;

in contrast, it can have significant effects on the distribution of evaporation and other

fluxes. We calculate evaporation from bare soil to reduce the number of necessary

modeling assumptions that arise when incorporating vegetation in a hydrologic model.

As a recognition of the potential impact of plant cover, we perform a sensitivity study

to investigate how vegetation may alter the results of the bare-soil model.

" We assume that the soil texture is spatially homogeneous in the lateral and vertical

directions. Soil type varies stochastically on small spatial scales-hydraulic conduc-

tivity has been observed to follow a log-normal distribution in many geologic forma-

tions (Domenico and Schwartz 1990). Additionally, large-scale variation in soil type

may arise from the presence of multiple lithologic units within a single watershed.

Despite the known occurrence of stochastic and formational soil heterogeneity, we

consider homogeneous soil texture to reduce the sources of variability to topographic

effects. A sensitivity study examines the effect of different soil texture on the basin-

scale hydrology.

" Soil depth is treated as uniform throughout each basin. In a sensitivity study, the

implications of this assumption are investigated by introducing heterogeneous soil

depth based on a model of landscape and soil mantle evolution and examining the

impact on equilibrium hydrologic characteristics.

The results of the sensitivity studies are presented in Chapter 5.

2.3.3 Flux equations

Precipitation input at the ground surface may be partitioned into either evaporation, runoff,
recharge, or a change in storage, as expressed in the surface water balance:

P = E + R + Qe +AS (2.1)

where P is precipitation, E is evaporation, R is runoff, Qe is recharge to the saturated

zone, and AS is the change in soil moisture storage. At equilibrium, AS goes to zero
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and the precipitation is partitioned between the first three terms only. Runoff may occur
as either infiltration-excess or saturation-excess, depending on the local soil moisture and
precipitation intensity.

The following paragraphs describe the relationships for unsaturated zone fluxes used in
GSEM. For a full derivation of fluxes for an infinite water table, see Eagleson (1978a-g);
modifications for a shallow water table are given in detail in Salvucci (1994). Supplementary
equations are provided here in Appendix B.

Infiltration-excess runoff

Infiltration-excess runoff occurs when precipitation intensity exceeds the capacity of the
soil to transport water vertically downward. Infiltration may be either soil- or climate-
controlled. If soil-controlled, the infiltration rate is limited by the soil's infiltration capacity
fi*. If soil hydraulics are not limiting, the infiltration flux is limited by the intensity of
incident precipitation. The equilibrium infiltration is determined by integrating over the
range of storm intensities and durations,

I m, j j (min [fi* (t), i] dt) ft,(t) fi,(i )dtdi (2.2)

where fi,(i) and ft,(t) are the probability distributions of storm intensity and duration,
respectively. Eagleson (1978e) uses the Philip solution (1957) to characterize infiltration,
which gives the following expression for soil infiltration capacity:

1 1

f* = -S t2 + Ao (2.3)
2

where Si is the sorptivity and AO predominantly represents gravitational effects. The two
terms depend on soil characteristics and soil moisture, as explained in Appendix B. For
a soil unbounded by a finite water table depth, mean annual infiltration-excess runoff is
determined by integrating Equation 2.2 and subtracting from the total precipitation P, to
give:

f a= p exp (-aAo - p) -F1+ p- p (2.4)((I1
with

p = [a26S] 1 3  (2.5)

The variable P is mean annual precipitation, a and 6 are the inverse mean storm intensity
and duration, respectively, F(.) is the Gamma function, and Si and AO are the sorptivity
and gravity terms from the Philips infiltration formulation.

Salvucci (1994) modified this expression in two ways. First, sorptivity is changed to
account for diffusivity in the tension saturated zone of the soil column (from the surface
down to a depth equal to the bubbling pressure head); see Appendix B for details. Second,
the presence of a bounding water table introduces column saturation as a factor in the
equation. When the unsaturated zone has a finite depth, there exists an upper limit of
infiltration, represented by the time to saturation t.. Integration of infiltration using an
upper bound on the time variable equal to t, gives the following expression for infiltration-
excess runoff for a finite-depth water table:
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Rie = 1 -e-ts (1 + ts) (2.6)

where the time to saturation is calculated as

,+ - A, > 0 2.7
ts - (2.7)

() 2  AO = 0

in which Ve is the depth of available storage in the unsaturated zone.

Saturation-excess runoff

Saturation can result from either local infiltration, which causes a saturated wetting front to
form at the surface and move downward through the column, or the lateral redistribution

of groundwater. We assume here that the latter process is insignificant over the time
scale of individual storms; it is accounted for by the saturated component of the model.
Saturation-excess runoff due to wetting from above can be calculated by integrating over all

possible storm intensities and durations, given the time to soil column saturation t,, using
the following equation:

Rse = ] 0] i(t - ts)6e-6dtdi (2.8)

In the calculation of infiltration-excess runoff, the approximation of time to saturation
assumed that the pattern of infiltration prior to saturation was soil-controlled. Storms

large enough to cause soil saturation tend to have large total storm depths; in this case,
climate control is more significant than soil control. The climate-based time to saturation is
the time needed for the precipitation intensity to fill the antecedent moisture deficit in the

soil, or t, = Ve/ir, where Ve is the depth of available moisture storage in the unsaturated

zone. Using this approximation for the time to saturation gives the solution for mean annual

runoff:

Rse = 2mvVeK 2 [2/ca6Ve] (2.9)

where m, is the mean number of storms per year and K 2 [-] is the modified Bessel function

of the second order.

Bare-soil evaporation

When the soil is not covered by vegetation, evaporation is limited either by the ability of the

soil to transport water upward to the ground surface or by the capacity of the atmosphere

to evaporate available moisture. The average flux is therefore determined by integration

of the smaller of potential evaporation (atmospheric control) and exfiltration capacity (soil

control) over all possible interstorm durations:

Ebs = mV j [j min (fe, ep) dt] ftb(t) dt (2.10)

where fi (t) is the probability distribution of time between storms and fe* is the exfiltration

capacity. The exfiltration capacity for an unvegetated soil is defined by Eagleson (1978c)
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as

fe = -Set-I - Ks* + w (2.11)
2 2

where Se is the soil- and moisture-dependent exfiltration desorptivity, K, is the unsaturated
hydraulic conductivity at soil saturation, and w is the maximum capillary rise. The solution
of the integral results in Eagleson's expression (1978d) for mean annual evaporation:

Ebs = [- 1 - (1 + v 2Ee-E -+ -2E) ' [ -1 3 [ 3, E) (2.12)

where -, is the mean annual potential evaporation rate and y(-, -) is the incomplete gamma
function. The quantity E is the evaporation effectiveness, which considers the interstorm
climate and desorptivity characteristics of the soil:

E = jSe2/(2e~,2) (2.13)

where q is the inverse mean interstorm duration, Se is the exfiltration desorptivity, and e-,
is the mean potential evaporation rate.

Salvucci and Entekhabi (1994a) make one important modification to Eagleson's evap-
oration scheme. Eagleson (1978c) assumed that the unsaturated hydraulic conductivity at
soil saturation is much smaller than the soil desorptivity term in the exfiltration capacity
(Equation 2.11). Salvucci and Entekhabi retain the K, term; it appears in the modified
dimensionless parameter A. The resulting modified equation for mean annual bare-soil
evaporation is:

Ebs 1 - (I + /AE + (2Q)) e-AE

(2Q) + /'iE) e-E + v2E - , QE] - 7 , AE] (2.14)

where A and Q are dimensionless parameter groups defined in Appendix B.

Transpiration by vegetation

The presence of vegetation affects the rate of moisture flux from the surface because roots
provide access to deep regions of the soil profile that are moister than the near-surface soil.
Bare-soil evaporation is limited by the available moisture at the surface; deeply penetrating
roots may tap water far beneath the surface, resulting in higher flux rates. The vertical
distance of root penetration is represented by the rooting depth Zr.

The effect of vegetation on evaporation depends on the local moisture state, as illustrated
in Figure 2-3. If the water table is at or very near the surface, the evaporative flux is limited
by its atmospheric potential rather than by soil moisture; vegetation will not influence the
flux rate. If the water table is located such that there is a moisture deficit at the surface,
but the roots extend into the saturated zone, the vegetation increases the evaporation flux
from a soil-limited rate to the atmospheric potential rate. When the water table lies below
the rooting depth, evaporation occurs at the moisture-limited rate corresponding to the soil
moisture at the deepest level of the root system. This flux rate is higher than the bare-soil
rate, which is a function of the soil moisture at the ground surface.
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BARE SOIL VEGETATED

Ebs = Ep Evs = Ep TS

Ebs = E (Z) Evs = Ep

Ebs = E (Zw) Evs = E (Zw - Zr)

Figure 2-3: Conceptual illustration of the dependence of evaporation rate on position of the

water table relative to Ts and Z,. Note that the mathematical expression for the delineation

of the three zones differs slightly from the conceptual identification illustrated in this figure,
since the mathematical expression uses capillary rise instead of water table depth as the

dependent variable.

An alternative mathematical representation of the different vertical zones influencing

evaporation is done using the maximum capillary rise, w. This variable represents the max-

imum height to which water can move upward due to capillary pressure in the soil matrix;

in this case, it signifies the potential moisture influx from the saturated zone available to

meet external moisture demands from the unsaturated zone such as percolation and atmo-

spheric evaporative demand. Capillary rise depends on the depth of the water table; for

Brooks-Corey soils, the expression is:

w =s (2.15)
(Zw/'Ps) m C - I

where K, is the saturated hydraulic conductivity, T. is the bubbling head, m is the pore

size distribution index, and c is the pore disconnected index. The evaporation rate depends

on the value of w relative to the atmospheric evaporative demand e, and the gravitational

percolation associated with the surface soil moisture (Kosc. When the capillary rise is

greater than the sum of moisture removal due to percolation and atmospheric demand,
evaporation is able to occur at the potential rate. In other words, the capillary tension

in the soil provides a vertical influx of moisture to the surface that exceeds the outflux of

moisture to percolation and evaporation, keeping the soil fully saturated. This corresponds

to the upper layer of the soil, where both bare-soil and vegetated-soil experience poten-

tial evaporation. In the lowest zone, where the capillary rise is less than percolation, the

pressure-induced moisture influx is not even enough to meet the percolation flux. In this

region, the formula is the same as that in Equation 2.14 except for a modified definition of

the dimensionless parameter A. Combining the three zones gives the following equation for

evaporation from a vegetated surface (Levine and Salvucci 1999):
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w > Kss + ep

1 I - + ydK-AE + K' sc w ) -AE+
71 2ep ep 'Kass < w < .1Kss + e

= 2E (F []-y[, AE]) 2 P

1 { ( + v 2AE + (2Q) )eAE+

((2Q) + '2QE) e-E+ w < !Ksc

,2E - QE]- AE]
(2.16)

The modified parameter groups A and Q are defined in Appendix B.

Recharge

Recharge, the flux between the unsaturated and saturated zones, is the residual of a mass
balance for the unsaturated zone, as illustrated in Figure 2-4 and expressed by the equation

Qe= P - (E + Rzc + Rse) (2.17)

Recharge may be either positive or negative, depending on whether the net flux is to or from
the saturated zone. Recharge is generally positive when the water table is deep because
there is little evaporation or runoff from dry soil. In the limit, as evaporation tends to
zero and no runoff occurs, Qe -+ P. In wet or saturated soils, in contrast, evaporation is
climate-limited and therefore occurs at the potential rate. High evaporation rates can rarely
be supported by infiltration without supplementary moisture from the underlying saturated
zone. Neglecting runoff, the net flux may be simplified as Qe + -Ep.

Saturated flow

The equation for flow in the saturated zone is

a Kx O)+ 0 Ky O)+ az Kz Oz) - SY at (2.18)09 ( OXi ay ( OliN O(Z OlN Oh

where Ki is the hydraulic conductivity in the i direction and h is the hydraulic head. SY is
the specific yield of the soil, defined as the "volume of water extracted from the groundwater
per unit area when the water table is lowered a unit distance" (Hillel 1998, p. 481). When
conductivity is isotropic (Kx = Ky = Kz = Ks), the equation simplifies to

[ 2h O2h + 2 h 1 Oh (2.19)

K a Lx2 + y2 + z 2 = Sat

The steady-state water table position is constant in time. Under these conditions, the
specific yield term equals zero, and Equation 2.19 becomes the Laplace equation:

V 2 h = 0 (2.20)

The saturated zone is modeled using a three-dimensional finite difference formulation.
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Sunsaturated zone

Qe(Zw)= P - E( )Re(Zw) - R se (Zw)

Fsaturated zone

Figure 2-4: Technical schematic of GSEM iteration procedure. Qe is recharge, P is precip-
itation, E is evaporation, Rie is infiltration-excess runoff, Re is saturation-excess runoff,
Z, is water table depth, and Qh is horizontal saturated flux.

2.3.4 Model application

The equilibrium water table state is estimated through a transient simulation of GSEM,
as illustrated in Figure 2-2. The coupling of the unsaturated and saturated zones through
the recharge and water table depth is illustrated in Figure 2-4. The saturated zone is
modeled using MODFLOW, a finite difference flux model developed by the U.S. Geological
Survey (McDonald and Harbaugh 1988). The coupling of the Eagleson-Salvucci unsaturated
fluxes to the groundwater model was originally carried out by Ateljevich (1995). The
effective recharge calculated from the unsaturated zone analysis is input into MODFLOW
in place of the recharge and evaporation subroutines. The distribution of water table depths
calculated by the groundwater model is returned to the unsaturated zone code for calculation
of a new recharge rate. This procedure is iterated until a stable solution is reached, beginning
from a water table that is parallel to the ground surface. The simulation is considered to
have reached equilibrium when at least 95 percent of the active pixels vary less than one

centimeter between subsequent time steps (i.e., the right hand side of Equation 2.19 is
negligible). When the water table is calculated to lie above the ground surface, the excess

moisture is "drained" off and the water table is set at the ground surface. In the opposite

extreme, when the depth to saturation exceeds the depth of the soil column, the water table

is set at the soil-bedrock interface and all incident precipitation is routed downhill.

2.4 Summary

We have described here GSEM, a coupled surface water-groundwater model which inte-

grates over storm and interstorm periods to characterize the equilibrium hydrology in a

catchment. The model is distributed in space, combining an analytical solution of unsat-

urated zone fluxes with a numerical model of saturated flow. GSEM provides equilibrium

values for evaporation, saturation-excess runoff, infiltration-excess runoff, recharge, and

depth to saturation at each active cell in a two-dimensional grid. This fully distributed

dataset enables us to characterize the spatial patterns in hydrologic response at the resolu-

tion of the input data. In the next chapter, we describe characteristics of the basins selected

for use in this study.
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Chapter 3

Data selection

In the previous chapter, we presented GSEM, the model which is used to convert easily
measurable physical characteristics into equilibrium hydrology. Ten basins from diverse cli-
mates and landscapes are selected for hydrologic comparison using GSEM. In this chapter
we present the datasets used to characterize the study basins and related records. The
relevant physical, climatic, and lithologic features of the basins are described. Surface fea-
tures are captured by digital topography at a gridded resolution of 30 m. Mean annual
climate characteristics are derived from monthly Poisson storm parameters and pan evapo-
ration records. Information on soil type is obtained from the STATSGO database; spatially
uniform values for soil depth and hydraulic properties are adopted according to the Brooks-

Corey model. The combination of soil and climatic influences are represented through a
single set of curves for each basin showing the dependence of the equilibrium hydrologic
fluxes on water table location. Additional observed datasets of annual runoff and precipi-
tation are used to compare modeled and observed basin-average runoff ratios. Time series

of daily precipitation and streamflow are assembled for analysis of the response of basins to
individual events at two of the ten locations.

3.1 Basin selection and characteristics

We select ten basins from across the continental United States for use in this study. The

locations of the basins are shown in Figure 3-1; coordinates and information on basin size

are summarized in Table 3.1. The basins' topographic features are characterized by 30 m
resolution digital elevation models (DEMs). We select basins with a contributing area

between 10 and 500 km 2 . The minimum basin size is selected to ensure the presence of

diverse physical features contributing to the complexity of the terrain. Convergent and

divergent areas, for example, have been observed to have distinct hydrologic responses; the

juxtaposition of multiple topographic features in a natural landscape may influence the

spatial nature of hydrologic response in a way that would be missed in analysis of hillslopes

or very small subcatchments. Larger basins are not considered to avoid the need for a

detailed channel routing algorithm.

A map of the climatic wetness for the continental United States is provided in Figure 3-2
for reference. The climatic wetness is defined as the mean annual precipitation divided by

potential evaporation. Long-term average gridded precipitation is available from the Oregon

Climate Service's PRISM dataset (Daly et al. 1994). Potential evaporation is calculated

from monthly temperature values using the Thornthwaite technique (Bras 1990), which
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Basin Latitude Longitude Area S50  AH
[deg:min N] [deg:min W] [km 2 ] [%] [M]

Bear 37:38 120:08 10.6 34 956
Big Creek 47:30 116:15 147 43 1104
Brushy 34:24 87:23 322 11 165
Midland 38:37 77:45 32.6 4 78
Moshannon 41:00 48:30 325 13 383
Ogden 39:08 96:45 11.7 8 99
Sacramento 38:38 121:30 19.4 1 29
Schoharie 42:15 74:15 113 18 760
Tombstone 31:45 110:08 12.9 11 227
Yreka 41:45 122:45 32.8 32 811

Table 3.1: Physical characteristics of study basins. S5o is the median of the steepest slope
at each pixel; AH is the difference in elevation between
the basin.
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Figure 3-1: Study basin locations.
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Figure 3-2: Map of climatic wetness for the continental United States. Wetness is defined

as the ratio of mean annual precipitation to potential evaporation.

39



Percent adjusted pixels
Total Mean with given fill depth Max

Basin number of % of pixels adjustment 1-5 6-10 11-20 20+ fill
pixels adjusted [m] [m] [m] [m] [m] [m]

Bear 11784 0 -
Midland 36246 10.2 2.0 98 2 0 0 9
Ogden 13019 4.7 2.2 94 6 0 0 10
Sacramento 21598 5.0 7.4 68 23 2 7 33
Tombstone 14298 2.5 1.7 99 1 0 0 6
Yreka 36451 0.2 2.6 86 14 0 0 8

Table 3.2: Statistics of adjustments made in filling pits in DEMs.

states that

Ep = 1.62b 10)a(3.1)

where b is a sunshine index, which is a function of geometry (latitude); T is temperature in
degrees Celsius;, I is a function of the monthly temperature,

12 (T . 5

I = (3.2)

and a is a function of the temperature index I,

a = (67.5 x 10-8)13 - (7.71 x 10-6)12 + 0.01791 + 0.492 (3.3)

Monthly temperature values are also obtained from the PRISM dataset. The monthly
sunshine index is approximated as each month's average for the latitude range of the con-
tinental United States (30 - 450), from Bras (1990). Notable features of the contour map
are high wetness indices in the Pacific Northwest and along the Rocky, Sierra Nevada and
Appalachian mountain ranges. The lowest values are found in the southwestern United
States. The white pixels represent those areas with P/E, greater than or equal to 3; the
range was cut off at this level to highlight the variability across the United States.

3.1.1 Topographic characteristics

Digital elevation models often contain pits, where a single pixel is lower elevation than any of
its neighbors. On horizontal scales of 10 m or more, pits occur rarely in natural topography;
in DEMs they are generally due to data errors or sampling effects (Tarboton et al. 1991).
Table 3.2 summarizes the adjustments made to the raw DEMs to fill any topographic pits.
The adjustments are made using an automated routine developed by Tarboton et al. (1989).
For most of the basins, the number and magnitude of the adjustments are small. Figures 3-3
through 3-7 contains maps of where pits were filled and by how much.

Maps of the surface topography of the basins are presented in Figures 3-11 through 3-20
at the end of this chapter. The basins differ not only in total or average relief, but also
in the distribution of relief within the basin. Schoharie Creek, for example, consists of
two sections, one of which contains much greater relief than the other. Sacramento, located
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Figure 3-3: Map of filled pits, Midland, VA.
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Figure 3-5: Map of filled pits, Sacramento, CA.
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Figure 3-6: Map of filled pits, Tombstone, AZ.
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Figure 3-7: Map of filled pits, Yreka, CA.

within California's Central Valley, has very few visible features; the relatively coarse vertical

resolution of the DEM results in the loss of most topographic variation in a basin this flat.

Within the constraints of DEM availability, we select basins to optimize diversity of cli-

mate, landscape, and soil characteristics. An underlying goal of this research is to investigate

how different combinations of climate, landscape, and soil are related to the equilibrium

hydrologic response of a basin. It is therefore desirable to ensure that the study basins

contain different combinations of features, e.g., that not all dry basins have similar terrain

and lithology.

3.1.2 Climate characteristics

Monthly pan evaporation rates were assembled for the United States by Farnworth and

Thompson (1982). The relationship between measured pan evaporation and atmospheric

potential evaporation is defined as

E, = aEpan (3.4)

where a is assumed to be 0.7 (Linsley et al. 1992).
We obtain the Poisson parameters characterizing the stochastic nature of rainfall from

Hawk and Eagleson (1992), who calculated monthly Poisson parameters from hourly Na-

tional Climate Data Center precipitation records. Since we are interested in annual equi-

librium, we calculate the annual average storm intensity and duration as the mean of the

monthly values. An independent average of all four storm parameters would not necessarily

maintain the observed annual precipitation and evaporation depths. The annual rainfall in-

tensity and duration are calculated as the simple average of the twelve monthly values. The

equations for the total flux depths are then used to calculate the effective mean values of in-

terstorm duration to and potential evaporation rate e-p. By definition, the total precipitation

and evaporation depths of a Poisson process are given by the following equations:
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Basin P Ep P/Ep i tr tb CP
[m/y] [m/y] [- [mm/d] [d] [d] [mm/d]

Bear 0.8 0.7 1.2 17 0.60 4.0 2.1
Big Creek 0.4 1.3 0.3 13 0.55 4.9 3.9
Brushy 1.4 1.3 1.1 50 0.24 3.0 3.9
Midland 1.1 1.1 1.0 41 0.24 3.0 3.3
Moshannon 1.1 0.6 1.8 35 0.23 2.5 1.9
Ogden 0.5 1.4 0.4 33 0.28 5.7 3.9
Sacramento 0.4 1.9 0.2 20 0.75 12.1 5.4
Schoharie 1.0 0.7 1.4 30 0.25 2.4 2.2
Tombstone 0.4 2.0 0.2 25 0.49 11.6 5.6
Yreka 0.5 0.8 0.6 14 0.85 8.5 2.4

Table 3.3: Climate characteristics of study basins. P is mean annual precipitation; E, is
mean annual evaporation; ir is mean storm intensity; tr is mean storm
time between storms, and e, is mean potential evaporation.

duration; tb is mean

P = rtr

tr + tb

eptbEp =A
tr + to

(3.5)

(3.6)

Using the mean values of storm intensity and duration, Equation 3.5 can be rewritten to
give the mean time between storms:

to =_ -
P tr (3.7)

The mean evaporation rate during interstorm periods is calculated using the annual poten-
tial evaporation depth adjusted from Farnworth and Thompson (1982),

- Ep(tr + tb) (3.8)
tb

This provides us with the annual average values of the four storm parameters-storm in-
tensity, storm duration, interstorm duration, and potential evaporation-that correspond
to the observed total precipitation and evaporation depths. The values for each of the
basins are provided in Table 3.3. In all subsequent discussion, references to the climate
characteristics assume the annual mean value.

The coordinates of the precipitation and evaporation measurements for each basin are
summarized in Appendix C. Climatic records are selected from the nearest available site
to each watershed. Where there was no precipitation record close to the basin, storm
parameters are read from contour maps generated by Hawk and Eagleson (1992); this is
the case in Bear Valley, Moshannon, Sacramento, Schoharie, and Yreka basins.
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Basin Ash Loam- Coarse Loam Fine Fine Fine Clay
skeletal loam loam silt

Bear - - - 0.87 0.13 - - -

Big Creek 0.51 0.49 - - - - - -

Brushy - - - 0.33 0.17 - - 0.50
Midland - 0.02 - - 0.85 0.10 0.03 -
Moshannon - 0.03 - - 0.79 0.03 - 0.15
Ogden - - - 0.02 - 0.24 0.72 0.02

Sacramento - - 0.01 - 0.11 - 0.88 -
Schoharie - - 0.88 0.12 - - - -

Tombstone - 0.60 0.25 0.14 - - - -

Yreka - 0.85 - - 0.14 - 0.01 -

Table 3.4: Fractional distribution of soil classes within each basin, from STATSGO database.

Basin K, T, ne m
[m/d] [m]

Bear 1.5 0.36 0.31 2.1
Big Creek 2.9 0.25 0.25 3.3
Brushy 0.56 0.65 0.39 1.1
Midland 0.28 0.47 0.35 1.2
Moshannon 0.24 0.54 0.37 1.0
Ogden 0.14 0.72 0.41 0.75
Sacramento 0.14 0.72 0.41 0.74

Schoharie 2.8 0.26 0.26 3.2
Tombstone 2.0 0.32 0.29 2.6
Yreka 1.5 0.36 0.31 2.1

Table 3.5: Soil characteristics of study basins.

is Brooks-Corey bubbling head; ne is effective

size distribution index.

K, is saturated hydraulic conductivity; s

porosity; and m is the Brooks-Corey pore
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Basin Z* [m]
Bear 0.6
Big Creek 0.5
Brushy 1.5
Midline 1.1
Moshannon 0.7
Ogden 3.0
Sacramento 3.1
Schoharie 0.4
Tombstone 0.7
Yreka 0.8

Table 3.6: Depth in the soil column at which the flux between the unsaturated and saturated
zones is zero.

3.1.3 Soil characteristics

Information on soil texture is obtained from STATSGO, the State Soil Geographic database
(National Soil Survey Center 1992). The STATSGO database often contains multiple litho-
logic units within the bounds of a single watershed. The combinations of soil types found
in each basin are presented in Table 3.4. We assume a single soil type across each basin
to minimize the sources of subbasin variability. The representative soil type is identified
as the average of up to three soil classifications with the largest areal coverage. Once the
soil type is identified (i.e., sandy-loam, fine-sand, etc.), we assign the Brooks-Corey soil
hydraulics parameters according to the categories in Bras (1990); these values are provided
in Table 3.5. We similarly assume a constant soil depth throughout the basin. The impli-
cations of these two assumptions (uniform soil texture and depth) are examined further in
the sensitivity studies presented in Chapter 5.

3.1.4 Characteristic equilibrium fluxes

For a given soil and climate, the equilibrium fluxes depend on a single free variable: water
table depth, Z,. Every value of Z, has an associated flux. The calculation of the depth-
dependent fluxes can be done off-line from the model using the analytical equations for the
unsaturated zone fluxes. Each combination of soil and climate results in its own distinct
set of profiles. The profiles of the dimensionless fluxes for each basin are presented in
Figure 3-8. The fluxes are normalized by precipitation to highlight the distribution of the
incident precipitation to the different surface fluxes. Information about the climate and soil
characteristics of the different basins is reflected in the variability of the equilibrium fluxes
with depth and the associated Z*, the depth at which the recharge flux is zero.

The values and shape of the flux curves depend on the joint influences of climate and
soil. We focus initially on evaporation. For near-surface water tables, where evaporation is
climate-controlled rather than soil-controlled, the normalized flux is equal to the inverse of
the climatic wetness index P/Ep. As the water table depens, the behavior of the evaporation
curve depends on the soil texture. In coarse-soiled environments, E/P tends to zero for
deep Z,. In finer soils, even large values of Z, maintain a significant allocation of incident
precipitation to evaporation. Finer soils are able to sustain a high rate of evaporation at
deeper water table levels because fine soil can sustain more capillary pressure. The high
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Figure 3-8: Equilibrium hydrologic fluxes, normalized by mean annual precipitation, as a

function of water table depth. Solid line is evaporation; dashed line is recharge; dash-dot line

is saturation-excess runoff. Infiltration-excess runoff is negligible for all depths. Recharge

is positive downward.

47

X

N

0z

a
W

0
Z

X

V0a
N

Ei

0
Z

1

0.5

0

-0.5

-1

5

0

-5

V

as

E
0Z



75 1 -

00
70-

65-

60

55-

50--

45

40-

35-

30-

25 0
0 50 100 150 200 250 300 350

Z* [cm]

Figure 3-9: Relationship between zero-recharge depth and XI', for all basins.

capillary tension can also be seen in the large range of water table depths over which recharge
is negative (upward) in fine-grained basins. Coarser soils are more likely to have gravity-
dominated drainage, resulting in their rapid decline in evaporation with water table depth.
This can be seen through a comparison of the zero-recharge depth Z* and the Brooks-Corey
bubbling head IFs. The comparison is shown in Figure 3-9. The magnitude of Z* represents
the rapidity of the decline in evaporation and increase in recharge with deepening of the
water table. The value of T, is inversely related to the coarseness of the soil. Figure 3-9
shows that the rate of change in flux values is positively related to the coarseness of the
soil.

As seen in Figure 3-8, Z, is the independent variable upon which evaporation, runoff,
and recharge are based. In any basin, the local water table depth determines the correspond-
ing flux values. This enables us to use Ze as a proxy for any of the three fluxes (evaporation,
runoff, and recharge) in studies of the spatial distribution of hydrologic processes.

3.2 Selection of long-term streamflow and precipitation data

In addition to identifying the climate and soil characteristics of the study basins, we re-
quire precipitation and streamflow records for comparison with the model output. Long-
term average gridded precipitation is available from the Oregon Climate Service's PRISM
dataset (Daly et al. 1994). Daily time series of rainfall are compiled by the National Cli-
mate Data Center (NCDC 1997). Daily streamflow is available from the U.S. Geological
Survey (USGS) on-line surface water data (1999). A subset of the USGS stations have been
screened for quality and duration of the record; these are provided in the Hydro-Climatic
Data Network (HCDN) by Slack et al. (1992, 1993). Data for the Tombstone basin are
obtained from Agricultural Research Service (ARS) measurements of both runoff and pre-
cipitation at the experimental watershed at Walnut Gulch, AZ (1999).
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Basin Station Latitude Longitude Datum Area Dates of
number [deg:min N] [deg:min W] [in] [km 2] record

Bear 11321500 38:13 120:58 N.A. 13.5 1932-1934

Big Creek 12414350 47:18 116:07 N.A. 100 1980-1981
Brushy 03586500 34:40 87:19 164 430 1948-1997
Midland 01655500 38:44 77:47 128 31.9 1950-1987
Moshannon 01542000 40:51 78:16 441 178 1940-1993
Ogden 06879650 39:06 96:36 334 10.6 1979-1998
Sacramento 11447030 38:36 121:24 N.A. 13.0 1972-1975
Schoharie 01365000 41:52 74:29 266 90.1 1938-1980
Yreka 11512000 41:59 122:22 720 37.8 1933-1959

Table 3.7: Location and characteristics of USGS streamflow observations.

The precipitation and streamflow data are used for two purposes: (1) to compare long-
term, basin-averaged runoff ratios, and (2) to characterize the runoff response of model and
observations. The duration of the observed record is of critical importance for the latter
investigation given the low probability of an extreme event occurring at any time in the

record. Below we describe the procedure for data selection from the rainfall and streamflow
datasets.

Several issues must be considered in selecting specific records from the datasets, includ-
ing gage location, elevation, drainage area, and series length. The availability of high-quality
streamflow sites is more limited than the number of precipitation gages. Many U.S. streams
and rivers have been subject to hydraulic controls that affect the measured streamflow

regime. Controls may include flow diversion or augmentation, regulation of streamflow by a
containment structure, base flow reduction from high ground-water pumping, and explicit
channel modification (Slack and Landwehr 1992). Exclusion of impaired basin conditions

reduces the number of possible streamflow records.

We begin by selecting a stream gage that is relatively near and drains an area similar in
size to the model basin to which it will be compared. The gage locations and characteristics
are given in Table 3.7. Only two of the ten study basins had a high-quality streamflow record

in close proximity to the basin with at least ten years of observations, the limit set for the

flood-frequency analysis. The extended, high-quality streamflow dataset largely contains

basins of two extremes with respect to drainage area: small, headwater catchments that

have not experienced anthropogenic hydraulic controls; and large, expansive basins over

which the hydraulic controls have had a uniform impact on hydrology over the period of

record.

Once a streamflow site is selected, precipitation values are obtained from the PRISM Cli-

mate Mapping Program. PRISM (Parameter-elevation Regressions on Independent Slopes

Model) uses point data and digital elevation maps to create gridded estimates of monthly

and annual precipitation. The model is designed to accomodate complex climatic behavior

such as orographic forcing of precipitation and coastal effects (Daly et al. 1994; Daly et al.

1997). The grid resolution is 0.04 degrees.
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Basin model P model RT model R/P obs. P obs. RT obs. R/P

[m] [m] [-] [m] [m] [-]
Bear 0.81 0.18 0.21 0.50 0.04 0.08
Big Creek 0.48 0.34 0.72 1.11 1.02 0.92
Brushy 1.35 0.15 0.11 1.43 0.56 0.39
Midland 1.10 0.08 0.07 1.04 0.36 0.35
Moshannon 1.06 0.39 0.36 0.97 0.56 0.61
Ogden 0.56 0.00 0.00 0.85 0.06 0.07
Sacramento 0.42 0.00 0.00 0.48 0.26 0.54
Schoharie 1.03 0.56 0.53 1.22 0.89 0.73
Tombstone 0.37 0.05 0.14 0.33 0.00 0.01
Yreka 0.47 0.13 0.26 0.51 0.94 1.80

Table 3.8: Model and observed precipitation and total streamflow values, for all basins.

Basin model P model R model R/P obs. P obs. R obs. R/P

[m] [m] [-] [m] [m] [-]Bear 0.81 0.13 0.17 0.50 0.03 0.07
Big Creek 0.48 0.01 0.03 1.11 0.27 0.25
Brushy 1.35 0.15 0.11 1.43 0.33 0.23
Midland 1.10 0.08 0.07 1.04 0.15 0.14
Moshannon 1.06 0.38 0.34 0.97 0.13 0.14
Ogden 0.56 0.00 0.00 0.85 0.00 0.00
Sacramento 0.42 0.00 0.00 0.48 0.23 0.47
Schoharie 1.03 0.23 0.22 1.22 0.26 0.21
Tombstone 0.37 0.04 0.13 0.33 0.00 0.01
Yreka 0.47 0.06 0.14 0.51 0.05 0.09

Table 3.9: Model and observed precipitation and storm runoff (base flow removed), for all
basins.

3.3 Comparison of equilibrium runoff ratios

The runoff ratio (runoff per unit area divided by precipitation) indicates the fraction of
precipitation which is routed into channels as either surface or subsurface runoff. A rough
comparison of modeled and observed runoff is performed using annual average observed
values from the USGS and PRISM datasets and the modeled equilibrium fluxes. Tables 3.8
and 3.9 summarize the modeled and observed runoff and precipitation depths and resulting
runoff ratios. Table 3.8 presents values for total streamflow (RT); the runoff values in
Table 3.9 have had base flow removed.1

Figure 3-10 provides a visual comparison of the ten runoff ratios based on total and
storm (base flow-subtracted) runoff. Given that the model is uncalibrated, the results are
in reasonable agreement with the observed total streamflow. The most extreme outlier in
the total streamflow case is Yreka; it has an observed R/P ratio of 1.8. The discrepancy
could be caused by human alterations to the environment, the resolution of the precipitation

'A description of the base flow separation technique is presented in Appendix E. The smoothed-minima
approach is the technique used in this analysis.
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Figure 3-10: Comparison of modeled and observed runoff ratios for (a) total streamflow and

(b) surface runoff only (base flow removed). The line represents a 1:1 fit for reference. Num-
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(6) Ogden, (7) Sacramento, (8) Schoharie, (9) Tombstone, and (10) Yreka.
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data, or the limited availability of rainfall and streamflow measurements in close proximity.
The hydrology of California has been modified by both imports and exports between basins.
Imports of water into the Yreka basin could explain how runoff exceeds precipitation. Al-
ternatively, the the steep local terrain could result in highly variable rainfall that is not
adequately modeled in the PRISM data. Although the PRISM precipitation values have
been adjusted for topographic effects, the use of a single average value over the basin may
nonetheless fail to represent the actual incident rainfall. Furthermore, because the rainfall
varies over small spatial scales, a slight discrepancy between the location of the basin and
the rain gage could result in significant differences in local precipitation. Similar problems
may also explain the discrepancy in the modeled and observed values of the Sacramento
basin. Of the remaining eight basins, each exhibits a deviation on the scale of 20 percent
or less.

When base flow is removed from the streamflow depths, as shown in subplot (b), Yreka
moves to fairly close agreement between model and observations. With very little estimated
base flow, Sacramento is the largest outlier. The remaining basins are almost evenly split
between those in which observed R/P exceeds modeled and vice versa. On average, the
base flow removed from the observed time series is larger than the base flow estimated by
the model.

Below we summarize numerous possible explanations for the discrepancies between ob-
served and modeled runoff ratios, both with and without base flow. They include the
following:

* The area drained by the USGS gages does not always perfectly overlap the contribut-
ing area of the GSEM basin. The latitude and longitude of the DEM and USGS
streamflow gages are provided in Tables 3.1 and 3.7, respectively. A slight difference
in the horizontal location of a measurement could affect either or both of the climate
and physiography.

" The USGS contributing area differs from the GSEM contributing area by up to 45
percent. The difference is due to the limited number of high-quality USGS gages. In
most environments, runoff does not scale linearly with contributing area (e.g., Moore
and Morgan 1969). The basin area reveals itself in the comparison of runoff ratios
after base flow has been removed. Excluding the three driest basins, the four large
basins-Big Creek, Brushy, Moshannon, and Schoharie-are clearly separated from
the three smaller basins-Bear, Midland, and Yreka-by the magnitude of their runoff
ratios.

* As previously discussed, observed runoff comes from spatially heterogeneous precip-
itation. This has two implications. First, runoff is normalized by a single value of
precipitation; even if that value has been adjusted for topographic effects, it may not
fully reflect actual incident rainfall within the particular basin. Second, the model
assumes uniform precipitation; this causes a different prediction of runoff than if it
was forced with spatially variable rainfall.

" Precipitation and evaporation vary seasonally. The annual runoff will be very differ-
ent if the same annual rainfall falls almost entirely in a short time period (which is
happening in some of the observed basins) or spread out over the entire year (which
is what is implicitly assumed by the use of average annual climate parameters in the
model).
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" Some of the incident precipitation may occur as snow. Accumulation of snowpack and

rapid snowmelt affect the distribution of precipitation into evaporation, runoff, and

infiltration. The USGS records do not distinguish precipitation occurring as snow.

" Human interventions in the hydrologic cycle (e.g., dams, water imports or exports

from/to other watersheds, irrigation, and consumptive use) influence the amount of

water both entering the basin as "precipitation" and exiting the basin as "runoff."

Aqueduct imports, for example, increase the moisture available for runoff above the

incident precipitation. The gages provided by the USGS are not screened for anthro-

pogenic influences. 2

" The model assumes uniform soil texture and depth. Any difference in the actual

physical characteristics of the observed basin could affect the modeled runoff.

Discrepancies between the modeled and observed runoff ratios are to be expected given the

lack of model of calibration and the use of a catchment-averaged, annual variable. The

brief explanations provided here include some of the assumptions which may enhance the

discrepancy and highlight the difficulty in adapting field measurements for use in hydrologic

models.

3.4 Selection of time series for flood-frequency analysis

The flood-frequency investigation requires a time series of precipitation rather than long-

term monthly or annual averages. We therefore use precipitation values from the NCDC

dataset rather than PRISM. The selection of precipitation records is limited by the imposed

requirement of at least ten years of measurements. Many of the rain gages have significant

periods of missing data or were taken out of service after a few years of operation. It is

imperative that the time series be long enough that some infrequent events are included

since basin response to extreme events is an area of significant hydrologic interest. We select

rain gages that fall within the same hydrologic unit as the stream gage, as specified by the

USGS hydrologic unit code. While this means that the stream and rain gages are in the

same general location, it does not ensure that the rain gage is physically located within the

gaged drainage area. However, precipitation in these moist, relatively mild-sloped basins is

not dominated by orographic forcing. We therefore assume that rain gages located within

the larger hydrologic unit provide an adequate representation of incident precipitation in

the subbasin of interest.
Table 3.10 summarizes the temporal characteristics of the two rain gage and stream

gage sites selected for the flood-frequency analysis. We separate out summer storms (May

through October, inclusive) to avoid contamination from snowmelt in the streamflow record.

3.5 Summary

We have selected ten study basins from diverse climates and landscapes. Surface features

are captured by digital topography at a grid resolution of 30 m. Mean annual climate char-

acteristics are derived from monthly Poisson storm parameters and pan evaporation records.

2The HCDN (Slack et al. 1992, 1993) dataset screens out basins with significant artificial influences on

the hydrologic record. However, this dataset contains no basins that match all of the modeled basins in both
size and location.
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Variable Brushy Creek Schoharie Creek
Joint years 7/48-7/77 1/49-12/72
of record 1/75-9/80

Number of years 29 36.4
Number of storms 1686 1426
Summer storms 664 547

Table 3.10: Basin characteristics of observed streamflow and precipitation time series.

Information on soil type is obtained from the STATSGO database; spatially uniform values
for soil depth and hydraulic properties are adopted according to the Brooks-Corey model.
Mean annual precipitation and runoff values are used to compare the agreement between
modeled and observed R/P values, both with and without base flow. Additional time series
of daily precipitation and streamflow are assembled for comparison of the probability-based
runoff response. Two of the ten basins have data which are of sufficient quality and dura-
tion for use in flood-frequency analysis. In the next chapter, we investigate the relationships
between topography and the spatial organization of hydrologic response within each basin.
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Figure 3-11: Surface elevation from 30-m DEM, Bear Valley, CA.
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Figure 3-12: Surface elevation from 30-m DEM, Big Creek, ID.

56



H[m]
155 -173
174-191
192 -210

211 -228
......... 229 -246

247 - 265
266 - 283
284 - 301
302 - 320

0 4 8 Kilometers | No Data

Figure 3-13: Surface elevation from 30-m DEM, Brushy Creek, AL.
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Figure 3-14: Surface elevation from 30-m DEM, Midland, VA.
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Figure 3-15: Surface elevation from 30-m DEM, Moshannon, PA.
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Figure 3-16: Surface elevation from 30-m DEM, Ogden, KS.
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Figure 3-17: Surface elevation from 30-m DEM, Sacramento, CA.
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Figure 3-18: Surface elevation from 30-m DEM, Schoharie, NY.
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Figure 3-19: Surface elevation from 30-m DEM, Tombstone, AZ.
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Figure 3-20: Surface elevation from 30-m DEM, Yreka, CA.
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Chapter 4

Spatial variability at the subbasin
scale

In the previous chapters, we presented the model and data which are used to generate

hydrologic characteristics in ten study basins. The goal of this chapter is to identify the

existence of spatial patterns in the modeled equilibrium hydrologic response that may be

related to location and topographic factors within each basin. There are several possible ap-

proaches to scaling between well-understood point processes and large-scale measurements.

Processes may be assumed to be either (1) constant in space, (2) varying randomly in space,
or (3) varying according to a deterministic pattern. In this chapter, we look first at the

organization of modeled equilibrium hydrology within each basin, relating key hydrologic

variables to location within the watershed and local hillslope shape. A consistent qualitative

pattern is observed in all basins with differentiation between the downslope riparian zone,
the upslope zone, and the intermediate midline zone. The formation of the intermediate

zone in which the water table runs approximately parallel to the ground surface is inves-

tigated; comparison of how the midline extent differs between basins reveals the midline's

dual dependence on the dynamics of the saturated and unsaturated zones.

4.1 Introduction

The ability to characterize and quantify the spatial organization of hydrology is important

for a number of reasons. The distribution of water table depths is important for identifying

runoff-generating areas within a basin for storms of different magnitudes. The range over

which the water table and surface fluxes vary could have implications for the magnitude of

the distributed signal in basin response. Characterization of a reliable relationship between

topography and soil moisture would allow for the scaling up or down of hydrologic variables

(e.g., a remotely sensed basin-average soil moisture content could be disaggregated to a

smaller spatial scale given the relevant topographic features). From an applied standpoint,
ecologists or agriculturalists may need information on soil moisture patterns because plants

often depend on a certain water supply to survive and prosper.

It is expected that the model will qualitatively conform to the intuitive understanding

of relatively dry upslope areas and wet downslope areas with an intermediate transitional

zone. This spatial pattern is caused by the lateral transport of moisture by gravity-driven

saturated flow. The saturated flow translates moisture from high-elevation recharge zones

downslope to convergent or low-elevation areas where the water is discharged to the sur-
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face. The discharge zone includes the permanently-saturated areas and near-saturated areas
that contribute surface runoff during storms. The differentiation into upslope and downs-
lope regions, in addition to being intuitively expected from gravity-driven processes, has
been modeled by an equilibrium model on a planar hillslope (Salvucci 1994; Salvucci and
Entekhabi 1995). This investigation extends that work by considering the quantitative dis-
tribution of hydrologic regimes in complex topography, with juxtaposition of convex and
concave hillslopes, incised channels, and variable-length hillslopes.

4.2 Relevant literature

Most efforts to characterize spatial variability and topographic influences in hydrologic
response focus on soil moisture (with particular emphasis on saturated regions) and runoff
generation. Field studies can be broadly subdivided into two categories: (1) qualitative
descriptions, which relate hydrologic variables to observed landforms and/or soil properties;
and (2) quantitative analyses, which use physiographic indices to describe spatially variable
hydrology.

4.2.1 Qualitative descriptions of spatial variability

An early study of the interaction between topography and hydrology was undertaken by
Hewlett and Hibbert (1963). They constructed a steep, soil-filled trough to investigate the
transient response of the slope to artificial precipitation. In non-evaporative conditions, they
found that the entire unsaturated column contributed to outflow. While this study marked
one of the first experimental investigations of hydrology on a sloped surface, it was limited in
application by the straightness and steepness of the slope and the artificial conditions (i.e.,
impermeable bedrock and no evaporation). Aided by subsequent advances in measurement
techniques and automated data recorders, numerous studies have since investigated the
effect of topography on soil moisture and runoff generation in real catchments under natural
forcing conditions.

Betson (1964) observed that storm runoff occurred only over a fraction of a basin's area.
This was one of the first identifications of the role of partial contributing areas in runoff
generation. Betson theorized that storm response models tend to underpredict extreme
events because they do not account for the variability in runoff-generating areas within a
basin. Dunne and Black (1970a,1970b) expanded the theory of partial runoff-generating
areas and the dependence of contributing areas on physiography. In a field study of three
differently-shaped, adjacent hillslopes in the Sleepers River watershed in Vermont, Dunne
and Black identified a connection between topography and the likelihood of saturation.
Saturation is most likely to occur in valley bottoms and convergent swales; during the
wet season, the saturated zones extend upward, generally following convergent areas of the
landscape (Dunne et al. 1975). Numerous studies have found similar support for saturation
or near-surface water table levels in convergent regions (e.g., Anderson and Burt 1978;
Moore et al. 1988; Woods and Rowe 1996).

Other studies have looked at the relationship between soil moisture and elevation. Li
et al. (1995) indirectly examined soil moisture patterns in their study of the topographic
zonation of infiltration. From measurements in a hilly loess region, the authors observed
that the steady infiltration rate decreased with distance downslope; this could be related
to systematic variation in soil moisture. Crave and Gascuel-Odoux (1997) observed that
surface soil moisture was correlated with the elevation difference to the basin outlet in a
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small catchment in France. They distinguished a lower elevation region, where moisture

is highly variable, and an upper region, where soil moisture is nearly constant over time.

However, findings of a significant relationship between elevation and soil moisture have

been limited to small catchments with simple topographic features. It is expected that the

observed influence of slope curvature on hydrology will be of greater importance in complex

landscapes.
Recently, researchers have begun trying to separate the influences of topography and

other physical characteristics, such as soil texture. Western et al. (1998a) sought to identify

the relative influence of soil texture and topography on soil moisture in a small catchment

in New Zealand. They found that in the wet winter, the moist or saturated areas are

connected in ways that are related to the topography; in the dry summer, the spatial

pattern is random, likely influenced by small-scale variability in the soil texture. Gallart

et al. (1997) identified a similar pattern in the mountains of Catalonia. Only in the winter

was the spatial pattern of soil moisture determined by topographically-driven subsurface

flow. Yeakley et al. (1998) observed the opposite effect along a hillslope transect in a humid

watershed. In wetter periods, the soil storage characteristics were more important for the

soil moisture profile, while topographic effects dominated in drier periods. More work is

needed to identify the source of the divergent results found in these studies.

4.2.2 Quantitative descriptions of spatial variability

The repeated observation of spatial patterns in hydrology supports the potential for quan-

titative measures that relate topography and/or location to soil moisture or the likelihood

of saturation and runoff generation. Such indices can be useful in extrapolating point mea-

surements to areal coverage and in developing relatively efficient, quasi-distributed models.

Kirkby and Chorley (1967) proposed a relationship between hillslope drainage and several

physical features, including local contour curvature, gradient, soil thickness, and proximity

to stream channels. The relationship was quantified by Carson and Kirkby (1972) with

the introduction of the parameter a, the area drained per unit contour length. This single

variable captures both the contour curvature and the proximity to streams; as an index of

the lateral concentration of subsurface flow, it helps determine the pattern of soil moisture.

Subsequent studies identifying the presence of saturated soils in hollows not necessarily

near riparian zones led to the recognition that relief often combines with location to influence

soil moisture patterns. The continuity equation for subsurface flow was combined with

the Darcy equation for gradient-driven flow to give a joint index for soil moisture, a/S,

where a is the contributing area per unit contour length and S is the slope of the ground

surface. The index contains information both on the concentration of moisture from upslope

areas (through a, a proxy for proximity to the channel and degree of curvature-induced

convergence of flow) and on the flux rate through the soil (moisture will accumulate in

low-gradient regions where the slope causes deceleration of the downslope moisture flux).

Combined area-slope indices have been used as the basis for numerous modeling efforts,
including Kirkby (1975, 1978), TOPMODEL (Beven and Kirkby 1979), and O'Loughlin
(1981, 1986).

The correlation between a or a/S and observed soil moisture has been examined in

numerous watersheds. Burt and Butcher (1985) compared soil moisture with an a/S term

and an index of plan convexity. They found that the correlation between the a/S index

and depth to saturation was stronger than with the plan convexity index but was not

particularly significant, especially in drier conditions. Nyberg (1996) compared soil water
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content with several physical descriptors. Soil moisture was about as well correlated with
contributing area as with a/S; he concluded that contributing area plays a more signficant
role in moisture determination than surface slope. However, a linear correlation between
a/S and soil depth could imply that part of the pattern in soil moisture is due to the
thickness of the soil layer rather than the surface topography.

Certain limitations exist in the use of a/S indices as a direct indicator of hydrology.
The presence of small-scale heterogeneities or piping within the soil matrix can lead to
moisture patterns that are not explained by any form of an a/S index (Jones 1986). There
may also be a disconnect between the surface landscape, which is the common source of
topographic information in index-based models, and the underlying bedrock topography.
Shallow bedrock could produce saturation in areas other than low-lying or convergent re-
gions. Freer et al. (1997) investigated the relative role of bedrock topography in two small
catchments. They found that in some environments bedrock topography plays a significant
role in determining local hydrological gradients; this could influence flow pathways and the
accuracy of surface-based topographic indices in predicting soil moisture patterns. Here we
will show that the contributing area is a necessary but not sufficient predictor of hydrologic
response based on location. It will be shown that local topographic features have a large
influence on local soil moisture and hydrologic response and that GSEM captures those
effects.

4.3 Results

The results presented here correspond to the equilibrium water table and hydrologic fluxes
generated by the coupled model described in Chapter 2. We look first at the distribution
of water table depth in the study basins. Maps of water table depth illustrate the spatial
connectivity of the water table position throughout each basin. The mean and range value of
water table depth is compared against location in the basin (represented by a) and position
along a hillslope (parameterized as the distance from the closest drain normalized by the
hillslope length) to identify how much of the spatial variability is explained by position.
We then consider hillslope shape to examine whether curvature can explain variability
not explained by the positional index. Finally, we investigate whether the midline region,
which was found to occupy a dominant fraction of a planar hillslope in work by Salvucci
and Entekhabi (1995), is similarly present in the complex terrain of natural catchments,
and whether it is correlated with any identifiable physical characteristics.

4.3.1 Spatial organization of equilibrium hydrology

Connectivity of water table position

Figures 4-1 to 4-10 present maps of the equilibrium water table depth calculated by the
model in each of the study basins. The maps are smoothed by averaging over a moving
subgrid of five by five pixels. This is done to minimize the noise caused by the discrepancy
between the vertical resolution of the DEMs and the modeled water table elevation. The
horizontal scale in Figures 4-1 to 4-10 varies so that basins of different sizes can be mapped
in the available space. Appendix D contains maps of 2.25 km 2 square subsections of each
basin to illustrate features on the same scale.

The maps of water table depth highlight a connected pattern in the equilibrium hy-
drologic state of the basins. The position of the water table reveals a fairly well-defined,
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Figure 4-1: Spatial distribution of depth to saturation, Bear Valley, CA. See Figure 3-11
for horizontal scale.

Figure 4-2: Spatial distribution of depth to saturation, Big Creek, ID. See Figure 3-12 for

horizontal scale.
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Figure 4-3: Spatial distribution of depth to saturation, Brushy Creek, AL. See Figure 3-13
for horizontal scale.

Figure 4-4: Spatial
horizontal scale.

distribution of depth to saturation, Midland, VA. See Figure 3-14 for
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Figure 4-5: Spatial distribution of depth to saturation, Moshannon, PA. See Figure 3-15
for horizontal scale.
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Figure 4-6: Spatial distribution of depth to saturation, Ogden, KS. See Figure 3-16 for
horizontal scale.
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Figure 4-7: Spatial distribution of depth to saturation, Sacramento, CA. See Figure 3-17
for horizontal scale.

Figure 4-8: Spatial
horizontal scale.

distribution of depth to saturation, Schoharie, NY. See Figure 3-18 for

72

3.8

z [m]

1.5

1.0

0.5



Z [m]

Figure 4-9: Spatial distribution of depth to saturation, Tombstone, AZ. See Figure 3-19 for

horizontal scale.

Figure 4-10: Spatial distribution of depth to saturation, Yreka, CA. See Figure 3-20 for

horizontal scale.
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continuous network in several of the basins. A comparison of the network of saturated
or near-saturated cells with surface elevation (provided previously in Figures 3-11 to 3-20)
reveals that the moisture state is related to the topography. In Big Creek, for example, the
riparian zone, where the water table is at or near the ground surface, is clearly differentiated
from the relatively dry hillslopes. The riparian zone occurs in the valley bottoms; this is
the area that contributes runoff to the stream channels. Saturation expands and contracts
within this portion of the basin, depending on the moisture supply. Efforts to predict the
rapid runoff response from saturated contributing areas should focus on characterization of
the soil moisture levels in the riparian zone. Hillslopes, in contrast, are characterized by
deep water tables. Gravity-driven flow is responsible for the transport of water away from
ridges and hilltops to the low-elevation and convergent regions of the landscape.

Not all of the basins present a well-defined riparian network with differentiation be-
tween channel and hillslope areas. The likely reason for a weak or absent network is the
vertical resolution of the digital topography. Sacramento, for example, displays an unusual
distribution of water table position. The water table is very deep, ranging from three to
four meters below the surface; nowhere does the model predict saturation. This is probably
because the climate is very dry (the ratio of annual precipitation to potential evaporation is
0.22). However, this alone should not necessarily result in a poorly-defined spatial structure
of hydrology. What is more significant is the extremely low relief; the median surface slope
is just one percent. The plot of water table depth strongly resembles a contour map, with
decreasing elevation from the southeast to the northwest. The areas of homogeneous depth
represent the extensive area where the terrain is flat. Only when the surface elevation drops
a meter is there a change in water table depth; these locations are seen as the curving grey
lines. The channel, which is located near the northern border of the basin, is distinctly
defined along its jagged course. A DEM with a finer vertical resolution would likely smooth
out the abrupt drops in the surface topography and lead to a more continuous, gradual
variation in depth to saturation.

In the Brushy and Midland basins, some of the channel network structure is visible;
however, parts of the two basins have a striped pattern in water table depth that is not
physically realistic. The occurrence of alternating rows with shallow and deep water tables
is likely also due to the vertical resolution of the DEM. On slopes where the elevation
difference between pixels is less than one meter, the rounding of elevation to one-meter
intervals results in a jagged surface topography. The model smooths out the water table
elevation. The juxtaposition of a smooth water table beneath a stepped ground surface leads
to this spurious striped pattern of water table depth. The phenomenon does not appear in
the steeper basins because the relief between pixels exceeds the one-meter vertical resolution
on many of the slopes. The moving average performed on the original data before plotting
reduced, but could not fully remove, the stair-stepping effect seen in the Brushy and Midland
basins.

When looking at the spatial structure of the equilibrium water table, it is also important
to consider any possible impacts of the horizontal resolution of the DEMs. Each cell in the
elevation grid is a 30-m by 30-m square. Most channels, even at their flooded levels, are
significantly narrower than 30 m. The moisture values produced by the model are averaged
across each grid cell; therefore, a pixel might contain a permanently saturated channel while
having an average equilibrium water table that lies deep below the surface. If more detailed
information on the specific location of permanent or intermittent channels within pixels were
desired, the resolution of the topographic data would have to be increased. However, for
looking at large-scale organization of hydrologic conditions across medium-sized basins, the
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permanent seepage face

discharge zone

Z* midline

recharge zone

Figure 4-11: Schematic illustrating dependence of net recharge on water table depth.

30-m resolution topography effectively differentiates between riparian and hillslope zones.

Relationship to topographic indices

One method of quantifying the connectivity seen in the maps of water table depth is to look

at the relationship between hydrology and positional indices. There are several ways of

quantifying location. The contributing area (A) measures the amount of flow accumulation

upstream of the pixel of interest. The area per unit contour length (a) was introduced

by Carson and Kirkby (1972) as a modified location index combining a limited measure of

contour curvature with upstream area. For two pixels with the same upslope area A, a pixel

on a divergent slope will have a smaller a than a pixel on a convergent slope to which several

upslope pixels drain. A further modification of the contributing area concept was introduced

by dividing the area per unit contour length by local surface slope, giving the parameter

a/S. The inclusion of slope contains information on the rate of gravity-induced moisture

flux in addition to position within a basin. The area-slope index and related metrics have

been used in numerous modeling and field studies as a predictor of soil moisture or water

table position.
In this section, we examine whether the basins display a consistent relationship between

water table depth and location of the pixel in the basin and along a hillslope. We use

a, contributing area per unit contour length, as the measure of pixel location relative to

the outlet. The analysis presented here uses a rather than a/S because it is designed

as an index of location rather than a tool for hydrologic prediction. In all subsequent

discussion, references to contributing area refer to contributing area per unit contour length;

the abbreviated term is used for convenience. An alternative locator index is to consider

the location of a pixel along a single hillslope. We develop a metric for the position of a

pixel along a flow path between the ridge and the closest drain. The fractional distance is

defined as the distance from the drain, normalized by the total hillslope length from drain

to ridge. The flow path is determined by the direction of steepest descent between pixels.

The water table depth is compared against the hillslope position to investigate whether the

relationship is more clearly defined than between water table position and location relative

to the basin outlet.
The position of the water table is important for the surface water balance and interaction

with the saturated zone, as shown in Figure 4-11. When the water table is shallower than

Is, the maximum capillary rise supported by the soil matrix, the soil column is effectively

saturated. This represents the portions of the basin in which a permanent seepage face
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Figure 4-12: Cartoon of equilibrium water table profile on a planar hillslope, from
Salvucci (1994). Vertical scale is exaggerated for illustration. Hillslope is divided into
recharge region R, midline region Rm, and discharge region Rd.

is found. Areas where the water table lies below T, but above the zero-recharge depth
Z* experience net discharge from the groundwater to the unsaturated zone. These cells
are most likely to saturate during storms, representing the part of the riparian zone that
generates overland flow during wet periods. When the water table lies below Z*, the net
vertical flux is downward; the saturated zone is recharged by moisture percolating through
the overlying unsaturated zone. Areas where the water table is located at Z* represent
the midline region of the hillslope, as described by Salvucci (1994). The midline region is
significant because it is the depth at which there is no net flux between the saturated and
unsaturated zones. When the water table is in the midline position, the hydraulic gradient
is parallel to the ground surface. The physical reasons for the development of the midline
zone and its occurrence within the basins will be discussed in greater detail in Section 4.3.3
below.

We begin with a comparison of water table depth versus contributing area. It has
been shown in previous field and modeling studies that the water table tends to be shal-
lower in and near the riparian zone where the contributing area is relatively large (see
Section 4.2). Looking at the hydrology across values of contributing area is a way of provid-
ing a "hillslope view," aggregating across multiple hillslopes in a single basin. Figure 4-12
illustrates the conceptual behavior of water table depth along a planar hillslope as found
by Salvucci (1994). From this schematic, we expect that the water table depth will exceed
Z* in the upslope recharge zone, be approximately equal to Z* in the midline zone, and be
less than Z* in the discharge zone.

The mean difference shown in Figure 4-13 is calculated as the average value of (Z, -
Z*) for all pixels within a given range of contributing area. The dependent parameter,
contributing area, is one way to approximate the location on a hillslope, with increasing
values away from the ridge. In complex terrain, however, hillslopes are of different lengths
and occur in different locations relative to the basin outlet. In aggregating all pixels with
similar contributing area, pixels which are at different locations along a hillslope are lumped
together. Although sorting by contributing area reduces the clear signal of the hillslope
position-dependence of the water table depth, it provides an efficient way of looking at
some positional relationship in the hydrology of an entire basin.

In all of the basins, the difference has a high positive value for low contributing areas,
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Figure 4-13: Mean difference between Z, and Z* as a function of contributing area per unit

contour length, for all basins. Positive numbers indicate the water table is deeper than Z*.

Negative numbers correspond to a water table shallower than Z*.
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Z. e., the modeled water table is deeper than the zero-recharge depth and the net recharge
flux is positive downwards. The water table is deep in upslope areas because of the neg-
ligible amount of lateral influx from upslope areas. We expect the difference to decrease
approximately monotonically with increasing contributing area, passing zero in the midline
region and becoming negative in the discharge zone. Brushy and Yreka conform to this
expected behavior. Big Creek, Brushy, Moshannon, Schoharie and Tombstone all decrease
monotonically, but the mean difference remains positive across the entire range. This result
does not indicate that there are no discharge areas in these basins; rather, the calculation

of the mean difference over many pixels hides the negative difference at some locations.
Midland, Ogden, and Sacramento each experience increases in the mean difference at the
largest contributing areas. The lack of clear differentiation may be because these basins
have the lowest relief among the study sites (median surface slope is 4, 8, and 1 percent,
respectively). The differentiation in soil moisture between upslope and downslope areas
is diminished when the surface slope is mild. Bear Valley exhibits the noisiest behavior
over a range of large contributing areas. The basin has high relief (S 50 = 0.34) across a
relatively small area; the noise may arise from the small number of pixels averaged for large
contributing areas.

A related variable which also provides information on water table position is the root
mean square (RMS) of Z, - Z*, calculated as

RMS = Z(Zw Z*) (4.1)
n

where n is the total number of pixels. Whereas the difference indicated the mean value of
water table depth relative to Z*, the RMS provides the mean distance between Z* and Zw,
independent of direction. Furthermore, it quantitatively indicates the variability in water
table depth with respect to Z* at each level of contributing area. The general pattern of
RMS as a function of contributing area is similar to that of the mean difference; seven
of the ten basins decrease monotonically. The failure of this analysis to clearly identify a
midline region with a negligible RMS is probably due to the use of contributing area as
the dependent variable across hillslopes of different lengths in different locations within the
basin. Three of the seven basins, however, exhibit the expected behavior of a minimum RMS
at intermediate values of a. Brushy, Midland, and Sacramento each undergo a transition
from a negative to a positive slope in the central part of the basin. There are two possible
explanations for the behavior to occur in these basins and not in the others: (1) contributing
area may be a better approximation of hillslope location, or (2) the presence of large flat
areas with a well-defined midline and similar values of a results in a strong signal of midline
in the RMS calculation. These three basins have among the three highest percentages of
rectilinear slopes (16, 34, and 74 percent, respectively). This indicates that the second factor

may influence the RMS results shown in Figure 4-14. In the other basins, the complexity

of the landscape limits the ability of a single value at any contributing area to capture the

full range of location-dependent hydrologic behavior.

Figure 4-13 showed the expected monotonic decrease in water table depth with increasing

contributing area in most of the study basins. However, the failure of the mean difference

to achieve negative values in some of the basins-even though it is known that significant

areas of discharge exist-indicates that looking at contributing area per unit contour length

to characterize location as a predictor of hydrologic response does not fully capture the

pattern of water table depths across the basin. We therefore look next at the spread of
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water table depths around the mean value. Figure 4-15 contains plots of water table depth
as a function of contributing area per unit contour length (a). Depths are averaged within
constant-width bins; the vertical lines represent one standard deviation around the mean
value within each bin.

Steep basins tend to have great variability in water table elevation, both in the range of
mean values and in the deviation at each location. In contrast, a basin with few significant
topographic features has a relatively homogeneous response; a perfectly flat basin responds
hydrologically like a uniform bucket. Big Creek and Yreka, the two steepest basins, both
have great variation in mean water table depth. Sacramento and Midland, with median
slopes of one and four percent, respectively, exhibit a relatively homogeneous hydrologic
response. When the hydrologic response is so poorly differentiated throughout the basin,
it is difficult to characterize the role of spatial position on hydrologic response. The flat
basins essentially behave like buckets with some noise, where the noise is likely due to the
coarse vertical resolution of the surface elevation data.

Quasi-distributed models that use positional indices to characterize water table position,
such as TOPMODEL, generally assume a linear relationship between the index and water
table depth. The plots of mean water table depth presented here reveal a positive, linear
slope over a small range of intermediate locations. However, most of the basins have a
limited extent of dry cells and a fairly extensive range in which the slope flattens out as
the water table approaches the surface. The discharging zone and saturated areas found
in downslope areas with high values of a pose potential conflicts with the assumptions of
index-based models.

Figure 4-16 presents the water table depth as a function of position along a hillslope.
The values are normalized by the total hillslope length, enabling the aggregation of slopes
of different lengths into a single plot. There are several striking differences between the
results shown in Figure 4-16 and Figure 4-15, comparing water table depth to hillslope and
basin position, respectively. First, the hillslope position is a poorer index of water table
position as judged by the larger standard deviation for all basins across the entire dynamic
range. Second, the clear delineation between dry upslope pixels and saturated near-channel
pixels seen in many of the basins when sorting by contributing area is not seen when
sorting by hillslope position. Rather, most of the basins show a gradual deepening of the
water table with distance from the drain. The calculation of distance from drain excludes
saturated pixels in the plots of Figure 4-16. This does not, however, fully explain the
absence of desaturated cells and the mild slope in the subplots of Figure 4-15. Although
the position on a hillslope is a good predictor of local water table depth along a single
hillslope, aggregating across hillslopes reduces the quality of the relationship. Location
relative to the basin outlet, as quantified by the contributing area per unit contour length,
provides a cleaner relationship between pixel location and local hydrology.

Equilibrium surface fluxes

The distributions of runoff and evaporation are of concern for streamflow control and crop
management. We look now at the distribution of the fluxes as a function of a and the degree
of correlation between the equilibrium water table depth and surface fluxes. Figures 4-17
through 4-26 plot water table depth and surface fluxes as a function of the contributing
area per unit contour length. As in Figure 4-15, each circle represents the mean value over
a range of contributing areas and the vertical lines are plus/minus one standard deviation.
Figure 3-8, shown previously, illustrated the nonlinear relationship between water table
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Figure 4-16: Mean water table depth as a function of fractional distance along a hillslope
from the closest drain, for all basins. Circles represent the mean water table depth within
a five-percent range of distances. Vertical lines are plus/minus one standard deviation.
The dashed horizontal line is T,; water table positions above this threshold indicate near-
saturated conditions. The solid horizontal line is Z*; water table positions near this value
are indicative of midline regions. When the water table is below the Z* line, net recharge
is occurring.
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Figure 4-17: Equilibrium water table depth and fluxes
Vertical lines represent one standard deviation around
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Figure 4-18: Equilibrium water table depth and fluxes as a function of a, Big Creek, ID.

Vertical lines represent one standard deviation around the average value in each bin.
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Figure 4-19: Equilibrium water table depth and fluxes as a function of a, Brushy, AL.
Vertical lines represent one standard deviation around the average value in each bin.
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Figure 4-20: Equilibrium water table depth and fluxes as a function of a, Midland, VA.
Vertical lines represent one standard deviation around the average value in each bin.
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Figure 4-21: Equilibrium water table depth and fluxes as a function of a, Moshannon, PA.
Vertical lines represent one standard deviation around the average value in each bin.
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Figure 4-22: Equilibrium water table depth and fluxes as a function of a, Ogden, KS.
Vertical lines represent one standard deviation around the average value in each bin.
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Figure 4-23: Equilibrium water table depth and fluxes as a function of a, Sacramento, CA.
Vertical lines represent one standard deviation around the average value in each bin.

P
N

log(a) [m]

E
a)

2 4 6 2 4 6
log(a) [m] log(a) [m]

Figure 4-24: Equilibrium water table depth and fluxes as a function of a, Schoharie, NY.
Vertical lines represent one standard deviation around the average value in each bin.
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Figure 4-25: Equilibrium water table depth and fluxes as a function of a, Tombstone, AZ.

Vertical lines represent one standard deviation around the average value in each bin.
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Figure 4-26: Equilibrium water table depth and surface fluxes as a function of a, Yreka,
CA. Vertical lines represent one standard deviation around the average value in each bin.
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depth and surface fluxes, recharge, runoff, and evaporation. As the water table lowers,
evaporation decreases, runoff tends to zero, and recharge to the saturated zone increases.
Correspondingly, a shallow water table is associated with high evaporation, measurable
runoff, and net discharge from the saturated to the unsaturated zone. Below we examine
how the nonlinear dependence of the hydrologic fluxes on water table position affects their
spatial distribution within the basins.

Bear Valley is an example of a basin that exhibits a clear relationship between water
table depth and surface fluxes. Evaporation and runoff increase with increasing a, in concert
with the decreasing depth to saturation. In this basin, it would be possible to identify a
scaling factor between each individual flux and water table location. This could be used
either to estimate fluxes from soil moisture observations or to extract information on the
water table position from measurements of runoff or evaporation. Tombstone and Yreka
also show a strong positive relationship between the water table and surface fluxes; however,
in riparian areas recharge and runoff vary significantly more than the water table, as seen
from the plotted standard deviation. The difference in the degree of variability at a given
location in the basin is due to the nonlinear sensitivity of the fluxes to the saturated depth
shown in Figure 3-8.

Not all basins have surface fluxes closely following the pattern of water table depth. It
is possible for some fluxes to mirror water table position while others do not. For example,
the evaporation rates in Brushy and Moshannon are nearly uniform in space despite mea-
surable variation in water table position. The uniformity in evaporation can be explained
by consideration of Figure 3-8, which reveals a very low sensitivity of evaporation to water
table depth. Table 3.3 also indicates that these two basins are among the most humid of
the set. However, humid climate is not a sufficient explanation of this behavior. Schoharie
basin is as humid (P/E, = 1.4), but the soil texture is considerably more coarse (see Ta-
bles 3.4 and 3.5). The coarse soil texture leads to less capillary rise and more infiltration. In
these basins, it would be impossible to measure either evaporation or water table position
and make assumptions about the distribution of the other. The relationship between water
table and the remaining two fluxes is also blurred. Because evaporation is nearly uniform
in space, runoff and recharge contain all of the noise in the hydrologic response. These
fluxes exhibit a larger variation around the mean than water table position, particularly in
the riparian (high a) areas. Similarly, Ogden and Sacramento have uniform (zero) runoff
everywhere in the basin even while the water table depth varies. Evaporation and recharge
follow the pattern of water table depth, although the magnitude of the variability in space
is small.

The plots in Figures 4-17 through 4-26 reveal that, while the surface fluxes generally
follow the distribution of water table position, the sensitivity of the fluxes varies within
and between basins. In some cases, one flux is insensitive to water table depth while
other fluxes vary. In other environments, the deviation in some of the fluxes exceeds the
variation in water table depth, highlighting an enhanced sensitivity of the surface fluxes.
The nature of these relationships can be understood by looking at curves of the dependence
of equilibrium fluxes on water table depth (Figure 3-8) and identifying the extreme values
of the curve slopes. In cases where there is a strong linear relationship between water table
and hydrologic flux, it may be possible to use knowledge of one variable to estimate values
of the other, within a limited confidence range.
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(a) (b) (c)

Figure 4-27: Schematic of hillslope shapes in the horizontal direction; (a) is convergent, (b)
is divergent, (c) is rectilinear.

4.3.2 Hillslope curvature effects

In the previous section, we explored correlations between the water table depth and the

position of a cell within the basin as quantified by the contributing area. The relationship
indicates a deterministic spatial pattern seen to some degree in all of the basins despite

marked interbasin differences in topography, climate, and soil. However, the mean water

table data presented in Figure 4-15 are characterized by fairly large standard deviations.

A range of hydrologic conditions is found in cells with the same positional index value.

We hypothesize that this variability may be due at least in part to the hillslope curva-

ture, a topographic feature that has been observed to influence hydrology (e.g., Dunne and

Black 1970a, 1970b; Anderson and Burt 1978) but is not fully taken into account in the

either the a or the a/S index. In a natural landscape, complex terrain induces lateral mois-

ture convergence or divergence that can introduce variability into the downslope moisture

profile. In this section, we investigate whether the horizontal curvature of a hillslope ex-

plains any of the noise in the relationship between the positional indices and the equilibrium

water table position.

We focus here on the effect of hillslope shape in the horizontal (planar) direction as

illustrated in Figure 4-27. The hillslope type on which each pixel lies is determined from

the second derivative of the surface elevation perpendicular to the direction of flow. We

assume that flow occurs from a pixel to one of its eight nearest neighbors as determined

by the direction of steepest descent (Tarboton et al. 1991). The shape of the hillslope is

determined according to the following criterion:

d2 H > 0 concave

dn 2  < 0 convex
= 0 rectilinear

where H is the surface elevation and n is the horizontal distance in the direction perpen-

dicular (normal) to flow. To avoid noise in the elevation data due to the relatively coarse

resolution, the elevations used are the averages from the two adjacent pixels on either side

of the pixel of interest. Table 4.1 summarizes the distribution of the basins into different hill

curvatures; Figures 4-28 through 4-37 map the spatial distribution of the different hillslope

types.

In most of the basins, the majority of pixels is either convergent or divergent, with a

fairly even split between the two shapes. Generally speaking, hillslopes are divergent and
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Basin Convergent Rectilinear Divergent
[% area] [% area] [% area]

Bear 38 8 54
Big Creek 48 5 47
Brushy 44 16 40

Midland 30 34 36
Moshannon 48 10 42

Ogden 39 19 42
Sacramento 10 74 16
Schoharie 46 10 44
Tombstone 41 16 43
Yreka 43 10 47

Table 4.1: Percent of basin area of each hill form type.

Figure 4-28: Map of hillslope shapes, Bear Valley, CA. Black is convergent, medium grey

is rectilinear, and light grey is divergent. See Figure 3-11 for horizontal scale.
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Figure 4-29: Map of hillslope shapes, Big Creek, ID. Black is convergent, medium grey is

rectilinear, and light grey is divergent. See Figure 3-12 for horizontal scale.

Figure 4-30: Map of hillslope shapes, Brushy Creek, AL. Black is convergent, medium grey

is rectilinear, and light grey is divergent. See Figure 3-13 for horizontal scale.
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Figure 4-31: Map of hillslope shapes, Midland, VA. Black is convergent, medium grey is

rectilinear, and light grey is divergent. See Figure 3-14 for horizontal scale.

Figure 4-32: Map of hillslope shapes, Moshannon, PA. Black is convergent, medium grey is

rectilinear, and light grey is divergent. See Figure 3-15 for horizontal scale.
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Figure 4-33: Map of hillslope shapes, Ogden, KS. Black is convergent, medium grey is

rectilinear, and light grey is divergent. See Figure 3-16 for horizontal scale.

Figure 4-34:
is rectilinear,

Map of hillslope shapes, Sacramento, CA. Black is convergent, medium grey

and light grey is divergent. See Figure 3-17 for horizontal scale.
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Figure 4-35: Map of hillslope shapes, Schoharie, NY. Black is convergent, medium grey is

rectilinear, and light grey is divergent. See Figure 3-18 for horizontal scale.

Figure 4-36: Map of hillslope shapes, Tombstone, AZ. Black is convergent,
rectilinear, and light grey is divergent. See Figure 3-19 for horizontal scale.

medium grey is
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Figure 4-37: Map of hillslope shapes, Yreka, CA. Black is convergent, medium grey is

rectilinear, and light grey is divergent. See Figure 3-20 for horizontal scale.

channels are convergent. Rectilinear pixels are scattered throughout the basins, often at

the boundary between convergent and divergent slopes; however, they are found in some

substantially sized clusters in Midland and Schoharie. This may be the result of the pit-

filling algorithm, which raises pits up to the elevation of the neighboring cells. Locations

where a number of adjacent pits have been raised to the same elevation will be classified as

rectilinear. The one extreme exception to the general pattern of convergent and divergent

pixels in valley and hillslopes, respectively, is Sacramento. In this basin, nearly three out

of four pixels are rectilinear. The high proportion of rectilinear pixels is due to the basin's

low relief; flat areas are rectilinear by definition. Convergent and divergent pixels are

clustered along apparent contour gradients, corresponding to the discrete steps in DEM

surface elevation.

We examine the influence of hill form on hydrology by creating plots of water table

depth versus a and a/S with pixels separated by curvature type. These plots are shown in

Figures 4-38 and 4-39. The symbols are filled if the mean depth on a convergent slope is

significantly different at the 95 percent level from the divergent value for a given topographic

index. The apparently counterintuitive unfilled symbols in locations where the mean values

diverge noticeably is due to lower statistics from small samples sizes in that bin.

The hillslope shape in the horizontal direction has a significant influence on water table

depth across most of the dynamic range: the water table is nearer the surface on convergent

slopes than on divergent slopes. More moisture accumulates in convergent areas, bringing

the water table closer to the surface. This intuitive finding, long observed in the field, is

important because it highlights the inability of simple topography-based indices to fully

capture the topographic forcing of soil moisture. The division of contributing area by the

contour length was intended to incorporate some information about the horizontal curva-

ture. The use of slope provides additional information about the shape of the topography

in the downslope direction. Yet despite the consideration of two topographic variables-

contour length and slope-to supplement the location index, the influence of topography on
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water table position has not been sufficiently represented; the separation of pixels according
to the horizontal hillslope shape provides even more significant information.

Figures 4-38 and 4-39 show that the effect of curvature on water table depth is larger
than that incorporated in the area per unit contour length index. The failure of the contour
length to capture the hillslope curvature is linked to the horizontal resolution of the elevation
data. If the resolution of the surface topography were infinitely fine, the contour length
would fully represent the curvature of the hillslope. On a divergent landscape, for example,
the countour length could be as small as the width of a single flow line. In contrast, as a
valley were incised and the curvature increased, the contour length would grow even as the
contributing area remained constant. When the elevation is only available on a rectangular
grid, however, the calculation of the contour length is by necessity approximate. A 30-m
pixel is either fully included or excluded in the calculation of the contour length contributing
to a given pixel; there is no partial contribution from a neighboring cell. As a result, a planar
hillslope and a divergent hillslope would have equivalent contour lengths (equal to the width
of one pixel). This is the case even if the upslope pixel were transporting moisture in the
direction of multiple cells and thus the actual contour length were less than a pixel wide.

In an environment in which the surface elevation were known at an infinitely fine res-
olution, therefore, we expect that the area per unit contour length would fully capture
the effect of curvature on the local hydrology. One analytical approach to incorporating
curvature effects was introduced by Fan and Bras (1998), who collapsed a hillslope into a
two-dimensional cross-section for modeling of downslope flows. The available moisture stor-
age was integrated across the hillslope, explicitly capturing the curvature-related contour
length at any distance downslope. However, most distributed models rely on gridded ele-
vation data to represent the relevant topographic features. In environments where the grid
resolution is fine, the effect of curvature is expected to decrease. In landscapes which have
elevation data at a 30-m or coarser resolution, the use of the contour length in the location
parameter appears insufficient. This indicates that reliance on topographic indices such as
a/S, which depend on coarse determination of the contour length, may have limitations in
accurately representing the hydrologic response on hillslopes with different curvatures.

4.3.3 Extent of midline region

The plots sorting water table depth on the basis of location in the basin can be divided
into three sections: upslope areas, where the water table is deep; downslope areas, where
the water table is at or near the surface; and an intermediate or midline zone. In an early
application of the coupled model, Salvucci (1994) observed the corresponding partitioning
of a planar hillslope into upslope recharge, midline, and downslope discharge zones as il-
lustrated in Figure 4-12. The midline zone plays an important role in the translation of
moisture from the recharge areas to the discharge and seepage face areas. In the midline
zone, the water table is approximately parallel to the ground surface at a depth equal to Z*,
the depth at which the net flux between the unsaturated and saturated zones is zero. This
region experiences no change in the saturated storage with distance downslope; on average,
the moisture entering the soil column during storms is evaporated away during interstorm
periods. The hydrologic conditions in the midline zone match those of models that use the
surface slope as a proxy for the energy gradient driving lateral flow; the spatial extent of
the midline region provides an index for the extent to which such an assumption is valid.

Salvucci and Entekhabi (1995) found that the midline extends across the majority of
the total hillslope length under normal conditions (silt soil, semi-humid climate, ten-percent
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surface gradient). We hypothesize that the large extent of the midline zone observed on a
planar hillslope will not be seen in more complex topography. The presence of convergent
and divergent slopes in both the downslope and normal directions may introduce lateral
flow patterns and soil moisture variations that prevent the establishment of an extensive
midline. The hypothesis is investigated by calculating the spatial extent of the midline zone
in each of the study basins and seeking to identify a physical basis for differences between
basins.

We differentiate the midline from the recharge and discharge zones based on the value
of the equilibrium recharge flux. By definition, the midline is found where net recharge is
zero; realistically, however, it is necessary to consider a range around Qe = 0 to represent
the midline. To establish a criterion, we consider the extreme values of Qe and select
a specific fraction of the possible dynamic range. The maximum and minimum average
recharge fluxes can be derived from the steady-state water balance for the unsaturated zone,
Qe = P - (E + R), for extreme conditions of a fully saturated and a fully unsaturated soil
column. When the soil is saturated, all precipitation is converted to runoff and evaporation
occurs at its atmospheric potential rate. To satisfy the water balance, the limiting recharge
rate is -Ep, i.e., the entire moisture supply for evaporation is met by water transported
upward from the saturated zone. In the other extreme, for a very dry soil, both runoff and
evaporation tend to zero. This gives a limiting maximum recharge rate equal to P, the
incident precipitation at the surface. The midline zone can then be identified according to
the criterion -fE, < Qe < fP, where f is some fraction of the dynamic range, selected
here as 0.1. Figure 4-40 highlights the portion of the soil column associated with the midline
region, identified by the position of the water table. The span around the zero net recharge
depth varies depending on the values of P and Ep. It is asymmetric around Z* and in
some basins the height of the midline zone is negligible relative to the total soil depth.
The midline zones are overlain on the equilibrium flux curves in Figure 4-41; these curves
highlight the variability in the surface fluxes within the region considered to be the midline.

Figure 4-42 presents the fraction of each basin characterized as recharge midline, or
discharge. The extent of midline ranges from 2 and 3 percent of basin area in Tombstone
and Bear, respectively, to over 95 percent in Sacramento. The discharge zone covers less
area than the recharge zone in all of the basins. Figures 4-43 through 4-52 contain maps of
the spatial occurrence of recharge, midline, and discharge areas. Some of the basins have
an extensive midline region; others are dominated by net recharge and discharge zones with
very little midline. The noise in the maps is caused by the noise in the distribution of water

table depth seen previously in this chapter. The factors which influence the formation of
the midline are discussed below.

Salvucci (1994) found that the extent of the midline increased under a number of physical
perturbations: a decrease in soil depth, an increase in hillslope length, a decrease in hillslope

angle, and a decrease in hydraulic conductivity. Additionally, changing the climate impacted

the shape of the water table profile, although there was no clear effect on the extent of the

midline region. We attempt to combine the different variables seen to influence the midline

through consideration of the physical processes driving the development and maintenance

of a midline region.
The midline is influenced by processes in both the unsaturated and saturated zones.

In the saturated zone, the extent of midline is inversely related to the ability of the soil

to laterally transmit infiltrating moisture away from the recharge zone. When the soil is

able to efficiently move moisture downslope, either due to a strong hydraulic gradient or

high flow conductivity, the area of recharge needed to meet the lateral flow demand is high.
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Figure 4-43: Map of recharge, midline, and discharge zones, Bear Valley, CA. Light grey is

recharge, grey is midline, and black is discharge. See Figure 3-11 for horizontal scale.
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Figure 4-44: Map of recharge, midline, and discharge zones, Big Creek, ID. White is

recharge, grey is midline, and black is discharge. See Figure 3-12 for horizontal scale.

Figure 4-45: Map of recharge, midline, and discharge zones, Brushy Creek, AL. Light grey

is recharge, grey is midline, and black is discharge. See Figure 3-13 for horizontal scale.
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Figure 4-46: Map of recharge, midline, and discharge zones, Midland, VA. Light grey is

recharge, grey is midline, and black is discharge. See Figure 3-14 for horizontal scale.

Figure 4-47: Map of recharge, midline, and discharge zones, Moshannon, PA. Light grey is

recharge, grey is midline, and black is discharge. See Figure 3-15 for horizontal scale.
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Figure 4-48: Map of recharge, midline, and discharge zones, Ogden, KS. Light grey is

recharge, grey is midline, and black is discharge. See Figure 3-16 for horizontal scale.

Figure 4-49: Map of recharge, midline, and discharge zones, Sacramento, CA. Light grey is

recharge, grey is midline, and black is discharge. See Figure 3-17 for horizontal scale.
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Figure 4-50: Map of recharge, midline, and discharge zones, Schoharie, NY. Light grey is
recharge, grey is midline, and black is discharge. See Figure 3-18 for horizontal scale.

Figure 4-51: Map of recharge, midline, and discharge zones, Tombstone, AZ. Light grey is

recharge, grey is midline, and black is discharge. See Figure 3-19 for horizontal scale.
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Figure 4-52: Map of recharge, midline, and discharge zones, Yreka, CA. Light grey is
recharge, grey is midline, and black is discharge. See Figure 3-20 for horizontal scale.

Correspondingly, with a high lateral flux rate through the saturated layer, a large volume
of moisture is available to discharge into the unsaturated zone. The result is extensive
recharge and discharge regions and a small midline region. This is why Salvucci observed
an increase in the midline when switching from a silt to a clay soil and to a lower hillslope

angle; both factors reduced the lateral redistribution of moisture by gravity-driven Darcy

flow. Salvucci and Entekhabi (1995) present an index of climatic and geologic control

representing the maximum possible lateral flow at the midline, Qmax:

Qmax = Ks (ZT - Z*) 0 (4.2)

where K, is saturated hydraulic conductivity, (ZT - Z*) is the depth of the saturated layer

in the midline region, and 6 is the hillslope angle relative to horizontal. We modify this

index to provide a dimensionless representation of the maximum possible flow rate relative

to incident rainfall. Because there is no single slope angle for a complex landscape, 6 is

replaced with the relief ratio H/Lb relating basin relief to basin length. This gives the

following dimensionless index to represent the saturated zone's capacity for lateral moisture

redistribution:

Ks (ZT - Z*) H/Lb (43)
's= (4.3

where P is the annual precipitation depth and An is the basin area (Q is the order of

the outlet stream). The numerator estimates the Darcy flux over the average basin relief

(H) with K, (ZT - Z*) equal to the transmissivity of the midline saturated layer. The

precipitation term in the denominator represents the maximum possible infiltration rate

that could be recharging the saturated zone. For a simple hillslope with a single midline zone

bounded at either end by long-term recharge and discharge zones, the denominator should

technically only incorporate that precipitation which falls in the recharge zone above the
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Basin as aus
Bear 5.1e-2 1.2
Big Creek 2.0e-2 0.3
Brushy 2.5e-5 1.1
Midland 1.3e-4 1.0
Moshannon 8.7e-5 1.8
Ogden 4.1e-4 0.4
Sacramento 9.4e-5 0.2
Schoharie 8.4e-3 1.4
Tombstone 3.3e-2 0.2
Yreka 2.le-2 0.6

Table 4.2: Values of the dimensionless saturated and unsaturated zone parameters, for all
basins.

midline. Any precipitation falling in the discharge zone, for example, will not be transmitted
through the midline. However, the fraction of the basin above the midline is unknown.
We use the precipitation for the entire basin scale as a reasonable approximation of the
incident moisture. For low values of a, the soil approaches a one-dimensional system; it
is essentially unable to laterally transport moisture inputs. The index should therefore be
inversely related to the extent of the midline.

The formation of the midline is also influenced by unsaturated zone processes. The
spatial extent will be high when there is little flux into the saturated zone from the overlying
unsaturated zone. This occurs when the evaporative demand is so high that all moisture
reaching the surface as storm event precipitation evaporates during interstorm periods. One
way of quantifying the ratio of moisture input to evaporative demand is by the ratio

=u Zr tr (4.4)
eptb

where ir and tr are storm intensity and duration, respectively, e, is the potential evapo-
ration rate, and tb is the interstorm duration. The numerator, irtr, represents the mean
storm depth; the denominator characterizes the mean interstorm evaporative flux when soil
moisture is nonlimiting. A low value of a,, indicates that little or no moisture reaches the
saturated zone from the average storm. When the evaporative load is high relative to the
available incident moisture, the unsaturated zone is essentially one-dimensional, with flow
occurring only in the vertical direction. We therefore expect this index to also be inversely
associated with a high percentage midline. The calculated values of as and a., are given
in Table 4.2.

Figure 4-53 plots the areal extent of the midline region versus the two dimensionless
indices, as and aus. The figure reveals that the extent of midline is indeed related to
the combined influence of saturated and unsaturated zone processes. The basins with the
largest midline area-Sacramento, Calder, and Ogden-are found at low values of both as
and au,. At the other extreme, Tombstone, Bear, and Moshannon have negligible midline
areas and are characterized by high values of one or both of the indices. Although the mean
annual precipitation is present in both of the indices, its presence in the numerator of a,,
and in the denominator of a, refutes any argument that the relationship seen between the
two dimensionless indices and the extent of midline is unduly influenced by the common
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Figure 4-54: Schematic for calculating distance to the origin in Figure 4-53.

109

O' (



0

0

0

e

0
. .

S

0 _____

0 0.2 0.4 0.6 0.8 1 1.2 1.4

(XE

- y

80-

70

60-

50-

40-

30-

20-

10-

0-
0

2

4

10
S 3

0

9

8
*

5
S

0
0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 4-55: Areal extent of midline as a function of the combined efficiency parameter aE-
The indices are divided by their maximum values to provide the same dynamic range. The
lower plot is provided for basin identification. Numbered points represent (1) Bear, (2) Big
Creek, (3) Brushy, (4) Midland, (5) Moshannon, (6) Ogden, (7) Sacramento, (8) Schoharie,
(9) Tombstone, and (10) Yreka.

110

a)
C

E

CL

100

90

80

70

60

50

40

30

20

10

0

1 0C

9C

E

U



precipitation parameter.
The pattern observed in Figure 4-53 is quantified by calculating a combined efficiency

index aE defined as the distance to the origin in Figure 4-54. Each index has been normal-

ized by its maximum value so the two variables span the same dynamic range. The distance

is then calculated as the square root of the sum of squares of the normalized indices. The

results are plotted in Figure 4-55. There is a strong inverse relationship between the com-

bined index and percentage midline. The highest percent midline is found for a low value

of aE; the low index value represents inefficient moisture transfer in both the saturated and

unsaturated zones. The percentage midline decreases linearly with increasing values of aE-
The biggest outlier is Tombstone, with a combined index value of less than 0.7 and just 2

percent midline area. The small midline area in Tombstone may be caused by the subbasin

heterogeneity in surface slope which is not reflected in the use of a single relief ratio to

capture gravity-driven flow in a,. Overall, however, the relationship seen in Figures 4-53

and 4-55 shows that the extent of midline is related to both the a, and alS indices. This

supports the idea that the formation of the midline region is inversely determined by the

efficiency of moisture transmission or degree of one-dimensionality in the saturated and

unsaturated zones.
The combined index is dimensionless and serves as an indicator of the importance of

distributed versus lumped approaches to estimating the hydrologic response of a basin.

When aE is small, the extent of recharge and discharge zones are small. Most of the basin

is character by Z, - Z* and a lumped hydrologic model will capture most of the hydrologic

processes. But when aE is high, due either to climate or topography, the extent of recharge

and discharge zones is significant and the interaction of the surface water and groundwater

systems may cause significant spatial variability.

4.4 Summary

The studies in this chapter, examining the spatial distribution of water table depth, the

effect of hillslope curvature on water table position, and the physical influences on the

extent of the midline region, have identified some general trends found in all ten of the

study basins. The depth of the water table exhibits a spatial organization tiat reflects

the surface topography. The long-term water table is shallow in and near the channel

network (riparian zone) and deep in upslope areas. A fraction of the basin exhibits a

linear relationship between hydrology and location, as quantified by contributing area per

unit contour length, but the relationship does not hold in extreme upslope and downslope

regions. The relationship is partially influenced by the hillslope shape; convergent and

divergent pixels behave significantly differently across most of the range of locations. The

intermediate midline area, where the net recharge is zero, is delineated using the distribution

of equilibrium recharge rates. The formation of the midline region is shown to depend on

the characteristics of the saturated and unsaturated zones.

The above studies assumed subbasin homogeneity of several important physical charac-

teristics, including vegetation cover (assumed uniformly nonexistent), soil depth, and soil

type. In nature, however, these properties often vary in space. In the next chapter we

consider the change in hydrologic response when the assumed physical characteristics are

perturbed.
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Chapter 5

Sensitivity to other sources of

spatial variability

The above discussion has focused on spatial patterns in hydrologic processes that arise from

uniform atmospheric forcing of a field with mostly uniform characteristics. Homogeneity of

soil and ground cover was assumed in order to focus on the topographic forcing of surface

water-groundwater interaction and the resulting organization of water table position and

related fluxes. In nature, both the climatic forcing and the physical characteristics influ-

encing hydrology vary in space. Heterogeneities arise at a range of scales, from microscopic

irregularities in the soil matrix to gopher holes and drainage ditches to large-scale variabil-

ity in land use, precipitation, or soil type. In this chapter we examine the sensitivity of

the equilibrium hydrologic conditions to perturbations in watershed characteristics. Three

characteristics are investigated: vegetation, soil texture, and soil depth. In cases where

there are few field studies identifying a relationship between the characteristic and basin

topography (i. e., soil texture and vegetation), we discuss possible physical processes which

may influence the spatial heterogeneity of the characteristic. The scarcity of observations of

the heterogeneity of some physical characteristics influencing the hydrologic cycle highlights

an important area of future research. The results are presented for four of the study basins.

5.1 Effect of regional circulation on hydrologic sensitivity

The occurrence or absence of regional circulation of groundwater may have implications

for the sensitivity of the hydrologic balance to perturbations in the soil or climate. The

GSEM results presented here model the groundwater domain as a single layer. The use of

a one-layer subsurface represents adherence to the Dupuit-Forchheimer assumptions about

unconfined groundwater flow. The assumptions state that gravity flow toward a shallow

sink has two important properties: all flow is horizontal (i.e., all flow lines are horizontal),
and the velocity is proportional to slope and independent of depth (i.e., the hydraulic

gradient equals the water table slope throughout the depth of flow). A sample cross-section

under a regime of Dupuit flow is illustrated in Figure 5-1. The Dupuit assumptions are a

reasonable approximation of actual conditions when the slope of the water table is small

and the thickness of the saturated layer is shallow (Freeze and Cherry 1979).

The Dupuit-Forchheimer assumptions represent a simplification of the groundwater flow

field. Since flow is assumed to be horizontal only, discharge only occurs by capillary rise. In

fact, the pathways of groundwater movement have both horizontal and vertical components,
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Figure 5-1: Schematic of groundwater flowlines in Dupuit-flow system.

as illustrated in Figure 5-2. Discharge occurs due to both capillary rise and the regional
groundwater flow which brings moisture to the surface in downslope regions.

This difference in the patterns of groundwater flow affects the system's sensitivity to
changes in the physical environment. In a non-Dupuit environment, the circulation patterns
can adjust to minimize the effect of physical perturbations on the hydrology. Levine and
Salvucci (1999a) found relatively low hydrologic sensitivity to perturbations in soil type and
bedrock conductivity in a study of coupled surface water-groundwater flow in a Canadian
prairie. They concluded that local and regional circulation of subsurface moisture is re-
sponsible for the relative insensitivity in the areally averaged water balance. As illustrated
in Figure 5-2, moisture entering the subsurface in upslope regions flows downward into the
soil, reemerging some distance downslope where there is a topographic low or local conver-
gence. When recharge occurs at a higher rate in upslope areas, the downslope discharge area
tends to increase because of the extra moisture entering the subsurface from the large-scale
circulation. Consequently, lowered upslope evaporation is at least partially offset by higher
downslope evaporation.

Under assumptions of Dupuit flow, however, the distribution of recharge and discharge
zones is expected to be more sensitive to physical characteristics. Since flow is restricted
to the horizontal direction, perturbations in the soil or moisture distribution cannot be
accomodated through changes in regional groundwater circulation. Any increase in local
discharge, for example, must be met through a rise in the water table position to increase the
capillary rise, whereas an environment in which the Dupuit assumptions are not applied
can meet the increase in discharge through a combination of capillary rise and regional
groundwater flow. The relative inflexibility in the Dupuit groundwater system means that
changes in the soil are translated more directly into changes in the water table distribution
and on to the local recharge and discharge patterns.

Similarly, for a single soil column, changes in the physical or climatic parameters trans-
late to a change in the relative distribution of precipitation into evaporation, runoff, and
recharge. In a two-dimensional environment with non-Dupuit flow, regional circulation pat-
terns may compensate between changes in different locations within the basin. This effect
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Figure 5-2: Schematic of groundwater flowlines in non-Dupuit system.

reduces the sensitivity of the hydrologic cycle to basin parameters, resulting in the low sen-
sitivity of basin-scale fluxes observed by Levine and Salvucci (1999a). With Dupuit flow,
however, moisture convergence and divergence are controlled by the water table position.
If perturbations in the watershed characteristics significantly change the distribution of the
water table, the overall water balance will be altered accordingly.

In order to test the sensitivity of equilibrium hydrology to watershed parameters in a
two-dimensional system with Dupuit flow, the results in this chapter are presented for two
cases: the model is applied to four study basins and to four soil columns with a semi-
infinite water table and corresponding climate characteristics. A water table depth of 5 m
is assumed to represent a semi-infinite boundary, following Salvucci and Entekhabi (1994a).
A crucial difference between the perturbation of physical characteristics in the two cases is
the fixed level of the water table in the soil column analysis. For the one-dimensional case,
the water table is set at a fixed depth beneath the surface, chosen to represent semi-infinite
conditions. The flux values calculated for this case are for this invariant water table depth
only. In the two-dimensional case, however, GSEM iterates for the water table depth until
equilibrium conditions are reached. This allows for feedbacks to arise between changes in the
hydrologic fluxes and the water table position. Some of the circulation-induced dampening
of the sensitivity seen in Levine and Salvucci's (1999a) work may arise even under the

Dupuit-Forchheimer assumptions.

5.2 Vegetation

The model application in the preceding chapter assumed bare soil in the calculation of

evaporation rates. However, most undisturbed areas in the continental United States have

at least partial vegetation cover. To investigate the impact of our bare soil assumption,
we model the hydrology for the extreme conditions of bare soil and full vegetation cover.

The effect of different vegetation characteristics on equilibrium evaporation and water table

position is considered. We then discuss possible exceptions to a fully vegetated watershed

and the implications for the spatial structure of hydrologic conditions.
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Figure 5-3: Effect of rooting depth on equilibrium evaporation and recharge across a range
of water table depths in a loam soil column.

As described in Chapter 2, the primary effect of vegetation is to increase evaporation
rates by using roots to access water stored deep in the soil column. Vegetation may further
influence evaporation if the leaf area index (LAI) is greater than one (i.e., the effective
transpiring surface area exceeds the ground area, as is the case when there are multiple
transpiring canopy layers); we neglect this effect in the following study. The land surface is
assumed to be fully covered by a single layer of uniform vegetation. It is also assumed that
interception of moisture by the plant canopy is negligible for the long-term water balance.

5.2.1 Results

Sensitivity of a one-dimensional system

We begin by examining the effect of vegetation on the equilibrium hydrology in a one-
dimensional case. Figure 5-3 illustrates the effect of rooting depth on the long-term evap-
oration and recharge rates for a range of water table depths in a single soil column with
a loam soil. The presence of vegetation, indicated by a nonzero rooting depth, increases
the evaporation rate at all depths below T', the maximum capillary rise. With an LAI
of one, the rooting depth makes no difference on the fluxes at very shallow water tables
because evaporation occurs at the atmospheric potential rate from a saturated soil regard-
less of whether or not there is vegetation. Saturation-excess runoff is insensitive to rooting
depth because the roots are assumed to have zero volume; the same amount of moisture
will therefore cause saturation in both the bare-soil and vegetated scenarios. Net recharge
varies with rooting depth in response to the changes in evaporation because recharge is
calculated as the residual of the surface water balance.

Table 5.1 contains the results for an application of the model to four soil columns
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Basin Hydrologic Vegetation rooting depth Units
variable Zr = 0 Zr = 10cm

BEAR VALLEY Evs 0.29 1.83 mm/d
Qe 1.93 0.39 mm/d

MIDLAND Evs 0.94 3.02 mm/d
Qe 2.08 0.00 mm/d

TOMBSTONE Evs 0.13 1.02 mm/d
Qe 0.89 0.00 mm/d

YREKA Evs 0.15 1.28 mm/d
Qe 1.13 0.00 mm/d

Table 5.1: Sensitivity of equilibrium hydrology to vegetation in a semi-infinite soil column
for four climates. Ev, is evaporation from a vegetated surface; Qe is net recharge from the
unsaturated to saturated zone. Infiltration-excess and saturation-excess runoff are negligible
for all cases.

with a semi-infinite unsaturated zone (Z,=5 m). For each column, the climate and soil
characteristics of the corresponding basin are used. The direct impact of vegetation is a
marked increase in evaporation. In order to meet the high evaporative demand, recharge
declines significantly. In three of the four basins, the entire precipitation flux is evaporated
from the soil. In these basins, evaporation is still below the potential rate; increases in
precipitation would increase the evaporation rate rather than recharging the saturated zone.
The extent of vegetation's impact depends on the combination of atmospheric forcing and
soil characteristics. This is the case when the mean annual potential evaporation exceeds
the mean annual precipitation. Bear Valley, in contrast, has less of a difference between
evaporative demand and moisture supply; the introduction of vegetation has a smaller
impact on its water balance.

Sensitivity of basin-average hydrology

We next introduce different rooting depths into an application of GSEM to the four selected
basins. Table 5.2 summarizes the basin-average equilibrium fluxes, water table depth, and
extent of midline. As we saw in the tests on the semi-infinite soil columns, the dominant
effect of vegetation on the basin-average hydrologic fluxes is the increase in evaporation
with increasing rooting depth. The increase in evaporation between a bare soil and a
vegetated soil with Zr = 25 cm ranges from just 6% in Midland, where evaporation was
already occurring near its potential in the bare-soil case, to over 100% in Bear Valley. The

increased evaporation draws down the water table, resulting in slightly lower saturation-
excess runoff. The increased evaporation is primarily offset by decreases in the net recharge

flux. Figure 5-4 illustrates the strong influence of rooting depth on evaporation.

Sensitivity of distributed hydrology

Figures 5-5 and 5-6 illustrate how the differences in hydrology are distributed in space.
Figure 5-5 maps the spatial distribution of the sensitivity of evaporation to rooting depth
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Basin Hydrologic Vegetation rooting depth Units
variable Zr = 0 Zr = 10 cm Zr = 25 cm

BEAR Evs 0.66 0.63 1.16 ± 0.32 1.52 ± 0.16 mm/d
VALLEY Rse 0.37 t 0.78 0.30 ± 0.72 0.26 ± 0.69 mm/d

Qe 1.19 ± 1.36 0.75 ± 1.00 0.43 ± 0.81 mm/d
ZW 1.41 t 0.61 1.55 ± 0.59 1.62 ± 0.57 m

%M 3 2 2

MIDLAND Evs 2.80 ± 0.34 2.87 ± 0.19 2.97 ± 0.08 mm/d
Rse 0.22 ± 0.31 0.14 ± 0.25 0.06 ± 0.15 mm/d
Qe 0.00 i 0.55 0.00 t 0.38 0.00 t 0.20 mm/d
ZW 1.04 ± 0.17 1.23 t 0.29 1.54 ± 0.37 m

%M 50 64 94

TOMBSTONE Evs 0.92 i 1.75 1.02 t 1.52 1.21 ± 1.64 mm/d
Rse 0.10 t 0.25 0.07 t 0.22 0.05 ± 0.21 mm/d
Qe 0.00 i 1.97 0.00 i 1.77 0.00 ± 1.55 mm/d
ZW 1.39 ± 0.60 1.49 ± 0.57 1.60 ± 0.51 m

%M 2 4 5

YREKA Evs 0.49 t 0.69 0.78 ± 0.48 1.04 ± 0.35 mm/d
Rse 0.18 ± 0.41 0.14 ± 0.37 0.12 t 0.34 mm/d
Qe 0.50 ± 0.69 0.33 i 0.82 0.10 i 0.65 mm/d
ZW 1.52 i 0.62 1.59 ± 0.59 1.66 ± 0.55 m
%M 36 3 4

Table 5.2: Mean and standard deviation of modeled hydrologic variables for different vege-
tation rooting depths, for four basins. Ev, is evaporation from a vegetated surface; Re is
saturation-excess runoff; Qe is net recharge from the unsaturated to the saturated zone; Z.
is the depth of the water table beneath the surface; and %M is the areal percentage of the
basin classified as midline. Infiltration-excess runoff is negligible for all cases.
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Figure 5-4: Modeled partitioning of precipitation into surface fluxes as a function of rooting

depth, for four basins.

119

1
0
" 0.8

a 0.6

0.4

S 0.2

0

1

0
z0.8

(0.6

CL00.4

0.2
C.

(b) Midland



(a) Evaporation efficiency [--]

(b) Change in evaporation efficiency [--]
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Figure 5-5: Effect of vegetation on the spatial distribution of equilibrium evaporation ef-

ficiency, Yreka, CA. (a) Evaporation efficiency (E/E,) for vegetation with 25-cm rooting

depth. (b) Difference between bare-soil and vegetated evaporation efficiency.
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Figure 5-6: Effect of vegetation on the spatial distribution of water table depths, Yreka, CA.

(a) Water table depth given vegetation with 25-cm rooting depth. (b) Difference between

bare-soil and vegetated water table depths.
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in a subbasin of the Yreka basin. The evaporation rate in the channel network is unaffected
by vegetation, since evaporation from saturated soil occurs at the atmospheric potential rate
regardless of the surface cover (given the assumptions of no interception and a single canopy
layer). Vegetation increases the evaporation rate in upslope areas where the water table is
relatively deep; these are the conditions in which the roots reach otherwise inaccessible soil
moisture.

Unlike the effect on evaporation, the sensitivity of the water table position to vegetation
does not show a strong spatial structure. Figure 5-6 presents a slight deepening but generally
uniform change in the water table depth. The sensitivity of the water table position is
weak because it is a secondary effect that is dampened by lateral moisture redistribution.
The direct effect of vegetation is to increase the evaporation rate from the land surface.
Increased evaporation reduces the amount of moisture entering the soil column, lowering
the water table. Although the sensitivity of evaporation has a clear spatial pattern, its
influence on the water table is weakened by reduced down-gradient flow. The sensitivity
of these two hydrologic variables highlights how components of the hydrologic cycle may
respond differently, both in magnitude and distribution, to a change in a uniform forcing.
In summary, the presence of vegetation increases the evaporation rate and draws down
the water table relative to a bare-soil scenario. The effect on evaporation shows a spatial
organization that is related to the distribution of water table depths; the cumulative effect
on the water table position has no clear spatial pattern.

5.2.2 Remaining issues

Introducing a uniform vegetation cover alters the distribution of the basin hydrology; vari-
ability in the vegetation itself could either enhance or reduce the spatial heterogeneity of
hydrologic fluxes. Below we discuss two further potential sources of variability: partial
vegetation cover and large-scale heterogeneity in vegetation characteristics.

Partial vegetation cover The ground surface is often covered by some combination of
vegetation and bare soil. The juxtaposition of bare soil and vegetation may result in feed-
backs, such as enhanced drying of bare areas if high transpiration rates induce a horizontal
soil moisture flux to vegetated regions. Studies have looked at large-scale feedbacks of veg-
etation heterogeneities in climate models (e.g., Klink and Wolmott 1994; Bonan 1996). It
would also be useful to consider smaller-scale feedbacks and whether vegetation patterns
hold any significant implications for the water balance within grid cells of catchment models.
The proportions of vegetation and bare soil could also vary between cells. An alternative
approach to calculating evaporation may be needed if subgrid variability in plant cover is
substantial.

Large-scale spatial variability In addition to small-scale variability, the distribution
of vegetation often has some larger-scale spatial structure that arises due to structured
heterogeneity in lithology and moisture availability. In some environments, for example,
vegetation is larger and denser in convergent valley bottoms. This may be caused by one or
more of the following conditions: reduced exposure to wind and sun stress; moister soil due
to lateral convergence of groundwater and runoff; or thicker and richer soil due to deposition
of regolith eroded in upland source areas. An example of these effects is the clustering of
trees along river channels in landscapes that are otherwise sparsely vegetated or dominated
by grasses and shrubs.
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Spatially organized vegetation could cause systematic error in our model through the

assumption of homogeneous conditions (whether bare soil or full vegetation). In an environ-

ment where there is more vegetation in valleys, a homogeneous surface-cover model would

tend to overpredict the extent of saturated areas and saturation-excess runoff. Convergent

areas are still most likely to be saturated; however, if they have more vegetation, higher

evaporation rates would reduce the likelihood of saturation. The overprediction could be

enhanced by uphill flora, since the presence of upland vegetation would reduce the effective

recharge, shrinking the moisture contributed through the groundwater system to low-lying

or convergent areas.

In summary, vegetation acts to increase evaporation, reduce net recharge, and deepen

the equilibrium water table. Its effect on saturation-excess runoff is negligible if root volume

is assumed to be negligible; slight decreases are observed due to the secondary effect from a

deeper water table. The sensitivity of evaporation has a strong spatial signal that is related

to the local topography via the topography's influence on the water table position. The effect

of vegetation on the water table distribution is dampened by the lateral redistribution of soil

water. Systematic spatial variability in vegetation cover, either through a mix of vegetated

and bare soil or differential vegetation types and/or density, may further influence the

distribution of hydrologic fluxes. The magnitude and direction of the impact of land cover

on model calculations depend on the pattern of soil moisture and vegetation heterogeneity.

5.3 Soil depth

The thickness of the soil layer often varies along a hillslope or channel valley. However,
the extent and pattern of this variability is poorly known. Numerous processes affect soil

production, transport, and resultant depth. These include (but are not limited to) creep,
animal activity, freeze-thaw, wind transport, hydrologic weathering and erosion, and human

intervention (Whipple, personal communication). Soil depth is hard to measure with low-

technology field methods and may be difficult to scale up from point measurements to a

spatial trend. The STATSGO database, the source of soil characteristics used in this study,
often estimates the depth to bedrock as simply "greater than 60 inches," or deeper than the

length of the rod used to identify the depth to refusal. Estimating distributed soil depth

from theory is also problematic because there is no consensus on the parameterization of

the many physical processes governing soil depth. A model put forth by Dietrich et al.

(1995) solves a mass balance between soil production from underlying bedrock and diffusive

soil transport. We apply this model to estimate the soil depth distribution in four basins

and examine the effect of variable soil depth on the equilibrium hydrology.

5.3.1 Theory

The model is based on conservation of mass for soil thickness, ZT, as expressed by the

balance between the time rate of change in soil depth (first term), soil production from

bedrock (second term), and downslope transport of sediment (third term):

Vs a = -Pr- - V -psds (5.1)
rat

in which ps and Pr are the bulk densities of soil and bedrock, respectively, e is the elevation

of the soil-rock interface, and 4, is the soil transport vector. Dietrich et al. (1995) assume
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that slope-dependent diffusive transport adequately represents the assemblage of hillslope
processes moving colluvium downhill:

4s = -KVH (5.2)

where K is a homogeneous, isotropic diffusion coefficient and H is the elevation of the
ground surface (ZT + e). Diffusive soil transport has been employed in landscape evolution
models and supported by field studies (see citations in Dietrich et al. 1995). It is considered
the most appropriate transport representation in "unglaciated, hilly, mostly soil-mantled
landscapes in humid to semi-arid climates where Horton overland flow is rare or absent
and the underlying bedrock is mechanically strong" (Dietrich et al. 1995, p. 144). It
represents dry, long-term hillslope processes; it does not characterize runoff-driven transport
or landsliding.

Whereas there is fairly widespread acceptance of a diffusive soil-transport law, no field
studies to date have definitively identified a soil-production law. The Dietrich et al. model
assumes that soil production is highest when bedrock is exposed or is overlain by a thin
colluvial layer, and production decreases to zero for deep colluvium. The model includes
two general forms of a production law; we use the simple exponential decline:

ae = Poe-zT (5.3)
ot

where P0 and are empirical constants representing the maximum soil production rate and
rate of decay with depth, respectively. Using Equations 5.2 and 5.3 for soil transport and
production, the mass balance equation for soil depth becomes

KV 2 H = DZT pr !pe-z (5.4)at Ps

We are interested in the steady-state soil depth distribution, where &ZT/t = 0. On diver-
gent slopes (V 2 H < 0), the equilibrium soil depth is determined by solving Equation 5.4
for ZT:

ZT = [ln ( s . (-V2H)) forV 2H < 0 (5.5)
SPo Pr

Mass wasting is neglected. As a result, our steady-state model is undefined for conver-
gent slopes (V 2 H > 0) where the removal of accumulated sediment by mass wasting is a
significant part of the equilibrium system. In this sensitivity analysis, we are not interested
in slope failure; we desire a reasonable profile of soil depths underlying a known surface
topography at a single point in time. We therefore make the first-order assumption that
all convergent pixels have a soil depth equal to the maximum soil depth found in divergent
regions. The topography is then diffused in order to avoid abrupt jumps in the soil depth
array and to achieve a specified average soil depth. The partial differential equation gov-
erning the smoothing of the soil thickness on convergent pixels is a balance of scour (first
term) and diffusion (second term):

aZT = -aZT + KTV 2 ZT forV2 H < 0 (5.6)at
where a is a decay parameter and KT is the topography-based diffusivity. This equation
allows the simultaneous smoothing of the soil-depth array and the achievement of a desired
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Value

0.035 cm-1
K 12 cm 2 /yr
P 0.030 cm/yr
Pr/ps 2.0

Table 5.3: Parameter values used in Dietrich et al. (1995) soil production model. is the

depth-dependent decay rate of soil production; K is the soil diffusion coefficient; P is the
maximum soil production rate, and Pr/Ps is the ratio of bedrock to soil densities.

average soil depth for compatibility with GSEM.
In addition to the model's inability to directly characterize the distribution of soil depths

in convergent areas, the model is also limited by its assumption of a constant diffusivity
in space. Diffusivity may vary with soil depth because of the dependence of many of the
transport processes on the thickness of the colluvium. Despite these limitations, the model
appears to be the best currently available, based as it is on a combination of physical
processes and field observations and validation.

5.3.2 Results

Application of the model requires estimation of the diffusion parameter K, the ratio of soil
to bedrock bulk density, and the empirical constants P and . Dietrich et al. (1995) cite
measured values of 49±37 cm 2 /yr for the diffusion constant in two basins in the coastal
mountains along the west coast of the United States. The ratio of bedrock to soil density
is 1.7. An exponential function is fitted to measured soil conversion rates in the Tennessee
Valley catchment, giving values of P = 0.019 cm/yr and ( = 0.05. We calibrate the
four model parameters by using values within the range from Tennessee Valley with the
constraint that the mean soil depth approaches the uniform soil depth (2 m) previously
assumed for the basins.

Using the range of model constants presented by Dietrich et al. (1995) and the assump-
tion about soil depth in convergent regions, the mean soil depth in each basin is less than
the uniform depth of 2 m. We select values within the range for the Tennessee Valley
parameters while producing a soil depth as close to 2 m as possible; values are given in
Table 5.3. The soil depth values on convergent slopes are then diffused until the average
soil depth equals 2 m according to Equation 5.6. The topography-based diffusivity value
needed to converge on the desired mean depth ranges from 0.001 in Bear Valley to 0.6 in
Yreka. The spatial distributions of smoothed soil depths are shown in Figure 5-7 through 5-
10; the surface topography was previously mapped in Figures 3-11, 3-14, 3-19, and 3-20.
The extreme and median values of the soil depth distribution in each basin are summarized

in Table 5.4.

Sensitivity of basin-average hydrology

We are interested in the effect of a heterogeneous soil depth distribution on the spatial

pattern of water table depth and surface fluxes. GSEM is run on the four basins, assuming

the surface topography is underlain by the soil depth distributions shown in Figures 5-7
through 5-10. Basin-average values for the surface fluxes are summarized in Table 5.5 and
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Figure 5-7: Diffused distribution of soil depths calculated from
Bear Valley, CA.
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Figure 5-8: Diffused distribution of soil depths calculated
Midland, VA.

from the Dietrich et al. model,

Basin Minimum Maximum Median

ZT [im] ZT [m] ZT [im]
Bear Valley 0.5 2.6 1.9
Midland 0.9 2.3 2.2
Tombstone 0.7 2.5 2.2
Yreka 0.6 3.6 1.9

Table 5.4: Minimum, maximum, and median values from modeled distribution of soil depth,
for four basins.
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Figure 5-9: Diffused distribution of soil depths calculated from the Dietrich et al. model,
Tombstone, AZ.
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Figure 5-10: Diffused distribution of soil depths calculated from the Dietrich et al. model.

Yreka, CA.
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Basin

BEAR VALLEY

MIDLAND

TOMBSTONE

YREKA

Hydrologic
variable

Es

Rse

Qe

Zw
%M

Ebs
Rse

Qe

Zw
%M

Es
Rse

Qe

Zw
%M

Es

Rse
Qe

Zw
%M

Uniform
soil depth

0.66 ± 0.63
0.37 ± 0.78
1.19 ± 1.36
1.41 t 0.61

3

2.80
0.22
0.00
1.04

0.92
0.10
0.00
1.39

0.46
0.20
0.59
1.59

± 0.34
± 0.31
t 0.55
t 0.17
50

± 1.75
* 0.25
t 1.97
t 0.60
2

± 0.62
± 0.44
t 1.07
t 0.62
36

Variable
soil depth

0.65 ± 0.61
0.37 ± 0.76
0.79 ± 1.33
1.26 ± 0.66

22

2.65
0.22
0.00
1.03

0.86
0.12
0.00
1.22

0.49
0.17
0.57
1.39

48

20

2

0.30
0.32
0.52
0.16

1.68
0.28
2.04
0.56

0.59
0.39
0.99
0.68

Table 5.5: Mean and standard deviation of modeled hydrologic variables for two soil depth
scenarios. Eb, is bare-soil evaporation; Rse is saturation-excess runoff; Qe is net recharge
from the unsaturated to the saturated zone; Z, is the depth of the water table beneath the
surface; and %M is the areal percentage of the basin classified as midline. Infiltration-excess
runoff is negligible for all cases.
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Figure 5-11: Modeled partitioning of precipitation into fluxes for uniform and variable soil
depth, for four basins.
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given in graphical form in Figure 5-11. The mean fluxes are relatively insensitive to the
introduction of spatially varying soil depth. The calculation of the fluxes depends only
on the water table depth and the overlying moisture profile in the unsaturated zone; the
depth of saturated soil below the water table does not alter the surface fluxes. The mean
water table is consistently slightly shallower in the variable-depth case due to the shallow
soils in upslope regions. However, there the similarities between basins stop. Evaporation
increases with the shallower water table in only one of the four basins (Yreka). The impact
on saturation-excess runoff is negligible since the effect on the water table position is small.

The most striking effect of the heterogeneous soil depth is on the extent of midline,
which responds differently in the different basins. Using the recharge-based criterion for
midline described in Chapter 4, we observe a marked increase in the areal extent of midline
in Bear Valley and Tombstone and a strong decrease in Yreka; the change in Midland is
minimal. We expect that the midline extent should decrease in the basin where there is the
greatest variability in soil depth. Greater divergence between the surface and bedrock slopes
is expected to lead to greater variability in the water table slope. However, Bear and Yreka
have highly similar distributions of soil depth (o-(ZT) of 0.650 and 0.654, respectively) while
experiencing opposite behavior in midline extent. The other two basins, which have a less
dramatic change in midline, have smaller values of -(ZT). One possible explanation for the
different behavior is the distribution of topographic features. Bear and Yreka have similar
median slopes (34 and 32 percent, respectively), but Bear Valley has 145 m more total
relief than Yreka in one-third the catchment area. Channels in Bear Valley are sharply
incised, and the areal extent of divergent slopes is greater than in Yreka. However, the
basin relief is not a clear indicator of the midline response to heterogeneous soil depth when
one considers the behavior of Midland and Tombstone; those basins have significantly less
relief yet their response is intermediate between Yreka and Bear Valley. Another possible
explanation is the approximateness of the technique used for differentiating the midline
region from recharge and discharge areas. With only four basins, it is difficult to discern
any clear pattern between physical or climatic characteristics and the sensitivity of the
midline region. Future application of the soil-depth model to additional basins may provide
greater insight to the differing hydrologic response.

Sensitivity of distributed hydrology

The previous section found a relatively small change in basin-average fluxes when a dis-
tribution of soil depths was introduced beneath the known surface topography. However,
the use of basin averages could mask greater sensitivity in the equilibrium hydrology at
different locations within the basin. In this section we examine the spatial pattern of hy-
drologic sensitivity for one of the basins. Figure 5-12 shows the equilibrium water table
depths for the variable soil scenario in Yreka; Figure 5-13 illustrates the difference in water
table depth between the variable and uniform scenarios. The introduction of a variable soil
thickness does not affect the general pattern of a near-surface water table in the riparian
zone and deep water tables on ridges and hillcrests. The difference in water table depth in
the channels is negligible since the soil is saturated (Z, at or near zero) in both scenarios.
The only consistent effect of the variable soil depth is that the water table is shallower on
ridges and hill tops. This is due to the model formulation, which sets the water table at
the bedrock interface in dry cells in order to maintain atmospheric moisture inputs from
those areas. When the soil layer is relatively thin, as it is in upslope areas, the water table
appears to be closer to the surface.
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Figure 5-12: Map of equilibrium water table position for variable-depth soil, Yreka, CA.

.5

-0.5

-1.5

-2

Figure 5-13: Map of the difference between modeled water table depth for the uniform-depth

and variable-depth soil scenarios, Yreka, CA.
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Figure 5-14: Water table depth and depth to bedrock for two soil-depth scenarios, sorted
by contributing area, Yreka, CA.

Figure 5-14 plots the water table depth for the two soil scenarios as a function of con-
tributing area. This figure accentuates the locations where the water table depth is and
is not dependent on soil depth. For downslope pixels (large a), the water table depth is
independent of the local soil thickness. In the upslope pixels, however, the water table
depth sharply diverges. The average variable-soil water table depth is much shallower at
small contributing areas. The lower subplot illustrates that, at these locations, the water
table depth is constrained by the soil thickness in those locations. The model limits the
water table depth to lie within the soil layer; when the soil is desaturated, the upper limit
is set by the depth to bedrock. In the variable-soil case, the soil depth is reduced in upslope
divergent areas, resulting in shallower water table depths. The effect on the overall water
balance is relatively mild, since the dry upslope areas tend to have low evaporation and
runoff rates in either scenario.

In summary, we find a shallower water table in regions where the soil thickness is reduced,
and a thicker saturated layer in riparian areas that have a thick colluvium. The average
effect on the surface fluxes is relatively small, however, as summarized in Table 5.5. The
sensitivity study is only as good as the model used to generate the spatially varying soil
depth. The results may be impacted by limitations of the Dietrich et al. model, such as
the spatially uniform diffusivity, the lack of a physically-meaningful steady-state algorithm
for soil depth in convergent regions, and the use of calibration parameters that are not
readily available. Despite these concerns, it is observed that the equilibrium hydrology,
both mean and spatial distribution, is relatively insensitive to the Dietrich et al. (1995)
model of spatially variable soil depths applied to four watersheds.
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5.4 Soil texture

In addition to the assumptions about the distribution of soil depths, two further chal-

lenges arise in using soil survey data in our hydrologic model: (1) the STATSGO data

are distributed, so many soil textures may exist within a basin (and many are marked as

"unknown"); and (2) we rely on pedotransfer functions to convert the soil classifications

into hydraulic characteristics. We have assumed uniform soil texture across each basin

and employed a systematic transfer function for the conversion of the descriptive soil types

into the required Brooks-Corey parameters. In this section we examine the implications of

uncertainty in soil texture on the equilibrium hydrology. We first investigate the overall

sensitivity of hydrology to soil texture in a one-dimensional soil column and in the com-

plex terrain of four study basins. We then discuss the concept of the catena and how soil

chemistry and texture vary throughout a basin.

5.4.1 Uniform soil texture

The hydraulic conductivity of a soil is critical in determining the rate of saturated flow, as

governed by the Darcy equation, q = K, -d4/ds, where q is the flow rate, K, is hydraulic

conductivity, <b is hydraulic head, and s is distance in the direction of flow. For a given

head gradient, more conductive (i.e., coarser) soil supports a higher rate of groundwater

flow. Salvucci (1994) investigated the sensitivity of equilibrium hydrologic fluxes along a

planar hillslope to changes in soil texture. He found that increased conductivity resulted

in decreased hillslope-averaged runoff, increased recharge, and decreased evaporation. In

coarser soils, precipitation moves rapidly down through the vadose zone to the saturated

zone, where it is retained in the soil because at deep locations it is not easily available for

evaporation. Coarse soils also have little infiltration-excess runoff, because intensities must

be extremely high to exceed the infiltration capacity of the soil.

Figures 6.5 and 6.13 in Salvucci (1994) presented the equilibrium fluxes along a silt and

a clay hillslope. Several observations can be made about the clay hillslope which provide

insight into the sensitivity of hydrologic response to soil texture:

" Infiltration-excess runoff occurs. The fine soil has a relatively low infiltration capacity;

even moderate-intensity storms may cause infiltration-excess runoff.

" Evaporation is greater than on the silt hillslope. The vertical conductivity of the clay

soil is relatively small (K, is assumed to be isotropic). The downward percolation of

moisture through the vadose zone proceeds slowly, resulting in more moisture in the

upper part of the soil column from where it is easily evaporated.

" The midline region extends across most of the hillslope. Along this stretch, flow is

predominantly parallel to the ground surface and net recharge approaches zero.

" The water table is deeper overall than in the silt case. This is because infiltration-

excess runoff is more likely to occur and evaporation is greater in clay soils. The

heightened fluxes out of the unsaturated zone result in a net reduction in moisture

available to recharge the saturated zone.

To summarize, we expect to find less spatial heterogeneity, greater net flux of moisture

from the soil to the atmosphere, and deeper water tables in a fine-grained soil relative to a

coarse-grained soil.
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Coarse loam Sandy loam Silty loam Units
Ks 2.0 1.5 0.29 m/d
XP 0.32 0.36 0.45 m
ne 0.29 0.31 0.35
m 2.6 2.1 1.2

Table 5.6: Brooks-Corey soil properties for soil texture study in study basins. Ks is the
saturated hydraulic conductivity; IF, is the bubbling head; ne is the porosity; and m is the
pore size distribution index.

Basin Hydrologic Soil texture Units
variable

BEAR VALLEY Sandy loam Silty loam
Ebs 0.29 0.62 mm/d

Qe 1.93 1.59 mm/d

MIDLAND Sandy loam Silty loam
Ebs 0.43 0.94 mm/d

Qe 2.58 2.08 mm/d

TOMBSTONE Coarse loam Sandy loam
Ebs 0.086 0.13 mm/d
Qe 0.92 0.89 mm/d

YREKA Sandy loam Silty loam
Ebs 0.15 0.34 mm/d

Qe 1.13 0.93 mm/d

Table 5.7: Sensitivity of equilibrium hydrology to soil texture in a semi-infinite soil column
for four climates. Ebs is bare-soil evaporation; Qe is net recharge from the unsaturated to
the saturated zone. Infiltration-excess and saturation-excess runoff are negliglible for all
cases.

5.4.2 Results

Sensitivity of a one-dimensional system

Table 5.7 summarizes the unsaturated zone fluxes for two soil texture scenarios for each of
four different basin climates. The finer soil supports a higher evaporation rate and corre-
spondingly lower recharge. In each case, evaporation from the finer soil is approximately
double what it is in the coarser soil scenario. Both saturation-excess and infiltration-excess
runoff are negligible due to the large depth of the water table (5 m). These results are
consistent with the findings of Salvucci (1994).

Sensitivity of basin-average hydrology

GSEM is run on the four basins to examine whether the differences observed in a one-
dimensional and two-dimensional case are similarly found in complex terrain. The Brooks-
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Basin Hydrologic Soil texture Units

variable

BEAR VALLEY Sandy loam Silty loam

MIDLAND

TOMBSTONE

YREKA

0.66 ± 0.63
0.37 ± 0.78
1.19 ± 1.36
1.41 ± 0.61

3

Sandy loam
2.10 ± 1.10
0.73 t 1.00
0.19 i 1.88
0.79 ± 0.36

11

Ebs

Rse

Qe

Zw
%M

Ebs

Rse

Qe
Zw

%M

Ebs

Rse

Qe

Zw
%M

Ebs

Rsee
Qe

Zw
%M

loam
1.75
0.25
1.97
0.60

Sandy loam
0.49 t 0.69
0.18 t 0.41
0.50 t 0.69
1.52 ± 0.62

36

1.47 ± 0.37
0.43 ± 0.73
0.31 ± 0.98
1.18 ± 0.49

11

Silty loam
2.80 ± 0.34
0.22 ± 0.31
0.00 ± 0.55
1.04 ± 0.17

50

Sandy loam

0.97 ± 1.64
0.07 ± 0.21
0.00 ± 1.81
1.43 ± 0.55

3

Silty loam
1.08 ± 0.60
0.11 ± 0.31
0.08 t 0.83
1.50 ± 0.47

10

mm/d
mm/d
mm/d

m

mm/d
mm/d
mm/d

m

mm/d
mm/d
mm/d

m

mm/d
mm/d
mm/d

m

Table 5.8: Mean and standard deviation of modeled hydrologic variables for two uniform

soil texture scenarios, for four basins. Eb, is bare-soil evaporation; Re is saturation-excess

runoff; Qe is net recharge from the unsaturated to the saturated zone; Z" is the depth of

the water table beneath the surface; and %M is the areal percentage of the basin classified

as midline. Infiltration-excess runoff is negligible for all cases.
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Figure 5-15: Modeled partitioning of precipitation into fluxes for two uniform soil texture

scenarios, for four basins.
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Corey parameters for the original and modified soil types are given in Table 5.6. The mean

and standard deviations of the water table depth and hydrologic fluxes for the different soil

textures are summarized in Table 5.8; a bar graph of the distribution of surface fluxes is

given in Figure 5-15.
Again as expected, evaporation occurs at a higher rate from the finer soil in all four

basins. The net recharge rate is also universally lower. The spatial heterogeneity within

each basin, as represented by the standard deviation of Z., is consistently smaller in the

finer soil, although the magnitude of the change is not significant. The extent of midline,

which is related to the spread in water table position, is higher in the fine-soil case for three

of the four basins. This supports the hypothesis stated in Section 4.3.3 that the extent of

the midline is partially controlled by an inverse relationship to the coarseness of the soil.

The response of the remaining hydrologic characteristics to a perturbation in soil texture

varies between basins. The equilibrium runoff increases in Bear Valley but decreases in

the other three basins. Bear Valley is also the only catchment where the water table is

significantly shallower in the fine-soil scenario. Yreka experiences a marginal decrease in Z"

with a reduction in soil conductivity. The inconsistent response in water table position is

due to competing influences from the relationship of hydraulic conductivity to evaporation

and recharge. A decrease in hydraulic conductivity deepens the water table via an increase

in the evaporative flux of moisture out of the soil. However, an increase in evaporation

results in a decrease in recharge; when recharge is substantially reduced, the water table

does not to deepen so much to support the evaporation rate. The relative strength of

these two effects varies between basins, resulting in their canceling each other out in some

environments but not in others. Finer soil results in universally higher evaporation and

universally lower recharge, but the unique set of topography and climate in each basin

combines to induce variable effects on other basin-scale hydrologic processes.

5.4.3 Spatially variable soil texture

The above observations describe how hydrologic fluxes vary in response to a difference

in uniform soil texture. This addresses the uncertainty in assigning soil parameters to a

STATSGO soil classification. The second assumption we consider in this section is the sen-

sitivity of the equilibrium hydrology to spatial variability in soil texture. We are concerned

with variability that is organized, or large-scale, rather than stochastic.

The concept of the catena was introduced to characterize the broad relationship between

soil and topography: it is defined as "a grouping of soils which while they fall wide apart in

a natural system of classification on account of fundamental and morphological differences,

are yet linked in their occurrence by conditions of topography and are repeated in the same

relationships to each other wherever the same conditions are met with" (Milne 1935a, p.

197). The lateral variability in soil properties along a hillslope is governed by the particular

combination of climatic, hydrologic, pedogenic, and geological surficial processes (Birkeland

1999). An extensive body of work has assembled identifying characteristics of catenas for

different climates, ages, and surficial material. Widespread properties include an increase in

clay content and acidity with distance downslope (Gerrard 1992). However, these properties

are not universal; a decrease in clay content along the catena was found on tropical slopes in

Natal and Malaysia where extensive surface wash and throughflow transported fine particles

away from downslope areas (Ollier 1973).

Important catena features include those related to the soil chemistry (e.g., amount of

carbonates and other minerals, acidity, amount of organic matter) and soil texture (e.g.,
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clay content and grain size). As an example of how the unique combination of pedogenesis,
climate, hydrology, and geology in different environments influences catena characteristics,
we present some of the processes that could contribute to differing patterns of grain size dis-
tribution along a hillslope. We use contributing area Ac as a proxy for distance downslope.
Possible mechanisms include the following:

Mechanisms for decreasing grain size with increasing Ac

" Transport-limited water-based erosion may be better able to transport fine grains
downslope. This is relevant when sheet wash or overland flow are dominant soil
transport mechanisms.

" Grains may be physically weathered as they travel downhill.

" Grains may be chemically weathered over time (assuming that age of exposure in-
creases downslope).

Mechanisms for increasing grain size with increasing Ac

e Fine grains deposited downslope in or near riparian zones may be selectively removed
by floods or near-channel overland flow.

" Higher exposure of large grains may increase their likelihood of being transported
downslope either by gravity or external perturbation.

* Hilltops may have greater exposure to physical and chemical weathering.

Mechanisms with an indeterminate effect on spatial patterns of grain size

" Spatial variability in the underlying bedrock or soil-production process could cause
heterogeneity in the colluvium.

" Wind patterns may result in deposition of fine soil in valleys or on hilltops.

e Animals that dig in the soil and expose it for transport may selectively inhabit certain
regions of a basin, for reasons such as availability of vegetation or water, physical
protection from the elements, or competition with other animals.

" Differential land use (e.g., selective cultivation of, or development on, non-clay soils)
could alter the distribution of grain sizes.

5.5 Summary

The physical characteristics influencing the hydrologic cycle vary over a range of spatial
scales. This chapter investigated the sensitivity of GSEM output to changes in the physical
forcings not considered in the original formulation. The presence of vegetation increases
the local evaporation rate for any soils not fully saturated. A homogeneous vegetation
cover has a relatively minor impact on the spatial water table distribution because the
enhanced flux from the soil is mitigated by reduced lateral groundwater flow. The effect of
heterogeneity in the plant cover depends on the pattern or randomness of the vegetation
and its characteristics (i.e., rooting depth, LAI). Whereas vegetation alters the vertical flux
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from the soil, the soil texture and thickness primarily influence the spatial water balance

through differential lateral transmissivity. The introduction of topography-dependent soil

thickness has little effect on the basin-averaged fluxes. Modification of the uniform soil

texture illustrates that finer soils tend toward higher evaporation and lower recharge fluxes.

However, the remaining hydrologic processes and states considered do not exhibit the same

response to a decrease in soil conductivity. The variable response highlights the need to

understand the unique combination of topography, climate, and soil properties occurring in

individual basins. Furthermore, the exact influence of heterogeneous physical characteristics

such as vegetation and soil thickness on the distribution and mean water balance depends

on the specific pattern and extent of variability in any individual basin.

This chapter has examined the effect of heterogeneous, non-topographic factors on dis-

tributed hydrology. The patterns previously found in Chapter 4 are not significantly affected

in the studies presented here. More significant are the differences found between basins,

even while the deterministic patterns are qualitatively similar. The basins differ in their

relationship of water table depth and fluxes to topographic index, both in the magnitude

of variability and in the deviation around the mean in a single set of locations. The extent

of dry and saturated regions also varies among the basins. The dominance of the midline

region varies, reflecting interbasin differences in the balance of unsaturated and saturated

zone processes. In the next chapter, statistical methods are used to search for physical

explanations of the observed interbasin variability.
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Chapter 6

Interbasin variability in hydrologic
response

In the previous chapters, we identified patterns of hydrologic variability within individual

basins. In this chapter, we investigate variability between basins with an examination of

the relationships between various physical characteristics and the hydrologic properties of

basins. Neither climate nor physiography can alone explain observed interbasin variability.

Numerous climatic, geomorphologic, and lithologic variables that are commonly used to

characterize watersheds are considered. Of these, nine variables are selected, each of which

has a conceptual relationship to basin-scale equilibrium hydrology. These variables are

used in a principal component analysis (PCA), a statistical technique which reduces a large

dataset to a smaller number of linearly independent parameter groups. From the original

nine variables, we derive four principal components which together explain 80 percent of

the variance in the original data. The components represent groundwater efficiency, basin

climatic wetness, surface-subsurface coupling, and an index of basin dissectedness. We then

perform a stepwise regression to identify which combinations of variables are valuable in

predicting the basin-average hydrologic fluxes. A combination of two variables estimate the

runoff ratio with an R 2 of 0.76; use of all six variables increases the prediction to an R 2 of

0.90. The stepwise regression technique fails to achieve a statistically significant model for

evaporation efficiency, but a regression model using all six variables nonetheless achieves an

R 2 of 0.79.

6.1 Basin descriptors

A major challenge in quantitative geomorphology is the development of indices to char-

acterize physically important characteristics of a natural landscape. Table 6.1 introduces

a collection of basin and network parameters found in the literature from which a small

number of parameters will be selected. The indices can be grouped into several categories,

including those which capture information about basin relief (e.g., median slope and the

two relief ratios), basin shape (e.g., basin shape, circularity, and elongation ratios), and net-

work dissectedness (e.g., drainage density and relative channel density). Additional indices

include combinations of basin characteristics, such as the ruggedness ratio, which combines

relief and network dissectedness.

A number of criteria are employed in the selection of morphologic variables for the

interbasin analysis: a known or theorized physical relationship to distributed equilibrium

141



Parameter Definition Formula Units Reference

A, AQ basin area [L2]
a area/unit contour length [L]

Lb basin length [L]
P basin perimeter [L]

H basin relief [L]
S5 0  median surface slope [%]
S mean surface slope [%]

LT total channel length [L]
NT number of channels [-

Lmax longest-channel length [L]

SLmax mean slope of Lmax [%]
C mean surface curvature [-]
Dd drainage density LT/A [L-1] Horton (1945)
Rr relief ratio H/Lb [-] Doornkamp and King (1971)
Rh another relief ratio H/P [-] Schumm (1956)
W basin width A/Lb [L] Zecharias and Brutsaert (1988)

F/D2 relative channel density NTA/L [-) Zecharias and Brutsaert (1988)
Rf basin shape A/L2 [-] Strahler (1968)
Re elongation ratio DA/Lb [-I Strahler (1968)

HDd ruggedness ratio HLT/A [-] Strahler (1968)

TT texture ratio NT/P [L- 1] Doornkamp and King (1971)
Rc circularity A/Ap [-] Strahler (1968)

Table 6.1: Definition of geomorphologic indices from the literature. DA refers to the diam-
eter of a circle with area A; Ap represents the area of a circle with perimeter P.
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Basin S50  Rr Dd aUus ir/Ks as (Z. z*) E'E R/

[] [) [km-'] ] [ -] [] -] [-1 [-]
Bear 3.3e-1 1.7e-1 1.8 1.2 1.3e-2 5.1e-2 0.47 0.36 0.21

Big Creek 4.3e-1 6.4e-2 1.2 0.3 4.5e-3 2.0e-2 0.66 0.11 0.72

Brushy 1.0e-1 5.8e-3 2.3 1.1 8.9e-2 2.5e-5 0.14 0.91 0.11

Midland 3.3e-2 9.0e-3 2.0 1.0 1.5e-1 1.4e-4 0.01 0.90 0.07
Moshannon 1.2e-1 1.6e-2 1.0 1.7 1.5e-1 8.7e-5 0.26 0.98 0.36

Ogden 7.1e-2 1.5e-2 1.6 0.4 2.4e-1 4.le-4 0.12 0.41 0.00

Sacramento 1.0e-2 3.7e-3 3.4 0.2 1.4e-1 9.4e-5 0.02 0.23 0.00

Schoharie 1.9e-1 5.7e-2 1.7 1.4 1.le-2 8.4e-3 0.54 0.30 0.53
Tombstone 7.0e-2 3.6e-2 2.4 0.2 1.3e-2 3.3e-2 0.44 0.25 0.14

Yreka 3.1e-1 8.6e-2 1.0 0.6 9.3e-3 2.le-2 0.40 0.22 0.26

Table 6.2: Values of variables used in principal component analysis.

hydrology, a focus on equilibrium hydrology rather than on dynamic routing effects, nondi-

mensionality (where possible), and independence from each other. Three indices are selected

from Table 6.1: median slope, relief ratio, and drainage density. These three physiographic

descriptors are added to variables which describe the climate, soil, and hydrologic responses

of the basins. Below we describe the relevance of each of the nine parameters and its

expected role. Table 6.2 contains the values of each parameter for all basins.

Median surface slope (S 50 ): The median surface slope contains limited information on

the distribution of slopes within a basin. We consider the median as opposed to the

mean slope to avoid bias from a few very steep or shallow areas. Since GSEM assumes

that bedrock is parallel to the ground surface, the surface slope represents the gradient

driving lateral Darcy flow when the saturated depth is constant. In basins with a high

slope, lateral flow may transport moisture out of a cell faster than it is replenished by

recharge or incoming groundwater, causing the cell to dry out.

The slope at each pixel is taken as the slope to the lowest neighboring cell, or the

direction of steepest descent. This approach implicitly assumes that flow occurs in

only one of eight directions, each separated by 45'. Some amount of error is introduced

through this assumption, since in reality flow may occur at an angle other than one

of the eight grid-dependent directions or in the direction of some combination of two

or more downslope cells.

Relief ratio (Rr): The relief ratio is a measure of basinwide average slope. As opposed to

the median surface slope, which is determined from the steepest slope at every pixel,

Rr is the ratio of the total basin relief (the elevation difference between the highest

and lowest points) and a representative basin length. The basin length is defined

as the straight distance between the outlet and the farthest point in the basin from

the outlet. This index provides an approximate estimate of the topographic gradient

affecting lateral groundwater movement on the scale of the entire basin. High values

of Rr should be correlated with efficient lateral redistribution of moisture.

Drainage density (Dd): Drainage density is defined as the ratio of total stream length

to basin area. It is an approximate measure of the inverse mean horizontal hillslope
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Basin Threshold
area [km 2 ]

Bear 0.13
Big Creek 0.27
Brushy 0.09
Midland 0.14
Moshannon 0.63
Ogden 0.19
Sacramento 0.06
Schoharie 0.18
Tombstone 0.10
Yreka 0.32

Table 6.3: Threshold areas for channel network delineation. Values for Big Creek, Brushy,
Moshannon and Schoharie were taken from Tarboton et al. (1991).

length. It is often seen as a key indicator of the hydrologic response of a landscape,
given the difference in velocity and residence time of water between the hillslope
and stream channel. The drainage density also has implications for the extent of
saturated areas and runoff generation. The soil is more likely to be saturated within
the channel network than on the upper reaches of a hillslope; there is therefore a
positive relationship between drainage density and the spatial extent of the riparian
zone. A low value of Dd corresponds to a landscape with long hillslopes; a high Dd
indicates a dissected landscape.

The estimation of a basin's drainage density requires delineation of the channel net-
work. The identification of where a channel begins is an area of ongoing research.
Channel heads may be estimated by field observation, visual estimation from topo-
graphic blue lines or aerial photographs, or from digital elevation models using auto-
mated techniques. We use the constant-drop approach described by Tarboton et al.
(1991) for automated estimation of a channel network from a DEM. The approach
holds that the elevation drop in each stream link should be independent of the Strahler
order of that link. The minimum threshold contributing area is selected such that the
resulting network has constant stream drops for different order links at the 95 percent
significance level. The threshold areas generated for the study basins are summarized
in Table 6.3.

Wetness ratio (as or P/E,): The ratio of storm depth to evaporative depth (irtr/eptb)
has dual significance for hydrologic processes. A measure of the ratio of moisture input
to output in the unsaturated zone, a,, was found in Chapter 4 to be inversely related
to the extent of midline. The ratio may also be seen as the wetness index P/E,
which is an indicator of the atmospheric supply and demand of moisture. Potential

evaporation is used instead of actual evaporation because the index is designed to

represent climatic forcing only; reduction in evaporation rates below their potential

is caused by limited soil moisture or vegetation effects. High values signify a moist

environment and a small midline area due to the abundance of available water in the
unsaturated zone.
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Relative infiltration capacity (ir/Ks): The ratio of mean precipitation intensity to sat-

urated hydraulic conductivity combines soil and climate characteristics to provide a

rough indicator of the soil's ability to absorb the average rainfall. The hydraulic con-

ductivity is the maximum rate at which water may be transmitted through the soil

given a unit pressure gradient. If the precipitation intensity is much less than K 8 , the

soil can transport water through the soil column without ponding or surface runoff.

Conversely, a relatively high ratio indicates a greater likelihood of infiltration-excess

runoff.

Saturated zone efficiency (a,): In Chapter 4, we introduced the variable as to capture

the ability of the groundwater to laterally redistribute moisture. The variable is a

nondimensional combination of saturated hydraulic conductivity, saturated depth,

relief ratio, mean annual precipitation, and basin area:

Ks (ZT - Z*) Rr

As discussed in Chapter 4, the moisture input estimated in the denominator should

technically be reduced by the fraction of contributing area above the midline. How-

ever, not only is the fraction unknown, it is also inherently related to other key

variables such as hydrology and climate. We therefore use the square root of basin

area as the representative length scale and neglect any adjustment for the extent of

the recharge area.

It was found that a, is at least partially responsible for an inverse correlation with

the extent of midline. (The second important influence on the midline zone is aus, a

measure of the unsaturated zone tendency to provide recharge.) It is expected that

as will play an important role in basin behavior beyond just the formation of the

midline, since it combines many physical features in a single variable that represents

the overall efficiency of the saturated zone.

Normalized mean water table depth ((Z, - Z*)/ZT): the mean water table location

is characterized by the average depth relative to the zero-recharge depth Z* normalized

by total soil depth. Large, positive values indicate that the spatially-averaged water

table is deep. Dry basins generally have a deep water table, while humid basins with

a plentiful moisture supply tend to have a thick saturated zone. Soil texture also

influences the water table location, since the conductivity of the soil governs the rate

at which moisture is transmitted downward through the unsaturated zone and then

laterally through the saturated zone. Efficient downslope moisture transport may

cause deep water tables since water is discharged from the soil as runoff in downslope

areas.

Evaporation efficiency (E/E,): Evaporation efficiency, the spatial mean of actual over

potential evaporation, is an indicator of the overall moisture supply in the soil. Evap-

oration is directly, albeit nonlinearly, dependent on water table depth. When the

water table is deep, the surface soil has little soil moisture; this moisture deficit limits

the rate of evaporation from the soil. In saturated soils, with unlimited moisture, the

evaporation efficiency is unity.
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Basin S5 0  Rr Dd aus r/Ks as (Z -*) E/Ep R/P

S5 0  1.00 - - -

Rr 0.76 1.00 -
Dd -0.62 -0.33 1.00 - -

aus 0.07 0.17 -0.41 1.00 - -

ir/Ks -0.68 -0.64 0.16 -0.01 1.00
as 0.60 0.88 -0.12 -0.11 -0.71 1.00 - -

(Zw - Z*)/ZT 0.82 0.65 -0.49 0.06 -0.82 0.66 1.00 -
E/E, -0.43 -0.42 -0.11 0.65 0.51 -0.52 -0.57 1.00
R 0.75 0.32 -0.59 0.26 -0.60 0.20 0.83 -0.26 1.00

Table 6.4: Correlation coefficients between variables used in principal component analysis,
N = 10. Values significant at the 95 percent level are in boldface.

Runoff ratio (R/P): The runoff ratio represents the amount of incident rainfall that is
removed from the system as overland or rapid-response flow before entering the soil
column. This ratio is important in flood-frequency analysis, since overland flow is the
main cause of high streamflow volumes during storms. The modeled runoff value used
in this analysis is the total flow depth, i.e., it includes baseflow.

6.1.1 Pairwise correlations

The first step in identifying patterns in interbasin behavior is to examine the correlations
between pairs of variables. Table 6.4 contains the correlation coefficients for the ten-basin,
nine-variable dataset. Five pairs of basins are significant at the 95 percent level (correlation
coefficient greater than 0.75). No coefficients are significant at 99 percent confidence. It is
desirable that most of the variables are poorly correlated with each other; numerous high
pairwise correlations could unduly influence the results of the principal component analysis.

Calculation of the correlation matrix of a multivariate dataset provides information
on the relationships between pairs of variables, but it cannot identify significant multi-
dimensional relationships. To understand the simultaneous interactions between climate,
physiography, and hydrology, it is necessary to identify significant relationships between
more than two variables at a time. We are interested in combinations of descriptors that
vary in unison and the roles of the different clusters in determining the behavior of the study
basins. These multi-variable combinations are investigated through the use of principal
component analysis and stepwise regression. Methods and results are presented below.

6.2 Principal component analysis

Principal component analysis (PCA) is a data reduction technique that reduces a large
number of variables (which may contain some redundant information) to a smaller set of
variables that represents most of the information in the original data. Any set of measured
variables has a total variance, which is the aggregated variance of each individual variable.
The total variance is unaffected by linear operations performed on the data. When prin-
cipal component analysis is performed on a dataset, the total variance remains constant
while the distribution of variance among the independent components (each of which is a
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linear combination of the original variables) changes. The goal of PCA is to identify a few

components which explain a more significant amount of the original variance than if the

original variables were considered individually.

Given a matrix of N variables measured in M samples, the principal components are

determined by calculating the variance-covariance matrix and diagonalizing it. The com-

ponents are the eigenvectors of the variance-covariance matrix with the largest eigenvalues,

i. e., they explain the most variance. Each component is a linear combination of all of the

original variables, with the relative contribution of the variables quantified in the associated

loading vector (the coefficients of the eigenvector). It is also possible to calculate the score

of each principal component (the eigenvalue for a given basin); the score represents the

extent to which that component explains the basin's behavior. Analysis and comparison

of the loading vectors and scores of the most significant principal components allows us

to identify combinations of variables that behave in unison and to assess how the basins

are described by different subsets of easily measured variables. In the following section we

describe the mathematical basis of principal component analysis and review applications of

the technique to geomorphologic and hydrologic problems.

6.2.1 Theory

An M x N matrix X can be expressed as the sum of r independent matrices,

X=M1+M2+ M3+...+Mr (6.1)

where r is the number of independent parameters in X. Each matrix Mi can be written as

the product of the M x 1 vector of eigenvalues fi and the 1 x N eigenvector aj.

X = fiai+f 2 a2 +f 3 a3 +...+frar (6.2)

= FA (6.3)

The loading vector ai indicates the relative contribution of each variable to the principal

component. The score fi tells how much of the total variability of a basin is accounted for

by the associated principal component.

The loading vector is generated from singular value decomposition. The decomposition

works on any matrix that is either singular or very close to singular (Press et al. 1996).

The method is based on the following premise: any M x N matrix X can be written as the

product of an M x N column-orthogonal matrix U, an N x N diagonal matrix S, and the

transpose of an N x N matrix A:

-- N ----- --- N -

Si

M X =M U -N sN AT
SN I

The singular values si in the diagonal matrix are nonnegative, decreasing elements that

represent the variance explained by each component i. In the case where M < N, all values

147



s3 for j = M + 1, M + 2, ... , N are equal to zero; the corresponding columns of U are also
zero.

The matrix of component scores is determined from the original data and the loading
matrix according to the equation

F = ZA (A'A) (6.4)

where Z is the matrix X normalized for each variable (Reyment and Joreskog 1993).

6.2.2 Applications

PCA has been used for a range of applications. It is an efficient technique for identifying how
parameters scale together and the dominant sources of variance in a complex system. In the
earth sciences, several studies have used PCA to analyze geomorphologic information. Ex-
amples include Abrahams (1972), who compared the interdependence of geomorphology in
five Australian basins; Onesti and Miller's (1973) examination of the downstream variability
in hydromorphic parameters; and a study by Ebisemiju (1979) to identify "representative"
basins within a large geographic region. These studies focused on morphologic parameters.

Two more recent studies have used PCA to identify relationships between geomorphol-
ogy and hydrology. Zecharias and Brutsaert (1988) identified eight morphologic variables
with a known or theorized effect on groundwater outflow. The parameters included purely
geomorphologic descriptors, such as basin area and relief, and hydromorphic characteristics,
such as the length of perennial streams. Principal components were determined from the
parameter values for 19 basins along the Appalachian plateau. The first three components
explained over 98 percent of the variance. Representing size, slope, and dissection, the
three components were assumed to explain the observed interbasin variability in ground-
water outflow. Sefton and Howarth (1998) used PCA to examine the relationships between
modeled dynamic hydrologic response and physical basin descriptors. Hydrologic character-
istics included loss and routing parameters; the physical descriptors included morphology,
soil type, land cover, and climatic indices. Sefton and Howarth estimated the principal
components from the physical descriptors and then regressed the most significant compo-
nents against the hydrologic variables. The first four components explained 63 percent of
the variance, but no significant relationships were established between the components and
the six hydrologic variables.

Our application of PCA differs from the investigations cited above. Zecharias and
Brutsaert (1988) only considered morphologic indices related to groundwater outflow and
did not use any explicitly hydrologic variables in the analysis. Sefton and Howarth's (1998)
hydrology included only dynamic hydrologic response characteristics. We look at long-term
hydrologic variables that include both subsurface and surface processes.

6.2.3 Results

Before performing the principal component analysis on the data in Table 6.2, each variable
is rescaled so that it is mean-centered and has a unit variance. This is done to remove
spurious influences from differences in the dynamic ranges of the variables. By standardizing
the range and mean of each variable, we can easily compare dimensional and dimensionless,
bounded and unbounded variables in a single analysis.

The components generated by PCA are linear combinations of the original variables.
A smaller set of variable combinations, or components, explains the variance found in the
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Figure 6-1: Percentage of variance explained by individual principal components.
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Variable PC 1 PC 2 PC 3 PC 4
S 50  0.42 -0.10 0.08 -0.25
Rr 0.37 0.04 -0.51 -0.22
Dd -0.23 0.47 -0.18 0.60
aus 0.02 -0.61 -0.38 0.34
ir /Ks -0.39 -0.11 0.06 -0.54
as 0.35 0.24 -0.47 -0.09
(ZW - Z*)/ZT 0.43 -0.03 0.18 0.16
E/E, -0.26 -0.50 -0.28 0.10
R/P 0.33 0.28 0.47 0.29
Percent variance 33 21 15 11
Cumulative % variance 33 54 69 80

Table 6.5: Relative contribution of variables to principal components.

original data. Figure 6-1 shows the percentage of the total variance explained by the
first eight principal components. The ability of PCA to efficiently explain variability can
be illustrated by considering the first three components, which together explain almost
70 percent of the total variance in the data. Assuming the distribution of variance in the
raw data to be equally distributed among the nine parameters, any three randomly selected
variables from the original nine would explain only one-third of the basin behavior. We
would need eight of the original nine parameters to explain the same amount of variance as
the first three principal components. The creation of the new, composite variables allows us
to analyze the causes of interbasin variability with fewer independent pieces of information.

The loading vector indicates the importance of a variable in a given component. Those
variables with a high loading magnitude dominate the behavior of a component. The loading
of each variable in the first four principal components (PCs) is presented in Table 6.5.
Figure 6-2 presents the loading vectors with the variables sorted by the magnitude of their
contribution. This allows visual identification of the most significant variables in each of
the components. Below we discuss the overarching physical and climatic features affecting
basin behavior as determined by which variables contibute significantly to each component.

PC 1: Groundwater efficiency The first component is dominated by the normalized
water table depth, (Z, - Z*)/ZT; two relief parameters, S50 and Rr; and the infiltra-
tion capacity, ir/Ks. The component represents the efficiency with which steep slopes
route moisture downslope. In fact, the next significant variable, with a loading of
0.35, is the saturated zone efficiency index a.. Moisture is discharged to surface water
and removed from the basin, resulting in an overall deepening of the water table. The
negative loading on ir/Ks is due to the enhancement of downslope transport by the
hydraulic conductivity in the denominator of the variable. One-third of the interbasin
variability is explained by PC 1, highlighting the importance of gravity-driven flow
and downslope discharge in the overall basin behavior.

PC 2: Basin climatic wetness The main contributing parameters to this component are
the wetness index a,, and the runoff ratio. Over 20 percent of the variance in the
data is explained primarily by basin wetness. The wetness index and runoff ratio are
strongly related to each other with a correlation coefficient of 0.65; for ten basins this
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Figure 6-2: Loading vectors, sorted by absolute magnitude, for first four principal compo-
nents. Positive loading factors are shaded, while negative values are left white.
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is significant at the 90 percent level. The additional information reflected in PC 2
beyond the pairwise correlation between wetness and runoff is the secondary but still
important role of drainage density. The network density plays a non-negligible role in
the behavior of this component despite its small pairwise correlation to either a,, or
R/P (0.16 and 0.21, respectively).

PC 3: Surface-subsurface coupling The third component, which explains 15 percent
of the variance, is related to the extent of surface-subsurface coupling. The dominant
variables are R,, a., and R/P. The first two parameters represent the strength of
gravity-driven lateral transport of moisture in the saturated zone. The runoff ratio,
the third parameter in this component, is the surface indicator of subsurface moisture
redistribution. The combination of variables highlighting subsurface transport and
surface outflux may be characterized as an index of the degree of coupling between
the two zones.

PC 4: Basin dissectedness The fourth component is dominated by the drainage density
and infiltration capacity. These two parameters represent the input and output char-
acteristics of long-term landscape evolution. The infiltration capacity ir/K, contains
a precipitation term and a soil conductivity term. Both of these parameters are crit-
ical in the evolution of a landscape: rainfall drives the erosion of land surfaces, while
soil conductivity is critical for regolith formation and mobility of surface sediments.
The aggregate effect of long-term landscape evolution is seen in the drainage density
of the network. The combination of drainage density, rainfall intensity, and soil con-
ductivity in a single component relates to the long-term evolution of the landscape as
evidenced by the current basin dissectedness.

The discussion of the loading vectors is centered on the relative contributions of param-
eters to each principal component. It is also informative to consider the loading of each
component on an individual basin, or the component score. Figure 6-3 presents the scores
for the first four components. Each basin is described by a linear combination of the four
components; the strength of the contribution is the component score. Component scores
can be evaluated by either looking for patterns of a given component between basins or of
different components within a single basin.

Bear has a high score for PC 1, the moisture transport component. The relief component,
PC 4, also exerts a strong influence on the behavior of Bear. (The loading of the relief terms
in PC 3 is negative, resulting in the negative score for PC 3.) It is not surprising that this
basin, which has a median slope of 34 percent, is best described by the two components
that most reflect the role of relief. However, the influences of PC 1 and PC 3 are not tied to
basin relief alone. If basin relief were the only significant influence in the two components,
it would be expected that the pattern of scores would be consistent for all of the basins.
This is not the case; half of the basins have scores with the same sign for the two PCs. This
highlights the fact that PC 1 also reflects the water table position and infiltration capacity
(climate-soil combination) and PC 3 includes the runoff ratio.

The values of the different component scores in a single basin provide information on
the relative importance of different processes in a basin's behavior. Yreka, for example, is
most strongly defined by the efficiency of downslope moisture transport. Drainage density
also plays a significant role, as seem by the score on PC 4. Components 2 and 3 are of minor
importance. The negligible score for PC 3, the relief-dominated component, indicates that
steepness alone was not the reason for the high score on PC 1; it is the combination of
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Figure 6-3: Scores of component contributions to basin behavior.
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transmissivity, incident moisture, and relief that make PC 1 the most significant component
in describing the behavior of Yreka.

In summary, PCA was performed on nine variables representing the morphology, climate,
lithology, and hydrology of the ten basins. The analysis identified several components
that help advance the understanding of interdependence among basin characteristics and
behavior. The first four PCs explain 80 percent of the total variance in the data. They
represent the efficiency of lateral moisture transport (33%), basin wetness (21%), surface-
subsurface coupling (15%), and basin dissectedness (11%). The scores highlight the relative
importance of the components in individual basins, providing an efficient way to determine
which factors most influence basin behavior.

6.3 Stepwise regression

The above discussion has used the entire set of measured variables to identify which of
many physical, climatic, and hydrologic characteristics tend to vary in unison. We are also
interested in assessing whether combinations of topographic, soil, and climate variables can
predict hydrologic response with reasonable accuracy. Stepwise regression is used to identify
which variables contribute a significant amount toward the prediction of the runoff ratio
and evaporation efficiency.

6.3.1 Methods

Stepwise regression is a selection procedure that involves testing of each individual variable
to ensure its statistical significance in the regression model. The technique is described for
predicting some variable Y given variables xi, x 2 , and X3 , after Walpole and Myers (1989).

1. Fit individual linear regression equations between Y and each of the x variables.
Calculate the R 2 for each equation.

2. Select the variable with the highest R 2 (assume this is x 1 for illustration). Perform
an F-test; if the model's f value is greater than that for the desired significance level,
the variable is entered into the model.

3. Calculate linear regression equations between Y and pairs of x variables, where each
pair includes x1, the variable included in the previous step.

4. Again, select the variable with the highest R 2 (assume this is x 2 ). Two F-tests are
performed: the first to test the significance of x 2 in the presence of xi, the second to
test the significance of x1 in the presence of X2 . If both f values are significant, then
X 2 is also included in the model.

5. Repeat the procedure until one of the variables fails the F-test or all of the variables
have been included.

6.3.2 Results

The stepwise regression is performed for each of the hydrologic fluxes-evaporation efficiency
and runoff ratio-and the six non-hydrologic variables: median slope, relief ratio, drainage
density, basin wetness, infiltration capacity, and saturated efficiency index. The F-tests are
performed for a significance level of 95 percent.
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Variable R2

S50  0.01
as 0.01
Rr 0.05
ir/Ks 0.06
Dd 0.23
P/Ep 0.70

Table 6.6: R 2 values between runoff ratio and individual basin characteristics.

Variable(s) R 2  Coefficients Constant

P/E, 0.70 0.16 0.05

P/Ep, ir/Ks 0.76 0.16 -0.32 0.02

P/Ep, ir/Ks, S5o 0.77 0.16 -0.46 -0.12 -0.02

P/Ep, jr/Ks, S5o, Dd 0.87 0.13 -0.75 -0.46 -0.07 -0.27

P/Ep, ir/K, S5o, Dd, as 0.89 0.13 -0.62 -0.52 -0.08 1.36 -0.26

P/Ep, ir/Ks, S5o, Dd, as, fRr 0.90 0.15 -0.51 -0.39 -0.07 2.73 -0.59 -0.21

Table 6.7: R/P stepwise regression results for increasing numbers of model variables for

runoff ratio prediction. Model coefficients are provided in the order listed in the first column.

The regression model constant (y-intercept) is provided in the final column. The horizontal

line represents the cut-off below which additional variables do not add statistically significant

information to the model.

In order to determine the relevant variables in estimation of the runoff ratio, we begin by

looking at the R 2 values for each individual variable. These values are provided in Table 6.6.

The R 2 for models with increasing number of variables, together with the coefficients on

each variable, are summarized in Table 6.7. Only the first two variables, P/E, and ir/Ks,

pass the F-test as contributing a significant new amount of information to the regression

model. However, inclusion of all of the variables improves the model prediction to explain

90 percent of the variance. The results for both the two-variable and six-variable models

are presented in Figures 6-4 and 6-5. The model predictions are compared against the R/P

values generated by GSEM.

The climatic wetness is the most significant variable; it represents the moisture avail-

able at the surface for runoff or evaporation. The infiltration capacity is related to runoff

primarily because of the hydraulic conductivity in the denominator of the index: the soil

conductivity governs the rate at which the saturated zone transmits moisture downslope to

the saturated areas where it emerges as runoff. The remaining variables primarily capture

physical features of the basin such as slope and channel density. The topographic character-

istics improve the fit of the regression model, but remain of secondary importance relative

to the large role of the climatic wetness.

A similar procedure is followed to determine the regression model for E/Ep. The R 2

values for single variables are summarized in Table 6.8. Of the individual variables, the

basin wetness is again of greatest importance. P/E, is correlated to E/E, with an R 2 of

0.42. The f value for the significance test of the regression between E/Ep and P/E, is 5.81,

however, which is less than the 5.99 required for statistical significance. Using the variables
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Figure 6-4: Performance of two-variable regression model in R/P prediction. The 1:1 line
is plotted for reference.
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Figure 6-5: Performance of six-variable regression model in R/P prediction. The 1:1 line is
plotted for reference.
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Variable R 2

Dd 0.01
Rr 0.19

S5 0  0.21
aS 0.25

ir/Ks 0.25
P/E 0.42

Table 6.8: R 2 values between evaporation efficiency and individual basin characteristics.

Variable(s) R 2  Coefficients Constant
P/E, 0.42 0.16 0.17
P/Ep, Rr 0.70 0.44 -3.37 -0.05
P/Ep, Rr, ir/Ks 0.74 0.43 -2.25 1.06 0.06
P/Ep, Rr, ir/Ks, a8  0.79 0.50 -4.98 1.52 10.57 0.16
P/Ep, Rr, ir/Ks, as, S5o 0.79 0.52 -5.95 1.78 12.57 0.30 0.21
P/Ep, Rr, ir /Ks, a5 , S5o, Dd 0.79 0.53 -6.44 1.98 13.51 0.57 0.04 0.36

Table 6.9: R/P stepwise regression results for increasing numbers of model variables for
evaporation efficiency prediction. Model coefficients are provided in the order listed in the
first column. The regression model constant (y-intercept) is provided in the final column.

included in this study, there is no statistically significant regression model for predicting
the evaporation efficiency at 95 percent significance.

If we relax the strict requirements for passing the F-test and examine the performance of
the regression models for increasing numbers of variables, we find that linear combinations
of the six variables can explain up to 79 percent of the variance in the evaporation ratio.
The results for the one- to six-variable regression models for evaporation efficiency are
summarized in Table 6.9. The one-variable and six-variable models are compared against the
GSEM-generated fluxes in Figures 6-6 and 6-7. Although the evaporation efficiency cannot
be predicted as reliably as the runoff ratio, the six-variable model brings the predicted
values to within twenty percent of the GSEM values. This is a significant improvement
over a single-variable model using the climatic wetness, which has errors on the scale of
50 percent.

The evaporation efficiency is more difficult to predict than the runoff ratio due to the
pattern in which evaporation varies with water table position. The relationship between

evaporation and Ze, is found in Figure 3-8. In the coarse-soiled basins (Bear, Big Creek,
Schoharie, Tombstone, and Yreka), evaporation essentially behaves as a step function. When

the water table is shallow, evaporation occurs at the climatically-determined potential rate.

As the water table deepens, evaporation abruptly drops to a low value. As a result, for

a smooth distribution of water table depths, the distribution of evaporative flux tends to

be bimodal with very few intermediate values. This pattern makes it difficult to predict

the basin-average evaporation rate used in calculating the evaporation efficiency. Despite

these limitations, incorporation of multiple basin characteristics allows development of a

predictive linear model which can explain nearly 80 percent of the variability in GSEM
evaporation values.
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Figure 6-6: Performance of one-variable regression model in E/E, prediction. The 1:1 line
is plotted for reference.
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Figure 6-7: Performance of six-variable regression model in E/E, prediction. The 1:1 line
is plotted for reference.
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6.4 Summary

In this chapter we have characterized the dominant modes of interbasin variability through

principal component analysis. From nine parameters representing the main influences on

catchment-scale hydrology, we identify subsets which vary in unison and explain significant

amounts of the total variance in the original measured variables. Four components, repre-

senting the groundwater efficiency, basin climatic wetness, surface-subsurface coupling, and

landscape evolution of ten basins, together explain 80 percent of the variance. Stepwise re-

gression is then performed in an effort to predict the two flux parameters, R/P and E/Ep.

The basin wetness and infiltration capacity together predict the runoff ratio with an R 2

of 0.76. A model that uses all six variables improves the fit to an R 2 of 0.90. The same

technique fails to achieve a statistically significant model for evaporation efficiency, but a

regression model using all six variables is able to achieve an R 2 of 0.79.

In the next chapter, the implications of spatially variable hydrology on the runoff re-

sponse of basins to individual events are considered. The analysis has thus far focused on

the variability in equilibrium hydrology. We now use the equilibrium conditions as the basis

for a study of the dynamic response of basins to individual storms and the significance of

distributed information in characterizing that response.
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Chapter 7

Distributed hydrology and flood
response

In the previous chapters, we sought to characterize the spatial variability of equilibrium

hydrology both within and between basins. We found that basins in a range of physical

environments exhibit similar patterns of subbasin variability. We now turn to the impli-

cations of that heterogeneity on floods. This chapter investigates the effect of spatially

distributed soil moisture on the runoff response of a basin. We examine how a derived

distribution of runoff, based on simple assumptions about storm characteristics and runoff

generation, compares to the observed distribution of storm streamflow. From an assumption

that saturation excess is the dominant runoff mechanism, cumulative distribution functions

are derived for both constant and variable soil moisture. A comparison of the derived and

observed probability distributions has several potential benefits, including the following:

" a good fit between observation and derivation could reduce the need for long time series

of streamflow for calibration of current operational flood-frequency models, allowing

instead the use of a short streamflow record and few climatic parameters to predict

flood recurrence intervals; and

" the divergence between the uniform and heterogeneous soil moisture distributions

may illuminate the value (or lack thereof) of distributed hydrologic properties for

flood forecasting in different basins. This has implications for both modeling and

data collection.

The variable-moisture derived distribution predicts runoff at lower probabilities than

the uniform-moisture distribution. This is due to the formation of saturated areas in part

of the basin; a uniform basin has no runoff until precipitation exceeds the mean available

moisture storage capacity. In the comparison of observed and derived distributions, the

observed data closely match the variable-moisture curve. This implies that distributed

information may be valuable in modeling of runoff response to infrequent events.

7.1 Motivation

A basin's flood response may be characterized by its hydrograph, the response of the basin

to a single event; or by the flood-frequency curve, which contains information on long-term

recurrence patterns of runoff. The hydrograph provides data on the variation of streamflow
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over time during and after a rainstorm. It is a single curve of runoff as a function of time that
can be scaled for different depths and durations of precipitation. The hydrograph captures
the physical characteristics of a basin that influence the routing of water through it; a dense
channel network, for example, is efficient at transporting water from all locations in the
basin to the outlet and has a more rapid hydrograph than a low-density basin. Operational
hydrology depends on hydrographs for short-term reservoir management. Hydrographs may
also be used for model calibration or estimation of base flow characteristics (e.g., Beven and
Kirkby 1979).

Whereas the hydrograph characterizes the response of a basin to an individual storm,
the flood-frequency curve represents the likelihood of rare flows. Traditional flood-frequency
curves are generated from a series of annual maximum flow rates. The flood data are fit to
an assumed distribution which can be used to determine the flow rate associated with any
recurrence interval of interest. Two commonly used distributions are the Gumbel and Log
Pearson Type III; the latter became the standard for U.S. federal agencies in 1967 (Linsley
et al. 1992). The fitted distributions are often used for flood management: estimation of
a flood with a critical recurrence interval (e.g., the 100-year flood) provides a basis for
reservoir, drain, and levee design and delineation of flood-prone areas for protection or
insurance purposes.

In the following analysis, we use cumulative probability distributions to generate distri-
butions of exceedence probability rather than the standard flood-frequency distributions.
We do not use the traditional fitted distributions for several reasons:

e Use of a fitted distribution introduces intrinsic assumptions about the frequency dis-
tribution of floods. By using instead the cumulative distribution determined directly
from the observed values, we are not forcing a particular extreme value distribution
on the basin response.

e We consider total runoff from a storm, not just peak flow rate. The peak flow rate
depends both on precipitation and hydrograph shape. Integrating runoff from a single
storm removes effects from interbasin differences in hydrograph shape. It also provides
us with the potential to look at the runoff ratio (R/P) to assess the distribution of
precipitation between runoff, recharge, and other moisture sinks.

* We consider the runoff response to all storms, not just the annual maximum. The
distinction between variable- and uniform-moisture flood response arises across a range
of storms. Consideration of annual maxima alone would limit our ability to capture
the differences between the two antecedent moisture scenarios.

7.2 Relevant literature

Several studies have incorporated landscape characteristics into the derivation or genera-
tion of flood-frequency curves. Eagleson (1972) first derived a flood-frequency curve by
combining a stochastic rainfall distribution with a constant runoff coefficient. Extensions of
Eagleson's approach have focused on relaxing the constraint of a constant runoff coefficient
(representing a constant contributing area for all storms) through incorporation of the role
of geomorphology in controlling the runoff-contributing area. Approaches have included
derivations based on the geomorphologic unit hydrograph (GUH) (Rodriguez-Iturbe and
Valdes 1979) and kinematic wave routing. Hebson and Wood (1982) and Diaz-Granados
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et al. (1984) derived flood-frequency curves using the GUH approach to route infiltration-

excess runoff generated from a stochastic distribution of storms; the difference between the

two derivations is the infiltration-excess formulation. Wood and Hebson (1986) general-

ized the Hebson and Wood (1982) approach into a dimensionless, scale-independent flood-

frequency curve. The resulting curves depend on storm characteristics, Strahler stream

indices, and soil infiltration capacity alone, allowing their use on ungaged basins. However,

the models were shown to be sensitive to the calibrated infiltration parameters and the type

of rainfall distribution (Moughamian et al. 1987; Raines and Valdes 1994). Moughamian

et al. (1987) found that both the Hebson and Wood (1982) and Diaz-Granados et al. (1984)

distributions performed poorly in comparison with flood records from three basins.

Kinematic wave routing is an alternative scheme that does not incorporate character-

istics of the stream network. The routing is determined by a parameter representing the

celerity of the wave. The kinematic wave approach works best in steep rivers where the

ground surface slope and friction are the dominant terms affecting the rate of overland

flow (Bras 1990). Studies that have generated flood-frequency distributions using this rout-

ing technique include Eagleson (1972), Shen et al. (1990), and Cadavid et al. (1991). Both

the derivations using the GUH and kinematic waves have been characterized by a focus on

infiltration-excess as the main runoff mechanism and homogeneous rainfall and antecedent

moisture.

Recent efforts have focused on incorporating more complex models of effective rainfall

and runoff generation. Sivapalan et al. (1990) expanded on the GUH-based dimensionless

flood-frequency derived distribution of Wood and Hebson (1986) by coupling it to a runoff

generation model described by Sivapalan et al. (1987). The runoff model assumes saturation-

excess runoff occurs over some variable contributing area determined by the value of a

topographic-soil index (a variant on the original TOPMODEL index). The sensitivity of the

flood-frequency response to the model's dimensionless similarity parameters was examined,

but no comparison to empirical measurements was provided.

An alternative approach to generating a runoff response curve was presented by Beven

(1987). Similarly to Sivapalan et al. (1987), a topographic index is used to predict saturation-

excess runoff. Instead of using the GUH, however, Beven assumed a stochastic distribution

of rainfall and initial conditions similar to those in Eagleson (1972). The distribution of

storms with a maximum flow rate above some threshold is generated via a Monte Carlo

simulation. The approach adequately reproduced a flood-frequency curve for the Wye

catchment in Wales. Blazkova and Beven (1997) modified the stochastic rainfall distribu-

tion to incorporate the high intensity events found at their study sites in the mountains

of the Czech Republic. They created separate probability distributions for low- and high-

intensity events which are interspersed according to the relative distribution of interstorm

periods. The resulting rainfall distribution was used in a continuous TOPMODEL run to

generate flood-frequency curves for three basins. The simulated curves matched the limited

flood-frequency data available for the catchments reasonably well.

Lamb (1999) similarly used a continuous model run to generate a probability distribution

of runoff. He employed a conceptual rainfall-runoff model with an assumed distribution

of antecedent soil moisture. The peaks-over-threshold technique was used to fit flood-

frequency distributions to the observed and simulated time series of runoff. Application to 40

catchments in Great Britain revealed that the simulation of peak flows is more important in

flood-frequency analysis than matching either lower-magnitude flows or hydrograph shape.
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7.3 Estimation of runoff distributions

In this section we use the assumed exponential distributions of storm intensity and duration
to derive the cumulative probability distributions for runoff depth, given infiltration-excess
and saturation-excess as the generation mechanisms. The derivation is based on that of
Eagleson (1978e) with modifications for a finite soil column described by Salvucci (1994).

The depth of rainfall that falls during a single storm is the product of precipitation
intensity ir and storm duration tr. A soil column saturates when the amount of rainfall
equals the antecedent soil moisture deficit in the soil, Ve; any precipitation that occurs after
the soil has saturated is routed overland as saturation-excess runoff. Infiltration-excess
runoff occurs before the soil saturates when the rainfall intensity exceeds the infiltration
capacity of the soil. The lateral redistribution of moisture between soil columns is assumed
to be negligible over the time scale of a single storm.

Our goal is to obtain the probability that a given runoff depth is exceeded. In order to
get the exceedence probability, we calculate the cumulative distribution function (CDF) of
runoff; the exceedence probability is equal to one minus the CDF. This gives the probability
that runoff exceeds a specified value in any individual storm. The distribution of runoff
can be derived by integrating the joint probability density function of storm intensity and
duration. The general form, which may be used for either infiltration-excess or saturation-
excess runoff, is given as:

FR (r) f f(r, tr)dirdtr (7.1)

The distributions of ir and tr are assumed to be independent and exponential (Eagleson
1978a). This gives the following expression for the cumulative distribution function of
runoff,

FR(r) = f a6e -ir-trdir dtr (7.2)

in which a is the inverse mean of storm intensity and 6 is the inverse mean of storm
duration. Equation 7.2 can be used to derive the distribution of either infiltration-excess or
saturation-excess runoff; the difference between the two runoff mechanisms is in the limits
of integration.

7.3.1 Derived distribution of infiltration-excess runoff

Under most conditions, the soil is able to absorb the precipitation at its input rate at the
beginning of a storm. Eventually, as the soil moisture increases, the infiltration capacity
is reduced so that it is less than the precipitation intensity and water begins to collect at
the surface. This time is referred to as the time to ponding, tp, and corresponds to the
onset of infiltration-excess runoff. Runoff continues until either the storm ends or the soil
saturates at time t. Once the soil has saturated, saturation-excess becomes the dominant
mechanism for runoff generation for the duration of the storm. The use of t, as the upper
limit for the storm duration marks the difference between this and the Eagleson derivation,
which assumed an infinite soil column and therefore never saturated.

Infiltration-excess runoff is the surplus of intensity over the soil-determined infiltration
capacity. Using the Philip equation for infiltration, runoff is expressed as
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Rie (ir - fi*)dt (i - Ao)tr - Si (r)2 (7.3)
to 2

where fi* is the infiltration capacity, Ao is a gravitational constant from the Philips equation,
and Si is the infiltration sorptivity. When calculating the cumulative probability that R < r,

the upper limit of intensity is defined by the maximum infiltration rate where R = r. The

probability can be determined by rewriting Equation 7.3 in terms of irmax,

r S-
Zrmax = -+ t + AO (7.4)

tr V 2tr

This results in the following equation for the cumulative probability distribution of infiltration-

excess runoff:

FR (r jr/trSi/ +Ao e-air dir] dtr (7.5)

We integrate over the range of intensities and write the time integral in terms of T = t - ty;

this reduces the equation to

P[Rie ; r] 1 - FR(r) = e-aAo JTS -(6r+ar/r+aSi/v"+)dT (7.6)

No exact solution exists for an integral of the form

I* = C e-(a/x+bx+c/vl)dx (7.7)
30

so the integral in Equation 7.6 must be integrated numerically. Storms that result in

infiltration-excess runoff are characterized by high rainfall intensities, since runoff is only

generated when intensity exceeds the soil infiltration capacity. We assume that the actual

infiltration rate will be mostly soil-controlled because of the high rainfall intensity. Pond-

ing time will therefore be small, and the limiting time to saturation can be estimated as

the length of time necessary for infiltration infiltration at capacity to fill up the available

storage (Salvucci 1994):

Ve = fi* (t) dt (7.8)
30

Solving and inverting the integral, we get a limiting time to saturation of

2

_ 4 AA 2A,A 0 -A) 0 (7.9)

(V) 2  AO =0

It is now possible to numerically integrate Equation 7.7 up to its upper limit t*. The

integrated value can be substituted into Equation 7.6 to calculate the cumulative probability

that infiltration-excess runoff is greater than or equal to a specified depth r.
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7.3.2 Derived distribution of saturation-excess runoff

Uniform antecedent soil moisture

For calculation of saturation-excess runoff, the relevant time over which to integrate is from
time to saturation t, until the end of the storm tr. For a storm with a given depth of
rainfall, intensity and duration are interdependent. The constraints on the time window
of integration may therefore be expressed as limits on the rainfall intensity. The Poisson
model of independent storm events assumes a constant rainfall rate over the duration of
a storm (Eagleson 1978a). This gives a storm intensity equal to rainfall depth divided by
storm duration. In order to obtain the upper boundary of integration for ir, we consider the
rainfall intensity which corresponds to a runoff depth of r. This maximum intensity occurs
when the total rainfall fills the soil column (a depth of Ve) and has a depth of r remaining
as saturation excess; it can be expressed as

.r + Ve
Zrmax = (7.10)

Once the storm intensity has been bounded for the desired runoff, there is no limit on storm
duration. Equation 7.2 can thus be expressed with limits as

/or +Ve

FR(r) =aIfj tr e-ir rdirdtr (7.11)

0 0We first integrate with respect to ir. to get

FR(r) = -0 e (6tr'+ e))dtr (7.12)

The integral of the form

1* = f e-lax+b/xIdx (7.13)

has an exact solution, given by Gradshteyn and Ryzhik (1965) as

I* = 2ba - K1 [2Va] (7.14)

where K,[.] is the modified Bessel function of order n. The final solution for the cumulative
distribution of saturation-excess runoff can then be expressed as

FR(r) = -2 ca (r + Ve) -Ki2 a6 (r + Ve)] (7.15)

Variable antecedent soil moisture

Equation 7.15 is applicable for a single value of antecedent soil moisture. To generate basin-
scale runoff, each location in the basin is treated as an equal-sized bucket. Runoff either
occurs nowhere or universally throughout the basin. Observations have shown, however,
that runoff is often generated over only a fraction of the basin area (e.g., Dunne and Black
1970a, 1970b). It is possible to derive a related distribution for runoff over a variable-
moisture field by considering the marginal distribution of runoff dependent on soil moisture
in conjunction with a soil moisture distribution:
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fA(r) = max(Ve) fR(rIVe) * fve(Ve) dVe (7.16)

By definition, the marginal distribution can be used only with the probability density func-

tion (PDF), not the cumulative distribution. We derive the PDF of runoff by differentiating

Equation 7.15 with respect to runoff:

d
fR(rVe) = FR(r) (7.17)

dr

= d - Ki,7] (7.18)
dr

= -a6 K1 []-2Ko 2[ -- K1 [y] (7.19)

where

y=2 a6 (r + Ve) (7.20)

The probability distribution of available soil moisture storage, fve(Ve), is determined from

the spatial distribution of equilibrium values generated by the model. Equation 7.16 is

integrated numerically over the range of possible available soil moisture storage for each

value of runoff. The maximum storage capacity is the total available pore space in the

entire soil column, which is equal to the product of porosity and soil column depth. To

derive the CDF, the PDF is integrated for all runoff values less than or equal to a maximum

value r:

FR(r) = -a6 (Ki [7] - 2Ko [i - -K1 i] fve(Ve)dVedr (7.21)
fo fo

The exceedence probability is then calculated as one minus the cumulative probability

FR(r).

7.3.3 Distribution of observed storm runoff

Exceedence probability distributions can also be obtained from continuous observed records

of precipitation and streamflow. The process of transforming a continuous time series into a

set of independent events involves two main steps: isolation of independent rainstorms and

determination of the streamflow associated with each storm. Figures 7-1 and 7-2 contain

sample time series of precipitation and streamflow for the Brushy and Schoharie basins.

Streamflow is continuous, and there is evidence of a time delay between the end of rainfall

and the return of the streamflow to its pre-storm volume. Once the storms have been

isolated, we differentiate between the streamflow caused by the storm and the background

flow which is independent of precipitation (base flow); this is necessary because the derived

distributions of runoff do not incorporate base flow. Below we describe the process of

isolating independent events and separating base flow from storm runoff.

Isolation of independent precipitation events

A major challenge in separating storms is deciding whether breaks in precipitation signify

the end of a storm or simply a pause in a single event. We isolate independent storms
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(a) 1950 precipitation record at Moulton, AL
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(b) 1950 streamflow record for Big Nance Creek, AL
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Figure 7-1: Time series of precipitation and streamflow, Brushy, AL.

(b) 1950 precipitation record at Ellenville, NY
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(b) 1950 streamflow record for Rondout Creek, NY

Figure 7-2: Time series of precipitation and streamflow, Schoharie, NY.
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Figure 7-3: Schematic of technique using tbmin to isolate independent storms from precipi-

tation record.

based upon a minimum interstorm time, tbmin. Periods of rain separated by dry periods

of length less than tkmin are considered part of the same storm; rain occurring after any

interval longer than tbrmin represents a new storm. Figure 7-3 shows how tbmin is used to

separate the precipitation time series into discrete events.

The Poisson model used to parameterize precipitation assumes that both the interstorm

duration tb and the storm duration tr are exponentially distributed. We select tbomin such

that the distributions of storm and interstorm durations are close to exponential (Restrepo-

Posada and Eagleson 1982). This is done by dividing a precipitation time series into a set of

storms using a range of values for tbmin. We calculate the probability distributions of both

tb and tr and look for similarity to an exponential distribution. While many storms occur

on time scales of hours rather than days, we are limited in this study to daily values; there

arises, therefore, the potential for some error in the distinction of individual storms. A more

rigorous technique of estimating tkmin, used to validate our values, is described below.

Wynn (1994) compared two methods of estimating tkmin from hourly precipitation data.

The first method is based on the assumption that the interstorm duration is exponentially

distributed. The value Of tbmin which corresponds to the assumed distribution will be that

for which the coefficient of variation of all interstorm durations greater than tkmin is equal

to one. An alternative approach identifies tbmin from the graphical breakpoint in the cumu-

lative probability distribution. This technique is based on the hypothesis that interstorm

durations are described by two distinct patterns: durations greater than tbmin are exponen-

tially distributed, while shorter durations (corresponding to arbitrary dry periods during a

storm) are characterized by some other, unknown distribution. Both approaches have some

limitations. The coefficient of variation method assumes instantaneous, non-overlapping

storm events and a small ratio between the average storm and interstorm durations. Error

in the breakpoint method arises from the presence of extreme values which may skew the

regression analysis used in determining the breakpoint between the distributions. For our

purposes, however, the techniques are sufficient to use as a check that our selected value

Of tbmin is no smaller than the range of values estimated at the location of interest. It is

acceptable to have a value Of tbmin that is larger than the actual value; however, if our tbmin

were too small and we were separating single events into multiple, independent storms, sig-

nificant errors could arise in the analysis. In neither method does Wynn (1994) find tbmin

in Alabama or New York to be greater than 24 hours; we conclude that any value Of tbmin

one day or longer is acceptable for this analysis.
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Figure 7-4: Schematic of technique to isolate runoff associated with independent rainstorms.

Isolation of related independent streamflow events

The identification of the streamflow response associated with a given storm is more com-
plicated than the isolation of precipitation events because of the delayed nature of rainfall-
runoff response. There is a time lag between the time when precipitation falls on a basin
and when it reaches the outlet through the channel network. Runoff may be caused by
a storm even after rain has stopped. The streamflow recession curve is often assumed to
decay exponentially with time, according to the equation

Qi(t) = Qpid-" (7.22)

where Qi(t) is the streamflow of storm i at time t, p is an empirical decay parameter, and
Qpj is the peak flow at the beginning of the recession curve (Nathan and McMahon 1990;
Tallaksen 1995). We cannot assume that the entire river flow associated with a given storm
has passed through the outlet by the end of the storm and subsequent interstorm period.
Some storms may influence streamflow volumes for many days after the next storm has
begun. We use the known form of the recession curve to attribute delayed flow to its causal
storm.

A schematic of a segment from a streamflow record is presented in Figure 7-4. The
calculation of the total runoff associated with storm i illustrates how the recession curve form
is used. First, the observed streamflow values during the storm and subsequent interstorm
period are numerically integrated (i.e., from t0o to tojs±). During this time, we assume that
precipitation from storm i is the only source of storm runoff. After the onset of storm i+ 1,
streamflow may be caused by either the new or the previous storm or storms. The temporal
extent of the recession curve is governed by the time it takes for water to be routed from the
most upstream pixel to the basin outlet. To account for this persistence of storm-related
streamflow beyond the bounds of an individual storm, we use Equation 7.22 to analytically
integrate the extra flow contribution after the onset of the subsequent storm.
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We assume that the exponential decline of the recession curve begins at the peak stream-

flow Q, during the storm or subsequent interstorm period. If the storm is very short, its

peak flow may occur after rainfall has stopped. We calculate the exponential decay param-

eter p between the peak flow and the flow at the onset of the next event, Qoi± 1 :

In (QoA l/QP2 ) (7.23)
to1 - ti

The recession curve associated with storm i is assumed to decay at the calculated rate

until tbf, the time when the flow either reaches the minimum observed base flow or zero (if

temporally variable base flow has already been removed), or a maximum of 20 days. The

total streamflow is found by integrating Equation 7.22 from the onset of storm i + 1 to tbf:

QE, = P (exp [p(tbf - toi1 )] - 1) (7.24)

The excess streamflow QEi is then added to the integrated depth for storm i and subtracted

from storm i + 1. One potential source of error is that p- is calculated using observed flow

values that are not adjusted for lagged flow contributed from prior storms. However, as

the time from the storm increases, the change in flow with time will decrease and the effect

on the decay parameter should be negligible. Another potential source of uncertainty is

introduced in the separation of streamflow into storm-related runoff and base flow. Several

techniques which may be used to segregate observed streamflow records are described in

Appendix E; the implications for runoff are discussed in the following section.

7.4 Base flow separation

Appendix E discusses different techniques for separating slow-response base flow from rapid-

response storm runoff. These include a constant base flow, moving minima, smoothed

minima, and digital filter. As seen in Table E.1, base flow may be a significant fraction

of the total streamflow; its separation is therefore crucial in hydrologic analysis of flood

characteristics. Below we present two simple tests of the sensitivity of runoff and runoff

elasticity to the technique of base flow separation.

Figure 7-5 examines the effect of the base flow separation technique on the runoff re-

sponse of individual storms. We select the smoothed minima method as our reference point

because it is least sensitive to parameter calibration. The smoothed minima approach is

compared with the moving minima technique with two window widths (10 and 30 days) and

the digital filter technique. The curves represent the average runoff generated by rainstorms

with a precipitation depth within a few-centimeter range. The vertical lines represent one

standard deviation above and below the average runoff in each bin from the smoothed min-

ima technique. While there exists some systematic difference between the different methods

for separating base flow from storm runoff, the pattern of runoff versus precipitation is the

same, and the rejected techniques all fall within the variability of storm response over the

time series calculated by the selected method.

An alternative technique for assessing the model sensitivity to the method of base flow

separation is to consider the elasticity of runoff response. Risbey and Entekhabi (1996)

observed that the Sacramento River basin in California exhibited a nonlinear streamflow

response to precipitation. In wet years, streamflow increased nonlinearly with increasing

precipitation. Correspondingly, there was a weakly nonlinear response when several dry
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Figure 7-5: Sensitivity of storm runoff response to base flow separation technique for Brushy
streamflow record.

years occurred in succession. The behavior was quantified by considering the elasticity of
runoff above unity as a function of precipitation. The elasticity of runoff is equal to

P dR (.5
elasticity = e = d(7.25)

R dP

For any storm, runoff R is equal to some fraction r of precipitation P. If the runoff fraction
is constant (r = ), the elasticity equals unity. The calculation of elasticity above unity

(e - 1) therefore gives the departure of runoff from the mean runoff fraction F.
We calculate the elasticity of runoff for different base flow techniques to see whether

the runoff ratio exhibits similar behavior independent of base flow separation technique.
Figures 7-6 through 7-9 show the elasticity above unity plotted against normalized storm
precipitation depth for the four techniques.

The value e - 1 may also be interpreted as the percentage change in runoff minus
the percentage change in precipitation. The line where this value equals zero shown in
Figures 7-6 through 7-9 represents a linear relationship between precipitation and runoff.
Negative values indicate a weak nonlinear relationship: changes in precipitation are not
fully reflected in runoff depths. Positive values of e - 1 indicate a strong response whereby
changes in runoff exceed changes in precipitation. This corresponds to a range of storms in

which the saturated area is growing rapidly. The elasticity asymptotes to zero for the largest

storms. Since base flow has been removed from these runoff series, only rapid-response fluxes
(infiltration-excess and saturation-excess runoff) are included. Once the soil is saturated or
has a reached a level where an increase in the saturated area is topographically unlikely,
the runoff volume is constrained to equal the incident precipitation.

The streamflow elasticity behaves similarly for each of the four techniques. This provides

further evidence that the selection of the smoothed minima technique over other possible

approaches does not significantly bias the character of observed runoff response.
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Figure 7-6: Elasticity of runoff above unity for filtered base flow separation, Brushy, AL.
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Figure 7-7: Elasticity of runoff above unity for moving minima (W=10) base flow separation,

Brushy, AL.
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Figure 7-8: Elasticity of runoff above unity for moving minima (W=30) base flow separation,

Brushy, AL.
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Figure 7-9: Elasticity of runoff above unity for smoothed minima base flow separation,
Brushy, AL.

7.5 Results

7.5.1 Comparison of derived distributions

The derived distribution of infiltration-excess runoff predicts a negligible likelihood of any
measurable runoff (<; 1 mm) for all of the study basins. This is probably due to the
assumption that rainfall is distributed uniformly throughout a storm. Infiltration-excess
runoff occurs only when the rainfall occurs at a higher intensity than the soil infiltration
capacity. However, by distributing incident precipitation over the entire storm duration, the
intensity is relatively low even during larger storms. Consequently, the probability of even
1 mm of infiltration-excess runoff does not exceed 10-10 in any basin. In the remainder of
this chapter, any discussion of derived or modeled runoff refers to saturation-excess runoff
only.

Equation 7.15 relates the probability of runoff to three basin-specific variables: available
storage (Ve) and the product of the inverse mean precipitation intensity (a) and duration
(6). The available storage contains information about both soil and climate, so it is not
redundant with the storm parameters. We look first at the cumulative distribution curves
for saturation-excess runoff assuming uniform soil moisture, shown in Figure 7-10. Six basins
are selected from the initial set of ten because they fully illustrate the role of distributed soil
moisture on runoff response within a reasonable range of probabilities. The two relevant
attributes of the curves in Figure 7-10 are the slope and the exceedence probability at which
runoff first occurs. The onset of runoff is a function of both climate and soil, as represented
by the antecedent available storage. Brushy has relatively little available storage; storms
with a probability near 0.001 are likely to generate runoff. Big Creek has over 30 cm
available storage, resulting in low levels of runoff in only the most extreme storms. The
runoff generated in relatively frequent storms depends primarily on the climate and soil
characteristics that together determine the equilibrium moisture deficit in the soil column.

Once runoff has been initiated, the major influence on the slope of the runoff probabil-
ity curve transitions from the antecedent soil-climate combination to storm characteristics
alone. The transition can be identified by comparing the responses of different basins.
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Figure 7-10: Derived exceedence probability distribution of saturation-excess runoff for

six study basins, assuming uniform soil moisture equal to the basin average. Exceedence

probability is on a per-storm basis.
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Schoharie and Yreka represent two basins with similar z-intercepts and different slopes. In
both basins, runoff begins in storms with a probability around 10 4 . In Schoharie, the
runoff depth increases to approximately 20 cm over the plotted probability range. Runoff
in Yreka increases to greater than 40 cm over the same range. The storm characteristics are
the main reason for the discrepancy: the product of a and 3 in Schoharie is over 50 percent
larger than in Yreka. A climate with larger average storms (a low value of a) results in a
greater slope in the cumulative distribution of runoff.

Uniform versus variable soil moisture

The preceding chapters of this thesis have identified patterns in the spatial variability of
equilibrium soil moisture. We are interested here in the influence of that spatial structure
of surface soil moisture on the runoff response, i.e., the signature of distributed hydrologic
properties in basin-aggregated streamflow. A basin is treated as an assemblage of adjacent
buckets. Since lateral subsurface flow is assumed to be insignificant on the time scale of a
single storm, the buckets are independent; moisture enters and exits each bucket only at
the soil surface. Each bucket has a given depth, with the depth representing the available
soil moisture storage prior to a storm.

In the uniform moisture scenario, each bucket has the same depth. If the depth of
precipitation that occurs during the storm is less than the buckets' storage capacity, the
input moisture enters storage and no runoff occurs. If precipitation exceeds the buckets'
capacity, the excess precipitation becomes runoff. The transition between storage and runoff
occurs simultaneously throughout the basin, since the buckets all have identical capacity.

In distributed systems, the buckets have different capacities. In areas where the water
table is near the surface, the depth of available storage is small, whereas areas with a deep
water table have a much larger potential to store new moisture. In this distributed system,
the abrupt onset of basin-wide runoff, seen in the uniform moisture system when precip-
itation equals the storage capacity, will not occur. Instead, runoff will be initiated at an
increasing number of buckets as precipitation increases. For low precipitation depths, then,
variable-moisture runoff exceeds uniform-moisture runoff. Correspondingly, when rainfall is
heavy, the entire basin in the uniform-moisture scenario will be contributing overland flow,
while the driest areas of the variable-moisture basin may not yet be saturated. Only for the
most extreme storms is the effect of the antecedent moisture conditions completely erased
and the two curves converge.

The difference in the available moisture storage between the uniform and variable sce-
narios is illustrated in Figure 7-11. The figure shows the cumulative distribution functions
for available storage for the two soil moisture cases. Saturation-excess runoff occurs when
precipitation exceeds the available storage. When the rainfall depth is less than the mean
available storage, the saturated area is greater in the variable-moisture scenario than in the
uniform-moisture scenario. For rainfall amounts greater than the mean available storage,
the uniform-moisture scenario has a higher percentage of saturated area (100%) than the
variable-moisture scenario until both basins are fully saturated. Thus, we expect that the
runoff from a heterogeneous soil moisture field will be larger than the uniform-moisture case
for small rainfall events and smaller than the uniform-moisture case when the storm depth
is large.

Figure 7-12 presents the cumulative distribution functions of saturation-excess runoff
for the cases of uniform and spatially variable soil moisture. In three of the six basins, the
uniform and variable curves intersect, as would be expected from the above explanation.

176



(a) Bear Valley

' /

0.1 0.2 0.3 0.4
available storage [m]

(c) Brushy Creek

0.1 0.2 0.3 0.4 0
available storage [m]

(e) Tombstone

//-

/

(b) Big Creek

0.8

0.6

0.4

0.2

0

0.5 0 0.1 0.2 0.3 0.4
available storage [m]
(d) Schoharie Creek

0.8

0.6
0

00.4

0.2

0

0.5

5 0 0.1 0.2 0.3 0.4 0.5
available storage [m]

(f) Yreka

0.8

0.6

0-4

0.2|

, -

0 0.1 0.2 0.3 0.4 0.5
available storage [m]

0 0.1 0.2 0.3 0.4
available storage [m]

0.5

Figure 7-11: Cumulative distribution functions of antecedent soil moisture, uniform (solid

line) and variable (dashed line) moisture scenarios.
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Figure 7-12: Comparison of variable (dashed line) and uniform (solid line) soil moisture in
the derived distribution of saturation-excess runoff, for six basins. Exceedence probability
is on a per-storm basis.
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In the other basins, however, the intersection point is outside the plotted domain. In Big

Creek, this is due to a large range in antecedent soil moisture caused by the steep landscape

coupled to a fairly dry climate. There is a much greater likelihood of runoff occurring in

some of the moister pixels in the distributed system than in the homogeneous environment.

The curves intersect at an extremely low exceedence probability. In Brushy and Schoharie,

the pattern is more influenced by the moist climate and relatively low change in precipitation

with probability.

The significance of distributed soil moisture on the runoff response depends on the

use of the information. For river management on small time scales, such as consideration

of low flows for ecological health and fish survival, the response of basins to relatively

small events is important. Estimates based on uniform moisture would underestimate the

runoff resulting from the most common storms. If, however, the hydrologic information is

needed for prevention of damage from extreme flood events, the response at low exceedence

probabilities is of greater concern. The uniform-moisture case tends to overpredict runoff

in the most extreme events (precipitation greater than the mean available storage). The

effect of any difference between uniform and distributed moisture assumptions in runoff

estimation depends on what recurrence interval of storms is of greatest concern.

Variable contributing area

The effect of distributed antecedent soil moisture on runoff may also be seen by consider-

ing the variable contributing area for different magnitude storms. The area of the basin

which saturates during a given storm is the main source of rapid-response runoff through

saturation-excess overland flow.

We investigate the expansion of saturated areas with storm magnitude by considering

rainfall depths with differing probabilities of occurrence. After Eagleson (1978b), storm

depth is assumed to follow a gamma distribution,

fH(h) =A(Ah)K 1 exp(-Ah) (7.26)
F[k]

with storm depth h, shape parameter A, and scale parameter r,. We can determine the

values of the two parameters from the observation-based Poisson parameters using the exact

solution of the storm depth distribution. The exact solution for the Poisson cumulative

distribution function was given in Equation 7.15; replacing r + Ve with h gives the following

expression in terms of storm depth:

FH (h) - -2 a6h -K1 [2 a ]6h (7.27)

The variables a and 6 are the inverse storm intensity and duration, respectively. K1 [-] is

the modified Bessel function of first order. We calculate the partial derivatives of the exact

cumulative distribution function,

F 2 aTh - Ko[2/ a6h] (7.28)

6z - 2a6 (7.29)
Sh z

and then combine them using the chain rule to get an alternative expression for the proba-
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Probability Storm Number of Percent
of occurrence depth saturated cells area

[cm] [-] [%]
le-1 2.9 258 0.7
le-2 8.2 2460 6.7
le-3 14.2 5562 15
le-4 20.4 8210 23
le-5 26.7 11414 31
le-6 33.5 16982 47

Table 7.1: Extent of saturation for different probability storms, Yreka, CA.

bility density function of storm depth,

6F 6z
fH(h) -= - 2ao Ko[2 /a~5h] (7.30)

KO is the zeroth-order modified Bessel function. The values of A and K are determined by
equating the moments of the gamma distribution and the distribution in Equation 7.30.
The mean storm depth derived from the exact solution (Equation 7.30) is

m1 = 00 hfH(h)dh =
o a

The variance of h is given by the expression

Ch= j(h - mi)2 fH(h)dh = 3
(a6)2

(7.31)

(7'32)

The gamma distribution is characterized by the scale parameter /'Z and shape parameter
A. By definition, the mean and variance are combinations of the two parameters:

mh =
A (7.33)

(7.34)

Combining these definitions with the mean and variance from the exact distribution, we
can calculate the gamma parameters from the mean and variance of an observed dataset
according to the following relationships:

1
S= g3

a6 1
3 3mh

(7.35)

(7.36)

Given the calibrated values for n and A, we can calculate the probability of any storm
depth. Any pixels which have an available storage Ve less than the storm depth will saturate
in the storm of that likelihood. This was done on the Yreka basin for illustration of the vari-
ability of saturated areas. Table 7.1 summarizes the storm depths and associated saturated
area for a range of storms. As the likelihood of a rainfall depth decreases, more rainfall
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(a) P = le-2 (b) P = le-4

(c) P = le-6

Figure 7-13: Saturated area (white shading) as a function of storm probability for Yreka,
CA, based on the modeled equilibrium soil moisture.
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Basin Season ir tr tb ep P/Ep
[mm/d] [d] [d] [mm/d]

Brushy annual 50 0.24 3.0 3.9 1.0
summer 58 0.23 4.8 3.4 0.8

Schoharie annual 30 0.25 2.4 2.2 1.4
summer 43 0.23 6.8 2.9 0.5

Table 7.2: Comparison of annual and summer (May - October) climate characteristics.

occurs and the saturated area expands. Figure 7-13 provides maps of the saturated area
for three of the storm scenarios. The maps show the expansion of saturated areas up the
channel network with increasingly large (rare) storms. The spatial pattern of saturated ar-
eas further supports the importance of considering spatially distributed soil moisture when
predicting runoff response.

7.5.2 Comparison of derived and observed distributions

In this section, we compare the exceedence probability distributions for derived and ob-
served runoff. Results are presented for both lumped and distributed soil moisture. This
again highlights the effect of spatially variable soil moisture on runoff response. Close agree-
ment between the model and observations may be seen as validation of the model and an
indication of the value of distributed information in characterizing basin response.

The derived distributions are based on the annual equilibrium climate characteristics,
whereas the observed storm series are taken from the six summer months only. The dif-
ferences between the annual and summer climates are summarized in Table 7.2. Summer
storms are more intense than winter storms, but the increased rainfall is more than offset by
the high summertime evaporation. As a result, the summer wetness index is substantially
lower for both basins relative to the annual index.

Use of the drier summer climate as the antecedent storm conditions reduces the runoff
predicted from the derived distributions. This weakens the agreement between the derived
and observed distributions, particularly in Schoharie Creek where the wetness index is 65
percent lower in the summer. However, the available soil moisture used in the derived
runoff distribution represents both the influences of atmospheric forcing and lateral flow in
the saturated zone. The response of groundwater to changes in the surface hydrologic fluxes
is greatly dampened in time. The groundwater levels found at the beginning of the summer
persist at least partway through the season. Use of summer atmospheric forcing parameters
neglects the long time scale of groundwater response and overestimates the influence of
evaporative forcing on the water table position. The GSEM results are therefore presented
for the annual equilibrium climate.

Figures 7-14 and 7-15 present comparisons of the observed and derived exceedence prob-
ability distributions of saturation-excess runoff for the Brushy and Schoharie basins. The
distributions for observed runoff are taken from the gaged sites described in Chapter 3
assuming a Weibull distribution of storms (e.g., Linsley et al. 1992). Storms with a net
rainfall of less than 1 mm are neglected. The derived distribution is correspondingly ad-
justed by changing the lower integration limit of Equation 7.12 from an intensity of zero
to an intensity equal to 1 mm divided by tr. In the resulting distributions for uniform

182



(a) Brushy Creek
10

-4 3 -2 -1
10- 10- 10 10

(b) Schoharie Creek

10010-P 10~ 10-o 10-2 10~cr

Probability of occurrence

Figure 7-14: Semilog comparison of observed and derived runoff response curves, Brushy

and Schoharie basins.
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and variable soil moisture, the term (r + Ve) is replaced by (r + Ve - 0.001). The derived

distribution is also adjusted so that the runoff found in the most likely storm is equal to

zero; this is done to correspond with the base flow assumptions of the observed time series.

In both cases the removed base flow is on the scale of 1 mm.

The resulting curves show fairly good agreement between observations and the derived

distribution based upon variable soil moisture. Figure 7-15 highlights the difference between

model and observations for small, high probability storms. The discrepancy is likely due

to the difference between the gaged and modeled catchment areas. The ratio of modeled

to gaged basin area for Brushy Creek is 0.75; for Schoharie Creek the ratio is 1.25. In

humid environments, the runoff ratio increases with an increase in basin size (e.g., Moore

and Morgan 1969). In both basins, the larger catchment experiences higher runoff in small

storms. The effect disappears as the probability decreases and storm size increases. For

cases where the runoff from small storms is of greatest interest, it is important that the

modeled catchment area match that of the gaged basin. If larger storms are of higher

concern, however, some difference in basin area may be allowable without sacrificing the

accuracy of the model prediction.

The good agreement between the observed distribution and the heterogeneous-moisture

distribution highlights how characterization of the antecedent distribution of soil moisture

is vital for estimating runoff response. Exceedence probability distributions may provide an

alternative technique for validation and/or calibration of hydrologic models. The advantage

of using probability distributions instead of streamflow time series is that they efficiently

incorporate a greater range of storm magnitudes.

7.6 Summary

In this chapter we have investigated the role of distributed hydrologic information in the

runoff response of a basin. The first step was to derive a probability distribution for runoff

that could be used with either uniform or variable soil moisture. This was done by inte-

grating over a stochastic distribution of rainstorms and interstorm periods. The observed

time series of precipitation and streamflow were divided into discrete events which were

then aggregated into an exceedence probability distribution. A comparison of the uniform-

and variable-moisture derived distributions reveals higher runoff from the variable-moisture

case for relatively frequent storms (precipitation less than mean available storage) and lower

runoff from extreme events. The behavior reflects the cumulative distribution of antecedent

available storage, which is a gradual function for variable-moisture conditions and a step

function under uniform moisture conditions. The observed distribution is in good agree-

ment with the variable-moisture derived distribution. This implies that knowledge of the

distributed nature of pre-storm moisture is important for characterizing the runoff response

of a basin. The close agreement also signals that exceedence probability distributions may

be used as an alternative to continuous streamflow records for validation of distributed

hydrologic models.
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Chapter 8

Key findings and future work

8.1 Key findings

We have presented the results of a coupled hydrologic equilibrium model applied to ten
basins across the United States. The results are used to investigate spatial variability in

equilibrium conditions and the influence of that variability on the dynamic runoff response.

The work is designed to identify links between geomorphologic characteristics and hydrologic

conditions by using a coupled analytical-numerical model to search for relatively simple

relationships between wet and dry characteristics. The key findings include the following:

" The spatial organization of soil moisture and related surface fluxes (runoff, evapora-

tion, and recharge) is related to the combined effects of local surface topography and

climate. The shape of the hillslope in the horizontal direction adds to the information

in traditional topographic indices based on contributing area per unit contour length

and surface slope.

" The extent of the midline area, in which the water table is parallel to the ground

surface and the time-averaged vertical flux between the saturated and unsaturated

zones is negligible, is related to the combined effects of climate and transmission

efficiency of the two zones.

" The variability between basins is explained to a large degree by the efficiency of

flow in the saturated zone, climatic wetness, surface-subsurface coupling, and basin

dissectedness. The runoff ratio is best predicted by the basin climatic wetness and

infiltration capacity; the evaporation efficiency has too much noise to be significantly

predicted by a regression model.

" The probability distribution of observed runoff response matches the distribution of

runoff derived from Poisson storm statistics, using the equilibrium soil moisture dis-

tribution as the antecedent conditions. Probability distributions may be used as a

means of validating the long-term output of distributed models.

8.2 Future work

Several areas for further investigation and expansion of this work have been identified. The

assumptions about spatial and temporal uniformity of physical and climatic characteristics
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made in the course of the research may be relaxed; this will highlight the environments in
which the current assumptions are valid and the extent to which the model input or output
must be adjusted in other conditions. Outstanding questions that have emerged include the
following:

Is the effect of non-topographic effects on spatially variable hydrology of the
same magnitude as topographic effects?

The sensitivity studies performed with respect to vegetation and soil texture assumed
uniformity of conditions. Both of these properties are known to vary in space. Future
studies should consider the effects on hydrologic properties of partial vegetation cover
within individual pixels and of varying evaporative properties of plants across a basin.
Variability in soil texture could be incorporated through dividing the soil column into
multiple layers and assigning different hydraulic properties to individual pixels and
layers.

How do seasonality in the climate and subsurface moisture storage influence
distributed hyrologic processes?

The results presented here correspond to the long-term equilibrium conditions and are
based on annual average climate characteristics. Transient simulations of the model
may capture aspects of the seasonal variations in saturated-unsaturated zone coupling
that are not evident when the model is run to equilibrium. Seasonal effects include
both variable precipitation and evaporation and delayed variability in groundwater
storage. Snow cover and the freezing of soil water have not been included in this
analysis; their influence may be of particular importance on the timing of runoff from
basins where snow and ice occur.

How do interannual changes in groundwater storage affect the distribution of
soil moisture?

Multi-year phenomena such as persistent droughts or floods cause variability in the
groundwater store over longer time scales than the seasonal cycle. A transient run
of the model using a low-frequency, non-stationary climate would provide insight into
the delayed response of groundwater to climatic variability, and whether the storage
response influences the distribution of hydrologic processes at any point in time and
in the long-term average.

How do groundwater circulation and bedrock fractures influence the spatial
distribution of equilibrium hydrology?

This research assumed that the soil column is underlain by impervious bedrock. How-
ever, deeper soil and rock layers often allow some moisture flow at a reduced conductiv-
ity. Deep groundwater circulation through lower-permeability soil layers may result in
a different pattern of distributed hydrology from that based upon impervious bedrock.
Additionally, fractures in the bedrock are highly transmissive conduits which may also
significantly alter subsurface flow patterns and the resulting spatial distribution of soil
moisture.

How can additional field data enhance hydrologic modeling efforts?

There are few publicly-available, detailed datasets which characterize the spatial vari-
ability of soil depth and its relation to the overlying topography. The model used
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here to characterize this important physical parameter was developed from measure-

ments in a single basin; it may not be appropriate in other environments. It would

be beneficial to perform spatially intensive studies of other catchments in an effort to

improve the confidence in the soil-depth model.

Additionally, the inclusion of field data could strengthen the findings of interbasin

variability found in Chapter 6. Principal component analysis holds the potential for

advancing understanding of the physical and climatic factors which are most related

to the differential hydrologic response between basins. The results could be strength-

ened by increasing the number of study basins and supplementing the set of variables

with field-measured parameters. One example of a comprehensive dataset is presented

by Western et al. (1999) for the small Tarrawarra catchment in New Zealand. The ad-

dition of geomorphologic and hydrologic datasets to the public collection will enhance

the community's ability to analyze modes of variability between basins in different

climates and landscapes.
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Appendix A

Definition of variables

A contributing area [L2]
a contributing area per unit contour length [L]
Ao second term of Philip-type infiltration equation [LT 1 ]
AQ total basin area [L2]
c Brooks-Corey pore disconnectedness index [
Di moisture deficit at pixel i [L]

Dd drainage density [L-]
E parameter group in bare-soil evaporation equation [-]
Ebs annual (or seasonal) bare soil evaporation [L]

E, annual (or seasonal) potential evaporation [L]
E,, annual (or seasonal) vegetated-soil evaporation [L)

e elevation of soil-bedrock interface [L]
e, annual average bare-soil potential evaporation rate [LT- 1]

f TOPMODEL decay parameter of conductivity with water table depth [L]

fg* infiltration capacity [LT- 1]

fe* exfiltration capacity [LT- 1]

fk filtered streamflow response for base flow filtering algorithm [LT- 1]
H surface elevation [L)
h storm depth [L]

i~r rainfall intensity [LT-1]
K sediment-transport diffusion constant [L2 T- 1 ]

K, saturated hydraulic conductivity [LT-1]

K, surface hydraulic conductivity [LT- 1 ]

Ks, unsaturated hydraulic conductivity at soil saturation [LT- 1]

Lq average length of streams of basin order Q [L]

m Brooks-Corey pore size distribution index [-)

m mean storm depth [L]
mS mean number of storms per season [-]
m mean number of storms per year [-]
ne effective porosity [-]
N, number of streams of order w [
P annual (or seasonal) precipitation [L]

P, limiting soil production rate [LT-1 ]
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Qpj peak flow during a storm [LT- 1]
Q E storm flow occurring after onset of the subsequent storm
Qb, base flow [LT- 1 ]
QO limiting base flow [LT- 1 ]
4s sediment transport vector [LT-1]
(q) temporal mean unsaturated zone moisture flux in the vertical direction [LT- 1]
R annual runoff depth [L]
Rie annual (or seasonal) infiltration-excess surface runoff [L]
Rse annual (or seasonal) saturation-excess surface runoff [LI
r runoff depth [L]
S50 median surface slope [

Se exfiltration desportivity [LT2]

Si infiltration sorptivity [LT2]
s soil saturation [-]
s, surface soil moisture [-]
T transmissivity [L2T- 1]
TDi transmissivity at moisture deficit Di [L2T-1]
T surface transmissivity [L2 T- 1 ]

tb interstorm duration [T]

tbmin minimum time between independent storms [T]

tr storm duration [TI
is time to saturation [T]

t* limiting time to saturation assuming soil-controlled infiltration [T]
w maximum potential capillary rise [L]
Z* zero-recharge water table depth [L]
Zr rooting depth [L]
ZT total depth of soil column [L]
Zw vertical Cartesian location of the water table relative to the ground surface [L]
a inverse of mean precipitation intensity [TL-1]

# angle of ground surface relative to the horizontal [ ]
F dimensionless parameter group in derivation of infiltration capacity [-I
AH maximum elevation difference in a basin [L]
AO effective water content change [-
6 inverse of mean storm duration [T- 1 ]
f digital filter parameter [-]
r/ inverse of mean interstorm duration [T-1]
A parameter group in evaporation equation [-
A mean TOPMODEL index [L-1]

P parameter group in infiltration-excess runoff equation [-
rate of soil production decay with soil depth [L-1]

Pr bulk bedrock density [ML-3
Ps bulk soil density [ML 3 ]
#e dimensionless desorption diffusivity [-
#i dimensionless sorption diffusivity [-]
x time constant in infiltration capacity expression [T]
XF s Brooks-Corey bubbling head [L]
Q parameter group in evaporation equation [-]
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Ve unsaturated storage capacity under steady state equilibrium with a water table [L)
(-) temporal mean value operator
F(-) gamma function

-Y(.,-) incomplete gamma function
K 2 (-) Bessel function of second type
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Appendix B

Supplementary model equations

B.1 Equations used in calculation of infiltration-excess runoff

Philip's (1957) solution for infiltration into a semi-infinite, uniform soil moisture profile
gives an infiltration capacity defined as

1 i
f* = S + Ao (B.1)

where Si is the sorptivity and A0 is dominated by gravitational effects. Salvucci (1994)

modifies the variables for a finite water table depth, giving

A2+= K, F ;> -2

0 {F < -2

and

S = (2X) 1/ 2 KS (B.3)

The variable combinations used in these equations are defined as

F __S -# (1 - 4) (B.4)
1 + 1(c - 3)(1 - s)s+1

m [I + ( (sc) -Mc-

# IF (B.5)

X K 1 + 2(c - 3)(1 - s.)s(c+1)/2 (B.6)

The surface soil moisture, s,, depends on the recharge rate and water table depth, along

with the soil characteristics:

()+ 1+ (m) (>fc) 1/c (B.7)

Other variables abbreviations include the following:

1
s = (1 + s) (B.8)

2
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c = (2 + 3m)/m (B.9)

The limiting time to saturation, t*, is defined as:

t =T + -A, A2 >A0 (B.10)

(V)AO = 0

while the available storage in the unsaturated zone can be expressed as

1 1
Ve = ne(1 - s*)Z' + ne#Z'2 - neA(Zw + Z' - T,)2 (B.11)

2 2

with intermediate variables

A I m1 Ks . /IPS (B. 12)

Z' s*) -A(Zw - Ts) (B.13)

B.2 Equations used in calculation of evaporation

The exfiltration capacity, fl*, has the same form as the Philip's solution for infiltration
capacity, although the second term does not appear in the equation,

f e* = Set--2 (B. 14)

The exfiltration desorptivity is expressed as

Se = 2si+(cl)/4 [neKs|4s|#e/(mr)]i/ 2  (B.15)

with desorption diffusivity #e defined as

#e = 3 m(B.16)
3(1 + 3m)(1 + 4m)

For bare soil, the dimensionless parameter groups A and Q are defined as:

(1+ - - W
A = 2 2 (B.17)

(1+g - w
e2ep e-w

ep (2ep + , - w) (B.18)
2(ep + K -W)2

2

Q=2 - -(B.19)
e 2w

with maximum capillary rise
Ks (Zw1 s )-me

W= (B.20)
1 - (ZW/,PS)-mC

196



The final term appearing in the solution for bare-soil evaporation is E; this is defined as

E = US /(2e ) (B.21)

Evaporation from a vegetated surface follows the Richards-Cowan model (Levine and
Salvucci 1999b). The expression for A is determined by divided the time to stress by Etb
to get:

7 S,2+,qB + -4e n2 C+(E-21S,2+ TB

A = _64P7C [ 6S+ 1(B.22)
Etb2 eC

where B and C are defined as

B = 2ep + Ks' - w (B.23)

C = ep + Ks - w (B.24)

197



198



Appendix C

Location of observations

Basin

Big Creek
Brushy Creek
Midland
Ogden
Tombstone

Latitude

[deg:min N]
47:38
37:39
37:30
39:34
32:01

Longitude
[deg:min W]

117:32
86:46
77:20
97:40
110:57

Table C.1: Location of precipitation stations for model input. Values for Bear, Moshannon,
Sacramento, Schoharie, and Yreka were taken from contour maps.

Basin

Bear Valley
Big Creek
Brushy Creek
Midland
Moshannon
Ogden
Sacramento
Schoharie
Tombstone
Yreka

Latitude
[deg:min N]

39:10
47:38
32:40
36:41
41:30
37:40
38:32
41:06
32:14
40:36

Longitude
[deg:min W]

120:08
117:32
85:55
76:47
80:28
97:18
121:46
72:22
110:57
124:17

Table C.2: Location of pan evaporation measurements for model input.
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Appendix D

Supplementary maps of water
table position

H-
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Figure D-1: Map of water table depth for 2-km 2 square subsection of Bear, CA.

201



1.9

1.8

1.7

Figure D-2: Map of water table depth for 2-km 2 square subsection of Brushy, AL.
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Figure D-3: Map of water table depth for 2-km 2 square subsection of Big Creek, ID.
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Figure D-4: Map of water table depth for 2-km 2 square subsection of Schoharie, NY
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Figure D-5: Map of water table depth for 2-km2 square subsection of Midland, VA.
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Figure D-6: Map of water table depth for 2-km 2 square subsection of Moshannon, PA.
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Figure D-7: Map of water table depth for 2-km 2 square subsection of Ogden, KS.
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Figure D-8: Map of water table depth for 2-km 2 square subsection of Sacramento, CA.
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Figure D-9: Map of water table depth for 2-km 2 square subsection of Tombstone, AZ.
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Figure D-10: Map of water table depth for 2-km 2 square subsection of Yreka, CA.
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Appendix E

Base flow separation

Channel flow comes from both overland and subsurface sources. Saturation-excess and
infiltration-excess runoff provide quick pulses of water to a channel with a relatively short
time lag from the onset of precipitation. Groundwater flow, in contrast, travels at a much
slower rate than overland flow and is thus delayed in time. Base flow is considered the
portion of streamflow coming from groundwater or other delayed sources (Tallaksen 1995).
It depends on surface inputs of precipitation but varies over longer time scales than surface
runoff.

In GSEM, the equilibrium base flow is calculated as the amount of drainage, or the flow
coming from perenially saturated regions. The modeled base flow values as a fraction of
precipitation and total runoff are summarized in Table E.1. Ogden and Sacramento are
omitted from the table because they experience no runoff. In Big Creek, Schoharie, and
Yreka, base flow comprises a significant fraction of the total runoff depth. It is therefore
vital that observed streamflow have base flow removed when compared against modeled
saturation-excess runoff.

A variety of techniques exists for isolating base flow from time series of total streamflow.
Simple graphical approaches include the following:

* drawing a straight line between the points on the hydrograph corresponding to the
onset of precipitation and the greatest curvature of the recession limb, and

Basin P Qb/P Qb/ (Qb + Rse)
[in] [-] [-)

Bear 0.81 0.04 0.19
Big Creek 0.48 0.69 0.96
Brushy 1.35 0.00 0.00
Midland 1.10 0.00 0.00
Moshannon 1.06 0.02 0.06
Schoharie 1.03 0.31 0.58
Tombstone 0.37 0.01 0.07
Yreka 0.47 0.12 0.46

Table E.1: Sample annual average base flow as a fraction of precipitation and total runoff

estimated by the model, using the smoothed minima approach. Ogden and Sacramento

have no measurable baseflow or surface runoff.
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* following the pre-storm negative slope for some time lag t and then increasing base
flow until it intersects the hydrograph at some time after storm cessation.

Dingman (1993) illustrates the application of these approaches on theoretical hydrographs.
With the use of computers in hydrology, more complicated, automated techniques have
recently been developed. Two techniques described by Nathan and McMahon (1990) involve
a recursive digital filter and a smoothed minima approach. These methods are described
below.

Recursive digital filter This separation technique employs a recursive digital filter to
smooth the streamflow signal. Nathan and McMahon (1990) present a simple filter which
was modified by Chapman (1991) to the form

3e -1 2
fA fA-1 + (Yk - Yk-1) (E.1)

where fk is the filtered quick-response streamflow at time k, y is the original streamflow,
and E is the filter parameter, assigned a value between 0.90 and 0.95. Base flow is the total
streamflow minus the quick-response flow. An example of base flow separation using the
filter with E = 0.925 on a short time series of streamflow in Brushy Creek is presented in
Figure E-1, subplot (a). Base flow follows the general pattern of total streamflow but is
damped and slightly lagged in time. The digital filter technique is sensitive to the model
parameter; higher values of c will result in lower levels of base flow.

Smoothed minima An alternative approach described by Nathan and McMahon (1990)
is the smoothed minima technique which linearly connects low-flow points. The method
has three steps:

1. Calculate the minimum of each five-day nonoverlapping period;

2. Identify which of the minima correspond to turning points, defined as a value less
than a constant (they use 1.11) times the two extreme values; and

3. Construct the base flow hydrograph by connecting all the turning points.

In a comparison of the smoothed minima technique with recursive digital filtering, Nathan
and McMahon found the smoothed minima technique to be slightly inferior. The base flow
partitioning using the smoothed minima technique on the Brushy Creek streamflow series
is given in Figure E-1, subplot(b).

Moving minima The simplest technique for estimating base flow is to assume a constant
value over time. Base flow levels are known to vary, however, over time scales ranging
from within an individual storm to seasonally and interannually, as governed by larger scale
climatic fluctuations. One way to incorporate some of the mid-scale variability is to estimate
base flow as the moving minimum of flow in a specified window of time. The approach is
simple and does not require parameter estimation like the previous two methods, yet it
retains some temporal variability. This technique is illustrated in Figure E-1, subplot (c).
The moving minima technique is quite sensitive to the width of the window over which the
minimum is determined.
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(a) Recursive digital filter (b) Smoothed minima

(c) Moving minima

Figure E-1:
Brushy, AL.

Comparison of base flow separation techniques on a streamflow record from
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Appendix F

Spatial variability in a
quasi-distributed model

The desire to represent spatially variable hydrology resulting from topographic forcing in

an efficient manner has led to the widespread use of quasi-distributed models. Such models
use simplifying assumptions to collapse multiple hydrologic processes into a physically-based
index that identifies hydrologically similar locations. The most widely used and adapted
model framework is TOPMODEL (Beven and Kirkby 1979). TOPMODEL was designed to
be physically based (the model parameters are estimated from measurable field properties),
flexible (e.g., it can be modified for different runoff generation mechanisms, evaporation
routines, or soil characteristics), and computationally efficient (the full distribution of hy-
drology is determined from the distribution of the similarity index). These characteristics
have made the model popular for hydrologic investigations for a variety of purposes in a
range of environments.

Because the hydrology in TOPMODEL is generated from the distribution of a topo-

graphic index, the accuracy of the model predictions depends on the quality of the assump-
tions made in defining the index. In this appendix we investigate whether the TOPMODEL
simplification is warranted and the effect of the assumptions on hydrologic response. The
formulation of the distributed model GSEM does not depend on the same TOPMODEL
assumptions; comparison of the two models indicates whether it is worthwhile to incur the

computational expense of a distributed model, or whether the predicted spatial patterns
are adequately captured by the more efficient quasi-distributed model. The goal is not to

identify which model is "better", but rather whether any significant, consistent differences

exist which could affect model use or interpretation.

F.1 Introduction to TOPMODEL

In this section we introduce the three fundamental assumptions of TOPMODEL and the

original model framework built from those assumptions. The ongoing debates about the

validity of the individual assumptions are discussed, followed by a literature review of some

of the many applications of TOPMODEL to field studies that have been undertaken with

varying success.
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F.1.1 Theory

The essence of TOPMODEL is that locations in a basin with the same value of a topographic
index are hydrologically similar. Once the range of index values is known, calculations
can be made about the hydrologic response across the dynamic range. This knowledge
is combined with the probability distribution of the index to generate the distribution of
soil moisture and the basin-aggregated runoff response. The model is quasi-distributed
because it combines an explicitly-generated distribution describing the basin topography
with assumptions of hydrologic similarity in space and time.

The topographic index is derived using simplifying assumptions about surface and sub-
surface hydrologic processes. The underlying assumptions are the following:

1. Saturated zone dynamics can be represented as a series of successive steady states.

2. Effective rainfall (recharge) is spatially constant.

3. The effective hydraulic gradient is parallel to the ground surface at all points within
the basin.

4. Hydraulic conductivity declines exponentially with depth in the soil column.

Since recharge is assumed to be spatially constant (i), the flow at any one point is
the integrated recharge over the upstream area (a) draining to that point. Assuming
steady-state conditions, the moisture flux into a pixel from upstream must be equal to
the topographically-driven flux out of the pixel:

q = ia - T e-Di/m tan# (F.1)

where To is the transmissivity when the soil column is saturated, Di is the local soil moisture
deficit, m is the calibrated conductivity decay rate parameter, and tan 0 is the ground
surface slope. Equation F.1 can be rewritten to calculate the saturated storage at location
i:

Di = -mln ( i (F.2)
To, tan#

The spatially averaged moisture deficit is determined by integrating over the basin area to
get

I=mA + Di + mln(a/ tan3) (F.3)

where A is the spatial mean of the topographic index ln(a/ tan #). Knowledge of the mean
moisture deficit allows identification of the areal extent of saturation (Di < 0). The spatial
distribution of saturated areas identifies riparian zones that expand and contract during
and between storms.

F.1.2 TOPMODEL assumptions and debates

The essence of a quasi-distributed model is the use of a physically based index as an indicator
of hydrologic similarity. There is no perfectly defined relationship between physiographic
features and hydrologic response. Quasi-distributed models rely on assumptions about the
driving processes to reduce similarity relationships into a quantifiable parameter. Some
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of the limitations of the original model assumptions have been addressed in subsequent
modifications of the original model (e.g., the inclusion of transmissivity in the topographic
index introduced by Beven 1986b), yet a number of questions regarding the validity of
the basic assumptions and the best techniques for calculating model parameters remain
unresolved.

" Uniformity of recharge

Inherent in TOPMODEL's current approach is spatially and temporally invariant
recharge (see Equation F.1). In natural systems, this rarely occurs. The equilibrium
hydrology calculated by GSEM showed the division of basins into recharge, midline,
and discharge zones. The distribution of recharge depended on the unique combina-
tion of climate, soil, and topography in each basin. Recharge may further vary in
space due to other sources of spatial variability such as patchy rainfall, soil inhomo-
geneities, variable vegetation cover, and macroscopic or microscopic topography. The
dependence of recharge on the soil moisture content is one of the key mechanisms
behind the two-way (bidirectional) coupling of the unsaturated and saturated zones.
TOPMODEL neglects the bidirectionality of this interaction.

" Water table profile

TOPMODEL assumes that the hydraulic gradient governing flow in the saturated
zone is equal to the slope of the overlying surface; the implicit assumption is that the
water table is parallel to the ground surface. This assumption is the source of the
surface slope in the denominator of the topographic index ln(a/ tan 3). However, the
water table does not always follow the overlying topography. Along a planar hillslope,
for example, TOPMODEL predicts a depth to saturation that varies along the slope.
The water table depth at location i can be determined from Equation F.1. The local
transmissivity written in terms of moisture deficit (T = Toe-Di/m) is replaced by
the water table-dependent transmissivity (T = Ko/f - e-fzi). The equation may be
written in terms of Z,, giving

Z - In ( ia (F.4)
f (Kotan#3

The variables f (decay rate of hydraulic conductivity with depth), i (spatially-constant
recharge rate), and Ko (surface hydraulic conductivity) are all assumed to be constant
in space. Along a planar hillslope, the surface slope tan#3 is constant and the con-
tributing area a is a linear function of distance downslope. The water table depth
therefore varies logarithmically with distance downslope. The developers of TOP-

MODEL were aware of the inconsistency between the water table distribution and

the assumed saturated hydraulic gradient (Beven 1997). For shallow soils, the dis-

crepancy is relatively insignificant. However, if the soil is thick or irregular, if there

is marked spatial variability in the texture of the soil, or if the recharge rate varies

in space or time, the assumption about the parallel profile of the water table could

introduce error.

e Soil conductivity profile

TOPMODEL assumes that the hydraulic conductivity of the soil decreases expo-

nentially with depth. The relationship may be expressed either in terms of the soil
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moisture deficit (Ki = Koe-Di/m) or water table depth (Ki = Koe-fzi). The expo-
nential behavior is considered to well represent conditions under which the soil column
is underlain by an impervious zone (Beven and Kirkby 1979). However, one draw-
back with the exponential conductivity profile is that it leads to a hyperbolic baseflow
recession curve, as opposed to the widely-observed exponential recession curve (e.g.,
Nathan and McMahon 1990; Tallaksen 1995). Several recent studies have examined
alternatives to the original soil conductivity profile. Ambroise et al. (1996) compared
baseflow recession data for a small catchment with recession curves derived from ex-
ponential, parabolic, and linear conductivity profiles. The best match between model
and observations was for a parabolic conductivity profile. A flexible formulation was
proposed by Duan and Miller (1997). They introduced a parameter which allows the
relationship between transmissivity and moisture deficit to range from linear to ex-
ponential, encompassing the formulations described by Ambroise et al. (1996). Lamb
et al. (1997) proposed an empirical power-law relationship between discharge and
relative storage that can be derived from recession curve analysis. The empirical re-
lationship can be used to develop a modified topographic index for predicting where
saturation will occur.

Sensitivity to DEM resolution

The resolution of the topographic grid is of critical importance because of TOP-
MODEL's dependence on a topographic-based index to describe the hydrologic be-
havior of a basin. DEM resolution affects both the mean and distribution of the
ln(a/ tan 3) index (e.g., Chairat and Delleur 1993; Zhang and Montgomery 1994;
Wolock and Price 1994; Bruneau et al. 1995). Coarser resolutions increase the mean
value and reduce the dynamic range of the topographic index. The mean index, A,
affects the base flow rate, which influences the spatially averaged soil moisture dur-
ing a simulation. The tail of the ln(a/ tan #) distribution governs the expansion and
contraction of saturated areas that are crucial for estimating runoff generation.

One way to account for coarsely resolved elevation data is through calibration of the
TOPMODEL parameters. Several approaches have been introduced (e.g., Bruneau
et al. 1995; Quinn et al. 1995; Wolock and McCabe 1995; Saulnier et al. 1997). Cali-
bration methods may allow TOPMODEL to be used with reasonable confidence even
in the absence of fine-resolution DEMs. The resolution above which accurate estima-
tion of the hydrologic processes requires parameter calibration varies between basins;
it depends on the scale of the DEM relative to the scale of topographic variability in
the landscape.

F.1.3 Comparison with field observations

TOPMODEL was not designed for every possible combination of climate and landscape.
The original model assumes that infiltration is non-limiting (i.e., saturation-excess is the
only runoff generation mechanism) and that return flow is negligible. These assumptions
may be inappropriate in arid climates where precipitation intensities can exceed infiltration
capacities, resulting in Hortonian flow, and where parched soils may allow for downslope
re-infiltration of surface runoff (return flow). The model is most appropriate for basins with
a total area of less than 500 km 2 underlain by impermeable rock and existing in moderate
to steep topography (Beven and Kirkby 1979; Quinn and Beven 1993).
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Basin E[Q] o(Q) CV(Q)

[mm/d] [mm/d] [
Bear Valley 1.19 1.36 1.1
Big Creek 0.76 1.42 1.9
Schoharie 1.51 1.89 1.3
Tombstone -8.8e-3 1.97 -220
Yreka 0.89 0.62 0.7

Table F.1: Mean, standard deviation, and coefficient of variation of recharge in five basins.

Studies comparing the topographic index ln(a/ tan 3) with the observed water table have
had varying results. Burt and Butcher (1985) found that ln(a/ tan 3) is poorly correlated
with depth to saturation on a small hillslope in England, especially in drier conditions.
Thompson and Moore (1996) found, however, that ln(a/ tan 3) was a better predictor of
water table depth than a, tan 0, or a surface curvature parameter. In a related study, Moore
and Thompson (1996) developed a TOPMODEL-based linear function relating water table
depths in time and space. Field observations from convergent areas provided a good fit
to the model; this implies that the water table shifts up and down over time without a
significant change in shape. Troch et al. (1993) similarly found that the TOPMODEL
assumption about a linear water table matched with observed water table profiles over a
12-day period. In an application of a TOPMODEL-based model to seven catchments in
Australia, Coles et al. (1997) found that runoff source areas were identified fairly accurately
in catchments where Hortonian runoff was negligible.

These studies are only a few of many that have investigated the reliability of TOP-
MODEL in the field. A comprehensive list of additional sites where TOPMODEL has been
applied is provided in Beven (1997).

F.2 Compatibility of TOPMODEL assumptions with GSEM

We investigate whether the equilibrium hydrology calculated by GSEM is consistent with the
assumptions on which TOPMODEL is based. The investigation corresponds to the latter
three TOPMODEL assumptions; we look at (1) the extent of spatially variable recharge,
(2) the extent to which the modeled water table slope does or does not deviate from the
ground surface slope, and (3) the effect of a deep soil column on the equilibrium water table
profile.

F.2.1 Effective recharge

The TOPMODEL index assumes that effective recharge is spatially constant. The flow
into any pixel is set equal to the recharge rate integrated over the contributing area of
the pixel. Modeling and field studies contradict this assumption: basins contain areas of
both recharge and discharge. TOPMODEL in its original formulation does not allow the
negative (upward) recharge that occurs in riparian zones when the water table is at or
near the surface and is discharging moisture. Is TOPMODEL able to adequately capture
the saturated-unsaturated zone dynamics in the riparian zone, despite its assumption of
uniform positive recharge throughout the basin?
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Basin Percent area E[Q] o-(Q) CV(Q)
with Q > 0 [mm/d] [mm/d] [1-

Bear Valley 82 1.80 0.39 0.22
Big Creek 89 1.25 0.06 0.05
Schoharie 75 2.57 0.41 0.16
Tombstone 79 0.91 0.12 0.13
Yreka 89 1.09 0.16 0.15

Table F.2: Mean, standard deviation, and coefficient of variation of recharge in five basins,
excluding areas where recharge is negative.

TOPMODEL is not designed to incorporate negative recharge, yet GSEM predicts dis-
charge or zero flux in up to 25 percent of the basin area in the study basins. Tables F.1
and F.2 contain the statistics for all cells and for those cells in which recharge is posi-
tive, respectively, in five of the study basins. The standard deviations of recharge given in
Table F.1 are large; in four of the five basins the coefficient of variation exceeds one. Al-
though most of the pixels recharge at the maximum rate, a substantial area also recharges
at the minimum rate. The large deviation is caused by the bimodal distribution in recharge
rates. Consideration of only those pixels with positive recharge significantly decreases the
coefficient of variation. By excluding the discharging cells, we have essentially converted
the distribution into a unimodal form with the great majority of pixels recharging at the
maximum rate.

The significance of the discrepancy between TOPMODEL's uniform recharge rate and
the variable recharge predicted by GSEM depends on catchment characteristics and the
hydrologic output of interest. TOPMODEL may be able to provide a reasonable estimate
of the basin-average recharge rate, since most of the drainage area in all five basins is
recharging the groundwater at a nearly constant rate. So long as discharge is allowed
through base flow or other groundwater-surface water interaction in saturated areas, the
assumption of spatially uniform recharge is reasonably compatible with the distributed
GSEM output.

F.2.2 Water table slope

It is expected that along a hillslope cross-section, the deviation between the surface and
water table slopes will follow a distinct pattern. At a ridge, if the soil column is dry, GSEM
sets the water table at the bedrock interface; the deviation between the two slopes therefore
will be zero. In the recharge zone, the GSEM water table flattens out, resulting in a slope
that is less than the ground surface slope. The difference between the slopes should be
large in the recharge zone. The deviation between slopes is small in the midline zone where
the water table depth is relatively constant. In the discharge zone, the water table again
flattens out relative to the overlying surface; however, the deviation should be less than
in the recharge zone because the valleys contain less relief than the upslope area. At the
bottom of the hillslope, where a seepage face develops, the water table is constrained to
be at the surface and the deviation is zero. It is expected that those basins with a large
percentage midline will have a better fit between the surface and water table slopes. It
was found in Chapter 4 that the extent of the midline region ranges widely between basins,
depending on the efficiency of the saturated and unsaturated zones.
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Figure F-1: RMS between water and ground surface slopes, sorted by Kirkby area.
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Figure F-2: RMS of the difference in the TOPMODEL index, sorted by the surface-based
index. Pixels with a zero slope have been excluded to avoid numerical instability.

Figure F-1 presents the root mean sqare (RMS) between the water table and surface
slopes sorted by the area per unit contour length (a). The five basins exhibit a similar
pattern of behavior: the RMS begins at low values for small a, increases to a maximum below

ln(a) = 5, and then decreases fairly rapidly. The RMS is negligible across approximately
half of the dynamic range. The behavior in upslope areas (low a) is as expected, if the plots
are taken as an aggregate cross-section, where a represents distance downslope. The RMS
is small for dry or nearly-dry areas, increases in the recharge zone, and then decreases in
the midline zone. However, the figure does not contain an increase in RMS with further
distance toward the outlet, as was expected in the discharge zone. This is likely due to the

very low surface slopes in the riparian zone; even if two slopes differ by almost 100 percent,
the associated RMS is small if the slopes themselves are small.

The actual indicator of hydrologic response is the TOPMODEL index, ln(a/ tan 0);
saturation-and therefore also runoff-occurs only when the index exceeds a value based on
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the basin-averaged antecedent moisture deficit (D) and TOPMODEL index (A). Figure F-
2 presents the RMS between the topographic index calculated with the surface and water
table slopes. The data are plotted versus the surface-based index to highlight the sensitivity
of the index at different ranges.

Figure F-2 excludes pixels with either a water table or surface slope of zero. This
removes any effect of the arbitrary minumum slope that must be used to avoid numerical
errors from dividing by zero. The surface-based TOPMODEL index deviates consistently
from the GSEM-based water table index in upslope areas. A negative feedback arises,
limiting the effect of the deviation on the basin-scale water balance: as the water table
falls, the transmissivity declines, which reduces the subsurface flow rate. The opposite
response will occur when the water table rises. Thus, upslope deviations in the slope-based
index are expected to have little effect on the large-scale water balance, even for basins such
as Schoharie with a high RMS in upslope areas.

The topographic index is also important for the prediction of saturated areas. Overland
flow is primarily generated in the saturated areas that expand and contract under different
moisture conditions. Evaporation is also highest in these wet soils. Discrepancies in the
calculation of the fluxes in the riparian zone could have an impact on the water balance
that is disproportionate to the area of the basin covered by the zone. The RMS values for
downslope regions plotted in Figure F-2 indicate an acceptable level of agreement in the
two models' prediction of the saturated area between the models.

One striking difference between Figure F-1 and Figure F-2 is that the RMS of slope
approaches zero around the mid-range of contributing areas, while the RMS of the topo-
graphic index declines more slowly. There are two possible explanations for this. The first
is the difference in the values against which the RMS is compared (a vs. ln(a/ tan #)). The
contributing area is an index of location in the basin only, while ln(a/ tan #) incorporates
both location and local gradient. Thus, there is some bias introduced in the sorting of pix-
els by ln(a/ tan /) since the sorting is influenced by surface slope. The highest values of a
correspond to pixels in convergent channels, close to the outlet. These areas generally have
a permanent seepage face; the deviation between surface and water table slope is therefore
zero. In contrast, a high ln(a/ tan 3) may represent a pixel that is very near the outlet
(large a) or one that is further from the outlet but has a very low slope (low tan /). The
sorting of pixels in Figure F-2 mixes these two types of pixels, resulting in a more gradual
approach to a low RMS (due to the seepage face) than was seen in Figure F-1. The second
potential influence is the exclusion of pixels with a surface or water table slope of zero in
Figure F-2. The number of pixels excluded is small-only in Schoharie and Tombstone does
it exceed a few percent-but the excluded pixels are by definition found at large values of
ln(a/ tan #). However, inclusion of pixels when one of the two models predicts a zero or
very small slope would increase the deviation, since the index is calculated with slope in
the denominator. Therefore, the first reason cited above, the variable against which the
RMS is sorted and calculated, is the likely cause of the difference in the behavior seen in
Figures F-1 and F-2.

F.2.3 Soil column depth

The exponential decrease in hydraulic conductivity with depth underlies the form of the
TOPMODEL index used to predict hydrologic response. The assumption of exponential
decay dictates the shape of the baseflow recession curve and the active depth of the soil.
Although a few studies have proposed altering the shape of the conductivity profile (e.g.,
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Figure F-3: Equilibrium surface fluxes as a function of water table depth for three soil depths
with the same transmissivity. The solid line is evaporation; the dotted line is saturation-
excess runoff; and the dashed line is recharge. Fluxes are normalized by mean annual
precipitation.

Ambroise et al. 1996; Beven 1997; Duan and Miller 1997), the exponential form remains

the most widely used.

The exponential profile is best suited for shallow soils. What happens to the equilibrium
hydrology when the soil column deepens? We address this question by modeling the most
likely water table distribution for a subbasin of Yreka with three different soil depths. The
hydraulic conductivity is adjusted so that the transmissivity is the same in each case. This
study is designed to highlight the range of water table positions which can result from the
same effective parameters but for different soil depths.

Figure F-4 presents the cumulative distribution of water table depth of the three soil

depth scenarios. The modeled spatial variation in water table depth increases with increas-
ing soil depth. This result is consistent with the two-dimensional analysis performed by
Salvucci (1994) on a planar hillslope. He found that as the soil deepens, the extent of the
midline zone shrinks as the recharge and discharge zones expand. While the exponential
decay parameter m can be adjusted to account for a deep soil column, it cannot adequately
represent the properties of a deep, conductive soil column. The exponential shape dic-
tates a rapid decrease in hydraulic conductivity with depth. In many environments, the
hydraulic conductivity has been observed to decline rapidly with depth in the soil column
(Beven 1984), as characterized in TOPMODEL. However, in locations with a deep soil
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Figure F-4: Cumulative distributions of water table depth for three soil depth scenarios.
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Figure F-5: RMS between water table slopes for different soil depths as a function of Kirkby

contributing area.
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profile, an exponential conductivity profile may limit the amount of distributed informa-
tion incorporated in the hydrologic response. The reduction of the midline zone also holds
implications for the adequacy of the previous two assumptions: the hydraulic gradient will
deviate more from the surface slope in deep soils, and there will likely be greater spatial
heterogeneity in saturated-zone recharge rates.

Figure F-5 shows the root mean sqare (RMS) of water table slope for the different soil-
depth scenarios. Changes in water table slope affect the agreement between the surface-
based topographic index and the actual hydraulic gradient. The effect of increased soil
depth is less significant than the initial discrepancy between the water table and surface
slopes seen in Figure F-1. While the exponential conductivity profile may break down in
deep, conductive soils, its influence on the hydraulic gradient is relatively minor.

F.3 Comparison of model predictions

One way to summarize the discrepancies between the TOPMODEL assumptions and the
GSEM hydrology is to compare the shape of the water table distribution across hillslope
cross-sections. Juxtaposition of the water table profiles allows comparison of a suite of
complex hydrologic processes as represented by a single variable. The water table position
determines the hydrological response in both models. In GSEM, the unsaturated zone fluxes
depend on the depth to saturation. In TOPMODEL, the water table depth is directly related
to ln(a/ tan #), the index of hydrologic similarity.

The models must be calibrated to the same units before they can be compared directly.
The parameters that require calibration are the storage decay term m (or its equivalent
for water table depth, f) and the surface hydraulic conductivity K. We estimate both
parameters using the basin-averaged GSEM hydrology. The resulting values can be used
to generate the distribution of any other variable of interest. The decay parameter is
calculated by calibration with the GSEM storage and recharge values; surface conductivity is
determined by matching the model transmissivities. The calibration procedure is described
below.

F.3.1 TOPMODEL calibration

The parameter m is the exponential decay rate of conductivity with available storage Di,
defined by the relationship Ki = Ke-Di/m where K, is the hydraulic conductivity when the
soil is saturated. Equation F.3 gave the expression for the basin-average moisture deficit:

D = mln To - mlni - mA (F.5)

which is written in terms of m to provide the calibration equation

m = _ (F.6)
In To - In i - A

Of the four TOPMODEL parameters needed to estimate m in Equation F.6, three have
direct complements in the GSEM formulation: surface transmissivity is the product of the
saturated hydraulic conductivity K, and the depth of the soil column ZT; A may be calcu-
lated directly from the DEM; and D is set equal to the basin-average equilibrium available
moisture storage Ve. However, there is no direct parallel between TOPMODEL's recharge,
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Basin ln(i) A e m f Ko

[mm d-'] [m-1] [m] [m-1) [m] [m d- 1]
Bear Valley 0.61 6.2 0.26 0.22 1.40 2.14
Big Creek 0.21 6.0 0.33 0.14 1.83 3.17
Schoharie Creek 0.91 7.1 0.25 0.44 0.59 9.50
Tombstone -0.09 7.6 0.29 0.36 0.81 4.94
Yreka 0.008 6.5 0.29 0.19 1.59 1.88

Table F.3: Parameters used in calibration of TOPMODEL to equilibrium model mean
hydrology. See text for details.

assumed spatially homogeneous and vertically downward, and the equilibrium recharge cal-

culated by GSEM, which varies spatially and may occur in either vertical direction. An

approximate estimate of i is made from the spatial average of all model cells where recharge

is downward (positive). The value of m can then be determined from the estimates of the

parameters in Equation F.6.
The second parameter which requires calibration is the surface conductivity K0 . It is

determined by equating the GSEM transmissivity (KsZT) to the TOPMODEL transmissiv-
ity T,. The relationship between surface transmissivity and conductivity in TOPMODEL

is determined by integrating the exponential relationship Ki = Koe-fZi over the entire soil

column and solving for K to give

Ko = "O (F.7)
f

The value of the surface conductivity depends on the depth-dependent decay parameter f
rather than the previously determined moisture-equivalent m. The parameters are related

by the soil characteristic AO:

f = A(F.8)m

The parameter AO is defined as the "effective water content change per unit depth in the

unsaturated zone due to rapid gravity drainage down to 'field capacity'" (Beven 1995). It

is approximated by the effective porosity, ne, which has been estimated from the Brooks-

Corey hydraulic model. Given the soil descriptors of porosity, hydraulic conductivity, and

depth to bedrock used in GSEM, TOPMODEL's KO can be calculated for each basin.

The values of the calibration parameters and intermediate variables for five of the study

basins are provided in Table F.3. In the other five basins, the calibration of m to the

modeled equilibrium hydrology results in a negative value; m is only physically meaningful

when positive. In low-relief basins, large values of A (due to small slopes in the denominator)
prohibit the calibration of TOPMODEL using the technique described here.

A complete list of parameter values used in different TOPMODEL applications can

be found in Beven (1997). The values for m generated in the TOPMODEL studies are

consistently one to two orders of magnitude smaller than the values calibrated to GSEM.
The bias probably arises from the estimation of T and the differences in transmissivities

between the models. As stated previously, there is a conceptual discrepancy between the

recharge fluxes in the two models. The exclusion of all cells with negative recharge may

overestimate the mean flux; this would exaggerate any positive bias in the m estimate.

223



(a)

600 - 7- - - - - - 3- 1400

2 500 -- - - -- - - --- - - -

450[- -- 
-

600 700 8t Horzota tance [m100 1200 1300 1400
Hor'iziontal distance [in)

(b)

600 700 80 Ho00 nt tance 1m100 1200 1300 1400

Figure F-6: Sample cross-section of surface elevation and GSEM and TOPMODEL water
table, Bear Valley, CA. Subplot (a) presents the ground surface (solid line) and GSEM water
table (dashed line). Subplot (b) presents the difference between GSEM and TOPMODEL
water table depths along the cross-section.

The second probable source of bias is in the surface transmissivity T0 . GSEM has a high
transmissivity because the saturated hydraulic conductivity is assumed to be constant across
the entire soil column (2 m depth). This results in a higher transmissivity than is found
in the TOPMODEL studies; the exponential transmissivity profile results in a lower value
when integrated over the soil column. The bias in transmissivity also raises the estimate
of m. In the subsequent comparison of the two models, the calibrated values shown in
Table F.3 are used. The discussion includes the sensitivity of the results to the values of m
(f) and K0 .

F.3.2 Comparison of water table profiles

We compare cross-sectional profiles of the water table to investigate the effect of the dis-
crepancies between the TOPMODEL assumptions and GSEM output on water table depth.
The location of the water table influences all components of the water balance, including
the saturated flow rate, runoff, and evaporation. The previous section identified patterns
of variation between conditions assumed by TOPMODEL (i.e., that surface slope is a rea-
sonable approximation of the hydraulic gradient) and the equilibrium hydrologic conditions
generated by GSEM. However, there may be feedbacks in the models that reduce or en-
hance the significance of the basic discrepancies on the water table position. For example,
a deviation in hydraulic gradient frorn the ground surface may alter flow rates such that
the hydraulic gradient more closely matches the surface. A comparison of the water table
profiles groups together the effects of the different assumptions into one spatially resolved
characteristic that is easily calculated.

Figures F-6 through F-10 contain sample cross-sections of each of the five basins. Sub-
figures (a) present the surface topography and the smoothed GSEM water table profile.
The water table is plotted to illustrate the magnitude of water table depth variation rela-
tive to the relief of the land surface. Subfigures (b) plot the difference between GSEM and
TOPMODEL water table depths along the cross-section. We use the smoothed water table
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Figure F-7: Sample cross-section of surface elevation and GSEM and TOPMODEL water
table, Big Creek, ID. Subplot (a) presents the ground surface (solid line) and GSEM water
table (dashed line). Subplot (b) presents the difference between GSEM and TOPMODEL
water table depths along the cross-section.
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Figure F-8: Sample cross-section of surface elevation and GSEM and TOPMODEL water

table, Schoharie, NY. Subplot (a) presents the ground surface (solid line) and GSEM water

table (dashed line). Subplot (b) presents the difference between GSEM and TOPMODEL

water table depths along the cross-section.
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Figure F-9: Sample cross-section of surface elevation and GSEM and TOPMODEL water
table, Tombstone, AZ. Subplot (a) presents the ground surface (solid line) and GSEM water
table (dashed line). Subplot (b) presents the difference between GSEM and TOPMODEL
water table depths along the cross-section.
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Figure F-10: Sample cross-section of surface elevation and GSEM and TOPMODEL water
table, Yreka, CA. Subplot (a) presents the ground surface (solid line) and GSEM water
table (dashed line). Subplot (b) presents the difference between GSEM and TOPMODEL
water table depths along the cross-section.
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depth from GSEM to minimize the effects of the relatively coarse vertical resolution of the

DEM. The GSEM water table depth is bounded by the soil depth of two meters. There is

no such limit on the water table depth in TOPMODEL; TOPMODEL assumes an infinite

soil depth with declining conductivity.

The basin cross-sections provide two sets of information in a comparison of GSEM and

TOPMODEL: (1) the magnitude of the difference between the water table depths predicted

by the two models, and (2) the relationship of the difference to the overlying topography.

We first consider the magnitude of the difference. In Bear Valley, Big Creek, and Yreka,
the difference between the GSEM and TOPMODEL water table depths is positive for most

of the pixels. In contrast, it is predominantly negative in Schoharie and Tombstone. The

difference can be understood from the equation used to calculate water table depth in

TOPMODEL:

ZW = In + In (F.9)
f K,, tan#0

The two basins in which TOPMODEL predicts deep water tables, Schoharie and Tombstone,
are both characterized by low values of f and high values of K0 ; this results in a large first

term in Equation F.9 and a deep water table for most values of ln(a/ tan 3).
Since surface conductivity K depends on f, an understanding of the physical determi-

nants of f fully explains the behavior observed in Figures F-6 through F-10. The parameter

f is inversely related to A. On average, lower slopes require a greater depth of conductive

soil to support the same amount of downslope moisture flux. This causes the inverse rela-

tionship between f and A in the calibration process: a steep slope (large A) causes a small

f. At the scale of individual pixels, the value of f affects the local water table depth, as

seen in Equation F.9. For almost all values of ln(a/ tan3), the water table depth is deeper

in the relatively flat basins (Schoharie, Tombstone) than in the steeper basins (Bear Valley,
Big Creek, Yreka).

The magnitude of the difference in water table depths may also be influenced by biases

in the calibration procedure. The calibration resulted in high values of m relative to those

in the literature and correspondingly low values of f. From Equation F.9, a low f would

cause spuriously large water table depths. This could account for the large differences seen

in the cross-sections. However, the bias in the calibrated TOPMODEL parameters should

not influence the pattern of differences within each cross-section, since a single value of f is

used for each basin. It is still possible to identify connections between surface features and

deviations in the models' predictions of water table depth.

The second aspect of the cross-section figures is the relationship between the differences

in water table depths and the overlying topography. The juxtaposed plots in Figures F-6

through F-10 indicate a relationship between the shape of the hillslope and the difference

between the water table depths of the two models. Convex sections of the hillslope generally

correspond to locations where the TOPMODEL water table depth is greater than or near

the GSEM depth. Conversely, TOPMODEL predicts a shallower water table than GSEM

on concave slopes. The presence of a relationship between hillslope shape and difference

in water table depth is confirmed by Figure F-11, in which the mean-centered difference in

water table depth is plotted versus the second derivative of the elevation along the cross-

section. Although the plots are noisy, the slope of the best-fit line is negative for each basin

at a 95 percent confidence level. It is expected that the line should go through the origin,
since the difference between the models should be minimal when the slope is planar (zero

curvature).
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Figure F-11: Relationship of the hillslope curvature to the difference in modeled water
table depth between GSEM and TOPMODEL. Depth differences have been mean-centered
to remove calibration effects. Circles represent d2H/dy2 < 0; X's represent d2H/dy2 > 0.
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We hypothesize that the relationship between curvature and differences in water table
position stems from the fact that the TOPMODEL index, used to represent the influence of
topography on hydrology, only considers the relief directly adjacent to the pixel of interest.
The parameter ln(a/ tan 3) does not incorporate any information beyond the slopes of the
neighboring uphill pixels and the total contributing area feeding a pixel. This may be
acceptable on simple terrain, where there is little spatial variation in slope. However, as the
cross-sections of water table position illustrate, natural terrain contains both convex and
concave slopes. When TOPMODEL finds itself in a concave slope, it calculates a shallow
water table because the topographic index indicates a shallow water table in concave areas.
The algorithm may err when a divergent slope lies directly upslope of the concave section.
Similarly, TOPMODEL may exaggerate the water table depth on convex slopes since it
cannot accommodate upslope convergence of moisture in concave stretches. Because GSEM
is continuous across the basin (it does not limit its calculations to adjacent pixels), it is
able to incorporate the effect of juxtaposed concave and convex slopes on the water table.
On short hillslopes or in areas where there is little variability in slope, the difference will
lose significance. However, in complex terrain, the difference between the two models is on
the order of one meter, which could result in TOPMODEL's overprediction of saturation
in convergent regions and underprediction of evaporation in upslope areas.

F.3.3 Comparison of flood response indicators

The previous sections have investigated the differences between GSEM and TOPMODEL in
the spatial distribution of equilibrium hydrology. We now look at the possible implications
for flood runoff predictions. This is done through a comparison of the models' distributions
of pre-storm available soil moisture storage.

A series of papers have used TOPMODEL as a basis for the generation of flood-frequency
characteristics (Wood and Hebson 1986; Beven 1987; Sivapalan et al. 1987; Sivapalan and
Wood 1990). The distribution of the TOPMODEL ln(a/ tan 13) index is assumed to predict
saturation-excess runoff under a range of forcing conditions. Full application of the flood-
frequency technique requires extensive calibration of both soil and hydrologic variables.
Our goal in comparing TOPMODEL with GSEM predictions is to minimize the number of
parameters to be estimated. We focus on the distribution of antecedent available storage
as a proxy for basin response. In large storms, saturation-excess runoff is the dominant
mechanism of streamflow generation; the available storage distribution is the best indicator
of how the basin will respond to precipitation.

Figure F-12 shows the cumulative distribution functions of available storage from the two
models. The most striking feature of the data shown in Figure F-12 is the consistent positive
bias of available storage predicted by TOPMODEL. Even though m was calibrated for the
mean GSEM available storage, the mean TOPMODEL storage deficit differs because of the
different soil profile shapes of the two models. TOPMODEL has an infinite soil column with
declining conductivity; the soil column in GSEM is a step function with an impermeable
layer located 2 m below the surface. The surface transmissivity used in calibration has a very
different implication for depth to saturation: for the same transmissivity, the water table
must be much deeper in TOPMODEL than in GSEM. This results in the overestimation
of m and the prediction of very deep water tables, as reflected in Figures F-6 through F-
10. The bias in water table depths is transferred to a bias in available storage, since the
moisture deficit is positively correlated with depth to saturation.

The relative shapes of the available storage curves are better seen by rescaling the
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Figure F-12: Comparison of calibrated available storage distribution from TOPMODEL

(solid line) and GSEM(dashed line).

Basin Ratio of Adjusted
medians m

Bear Valley 0.70 0.15
Big Creek 0.87 0.12
Schoharie Creek 0.29 0.13
Tombstone 0.37 0.13
Yreka 0.72 0.14

Table F.4: Adjustment
and TOPMODEL.

of parameter m for equal median available storage between GSEM
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TOPMODEL values so that the median values of the two distributions are the same. The
adjusted curves are shown in Figure F-13; the scaling factors and resulting m values are
given in Table F.4. The adjusted values of m are still one to two orders of magnitude greater
than the values from the literature. However, the adjusted curves shown in Figure F-13
provide the opportunity to compare the qualitative runoff response of the basins predicted
by the two models.

The GSEM distributions end sharply at an available storage of between 25 and 50 cm.
This is because the impermeable bedrock boundary creates an upper limit on the storage
capacity of the soil. In contrast, the soil column in TOPMODEL has no such discrete limit;
the exponential decline in conductivity with depth causes a gradually decreasing perme-
ability. As a result, the TOPMODEL curves in Figure F-12 have a smoother distribution
of available storage values. The response curves for saturation-excess runoff will reflect the
differences in the antecedent distribution of available storage. TOPMODEL will generally
predict runoff occurring over a larger percentage of the basin in low-rainfall storms, corre-
sponding to the greater cumulative distribution at low storage values. In extreme storms,
GSEM will predict complete saturation at precipitation depths up to 20 cm less than TOP-
MODEL. The one exception to this pattern is Yreka, in which the adjusted curves are nearly
identical for approximately 60 percent of the basin.
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