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Abstract

This thesis is motivated by the need to optimize transmission capacity as electricity
trades take place in an electric power system. The results obtained use actual data
taken from New England electricity markets for a working week in February, 2002.
The power demand in the New England system is correspondingly split into antici-
pated multilateral market demand and leftover spot demand. The problem is studied
by posing the decision making for transmission service and pricing as a dynamic pro-
gramming problem. The implementation handles stochastic inputs for a three-bus
system. This thesis suggests that near-optimum objective values can be achieved
even when generation and transmission of electricity are treated in an unbundled
manner. The multilateral agreements are modeled and their effects on network con-
gestion are simulated. The end users communicate and coordinate with each other,
providing demand functions that reveal their internalized value of transmission. The
spot demand is analyzed under different probabilistic models to estimate the inherent
uncertainties.

A deterministic simulation is created to automate the multilateral trading process.
It outputs the multilateral agreement profit as a function of forward market capac-
ity allocation. The program is also run to simulate an entirely multilateral market
structure, providing insights regarding total social welfare, end user quantities, and
profits. Moving to a probabilistic regime, the profits gained from the deterministic
multilateral setup and the statistical distributions of the noisy spot market are fed
as inputs into a dynamic programming simulation. The case of a broken topology is
then considered for both cases, where one of the non-congested links has such high
impedance levels that flow along this link is severely reduced. The significance of such
smart software for a transmission service provider is shown, together with possible
new frameworks to further optimize the long-term transmission resource allocation.

Thesis Supervisor: Marija D. Ilid
Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 Context

As news regarding the California blackouts and the Enron scandal continue to plague

the headlines, the issue of electricity trading and its delivery can no longer be taken

lightly. Efficient mechanisms have been proposed in the past to deal with the genera-

tion and transmission of electricity, yet a universally accepted solution still remains to

be found. In this analysis, it is suggested that electricity generation and transmission

be treated as two independent separable problems. Furthermore, in the deregulated

industry, increased competition has led to multilateral coordination by end users to

maximize profits. The implementation of socially most beneficial transactions under

transmission constraints has been a very difficult challenge. A transmission service

provider (TSP) in charge of implementing transactions has not been able to facilitate

the most valuable transactions, nor to relate those to its own business objectives.

Instead, a TSP is forced to act as an arbiter among end users, solely in charge of

ensuring reliability and security through any network transactions.

In this thesis, we consider the objectives of a transmission service provider and ex-

amine policies, strategies, and algorithms for meeting its clearly defined goals. These

go beyond technical objectives and could be social welfare maximization and/or a

TSP's own profits. Specifically, the TSP's main resource involves the capacity of the

links connecting end users in the network, and its scarcity forces the TSP to optimize
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its allocation and price. However, the decisions by the TSP are based on the end

users' specification of demand for transmission capacity and their willingness to pay

for it.

This thesis takes the view of a centrally coordinated setup where a TSP is the

final decision maker. Several cases are examined and analyzed for varying network

topology, decision algorithms, and market structures. Heuristic measures and algo-

rithms are introduced for a TSP to maximize his own revenue and/or total social

welfare.

It is not common to find an analysis of the impact of market and physical uncer-

tainties on end users, total social welfare, and transmission revenue. In this thesis,

we suggest that these fundamental concepts differ as a function of market structure,

initial conditions, and uncertainties. This thesis attempts to implement a number of

the initial formulations to this problem introduced by G6ziim in [1], and to provide

simulations to better understand the dynamics of transmission provision and pricing.

Building upon this original work [1], the scope is enlarged to include multilateral

agreements (MA), and increase the complexity of the system to a 3-bus example

with demand and supply requirements at each bus. While we assume the existence

of forward and spot energy markets, the transmission service allocation problem is

investigated here as an independent problem. The strict technical constraints of the

network and the numerous opportunities for arbitrage between contract flows and

physical flows (as discussed in section 3.2) increase the complexity herein.

Finally, the contribution of this thesis is in conceptualizing algorithms and software

implementations for transmission delivery, a fairly new concept when compared to the

pure energy formulations that have been studied in the past.

1.2 Problem Statement

In each of the several cases, the basic problem remains the same, i.e. it concerns

capacity allocation. The TSP obtains revenue from two sources - he can sell longer

term forward contracts ex ante or transmission rights in a real-time setting ex post.

18



The total load demand for transmission capacity here can be thought of as con-

sisting of two components: the anticipated load demand level that most bilateral and

multilateral agreements would consume, and the leftover load demand for the spot

market. Other inputs are generator specific, including cost of generation quantities

and maximum generation capacities per hour. The TSP also has estimates for what

percentage of the total load will be consumed at each bus, and can hence approximate

the utility functions of each load. Finally, the TSP is aware of which links are most

likely to be congested and what the capacity constraints of these links are.

This thesis assumes a centrally coordinated system where the TSP is given entire

schedules and bids at the start of the week, as well as demand curves reflecting each

end user's value of transmission. From G6ziim[1], we see that one version of this

problem is to have users submit bilateral agreements, that are either accepted or

rejected by the TSP at each hour. The alternative formulation this thesis takes has

users submit transmission demand curves for varying levels of capacity on a specific

link in the network. Along with such curves, the end users imply that at a set level of

capacity, they will take part in trilateral agreements that maximize the user's profits.

The TSP realizes that such agreements not only push the total social welfare closer

to an optimum level, but also receives a fraction of these profits for implementing

them.

Hence, the control decision at each time step in question, is what level of line

capacity to reserve for multilateral agreements and hence the corresponding allocation

for the spot market. This is shown in Figure 1-1. At each time step, the TSP's

decision is to choose what allocation of flow along the congested link should come from

the spot market, denoted here as ist. The inputs to the decision making problem are

the "noise" in load data at each hour, wt and the expected profits from the multilateral

trading process for a set demand level and known thermal capacity of congested link,

HD,K7' . The TSP must use these inputs to optimally choose K,,t.

19



UD,K max

SP Decisio 3,1***.

Wi 1

time -- 1

Wt t t+

time --t time = t+1I

Figure 1-1: The basic TSP decision problem

The important constraint regarding this control decision is the fact that such

multilateral agreements cannot be rescinded once approved. This thesis does not

allow for penalty functions; once point to point agreements are permitted, they are

enforced for the entire length of the agreement.1

This idea is best represented in a decision tree for the TSP. Such a tree in which

each leaf node represents the TSP's total profits is shown in Fig. 1-2.

As described by Joskow and Tirole in [19] and [20], there is a distinction between financial rights
and physical rights. The TSP here is guaranteeing the physical right along the congested link; the
financial rights are out of the scope of this thesis.

20

s,tfl 0**tm 3,7

time =- t,



Ks,2 = 100

K,1 100

o= K"_

Ks,1=Kjf

ls,2 = 100

t = 1 t = 2 ... t = T

Figure 1-2: TSP overall decision tree

This decision tree shows precisely that certain choices for spot allocation at hour

(t+1), may be limited depending upon the choice of the previous hour. This is a result

of our assumption that multilateral contracts cannot be retracted once approved, and

hence the next hours allocation for the multilateral market cannot decrease. This

implies that Ks,t cannot increase either. This decision tree also shows our assumption

that the TSP must make his decision in discrete increments of 100 MW. This was

chosen for computational convenience, and an extension to a smaller increment size

(and hence more choices for the TSP) easily follow.
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In this setup, the objective of the TSP is to maximize his revenues from the forward

and real-time markets for a finite time-horizon. The tradeoff comes from realizing that

forward agreements, while more risk-averse may consume much of the line's capacity

for a length of time, whereas the spot market is more flexible to changes in real-time

demand, but it comes with a more volatile price and risk level. Furthermore, the

TSP must meet strict flow constraint of links , set by the technical parameters of the

network. We can formulate the objective function as:

T

max E Hflt + lKma,t (1.1)
KSIKMa t=1

Spot Profit Multilateral Profit

Noting that the spot profit is simply the product of the quantity (i.e. transmission

capacity) sold times the spot price of transmission, we can re-write equation ( 1.1).

Thus, the entire formulation is as follows.

Objective:

max pot,tspot,t (K, wt) + Unma,t (1.2)
KSKmat=1

subject to:

rma + Ks < K7""x (1.3)

rEs,t+1 K s,t (1-4)

where,

K""a =Physical Capacity of Line2

s= Amount of flow on congested link due to spot market

Kma Amount of flow on congested link due to multilateral market

t Discrete time index
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-r Time Horizon for TSP

Kmat = Profit determined from multilateral market

spot,t = Expected spot price of transmission on link 1 -+ 2

QSPot,t = function to determine expected spot quantity on link 1 -+ 2

w = noise following known statistical distribution

As seen above, the TSP's profit maximization problem assumes the multilateral

market trading settles, and end users profits from implementing these trilateral agree-

ments will be transferred to the TSP. Thus, it remains to be shown how this exact

profit, rma is derived.

We assume that the TSP treats all end-users equally and hence, the objective

function for implementing one multilateral agreement over another should be fair to

all users. The best heuristic would then be to choose the multilateral agreement

that maximizes the total social welfare of all users at the current time period. As

shown in[25], multilateral trading opportunities for profit exist even after the first

multilateral agreement has been implemented. In other words, the TSP must attempt

to optimally choose a sequential set of multilateral agreements with this objective

function in mind for a series of iterations, as shown in Figure 1-3.
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MA1

MA

MA1

Iteration 1 Iteration 2 ... Iteration v

Figure 1-3: TSP Multilateral market decision tree

We formally present this problem as the following:

Objective:

NL

max Z Ui(QL)Zi,v
(Yjvziv)

NG

- ZCj(QGj
j=1

such that,

24
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N

Z (YkQG, - ZkQLk )DFk
k=1

QGi - QLi

< Yj,v

i~1 Z yj,v

0 < E zi,,

E Yjv + S zi,,

0 QG.

0 QLi

E

E

EK

K

K

=K

Nma

0

{0, 1}

{0,1}

3

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

1

3

Q MAXma

Q MAXma

= iteration index

= Indices referring to nodes

= the net injections of load Li

the net injections of generator Gi

Distribution factor for effect of bus on link

= Number of loads, generators, and total nodes respectively

= Binary variable at iteration v to accept or reject generator j

= Binary variable at iteration v to accept or reject load i

allocation of flow on congested link from MA market

By solving this subproblem, we can solve for the optimal trilateral set of loads

and generators to maximize total social welfare. The TSP can also solve for the

25
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exact profits made by these end-users in the electricity markets, after all iterations

are complete. Assuming he collects this total amount or a fraction of the end-users

profits, the TSP can solve for I'mt in order to use as the input into his stochastic

optimization problem.

This thesis applies the general formulation given above to a smaller, more illus-

trative example. We note that a priori information include:

1. T in hours

2. Anticipated Demand for t 1 ... T

3. NL, NG, and N

4. DFIk

5. K"

6. Statistical Distribution of wt

To demonstrate our results with significance, yet maintain a computationally fea-

sible problem, the TSP's problem is examined for one working week. Thus T = 120.

For number 2 above, we take real anticipated demand data for New England, from

Feb 4-8 of 2002, as shown in Fig. 1-4. When the probabilistic algorithm is introduced,

this graph is split into a plausible multilateral portion and the leftover noise or spot

market portion. These are graphed in Figures 1-5 and 1-6 respectively. In other

words, Fig: 1-4 can be described as the sum of Figures 1-5 and 1-6.
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Anticipated Demand for New England: Feb 4-8, 2002

0 20 40 60 80 100
time (hour)

Figure 1-4: Anticipated Demand for one week period

120

Demand for Deterministic Section: Multilateral Markets

20 40 60 80 100
Time (hours)

120

Figure 1-5: Anticipated Demand in Multilateral Market
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Demand for Probabilistic Section: Spot Market

20 40 60 80 100 120
Time (hours)

Figure 1-6: Anticipated Demand in Spot Market

28

800

600

400

200

C 0Ca
Ea)
0

--- I,



To solve for the final constants in our example, we assume the following network

structure shown in Fig. 1-7: Throughout the thesis, the lines are assumed lossless.

As detailed in Chapter 5, the Distribution Factors change according to the topology

being simulated. Also shown in chapter 5, Kjmff and wt differ depending on the hour

of the week.

L1

G 1,

Link 3- Link 1 - 2

G3 G2

L3 L2

Link 2 -+ 3

Figure 1-7: General 3-bus network

With this representation, we now re-visit our introductory questions regarding

how profits and total social welfare concepts change, as a function of uncertainties,

network topology and market structure. The above structure can be adapted to model

several cases as summarized in Fig: 1-8.
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Static Uynamic Network
Topologyopology Uncertainty

| | MarketMultilateral Multilateral & Multilateral Multilateral & Maret
Market Spot Market Market Spot Market Structure for

Trantsmis sion
Deterministic Stochastic Deterministic Stochastic

Figure 1-8: Uncertainties

We now briefly describe these varying parameters.

1.2.1 Topology Changes

As described in [13], network changes can occur at any time leading to adverse effects

on reliability. We simulate the effects of a line outage by increasing the impedance of

the affected link to a much higher level. Due to newly calculated distribution factors

(see section 3.2), very little flow now travels along this link so it closely approximates

an open circuit. The line chosen to be "down" is different than the limited capacity

link. Results are shown to compare this dynamic topology to the static version.

1.2.2 Decision Models

To evaluate the dynamic programming algorithm, we compare results to a static

optimization problem or greedy method at each time step. The static optimization

implies the TSP is not forward-looking and is only interested in maximizing his gains

for the current time period. Efficiency and profit values are contrasted for the two

methods.
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1.2.3 Market Structure Comparisons

Finally, scenarios are examined for three different market structures. Different possi-

bilities are extensions of Allen et. al. [5] and can be summarized as:

" a bundled market using current techniques of economic dispatch

" an entirely bilateral/multilateral trading market, with TSP only providing trans-

mission services

* a market with deterministic bilateral agreements and where spot is assumed to

be probabilistic

" a market where end-users simply bid transmission demand curves, while TSP

responds with complementary supply curves - an iterative auction procedure

takes place till market clears for transmission.

Case 1 is introduced and briefly reviewed. This thesis examines cases 2 and 3 in

depth. For each of these cases, the profits to the end-users and TSP are compared.

Also, key results are found regarding the variations in total social welfare's change

under the different market structures and decision environments. Case 4 is treated

as a future research question.

1.3 Thesis Summary and Key Results

The motivation for this thesis is two-fold. As pointed out by Hogan [18], congestion

contracts for flowgates need to be seriously considered for efficient use of a decentral-

ized market structure. Moreover, there is a lack of tools and software for the TSP to

efficiently and optimally process the numerous information requests in real-time. The

contributions of this thesis lie in conceptual demonstration of the importance of such

software, and the frameworks that can be used for longer-term resource allocation.

Chapter 2 provides the background information necessary regarding terms, no-

tation and algorithm descriptions. Specifically economic efficiency arguments are

presented to provide perspective from the end users, and the optimization algorithms
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are presented for the basic problem of interest. Chapter 3 then provides a complete

summary of multilateral agreements, including an illustrative example and the theory

behind their efficiency. The motivations behind using such multilateral agreements

and relevance to this problem are also included. Chapter 4 gives an analogous descrip-

tion of the spot market as well as various formulations for estimating the uncertainties

therein. Comments are made regarding each estimation method and the advantages

and disadvantages behind such concepts.

Chapter 5 re-introduces the problem statement in question, and describes the

proposed simulation used to implement various multilateral agreement by a TSP.

Computations are done for a single snapshot in time for the anticipated load level

and possible line constraints along the congested link. The fundamental concepts

such as bus injections, profits, and total social welfare are shown as a function of

the number of iterations used to implement the requests for transmission; remarks

are made in regards to the effects of varying the load level or line capacity on these

values. Chapter 6 extends the multilateral market of Chapter 5 for the entire week.

Results are computed over this time, as if a spot market did not exist, and the cor-

responding effects on total social welfare and profits when applied to the anticipated

demand curve from Fig. 1-4. Finally, Chapter 7, puts together the concepts of chap-

ters 3 and 4 to achieve a market with deterministic forward requests for transmission

and stochastically changing spot requests for transmission. Optimizations using the

algorithms from Chapter 2 are shown here and compared to the benchmark greedy

approach. Results are also compared between chapters 6 and 7, so as to better under-

stand the impact of the stochastic spot market on the social welfare, TSP profits, and

end user profits. Finally, some remarks are made regarding future work, and exten-

sions of the simulations produced. The thesis concludes with the fundamental results

and an appendix with source code for implementing the multilateral agreements and

dynamic programming formulations.
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Chapter 2

Background and Preliminaries

This chapter provides definitions and concepts relevant to the transmission service

provider problem. We begin by analyzing how electricity markets are modeled and

proceed into more specific formulations regarding the bilateral and spot markets. Ba-

sic economic efficiency arguments are also given to understand the interplay between

end-users. Finally, the algorithms applied for the example simulation are provided

and some remarks are made regarding their use.

2.1 Electricity and Transmission Markets

Our approach follows the earlier formulations by Gziirm [1] and does not consider

the role of intermediary players and secondary or ancillary market effects. The key

players in the network are the loads and generators. The loads are traditionally

power consumers, while generators are power suppliers. However, this is by no means

a constraint as various multilateral agreements may exist where a load ends up selling

electricity while a generator buys electricity. There exist two mechanisms by which

end users can coordinate to either supply or demand electricity. These are [4]:

1. Long-term bilateral contracts for anticipated demand that exist in a forward mar-

ket setup These are point-to-point contracts from specific users for the transfer

of a set amount of power. These contracts are comprised of three key compo-

nents: quantity, price, and duration. Unlike [1], this thesis does not consider
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the case where such contracts are rescinded after being accepted. Thus, there

is no need for penalty functions; instead, the risk of not being implemented

is internalized in the bid curves for delivery themselves. The other assump-

tion is that requests for transmission are made simultaneously by all players,

to preclude any particular player from gaining an advantage through additional

information.

2. Short-term spot market for on-line adjustments to demand uncertainties This

market ensures that hourly load variations from the long-term anticipated de-

mand are adequately supplied at the market clearing price. This price is deter-

mined from the hourly characterization of end users' supply and demand curves.

The resulting spot price of electricity depends upon the characteristics of the

network, the cost and utility functions of the generators and loads respectively,

as well as on the stochastic demand level. Selling and purchasing electricity at

the spot price is usually more risky due to the increased number of uncertainties,

in particular the actual load level and the network capacity status.

Each end user must carefully choose the amount to sell or buy in each market setup

to maximize his own profit and/or benefits. It is assumed that information regarding

the cost of generation or utility of a load is private information that is not shared

among end users at any time. The TSP may have access to such information, but may

also be provided such information with the caveat that specific parameters may change

at short notice. In this thesis, we differentiate between the TSP having knowledge of

supply and demand functions for electricity, on one side, from the demand functions

by the end users for transmission delivery. We also show the inter-relation between

the two characterizations.

Thus, the market structure has enough complexity that it is not a trivial problem

to balance tradeoffs between:

1. the system-wide optimum efficiency

2. the profits for individual end users
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3. the profits of the TSP

This is especially true when line constraints exist on the network constraining the

amount of flow that may be required at a certain node. The next section makes some

simplifying assumptions to better understand how economic arguments can be used

to relate total social welfare and participants' profits.

2.1.1 Economic Efficiency Arguments

We adopt a similar line of arguments as Allen et. al. [5] in analyzing the electricity

market economics. As a first step, we consider a general electric power network that

has infinite line capacities for all links. Thus, transmission congestion is not an issue

here. For this case, we analyze the network as seen by individual competitive market

participants. We first define the following variables:

P the current market clearing or spot price of electricity

QGj = the quantity of real power produced by the generators

QL = the quantity of real power withdrawn by the load at bus

MCi(QGi) the marginal cost of supplying QGj

MUi(QLi) the marginal utility of demanding QLi

TGi (QGi) = the profit of supplying QGj

7FLi(QLi) = the profit of utilizing QLi

If we assume quadratic functions for cost and utility functions, for generators and

loads respectively, then:

CZQG =aGQ2J + bGiQGi + CGi (2.1)

Ci (QGj aG G iQi ci -)

UQ(QL L bLiQLi + cLi (2.2)

_ dC (QG1) L
MCi(QGi) G QG =2aGQGj + bGc (2.3)

dQGi
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TGi (Q)G

MUi(QLj)

1TLi (QL)

PQGj - Ci(QGi)
dUi(QLi)

- ~ ~ 2 aLiQLj + bLi
dQLi

=Ui(Q L%) - PQLi

(2.4)

(2.5)

(2.6)

Also, we can establish that each generator will continue producing until the

marginal cost is equal to the current market price [37]:

The maximum profit for generators and loads is found by setting the derivative

equal to zero:

d-FGi(QGi) = P - MCi(QGi) 0
dQGi

d1Li (QLi) MUi(QLi) - P 0
dQLi

(2.7)

(2.8)

Thus, we can now write supply function of generator i as:

Si(P) = QGi = P - bGi
2 aGi

(2.9)

Analogously, the demand function for load i is

bL- P
Di(P)= QLi =

2 aLi
(2.10)

Taking the aggregate curve as the sum of the individual curves for generators and

loads implies:

S(P) = asP - #s (2.11)

D(P) - #D- o'DP (2-12)

where

NG 1
_1 2aGi
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NG bGi

1- 2aG i
NL 1

aD1 2aLi
f3D bLi

1 2aLi

Furthermore it is clear that the economic equilibrium price is the intersection of

the supply and demand curves.

PA ± /+ (2.13)
a1D + aS

If we assume a marketplace that is relatively competitive and stable, it follows

that the price will converge to the equilibrium price. Finally, we note that total social

welfare is defined as the total utility minus the total cost of all participants [22]:

NL NG

TSW = ( Ui(QLi) - Ci(QGi) (2.14)

2.2 Algorithms for Transmission Constrained Mar-

kets

The theoretical algorithms used in the simulation are described here. They include

the process of Lagrange multipliers, optimal power flow, and dynamic programming.

2.2.1 Optimal Power Flow

The most commonly used tool to solve the transmission problem used in the market

today is the optimal power flow (OPF) or economic dispatch solution [23]. The main

objective of this tool is to maximize the total social welfare with respect to power

quantities generated or withdrawn subject to the network constraints. The framework

assumes a central dispatch setup and the constraints are both operational and security
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related. We follow the

the optimization of the

arguments of Raikar and Ilic [9] to more thoroughly explain

dispatcher. The main problem can be posed as follows:

NG NL

min CGi(QG) - SULi (QL))
QG1

(2.15)

subject to

NG

iQ=1

|Qisy l

0 < QGi

0 < QLi

K

NL

iQL

Q max

Qai"
mGax

Qg"i

(2.16)

(2.17)

(2.18)

(2.19)

where,

CGi(QG)

ULi (QL)

QGi

QLi

Qi

N

NG

NL

Q max

Qmax

= Cost function of Generator i

= Utility function of Load i

Power produced by Generator i

= Power consumed by Node i

= Power flow on link i -+ j

= Number of nodes in network

= Number of Generators

= Number of Loads

= Maximum generation capacity of Generator i

= Maximum power consumption by Load i

= Maximum power flow limit of transmission link from i -+ j
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The above constrained OPF is for the simpler D.C. power flow model'. In words,

the objective function above represents the maximization of total social welfare. Con-

straint (2.16) states that power supplied must equal power demand. Constraint (2.17)

is the transmission congestion constraint, while constraints (2.18) and (2.19) are ca-

pacity constraints for the end users.

Based on the Lagrangian technique for nonlinear optimization [31, we can gain

further insight into the above problem. Let

A = multiplier for constraint (2.16) (2.20)

pisj multiplier for constraint (2.17) (2.21)

r/Gi multiplier for constraint (2.18) (2.22)

VLi multiplier for constraint (2.19) (2.23)

we can define the Lagrangian as

NG NL

L = CGi (QG - UL (QLJ)
i=1 i=1

NG(Z a NL
+ A ( QGi QL

i 1 i=

+ ti-4j i-+j ~~ )0+

+ vL (Q - Qax" 77Gi (QGi G QraX

" VLi (QLi -LQix

Solving the partial derivatives,

'A comparison of using the A.C. model and effects upon the network can be found in [?]
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(GQ + G G
6Q~j

flmax (2.24)

If the spot price is pi, then

pi = A + pyi, (Qisy Qmax) (2.25)

Furthermore, Wu and Varaiya [25] show that the Merchandising Surplus (MS)

collected by the TSP is

MS = E PA( = E E(p - pi)Qi,
i 2 3

(2.26)

For a transmission service provider, the line constraint equation (2.17) and capac-

ity limits (2.18) and (2.19) are the most important points of interest. If there is no

congestion, then by complementary slackness condition, we infer that

p-4-4 = 0

6 CG (QGi)
p - + QGGi = A

However, if the line is operating at capacity, then

pti- # 0

|Q 1g = Qmax

$0-+j i

(2.27)

(2.28)

(2.29)

(2.30)

Since we know pu gives the shadow price of (2.17), the transmission congestion

rent is given by

(2.31)MS = z pQ'max
i 3

Thus, we can use this formulation to realize transmission rent and the effective
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spot price of transmission at a given instant of time. This will be further detailed in

(Section 4.1).

2.2.2 Dynamic Programming

As introduced earlier, the TSP's objective function in equation (1.1) is over a multi-

stage period. Since any decision at one time affects the decisions at future time

periods, a dynamic programming approach is well suited to the problem [1]. DP's

main advantage of over other algorithms is its ability to capture additive costs over

multiple stages in the recursive objective function. The basic theory is as follows and

is adapted from Bertsekas [6]:

The basic model has a dynamic system that has a constantly evolving cost function

that is additive over time. More specifically, we assume a discrete-time dynamic

system with variables:

k = Discrete time index

Xk State of system which includes past information at time k

Uk = Decision variable to be selected at time k

Wk = Random disturbance or Noise at time k

The evolution function is

Xk+1 k (k, Uk, Wk), k = 0,1, ... , N - 1 (2.32)

We now consider a class of policies that consist of the sequence of functions

7r =-{pIo, pi, ... ,pN-1} (2-33)

that map states Xk into controls Uk = Pk(Xk). Given such a policy and an initial

state xO, the states Xk and noise wk are defined by
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Xk+1 = k (Xk, Uk (Xk), Wk), k = 0,1, ... , N - 1 (2.34)

It thus follows that for given profit functions gk, k 0,1, ... , N, the expected

profit of r starting at xO is

N-1

J, (xO) E[ (XN) + 9k (Xk, Uk (xk), Wk) (2.35)
k=O

Then, it is usually possible to find a policy 7r* that is optimal for all initial states

denoted by

J*(xo) = max J,(xo) (2.36)
7r

If these controls are made at every hour, and we assume that a given state Xt

occurs at time t with positive probability, then this problem setup [35] intrinsically

contains the principle of optimality. If we consider the subproblem of being at time

t in state xi and wish to maximize our future profits or "profits-to-go" from time

t ... N, the we are trying to maximize:

N-1

E[gN(XN )+ E k(xk,Uk(xk), Wk)] (2.37)
k=t

Furthermore, the truncated policy {pI*, y+, -- ,PN-11

N-1

E[gN(XN ) ± 9k(Xk,Uk(xk),Wk) (2.38)
k=O

Thus, if we recursively use the above principle starting backwards in time, we

arrive at the formal DP algorithm as follows. For every initial state xO, the optimal

profit J*(xo) is equal to J0 (xo), given by the last step in the algorithm. The algorithm

uses backward induction and calculates the profits as follows from period N - 1 to

period 0:

JN(xk) 9N(XN),
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JA(Xk) max E gY(xk,uk,wk) Jk+1(fk(xk,uk,wk))], (2.39)

k = 0,1,...,N-1.

The expected value is taken with respect to the probability distribution of Wk,

which is dependent on Xk and Uk. While the form above looks extremely closed and

compact, it should be noted that the "profit-to-go" function J is extremely hard to

find in such a form. In most cases, including this thesis, enumeration and brute-force

simulation techniques are required to solve equation (2.39). This equation can be

understood best by viewing each decision as comprising a single branch in a decision

tree. The stage before the last one or before the leaves of the tree are reached have

a cost denoted by 9N(xN). Thus, equation (2.39) simply ensures that at any time, k,

the decision is made to maximize the current profit as well as expected future profits.

Thus, the equation represents building all the possible paths from root to leaf in the

decision tree, and then performing backwards induction to reveal the most optimal

path.

Unfortunately, the massive computational effort to itemize all possible actions

when building the dynamic programming tree turns the problem infeasible very

quickly. As discussed in [1] it is this fact that motivates various approximations

and heuristic techniques to prune the tree to a manageable size, and reduce the num-

ber of choices considered at every node. While this leads us into various suboptimal

techniques, it can be shown that the bounds on such techniques are justifiable for the

problem this thesis attempts to address.

Finally, this thesis uses the above formulations in a discrete-time manner with the

control being applied at each hour over a week period. As given in Figures 1-1 and

1-2, the algorithm described here is well suited for our problem of interest. Indeed,

the decision tree in 1-2 is a clear candidate for such optimization, and as t grows

large, it follows such suboptimal techniques will be necessary to prune the tree and

achieve a solution. The long-time horizon on which to optimize over is the week

period, while each time increment (and hence decision values) is every hour.
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Suboptimal Control - Limited Lookahead Strategies

In numerous cases of dynamic programming, the number of choices grows exponen-

tially as the number of stages increases, producing a computationally infeasible prob-

lem. Referred to this as the "curse of dimensionality" [32], it can make even a simple

problem intractable. Various workarounds to this problem have recently been intro-

duced by Bertsekas, in [8] and [7]. The applications of these specific techniques to

the problem at hand are also shown in G6ziim [1].

The simplest possibility for reducing the dimensionality is simply to truncate the

time horizon, and use the profit-to-go function of only a small number of stages.

Thus, a two-step lookahead applies the following heuristic for the profit-to-go:

Jk+1(Xk+1) = maxE [gk+1(xk+1, Uk+1, Wk+1) + Jk+2(fk+1(xk+1, uk+1,w+k1))1 (2.40)

Here, J represents an approximation to J given in equation (2.39). Clearly, with

the above modification, a limited-lookahead is only satisfactory if the approximate

profit-to-go function is chosen wisely. As shown in [6], it is important that the profit-

to-go differentials are approximated well: For an m-step lookahead,

Jk+m(X) - Jk~m (X') el.. Jk+mn(X) - Jk+mn(X') (2.41)

In this equation x and x' represent two representative states in the problem.

Numerous choices exist for the profit-to-go function based on this characteristic. Some

of the most promising include:

* Problem Approximation: In this case, we try to find the optimal profit-to-go

with some actual cost from a simpler problem. A good candidate is to use the

profit-to-go of the the smaller-horizon subproblem currently being examined.

" Heuristic Cost-to-Go: This is an example of approximating the profit-to-go by

a set of parameters, that vary according to some heuristic strategy. This case
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also makes a good example when learning strategies can be applied from one

subproblem to the next.

e Rollout Approach: In this case, a simulation based on a suboptimal policy is

created and used to approximate the profit-to-go.

In summary, dynamic programming is a powerful approach when solving multi-

stage problem. It should be remembered that neuro-dynamic techniques must be used

for computationally vast decision spaces [7]. Furthermore, it is rare to find closed

form solutions or neuro-dynamic techniques that work for every problem; instead,

each problem must be individually examined, and heuristics should be derived for

tendencies intrinsic to the problem.
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Chapter 3

Bilateral and Multilateral

Agreements

Bilateral contracts for electric power comprise the demand to the TSP's forward

market; the end users are constantly striking deals between each other ahead of time

for power supply or demand and request transmission capacity to deliver this power.

A bilateral contract is defined as the right to inject a certain quantity of power at

node i and withdraw it at node j at a specified electricity price Pij. We notice that

these transactions are point-to-point in nature, and along with the price, have a set

duration of time.

These contracts for transmission will be seen by a TSP only when the end user's

marginal cost is smaller than the nodal price of the selling bus. Mathematically,

we follow [27] to deduce that a bilateral contract from i to j is viable only if pi <

p3 .1 However, it should be noted that a severe problem with this approach is that

in electrical networks, the contract flows usually do not equal the physical flows.

As Hogan first pointed out [24], Kirchoff's laws on the network dictate the flow in

accordance with the impedance and susceptance values of each link. Therefore, some

bilateral contracts may cause congestion on parallel-flow links and therefore not be

allowed for implementation.

'This is obvious in a single two bus network and one should be careful in generalizing to larger
networks. See [25] for further details.
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Before delving deeper into multilateral trading concepts, it is instructive to ex-

amine how net injections at the buses are mapped into flows along lines. These are

calculated from the power transfer Distribution Factors (DF) as follows [17].

Let us again consider the following simple electric network with three intercon-

nected nodes as shown in Fig. 3-1.

10

Link 3 Link 1 -+ 2

G3  G2

L3 L2

Link 2 -+ 3

Figure 3-1: General 3-bus Network

Thus, depending on the impedance levels of the interconnecting links (and resistive

levels if losses are considered), the flows on the line vary with the net injections at

the buses, as described by the detailed formulation in [17] . For simplicity, we assume

equal impedance along the three links and that the lines are lossless. In Fig: 3-1, bus

3 is the slack bus and the corresponding distribution factors are applied to the net

injections which equal the difference of total generation and total load.

It is also important to realize some subtleties of the above example that are not

immediately straightforward. When using distribution factors as above, the injections

at each node are the net injections are total generation - total load. It is also important

to reserve one bus as the slack bus. In the network, it is at this bus where the

regulation is completed to maintain stability of the voltage level [2], and therefore,

the net injections at this bus have no effect on line flows. Without loss of generality

and the fact that the sum of net injections must sum to 0, we can pick any bus as

the slack bus when solving for line flows.

It thus follows that an efficient equilibrium may not be reached if only viable Bi-

lateral Agreements (BA) are considered. This is best understood by an example. The

numbers and arguments shown here follow directly with Wu and Varaiya's example
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in [26].

Assume initial trades in a 3-bus network are as follows (these can be thought of

as the unconstrained optimal solution of generation quantities described in chapter

2). The values are shown in Fig. 3-2.

T80 MW
1

67.04 MW 12.96 MW

100 MW 32.96 MW 20 MW

Figure 3-2: Optimally Efficient Trade

However, in the more realistic setting, links have capacity constraints that a trans-

mission service provider must overcome. As shown in [22], a curtailment strategy must

be adopted to bring the flow down on congested links. If we assume that link 1 - 2

has a maximum capacity of 5 MW, then the following curtailment produces flows

shown in Figure 3-3,

T46.26 MW

41.26 MW 5 MW

66.26 MW 25 MW 20 MW

Figure 3-3: Flows after curtailment

However, such a reassignment of net injections at all three nodes has caused

for MC 1 < MC 3 . However G1 and L 3 cannot strike a bilateral agreement to take

advantage of this situation because any flow from 1 to 3 will increase the flow on the

congested link beyond its capacity. Thus, these agreements will not be approved by

a TSP.
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*1

In order to circumvent this problem of sub-optimality with bilateral agreements

and still obtain an efficient solution, [25] suggests 2 alternative methods. The first

proposition involves having and independent system operator or TSP impose a "trans-

mission charge" = p - pj to transfer power from node j to i. This alternative has the

disadvantage of requiring the TSP to solve the economic dispatch or OPF problem in

order to be knowledgeable of the nodal prices. As mentioned before, this may pose

problems if all the information regarding cost and utility functions are not known

beforehand. Moreover, the forward market necessitates knowledge of transmission

charges a priori for an end user to maximize his gains, which may not be available or

accurate ahead of time. If a clear adjustment bid or mechanism has not been revealed

for how transmission charges will converge to the optimal values, the end-user may

not have enough information to make transactions in the bilateral markets.

The second method is to introduce trilateral contracts or multilateral agreements

such that counterflow is produced to prevent congestion along the constrained link.

We re-examine the above example to better understand how multilateral (trilateral

in this case) agreements can provide profitable opportunities that cannot be attained

by bilateral contracts alone.

We take Fig. 3-3, and include the trilateral agreement of having node inject 15

more MW (relieving congestion on the line), allowing node 1 to inject 18.74 more

MW, which maintains the flow on link 2 -+ 3 at the maximum 5 MW. This is shown

in figure 3-4.

Thus, by involving a third party, a more efficient solution is achieved in accordance

with the line constraints as well as having all parties receive nonnegative profits.

Further analysis of multilateral trades reveals that optimal total social welfare can

be achieved through numerous of these trades taking place, no matter what the

curtailment strategy is. This is demonstrated theoretically by Wu and Varaiya as

Theorem 1 in [26]. Our simulation also confirms this result and further insight is

gained when analyzing the actual data.
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3.1 Theory and Implementation of Multilateral Trades

When looking at the network, it is apparent that certain lines have capacity limits

due to maximum physical levels. Properties intrinsic to the line constrain the direc-

tional flow amount. Under such conditions, we now investigate multilateral trades,

and determine their effect on the system transmission capacity and the social welfare.

From Theorem 1 in [26], we can see that an operating paradigm that includes such

multilateral trades indeed achieves efficiency. This proof is repeated here to show

that the multilateral trading process converges to an optimal solution under the as-

sumption that all participants are rational. More precisely, we denote trades A q

with profit less than c as e-unworthy

[c(q) - c(q + A q)] < 6 (3.1)

and trades with

[c(q) - c(q + A q)] > c (3.2)

as e-worthy. We also assume that for e > 0

1. E-unworthy trades are not accepted

2. -worthy trades will eventually be implemented

3. participants must carry out trade if accepted

Then, we can show that multilateral trading converges to optimal set of quantities

q*. The first claim is that the process must terminate at point qN which is less than

or equal to 6 away from the optimal solution:

[c(qN) - c(q*)] <6 (3.3)

Then, since assumption 1 is valid V E, let c -+ 0, so qN *

The sketch of the proof is as follows. We are guaranteed that the process will

terminate. At some point then,
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[c(qN) - c(qN + A qN)] < c,

V AqN satisfying (nk, AqN) <0.

From the fact that the set

X := [q: (q = qN qN) (+k, A 0]

is convex, we are guaranteed that the convex cost function c achieves some mini-

mum. If we asssume that this occurs at some m then,

c(q') > c(qN) - E (3.6)

Finally, the feasible set has more constraints than X, so it follows S C X. Clearly,

q* is in the feasible set, so it too satisfies c(m) < c(q*). It follows that c(q*) >

[c(qN) - c1, so c(qN) is e-away from the optimum. The first claim is then proved.

Thus, since qN q* as E -+ 0, the proof is complete [26].

Keeping this result in mind, this thesis analyzes sequences of coordinated private

multilateral trades as long as:

1. All participants in the trade receive non-negative profit; and

2. It leads to efficient operations while optimizing the objective at each iteration.

Note that the trades are in a sequential format of iterations, and are not imple-

mented simultaneously. Instead some criteria is used either by the TSP or a social

welfare maximizer to choose the multilateral agreement increasing the objective func-

tion by the maximum amount. Once this trade is implemented, the quantities and

values for all end users are updated. All participants then talk amongst themselves to

supply the next set of multilateral agreements for the next iteration, and the process

continues. A fixed number of iterations is predetermined for each hour by the TSP.

The model is also beneficial because it achieves the advantages of a centralized

pool system, while allowing the transmission and energy markets to be unbundled.
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In effect, the TSP has no influence on the electric power trading decisions behind the

proposed multilateral agreements. In terms of feasibility it has already been demon-

strated in [26] and [5] that the existing communication and control infrastructure is

sufficient to support such trades.

3.2 Summary

The issues presented above are not new, yet much debate still revolves around how

end-users and independent market players can hedge their risks of congestion. Chao

et. al. in [16] indicate that transmission assumes new strategic importance in support-

ing market trading between individual buyers and sellers. Furthermore, individual

end-users must now take into consideration the effects of power flows that diverge

from the contract path.

In addition, there is a clear need for well-defined transmission rights that enable

external effects associated with transactions to be incorporated into decision making

process. It is imperative that current technology is used to its maximum capabilities,

for a transmission service provider to compute an optimally efficient set of transmis-

sion rights. Thus, this thesis uses the theory presented above along with software

algorithms, for a TSP to ensure flow-based rights are computed correctly.

Moreover, the solutions presented herein may finally allow the concept of distri-

bution factor-based insurance to become a reality. Since both network and market

topologies are examined, a TSP can be well-prepared to maximize his gains over a

set time period.

Finally, it is apparent that trilateral agreements are only a one-step extension. It

can be deduced that coordination among an even higher number of end-users may

lead to achieving the system optimum even faster. Tradeoffs must be made between

competition and system efficiency when such concepts are extended to a more general

case.
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Chapter 4

Spot Market

Unfortunately, the anticipated demand values are not perfect and hence the deter-

ministic scheme given in chapter 3 does not account for the actual values of demand.

Hence, the need for a spot market is apparent, and transmission costs and contracts

must be examined for such a market.

Furthermore, for the TSP problem in question, the prediction of the spot market

demand for transmission is vital for the TSP to make optimal decision at each time

interval. The more accurately the TSP can predict such spot demand, the better it

can allocate a sufficient amount (but not excessively large quantity) to be available on

congested links in order to strike its own profit on the spot. However, if his predictions

are inaccurate, then the TSP risks rejecting more profitable bilateral agreements, or

risks not being able to buy larger quantities on the spot if line allocation existed.

4.1 Characterization of Load Demand Uncertainty

As shown in the problem statement, one can think of the spot values as additive noise

to the set BA levels. Furthermore, one can begin to think about how these current

noise parameters are related to the similar time periods in the past. Indeed, weather

conditions, forecasts, and historic data are key inputs when computing the anticipated

load demand. Thus, to correctly account for such errors in these load "guesses", it

follows that probabilistic and stochastic models can be applied to historic data, to
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make necessary adjustments for the current time period.

4.2 Stochastic Models

Two models are presented and formulated below to approximate the value of the spot

quantities to a TSP. In each case, the TSP is attempting to derive expected profits

on the spot market for all possible allocations of the congested link. Hence, he is

attempting to guess with a very high probability the exact profit that could be made

on the spot market for every possible allocation. In this way, he can best split the

capacity of the congested link between the forward market and spot market. From

this point forward and for notational convenience, we will refer to the allocation of

the congested link for the spot market as K, as given in 1.2.

4.2.1 Basic version of OPF

A simple model to account for spot market profit is as follows. The TSP adopts

the methodology that Revenue = Price * Quantity, and attempts to solve for these

values individually. First, the spot price of transmission along the congested link is

clearly related to the optimal power flow algorithm described in section 2.2.1. [24].

Indeed, the price of transmission is seen to be simply the shadow price of the line

constraint equation in the optimal power flow model. It describes how 1 MW along

the congested link beyond the capacity affects the overall objective function. Thus,

if the TSP has access to the OPF data, he can solve the economic dispatch solution

and derive the spot price of transmission.

To solve for the quantity of spot flow that will actually occur along the congested

link, the TSP can use the stochastic distributions of the previous year's data to arrive

at some preliminary estimates. We note from Fig.1-4, there exists three main time

periods during each day for electricity consumption: early morning (previous day's

night), daytime, and evening. We see each day has a similar a pattern and assume

that:
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Mean Variance Standard Deviation

Night 11844.77 234195.02 483.94
Daytime 16492.07 640857.60 800.54
Evening 17488.86 735329.53 857.51

Table 4.1: Statistics for Spot Demand

" Night was between the hours of 1 am - 5 am

" Daytime was between the hours of 8 am - 5 pm

" Evening was between the hours of 6 pm - 9 pm

From Fig. 1-4, hours of 6 am, 7 am, 10 pm, 11 pm, and 12 am, can be seen to be

more as transition times and are not included in the statistical modeling. Moreover,

we see that the distribution is relatively constant between days and prior years. Thus,

we can derive approximate values for the mean and variance of a probabilistic dis-

tribution during these three times of interest. Doing such analysis on New England

data for the years 2000 and 2001, we see the results presented in Table: 4.1. These

values were taken from data for anticipated load demand for the first working week

in February, to correspond to the data we were estimating from 2002.

Now for each possible value of K,, and given the period in question, the TSP can

model an approximate value of power flows along the congested link. The TSP can

then compute the disturbance in exact quantity as the value of a random variable

created from the above process.

Using these expected quantities and shadow prices of transmission, the TSP can

thus arrive at the expected profit values for each feasible K, value, which is exactly

what is desired.

4.2.2 Bounding the Spot Market Loss

Building upon the previous section, we use next the same given statistical information

to bound the spot market loss rather than compute the spot market profit directly.

For each possible value of K,, it is clear that only one of two cases exist:
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1. ,, was chosen sufficient to handle flows requested on the spot market

2. K, is not large enough to accommodate all of the spot flows

In case 1, it is clear there is no loss of profits on the spot market since the entire

flow did not cause any congestion. However, in case 2, it follows that a loss of profits

occurred on the spot market due to the excess flow requests that were impossible

to accommodate. Thus, our formulation here minimizes the expected spot market

loss and solves for this loss for each possible value of r,. In particular, we pose the

following problem:

xi = the actual demand level at bus i

x = the expected multilateral amount of demand at bus i

k7" = the capacity of congested link

rs= the amount of flow on congested link from spot market

rms = the amount of flow on congested link from bilateral market

DF = the distribution factor of bus i on congested link

i= tolerance error of xi - zi

pi= the expected spot price for injecting 1 MW at node i

It follows that Km + K = K "T at optimality, and xi - i is the spot demand at

bus i. Therefore, from the Chebyshev inequality, we can bound our error on this spot

market demand as:

-)2]

<bi(ei) = Pr{(xi - -) ;> Ei } <; (4.1)

We note that the right hand side of (4.1) only requires the first and second

moments of x which we can compute from our stochastic data above. Then, if N

represents the number of nodes in our network, we want to minimize our losses on

the spot market so we can solve the following quadratic program:
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N

minE pi[Chi(es)1i
Ei i=1

(4.2)

such that

N

ZDFei
i=1

N

EDFii
Kms + KS

xR

(4.3)

(4.4)

(4.5)

(4.6)

<; K>""

;> 0

Solving this minimization problem gives the optimal X-Vi, and then it is straight-

forward to find K, using the constraints above. Thus, this is a second method by

which the TSP can optimally solve for the quantity to allocate for the spot market

at each demand level.
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Chapter 5

Simulation of Multilateral Trading

Our simulation was created to iterate through the multilateral trading process detailed

in chapter 3. A priori information includes the anticipated load demand, cost of

generation curves, the maximum flow capacity of congested links (here link 2 -+

3), and the number of iterations to process the agreements over. It should also

be remembered that the iterations proceed sequentially, and thus iteration 2 takes

into account that iteration 1 has been approved and implemented. Therefore, all

transmission rights implemented are physical rights.

We next examine this scenario, as a function of the number of iterations.

5.1 Initial Conditions and Assumptions in Simu-

lation Example

We use the demand data given by Fig. 1-4 and simulate the multilateral trading

process for a given demand level and link capacity constraint. Either parameter can

be varied for each simulation run, and thus numerous results can be computed for

different demand levels and different capacity constraints. We show again here the

possible locations for multilateral agreements and the corresponding spot demand at

such times. As noted on Fig. 5-1, there are fifteen different demand levels for the

simulation to run, if we split the market as multilateral and spot (see chapter 7).
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Alternatively, if we run only a multilateral agreement market as in chapter 6, the

simulation is run for all 120 demand levels of Fig. 1-4.

1.8

1.7

1.6

20 1.5
E

1.4

x 104

1.3-

1.2-

1.1 -
0

Fifteen candidate portions for multilateral markets

20 40 60 80
Time (hours)

13

100 120

Figure 5-1: Candidate multilateral sections for combined market
max - 700

In this chapter, we take a static snapshot of one hour, and hence one anticipated

load demand level. To compare, we look at the results from a representative sample

of demands during the night, daytime, and evening, as defined in chapter 4.

Before the results are shown, the following initial conditions were assumed through-

out the simulation program.

5.1.1 Generator Cost Functions

The generator cost functions were assumed to be quadratic as follows

C(QG) Q2 biQGi + ci

The coefficients for each cost function is summarized in Table 5.1.
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Ta

Generator a b c

G1 0.11 5 150
G2 0.085 1.2 600
G3 0.1225 1 335

)le 5.1: Generator Cost parameters

5.1.2 Load Utility Functions

The load utility functions were also quadratic in nature:

U(QLi) =-ajQ2 - bZQLj

It was assumed that before curtailment, the loads proportionally consume the

total demand, LT as follows:

L1 = 0.2 * LT (5.1)

L2 = 0.3* LT (5.2)

L3 0.5 * LT

These values were then used as the coefficient of the most significant term in the

utility function Thus, for each demand level, ai = 0.2, a2 = 0.3, and a3 = 0.5.

The b values in Table 5.2 were approximated by setting the marginal utilities equal

to the static equilibrium price. (See section 2.1) Therefore, these utility functions

depend on the expected demand level. Since there are fifteen multilateral agreements

over the week for the simulation done in chapter 7, load utility functions parameters

are presented for each demand level in Table 5.2.

Similar bi values were found for all 120 demand levels when simulating the entirely

multilateral market structure of chapter 6.
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Demand (MW) b1 b2 b3

11775 -1755.9 -2933.4 -6701.4
17273 -2574.9 -4302.4 -9830.4
18594 -2769.0 -4626.0 -10570.0
12245 -1789.4 -2989.4 -6829.4
17428 -2582.4 -4314.9 -9858.9
18706 -2780.0 -4645.0 -10613.0
12815 -1875.0 -3132.5 -7156.5
17363 -2556.3 -4271.3 -9759.3
18456 -2765.0 -4620.0 -10556.0
12245 -1789.4 -2989.4 -6829.4
16800 -2481.9 -4146.9 -9474.9
17800 -2661.0 -4446.0 -10158.0
11810 -1729.8 -2889.8 -6601.8
16648 -2474.4 -4133.4 -9446.4
17188 -2552.6 -4265.1 -9745.1

Table 5.2: Load Utility parameters
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Demand K 4

11775 1200
17273 1800
18594 1800
12245 1300
17428 1800
18706 1800
12815 1300
17363 1800
18456 1800
12245 1300
16800 1800
17800 1800
11810 1200
16648 1700
17188 1800

Table 5.3: Maximum Line Capacity

5.1.3 Congested Link Capacity

For the three multilateral contract periods per day, we note the demand levels are

quite different. Indeed, it follows that the capacity of link 2 -+ 3 may indeed vary for

the three periods. This is not too much of a stretch, since numerous real cases have

been shown where independent system operators "switch on and off' links between

the networks. Thus, it is plausible that the capacity of the congested link varies with

the demand level as a means to save on operational and fixed costs. The corresponding

Kgga for each agreement is summarized in Table 5.3.
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5.1.4 Curtailment Strategy

With this knowledge given beforehand, the simulation follows the methodology out-

lined by Allen et. al. in [5]. First, using the economic efficient arguments presented

in section 2.1, the optimally efficient quantities of generation are computed. Then, if

the line constraint is met, the simulation calculates the respective profits and total

social welfare for this solution. However, if the flow along the congested link is larger

than K2"_g, then the end-users are curtailed. The curtailment strategy uses a min-

imax procedure to keep all end-users as close as possible to their optimal operating

points. After curtailment sets the flow along link 2 -+ 3 = K2"_f, the simulation

begins. The trilateral groupings are as mentioned in the original problem statement,

with possibilities being all three generators, or two generators and one load. The

simulation solves the subproblem given in section 1.2. In the next few sections, we

examine the results of this simulation.

5.1.5 Distribution Factors and Broken Network

In the standard operating case, the impedances of all the lines are equal at 1. To

simulate a broken network, or line outage of link 1 -+ 2, we increase the impedance

of link 1 -+ 2 to be 1000, while keeping the impedance on the other two links at

1. Thus, very little power flows through this link, effectively modeling the broken

network topology.

5.2 Quantities of Individual End-Users

Our first point of interest is to examine how the quantities traded are different for a

sample selection of demand levels, and different capacity link constraints.

5.2.1 Effects of the Capacity Constraint

We take the three cases of maximum amount of flow on link 2 -+ 3 = 100, 700, 1200

MW, when the anticipated demand is fixed at 11775 MW.
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Trade Quantities for 100 MW Line Constraint and 11775 MW Demand Level
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Figure 5-2: Quantities for Night Demand, Line Capacity=100

Trade Quantities for 700 MW Line Constraint and 11775 MW Demand Level
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Figure 5-3: Quantities for Night Demand, Line Capacity=700
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Trade Quantities for 1200 MW Line Constraint and 11775 MW Demand Level
2500

Load 1
Load 2

2000- Load 3 -
Gen 1

- Gen 2
1500 - Gen 3

1000-

500-

S 0-

-500-

00
-1000-

-1500-

-2000-

-2500
1 2 3 4 5 6 7 8

Trading Iteration

Figure 5-4: Quantities for Night Demand, Line Capacity=1200
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From these results, it is evident that the quantities exponentially decrease as the

iterations proceed. Another interesting result is that the same-end users are first

to act regardless of the capacity level. However, the users do change after the first

iteration (arguably the most important one), is complete and implemented. Finally,

the magnitude of the quantities traded on the first iteration clearly decreases as the

line capacity increases, but the subsequent iterations are much more comparable in

nature.

5.2.2 Impact of the Load Demand Level

We now fix the capacity constraint, Ka = 700MW, and examine these results for

varying demand levels:

Trade Quantities for 700 MW Line Constraint and 11775 MW Demand Level
2O00

1 2 3 4 5
Trading Iteration

6 7 8

Figure 5-5: Quantities for Night Demand, Line Capacity=700
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Trade Quantities for 700 MW Line Constraint and 17273 MW Demand Level
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Figure 5-6: Quantities for Daytime Demand, Line Capacity=700

Trade Quantities for 700 MW Line Constraint and 18594 MW Demand Level
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Figure 5-7: Quantities for Evening Demand, Line Capacity=700
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As can be seen, the quantities traded decay faster as the demand level increases.

In this case as well, depending on the iteration number, the end-users involved in the

trading are usually the same.

5.3 Participant Profits

We observe the results now for the profit of end users. These are the profits end-

users receive in the electricity market for having their trilateral bids accepted and

implemented by the TSP.

5.3.1 Effects of the Capacity Constraint

x 106 Profits for 100 MW Line Constraint and 11775 MW Demand Level
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6 7 8

Figure 5-8: Profits for Line Capacity=100, Night Demand
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x 106 Profits for 700 MW Line Constraint and 11775 MW Demand Level
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Figure 5-9: Profits for Line Capacity=700, Night Deman
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Figure 5-10: Profits for Line Capacity=1200, Night Demand
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The results here indicate that profit is inversely proportional to the value of Kma.

As the constraint is tightened, much more profit is made in the first few iterations.

Moreover, the amount of iterations required before equilibrium is reached decreases

as as hma decreases.

5.3.2 Impact of the Load Demand Level

Again, we take 700

periods.

MW along congested link and now compare for different time

X 10' Profits for 700 MW Line Constraint and 11775 MW Demand Level

1 2 3 4 5
Trading Iteration

6 7 8

Figure 5-11: Profits for Line Capacity=700, Night Demand

From these graphs, it is clear the profit increases as the demand increases. This

can be explained by the fact that increased quantities are being traded to meet the

increased demand. Moreover, it is seen that regardless of the demand level, it is

shown that usually the same trilateral group of users act at each iteration. Thus,

end users can be somewhat confident that if their coordination maximizes total social

welfare at one demand level, there is a high probability that similar coordination will

be optimal at different demand levels at the same iteration.
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x 1 0 Profits for 700 MW Line Constraint and 17273 MW Demand Level
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Figure 5-12: Profits for Line Capacity=700, Daytime Demand
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Figure 5-13: Profits for Line Capacity=700, Evening Demand
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5.4 TSP profits

In this section, we assume the transmission service provider will receive some scaled

portion of the total profits of those end-users involved in accepted multilateral agree-

ments. We show here the sum of such profits as a function of for different

demand levels.
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Figure 5-14: TSP Profits for Night Demand of 11

It is interesting to see that the TSP's profits will generally

cation is give for multilateral trading.

1800

775 MW

increase as more allo-

75

7--



Capacity Level 17273

800 1000
Line Capacity (MW)
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5.5 Total Social Welfare

Our next point of interest is to examine how total social welfare change as the number

of iterations of multilateral trading increases. For this purpose, we set the demand

level and show representative plot of different line capacities under each of the given

scenarios, and vice versa.

5.5.1 Effects of the Capacity Constraint

We take the three cases of maximum amount of flow on link 2 -* 3 = 100, 700, 1200

MW, when the anticipated demand is fixed at 11775 MW.

0
Cl)

0

x 107
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Trading Iteration

8

Figure 5-17: Total Social Welfare for Line Capacity=100, Night Demand

These results show that total social welfare is indeed approaching the optimal

value. There is also some indication here that this optimal value can be reached

faster at higher levels of Kma. Nevertheless, the final value reached is the same

independent of the line constraint, if the number of iterations is large enough.
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Figure 5-18: Total Social Welfare for Line Capacity=700, Night Demand
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Figure 5-19: Total Social Welfare for Line Capacity=1200, Night Demand
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5.5.2 Impact of the Load Demand Level

We assume Kma = 700 MW along link 2 -+ 3 and now compare for different time

periods.
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2.64' 111
1 2 3 4 5 6

Trading Iteration
8

Figure 5-20: Total Social Welfare for Line Capacity=700, Night Demand

The results indicate that the magnitude of the total social welfare reached is

proportional to the anticipated demand level.
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Figure 5-21: Total Social Welfare for Line Capacity=700, Daytime Demand
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Figure 5-22: Total Social Welfare for Line Capacity=700, Evening Demand
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5.6 Different Criteria Used to Choose Agreements

Since the simulation created has end users submitting their "best" agreement for each

iteration, we can use different heuristics to optimize over and show how the items of

interest change. For example, let us define a user-driven market as one that computes

trilateral market bids which maximize profits for all end users involved. In contrast,

let us call a network-driven market as one that computes trilateral market bids which

maximize flows along all the links of the network. Therefore, this market does not

allow local trading, i.e. between users at the same bus. These market structures thus

produce different trilateral bid possibilities. However, the mechanism to choose and

implement bids is the same as before, namely pick those bids that maximize total

social welfare.

5.6.1 Individual Participants Quantities

Quantities Traded for User Driven Market (Demand Level 11775)

2000-

1500 -
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Va

5

a
0
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0
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0 10
Iterations

15 205 25

Figure 5-23: End User driven case

The results here show that the network driven case takes nearly four times the
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Quantities Traded for Network Driven Market (Demand Level 11775)

| 0
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Figure 5-24: Network Driven case

number of iterations as the user driven case before the quantities traded decay to

0. Thus, the impact of local trades on the number of iterations required to reach

equilibrium, is quite significant.
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5.6.2 Total Social Welfare

We next examine how these different criteria affect total social welfare.

Social Welfare for a User Driven Market (Demand Level 11775)

5 10 15 20
Iterations

Figure 5-25: End User driven case

These simulations greatly elucidate insights of why and how it takes longer to

reach to optimal total social welfare, when dealing with a network-driven case as

compared to the user-driven case.
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x 107 Social Welfare for Network Driven Market (Demand Level 11775)
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Figure 5-26: Network Driven case

84



5.7 Demand Curves for Transmission

Finally, if now we have the original bids as before, i.e. a user-driven market which

allows for local trades, we can derive the total quantities and profits end-users make

for any given capacity of the congested line. We exploit this fact to answer the most

interesting question:

* What is the total demand function for transmission for all end-users?

Clearly the demand for transmission should imply the price the set of end-users

are willing to pay for the total amount of flow along the congested link (i.e. which is

equal to the capacity constraint). The results for a sample set of demand values is as

follows:

x 104
16[r -

E

End User Transmission Demand Functions for 11775 Load Level

0 200 400 600 800 1000 1200 1400 1600
Transmission Capacity (MW)

Figure 5-27: Transmission Demand Curve, Anticipated demand =

1800

11775 MW

This graph was derived by examining each end-users net profits after all iterations

were complete for the different levels of Kma. These profits were then divided by the

corresponding rma value to obtain price or willingness to pay, as a function of Kma.

Thus, it follows that these demand curves represent each end users' willingness to
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pay for transmission, for different values of flow along the congested link. Thus, by

providing such information to the TSP, it is possible for the TSP to optimize his

decision making regarding allocation of flows without knowing cost or utility function

for electricity of the end users. Thus, it is demonstrated that it is possible for a scheme

to exist that unbundles the two markets of electricity generation and transmission.

This chapter presented details of the simulation for a static instant in time. This

is relaxed in the next two chapters, so full dynamics of two different market structures

can be compared for the full week of interest.
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Chapter 6

Multilateral Trading Over The

Week

We now use the concepts of chapter 5, but extend them to a dynamic setup for the

week setup, instead of the analysis for a single static snapshot. We again look at the

key items of interest, graphed for each hourly period as follows. This chapter limits

the number of iterations of multilateral agreements described in chapter 5 to three.

Finally, it should be noted that since the market structure is entirely multilateral,

rmx is allotted solely for multilateral agreements. Thus, in this chapter Kma = Ta-.

This chapter is based on the problem statement presented in chapter 1, specifically

for the TSP objective in (1.1), with profits coming from the spot market being equal

to 0. Since this chapter involves only a multilateral market structure, the simulation

examined in chapter 5, is now run for the anticipated load demand levels given by

Fig. 1-4. Representative plots are shown for the three time periods of each day, as

well as for a low, medium, and high capacity constraint.
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6.1 Individual End-User Quantities Over the week

period

The end-user quantities are taken individually and graphed over the week period.

Plots are shown for ,..a values of 100 MW, 700 MW and 1100 MW.

10000

C

Loads operating in entirely multilateral markets

60
Hour

120

Figure 6-1: Load Quantities, 100 MW

We note the difference in values for the three loads is most probably a consequence

of the differing utility functions. More specifically, the values here are similar in

proportion to the ai coefficients specified for the loads in chapter 5. Similarly, the

different generator quantities are most probably due to their unique cost functions.

Furthermore, these results indicate that as n"' increases, more generation is required

from G1 and G2 than G3.
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Loads operating in entirely multilateral market
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Figure 6-2: Load Quantities, 700 MW

Load quantities in entirely multilateral market
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Figure 6-3: Load Quantities, 1100 MW
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Generators operating in entirely multilateral market

0 20 40 60 80 100 120
Hour

Figure 6-4: Generator Quantities, 100 MW

Generators operating in entirely multilateral market
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Figure 6-5: Generator Quantities, 700 MW
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Generator Quantities in multilateral markets
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Figure 6-6: Generator Quantities, 1100 MW
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6.2 TSP Profits or Sum of End-user Profits

We now look at how profit

constraint.

101

0~

9

8

7
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5 '-
0

changes occur over time, depending on the line capacity

End Users' Total Profits in entirely multilateral market

20 40 60 80 100
Hour

120

Figure 6-7: TSP Profits, 100 MW

As expected, the pattern of profits follows the anticipated load graph given in

Fig: 1-4. We assume here that the TSP is paid the full amount of profits the end-

users make in the electricity market, when such trilateral deals are implemented. As

expected, the pattern of profits follows the anticipated load graph given in Fig: 1-

4. Specifically, the profits more closely resemble this shape when rT"n = 1100MW.

However as rK"' decreases, the profits to the TSP are much more erratic and volatile.

It is clear this constraint affects which trades are physically feasible at certain hours.

In addition, the TSP's net profits increase as rTy increase.
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Sum of End-User's Profits in entirely multilateral market

60
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Figure 6-8: TSP Profits, 700 MW

Total End-user profits in multilateral market setting
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Figure 6-9: TSP Profits, 1100 MW
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6.3 Total Social Welfare over the week

Finally, we examine total social welfare in this entirely multilateral market.

0)
F-

x 107 Total Social Welfare under entirely multilateral market

0 20 40 60 80 100
Hour

120

Figure 6-10: Total Social Welfare, 100 MW

We conclude from these plots that total social welfare reached is independent of

the line constraint, rTn-7. These observations confirm those found in Section 5.5.1.
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Total Social Welfare in entirely multilateral market

Hour

Figure 6-11: Total Social Welfare, 700 MW

Total Social Welfare in entirely multilateral market
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Figure 6-12: Total Social Welfare, 1100 MW
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For the broken network case where link 1 -a 2 carries very little flow, the results

for TSP profits and total social welfare are as follows. The capacity of the line for

this case was 700 MW.

X 106 Total Profits in multilateral market: Broken Network

0
0~

0.61 1 1 I

0 20 40 60 80
Hour

100 120

Figure 6-13: TSP Profits: Broken Network, 700 MW

We note that Fig: 6-13 is extremely similar to Fig: 6-8. Similarly, Fig: 6-14 is

extremely similar to Fig: 6-11. Hence, we conclude that the broken network has little

to no effect on the TSP's profits, or total social welfare.
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TSW in multilateral market: Broken Network
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Figure 6-14: Total Social Welfare: Broken Network, 700 MW
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Chapter 7

TSP Profits using Dynamic

Programming

This chapter is a combination of the concepts in the previous chapters to finally

introduce a market structure consisting of multilateral agreements and a varying

spot market for the original problem statement. Examining the anticipated load

graph in Figure 1-5, and the analysis of chapter 6 and section 2.2, we see that this

formulation is well suited for a dynamic programming limited lookahead approach.

We again show here in Fig. 7-1 the expected quantities of demand for the multilateral

market. More specifically, we see that we can split the computationally infeasible

problem of optimizing over 120 time periods, into 15 smaller subproblems of smaller

horizons each, as shown in Fig. 5-1. Thus, we exploit the fact that these "near-flat"

areas where we assumed bilateral agreements will exist, are the same periods to run

the smaller DP over.1 Furthermore, we know from Chapter 6 the exact deterministic

profits that can be made in the trilateral marketplace for a variety of line constraints.

This approach is also well suited for the analysis done in Chapter 4, where the

quantities on the spot market are approximated by stochastic distributions, and hence

'Note: The transition areas between night and day, and evening and night are not well suited for
this BA+spot type splitting. As described in chapter 4, and from Fig: 1-4, we see no optimization
exists for hours 6,7,22,23 and 24. This explains why the graphs have a maximum of 95 on the x-axis,
as these five times per day were not included. If exact results are required as to what profits were
made during these time periods, one should use the same values given in Chapter 6.
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Demand for Deterministic Section: Multilateral Markets
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Figure 7-1: Anticipated Demand in Multilateral Market

the spot market profits can be adequately solved, by the elementary method described

in section 4.2. The spot demand is shown again in Fig. 7-2. The distribution is

independent of the day and the expected profits can be calculated depending if the

specific agreement is during the night, day, or evening. These spot market profits are

also calculated as a function of line capacity for the specific agreement in question.

As for the multilateral agreements, we use a similar approach as chapter 6, and

calculate the total profits, 11 D, ,ma for each (demand, Kma) pair. Finally, the noise

variable wt has the appropriate distribution as discussed earlier. Combining the above

terms, the TSP has all the information necessary to predict the expected total profits

starting at any feasible Ks,t and completing a feasible action resulting in Ks,t+1.

We also assume that the spot market quantity allocation, i.e. > r'is > 0, that

is some spot market must exist. Also, due to the large magnitude of numbers involved,

(capacity of congested link can be as high as 1800 for evening demand levels), the

simulation also assumes that decisions above must be in increments of 100 MW. In

this manner the states are described by s,t, and can range from 100 ... K ff. The
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Demand for Probabilistic Section: Spot Market
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Figure 7-2: Anticipated Demand in Spot Market

action space is the quantity to decrement s,,t by and ranges from 0 ... (K!"T - 100).

The feasible actions are those that ensure ns,t+1 < Ks,t.

Thus, the fifteen smaller sub-problems are solved one at a time using the dynamic

programming and greedy algorithms. The results are compared to a greedy approach

where decisions are made for only the current time period in mind. In essence, this

is equivalent to a 0-step lookahead algorithm at each period. The greedy algorithm

does not take into time into account and simply performs a static optimization with

the choices available at the current time. Continuous and discrete graph are shown

in Figures 7-3 and 7-4.

7.1 Normal Network case

TOTAL CUMULATIVE PROFIT GAIN BY DP: 3.36 x 108

The value of the dynamic programming technique is thus significant.

We also want to compare this market structure to the entirely multilateral setup
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DP vs Greedy offset results for all time
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Figure 7-3: Continuous Time

in chapter 6. Reviewing Figure 6-9, we see this algorithm has nearly an order of

magnitude greater profits at each time period. Thus, this provides some evidence

for the need of a transmission spot market, and that a TSP can indeed profit from

performing such optimizations.
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DP vs Greedy offset results for discrete timex 10
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Figure 7-4: Discrete Time
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7.2 Broken Network case

In this case, the same algorithm is performed for the broken network topology. The

formulations are the same and the continuous time and discrete time results are

presented below:
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x 107 DP vs Greedy offset results for Broken Network
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70 80 90 100

Figure 7-5: Continuous Time

TOTAL CUMULATIVE PROFIT GAIN BY DP: 1.51 x 108

To confirm our results in section 7.1, we again compare these results to the broken

network in the entirely multilateral setup of Chapter 6. As expected, the profits to

the TSP are nearly ten times higher in the market structure that includes a spot

market than one that does not.

We also note that the greedy algorithm here does much better than the case of a

static network topology. Indeed the total profit gained by the dynamic programming
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DP vs Greedy offset results for Broken Network
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Figure 7-6: Discrete Time

algorithm is less than half of what was seen in section 7.1. This may indicate that the

dynamic programming algorithm loses some value as the reliability of the network

decreases.
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Chapter 8

Conclusions and Future Research

This thesis has examined the resource allocation problem encountered by a transmis-

sion service provider under uncertainties. It is attempted to unbundle the electricity

and transmission markets in regard to the quantities end users produce or consume.

The analysis assumes the existence of multilateral forward markets as well as the

real-time spot market. The TSP is able to earn revenue from both services and is

attempting to maximize his revenues over a week period, when a single link in a three

bus network is congested.

Real load data is taken for a Monday-Friday period in New England. Observation

of the data suggests that 3 time periods exist per day (early morning, daytime and

evening), where the total demand is relatively constant with low variance around the

mean. Hence, the total load is split into fifteen portions of anticipated multilateral

levels and expected spot values.

Spot market formulations are presented to best approximate the quantities that

will be traded in real-time and determine the expected profit amount as a function

of spot market capacity allocation.

Analogously, a deterministic simulation is created to automate the multilateral

trading process and output the deterministic multilateral profit as a function of bilat-

eral market capacity allocation. First, the simulation is run for a single load demand

level. and results for total social welfare, end-user quantities, end-user profits, and

TSP profits are shown as a function of the number of iterations.
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Second, the number of iterations is fixed and the program is now run over the

anticipated values of the week to simulate an entirely multilateral market structure.

Results regarding total social welfare, end-user quantities, and TSP profits are com-

puted for the week, while varying capacity level on congested link.

Third, the case of a broken topology is considered, where one of the non-congested

links has such high impedance levels that flow along the link is severely reduced.

We examine how an entirely multilateral trading market copes with such a case,

and compare the results of total social welfare and TSP profits to those acquired

previously under standard operating conditions.

Moving to a probabilistic regime, the profits gained from the deterministic mul-

tilateral setup along with statistical distributions regarding the noisy spot market

are fed as inputs into a stochastic simulation. This program runs a limited lookahead

dynamic programming algorithm over each period of each day for the week. These re-

sults are compared to a greedy algorithm. Total Profits to the TSP are also compared

under this market structure with the entirely multilateral setup discussed earlier.

Finally, the broken topology case is examined here as well, and the resulting

TSP profits are compared to those achieved when the network has all three links in

operation.

8.1 Future Research

In light of the above summary, it follows that the research presented here can be

extended in numerous ways. Some of the main ideas the author would have liked to

develop further are presented below. This is by no means an exhaustive list since

the theory, concepts, and simulations shown here can be applied to a variety of open

problems in the current transmission market.

8.1.1 Investment Protocols

One next step would be to introduce the idea of time into the deterministic simulation

described in chapter 5. Currently, the concept of multilateral trading does not have
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the "duration" the term bilateral trading generally implies. Indeed, if the exact

multilateral trades accepted in one time period were necessarily also implemented in

the next, the question of investment can be throughly investigated. Applying this to

asset allocation markets could also be a dual benefit from such research.

8.1.2 Network Analysis

We note that the network itself presents a study for optimization of transmission. It

may be appropriate to think of algorithms such as min-cost flow with the appropriate

weights to enhance our notion of which links are most valuable. Furthermore, using

network algorithms, it may be possible for the TSP to develop a model that appro-

priately weights the cost of transmission with the series of multilateral bids being

requested. This can help the TSP optimize for both total social welfare and profits

simultaneously.

8.1.3 Hidden Markov Models

Finally, we note that this problem may be also viewed as a hidden Markov model.

The anticipated demand curve may provide more information regarding the "states"

various end users are currently operating in. It is not clear whether the process is

indeed Markov, but estimation techniques on the anticipated demand may provide

some insight into how such states evolve. In addition, the TSP may be able to group

or cluster some states together through the process of state augmentation. This could

allow the TSP to computationally examine more choices for transmission, and hence

choose a more optimal set of controls.

109



j

110



Chapter 9

Source Code

This is the matlab code used to run the simulations in chapters 5-7. First, the code is

presented for the multilateral market structure or the TSP's sub-problem. This is fol-

lowed by the dynamic programming code used to solve the main optimization problem.

Note, this code uses a MATLAB toolbox referenced with [41]. The toolbox can be

found at: http://www4.ncsu.edu/unity/users/p/pfackler/www/compecon/toolbox.html

The files are separated by horizontal dashed lines. The order of file names are:

find-ggg-marketprices.m

find-lggmarket-prices.m

make-ggg.market .m

makelggmarket . m

newevalmarkets.m

pmetric.m

tg .m

CongestedLine.m

CurtailAll .m

GeneratorInjections.m

LoadDraws .m
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LoadUtilities.m

Price .m

f lows .m

setup .m

dpalgo .m

function qp = find-ggg-market-prices(dfgdfO,dfi,cfgcfOcfiqgg,qgOqg)

X previous to calling this function, the market reached an

X unfeasible equilibrium, and the ISO curtailed loads and

X generators by the necessary amount

% this function calculates a feasible post-curtailment market

X equilibrium; the market is formed in this case by gang selling a

% total amount qggT to generators genO and geni (the proportions

X that geng sells to genO and gent are determined by the

% distribution factors on the congested line)

X inputs

X dfg - distribution factor of geng on congested line

% df0 - distribution factor of genO on congested line

X dfi - distribution factor of geni on congested line

% cfg - cost function for gang cfg(i)*q^2 + cfg(2)*q + cfg(3)

% cf0 - cost function for genO cfO(1)*q-2 + cfo(2)*q + cfO(3)

% cfi - cost function for gent cft(1)*q-2 + cfi(2)*q + cfi(3)

% ggg - quantity generated by geng post curtailment

X qgO - quantity generated by genO post curtailment

% qg1 - quantity generated by gent post curtailment

% output : struct where

% qp.quantities = [qggT, -1*qgOT, -1*qg1T);

X qp.prices [0. priceo, pricel];

% qp.profits = [eval(eval(pi-gg)), eval(eval(pi-gO)),

% eval(eval(pi.g1))];

% qp.costs = [polyval(cfg,qgg+qggT), polyval(cfo, qgO+qgOT), polyval(cfi, qg1+qg1T)];

% syms for price in g-0 and g-1 markets

syms pgo pgi;

% syms for quantities qggT, qgOT, qg1T

syms qggT qgOT qg1T;

% the trading rules

ratios = make_gggmarket(dfgdf,dfl);

rO = ratios(1);

r1 = ratios(2);
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agg

bgg

cgg

agO

bgO

cgO

ag1

bgl

cgi

= cfg(1);

= cfg(2);

= cfg(3);

= cfO(I);

= cfO(2);

= cf0(3);

= cfi(1);

= cfl(2);

= cfl(3);

% profit for geng

pi-gg = 'pgO*qggT*rO + pgl*qggT*rl + agg*qgg-2 +

X profit for gen0

pi-gO = '-pgO*qgOT + agO*qgO^2 + bgO*qg0 + cgo -

X profit for geni

pi-gi = '-pgl*qglT + agl*qg1^2 + bgl*qgl + cgi -

bgg*qgg + cgg - agg*(qgg+qggT)-2 - bgg*(qgg+qggT)-cgg';

ag0*(qgO-qgOT)^2 - bg0*(qg0-qgOT)-cgO';

agl*(qgl-qglT)~2 - bgl*(qgl-qglT)-cgl';

% diff pi-gg for marginal profit

mpg = diff(pi-gg, 'qggT');

% solve for qggT to get supply/demand for gang

geng-sd = solve(mpg, 'qggT');

% diff genO for marginal profit

mpO = diff(pi-g0, 'qgOT');

X solve mp0 for qgOT to get supply/demand for genO

genO-sd = solve(mpO, 'qgOT');

X solve mpO for pgO

priceO = solve(mpO, 'pgO');

qgOT = rO*qggT;

priceO = eval(priceO);

% diff genI for marginal profit

mpl = diff(pi-gl, 'qgiT');

X solve mpl for qgiT to get supply/demand for geni

genlsd = solve(mpl, 'qg1T');

% solve mpl for pg1

pricel = solve(mpl, 'pgi');

qgIT = rl*qggT;

pricel = eval(pricei);

% plug price0 = pgO, pricel =

pgO = priceO;

pgl = pricel;

pg1 into mpg, solve for qggT

mpg = eval(eval(mpg));

qggT = eval(solve(mpg, qggT));

qgOT = eval(qgOT);

qgiT = eval(qgIT);

priceO = eval(priceO);
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pricel = eval(pricel);

qp.quantities = [qggT, -1*qgOT, -1*qglT];

qp.prices = [0. priceO, pricel];

qp.profits = [eval(eval(pi-gg)), eval(eval(pig0)),

eval(eval(pi-gl))];

qp.costs = [polyval(cfg,qgg+qggT), polyval(cf0, qgO+qgOT), polyval(cfl, qgl+qglT)I;

X the profit functions for this market are internal to this function,

X so we return the profit functions for each agent evaluated

X around a set of points so that we can examine it outside this function

mag = loglO(abs(qggT));

points-qggT = linspace(qggT-2*10^mag, qggT+2*10~mag,25);

points-qg0T = linspace(qgOT-2*10-mag, qgOT+2*10^mag,25);

points-qglT = linspace(qglT-2*10-mag, qglT+2*10^mag,25);

syms qggTT qgOTT gg1TT;

pi-gg = strrep(pi-gg, 'qggT', 'qggTT');

pi-gO = strrep(pi-gO, 'qgOT', 'qgOTT');

pi-gl = strrep(pi-gl, 'qglT', 'qg1TT');

pi-gg = eval(pi-gg);

pi-gO = eval(pi-g0);

pi-gl = eval(pi-gl);

%qp.ppf = pi-gg;

Xqp.pOf = pi-gO;

%qp.plf = pi-g1;

for i=1:length(points-qggT)

qggTT = points-qggT(i);

qp.pp(i) = eval(pi-gg);

end

qp.points-pp = points-qggT;

for i=1:length(points-qg0T)

qgOTT = points-qgOT(i);

qp.pO(i) = eval(pi-gO);

end

qp.points-p0 = points-qgOT;

for i=1:length(points-qg1T)

qgiTT = points-qglT(i);

qp.pl(i) = eval(pi-gi);

end

qp.pointsp1 = points-qglT;

function qp = find-lgg-market-prices(dfL,dfO,dfl,cfL,cfO,cfl,qL,qgO,qgl)

% previous to calling this function, the market reached an

% unfeasible equilibrium, and the ISO curtailed loads and

% generators by the necessary amount

% this function calculates a feasible post-curtailment market

X equilibrium; the market is formed in this case by load buying a

X total amount qLT from generators genO and geni (the proportions

X that the load buys from genO and geni are determined by the

. distribution factors)
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% inputs :

% dfL - distribution factor of load on congested line

X df0 - distribution factor of genO on congested line

X dfl - distribution factor of gent on congested line

X cfL - utility function for load : cfL(1)*q^2 + cfL(2)*q + cfL(3)

% cf0 - cost function for genO cfO(1)*q^2 + cf0(2)*q + cft(3)

X cfl - cost function for gent cfl(1)*q^2 + cfl(2)*q + cfl(3)

X qL - quantity consumed by load post curtailment

% qgO - quantity generated by genO post curtailment

X qgl - quantity generated by gent post curtailment

X output : struct qp where

X qp.quantities = [qLT, qgOT, qg1T];

X qp.prices = [0,priceo, pricel];

% qp.profits = [eval(eval(piL)), eval(eval(pi-g0)),

X eval(eval(pig1))];

X qp.costs = Epolyval(cfLqL+qLT), polyval(cf0, qgO+qgOT),

X polyval(cfl, qgl+qg1T)];

% Data for the 3 bus example in the E.Allen et. all paper

X cfL = [-10, 214.16667,0]

% cf0 = [1, 1, 1/2)

X cfl = [2, 1/2, 1]

% qL = 8.9446

% qg0 = 6.0556

X qgi = 2.8890

% syms for price in g-0 and g-1 markets

syms pg0 pgl;

X, syms for quantities qLT, qgOT, qgiT

% (the T subscript is for tilda : quantities bought after curtailment)

syms qLT qgOT qglT;

% the trading rules

ratios = makelggmarket(dfL,dfO,dfI);

rO = ratios(1);

r1 = ratios(2);

aL = cfL(1);

bL = cfL(2);

cL = cfL(3);

agO = cf0(1);

bg0 = cfO(2);

cg0 = cfO(3);

agI = cf1(1);

bgI = cfl(2);

cgI = cfl(3);

% profit for load

piL = I - pgO*qLT*rO - pgl*qLT*rl - aL*qL'2 - bL*qL - cL + aL*(qL+qLT)^2 + bL*(qL+qLT)+cL';

X profit for genO

pi-gO = 'pgo*qgOT + ago*qg0-2 + bgo*qgo + cgo - agO*(qgO+qgT)^2 - bgO*(qgO+qgOT)-cgo';

X profit for gent

pi-gi = 'pgl*qglT + ag1*qg1^2 + bgl*qgi + cgl - agl*(qgl+qglT)^2 - bgl*(qgl+qglT)-cgl';
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% diff load for marginal profit

mpL = diff(piL, 'qLT');

X solve for qgL to get supply/demand for load

load-sd = solve(mpL, 'qLT');

% diff genO for marginal profit

mpO = diff(pi-gO, 'qgOT');

X solve mpO for qgOT to get supply/demand for genO

genO-sd = solve(mpO, 'qgOT');

% solve mpO for pgO

priceO = solve(mpO, 'pgO');

qgOT = rO*qLT;

priceO = eval(price0);

% diff genl for marginal profit

mpl = diff(pi-gl, 'qg1T');

X solve mpl for qg1T to get supply/demand for genl

genlsd = solve(mpl, 'qglT');

X solve mpl for pgl

pricel = solve(mpl, 'pgi');

qg1T = rl*qLT;

pricel = eval(pricel);

X plug priceO = pgO, pricel = pgl into mpg, solve for qLT

pgO = priceO;

pgl = pricel;

mpL = eval(eval(mpL));

qLT = eval( solve(mpL, 'qLT') );

qgOT = eval(qgOT);

qg1T = eval(qglT);

priceO = eval(priceO);

pricel = eval(pricel);

qp.quantities = [qLT, qgOT, qglT];

qp.prices = [OpriceO, pricell;

qp.profits = [eval(eval(piL)), eval(eval(pi-gO)),

eval(eval(pig1))];

qp.costs = [polyval(cfLqL+qLT), polyval(cfO, qgO+qgOT),.

polyval(cfi, qgl+qglT)];

X the profit functions for this market are internal to this function,

% so we return the profit functions for each agent evaluated

% around a set of points so that we can examine it outside this function

mag = log1O(abs(qLT));

points-qLT = linspace(qLT-3*10^mag, qLT+3*10^mag,25);

points-qgOT = linspace(qgOT-3*10^mag, qgOT+3*10^mag,25);

points-qglT = linspace(qglT-3*10^mag, qglT+3*10^mag,25);

syms qLTT qg0TT qglTT;

piL = strrep(piL, 'qLT', 'qLTT');

pigO = strrep(pi-gO, 'qgOT', 'qgOTT');

pigl = strrep(pi-gl, 'qg1T', 'qgITT');
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pi-L = eval(piL);

pigO = eval(pi-gO);

pigl = eval(pi-gl);

for i=1:length(points-qLT)

qLTT = points-qLT(i);

qp.pp(i) = eval(pi-L);

end

qp.points-pp = points-qLT;

for i=1:length(points-qgOT)

qgOTT = points-qgOT(i);

qp.pO(i) = eval(pi-gO);

end

qp.points-pO = pointsqgOT;

for i=1:length(points-qglT)

qgITT = points-qgIT(i);

qp.p1(i) = eval(pi-g1);

end

qp.points-p1 = points-qgiT;

function ratios = make ggg-market(dfg, dfo, dfl)

X denote by gang, genO, and geni the generators

. that have distribution factors dfg, dfO, and dfl

Y respectively on the congested line

% gang wants to sell a total of one unit

X this function returns the ratios [r0, r1]

% that geng must sell to genO and genl in order

X to keep the flow on the congested line the same

X (this function ensures rO + r1 = 1)

X (ri < 0 means geng buys from geni)

% we are just solving AX = B:

A = [1,1;dfo-dfg, dfl-dfg];

B [1;0];

ratios = A \ B;

function ratios = make-lggmarket(dfl, dfo, dfl)

% denote by load, genO, and geni the load and generators

X that have distribution factors dfl, df0, and dfi

X respectively on the congested line

X load wants to buy a total of one unit

X this function returns the ratios CrO, r1]

% that load must buy from genO and gen in order

X to keep the flow on the congested line the same

% (this function ensures rO + r1 = 1)

% (ri < 0 means load sells to geni)

X we are just solving AX = B:

A = [1,1;dfo+dfl, dfl+dfl);

B [1;03;
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ratios = A \ B;

function best = new-eval-markets(cl, dfg, dfL, Cfg, Ufl, Qgc, Qic, Gc)

% evaluates all of the possible bilateral exchanges and

X returns the 'most' best. the congested line is cl (:= 1 1 2 1 3)

X ('most' is an integer local variable defined inside this

% function)

% positive flow is defined in the counterclockwise direction

% line 1 : g3 -> gi

X line 2 gi -> g2

% line 3 g2 -> g3

% distribution factors for generators

X dfg(3*3) : dfg(ij) is effect on line i by generator j's production

X distribution factors for loads :

% dfL(3*3) : dfL(ij) is effect on line i by load j's consumption

X cost function for each generator : cfgi is a 2nd degree

X polynomial with decreasing coefficients cfgi = [a-cfgi, b-cfgi, c-cfgi)

X utility function for each load : ufli is a 2nd degree

X polynomial with decreasing coefficients ufli = [a-cfgi, bcfgi, c-cfgi)

X post curtailment quantities for generators (Qgc) and loads (Qlc)

index = 1;

most = 3;

total-profits = zeros(most,l);

tsf-before = totalhsocial_welfare(Cfg, Qgc, Ufl, Qlc);

X evaluate the possible (gen) <-> (gen, gen) exchanges

% gi <-> g2, g3

% g2 <-> gi, g3

X g3 <-> gi, g2

for i = 1:3

if(i+1 > 3)

j = i - 1;

else

j = i + 1;

end

k = 6 - (i+j);

market-name = ggg-id(i,j, k);

struct = find-ggg-market-prices(dfg(cl,i), dfg(cl,j), dfg(clk),

Cfg(i,:), Cfg(j,:), Cfg(k,:), Qgc(i), Qgc(j). Qgc(k));

% check to see if the line constraints, generator constraints are

% satisfied.

.only keep this agreement if it is one of the 'most' best, as

.defined by pmetric

pm = pmetric(struct.profits);

tmpg(i) = struct.quantities(l);

tmpg(j) = struct.quantities(2);
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tmpg(k) = struct.quantities(3);

tmp-gq = Qgc + tmpg';

check = tmp-gq(tmp-gq > Gc);

if( length(check) > 0)

okay = 0;

else

okay = 1;

end

tsf = total-socialwelfare(Cfg, tmp-gq, Ufl, Qic);

tsfbefore;

% just in case, make sure that total social welfare is increasing

better-tsf = tsf >= tsf-before;

if(pm > min(totalprofits) & okay & better-tsf)

% keep it

[m,minIndex] = min(total_profits);

total-profits(minIndex) = pm;

tsfbefore;

all-tsf(minIndex) = tsf;

1(minIndex,1) = 0;

1(minIndex,2) = 0;

1(minIndex,3) = 0;

g(minIndex,i) = struct.quantities(l);

g(minIndex,j) = struct.quantities(2);

g(minIndex,k) = struct.quantities(3);

names(minIndex, :) = market-name;

all_profits(minIndex, 1) = 0;

all_profits(minIndex, 2) = 0;

allprofits(minIndex, 3) = 0;

allprofits(minIndex, 3+i) = struct.profits(1);

all_profits(minIndex, 3+j) = struct.profits(2);

all_profits(minIndex, 3+k) = struct.profits(3);

pp(minIndex,:) = struct.pp;

pO(minIndex,:) = struct.pO;

pl(minIndex,:) = struct.pl;

points-pp(minIndex,:) = struct.point spp;

pointtsp0(minIndex,:) = struct.points-p0;

pointspl(minIndex,:) = struct.points-pl;

all = [1 g];

mapping(minIndex,1) = 3 + i;

mapping(minIndex,2) = 3 + j;

mapping(minIndex,3) = 3 + k;

prices(minIndex,:) = struct.prices;

genq(minIndex,:) = Qgc' + g(minIndex, :);

loadq(minIndex,:) = Qlc' + 1(minIndex, :;

end

index = index + 1;

end
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% evaluate the possible (load) <-> (gen, gen) exchanges

% 11 <-> gi, g2

X 11 <-> g1, g3

% 11 <-> g2, g3

% 12 <-> g1, g2

% 12 <-> gi, g3

% 12 <-> g2, g3

Y 13 <-> gl, g2

% 13 <-> gi, g3

% 13 <-> g2, g3

for i = 1:3

for j = 1:2

for k = j+1:3

market-name = lgg-id(i,j,k);

struct = find-lggjmarket-prices(dfL(cl,i), dfg(cl,j),

dfg(cl,k), Ufl(i,:), Cfg(j,:), Cfg(k,:), Qlc(i), Qgc(j),

Qgc(k));

% check to see if the line constraints, generator constraints are

% satisfied.

. only keep this agreement if it is one

% defined by pmetric

of the 'most' best, as

pm = pmetric(struct.profits);

tmpl(l) = 0;

tmpl(2) = 0;

tmpl(3) = 0;

tmpg(1)

tmpg(2)

tmpg (3)

tmpl(i)

tmpg(j)

tmpg(k)

= 0;

= 0;

= 0;

= struct.quantities(1);

= struct.quantities(2);

= struct.quantities(3);

tmp-gq = Qgc + tmpg';

tmp-lq = Qlc + tmpl';

check = tmp-gq(tmp-gq > GOc);

if( length(check) > 0)

okay = 0;

else

okay = 1;

end

tsf = total-socialwelfare(Cfg,

tsf-before;

X just in case, make sure total

% it was before

bettertsf = tsf >= tsf-before;

tmp-gq, Ufl, tmp-lq);

social welfare is better than

if(pm > min(totalprofits) & okay & (tsf >= tsfbefore))

% keep it

[m,minIndex] = min(total-profits);

tsf-before;

all-tsf(minIndex) = tsf;
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total-profits(minIndex) = pm;

0;

0;

0;

struct.quantities(l);

= 0;

= 0;

= 0;

struct.quantities(2);

struct.quantities(3);

all = [1 g];

names(minIndex, :) = market-name;

pp(minIndex,:) = struct.pp;

pO(minIndex,:) = struct.p0;

pl(minIndex,:) = struct.pl;

points-pp(minIndex,:)

points-pO(minIndex,:)

points-p1(minIndex,:)

all_profits(minIndex,

all-profits(minIndex,

all_profits(minIndex,

all_profits(minIndex,

all_profits(minIndex,

allprofits(minIndex,

all_profits(minIndex,

allprofits(minIndex,

all-profits(minIndex,

- struct.points-pp;

= struct.points-p0;

= struct.points-p1;

1)

2)

3)

i)

= 0;

= 0;

= 0;

= struct.profits(l);

4) = 0;

5) = 0;

6) = 0;

3+j) = struct.profits(2);
3+k) = struct.profits(3);

mapping(minIndex,l) = i;

mapping(minIndex,2) = 3 + j;

mapping(minIndex,3) = 3 + k;

prices(minIndex,:) = struct.prices;

genq(minIndex,:) = Qgc' + g(minIndex, :;

loadq(minIndex,:) = Qlc' + 1(minIndex, :);

index = index + 1;

end

end

end

end

)( in each of these fields, the ith row corresponds to the ith agreement

best.number = most; % the number of agreements we have saved

best.total-profits = total-profits; % the profit metric for each agreement (see pmetric.m)

best.generators = g; % additional generation by generators in each

X agreement (one row is the quantity for

X generators in an agreement)

best.loads = 1; % additional consumption by loads in each agreement
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% (one row is the additional consumption for loads

% in an agreement)
best.pp = pp; X profit as a function of quantity for the 'pivot'

X agent in the agreement

best.pO = p0; X profit as a function of quantity for the 'gO' agent

X in the agreement

best.p1 = p1; % profit as a function of quantity for the 'g1' agent

V in the agreement

best.points.pp = points-pp; % the quantities at which the profit

X function for the pivot is evaluated

best.points.pO = points-pO; % the quantities at which the profit

% function for the 'gO' agent is evaluated

best.points-pl = points.p1; % the quantities at which the profit

X for the 'gi' agent is evaluated

best.names = names; % string description of the agreement, eg : (12<->(g1,g3))

% all-profits[i, 1:3] profits for loads in agreement i

% all-profits[i, 4:6) profits for generators in agreement i

best.all-profits = all-profits;

% all(i, 1:3) := additional consumption by loads 1:3 in agreement 'i'

% all(i, 4:6) := additional generation by generators 1:3 in agreement 'i'

best.all = all;

best.Qgc = genq;

best.Qlc = loadq;

best.prices = prices;

best.tsf = all-tsf;

% mapping(i, 1) is the index in 'all' where we can find the quantity

V for the pivot in the ith agreement. for example, if we are looking

X at the second agreement, and mapping(2, 1) = 3,

% then load 3 is the pivot in the 2nd agreement and all(2, 3) is

% the additional quantity consumed by load 3 in this
% agreement. (this is the same as the quantity in loads(2,3)

% similarly, mapping(i, 2) is the index in 'all' where we can find

% the quantity for the 'gO' agent in the 'ith' agreement. if

% mapping(2,2) = 4, then generator 1 is the 'gO' agent, and

% all(2,4) is the additional quantity generated by generator 1 in

% the 2nd agreement (this is the same as the quantity

X generators(2,1))
% mapping(i,3) <-> index in 'all' where we can find the quantity

% for the 'g1' agent in the 'ith' agreement

best.mapping = mapping;

function sumprofit = pmetric(agents)

% takes three profits (numerically)

% returns a profit metric based on

% the 'method' variable below.

% the different profit metrics are described

X in the three constants defined in this function

% SUM-PROFITSALLOW-NEGATIVE = 0;

% SUM-PROFITS-CONSTRAINPOSITIVE = 1;

% AVERAGE-PROFIT = 2;
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SUM-PROFITS.ALLOW.NEGATIVE = 0;

SUM.PROFITS.CONSTRAINPOSITIVE = 1;

AVERAGE-PROFIT = 2;

method = 2;

if(method == SUMPROFITS.ALLOWNEGATIVE)

sumprofit = sum(agents);

end

if(method == SUMPROFITSCONSTRAINPOSITIVE)

agenti = agents(1);

agent2 = agents(2);

agent3 = agents(3);

negative = 0;

ptemp = 0;

if (agentl < 0)

negative = 1;

end;

if (agent2 < 0)

negative = 1;

end;

if (agent3 < 0)

negative = 1;

end;

if (negative == 1)

ptemp = -1;

else

ptemp = agentS + agent2 + agent3;

end;

sumprofit = ptemp;

end

if(method == AVERAGE-PROFIT)

sumprofit = mean(agents);

end

% begin calculations for one

% following two lines should
M10=[11775);

i=1;

time period

be commented out for execution

% Set up Generator Cost Functions for the three generators

CG = [.11 5 150; .085 1.2 600; .1225 1 335)

% Set up generator constrains (Each line is min, max)
Gk = [10, 12000; 10, 12000; 10, 12000)

% Calculate quantities generated by each G
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Qg = GeneratorInjections(M10(i), CG, Gk)

X Find the price of electricity for this time period

Pl = Price(Qg, CG)

% Set up load ratios for the three loads

Lr = [.2 .3 .5]

% Make a guess as to the loads' utility functions' 'b' coefficient

GUL = [Lr(1) 0 0; Lr(2) 0 0; Lr(3) 0 0]

X Calculate the 'a' coefficient based on above guess, and

% return a complete cost function

UL = LoadUtilities(M10(i), Pl, GUL, Lr)

% Calculate the amount drawn out by each load based on the load ratios

X (But LoadDraws should be changed to use the utility functions

Q1 = LoadDraws(M1O(i), P1, Lr)

% Define the distribution factors (separate matrices for

% generators and loads

% DF's below use bus 3 as reference (4/28)

DFg = [1/3 -1/3 0; 1/3 2/3 0; -2/3 -1/3 0]; %dfg([1,1,1],3);

DFl = -1*DFg;

X Calculate the flows on each line based on generator injections,

X load draws, and distribution factors

F = flows(Qg, Ql, DFg, DFl)

% save F for future use

FF = F;

j = 0;

% pz is profit for a given capacity constraint

for j=0:10

F = FF;

% Define line capacity constraints

K = [99999; 1000 - j*100; 99999);

% Curtail injections/draws if constraints exceeded

line = CongestedLine(F, K)

if(line == 0)

continue;

end

[Qgc, Qlc] = CurtailAll(K(line), DFg(line,:), DFl(line,:), Qg, Ql)

Qgcbefore = Qgc;

Qlc_before = Qlc;

Fc = flows(Qgc, Qlc, DFg, DF1)

% loop through all combinations and test profitability

X pick the best deal through three iterations

numDeals=15;

% make our polynomial notation consistent

ULn = UL.*[-1 1 1;-1 1 1;-1 1 1];

tsfBefore = totalsocialwelfare(CG, Qgc, ULn, Qlc)

gen-constraints = Gk(:,2)
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for i=l:numDeals

% get the 'most' best markets

bestmkt= newcevalmarkets(line, DFg, DF1, CG, ULn, Qgc, Qlc, gensconstraints);

% keep only the best one

[max, maxjindex] = max(bestmkt.total-profits);

profits(i,:) = bestmkt.all-profits(max-index,:);

comment = strcat('this is the ', num2str(i), 'th iteration')

nms(i,:) bestmkt.names(max_index,:)

gens(i,:) = bestmkt.generators(max-index,:)

loads(i,:) = bestmkt.loads(max-index,:)

X implement this market by updating the state of each node

Qgc = Qgc + gens(i,:)';

Qlc = Qlc + loads(i,:)';

pz(i) = bestmkt.totalprofits(max-index);

prices(i,:) = bestmkt.prices(max-index,:);

tsf(i) = totalsocial-welfare(CG, Qgc, ULn, Qlc)

end

for i = 1:6

j-profits(j+li)

end

clear

clear

clear

clear

clear

clear

clear

end

= sum(profits(:,i));

profits;

nms;

gens;

loads;

pz;

prices;

tsf;

function L = CongestedLine(F, K)

X given two nxI matrices for flows

X checks to see if all constraints

% if flows exceed constraints, L =

X otherwise L = 0

(F) and constraints (K)

are met

line with greatest excess

tempex = 0;

maxtempex = 0;

templine = 0;

for i=1:3

% need to change for bounds to a matrix dimension parameter

tempex = (F(i)) - K(i);

if (tempex > 0)
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if (tempex > maxtempex)

maxtempex = tempex;

templine = i;

end;

end;

end;

L = templine;

function [Qgc, Qic) = CurtailAll(K, DFg, DF1, Qg, Ql)

X Given a line constraint K, generation constraint matrix

% Kg, distribution factors for generators (DFg) loads (DFl), and

% generation (Qg) and load (Ql) quantities,

% returns new curtailed quantities such that the new flow on

% the line equals the constraint K

X note: the argument lists are unwieldly because matlab

X has restrictions on the arguments for objective functions

% 'QuantityDifferences' can only take a single argument 'x',

X but we also need to pass in initial values for all Qli's and

% Qgi's. So to work around the 1-arg limitation, use x as a

% matrix, with the first half of the arguments as variables,

% and the second half

X repeat the Qg and Ql to pass the pre-curtailment values

X to the objective function

x0 = LQg Ql Qg Q1);

numBuses=max(size(Qg));

numAgents=numBuses*2;

X General identity matrix for function use

iden = eye(numAgents*2);

X Set up inequality constraints

% might be redundant with upper and lower bounds, below

A = iden(l:numAgents,:) * -1;

B = zeros(l,numAgents);

% Number of buses

AeqO = zeros(1,numAgents);

% Equality Constraint #1:

% Total Generation - Total Consumption = 0

Aeqtc = [ones(1,numBuses) ones(l,numBuses)*-1];

% Equality constraint #2

% Quantities * Distribution Factors = Line Constraint K

AeqT1 = [DFg DFl];

% Workaround Constraint

% the second set of Qg's and Ql's must remain the same

Aeqiden = iden(numAgents+1:numAgents*2,:);

% Concatenate all constraint into one giant A[]*xo=B[l matrix

X Pad where necessary with AeqO's

Aeq = [Aeqtc AeqO; AeqTl AeqO; Aeqiden];
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Beq = [0 K Qg' Qi'];

% additional constraint: no agent produces/consumes MORE

% in post curtailment than in pre-curtailment

% n.b. some feasible solutions include having some agents produce

X or consume more than is economically legal. non-augmenting curtailing is

X always a 'safe' (i.e. everyone is still guaranteed to make

% a profit given rational decisions) strategy

ub = [Qg Q1];

% make sure no one goes below 0 either

lb = zeros(1,numAgents*2);

[x, fval) = fminimax('QuantityDifference', xO, A, B, Aeq, Beq, lb, ub);

Qgc=x(i:numBuses)';

Qlc=x(numBuses+1:numAgents)';

function Qg = GeneratorInjections (Qt, CG, Qk)

% given an overall quantity Q-t and a generator cost matrix CQ,

% and generator capacities Qk(min, max)

% this function returns the amount generated by each generator

X Q.gi.

% the generator cost

% modified below

agI

bgl

cgl

ag2

bg2

cg2

ag3

bg3

cg3

functions a-gi, bgi and c-gi can be

= CG(1, 1);

= CG(1, 2);

= CG(1, 3);

= CG(2, 1);

= CG(2, 2);

= CG(2, 3);

= CG(3, 1);

= CG(3, 2);

= CG(3, 3);

syms q1 q2 q3;

mc(1,:) = '2 * agi * q1 + bg1';

mc(3,:) = '2 * ag3 * q3 + bg3';

mc(2,:) = '2 * ag2 * q2 + bg2';

totalq = 'ql + q2 + q3 = Qt';

S = solve(eval(mc(l,:))-eval(mc(2,:)), eval(mc(2, :))-eval(mc(3,:)), totalq);

Qg= [eval(S.ql); eval(S.q2); eval(S.q3)];

% To create a constrained solution:

% use Qgimax and Qgimin

Qgmax(1)=Qk(1,2);

Qgmax(2)=Qk(2,2);

Qgmax(3)=Qk(3,2);

Qgmin(1)=Qk(1,1);
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Qgmin(2)=Qk(2,1);

Qgmin(3)=Qk(3,1);

while ((Qgmax(1) < Qg(l))I(Qgmax(2) < Qg(2))I(Qgmax(3) < ...

Qg(3))I(Qgmin(l) > Qg(l))I(Qgmin(2) > Qg(2))I(Qgmin(3) > Qg(3)))

% loop because satisfying the first constraint can

K violate others

X counter for the number of constrained generators

numGconstr = 0;

X flag array for constrained generators

X reset to 0 on every iteration

for g=1:3

Qgconstr(g) = 0;

end;

X determine the number of constrained generators

for g=1:3

if (Qg(g) >= Qgmax(g))

numGconstr = numGconstr + 1;

Qg(g) = Qgmax(g);

Qgconstr(g)=1;

end;

if (Qg(g) < Qgmin(g))

numGconstr = numGconstr + 1;

Qg(g) = Qgmin(g);

Qgconstr(g)=1;

end;

end;

switch numGconstr

case 3

% all 3 generators at capacity

error('Qt exceeds total production capacity');

case 2

X two generators at capacity,

% third generator has market power

% Qgremain = total constrained capacity

% (sum of all generators who are producing at max capacity)

Qgremain=0;

K use side effect of true = 1

K multiply Q(g) by the flag variable

for g=1:3

Qgremain = Qgremain + Qg(g) * Qgconstr(g);

end;

for g=1:3

if (Qgconstr(g) == 0)

Qg(g)=Qt-Qgremain;

end;

end;

case 1

K one generator (gen a) exceeds capacity

K competitive market between gens b and c (mcb = mcc)

for g=1:3

if(Qgconstr(g) == 1)

X Create 3rd equation: qx-qxmax=O or qx-qxmin=0

eqrestr = strcat('q',int2str(g),'-',int2str(Qg(g)));

128



-J

end;

end;

mccounter = 1;

for g=1:
3

% grab the non-constrained MC's

if (Qgconstr(g) == 0)

mct(mccounter,:) = mc(g,:);

mccounter = mccounter + 1;

end;

end;

S = solve(eval(mct(l,:))-eval(mct(2,:)), totalq, eqrestr);

Qg= [eval(S.ql); eval(S.q2); eval(S.q3);

end;

end;

function Ql = LoadDraws(Qt, Pl, Lr)

% Given a total quantity Qt and price Pl, and a matrix of Load Ratios Lr

% returns a matrix with loads

Y to match the parameters

X parameters modified occasionally:

% ratio of the demands, the 'b' coefficient

r1 = Lr(l);

r2 = Lr(2);

r3 = Lr(3);

% calculations

Qll = r1 * Qt;

Q12 = r2 * Qt;

Q13 = r3 * Qt;

Ql = [Qli; Q12; Q13]

function UL = LoadUtilities(Qt, Pl, GUL, Lr)

% Given a total quantity Qt, price Pl, a guess GUL as to the

% utility matrix of the loads, and a load ratio

V returns a matrix with load Utility Functions constrained

. to match the parameters

% parameters modified occasionally:

% ratio of the demands, the 'b' coefficient

r1 = Lr(l);

r2 = Lr(2);

r3 = Lr(3);

all = GUL(l,l);

a12 = GUL(2,1);

a13 = GUL(3,1);

cl = GUL(1,3);

c12 = GUL(2,3);

c13 = GUL(3,3);
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X calculations

Ql = r1 * Qt;

bli = Pl + 2*all * Q1i;

Q12 = r2 * Qt;

b12 = Pl + 2*al2*Q12;

Q13 = r3 * Qt;

b13 = Pl + 2*al3*Ql3;

UL = [all bl1 cli; a12 b12 c12; a13 b13 c13);

X check notation for a coefficients

function P1 = Price(Qg, CG)

% given a 1x3 matrix for quantity produced and a 3x3 matrix for

% generator cost functions, this function returns the maximum

X marginal cost for any of the three generators

X normally, mcl=mc2=mc3, but if one generator is constrained, then

. set mc-max(1,2,3)

. if one generator is offline, ignore that generator

for i = 1:3

if (Qg(i) == 0)

for j = 1:3

CG(i, j) =0;

end;

end;

end;

agi = CG(1, 1)

bgl = CG(1, 2)

cgi = CG(1, 3)

ag2 = CG(2, 1)

bg2 = CG(2, 2)

cg2 = CG(2, 3)

ag3 = CG(3, 1)

bg3 = CG(3, 2)

cg3 = CG(3, 3)

ptemp = max((2 * agi * Qg(1) + bgi), (2 a ag2 * Qg(2) + bg2))

ptemp = max(ptemp,(2 * ag3 * Qg(3) + bg3))

P1 = ptemp

function F = flows(Qg, Ql, DFg, DFl)

X Given distribution factors for Generators and Loads (DFg, DFl)

% and Quantities (in nxi matrix form for generators and loads)

X Calculates the flows on all lines
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F = DFg * Qg + DFl * Q1;

X First we do all the multilateral stuff - Profits obtained from running multilateral simulation XX

XX for normal network case:

XMAProfitsl = 1e7* [2.6950

XMAProfits2 = 1e7* [5.8007

XMAProfits3 = 1e7* [6.7196

XMAProfits4 = 1e7* [2.9151

%MAProfits5 = 1e7* [5.9051

%MAProfits6 = 1e7* [6.8006

%MAProfits7 = 1e7* [3.1922

%MAProfits8 = 1e7* [5.8612

XMAProfits9 = le7* [6.6205

XMAProfitslO = 1e7* [2.9151

XMAProfits11 = 1e7* [5.4879

XMAProfits12 = 1e7* [6.1594

XMAProfits13 = 1e7* [2.7110

XMAProfits14 = 1e7* [5.3880

XXMAProfits15 = 1e7* [5.7439

XUfor broken network case:

2.6934 2.6910 2.6879 2.6841 2.6796 2.6743 2.6683 2.6616 2.6541 2.6459 2.6370];

5.7992

6.7170

2.9138

5.9034

6.7979

3.1904

5.8596

6.6180

2.9138

5.4866

6.1574

2.7094

5.3862

5.7968

6.7136

2.9118

5.9010

6.7944

3.1880

5.8572

6.6148

2.9118

5.4847

6.1546

2.7070

5.3837

5.7938

6.7095

2.9091

5.8978

6.7902

3.1848

5.8541

6.6108

2.9091

5.4820

6.1512

2.7039

5.3804

5.7900

6.7047

2.9056

5.8939

6.7853

3.1809

5.8502

6.6061

2.9056

5.4786

6.1470

2.7000

5.3764

5.7855

6.6992

2.9014

5.8893

6.7797

3.1763

5.8457

6.6006

2.9014

5.4745

6.1421

2.6954

5.3716

5.8016

6.6929

2.8965

5.8839

6.7733

3.1709

5.8404

6.5945

2.8965

5.4696

6.1364

2.6901

5.3662

5.8007

6.6859

2.8909

5.8778

6.7662

3.1648

5.8343

6.5876

2.8909

5.4641

6.1300

2.6841

5.3600

5.7992

6.6782

2.8845

5.8710

6.7584

3.1580

5.8276

6.5799

2.8845

5.4577

6.1229

2.6773

5.3530

5.7968

6.6697

2.8774

5.8635

6.7499

3.1504

5.8201

6.5716

2.8774

5.4507

6.1151

2.6698

5.3454

5.7938

6.6605

2.8695

5.8552

6.7406

3.1421

5.8118

6.5625

2.8695

5.4429

6.1065

2.6616

5.3370

5.7900

6.6506

2.8610

5.8462

6.7306

3.1331

5.8029

6.5527

2.8610

5.4344

6.0972

2.6527]

5.7855 5.7232

6.6399 6.6285

2.8517]

5.8365 5.8

6.7198 6.7

3.1234]

5.7932 5.7828

6.5421 6.5308

2.8517]

5.4251 5.4152

6.0872 6.0764

5.3278 5.3180 5.3074

5.

6.

260

083

5.

6.51

5.4C

6.0

5.2S

5.7424 5.7401 5.7371 5.7334 5.7290 5.7238 5.7179 5.7113 5.7040 5.6959 5.6870 5.6775 5.6672

2.6954 2.6948

5.8012 5.8006

6.7217 6.7208

2.9152 2.9147

5.9057 5.9051

2.6939 2.6929 2.6916 2.6901 2.6883 2.6864 2.6843 2.6819 2.6793

5.7998 5.7987 5.7975 5.796 5.7944 5.7925 5.7904 5.788 5.7855 5.7827 5.7798 5.7766 5.7732 5.7696 5.7657]

6.7196 6.7183 6.7168 6.715 6.713 6.7108 6.7084 6.7058 6.703 6.6999 6.6966 6.6931 6.6894 6.6855 6.6814]

2.9139 2.913 2.9118 2.9104 2.9088 2.9069 2.9049 2.9026 2.9002 2.8975]

5.9042 5.9031 5.9019 5.9004 5.8987 5.8967 5.8946 5.8922 5.8897 5.8869 5.8839 5.8806 5.8772 5.8735

1e7* [6.8035 6.8028 6.8019 6.8007 6.7994 6.7978 6.796 6.794 6.7918 6.7894 6.7867 6.7838 6.7808 6.7775 6.774 6.7702 6.7663 6.7621]

1e7* [3.1931 3.1927 3.192 3.1911 3.19 3.1887 3.1872 3.1855 3.1835 3.1813 3.179 3.1764 3.1735]

1e7* [5.8622 5.8618 5.8611 5.8603 5.8592 5.858 5.8565 5.8548 5.8529 5.8508 5.8484 5.8459 5.8431 5.8401 5.8369 5.8335 5.8298

1e7* [6.623 6.6223 6.6215 6.6204 6.6191 6.6176 6.6158 6.6139 6.6117 6.6094 6.6068 6.604 6.6009 6.5977 6.5942 6.5906 6.5867 6.5826]

1e7* [2.9155 2.9152 2.9147 2.9139 2.913 2.9118 2.9104 2.9088 2.9069 2.9049 2.9026 2.9002 2.8975]

1e7* [5.4883 5.488 5.4875 5.4868 5.4859 5.4847 5.4834 5.4818 5.48 5.478 5.4758 5.4734 5.4707 5.4679 5.4648 5.4615 5.458 5.4543]

1e7* [6.1608 6.1603 6.1596 6.1586 6.1575 6.1561 6.1546 6.1528 6.1508 6.1485 6.1461 6.1434 6.1405 6.1375 6.1342 6.1306 6.1269

2.7115 2.7108 2.7099 2.7089 2.7076 2.7061 2.7043 2.7024 2.7002

5.3887 5.3881 5.3872 5.3861 5.3847 5.3832 5.3815 5.3795 5.3773

5.7443 5.7437 5.7429 5.7419 5.7406 5.7392 5.7376 5.7357 5.7336

2.6979 2.6953]

5.3749 5.3723 5.3695 5.3664 5.3632 5.3597 5.356]

5.7313 5.7288 5.726 5.7231 5.7199 5.7165 5.7129

1e7*

1e7*

1e7*

1e7*

le7*

[2.6959

[5.8016

[6.7223

[2.9155

[5.9061

MAProfitsl =

MAProfits2 =

MAProfits3 =

MAProfits4 =

MAProfits5 =

5.8697]

MAProfits6 =

MAProfits7 =

MAProfits8 =

5.826]

MAProfits9 =

MAProfits1O =

MAProfitsl1

MAProfits12

6.1229]

MAProfits13

MAProfits14

MAProfits15 =

5.7091]

107*

1e7*

1e7*

[2.7119

[5.3892

[5.7446

XXXX%%%XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXX Then we need to do all calculations to get Spot Profits XXXXXXXXXXX%%XXXX%

XXXXXXXXXXXXXXXXX%%%%%XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXX
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%DFbuslLine23 = 1/3;

%DFbus2Line23 = 2/3;

%% for broken network case

DFbuslLine23 = 1/1002;

DFbus2Line23 = 1001/1002;

LaGrange2= [(-2*.2) 0 0 0 0 0 1 DFbuslLine23;

0 (-2*.3) 0 0 0 0 1 DFbus2Line23;

0 0 (-2*.5) 0 0 0 1 0;

0 0 0 -. 22 0 0 -1 -DFbuslLine23;

0 0 0 0 -.17 0 -1 -DFbus2Line23;

0 0 0 0 0 -.245 -1 0;

1 1 1 -1 -1 -1 0 0;

DFbuslLine23 DFbus2Line23 0 -DFbuslLine23 -DFbus2Line23 0 0 0];

LGinverse2 = inv(LaGrange2);

zeros (8,

zeros (8,

zeros(8,

(LineMax(1)/100

(LineMax(2)/100

(LineMax(3)/100

1));

1));

1));

valuesTuesi = zeros(8, (LineMax(4)/100 + 1));

valuesTues2 = zeros(8, (LineMax(5)/100 + 1));

valuesTues3 = zeros(8, (LineMax(6)/100 + 1));

valuesWedi =

valuesWed2 =

valuesWed3 =

valuesThursi

valuesThurs2

valuesThurs3

zeros (8,

zeros(8,

zeros(8,

(LineMax(7)/100

(LineMax(8)/100

(LineMax(9)/100

1));

1));

1));

= zeros(8, (LineMax(10)/100 + 1));

= zeros(8, (LineMax(11)/100 + 1));

= zeros(8, (LineMax(12)/100 + 1));

valuesFrii = zeros(8, (LineMax(13)/100 +

valuesFri2 = zeros(8, (LineMax(14)/100 +

valuesFri3 = zeros(8, (LineMax(15)/100 +

1));

1));

1));

valuesMon1

valuesMon2

valuesMon3
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A4

Anticipated=[

11775

17273

18594

12245

17428

18706

12815

17363

18456

12245

16800

17800

11810

16648

17188

3

LineMax=[

1200

1800

1800

1300

1800

1800

1300

1800

1800

1300

1800

1800

1200

1700

1800

I

XXXXXXXXXX Need loop to get Spot Prices for each Bilateral Agreement XXXXXXXXXXXXXX

XX holding agreement, calculate by iterating over capacities XXXXXXXXXXXXXX

XXXXXX mon

for lineCapacity=0:100:LineMax(1)

valuesMonl(:, (lineCapacity/100+1))= [-1.7559e3; -2.9334e3; -6.7014e3; 5; 1.2; 1; 0; lineCapacity];

opfvaluesl = LGinverse2*valuesMonl;

end

spotpricesl=opfvaluesl(8,:)
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for lineCapacity=0:100:LineMax(2)

valuesMon2(:, (lineCapacity/100+1))= [-2.5749e3; -4.3024e3; -9.8304e3; 5; 1.2; 1; 0; lineCapacity];

opfvalues2 = LGinverse2*valuesMon2;

end

spotprices2=opfvalues2(8,:)

for lineCapacity=0:100:LineMax(3)

valuesMon3(:, (lineCapacity/100+1))= [-.2769e4; -. 4626e4; -1.0570e4; 5; 1.2; 1; 0; lineCapacity];

opfvalues3 = LGinverse2*valuesMon3;

end

spotprices3=opfvalues3(8,:)

X%%%XXX% tues

for lineCapacity=0:100:LineMax(4)

valuesTuesl(:, (lineCapacity/100+1))= [-1.7894e3; -2.9894e3; -6.8294e3; 5; 1.2; 1; 0; lineCapacity];

opfvalues4 = LGinverse2*valuesTues1;

end

spotprices4=opfvalues4(8,:)

for lineCapacity=0:100:LineMax(5)

valuesTues2(:, (lineCapacity/100+1))= [-2.5824e3; -4.3149e3; -9.8589e3; 5; 1.2; 1; 0; lineCapacity];

opfvalues5 = LGinverse2*valuesTues2;

end

spotprices5=opfvalues5(8,:)

for lineCapacity=0:100:LineMax(6)

valuesTues3(:, (lineCapacity/100+1))= [-.2780e4; -. 4645e4; -1.0613e4; 5; 1.2; 1; 0; lineCapacity];

opfvalues6 = LGinverse2*valuesTues3;

end

spotprices6=opfvalues6(8,:)

%%XXXX ved

for lineCapacity=0:100:LineMax(7)

valuesWedl(:, (lineCapacity/100+1))=

opfvalues7 = LGinverse2*valuesWedl;

end

spotprices7=opfvalues7(8,:)

for lineCapacity=0:100:LineMax(8)

valuesWed2(:, (lineCapacity/100+1))=

opfvalues8 = LGinverse2*valuesWed2;

end

spotprices8=opfvalues8(8,:)

for lineCapacity=0:100:LineMax(9)

valuesWed3(:, (lineCapacity/100+1))=

opfvalues9 = LGinverse2*valuesWed3;

[-1.8750e3; -3.1325e3; -7.1565e3; 5; 1.2; 1; 0; lineCapacity];

[-2.5563e3; -4.2713e3; -9.7593e3; 5; 1.2; 1; 0; lineCapacity];

[-.2765e4; -. 462004; -1.0556e4; 5; 1.2; 1; 0; lineCapacity];

end

spotprices9=opfvalues9(8,:)

%X thurs

for lineCapacity=0:100:LineMax(10)

valuesThursl(:, (lineCapacity/100+1))= [-1.7894e3; -2.9894e3; -6.8294e3; 5; 1.2; 1; 0; lineCapacity];
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opfvalueslO = LGinverse2*valuesThursl;

and

spotpriceslO=opfvalueslO(8,:)

for lineCapacity=0:100:LineMax(11)

valuesThurs2(:, (lineCapacity/100+1))= [-2.4819e3; -4.1469e3; -9.4749e3; 5; 1.2; 1; 0; lineCapacity];

opfvaluesll = LGinverse2*valuesThurs2;

end

spotpricesll=opfvaluesll(8,:)

for lineCapacity=0:100:LineMax(12)

valuesThurs3(:, (lineCapacity/100+1))= [-.2661e4; -. 4446e4; -1.0158e4; 5; 1.2; 1; 0; lineCapacity];

opfvaluesl2 = LGinverse2*valuesThurs3;

end

spotpricesl2=opfvaluesl2(8,:)

X%%%XX%% fri

for lineCapacity=0:100:LineMax(13)

valuesFril(:, (lineCapacity/100+1))= E-1.7298e3; -2.8898e3; -6.6018e; 5; 1.2; 1; 0; lineCapacity];

opfvaluesl3 = LGinverse2*valuesFril;

end

spotprices13=opfvaluesl3(8,:)

for lineCapacity=0:100:LineMax(14)

valuesFri2(:, (lineCapacity/100+1))= [-2.4744e3; -4.1334e3; -9.4464e3; 5; 1.2; 1; 0; lineCapacity;

opfvaluesl4 = LGinverse2*valuesFri2;

end

spotprices14=opfvaluesl4(8,:)

for lineCapacity=0:100:LineMax(15)

valuesFri3(:, (lineCapacity/100+1))= [-2.5526e3; -4.2651e3; -9.7451e3; 5; 1.2; 1; 0; lineCapacity];

opfvaluesl5 = LGinverse2*valuesFri3;

end

spotprices15=opfvaluesl5(8,:)

XX don't consider event of spot = 0:

realisticSpotPrices1=spotpricesl(2:(LineMax(1)/100+1));

realisticSpotPrices2=spotprices2(2:(LineMax(2)/100+1));

realisticSpotPrices3=spotprices3(2:(LineMax(3)/100+1));

realisticSpotPrices4=spotprices4(2:(LineMax(4)/100+1));

realisticSpotPrices5=spotprices5(2:(LineMax(5)/100+1));

realisticSpotPrices6"spotprices6(2:(LineMax(6)/100+1));

realisticSpotPrices7=spotprices7(2:(LineMax(7)/100+1));

realisticSpotPrices8=spotprices8(2:(LineMax(8)/100+1));

realisticSpotPrices9=spotprices9(2:(LineMax(9)/100+1));

realisticSpotPricesl0=spotpriceslO(2:(LineMax(10)/100+1));

realisticSpotPricesll=spotprices11(2:(LineMax(11)/100+1));

realisticSpotPricesl2=spotpricesl2(2:(LineMax(12)/100+1));

realisticSpotPricesl3=spotpricesl3(2:(LineMax(13)/100+1));

realisticSpotPricesl4=spotpricesl4(2:(LineMax(14)/100+1));

realisticSpotPrices15=spotpricesl5(2:(LineMax(15)/100+1));

XXXXX Now need Spot Quantities
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XX Mon %XXXXXXX%%%XXXXXXXX

XX Distribution changes depending on time period, M= morning, D=daytime, E=evening

rM=random('Normal', 11844.766/100, 483.937/100,1,1);

rD=random( 'Normal', 16492.071/100, 800.535/100,1,1);

rE=random('Normal', 17488.861/100, 857.513/100,1,1);

for index=100:100:LineMax(1)

realisticSpotQuantities1 (index/100)=index;

realisticNoisySpotQuantitiesl(index/100)=rM*index/100;

end

for index=100:100:LineMax(2)

realisticSpotQuantities2(index/100)=index;

realisticNoisySpotQuantities2(index/100)=rD*index/100;

end

for index=100:100:LineMax(3)

realisticSpotQuantities3(index/100)=index;

realisticNoisySpotQuantities3(index/100)=rE*index/100;

end

XX Tues XXXXXXXXXXXXXXXXXXXXXXXXXX

rM=random('Normal', 11844.766/100, 483.937/100,1,1);

rD=random('Normal', 16492.071/100, 800.535/100,1,1);

rE=random('Normal', 17488.861/100, 857.513/100,1,1);

for index=100:100:LineMax(4)

realisticSpotQuantities4(index/100)=index;

realisticNoisySpotQuantities4(index/100)=rM*index/100;

end

for index=100:100:LineMax(5)

realisticSpotQuantities5(index/100)=index;

realisticNoisySpotQuantities5(index/100)=rD*index/100;

end

for index=100:100:LineMax(6)

realisticSpotQuantities6(index/100)=index;

realisticNoisySpotQuantities6(index/100)=rE*index/100;
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end

XX Wed XXXXXXXXXX%%%%X%%XXXX

rM=random('Normal', 11844.766/100, 483.937/100,1,1);

rD=random('Normal', 16492.071/100, 800.535/100,1,1);

rE=random('Normal', 17488.861/100, 857.513/100,1,1);

for index=100:100:LineMax(7)

realisticSpotQuantities7(index/100)=index;

realisticNoisySpotQuantities7(index/100)=rM*index/100;

end

for index=100:100:LineMax(8)

realisticSpotQuantities8(index/100)=index;

realisticNoisySpotQuantities8(index/100)=rD*index/100;

end

for index=100:100:LineMax(9)

realisticSpotQuantities9(index/100)=index;

realisticNoisySpotQuantities9(index/100)=rE*index/100;

end

XX Thurs %XXXXXXXXXXX%%%XXXX X

rM=random('Normal1, 11844.766/100, 483.937/100,1,1);

rD=random('Normal', 16492.071/100, 800.535/100,1,1);

rE=random('Normal', 17488.861/100, 857.513/100,1,1);

for index=100:100:LineMax(10)

realisticSpotQuantities10(index/100)=index;

realisticNoisySpotQuantities1O(index/100)=rM*index/100;

end

for index=100:100:LineMax(11)

realisticSpotQuantities1l(index/100)=index;

realisticNoisySpotQuantitiesll(index/100)=rD*index/100;

end

for index=100:100:LineMax(12)

realisticSpotQuantitiesl2(index/100)=index;
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realisticNoisySpotQuantitiesl2(index/100)=rE*index/100;

end

XX Fri XXX XX%%%% XX%% X X%%%%%%%%%%%

rM=random('Normal', 11844.766/100, 483.937/100,1,1);

rD=random('Normal', 16492.071/100, 800.535/100,1,1);

rE=random('Normal', 17488.861/100, 857.513/100,1,1);

for index=100:100:LineMax(13)

realisticSpotQuantitiesl3(index/100)=index;

realisticNoisySpotQuantitiesl3(index/100)=rM*index/100;

end

for index=100:100:LineMax(14)

realisticSpotQuantitiesl4(index/100)=index;

realisticNoisySpotQuantities14(index/100)=rD*index/100;

end

for index=100:100:LineMax(15)

realisticSpotQuantitiesl5(index/100)=index;

realisticNoisySpotQuantitiesl5(index/100)=rE*index/100;

end

XX Now we must calculate SpotProfits as Prices*Quantites for each agreement:

realisticSpotProfitsl=diag(realisticNoisySpotQuantitiesl'*realisticSpotPricesl);

realisticSpotProfits2=diag(realisticNoisySpotQuantities2'*realisticSpotPrices2);

realisticSpotProfits3=diag(realisticNoisySpotQuantities3'*realisticSpotPrices3);

realisticSpotProfits4=diag(realisticNoisySpotQuantities4'*realisticSpotPrices4);

realisticSpotProfits5=diag(realisticNoisySpotQuantities5'*realisticSpotPrices5);

realisticSpotProfits6=diag(realisticNoisySpotQuantities6'*realisticSpotPrices6);

realisticSpotProfits7=diag(realisticNoisySpotQuantities7'*realisticSpotPrices7);

realisticSpotProfits8=diag(realisticNoisySpotQuantities8'*realisticSpotPrices8);

realisticSpotProfits9=diag(realisticNoisySpotQuantities9'*realisticSpotPrices9);

realisticSpotProfitsl0=diag(realisticNoisySpotQuantitiesl0'*realisticSpotPriceso);

realisticSpotProfitsll=diag(realisticNoisySpotQuantitiesll'*realisticSpotPricesl);

realisticSpotProfitsl2=diag(realisticNoisySpotQuantitiesl2'*realisticSpotPricesl2);

realisticSpotProfitsl3=diag(realisticNoisySpotQuantitiesl3'*realisticSpotPricesl3);

realisticSpotProfitsl4=diag(realisticNoisySpotQuantitiesl4'*realisticSpotPricesl4);

realisticSpotProfits15=diag(realisticNoisySpotQuantities15'*realisticSpotPrices15);
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XX DONE WITH SPOT PROFITS

LineMax=[

1200

1800

1800

1300

1800

1800

1300

1800

1800

1300

1800

1800

1200

1700

1800

3

XXXXXXX% DP STUFF %X%%XXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXYXXXX

S=(100:100:LineMax(15))';

X=(0:100:LineMax(15)-100)';

n=length(S);

m=length(X);

XX low horizon = 5

XX medium horizon = 10

XX high horizon = 4

N=4; XX horizon

XX reward matrix

f = zeros(n,m);

for i=1:n XX states (how much is currently left for spot)

for k=1:m XX actions (how much to decrease spot amount - implement more BA's)

if X(k)<S(i)
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f(i,k) = (MAProfitsl5((S(i)- X(k))/100)/1)+(realisticSpotProfitsl5((S(i)- X(k))/100)*(randn));

else

f(i,k) = -inf;

end

end

end

g = zeros(n,m);

for i=1:n

for k=1:m

snext = S(i)-X(k);

g(i,k) = getindex(snext,S);

end

end

model.reward = f;

model.transfunc = g;

model.discount = 1.0;

model.horizon=N;

[v,x,pstar] = ddpsolve(model);
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