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We propose a method for Hamiltonian engineering that requires no local control but only relies on
collective qubit rotations and field gradients. The technique achieves a spatial modulation of the coupling
strengths via a dynamical construction of a weighting function combined with a Bragg grating. As an
example, we demonstrate how to generate the ideal Hamiltonian for perfect quantum information
transport between two separated nodes of a large spin network. We engineer a spin chain with optimal
couplings starting from a large spin network, such as one naturally occurring in crystals, while decoupling
all unwanted interactions. For realistic experimental parameters, our method can be used to drive almost
perfect quantum information transport at room temperature. The Hamiltonian engineering method can be
made more robust under decoherence and coupling disorder by a novel apodization scheme. Thus, the
method is quite general and can be used to engineer the Hamiltonian of many complex spin lattices with

different topologies and interactions.
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Controlling the evolution of complex quantum systems
has emerged as an important area of research for its
promising applications. The control task can often be
reduced to Hamiltonian engineering [1] (also extended to
reservoir engineering [2—4]), which has enabled a variety
of tasks, including quantum computation [5], improved
quantum metrology [6], and dynamical decoupling [7-9].
The most important application is quantum simulation
[10,11], with the ultimate goal to achieve a programmable
universal quantum simulator that is able to mimic the
dynamics of any system. One possible strategy is to use a
quantum computer and decompose the desired evolution
into unitary gates [12,13]. Alternatively, one can use
Hamiltonian engineering by a Suzuki-Trotter factorization
of the desired interaction into experimentally achievable
Hamiltonians [14,15]. However, experimental implemen-
tations of these simulation methods often require local
quantum control, which is difficult to achieve in large
systems.

Here, we present a scheme for Hamiltonian engineering
that employs only collective rotations of the qubits and
field gradients—technology that is readily available, e.g.,
in magnetic resonance, ion traps [13], and optical lattices
[16]. We consider a qubit network (Fig. 1) with an internal
Hamiltonian JH ,,, for example, due to dipolar couplings
naturally occurring among spins in a crystal lattice. The
target Hamiltonian 7 ,,, is engineered from F ;, by first
“removing”’ unwanted couplings and then ‘“‘modulating”
the remaining coupling strengths. The first step is equiva-
lent to creating a time-domain Bragg grating, a sharp filter
that retains only specific couplings [17]. Then, a weighting
function allows fine-tuning of their strengths, without the
need for local control.
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Hamiltonian engineering has a long history in NMR,
as described by coherent averaging [18,19], and field gra-
dients have been proposed to achieve NMR ““diffraction”
in solid [20,21]. While pulse sequences exist for selective
excitation [22] and have been recently extended to achieve
dynamical decoupling [8] and to turn on couplings one
at a time [23,24], our method is more flexible and general
than previous techniques. Since it achieves simultaneous
tunability of the filtered coupling strengths by exploiting
magnetic-field gradients and a photonics-inspired approach
for robust filter construction [17], our method offers an
intuitive and quantitative approach to Hamiltonian engi-
neering in many physical settings.

As an example, we show how to apply this filtered
engineering method to generate an optimal Hamiltonian
for quantum information transfer (QIT). Linear arrays
of spins have been proposed as quantum wires to link

FIG. 1 (color online). A complex spin network in a trigonal
planar lattice. Only spins considered in simulations are depicted
with edges denoting couplings. Hamiltonian engineering pre-
serves only NN couplings inside a chain (red circles) and
eliminates off-chain couplings to the surrounding network (or-
ange circles), thanks to a linear magnetic-field gradient along the
chain.

© 2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.110.220503

PRL 110, 220503 (2013)

PHYSICAL REVIEW LETTERS

week ending
31 MAY 2013

separated nodes of a spin network [25]; engineering the
coupling between the spins can achieve perfect QIT [26].
Finally, we will analyze experimental requirements to
implement the method in existing physical architectures.
Hamiltonian engineering.—The goals of filtered
Hamiltonian engineering can be summarized as
(i) cancellation of unwanted couplings—often next-
nearest-neighbor interactions—and (ii) engineering of the
remaining couplings to match the desired coupling
strengths. We achieve these goals by dynamically generat-
ing tunable and independent grating (G;;) and weighting
(F;j) functions via collective rotations under a gradient.
The first step is to create the Hamiltonian operator one
wishes to simulate using sequences of collective pulses.
Although the initial Hamiltonian J;, restricts which
operators can be obtained [27], various control sequences
have been proposed to realize a broad set of Hamiltonians
[28,29]. These multiple-pulse sequences cannot, however,
modulate specific coupling strengths, which is instead our
goal—this can be achieved by evolution under a gradient.
Consider, for example, the XY Hamiltonian H y, =

>.ibij(S;S} + §7S7). Evolution under the propagator
U(t, 7) = e Mo iHartoier where H, = S .w;S% s
obtained by a gradient, is equivalent to evolution under
the Hamiltonian

i

Hixy = 2 bil(SS} + 5]} cos(8w;y7)
ij
+ (8i5; — 57} sin(8 ;7)) M

where Sw;; =
obtain Uy =[], U(t;, 7,) = 71T over the total time T, where
the effective Hamiltonian J{ can be approximated by a
first order expansion. Given a desired target Hamiltonian
H y=3,;d};(SiS+S7S)) + d%(S5S7— §7S%), we obtain
a set of equations in the unknowns {7, 7,} by imposing
g‘[ = g‘[ d-

To simplify the search for the correct timings, we can
first apply a filter that cancels all unwanted couplings
and use the equations above to only determine parameters
for the remaining couplings. The filter is obtained by a
dynamical implementation of a Bragg grating: we evolve
under N cycles (while reducing the times to 7,/N) with a
gradient modulation U = [[¥=(e/T:*Upe™":7%) that
weights the couplings by a factor G;;, with

®; — w;. The modulation is repeated to

N-1 .
g“ — Z eik’ré(u,‘j — ei(N—l)TSa),-J-/Z Sln(NTawil'/z)‘ (2)
Y k=0 Sln(TB(l)l]/z)

We now make these ideas more concrete by considering
a specific example, the engineering of an Hamiltonian that
allows perfect QIT in mixed-state spin chains [30-33].

Filtered engineering for QIT.—For lossless transport, the
simplest n-spin chain consists of nearest-neighbor (NN)

couplings that vary as d; = d/j(n — j) [26], ensuring
perfect transport at T = 7/(2d). Manufacturing chains
with this precise coupling topology is a challenge due to
fabrication constraints and the intrinsic presence of long-
range interactions. Regular spin networks are instead found
ubiquitously in nature: our method can be used to dynami-
cally engineer the optimal Hamiltonian in these complex
spin networks. Consider a dipolar-coupled spin network
with Hamiltonian

H=H+ H, = by(3SiS; — S-S+ D w55, (3)
ik i

where a magnetic-field gradient achieves the spatial
frequency “‘tagging.” The target Hamiltonian for QIT in
a n-spin chain is H, = Y" ' d,(SS¥,, — S7S7,,). We
consider this interaction, instead of the more common
XY Hamiltonian, since it drives the same transport evolu-
tion [34] and the double-quantum (DQ) Hamiltonian
Hpg = X<bi(S3SF — SIS3) can be obtained from the
dipolar Hamiltonian via a well-known multiple-pulse
sequence [27,28]. The sequence cancels the term H
and, importantly, allows time-reversal by a simple phase
shift of the pulses. We can further achieve evolution under
the field gradient only, #{ ., by using homonuclear decou-
pling sequences, such as WAHUHA [18,19] or magic echo
[35]. Thus, prior to applying the filtered engineering
scheme, we use collective pulses to create the needed
interactions FH po and H..

The filtered engineering sequence (e.g., Fig. 2) consists
of alternating periods (7,) of free evolution under # , and
double-quantum excitation po (mixing periods tp,). We
analyze the dynamics using average Hamiltonian theory
[18,19]. Consider for simplicity a sequence with only two
mixing and free evolution periods. Then, setting U_(7) =
™ and Upg(r) = e/"*vo, the propagator for N cycles is
Uy = [U (7)) Upq(t;/N)U,(12)Upqg(t2/N)I¥, or

agtq agto ats N ot Hom,

[ | (g@ o,

Al

T3=T7/5 Hon,

FIG. 2 (color online). Filtered engineering sequence, consist-
ing of periods (7;) of free evolution under the gradient H . and
mixing evolution under J{ pg of duration 7;/N. The blocks are
applied left to right, and the cycle is repeated N times. The
sequence can be apodized by an appropriate choice of coeffi-
cients ay at the kth cycle. Left: Example sequence for engineer-
ing transport in a five-spin chain in the complex network of
Fig. 1. Explicit values of t, ={t,1,,...} are in [27] and 7= 7/ w.
Right: Phasor representation [27] of Hamiltonian engineering.
In the circle, we show the phases ¢; = b;;t; acquired by the
S;° S}, term of the toggling frame Hamiltonians 31, .
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Uy [U (NT)UDQ( )UT (NT)]

x| vnn(g)vi e || virouse( Ut |
4)

where 7 = 7, + 7,. Now, UZ(T)UDQ(Z‘)U;[(T) = itHn(™)
where H (1) = 3, by (ST S) €™k + S7 S, e ™) s
the toggling frame Hamiltonian with 6;; = w; + wy.
Employing the Suzuki-Trotter approximation [15], Uy is
equivalent to evolution under the effective Hamiltonian

. b;
H =ZN”T SEST(tem% + e ™) G+ He.,  (5)

i<j
. . sin(N78;;/2) -
with g” = el(N 1)73 /Zm and T = Zktk'
In general, for a sequence of free times 7, = {7, ..., 7.}

and mixing times t,, ={1,,...,1. }, the average Hamiltonian
is j-[ 21<jS+S+F1](Tz: m)Gt/(T) + HC where 7 =
St ;=1 7; and we define the weighting function

b;; U
Fij(T, tm) = ﬁ%tk eXP(ISij Z Th)- (6)

The grating G;; forms a sharp filter with maxima at
76;; = 2mar. A linear 1D magnetic-field gradient along a
selected chain of spins in the larger network sets the jth
spin frequency to w; = jow — w,, where w is the excita-
tion frequency. Each spin pair acquires a spatial phase
under the gradient: if ot = 7 and 2wy7 = 37 — 2mm,
the NN couplings are preserved, while the next-nearest-
neighbor couplings lie at the minima of the grating and are
canceled (Fig. 3). Other non-NN, off-chain couplings lie at
the grating side lobes and have greatly reduced amplitudes
at large N.

Following the filter, the weighting function Fj(;, ) is
constructed to yield the ideal couplings for perfect

1) Ty

|F.G |

0 o In 67 St 107
Phase 76;;

FIG. 3 (color online). Engineering filter function |F;;G;;| for
a five-spin chain, as a function of the phase 76;;. A single cycle
creates the weighting function F;; (dashed line), which is trans-
formed to sharp (red) peaks at the ideal couplings (circles) at a
larger cycle number (here, N = 10). The peak widths can be
altered by apodization, e.g., sinc apodization (blue line) a; =
sinfW(k — N/2)]/[W(k — N/2)], with W= (7 +1)/2 and
normalized so that 'Y a; = N.

transport. We have a set of 2n equations (for an n-spin
chain)

Sln[a)(ZJ + 1 :Ith jjtl = 0 VJ
1

L h
2 PR
. N (7)
Z os[w(Zj +1 Z ]th i1 %< d;, VY,

with 2L unknowns for L time steps. The number of con-
ditions (thus of time steps) can be reduced by exploiting
symmetry properties. For example, a gradient symmetric
with respect to the chain center would automatically satisfy
most of the conditions in Eq. (7) and only L = [n/2] time
steps would be required. Unfortunately, this solution is
practical only for some chain lengths [27]; we thus focus
on a suboptimal, but simpler, solution. Consider an odd
n-spin chain. To enforce the mirror symmetry of d; and
ensure that the average Hamiltonian remains in DQ form,
we impose time mirror symmetry #; = t; _;, while the
gradient times are 7;/7=3/n for j= (L +1)/2 and
7;/7 = 1/n otherwise (Fig. 2). This choice yields a linear
system of equations for L = n — 2 mixing periods t,,

2jmk
F.i(j+l)gj‘(j+1) = Ztk cos( "
k

) —ayfin— ). ®

Analogous solutions can be derived for even spin chains.
A phasor representation [36] of how the evolution periods
exploit the symmetries is presented in Fig. 2 and [27].

The tuning action of F;;1)G;;+1) is very rapid, achiev-
ing perfect fidelity f = Tr{USTUTS3}/2" in just a few
cycles. Increasing N reduces the error in the Trotter
expansion by improving F;) [Fig. 4(a)] as well as the
selectivity of G4y [Fig. 4(b)]. The grating peak width
decreases as 277/N [8], improving its selectivity linearly
with N [27]. As shown in Fig. 4, about n cycles are
required for almost perfect decoupling of the unwanted
interactions (f > 0.95).

The highly selective grating also avoids the need to
isolate the chain and for the surrounding network to have

or (b)

Cycles N

—e n=9 —e n=11

FIG. 4 (color online). Minimum transport infidelity obtained
by filtered engineering, as a function of cycle number N for a
n-spin dipolar chain with (a) NN couplings only and (b) all
couplings.
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a regular structure. However, in the presence of disorder in
the chain couplings, one needs to compromise between
broader grating peaks (via small N) and poorer decoupling
of unwanted interactions (Fig. 5). To improve the robust-
ness of our scheme, we can further modulate the mixing
times t,, by coefficients a; this imposes an apodization of
the grating function as G;; = 3 age™*i. Apodization can
counter the disorder and dephasing that destroy the exact
phase relationships among spins that enabled our
Hamiltonian engineering method. The grating peaks can
be made wider by a factor W (Fig. 3), and any coupling that
is in phase to within W can still be engineered robustly
(Fig. 6) at the expense of a poorer decoupling efficiency of
long-range couplings. Apodization has other applications:
for instance, it could be used to engineer nonlinear spin
chains in lattices or, quite generally, to select any regular
array of spins from a complex network—allowing a wide
applicability of our method to many natural spin networks
and crystal lattices [27].

Approximation validity.—The control sequence is desig-
ned to engineer the average Hamiltonian J{ only to first
order. Higher order terms arising from the Trotter expan-
sion yield errors scaling as O(tt,,,/N?). Consider, e.g.,
the propagator for a five-spin chain

UN = [ei(fL/N)g‘[DQ ei(fl/N)-'}{m(Tl +7'2)ei(f1/N)-7'[m(7'1)]N’ 9)

where 7, = 7/(5w) and 7, = 37/(5w). This yields the
desired H with an error O(¢3/N?) for the first product and
O(2t,t, /N?) for the second. While increasing N improves
the approximation, at the expense of larger overhead times,
even small N achieves remarkably good fidelities, since,
by construction, t; <t =T. In essence, the system
evolves under the unmodulated DQ Hamiltonian during
f1, yielding the average coupling strength, while the 7;
periods apply small corrections required to reach the ideal
couplings. Symmetrizing the control sequence would lead
to a more accurate average Hamiltonian because of vanish-
ing higher orders [37]. However, this comes at the cost of
longer overhead times 7,; thus, using a larger number of
the unsymmetrized sequence is often a better strategy.

1.0
Cycles N
208
© 06 9.
(I e--o 1(
< 041 ; H
(] o—e- )()
= 02r
.---e 30

00 02 04 06 08 10
Disorder strength §

FIG. 5 (color online). Variation of maximum fidelity with
disorder in the network (Fig. 1) surrounding the spin chain.
The spins are displaced by or, where r is uniformly distributed
on [—ry/2, ro/2] (averaged over 30 realizations), with r; the
NN chain spin separation.

Experimental viability.—We consider an experimental
implementation and show that high fidelity QIT at room
temperature is achievable with current technology.

We assume that a spin lattice of NN separation r,
yielding a NN coupling strength b = ((noh)/4m)(y?/13).
If an ideal n-spin chain could be fabricated with maximum
coupling strength b, the transport time would be Ty =
(n7/8b) [30]. Alternatively, perfect state transfer could
be ensured in the weak-coupling regime [31,33], with a
transport time Tyen = (I'w/b), where I' > 1 ensures
that the end spins are weakly coupled to the bulk spins.
We compare T;q and Ty, to the time required for N cycles
of the engineering sequence T,,. Since 7, >> 1}, to a

good approximation, the total mixing time is #; <

>.;\j(n—j)/(nb) = mwn/8b. Adding the overhead time
N7, which depends on the available gradient strength as
7= 7/w, we have T,,, = (n7?/16b) + (N7/w). Since
we can take I" = n for the weak regime [31] and N = n for
filtered engineering, a gradient larger than the NN coupling
strength would achieve faster transport.

For concreteness, consider a crystal of fluorapatite
[Cas(PO,);F] that has been studied for quantum transport
[38,39]. The '°F nuclear spins form parallel linear chains
along the c¢ axis, with intrachain spacing ry = 0.344 nm
(b = 1.29 kHz), while the interchain coupling is = 40
times weaker. Maxwell field coils [40] can generate suffi-
cient gradient strengths, such as a gradient of 5.588 X
103 G/m over a 1 mm?® region [41], corresponding to
w = 0.7705 kHz. Far stronger gradients are routinely
used in magnetic resonance force microscopy; for ex-
ample, dysprosium magnetic tips [42] yield gradients of
60 G/nm, linear over distances exceeding 30 nm, yielding
w=282.73kHz. Setting w =25kHz would allow 77/2-pulse
widths of about 0.5 us to have sufficient bandwidth to
control chains exceeding n = 50 spins. Homonuclear
decoupling sequences [19,35] can increase the coherence
time up to 7,,. Evolution under the DQ Hamiltonian has
been shown to last for about 1.5 ms [43] in fluorapatite;
decoupling during the U, periods could increase this to
15 ms [35]. While pulse errors might limit the performance

2
e
B 0.9
C
3
3
g 0.8
[72]
[
N
e
o OO 2030 00 OO0 30 07
Cycles N Cycles N

FIG. 6 (color online). Transport fidelity for a five-spin chain
with dipolar couplings (NN coupling strength b). The spins are
subject to dephasing noise, modeled by an Ornstein-Uhlenbeck
process of correlation time 7, = 2/b and strength 2b, averaged
over 100 realizations. (a) No apodization. (b) With sinc apodiza-
tion [W = (7 + 1)/2, as in Fig. 3].
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of Hamiltonian engineering, there exist several methods to
reduce these errors [44]. With @ = 25 kHz and 30 cycles,
nearly lossless transport should be possible for a 25-spin
chain.

Filtered Hamiltonian engineering could as well be imple-
mented in other physical systems, such as trapped ions [13]
or dipolar molecules [45] and atoms [16] in optical lattices.
For instance, Rydberg atoms in optical lattices [46,47]
could enable simulations at low temperature, thanks to the
availability of long-range couplings and the ability to tune
the lattice to create gradients. The scheme could also be
extended to more complex 2D and 3D lattices [27].

Conclusion.—We have described a method for quantum
simulation that does not require local control but relies
on the construction of time-domain filter and weighting
functions via evolution under a gradient field. The method
achieves the engineering of individual spin-spin couplings
starting from a regular, naturally occurring Hamiltonian.
We presented a specific application to engineer spin chains
for perfect transport, isolating them from a large, complex
network. We showed that robust and high fidelity quantum
transport can be driven in these engineered networks, with
only experimental feasible control.

This work was supported in part by the NSF under Grant
No. DMG-1005926 and by AFOSR YIP.
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