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Abstract

A recent advance in the discipline of Structural Engineering is in the field of smart or
intelligent structures. This broad field is attracting much attention as structures exceed
historic limitations on span and height. Structures are now required to have service
deflections much smaller than previously thought possible to satisfy their unique
function. To comply with these increasingly stringent design parameters, engineers
have developed structural motion control systems, which are based on passive, active,
or adaptive strategies.

This thesis evaluates the application of both time-invariant active and adaptive control
systems to a single degree of freedom (SDOF) structure. The time-invariant active
control algorithm relies on the rapid and low-power response capability available from
magnetorheological (MR) fluid dampers, which provides semi-active feedback. The
adaptive control algorithm realizes successful and realistic implementation by
combining the semi-active damper with an active variable stiffness (AVS) system. Both
control algorithms are implemented using a finite difference state predictor to estimate
the state of the SDOF. This state estimate is combined with a quadratic performance
index, which is minimized, to determine the optimal negative gain from the MR damper
as well as the optimal system stiffness. The results illustrate the improved system
performance for a controlled system. The discrete numerical simulation uses earthquake
accelerations as the loading for the system.
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1 Introduction

A structure provides a load carrying system. Structures are designed to meet a

goal defined by the user or owner of the structure, with requirements including

safety, serviceability, aesthetics, and economics. Structural systems for vertical

gravity loads are extremely well established and have been for some

considerable time. The loading characteristics are relatively deterministic and,

therefore, are straightforward to design for. Additionally, gravity loads often

improve, in a manner similar to pre-stress theory, the structural performance of a

system subjected to other vertical loads. Conversely, structural systems for

lateral loadings are quite varied and not at all standardized. This appears to be

the result of the stochastic nature of the loadings as well as the increased

complexity and costs of the analysis, design, and standard components.

This thesis is concerned with determining candidate methods for structural

design to resist lateral loadings including wind, earthquakes, and other dynamic

loads. A promising solution, with many current applications worldwide, is

structural control. Structural motion based design or performance-based design,

in contrast with traditional design, is based on the serviceability response as well

as the strength limitations of the structure. This design methodology meets the

requirements by designing a control system to limit specified structural response.

Unfortunately, current design relies on an engineer's ability to predict life-cycle

loadings to choose the required passive or active control systems. One solution

to allow the structure to respond in the optimal manner is to give it some ability

to decide on the best course of action. This thought process, in conjunction with

recent allied technological advances, leads to the field of intelligent structures

and adaptive materials.
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In what follows, current control methodology is introduced. To begin, simple

examples are presented for passive, active and adaptive control. Next, the

mechanical and material devices used to create these control forces are described.

With this foundation, the thesis presents two control algorithms. The first is a

time invariant active control algorithm with a magnetorheological fluid damper

as the recommended actuation device. The terms 'time invariant active control'

and 'semi-active control' will be used interchangeably in this thesis, due to the

chosen actuator device for that scheme. The second is an adaptive control

algorithm that uses a time invariant control scheme in combination with a time

variant structural system. The structural modification is accomplished with

active variable stiffness devices.
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2 Control Systems

2.1 Passive Control

2.1.1 Overview

One definition for "passive" as defined by Webster is "not reacting visibly to

something that might be expected to produce [a response]...". Thus, a passively

controlled structural system is designed to achieve optimal performance with

fixed system parameters. This optimal design is determined by prediction of

load characteristics such as magnitude and frequency content. The parameters

that are varied for design include system stiffness and damping. The operation

of this type of structure is illustrated in Figure 2.1.

load 0 system response

Figure 2.1 Passive control flow diagram

2.1.2 Design methodology

Passive control design for a single degree-of-freedom (SDOF) structure subjected

to sinusoidal loading with planar motion will be explained (J.J.Connor, 1996).

Figure 2.2 shows the chosen SDOF system configuration.

C

:m .p(t)

k I-*u+ug

| u

Figure 2.2 Single-degree of freedom
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In this system, m represents the constant system mass, c represents the

equivalent viscous damping, and k represents the system stiffness. The

displacements for the mass and the ground are specified by u and u,,

respectively. The applied loading is represented by p(t) = p sin(At), where - is

the peak magnitude of the loading and Q is the forcing frequency. The equation

of motion for a SDOF is

u+ 2 a +Wfu = p(t ) (2.1)

The solution for u(t) is very well known and may be represented as

u(t) = ez" (Asin(owdt) + Bcos(wOdt)) + k sin(Qt - )

1-#2+ +(25p)2

(2.2)

where A and B may be determined from the initial system displacement and

velocity and

0 = - circular frequency (2.3)

# = 9 = frequency ratio (2.4)

C

=wm - damping ratio (2.5)

Wd = 4 1-2 = damped circular frequency (2.6)

y = tan /_321] -phase angle (2.7)

The solution, equation 2.2, is divided into two parts. The first part is the term

multiplied by the exponential, termed the transient solution. The transient
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solution rapidly decreases with time for any damping ratio greater than zero.

The second term in equation 2.2 is the particular solution, u,(t), which will be the

design focus. For brevity a change in notation will be used.

u,(t = Q, sin(9At - y) (2.8)

a, (t) = -AG , sin(A t - y)= -a, sin(At - y) (2.9)

where Pmis the static displacement response, is the unrestrained response
k m

acceleration and

= - H =max dynamic displacement (2.10)
k

,= #2H = max dynamic acceleration (2.11)
m

1
H - dynamic magnification factor (2.12)

81-#2 + (2 #)2

Design proceeds by specifying the loading characteristics, i.e. the parameters of

p(t), and the system mass estimate, m. In addition, design goals have to be

established. For both human sensitivity and structural response, displacement

and acceleration are critical measures. Therefore, maximum allowable values of

each is specified as u* and a*. The dominant criterion is determined from the

relation a, = 2 , . If the statement a* < Au* is true, the allowable acceleration is

the critical parameter and 8, is set equal to a'. If that relation is not satisfied,

displacement is the critical parameter. The critical measure is then used to

determine the allowable dynamic amplification, H*. Entering the figure below

with H' will provide 1 or 2 values of the frequency ratio. The choice of damping

ratio, if in a damping critical zone (near p = 1), will then yield limits on

acceptable k values.
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Figure 2.3 Dynamic amplification design graph

Once these limits are known, economics or other concerns can be used to choose

from the acceptable ranges for the system parameters. For example, if p, is

chosen based on cost, requiring p < PI, leads to the limit that k must be greater

than km, where

k (2.13)

This methodology is extended to multiple degree-of-freedom (MDOF) systems

by using modal response and damping as control goals.
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2.2 Active Control

2.2.1 Overview

Active control methodologies take a step closer to alleviating some of the risk

inherent in a design based on model approximations of system stiffness and

damping. The goal of active control is to reduce system response to external

loading by the addition of energy. Potential benefits exist for both structural

performance and material usage. A schematic of an active system proposed by

T.T. Soong in 1990 is shown below. This chart can be described by three activity

components: i) identification, ii) decision, iii) action.

Figure 2.4 Active control flow diagram

Identification includes monitoring structural state as well as measuring applied

external loadings. The monitored parameters depend on the type of feedback

that will be used for control. If structural parameters are the only data used, the

13



feedback is termed Closed-Loop. If the external loading is monitored, with

control based on it alone, the feedback is called Open Loop. A combination of

the above can be referred to as Closed-Open Loop control. The sensors shown in

Figure 2.4 comprise the identification activity. A wide range of devices from

wireless strain guages to mechanical load transducers can perform the sensing.

Decision-making is perhaps the most actively researched part of active control.

This stage is where the type (magnitude and duration) of control, that will be

applied, is determined. It is typically made up of a digital-processing unit and

an algorithm based on some type of structural model. The variety of algorithms

in use is extremely varied. The reader is referred to the varied control literature

available in both structural publications as well as the electrical and mechanical

disciplines. This stage is represented by the "Computation of control forces"

block which receives input data from the sensors.

Action taken in active control consists, for example, of a hydraulic actuator

applying a force to the structure. These devices or 'actuators' are typically

positioned in fixed locations and are used in optimal combinations determined

by the control algorithm. The "Actuators" and "Control forces" blocks in the

chart above show this stage. Actuator technology will be discussed in Chapter 3.

2.2.2 Design Methodology

To better introduce active control for a dynamic system, the equation of motion

for a SDOF will be expressed in a state-space form, with matrices represented by

upper-case letters. Due to the nature of feedback and monitoring schemes in
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actual structures, the state-space representation is found to be easier to

manipulate and readily extends to a discrete formulation. Ground acceleration

can be included in the formulation, and treated similarly to the external forcing

function.

X =AX+Bpp+BfF (2.14)

where p p(t) is the arbitrary external forcing function and

0 1 ~0
X =[u]= X(t), A = k c, B, = B, -1 (2.15)

F = F(t)= -Kf X = negative linear feedback (active control force) (2.16)

Kf =[k, k,] =linear feedback/gain matrix (2.17)

Classic time-invariant, linear feedback dictates that A is constant, implying that

system stiffness and damping will not vary during loading/reaction, while the

structural response remains linear. From the derivation contained in Appendix

A, the exact solution at time t for this loading is

X = e^('-'")X(tO )+ eA('r) (BPp(-r) + BfF(r))r (2.18)

If the assumption is made that there is no time delay effects due to the control

process, the above equation may be expressed as

X = eAc(t-t X (to)+ feAc (t)B~p(zr)di (2.19)

where
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Ac=A-BfKf= k k1 kjj] (2.20)

This shows that the effect of the feedback is to alter system damping and

stiffness. A thorough discussion of stability issues and time delay is covered in

Introduction to Structural Motion Control, J.J. Connor, 2000. A useful conclusion

is that time delay can cause instability if the active control uses displacement

feedback. Pure, instantaneous velocity feedback cannot cause instability. It is

relatively straightforward to visualize and remember this result. If a pendulum

swings to the right, reaching its maximum amplitude and begins to swing back

to its equilibrium point, velocity feedback will act to slow it down as it is

increasing speed. This is desirable negative gain. Conversely if, for the same

scenario, displacement feedback is applied, the motion will be reinforced, in

effect causing a positive gain.

The optimal linear feedback is often determined by use of a quadratic

performance index, J. The components of the performance index are weighting

factors, the control forces, and the structural responses to be minimized. An

example performance index is

J = 2XQX + F RF dt (2.21)
0

where Q and R are diagonal weighting matrices. Appendix A contains the

solution corresponding to the above performance index minimization process.

The optimal value of Kf. is

Kf = R1 B, TH (2.22)

where H is obtained by solving the Continuous Algebraic Riccati Equation.
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AT H + HA - HB R-'BH = -Qf
(2.23)

2.3 Adaptive Control

2.3.1 Overview

Control methodologies based on adaptive schemes and materials are the ultimate

goal of control development. This umbrella classification includes creative use of

active control schemes to better optimize resulting structural behavior by use of

new materials and learning mechanisms or algorithms. Adaptive control can be

thought of as allowing a structural system to change its properties to improve

structural performance, often by use of input energy. The adaptive portion of

the classification is biologically derived from the characteristic of an organism that

makes it better able to live in its environment (Clark 1998). Thus, it differentiates

itself from active control in that either system properties themselves are changed

or a learning mechanism allows differing control response for a similar input

loading.

While structures that pop out of a box, self-erect, and self-maintain are

envisioned, the present applications are closer to allowing structures to push the

current limitations including span, length, rule-of-thumb ratios, and material

usage. However, algorithmic development continues and this continuance of

development will allow us to achieve truly adaptive structures. The engineering

process is followed with small steps, not an overnight solution.
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Successful adaptive and time-invariant active control requires a different design

approach. Firstly, the decision to design adaptively is chosen before design

begins, in the conception stage. This is due to the anticipated alterations, from

passive design, for properties such as the member sizes, which are often

significantly reduced. Secondly, it is realized that the potential effectiveness of

the control system is reduced if it is installed in a structure after the passive

design and gravity load bearing members are in place. The approaches to

implementation are actively discussed at the relevant structural conferences and

symposiums (see Proceedings of World Conferences on Structural Control). To

illustrate adaptive control, several methods will be described, including fuzzy

logic, neural networks, rule-based and semi-active systems. The following chart

diagrams one scenario for the actions of an adaptive system.
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Figure 2.5 Adaptive control flow diagram

This chart differs from the active control chart as follows. Firstly, the optimal

action is able to draw on some weighting scheme, which can be set in place or

learned by the system throughout its life-cycle. Secondly, the action taken as a

result of the optimal action computation can be more varied including alterations

to actuator locations or real-time system property changes.

2.3.2 Fuzzy Logic

Fuzzy logic systems provide a set of rules that determine necessary feedback.

The 'fuzziness' in this scheme is that the rules are not based on TRUE-FALSE

19



tests. Instead the rules allow for regions where the criteria may be partially

satisfied. Relations between rules and weighting functions are defined. The

weighting functions are determined prior to system installation and are kept

constant throughout the life of the system. Fuzzy control is an application of

fuzzy set theory (Zadeh 1964).

The advantage of fuzzy control over binary control is that the trade off between

priorities more closely resembles the human decision-making process.

Additionally, vague input loadings can be more easily classified. This is

understood by examining a temperature control device. Binary control would

classify the temperature as too hot or too cold. Fuzzy control adds classifications

such as warm, cool, humid, etc...

A.W. Nicklisch, 1999, illustrates fuzzy control applied to adaptive prestressing of

a concrete beam. In his thesis, fuzzy logic is used to determine the amount of

prestress force to apply to the high strength steel tendons, at any time, based on

state feedback of the strains in the beam. The benefits of this system are clear

when the entire construction process is considered, i.e. unloaded beam to fully

loaded beam.

2.3.3 Neural Networks

Artificial neural networks is the area of adaptive research that is envisioned as

most promising for the goal of creating smart or intelligent systems. These

networks differ tremendously from fuzzy or rule-based systems in that they

follow no rules for decision-making. The network has an input layer, which

20



receives sensor data. This data is passed to one or more hidden (middle) layers

containing transfer functions and weightings. The resulting transformed data is

passed to an output layer. The output layer receives information about system

state and checks this with the prediction determined by the transfer functions

contained in the hidden layers. Corrections are then made to these transfer

functions and weights. The system requires a tremendous amount of training as

it is experience-based rather than knowledge-based.

Applications are quite varied including but not limited to construction operation

and management, damage detection, structural monitoring, structural analysis

and soil mechanics. Rafiq et al. explore the application of neural networks to

optimize a reinforced concrete beam section in Artificial neural networks aid

conceptual design. The neural network is named for the interconnectivity of the

nodes and the closeness it bears to a simplified human decision-making scheme.

2.3.4 Rule-Based Systems

Rule-based systems are designed with a set of rules, which determine when and

how control will be implemented. These systems are similar to those entitled

Knowledge-based or expert systems. The idea is to determine the parameters of

the system that are to be controlled. These parameters are then given some type

of bounds and are monitored. If these bounds are crossed, a corrective action is

prescribed based on some optimization algorithm. The system does not require

any training. The boundaries are established for well-known limitations, such as

the maximum stresses allowable at a specific location. The rules then specify a

corrective action, which attempts to minimize this same quantity.
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A typical rule scheme might be to prioritize structure response and control force

cost while accounting for control force limitations or saturation. The sensors will

be placed at locations that are determined based on the required system

information. Feedback from the state and or the loading can determine the

course of action. Most of these systems do not improve with experience. Often

the rule system is in place at installation and is not able to write new rules for

itself. Even in these cases, the algorithm can be replaced with an improved

scheme and placed to use the existing actuator framework. The control

algorithms suggested in this thesis are rule-based.

2.3.5 Semi-Active Control

Semi-Active control is a combination of active control schemes with adaptive

materials. Semi-active devices receive an input of power, as active devices do,

but they do not input energy into the structural system. Instead, the power is

used to alter some property of the device itself, allowing it to remove energy

from the controlled system. The properties altered may be either the physical

configuration or the rheologic properties. System energy removal is often

accomplished through negative velocity feedback, providing an energy sink.

The systems proposed in this thesis use a semi-active feedback device.

22



3 Control Devices

3.1 Overview

Structural control, in its many forms, relies on a coupling of the structural control

algorithm and the control device that carries out the actions deemed optimal.

Often, it is this combination that determines the success of the control. The

different control methodologies previously described, and their variants, are

implemented by a host of mechanisms and actuators. The devices may be

loosely classified as passive, active, adaptive and semi-active devices. Although

the focus of this chapter will be on a semi-active device solution, the other types

will be briefly described.

3.2 Passive Devices

Passive control devices are built in place with no intent to alter configuration or

performance throughout their life cycle. This requires a very good idea of what

type of control may be required of this system in the future. These components

may be divided into stiffness and damping devices.

The stiffness devices provide a response to displacement within the structure,

similar to the function of a spring for the typical 'mass on a spring' scenario.

Their function is to change the structural response by altering the natural period

of the system. Examples of stiffness devices include shear walls, cross-bracing

and base-isolation systems.
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The damping device is a mechanism to remove energy from a system and to

limit the peak dynamic response measures. These devices often perform this

action as a function of the system velocity. Dampers include friction, viscous and

hysteretic devices to name a few. Friction devices respond to a change in

displacement with energy absorption proportional to the amount of

displacement. Viscous devices remove energy through cycles of system motion,

with a response force proportional to the velocity at any instant. Hysteretic

devices are mechanisms that experience plastic deformation with energy

absorption through cycles of material deformation. One common geometric

configuration is the piston damper, similar to the shocks on a car. All structural

systems have some passive damping, even if small, due to the natural friction

between system/building elements during dynamic action. This is included in

system models as structural damping.

3.3 Active Devices

Active control devices differ significantly from passive devices. Where passive

devices seek to remove energy from a system, active devices often seek to add

energy that provides a response to an external energy forcing. To visualize,

imagine a wind gust forcing a structure to bend leeward. One type of active

device could seek to provide a real force, which would oppose this leeward

displacement, resulting in no actual structural deformation or displacement, or at

least a greatly reduced response. These devices are often called actuators. The

most common configuration is that of the linear actuator, shown in Figure 3.1.

Hydraulic, electro-mechanical or electro-magnetic forces often drive these

systems.
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Structure Actuator

Figure 3.1 Linear actuator

The ensemble of active control actuators is immense, including but not limited to

active mass drivers, active tuned mass drivers, active tendon systems, active

variable stiffness devices, the previously mentioned linear actuators and

combinations of these devices. The advantage to this type of response is

apparent; the structure may take action to prevent excessive deformation. The

limitation is that an accurate estimate of the potential loadings must be known to

design the system.

When choosing actuators, the goal is to find a mechanism capable of delivering a

large response force in a very small amount of time. It is also preferable to

choose a device that will operate from a relatively small power source. Typical

devices for civil structures provide feedback forces on the order of a

meganewton. This feedback is required, in the case of earthquake loadings, to

respond on the order of milliseconds. These criteria will shape the choice of

actuator technology used in the control scheme outlined in this thesis.

The active variable stiffness (AVS) devices are categorically classified as active

devices, but do not actually add energy to the system. Instead, these devices
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change the dynamic response properties of the structure by altering its natural

frequency. Kajima Corporation utilized the active variable stiffness system for

adaptive control of building structures. Their system uses chevron bracing,

which is able to engage or disengage. This state change is accomplished by

attaching some type of clutch mechanism or a small hydraulic actuator to the

connection joint of the bracing. The device is useful for control because it is

operated by an extremely small power source and is rapidly shuttled between its

active and inactive state. Inclusion of multiple AVS devices provides a great

range of variability of the system stiffness, but it is understood that this

variability is only available in discrete steps as the clutch mechanisms are either

on or off.

3.4 Adaptive Materials

Adaptive materials have an ability to alter their rheological properties. Examples

include piezoelectric actuators, shape memory alloys and controllable fluids.

Piezoelectric materials respond to an input current by a combination of

expansion-contraction similar to the poisson effect of conventional materials.

Shape memory alloys are materials trained to a specific shape before use. They

are then reformed into another shape and put in place. An increase in their

temperature will cause them to revert to the trained shape. Controllable fluids

include electrorheological and magnetorheological materials. These two

materials change their yield stress by application of an electrical current and a

magnetic field, respectively.

These materials have been tested and used in many applications. One of these

applications is in the area of wave control. A specific example is the
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soundproofing of automobiles, by the process of active noise control, Modelling

and Control of Adaptive Mechanical Structures. The materials of the roof are

designed to disrupt incoming sound waves, by changing their shape, causing

destructive interference. Additional early uses are in the aeronautical field for

reduction of flutter in structural members and in the robotics field for sensing

and causing small motions. Unfortunately, most classical uses of adaptive

materials can produce forces only on the order of hundreds of newtons. This has

reduced their usefulness for civil structural applications, which require forces on

the order of a meganewton.

3.5 Semi-Active Devices (MR Damper)

Although there are several varieties of semi-active systems, the discussion here

will center on magnetorheological (MR) fluid and its use in a piston-configured

damper. Rheology is the study of deformation and in MR fluids a magnetic field

causes a change in the deformation properties of the fluid. MR fluid is the next

step in the evolution of semi-active materials, following electrorheological (ER)

fluids. Current advances in MR fluid research and development have shown it

capable of providing a response force on the order of 20-50 times that available

from the ER fluid (RheoneticTM Magnetic Fluids & Systems) with a reduction in

both the power required and the response time. In light of this, and the

scalability of these systems required for even the smallest civil structures, it is

believed that MR fluid will eclipse this market, much diminishing the use of ER

fluid.

This type of device may be envisioned as a shock on a car, similar to the passive

equivalent viscous damper. The difference is that this shock can change the fluid
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it contains to suit the particular bump that it is currently being subjected to, i.e. it

provides more resistance to a larger bump than to a smaller bump. This

maximizes the effect of the damping and aids prevention of the rapid

acceleration caused by moving the shock to its limit or 'bottoming-out'. An

additional benefit is the reduction of susceptibility to instability, often caused by

fully active feedback, as previously discussed.

MR fluid is a mixture of a hydrocarbon fluid, such as oil, and iron particles.

These particles are encouraged, by adjustment of fluid densities and various

admixtures, to remain as thoroughly dispersed throughout the fluid as possible.

Although knowledge of magnetorheological fluids is not new, it is the reduction

in gravitational settling that has caused renewed interest in their application.

The operation is then very simple. Application of a magnetic field across the

device containing the fluid encourages the particles to align themselves forming

a chain. This alignment causes the viscous fluid to gain a yield strength causing

a response similar to the Bingham solid. The process may be visualized as

follows.

Magnetic field

00

Passive Bingham Solid

Figure 3.2 Magnetorheological fluid activation
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The Bingham model is composed of a Coulomb friction element placed in

parallel with a viscous damper. The feedback force, F, that this model provides

may be represented by

F = f, + f, + f, (3.1)

In this formulation, fc represents the frictional force and is applied in a direction

opposite to the system velocity. The term f, represents the velocity-proportional,

viscous damping effect of the fluid with or without a magnetic field applied. This

portion of the force is relatively small, when considering dampers scaled for civil

structures. It may, therefore, be included in the system damping parameter as a

constant and excluded from the control concerns. The last term, f, accounts for

the geometry of the physical device. In the case of the damper configuration, it

would represent an accumulator, which would create an internal pressure in the

damper to prevent fluid cavitation. This leads to a small nonzero quantity for

the velocity activated feedback force of the damper on the system, at all times.

System control occurs through adjustment of the frictional force, f, by alteration

of the fluid yield stress. Yang et al. describes ramping up of the yield stress in

terms of the simple resistor-inductor circuit powered by a current driver, as

shown in Figure 3.3.

R

i(t) L

Figure 3.3 Simple model of the electromagnet circuit
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The model is created to express the amount of time required for the damper to

attain a specified yield strength as a function of the current in the coil which is

proportional to the voltage applied to the system.

the circuit is

The governing equation for

L i(t)+ R -i(t )+ i(t)= id
dt2 dt

where

L coil inductance

R coil resistance

di -desired current

i(t) = circuit current at time = t

The required voltage, V(t), is incorporated in the following feedback loop.

-v(t )= y{id - i(0)
dt

(3.2)

(3.3)

where y is the proportional gain. Adjustment of the gain to achieve an

underdamped system ((= R /(24 yL) <1) results in much faster response times.

The first time at which the current attains the desired current is

_ 2L (;r - arctanB) (34)
R fl

where #l= (4yL)/R 2 -1. This electromagnetic circuit was evaluated for 2 coil

configurations, parallel and series. The shortest response time was obtained for

the parallel configuration.
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Unlike other types of actuation devices, MR devices have the potential to

respond in milliseconds. Thus, the limitation for control concerns is the time it

takes to shuttle the coil current between two specified values. This is dependent

on the available voltage, equation 3.3, and the device configuration. The 20 ton

(200 kilonewton) device tested at the University of Notre Dame required approx

0.014s to increase its feedback force by 10 kilonewtons. The time to reduce the

force was found to be even less at 0.009s per 10 kilonewtons.

The only major manufacturer of MR devices, currently, is the LORD Corporation

of North Carolina. Their most popular mass-marketed device using this

technology is a truck seat motion-damping device. LORD Corporation has also

produced several prototype dampers for University experimentation (B.F.

Spencer et al.).
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4 Control Algorithms

4.1 Time Invariant Active (Semi-Active) Control

4.1.1 Method

To approach system control, a goal must be established. This goal may be

thought of as the combination of the system parameters to be controlled as well

as the desired performance of these parameters due to the control. The goal

chosen for this thesis is to minimize both the displacement of the system and the

magnitude of the damping force necessary to control the system motion. To

enable attainment of this goal, data such as an estimate of the structural

response, the input loadings, and the effect of system alterations is desired.

Structural response and input loadings will be supplied by structural

monitoring. Sensors will be placed at discrete locations that enable

determination of the necessary physical data, such as relative displacement of the

structure with respect to the ground and the ground motion. The remainder of

the data will be determined by mathematical approximation as part of the semi-

active control algorithm. The process will be use a quadratic performance index.

To begin, the methodology for determination of structural state will be

discussed.
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4.1.2 State Predictor

Prediction of structural motion can be performed by a variety of routines. One

such method is to approximate the equation of motion with a finite difference

scheme called the Central Difference Method. The method is termed explicit

integration because the information that is sought is future information based on

past data. The derivation may be found in Appendix A. The resultant

recurrence equation is shown below.

2m c m
_ At 2  -k__ _____

u++ t fu + 2At At 2 U1 + r-}maj + Fj) (4.1)
m c Km + m +

At 2  2At At 2  2At At2 2At

where m, c, k are as previously defined and

At time step

Uk displacement at time t = tk

F interval damping force

a discrete earthquake acceleration from ground motion record

The Central Difference Method is conditionally stable, if the time step used, At, is

less than a critical time step, Atc, = T/n, where T is the natural period of the

structure to be controlled. In the case of this thesis, the time step is 0.02 seconds

while the natural period of the structure is on the order of 50 times this time step,

approximately 1 second. This stability assertion may be verified by any standard

Mechanical Vibration/Dynamics reference such as Structural Dynamics: Theory

and Applications, Joseph W. Tedesco et al. It is encouraged, for SDOF, to limit

the maximum time step to a very small value or approximately 0.01T.
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4.1.3 Algorithm Development

Using the conditionally stable displacement predictor presented above, a

performance index will be established for determination of optimal semi-active

feedback. This index, J ,,, is a discrete quadratic cost function which is associated

with the time interval between t and t,.

, = I [qju2 1 + rF2] (4.2)

where u,,,,is as previously described and

q, weighting of displacement at time = t

r, weighting of damping force for interval under consideration

This cost function will be combined with a constraint equation by use of

Lagrange multipliers. This combined equation, termed the Lagrange equation

will then be minimized, based on the fundamental premise that a function has

some minimum and some maximum over a bounded region. This method seeks

to determine the optimal feedback force, F], applied at time, t,. These equations

are formulated in Appendix A and shown below.

u =- 2At 2 u k - 4mu1 + 2 muj, - Atcuj_1 - 2At 2 (- mag,j) (4.3)
q, 4At4

+ 2m + Atc
r) 2m + Atc

F. j u (4.4)
ri (2m + Atc)u
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Numeric solutions for the above equations are presented in Chapter 5. This

thesis will use a semi-active damper to provide the feedback force. This results

in a stable system during algorithm performance for two reasons. The semi-

active feedback device does not add energy to the system and it has a rapid

response, which results in minimal delay.

4.2 Adaptive Control

4.2.1 Method

Application of Adaptive control implies that a property of the system, such as

the damping or the stiffness, will be altered. The formulation to be described

will use the same semi-active damper feedback outlined in section 4.1 as well as

inclusion of several active variable stiffness mechanisms. This will allow further

trade-off between the cost of design, materials, and implementation of the

various control systems. The formulation is similar to that described for the

semi-active system, in that a quadratic performance index is established. The

difference is represented by the addition of a third term representing the

alteration of stiffness as well as the choice to begin the formulation with non-

dimensional control parameters.

Control will focus on a weighting scheme applied to three ratios; the

displacement at the next time step divided by the allowable design displacement,

the change in system stiffness divided by the initial or passive system stiffness,

and the semi-active damper feedback force divided by the maximum force that

this device may apply. The displacement parameter is optimized when the

displacement at the next step is a very small fraction of the allowable

displacement. This is the most important parameter, providing the need for
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control. The stiffness parameter is optimized when the system stiffness is kept at

the passive level. This encourages minimal alterations in system stiffness leading

to better performance of the algorithm for both predictive ability and

minimization of response time delay. The force parameter is optimal when the

device is left in its passive state, which has near zero feedback.

4.2.2 Algorithm Development

The formulation begins with the discrete quadratic cost function associated with

the time interval between t, and t,, given in Equation 4.5.

1 u 2 Ak 2 F

JJJ+1=l -auUj 2 +ak Ak J +aF Fma2j(4.5)
2 (U a) ( ko Fm

where uj+1 and F, are as previously described and

au,k,F=- parameter weightings

ma allowable design displacement

Ak, change in system stiffness for

k0 = initial (passive) system stiffness

max semi-active damper device capacity

Using this cost function and the finite difference equilibrium equation defined in

section 4.1.2, the method of Lagrange multipliers is again implemented (see

Appendix A). The formulation provides 4 equations.
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a +2(2m+ Atc)um = 0 (4.6)

akj +(2Atu, , =0 (4.7)

aF F + A(- 2At 2F)F =0 (4.8)

maxx+r ~ _

[2m + Atcu j' ax + [2At 2u k + k' jkJ + [- 2 At 2  F jj --.

+ [- 4mu1 + 2mu 1 - At2magj =0 (4.9)

The simultaneous solution of these equations for the parameter ratios and X may

be obtained as functions of the system state and the x weighting terms.

Numerical application of this algorithm is contained in Chapter 5, with Matlab

Script attached at Appendix B.
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5 Application of Algorithms

5.1 Time Invariant Active (Semi-Active) Control

5.1.1 Overview

The routine that will be followed in applying the time invariant active control,

with a semi-active device, begins with the SDOF system at rest. The semi-active

damping mechanism will be in its passive state, which has some small damping

due to the viscosity of the hydrocarbon fluid. The sensors attached to the system

will be active at all times. There will be an allowance for ambient motion, but

when some threshold displacement, u', is exceeded, the system will begin

recording data points, including the ground motion and the relative

displacement and velocity of the lumped mass system with respect to its base.

Once several sensor data points are acquired at a discrete time step of 0.02

seconds, the algorithm will begin operation. The first step will be to determine

the optimal damper feedback force and to place the damping mechanism in a

state to provide this feedback. The system will, in essence, adapt in a manner it

perceives as best to meet the performance criteria. It will attempt to both reduce

its displacement and to minimize the amount of damper force and input power

used to meet this goal. The feedback force will be constrained by device minima

and maxima, but can be rapidly altered between these two states, depending on

the power source used and the damper physical configuration (see Section 3.5).

The system performance will be tracked with a discrete dynamic equation of

state-space form. The input state will be used to predict the state at the next time

step by considering the external loading and the damper feedback force to be
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constant for the time step. This Matlab script for this experimental process is

formulated and included at Appendix B.

5.1.2 Numerical Results

To approach numerical implementation of the control algorithm, a set of

parameters was chosen for the SDOF, in its passive state, as shown in Table 5.1.

Table 5.1 Uncontrolled SDOF properties

Additionally a large group of earthquake records was obtained to allow multiple

input loadings to be tested with the differing performance parameter weightings,

i.e. altering the q in the quadratic performance index. With this large ensemble

of earthquake records it was possible to produce results for impulsive as well as

lengthy records. These records were not scaled since the performance of the

control algorithm for lower magnitude accelerations as well as for those on the

order of gravitational acceleration was of interest.

To begin, the results for the sinusoidal ground acceleration will be shown. While

this record is not a true test of the system for field loadings, it is a way to show
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Parameter Value

Mass 5,000 kg

Stiffness 200,000 N/m

Percent Damping 2 %

Natural Period 1 s



trends in the algorithm functionality. This record was given a peak ground

acceleration equal to that of gravity, 9.81 m/s 2 , as well as a frequency of

excitation equal to 27c. This frequency is equal to the natural frequency of the

uncontrolled system and is, thus, a worst-case scenario for resonance

susceptibility. Based on the passive control described in Chapter 2, it is known

that the dynamic amplification is set to its maximum. The following figures

illustrate the effect of changing the displacement weighting factor, q.

In the source code used to run this simulation, the q has been multiplied by a

scaling factor deemed suitable for a SDOF system with this formulation. The

reasoning is to yield an algorithm that may be altered by changing the value of q

only. The r, which is the weighting associated with the feedback force, is

allowed to remain at a value of 1, following the format of classical control. The

scaled q is altered, to determine importance of the displacement versus the

feedback force, but is also on the order of 1. Figure 5.1 shows the resulting

system equivalent damping, caused by the semi-active damper feedback, for q=1.
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Figure 5.1 System impulse response (q = 1; E, = 3.4%)

The damping is obtained by subjecting the system to an impulsive loading and

monitoring the vibration decay due to feedback. The logarithmic decrement is

determined from peaks of the vibration, separated by two cycles. Figure 5.2

shows the resulting system performance, for this relatively low damping and

displacement weighting, to a sinusoidal ground motion input.
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Figure 5.2 Normalized semi-active system responses to sin load (q = 1)

These graphs show a decrease of the displacement that is small relative to what

is possible for the simplistic sinusoidal ground motion. Figure 5.3 illustrates a

much greater decrease in this displacement and is, in fact, the greatest decrease

obtained for any of the ground motion evaluated with this control algorithm.
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Figure 5.3 Normalized semi-active system responses to sin load (q = 4)

The characteristic that distinguishes this reduction and weighting is that the

system is still responding in an under-damped manner, with an effective

damping ratio of 20.0%. Figure 5.4 illustrates the system damping for this case,

with q= 4.
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Figure 5.4 System impulse response (q = 4; , = 20.0%)

The transition through critical damping into an over-damped system begins to

occur as the q value is further increased. Figure 5.5 illustrates the over damped

system response.
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Figure 5.5 Normalized semi-active system responses to sin load (q = 6)

The over damped vibration decay, corresponding to this system response is

illustrated in Figure 5.6. The effective damping is well over 100%
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Figure 5.6 System impulse response (q = 6; Over-Damped)

Appendix B contains several sets of graphical output for system response due to

a set of 4 randomly chosen earthquakes. They are meant to illustrate the

correspondence in the algorithm's performance between the sinusoidal input

shown above and real input. The values obtained for the displacements and

forces for the sinusoidal loading are illustrated in Table 5.2.
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Table 5.2 Semi-active system performance to sin load and varying q

Displacement Weighting, q 1 4 6

Controlled Displ. (m) 2.7569 0.8913 0.8937

Uncontrolled Displ. (m) 5.8372 5.8372 5.8372

Max Force (N) 1.04 x 10' 1.35 x 105 2.02 x 10"

Reduction of Displ. (%) 53 85 85

Effective Damping 3.4% 20.0% Over-Damped

Table 5.4 presents these response quantities for the test set of earthquakes, which

are taken from El Centro, Pocoima Dam, Taft, and Kobe. These values are based

on earthquake records, acquired from the FEMA website, attached to the free

NONLIN program (Appendix B). They were converted to use as input for the

Matlab script attached at Appendix B. All records were provided at a time step

of 0.02s, which is why the sinusoidal input accelerations were also taken at 0.02s.

The scaled q values are the same as those used for the sin loading to compare

performance. The earthquake ensemble has peak values as shown in Table 5.3

Table 5.3 Earthquake ensemble characteristics

Earthquake Ag max Type
(m/s2)

El Centro 3.42 Early Peak, then lower accelerations

Pocoima Dam 10.55 Clustered high accelerations, 0-10 s

Taft 1.76 Early Peak, then distributed reduced peak
accelerations

Kobe 8.18 Clustered high accelerations
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Table 5.4 Semi-active system performance to 4 test earthquakes and varying q

Displacement 1 4 6
Weighting, q

Imperial Control Displ, m 0.1291 0.0763 0.0717
Valley, El
Centro, May Uncontrol Displ 0.1673 0.1673 0.1673

18 1940, 270 Max Force, N 4.90 x 103 1.15 x 104 1.60 x 104

degrees

Displ Reduction, % 23 54 57

San Control Displ, m 0.2142 0.1809 0.1664
Fernando,
Pocoima Uncontrol Displ 0.2332 0.2332 0.2332

Dam, Feb 9 Max Force, N 8.15 x 103 2.74 x 104 3.77 x 10 4

1971, 196
degrees Displ Reduction, % 8 22 29

Kern County, Control Displ, m 0.0399 0.0460 0.0323
Taft Lincoln
Tunnel, July Uncontrol Displ 0.0499 0.0499 0.0499

21 1952, 69 Max Force, N 1.52 x 103 6.96 x 103 7.29 x 10 3

degrees

Displ Reduction, % 20 8 35

Kobe, Japan, Control Displ, m 0.3672 0.2858 0.1772
NS
Component Uncontrol Displ 0.4274 0.4274 0.4274

Max Force, N 1.40 x 104 4.32 x 104 4.01 x 10 4

Displ Reduction, % 14 33 58
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5.2 Adaptive Control

5.2.1 Overview

The adaptive control algorithm is physically implemented in a manner similar to

the semi-active algorithm. The system will begin with a zero feedback force,

which is the passive state of the semi-active damper. The stiffness will be in a

state determined optimal from passive design techniques illustrated in Chapter

2. Sensors will be active at all times, recording system and ground motion.

When at least two data points of motion have been obtained, the system will

begin to determine the combination of optimal feedback force and optimal

discrete stiffness.

These values will each be subject to known constraints. The damper feedback

will be restrained to operate only when the system is in motion and will be

limited by device capacity. The stiffness device is allowed to jump by discrete

quantities determined by the amount and type of variable stiffness devices in

use. The state predictor uses a finite difference method to approximate the

equilibrium equation. The dynamic forcing is assumed to be constant over the

evaluated interval, which is a single time step.

5.2.2 Numerical Results

Testing of the proposed adaptive algorithm required establishment of a

numerical single degree of freedom model. The parameters are similar to those

chosen for the semi-active control algorithm, with the exception of the adaptive

stiffness quantities. The chosen parameters are shown in Table 5.5.
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Table 5.5 Adaptively controlled SDOF properties

Parameter Value

Mass 5,000 kg

Percent Damping 2 %

Passive Natural Period 1 s

Passive Stiffness 200,000 N/m

Maximum Feedback 200,000 N
Force

The stiffness values used by the control algorithm will be illustrated with the

system response graphs. To better understand the alteration of stiffness, the 6

possible discrete stiffness states will be represented as shown in Table 5.6. It was

desired to give a range of stiffness values that are possible to obtain with

implementation of a real AVS system.

Table 5.6 System discrete stiffness values (numbers used for graphs)

Testing proceeded by experimentally determining the change in system response

to variation of the parameter ratio weightings, or the x's. The experimentation
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began with the sinusoidal loading, to readily test the feedback and adaptive

system without impulse loadings. The sin loading was established with a peak

acceleration of 9.81 m/s 2 and a frequency of 2n. An additional alteration, chosen

for the adaptive system, was to lower the capacity of the semi-active feedback

damper, specifying F. = 2 x 10' N. This reduction was chosen to illustrate one

situation where adaptive control would be chosen over active control. Often, the

costs associated with scaling a device, like the semi-active dampers, are

prohibitive. In that case, the option of inserting other low cost control devices

should be considered.

The first test was to set all 3 of the a weights equal to 1. This decision was made

because the scaling process is quite complex with three weights and non-

dimensional parameters to be controlled. Figure 5.7 illustrates this test for the

sinusoidal input loading.
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Figure 5.7 Adaptive system responses to sin load (CF=c u=CUk=1 -0)

The responses illustrate several performance trends. The displacement is not

weighted heavily enough to be significantly altered from the uncontrolled case,

with only a 2% reduction in peak displacement. Additionally, the weighting

applied to the stiffness is insufficient to cause a change in stiffness to occur. This
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means that all feedback occurs from activation of the semi-active damping

mechanism. Figure 5.8 illustrates an increase in the weighting of the system

displacement with the weights for the two control systems kept at 1.
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5 10 15 20 25 30
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Time (sec)

Adaptive system responses to sin load (CF=Ck=1 -0; CCu= 0)
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The interesting result seen in Figure 5.8 is the alteration of the system stiffness

and the improved performance caused by this alteration. The graph also

illustrates a critical time at which the AVS is first activated. To understand why

this happens, the formulation must be considered.

The cost function, that is minimized, uses non-dimensional parameters, of which

the variation of u with respect to u allowable is one. This cost function is

independently evaluated at each time, with only the system state as input. At or

near 8 seconds, the algorithm determines that it is now advantageous to affect a

change in the system stiffness to minimize the system displacement. This

determination of optimal system responses continues for each time step, with

results shown in Figure 5.8.

The next case shown in Figure 5.9 illustrates a further increase in the

displacement weighting, with ac equal to 1000. It is noted that the displacement

is almost entirely eliminated for this sinusoidal ground motion.
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Figure 5.9 Adaptive system responses to sin load (QF=CUk=1 -0; cu= 000)

Although the entire system performance is improved, with a 97% reduction of

peak displacement, the stiffness alteration is not used, decreasing the efficiency

of the control method in 2 ways. First, the feedback force is necessarily higher,

55

- -~ . -- - Uncontrolled (Max = 5.8372 rn).

-m ;.. * *l~l



being the only control measure. Second, this good performance, with only semi-

active feedback, is later shown to be valid only for the simplistic sinusoidal load.

With the preceding results as a foundation, the next step was to experimentally

determine weighting schemes that made better use of the available control

mechanisms, with equal or better response reductions. It was found that the

control system allowed almost any type of performance desired, depending on

the weights chosen. This decision would, for an actual structure, depend on the

cost of the associated control systems; passive, active and adaptive. Figure 5.10

illustrates an extremely efficient use of the control systems presented in this

thesis. The weights are set experimentally and provide excellent peak

displacement reductions for the sin load as well as the 4 earthquakes tested.

These earthquake results may be found at Appendix B, with values presented in

Table 5.8, following the sin load results.
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Figure 5.10 Adaptive system responses to sin load (aF=15; au=1e6; a=1e-3

A much smaller time record better illustrates the discrete stiffness alteration. The

30-second records above contain 1500 time steps, which obscure the fact that the

stiffness does not, in fact, follow a continuous curve. Figure 5.11 shows the

stiffness values for the first second of the optimal weighting case of Figure 5.10.
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Figure 5.11 State of system discrete stiffness (numbered in Table 5.6)

Table 5.7 presents the results obtained for the sinusoidal loading presented in the

previous 4 figures. The reduction is an important criteria, but efficient use of

materials and system mechanisms is also a factor to observe when specifying the

weighting values.
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Table 5.7 Adaptive system performance to sin load with varying a's

Weightings aF F=1 FT =1F=1 5

a,=1 C=10 u=le3 a,=le6

a =1 C=1 aC=1 ac=le-3

Controlled Disp1. (m) 5.7557 3.8252 0.2069 0.1175

Uncontrolled Displ. (m) 5.8372 5.8372 5.8372 5.8372

Max Force (N) 2.04 x 103 1.36 x 104 7.05 x 104 1.80 x 105

Reduction of Disp1. (%) 1.4 34 96 98

Use of AVS No Yes No Yes

The apparent decrease in performance between the last two cases presented in

Table 5.7 is the result of testing these weighting schemes on the simplified

sinusoidal loading. When subjected to a stochastic earthquake loading,

equivalent displacement reduction is achieved only by combination of the

damper feedback with the stiffness alteration.

This strong performance is readily apparent when the values in Table 5.8 are

compared. These values are the system responses to 4 earthquakes using the 2

weighting schemes determined optimal for sinusoidal ground motion. The first

weighting scheme has aF=c = and au=1e3. The second weighting places heavy

emphasis on the displacement and a relatively small penalty on changing the

stiffness. The first weighting combination leaves the stiffness at its passive value

for all 4 earthquakes. When the c's are altered to the empirically determined

values, the second case in Table 5.8, the stiffness is altered in all 4 cases, resulting

in superior displacement minimization.
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Table 5.8 Adaptive system performance to 4 earthquakes with varying cc's

Weightings aF=1 aF=15

c=le3 c,=1e6

O=1 c=le-3

Imperial Valley, Controlled Displ. (m) 0.0821 0.0067
El Centro, May 18
1940, 270 degrees Uncontrolled Displ. (m) 0.1673 0.1673

Max Force (N) 2.97 x 104 5.88 x 104

Reduction of Displ. (%) 51 96

San Fernando, Controlled Displ. (m) 0.1184 0.0342

Pocoima Dam,
Feb 9 1971, 196 Uncontrolled Displ. (m) 0.2332 0.2332

degrees Max Force (N) 4.23 x 104 9.80 x 10'

Reduction of Displ. (%) 49 85

Kern County, Controlled Displ. (m) 0.0334 0.0029
Taft Lincoln
Tunnel, July 21 Uncontrolled Displ. (m) 0.0512 0.0512

1952, 69 degrees Max Force (N) 1.17 x 104 3.01 x 10'

Reduction of Displ. (%) 35 94

Kobe, Japan, NS Controlled Displ. (m) 0.1544 0.0157
Component Uncontrolled Displ. (m) 0.4274 0.4274

Max Force (N) 5.52 x 104 6.04 x 10-

Reduction of Displ. (%) 64 96
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6 Summary and Conclusions

Time invariant active control, referred to herein as semi-active control, met the

desires to significantly reduce peak displacements as well as rapidly reduce

residual oscillatory motions. With the randomly chosen test set of 4 earthquakes

as well as the test sinusoidal loading, displacements were significantly reduced

for a range of scaled force weighting values (q's). This illustrates the system

stability given the possible range of these q values.

Several aspects that led to this successful result were the lack of a time delay and

the time step choice. The instantaneous feedback allowed the system to use an

optimal force concurrently with determination of what this force should be. To

obtain similar performance in the field, the power source for the current driver

would have to be of sufficient quantity to provide adequate current-ramping

ability. The exact voltage required may be determined by evaluation of the

damper as described in Section 3.5. The equation of motion estimator ensured

good correlation with the actual system performance by choice of a small enough

time step to ensure its stability. In addition, the use of state information to

update the control algorithm at each time step led to a much more model

insensitive algorithm. This helped to correct the fact that model parameter

estimates can often be incorrect by as much as a factor of 1 from actual in-place

system parameters.

The performance of the algorithm resulted in useful control with the semi-active

damping mechanism. When subjected to impulsive loadings the system was

unable to produce a great reduction of peak displacements. This was
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particularly true when the scaled q value provided an under-damped system.

However, when subjected to clustered high magnitude accelerations, the

algorithm performed well in reducing both peak displacements as well as

rapidly removing energy and its respective oscillations from the system. This

performance was similar when the accelerations were varied between low values

near a tenth of gravity up to those on the order of gravity.

The choice of a magnetorheological damping mechanism ensures good

performance for time invariant active control. The damper unequivocally meets

the needs of a civil structural system subjected to fast loadings such as

earthquakes. The yield stress change is on the order of milliseconds and the

actuator forces possible are on the order of a meganewton. This is even true

when smaller, auxiliary power sources are used, such as a camera battery.

Further investigation of the response of these dampers is recommended for blast

loadings.

The alteration of system performance due to the change of scaled q values was

consistent through all earthquakes tested. The system changed from under-

damped to critically-damped to over-damped, between roughly q = 1 to q = 6.

Although some of the greatest displacement reductions occurred for q >= 6, the

forces were also significantly higher and the displacements exceeded

uncontrolled response occasionally, although oscillations were virtually

eliminated. This instability sometimes provided a random pattern of high

displacement values. The over-damped state probably also causes very high

initial accelerations due to the extremely rapid ramp-up of the damper feedback

force. The difference in the effect on the structure can be visualized by
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comparing a ball hitting a soft wall (over-damped) as opposed to hitting a net

that yields (under-damped).

Adaptive system control yielded a marked improvement on the time invariant

system control. The complexity in implementing this system is the

determination of the weighting parameters. Although there are several

combinations that caused superior performance in the tested earthquakes, there

were also some combinations that gave vastly different performance results for

different types of input loading. The evolution to this type of control from

purely time invariant is a logical step, as illustrated by the test results. In the

single degree of freedom case, this is relatively straightforward to visualize. As

more aspects of the system are changeable, the response to loading can also be

more varied, often beneficially.

The addition of an adaptive stiffness device to the single degree of freedom

system meets the performance criteria desired for control devices. The AVS is a

relatively inexpensive addition to passive bracing systems. Additionally, the

alteration of stiffness state, by operation of the locking mechanisms, is very fast

and may be performed by a small power input. Thus, the system gains greater

variability leading to improved performance without degradation due to

additional time delay or power requirements. The change to use of the AVS with

the semi-active damper, in lieu of a much larger force actuator allows for cost

reduction by lowering the requirements for creating larger, untested hardware.

Further evaluation of the adaptive algorithm should investigate a wider range of

systems. This would include multiple degree of freedom systems as well as

alterations of damper and AVS constraints.
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Appendix A

A.1 Derivation of State-Space Equation of Motion

State-space formulation for the motion equation will be used for active control

methodologies. Given the well known second order differential equation of

motion, state-space provides an easily solvable single-order differential equation

representation as follows.

dti .. c . k 1 1
d - a = ---- u +-p(t)+-F(t)
dt m m m m

X =AX + B, p+ BfF

X Xt= u t ,
utit )-

~[0 1
A = k c ,

_ m M

0
B, = B, _

M _

(A-1)

(A-2)

(A-3)

where

p p(t) = p sin(Qt) periodic external forcing function

F = F(t) = -Kf X - negative linear feedback

Kf = [kd

(A-4)

(A-5)

(A-6)k,], where kd & k, are displacement and

velocity feedback constants

The solution is obtained using the exponential function for first order differential

equations (S.J. Kim, 2000).

(A-7)

(A-8)

e-At =e-AtAX +e ~A (Bp + B, F)

e-At k-e-AtAX =e-At (Bp + B, F)
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Noting that de-^tX = e-^X - Ae ^X.,
dt

de-At X = e-At (Bp +BF) (
dt

Substituting the dummy variable t and integrating both sides from t=t, to T=t,

e-A X(Z) I' = f e-A(BPp(r) + BfF (r))d (A-

-9)

-10)

e-At X(t)- eAtto ) = e-Ar (B, p()

e-At X(t) = e-At X (t )+ Je-A(BP p()
to

+ Bf F(r))dr

+ BfF())dr

(A-11)

(A-12)

Multiplying both sides by eAt,

X = e^('-'" ) X (to )+ feA(t) (Bp(r) + Bf F(r)dr (A-13)

If the feedback force and the external loading are assumed constant over a small

change in time (At = t - tQ), the above formulation can be changed to a discrete

equation.

X = e^ AX (to

X =eAX(to)+(Bpp(to ) + B, F(t))e^ (- A-' ' It

Resulting in the following equation for discrete active control.

X =eAX(to )+(A-1'Bpp(to)+ BfF(to)XeA - I)
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(A-15)

(A-16)



This equation may be used to find X at subsequent times by setting t=t,,, and t0=t,,

implying (At = t,,, - t). Additionally, the above formulation may be extended to

adaptive control by allowing the system parameters, k and c, to vary with time.

The formulation assumes them to be updated at the beginning of the time step

and to remain constant for At.

X,,1 =e^X 1X,+ A e '" -IB,p, +BFj) (A-17)

68



A.2 Derivation of Classical Optimal Feedback Matrix

Introducing the quadratic performance index, J for linear negative feedback

(F =KfX).

J = (XTQX + F RFdt (A-18)

where tf is much longer than the loading duration

XT (Q + K RKf )Xdt

Free vibration, for instantaneous feedback, is governed by

Z = AcX = A - BKf )X

Expressing - d(X THX)= XT (Q + K RKf), leads to
dt

(XTHX)= ZT HX + XTHZ = ATX HX + XTHACX = XT(ATH + HA)X
dt

.-. T -T K =AH + H Ac.(Q+KfRKf)=A[HHA

Integrating the performance index with this change of variables, yields

J= 1 x T (o)HX(o)
2

Requiring J to be stationary with respect to Kf, leads to SH=O.

SA[TH + SHA[ + SHAC + SAcH = -K TRK, - K RSK

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)
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but SA, = -BfSKf , and SH=O, which leads to

-B T K T H - HBf K = -SKT RK, -KRSK
f f f~ f fI

SK (B H - RK,)+K,(HB, - K R)=0

which is satisfied for arbitrary 8K, if Kf optimal is

K, = R'B H

substituting the above value for Kf into (A.2-5) yields

AT H + HA - HB, R-1BfH=-Q

where H is found by solving the continuous time algebraic Riccati equation.

70

(A-25)

(A-26)

(A-27)

(A-28)



A.3 Derivation of Displacement Predictor

The system predictor will use the Central Difference Method derived as follows.

To begin, the Taylor Series expansion of the displacement parameters is shown.

At2 At' d'
u1 , =u +Ata+ A +-- -t dt + (A-29)

j+ i i 2 ' k!y dtkJ)

_ =u - Ata +At2 - --+(-1)k At u + (A-30)
j2 ' k! (dtkJ

Subtracting vertically the left side and the first 2 terms of the right side of the

above equations results in:

I u= + -us ) (A-31)
2At

Adding the first 3 terms from the right hand side yields:

i5 (ujI - 2u, +U_) (A-32)
At 

(A-32)

The above approximations of the system velocity and acceleration have error of

order At 2 or smaller. This will not cause significant error for very small At, which

is the case for this formulation. These results are then substituted into the single

degree of freedom equation of motion.

mdj + caj + kuj = -magj + F (A-33)

m[ (ujgl - 2uj + uj, + c[ (ujgl - uj,) + ku, = -mag + Fj (A-34)

m m m C -C

mmu. + mu,_ + u, c 1 u +ku.=-mag +Fj (A-35)
2At 2 U 1j, At 2

1 + 2At 2 2At + u 2At
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Collecting like coefficients of the displacement terms and rearranging

C 2At 2

2C m+ 2At)uj~l At 2
C

2At
(A-36)

2At2 -1 mag,j +

Isolating the desired future state term (displacement) results in the following

recurrence equation.

Sj+1

2m k
At

2

m C

At 2 2At

u

C m

2At At 2

m C
An+

At2 2At

I K_1 + M (-ma,, +F )

At2 +2At,

(A-37)

This equation is converted to a form which allows ease of use in further

computation.

2mu j+1 + Atcu 1+1 + 2At 2 ku1 - 4mu1 + 2mu 1 - Atcu 1 + 2At 2 ma , - 2At 2Fj = 0

(A-38)
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A.4 Derivation of Optimal Time Invariant Active Control Feedback

To begin, a discrete quadratic cost function incorporating the displacement and

the magnitude of the damping force as well as weightings for these two

parameters is stated.

1,+1 = [qu + rF] (A-39)

The next step is to establish a function incorporating the cost function and the

Central Difference Method recurrence equation by use of the method of

Lagrange multipliers (Dettman, 1988). Begin by rearranging the recurrrence

equation and renaming to obtain F.

D = 2mu+, + Atcu j+1 +2At 2 ku. - 4mu. + 2mu_1 - Atcu 1 + 2At 2 magj - 2At 2Fj = 0

(A-40)

Then combine the above equations into a function called the Lagrange equation.

L = Jjgi + (A-41)

where

L = L(u+ 1 , Fj,,) (A-42)

The next step is to minimize this function with respect to the chosen performance

criteria, uj,+ and F,. The chosen method is to use the first variation of the

equation, where for f = f(x,), the 1" variation of f is df = dxi. The necessary
axi

condition is that the first variation equal zero for arbitrary dx. The optimization

process is an example of the steepest descent concept, which seeks a vanishing
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displacement at each instant. This concept is expanded to the Lagrange equation

above, as follows.

dL = ((J, 1++),, Dkiu 1+1 + ((J1 )+, F + 2
IF jdFj

where

(J,,+1 ),uJ+, = qgjuji

(JJ, 1+)F, = rjF

<D,u = 2m+ Atc

D,F =-2At2

Setting the parenthetical terms of equation A-43 equal to zero leads to equations

A-48 and A-49, which in combination with the recurrence constraint equation A-

50, may be solved for the 3 variables u+,,, F,, X.

qiu1+lj(2m + Atc) =0

rF, +A(-2At2=0

(A-48)

(A-49)

2mu +, + Atcuj, + 2At 2ku1 - 4mu. + 2mu _- - Atcu-11
+ 2At 2 ma , - 2At 2 Fj = 0

(A-50)

Solve equation A-48 for X.

2m + Atc

This can then be substituted into equation A-49 leading to
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F -2At 2  u (A-52)
r(2m + Atc)(A

which, in turn, may be used to solve equation A-50 for u,,,.

2At 2 u k - 4mu1 + 2 mu j - Atcu 1 - 2At 2 (- ma,,) (A53

4At 4  + 2m + Atc

r, 2m + Atc

These results lead to the sought after parameter, which is the amount of damping

force desired from the semi-active damping mechanism.

F =-- 2At 2 -(&2Atu k - 4 mui + 2mu-,_ - Atcu., + 2At2magJ) (A-54)

4At 4 + (2m+ Atc)2

qj

It can be seen from this form that the damping force is proportional to the

weighting applied to the displacement in the quadratic cost function, i.e. as q,

increases, F, increases. These weightings can be adjusted to affect the importance

of the two control parameters.
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A.5 Derivation of Adaptive Control Algorithm

The adaptive control algorithm begins with a choice of control parameters. This

use non-dimensional control parameters to clarify

parameter weighting process.

presented.

2

jj+ auH{: j+1 2
2 u na

the

To begin, the quadratic performance index is

J F max

(A-55)

The constraint equation for this formulation is the recurrence equation, derived

by the central difference method, with inclusion of the non-dimensional

variables. This equation is then renamed, for convenience, as D.

0 = [2m+N + [2,t 2 u k+ t F.
max t". o+ k + F ma

4max Lmax

-- + I-+4mu +2mu1.1 - Atcu1 1 +2At2ma gj=O (A-56)

Combining these two equations by the method of Lagrange multipliers results in

the Lagrange equation.

L = Jj, + A (A-57)

where

L = + -uj j
u k F4 ax 0 max

A) (A-58)

The next step is to minimize this function with respect to the chosen performance

criteria; u j+/um, Ak/k, and F,/Fma*
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+ , d j + (J** )'l,,, +2CD,I d ...
un max k, k } /

(J ~~),= ra u+1

um Umax

(j 1 j+1 ),Ak,
k0

= ck (Ak.

ko

(jj Fj =aF FjJF

F. (max

( Uj+1 =(2m+ Atc)umax

Dk =(2At2uj X"
ko

F.

F.

2 At 2)Fx

Setting the parenthetical terms of equation A-59 equal to zero leads to the

following 3 equations.

au u*j- + A(2m + Atc)U = 0

.Akc +2(2At2U ) 0

(A-66)

(A-67)
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jj+1 F, F m F

F.F. \.max/

where

(A-59)

(A-60)

(A-61)

(A-62)

(A-63)

(A-64)

(A-65)

dL = (JjIj+I)IUj+I
Urnax



aFF + A(- 2At2)F = 0 (A-68)
F , max

The next step is to simultaneously solve equations A-66, A-67 and A-68 with the

recurrence equation, A-56, for the 3 parameter ratios and X. These solutions are

quite algebraically cumbersome, and are therefore, only available in the Matlab

script file for the adaptive control case, found at Appendix B. The solution is

then used to determine optimal values of the semi-active damper feedback force

as well as the discrete step in system stiffness. These values are adjusted by

altering the c weighting values, similarly to the q and r terms in the semi-active

control case.
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Appendix B

B.1 Time Invariant Active (Semi-Active) Control Script

% Jesse Beaver
% Semi-Active Control Algorithm

% Loading is ground motion
% Records obtained from FEMA

clear all
clc

% Start time
tic

% Define system variables

k = 2e5;
m = 5e3;
c = 1.25e3;
deltat = 0.02;
Fmin = 0.0;
Fmax = 2e99;
w_n = (k/m)^(1/2);
A = [0, 1; -k/m, -c/m];

B = [0; -1/m];

I = eye(2);

% passive stiffness (N/m)
% lumped mass (kg)
% viscous damper w/ passive actuator (N-m/s)

% time step (s)
% passive actuator force (N)

% max damper response force (N)

% system natural frequency (rad/s)

% System weighting factors to be changed

scale = 1.; % applied to ground motion

r = 1; % applied to feedback force

q-bar = 6. % applied to displacement

q = 4*w_n^4*mA2*q-bar;

% Specify control time
control-period = 30; %time in seconds

numsteps = control-period/0.02;

% Acquire ground acceleration (m/sA2) from .txt files named:

% 1=Impvall 2=Impval2 3=Mexcitl 4=Mexcit2 5=Nridgel

% 6=Nridge2 7=Nridge3 8=Oakwhl 9=Oakwh2 10=Pacoimal

% ll=Pacoima2 12=ParkO4O 13=Parkl3O 14=Sanfernl 15=Sanfern2

% 16=Smonica 17=Kernl 18=Kern2 19=Kobe 20=Sinusoidal Input

Earthquake = 20; %Change this number
switch Earthquake
case 1,

load Impvall.txt
g_acc = Impvall(:,2)*scale;

case 2,
load Impval2.txt
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g_acc = Impval2(:,2)*scale;
case 3,

load Mexcitl.txt

g-acc = Mexcitl(:,2)*scale;
case 4,

load Mexcit2.txt

g-acc = Mexcit2(:,2)*scale;
case 5,

load Nridgel.txt
g-acc = Nridgel(:,2)*scale;

case 6,
load Nridge2.txt
g_acc = Nridge2(:,2)*scale;

case 7,
load Nridge3.txt
g-acc = Nridge3(:,2)*scale;

case 8,
load Oakwhl.txt
g_acc = Oakwhl(:,2)*scale;

case 9,
load Oakwh2.txt
g-acc = Oakwh2(:,2)*scale;

case 10,
load Pacoimal.txt
g-acc = Pacoimal(:,2)*scale;

case 11,
load Pacoima2.txt
g-acc = Pacoima2(:,2)*scale;

case 12,
load Park04O.txt
g_acc = Park04O(:,2)*scale;

case 13,
load Park130.txt
g-acc = Parkl30(:,2)*scale;

case 14,
load Sanfernl.txt
g-acc = Sanfernl(:,2)*scale;

case 15,
load Sanfern2.txt
g-acc = Sanfern2(:,2)*scale;

case 16,
load Smonica.txt
g-acc = Smonica(:,2)*scale;

case 17,
load Kernl.txt
g-acc = Kernl(:,2)*scale;

case 18,
load Kern2.txt
g-acc = Kern2(:,2)*scale;

case 19,
load Kobe.txt
g-acc = Kobe(:,2)*scale;

case 20,
load sinload.txt
g-acc = sinload(:,2)*scale;

end
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% Create system parameter matrices

x = (0:numsteps);
U_control = zeros(num-steps + 1, 1);
U_uncontrol = zeros(num-steps + 1, 1);
K = zeros(num-steps + 1, 1);
F = zeros(num-steps + 1, 1);
P_a-g = zeros(num-steps + 1, 1);
A_g = zeros(num-steps + 1, 1);

% Set initial conditions
X_conti = [5; 0];

X_unconti = [5; 0];

Fj = Fmin;

% Start loading and recording
for i = 1 : 1 : num-steps

time = i * delta-t;
x(i + 1) = time;

% ground acceleration
a_g = le-10; %gacc(i);
A~g(i+l) = ag;
P = -ag*m;
P_a_g(i + 1) = P;

% Create vector of uncontrolled response

X_uncontnext = expm(A*delta-t)*Xunconti + inv(A)*
(expm(A*delta-t) - I)*(B*P);

U_uncontrol(i + 1) = X-uncontnext(l);
X_unconti = Xuncontnext;

% Create vector of controlled response

if i < 2
U_control(i + 1) = U_uncontrol(i + 1);

else % data sufficient to start control

t = delta_t; % rename for convenience

ul = U_control(i - 1);

u2 = U_control(i);

denom = (4*m^2*r+4*m*r*t*c+t^2*c^2*r+4*t^4*q);
F_temp = -*t^2*q*(2*t^2*u2*k-4*m*u2-2*m*u1-t*c*ul-

2*tA2*P)/denom;
if F-temp < -Fmax

F_temp = -Fmax;

elseif Ftemp > Fmax
F_temp = Fmax;

end

if sign(X-contji(2)) == sign(Fj)
Fj = -F-temp;

else
Fj = 1;

end
F(i + 1) = Fj;

X_contnext = expm(A*t)*X-conti + inv(A)*(expm(A*t) -I)*

(B*P + B*Fj);

81



U_control(i + 1) = X_contnext(l);
X_conti = X_contnext;

end
end

% Determine equivalent damping
% use spacing of two cycles
% Ucontrol is matrix of controlled displacements
tj = 50; % begin after 1 second
V1 = 0;
flagl = 0;
while flagl == 0

if Ucontrol(tj + 1) > Ucontrol(tj)
while Ucontrol(tj + 1) > U-control(tj)

V1 = Ucontrol(tj + 1);
tj = tj + 1;

end
flagl = 1;

else
tj = tj+1;

end
end

V2 = 0;
flag2 = 0;
while flag2 == 0

if Ucontrol(tj + 1) > Ucontrol(tj)
while Ucontrol(tj + 1) > U-control(tj)

V2 = Ucontrol(tj + 1);
tj = tj + 1;

end
flag2 = 1;

else
tj = tj+1;

end
end

V3 = 0;
flag3 = 0;
while flag3 == 0

if Ucontrol(tj + 1) > Ucontrol(tj)
while Ucontrol(tj + 1) > Ucontrol(tj)

V3 = Ucontrol(tj + 1);
tj = tj + 1;

end
flag3 = 1;

else
tj = tj+1;

end
end

if V3 > 0
delta = log(V1/V3);
percent-damping = (delta / (4*pi))*100

else
percentdamping = 'Over-Damped'

end
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% Normalize results
U_uncontrolmax = max(abs(Uuncontrol))
U_controlmax = max(abs(Ucontrol))
Reduction = 1 - U_controlmax/Uuncontrolmax
P_a-gmax = m*max(abs(Ag));
A_gmax = max(abs(Ag))
F_max = max(abs(F))

U_uncontrol = Uuncontrol/U_uncontrol-max;
U_control = Ucontrol/Uuncontrolmax;
P_ag = P_a-g/P-a-g_max;
A_g = Ag/Ag_max;
F = F/F-max;

% Stop time
toc

% Plot normalized uncontrolled vs controlled response

%subplot (211)
figure(l)
whitebg('w');
plot(x, UIcontrol, 'k', x, Uuncontrol, 'k:');
ylabel('\fontname{times} Normalized Displacement ','FontSize',14);

%legend('Controlled (Max = 3.9721 m)','Uncontrolled (Max = 3.9681 m)');

text(21,0.9,'Over-Damped','FontSize',14)
%title(' Normalized Responses to Ground Motion ','Fontsize',14);

%set('DefaultLineType',':')
reset(gcf)
grid on
axis([O,x(num-steps-1),-1.1,1.1])
%axis auto

% Plot ground acceleration
%subplot (312)
%plot(x, A-g, 'k', x, zeros(num-steps+1,1), 'k:');

%ylabel('\fontname{times} Ground Acceleration ','Fontsize',12);

%legend('Ag (Max = 8.18 m/sA2)');
%axis auto;

% Plot discrete feedback force

%subplot(212)
%figure(2)
%plot(x, F, 'k');

%xlabel(' Time (sec) ','Fontsize',14);

%ylabel('\fontname{times} Feedback Force ','Fontsize',14);

%legend('F (Max = 1.51 x 10^5 N)');
%grid on
%axis([0,x(num steps-1),-1.1,1.1])
%axis auto;
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B.2 Summary of Ground Motion Records

Table B1 Ground acceleration records

Ag max Duration
Num Description (m/sA2) (s)

1 Imperial Valley, El Centro, May 18,1940, 270 degrees 3.42 53.74

2 Imperial Valley, El Centro, May 18, 1940, 180 degrees 2.10 53.46

3 Mexico City, Station 1, September 19,1985, 270 degrees -0.98 180.10

4 Mexico City, Station 1, September 19, 1985, 180 degrees -1.68 180.10

5 Northridge, Sylmar County Hosp, January 17, 1994, 90 degrees 5.93 59.98

6 Northridge, Santa Monica, City Hall Grounds, January 17, 1994, 90 degrees -8.66 59.98

7 Northridge, Arleta and Nordhoff Fire Station, January 17, 1994, 90 degrees 3.37 59.98

8 Loma Prieta, Oakland Outer Wharf, October 17,1989, 270 degrees 2.70 39.98

9 Loma Prieta, Oakland Outer Wharf, October 17, 1989, 0 degrees -2.16 39.98

10 San Femando, Pocoima Dam, February 9, 1971,196 degrees 10.55 41.70

11 San Fernando, Pocoima Dam, February 9, 1971, 286 degrees -11.48 41.80

12 Parkfield, Cholame, Shandon, June 27,1966, 40 degrees -2.33 26.18

13 Parkfield, Cholame, Shandon, June 27, 1966, 130 degrees -2.70 26.14

14 San Fernando, 8244 Orion Blvd., February 9,1971, 90 degrees -2.50 59.48

15 San Fernando, 8244 Orion Blvd., February 9, 1971, 180 degrees -1.32 59.58

16 Northridge, Santa Monica City Hall Grounds, January 17, 1994, 90 degrees -8.66 59.98

17 Kern County, Taft Lincoln Tunnel, July 21, 1952, 69 degrees 1.53 54.38

18 Kem County, Taft Lincoln Tunnel, July 21, 1952, 339 degrees 1.76 54.38

19 Kobe, NS Component 8.18 51.32

20 Sinusoidal Input with frequency = 2*Pi 9.18 60.00

NOTES:
Records 1-19 were acquired from on 7/12/00 from the NONLIN Program located at
http://www.fema.gov/emi/nonlin.htm

More records are available from NISEE, UC Berkeley via the PEER Strong Motion Database at
http://nisee.ce.berkeley.edu/
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B.3 Earthquake Response Graphs for Time Invariant Control

B.3.1 Imperial Valley, El Centro, 270 degrees
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Figure Bi Semi-active system responses due to El Centro earthquake(q = 1)
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Figure B2 Semi-active system responses due to El Centro earthquake (q =4)
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Figure B3 Semi-active system responses due to El Centro earthquake (q =6)
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B.3.2 San Fernando, Pocoima Dam 196 degrees
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Figure B4 Semi-active system responses due to Pocoima earthquake (q = 1)
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Figure B5 Semi-active system responses due to Pocoima earthquake (q = 4)
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Figure B6 Semi-active system responses due to Pocoima earthquake (q = 6)
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B.3.3 Kern County, Taft Lincoln Tunnel, 69 degrees
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Figure B7 Semi-active system responses due to Taft earthquake (q = 1)
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Figure B8 Semi-active system responses due to Taft earthquake (q = 4)
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Figure B10 Semi-active system responses due to Kobe earthquake (q = 1)
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B.3.4 Kobe, Japan, NS Component
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Figure B1 2 Semi-active system responses due to Kobe earthquake (q = 6)
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B.4 Adaptive Control Script

% Jesse Beaver
% Adaptive Control Algorithm

% Alter stiffness, k, and include semi-active feedback, F

% Loading is ground motion, obtained from FEMA

clear all
clc

% DEFINE SYSTEM VARIABLES

% Sample set of K values for different AVS configurations

DiscreteK values = [1e4; 1e5; 2e5; 3e5; 4e5; 5e5];

kO = 2e5; % passive (initial) stiffness (N/m)

m = 5e3; % lumped mass (kg)

c = 1.25e3; % viscous damping w/ passive actuator (N-m/s)

deltat = 0.02; % time step (s)

Fmin = 0.0; % passive actuator force (N)

Fmax = 2e5; % max damper response force (N)

w_n_0 = (k0/m)^(1/2); % system natural frequency (rad/s)

u_max = 3; % Design allowable displacement (m)

A = [0, 1; -kO/m, -c/m];

B = [0; -1/m];

I = eye(2);

% SYSTEM WEIGHTING FACTORS

scale = 1.; % applied to ground motion

alpha_F = 15 % applied to feedback force ratio

alpha u = 1e6 % applied to displacement ratio

alpha-k = le-3 % applied to stiffness ratio

% SPECIFY CONTROL TIME

controlperiod = 30; %time in seconds

numsteps = controlperiod/0.02;

% ACQUIRE GROUND ACCELERATION (m/sA2) from .txt files named:

% 1=Impvall 2=Impval2 3=Mexcitl 4=Mexcit2 5=Nridgel

% 6=Nridge2 7=Nridge3 8=Oakwhl 9=Oakwh2 10=Pacoimal

% ll=Pacoima2 12=ParkO4O 13=Park130 14=Sanfernl 15=Sanfern2

% 16=Smonica 17=Kernl 18=Kern2 19=Kobe 20=Sinusoidal Input

Earthquake = 19; %Change this number

switch Earthquake
case 1,

load Impvall.txt
g_acc = Impvall(:,2)*scale;

case 20,
load sinload.txt
g_acc = sinload(:,2)*scale;

end

% CREATE SYSTEM PARAMETER MATRICES

x = (0:num-steps);
U_control = zeros(numsteps + 1, 1);
U_uncontrol = zeros(num-steps + 1, 1);

K = zeros(num-steps + 1, 1);
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DeltaK = zeros(numsteps + 1, 1);

F = zeros(numsteps + 1, 1);

A_g = zeros(num-steps + 1, 1);

Diffrences = zeros(6,1);

% SET INITIAL CONDITIONS

X_conti = [0; 0];

X_unconti = [0; 0];

Fj = Fmin;
k1 = kO;

kj = kO;

delta-kj = 0;

K(1) = k1;

% START LOADING AND RECORDING SYSTEM RESPONSE

for i = 1 : 1 : num steps
time = i * delta-t;

x(i + 1) = time;

% GROUND ACCELERATION

a_g = gacc(i); % assign current a-g to value from file

A~g(i+l) = ag; % add to matrix of ground motion for graph

P = -ag*m; % determine force on structure for time j

% CREATE VECTOR OF UNCONTROLLED RESPONSE

X_uncontnext = expm(A*delta-t)*Xunconti + inv(A)*
(expm(A*delta-t) - I)*(B*P);

U_uncontrol(i + 1) = X-uncontnext(l);
X_unconti = Xuncontnext;

% CREATE VECTOR OF CONTROLLED RESPONSE

if i < 2

U_control(i + 1) = U_uncontrol(i + 1);

K(i + 1) = kO;

else % data sufficient to start control

t = deltat; % rename for convenience

ul = U_control(i - 1);

u2 = U_control(i);
k1 = K(i - 1);

% Determine optimal discrete stiffness from eqs4solver.m output

delta-kj-opt = -2*alphaF*alpha-u*(2*t^2*m*a-g-
4*m*u2+2*t^2*u2*k0-t*c*ul+2*m*ul)/
(4*umax^2*alphak*alphaF*m^2+
4*umax^2*alpha-k*alphaF*m*t*c+umaxA2
*alphak*alphaF*tA2*c^2+4*t^4*u2A2*k0^ 2*

alphaF*alpha u+4*tA4*FmaxA2*alpha-k*alpha-u)
*tA2*u2*kOA2;

% Choose optimal discrete stiffness

kjoptimal = k1 + delta_kj-opt;

Differences = (kj-optimal*ones(6,1)) - Discrete_K values;

index = 1;

Minimum = Differences(l,l);
for z = 2 : 1 : 6

if abs(Differences(z,l)) < abs(Minimum)

index = z;
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Minimum = Differences(z,l);
end

end
%index
kj = Discrete_K_values(index,l);
K(i + 1) = kj;
deltakj = k1 - kj;

DeltaK(i + 1) = delta-kj;

% combine for graphing

% Determine optimal discrete feedback force

F_temp = 2*alphak*alpha-u*(2*t^2*m*a_g-4*m*u2+2*t^2*u2*k0-
t*c*ul+2*m*ul)/(4*umax^2*alpha-k*alphaF*mA2+
4*umaxA2*alphak*alphaF*m*t*c+u maxA2*alpha-k

*alphaF*tA2 *cA2+4*t^4*u2A2*kO^2*alphaF*
alpha u+4*tA4*FmaxA2*alpha-k*alpha u)*tA2*FmaxA2;

if F-temp < -Fmax % check if new value exceeds limits

F-temp = -Fmax;
elseif Ftemp > Fmax

F-temp = Fmax;
end

if sign(X-contji(2)) == sign(Fj) % ensure feedback is
opposite in sense to velocity

Fj = -Ftemp;
else

Fj = 1;

end
Fj = -F_temp;
F(i + 1) = Fj;

% very small value to avoid
division-by-zero problems

% add to matrix of feedback

values for graph

Aj = [0, 1; -kj/m, -c/m]; % adaptive properties matrix

X_contnext = expm(Aj*t)*X_conti + inv(Aj)*(expm(Aj*t) -

I)*(B*P + B*Fj);

U_control(i + 1) = Xcontnext(l,l);
X_conti = Xcontnext;

end
end

% NORMALIZE RESULTS

U_uncontrolmax = max(abs(U_uncontrol))
U_controlmax = max(abs(U-control))
Reduction = 1 - U_controlmax/Uuncontrolmax
K_max = max(K)
A_gmax = max(abs(Ag));
F_max = max(abs(F))
U_uncontrol = Uuncontrol/U_uncontrol-max;
U_control = Ucontrol/U-uncontrolmax;
A_g = Ag/Ag_max;
F = F/F-max;

% PLOT SYSTEM RESPONSE

% Normalized uncontrolled vs controlled response

subplot(311)
whitebg('w');
plot(x, Ucontrol, 'k', x, Uuncontrol, 'k:');

% Response Reduction
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ylabel('\fontname{times} Displacement ','FontSize',12);

legend('Controlled (Max = 0.0157 m)','Uncontrolled (Max = 0.4274 m)');
axis auto

% Discrete feedback force

subplot (312)
plot(x, F, 'k');

ylabel('\fontname{times} Feedback Force ','Fontsize',12);

legend('F (Max = 6.04 x 10^4 N)');
axis auto;

% System adaptive stiffness
subplot (313)
%figure(l)
stairs(x, K, 'k');
xlabel(' Time (sec) ','Fontsize',14);

ylabel('\fontname{times} System Stiffness State','Fontsize',12);

legend('K (Max = 5.00 x 10^5 N)');
%axis auto
axis([0,x(num-steps-1),0,7]);
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B.5 Earthquake Response Graphs for Adaptive Control

B.5.1 Imperial Valley, El Centro, 270 Degrees
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Figure B1 3 Adaptive system response to El Centro(cF=%t=l; ci=1 e3)
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B.5.2 San Fernando, Pocoima Dam, 196 Degrees
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Figure Bi 6 Adaptive system response to Pocoima (aF=l 5; axk=l e-3; ct=1 e6)
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B.5.3 Kern County, Taft Lincoln Tunnel, 69 Degrees
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Figure B1 7 Adaptive system response to Taft (aF=Ck=l; ce=1 e3)
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B.5.4 Kobe, Japan, NS Component

Figure B19
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Adaptive system response to Kobe (aF=C k=1; u=l e3)
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