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Abstract

In this thesis, I propose a new model for distributing computational work in a parallel
or distributed system. This model relies on exposing the topology and performance
characteristics of the underlying architecture to the application. Responsibility for
task distribution is divided between a run-time system, which determines when tasks
should be distributed or consolidated, and the application, which specifies to the run-
time system its first-choice distribution based on a representation of the current state
of the underlying architecture. Discussing my experience in implementing this model
as a Java-based simulator, I argue for the advantages of this approach as they relate
to performance on changing architectures and ease of programming.
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Chapter 1

Introduction

We introduce a new programming model for parallel and distributed systems, Self-

Distributing Computation (SDC). In the SDC model, the responsibility for distribut-

ing and parallelizing an application is split between the programmer and a run-time

system. The programmer is responsible for explicitly describing how a computation

can be divided into parallel components and distributed, as well as how these compo-

nents can be recombined. The run-time system is responsible for determining which

computations should be distributed and recombined, as well as providing to the ap-

plication an abstract model of the underlying architecture upon which to distribute

itself.

The advantages of this approach include increased flexibility for the computer

architect, and better abstraction, performance and portability for the programmer.

A Java implementation of an SDC model architecture, called Mimoid, is also

described. The implementation provides a useful testbed for experimenting with this

new model, and the lessons learned from programming and implementing this model

are discussed.
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Chapter 2

Motivation

There is a constant drive in many areas of research, industry, and government for

more and more computing power. Each new generation of computers inspires new

applications with more demanding requirements in a seemingly endless cycle.

2.1 High performance applications

Researchers in a variety of fields require massive computational power to perform

and analyze ever more accurate simulations. In the biological context, IBM is con-

structing a massive computer to simulate the folding of proteins, calculating the

evolution of atomic interactions on a quantum scale[11]. On the other end of the

scientific spectrum (but still from IBM), the Department of Energy's ASCI-White

computer simulates the relativistic effects of the massive release of energy from a

nuclear explosion[2].

In industrial applications, the rapid growth of the Internet has led to a demand for

web servers to handle greater capacity and databases capable of processing complex

transactions more rapidly. The premiere web search facility, Google, receives over

150 million requests a day[1]. The predicted trend towards web services, program-

to-program interactions over the web infrastructure, promises to increase the com-

putational requirements of network requests. Generating, encoding and decoding

multimedia content also involves computation-intensive algorithms and massive data
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sets.

2.2 Increasing computational power: two tracks

2.2.1 Building faster processors

There are two general tracks to obtaining more computational power. Moore's "Law,"

an empirical observation that the number of transistors that can be integrated onto a

single chip doubles roughly every 18 months, has held true since it was first proposed.

With the increase in transistor count usually comes a comparable increase in perfor-

mance, and while there have been perennial proclamations of the imminent demise of

this trend, Intel and other semiconductor manufacturers continue to produce faster

chips at or beyond this rate.

Unfortunately, the complexity involved in designing chips with billions of tran-

sistors is massive, both from management and manufacturing perspectives. Intel's

latest chips require design and production teams of tens of thousands of engineers, as

well as fabrication facilities with costs well over a billion dollars. The effort required

to keep up with Moore's Law may remain technologically feasible, but it is unclear

how long economic incentives will exist to justify the expenditure[4].

2.2.2 Connecting multiple processors

The other track to faster computers is harnessing the power of multiple processors,

either connected directly in a single machine, or multiple independent machines con-

nected by a network. These systems are known, respectively, as parallel and dis-

tributed computers. The appeal is obvious: although "state-of-the-art" processors

are extremely expensive to design and manufacture, economies of scale make individ-

ual processors relatively inexpensive. It may have cost Intel several billion dollars to

make the first Pentium IV, but marginally on the order of $100 to make the second.

The challenge, of course, is to efficiently use the available computing power. While

it is theoretically possible to get twice the performance out of two processors, or a
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thousand times the performance out of a thousand, or a million times out of a million,

this level of efficiency is unattainable for most problems. However, the relative expense

of building more chips vs. building faster ones is such that even a much lower efficiency

would be a valuable result.

Much work has been done on the hardware side to develop efficient means of

connecting multiple processors, both locally and over a network. A vast variety of

interconnects and routing protocols have been developed, some suited to particular

programming approaches more than others.

2.3 The software problem

The challenge is writing software to exploit these designs. There are two general meth-

ods for approaching the optimal solution for a parallelizable problem on a particular

architecture: locating and extracting implicit parallelism and providing a mechanism

for the parallelism to be denoted explicitly. Each has advantages and disadvantages

for both the programmer and the architect.

2.3.1 Extracting implicit parallelism

There are two general approaches to extracting implicit parallelism. In the first ap-

proach, the programmer writes essentially sequential code that is translated by either

the compiler, the run-time system, the architecture, or some combination into parallel

code. This is essentially the approach used by out-of-order execution units on several

modern microprocessors [5]. The chief advantage is that the programmer need only

write sequential code. Unsurprisingly, this is also the main disadvantage. Attempting

to determine which operations can safely be performed in parallel is not only difficult,

but also adds substantial complexity, either in hardware[5] or software[7].

By forcing code into sequential semantics, the translational approach requires the

programmer to over-specify the operations needed to solve the problem[6]. This re-

quirement is eliminated by a second approach, often applied by functional languages

such as Haskell. In this approach, the programmer is encouraged to minimize the
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evaluation order dependence of code. In a purely functional languages this evalua-

tion order independence is free. Techniques such as lazy evaluation and memoization

can greatly enhance parallelization and performance[14]. However, describing some

operations in a purely functional language can be cumbersome[19]. Functional lan-

guages hide the underlying architecture, even when that architecture would be useful

in solving problems. It then becomes the responsibility of the compiler or run-time

system to convert a functional solution into one that better exploits the machine.

This problem can be as difficult as the sequential translation problem.

2.3.2 Denoting explicit parallelism

Many modern languages give the programmer the option of explicitly specifying op-

erations that can be performed in parallel inside an otherwise sequential semantics.

Examples of this approach include C*'s poly types and domain constructs[3] and

Java's threading model[8].

While this approach eliminates much of the complexity that arises when attempt-

ing to extract implicit parallelism, current designs suffer from two key disadvantages.

First, the language designer is forced into choosing a particular abstract model

of the machine to present to the programmer. In the case of Java, for instance,

the programmer sees the machine as a Java virtual machine(VM) which can run

an unlimited number of threads with a small set of priority levels[8]. This is not

necessarily an optimal perspective to give the programmer. Suppose the programmer

wants to map a complex function onto an array of 1024 elements. Presented with the

Java thread model, she might intuitively assign a thread to calculate the result for

each element. However, if the Java VM is actually running on a 4-processor machine,

the overhead of context switches might make this approach undesirable. The problem

gets worse when threads need to communicate. If threads are assigned amongst many

processors on a distributed system, some pairs may be able to communicate with far

less latency than others, but the programmer has no way to know this from the model.

The second problem is the complement of the first. Just as the programmer cannot

determine how best to divide a process amongst indistinguishable threads that are
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actually running on a heterogeneous system, neither can the machine determine how

best to schedule threads or distribute different computations without extensive anal-

ysis either at compile-time or run-time. One Ada system described in [6] scheduled

tasks off a queue by assigning to the first available processor. If two highly commu-

nicative tasks were assigned in this manner to processors with a low bandwidth or

high latency interconnect, the system could grind to a halt.

A language designer might solve this problem by exposing more details of the

implementation to the programmer, but too much exposure can defeat the portability

and abstraction characteristics essential to a high-level language.

We need to find a reasonable abstraction that does not overburden the program-

mer with excessive detail, but provides enough information about the performance

characteristics of the underlying architecture for an application to exploit the available

hardware parallelism in a close-to-optimal way.
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Chapter 3

Current Approaches

The problem of explicitly denoting parallelism and other forms of concurrency has

been taken up by several language designers. We will consider a few relevant ex-

amples, analyzing the tradeoffs they make between programmability, flexibility, and

performance. We will pay particular attention to features in the language that expose

underlying performance characteristics of the architecture.

3.1 High Performance Fortran

3.1.1 Goals

High Performance Fortran (HPF) is a recent variant of the venerable Fortran lan-

guage, designed to take advantage of advances in supercomputer architecture, partic-

ularly in the area of distributed computing and parallelism[16]. The original HPF-1

specification denotes three key areas of concern:

1. Data parallel programming

2. Top performance with non-uniform memory access

3. Code tuning for various architectures

15



3.1.2 Language constructs

To address these issues, a variety of language constructs were introduced.

3.1.3 Data parallel programming with FORALL

The FORALL construct deals largely with the first problem. It allows the programmer

to specify an operation or set of operations to be performed in parallel, rather than

using a traditional FOR loop with a sequential semantics. The compiler and/or archi-

tecture is then free to perform these operations in any order and with any degree of

parallism of which it is capable.

The kind of operations performed by FORALL are by nature uncoupled. Aside from

potential exception conditions (such as a divide by zero), each operation performed

in parallel is independent of the others. These so-called "embarassingly parallel"

problems give the implementation a great deal of flexibility.

3.1.4 Optimizing coupled operations

Not so with more tightly coupled operations that, while they may be performed in

parallel, contain dependencies on other operations mediated either though reading or

writing a common data space or communicating requests and responses. One general

class of these problems is a producer-consumer or "pipelined" system that requires the

successive calculation of several functions, each of which takes as input the output

of the previous function. With a large data set, it is efficient for all stages of the

computation to be performed simultaneously, each on a data item in a different stage

of the pipeline.

Another parallel but coupled problem occurs in image processing. Generally,

image processing algorithms are spatially local, which is to say that the processing

of an individual pixel largely depends on its value and those near it, rather than on

pixels further away. A good example is Photoshop's Impressionist filter, which relies

on averaging the color values of adjacent pixels (among other operations) to create a

blurred, Monet-like appearance.

16



The performance of these kinds of computations depends greatly on how efficiently

their coupling can take place. If process A is computing the result of the first pipeline

stage or one corner of an image and process B is computing the result of the second

pipeline stage or an adjacent image section, the overall performance of the operation

will depend greatly on how quickly information can pass from A to B (and vice-

versa in the image processing case), as well as how quickly the processors that are

performing these operations can obtain the data they require.

HPF provides a mechanism to answer this requirement (the second goal listed

above), through a set of data distribition directives. The PROCESSORS directive allows

the programmer to request an abstract rectilinear collection of processors for the

execution of a set of operations, and the DISTRIBUTE and ALIGN directives to assign

data to these abstract processors. The assumption is that the compiler or architecture

can better allocate its physical processors to data and processes when it understands

the model the programmer requires for her operations. Further, the assumption is

that rectilinear arrays provide a reasonable abstraction both for the programmer to

program to and the system designer to implement. While for many problems and

architectures this is the case, it is not a universally true assumption. Many software

engineering problems are less regular in their couplings, and certain novel and/or

widely-distributed architectures (any distributed system built to operate over the

Internet, for example) do not easily map to rectilinear processing arrays. However,

the first assumption is definitely valid for a wide range of cases, and provides much

of the basis for the new model we'll describe later.

3.1.5 Exposing the architecture

HPF goes a step farther in exposing its underlying architecture to the programmer.

In addition to allocating abstract processor arrays, the programmer may also query

the physical design of the underlying machine through the NUMBEROFPROCESSORS

and PROCESSORSHAPE intrinsic functions. Armed with these functions, the program-

mer can optimize the distribution of operations in a way appropriate to the target

machine. For example, when executing an image processing algorithm, there is a de-
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cision to be made as to how finely to divide the image such that each section will be

processed in parallel. Too many parallel processes might overwhelm an architecture,

but too few will starve it. Using the NUMBEROFPROCESSORS and PROCESSORSHAPE

functions, the programmer could determine the largest available set of sufficiently

coupled processors, and divide the image up in such a way as to map easily to this

set. The key advantage of this approach is its dynamism: the application will adapt

at run-time to the architecture on which it is executed. This is another important

idea we will apply later in our new model: distribution questions that are based on

algorithm design can and should be made at design time, and executed at run-time.

The alternative is for the compiler or programmer to attempt to guess what the un-

derlying architecture of execution will look like, and for the architecture to attempt

to guess the distribution pattern that the programmer had in mind.

HPF-1 limited its processor allocation and distribution constructs to data. The

addition of an ON directive to the HPF-2 standard allowed processes themselve to be

allocated abstractly by the programmer, rather than being determined by the com-

piler or run-time system. This is yet another important means for the programmer

to express her intentions to the compiler and architecture, and is particularly impor-

tant for software engineering-style problems that lack an easily predictable process

distribution or a one-to-one mapping between processes and data sets.

Making explicit all this mapping can be difficult for a programmer, particularly

when the algorithm involved does not comport itself well to a regular, geometric ar-

rangement. In his PhD thesis describing the Connection Machine and its C* language

with similar processor allocation and data distribution mechanisms as HPF, Danny

Hillis includes a lengthy discussion of how traditional data structures such as lists,

trees, and graphs can be mapped into rectilinear arrays for efficient processing in the

Connection Machine/C* model[17]. For the software engineer who deals with even

less regular structures and interactions as a matter of course, this kind of mental and

programming overhead is rarely acceptable.
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3.2 Software engineering languages: Java and Cilk

As a result, software engineering oriented languages offer very different mechanisms

to take advantage of parallelism, traditionally in the form of threads. Threads are

low-overhead "lightweight" processes that can generally share data through a common

memory space. Though in the past threads were often provided as a operating system

or library mechanism, they are increasingly becoming an integrated part of language

syntax and semantics. Two languages which include thread semantics are Java[8] and

Cilk[21].

With Cilk, the emphasis is on simplicity. A "faithful" super-set of C, Cilk adds

the semantics of thread spawning and synchronization through some straightforward

syntax. Spawning a new thread is simply a matter of adding a keyword in front

of a function call. Synchronizing threads is similarly accomplished through a single

statement, and locking is implemented by a set of provided library functions.

Java's approach is more involved, with thread creation requiring the implementa-

tion of a Runnable object, which is then passed to a Thread constructor (alternatively,

the Thread class itself may be subclassed). As a reward for this added complexity,

the programmer can provide thread-local storage, examine and interrupt threads and

control their grouping and priority.

From a software engineering perspective this approach is extremely useful. Pro-

ducer/consumer, master/slave, and many other designs can be implemented in a

sensible fashion. However, the flexibility of this approach comes at a price. As

implemented in Java, for instance, threads are inappropriate for fine-grained data

parallelism: the overhead required in spawning a thread for each element of an array

is usually in excess of the gains to be made by performing an operation on that array

in parallel.

In fact, the flexibility provided by the Java and Cilk thread mechanisms can be

a losing tradeoff for both the programmer and the language or architecture imple-

mentor. Without knowing how the programmer will rely on particular features of the

threading system, the run-time system cannot make too many assumptions about how
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to optimally distribute threads. In the Java model, the only information communi-

cated by the programmer to the run-time system on spawned threads is priority level.

At the same time, the programmer has no idea how efficiently the underlying archi-

tecture will spawn, schedule and execute threads. In fact, some Java implementations

running on particular architectures might benefit from massive thread spawning for

data-parallel operations (a hypothetical Java implementation for the Cray (nee Tera)

MTA, for example [20]), while another implementation might choke on the overhead

(a dual processor Pentium II system running Windows NT, for instance).

Similarly, the programmer has no control over the distribution of threads. Threads

which are tightly coupled, such as a producer and consumer thread, will perform

optimally when the connection between them is fast and the two processors on which

they execute are comparable in speed. If the producer thread, for example, is on

a much faster processor, it will quickly produce too much data and either stall or

overflow the buffer of the consumer thread, depending on the application's design. In

either event, productive work comes to a halt.

In traditional threading models, the application can express little information on

data and process parallelism to the compiler or run-time system, while at the same

time, the run-time system provides little useful information to the programmer on

how its underlying architecture might be optimally exploited. This lack of information

exchange severely limits both the kinds of problems suitably addressed by thread-

based languages and the range of architectures on which those languages can be

implemented. A Java implementation, for instance, could not usefully scale to a

distributed architecture run over the Internet, since the programmer could not be

certain that tightly coupled threads would not end up behind 14400 baud modems

in Helsinki and Caracas. Nor could a massively data-parallel problem effectively be

implemented in Java with the hope of efficient execution on multiple architectures.

The programmer would have no idea the correct number of threads to spawn (10?

1,000? 1,000,000?) to properly distribute the processing task, and the run-time is

specification-bound to spawn exactly that number of threads.

In both systems, the underlying implementation has control of how and where
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threads are executed and scheduled. Often, implementations have heuristics which

attempt to guess which threads should be given priority in the future, as well as

which threads are most likely to communicate and thus should be placed on either

the same or closely coupled processors. However, this information is often obvious

to the programmer as a consequence of his design. This is not always the case, as

data dependencies can determine which threads require a higher priority or faster

communication for optimal performance.

We'll turn now to a model that attempts to separate decisions affecting perfor-

mance from those that can be made at design time as a function of the underlying

architecture, to those that can only be made at run-time based on data dependent

operations. With this model we hope to combine the flexibility of the threading

approach with the dynamic adaptability provided by the architectural exposure of

languages like HPF.
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Chapter 4

Self-Distributing Computation

Self-distributing computation is based on a fundamental principle:

Process and data distribution decisions which can be anticipated and reasoned

about at design time should be made at design time, while decisions depending on

run-time information should be made at run-time.

4.1 Choosing an abstraction

As we have seen, this seemingly obvious maxim is not universally applied, particularly

in software engineering-focused languages such as Java. The underlying architecture

has characteristics which can severely impact the performance of different distribu-

tion patterns, yet these characteristics are not exposed by the Java Virtual Machine

abstraction.

Here we will argue for an abstraction which, like High Performance Fortran, does

expose performance characteristics to the application, but does so in a manner more

conducive to the irregular design of software engineering problems, rather than re-

stricting the architectural representation to rectilinear arrays.
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4.1.1 The graph representation

We choose to generalize the architectural representation to that of a directed graph.

This has two key advantages. First, it allows the representation of much more complex

interconnect and network topologies, such as fat trees, rings or tori. In fact, HPF

recommends that implementors support directives to denote particular topologies in

interconnect, but the use of a directed graph obviates the need for an ad-hoc approach.

Second, it allows attributes to be associated with each node and edge that allow the

architecture to express its internal heterogeneity, whether it be processors of differing

clock rates, connections with various latency, bandwidth and buffering characteristics

or other factors that could impact performance.

The ideal representation of this graph (as well as its nodes and edges) would

be polymorphic. This would maxmize both backward and upwards compatibility.

The run-time system on a given platform could provide a graph type with exten-

sive details about its unique features, but one that is compatible with a simpler,

more general type. Programmers could then choose to exploit the more specific

type if the run-time system can provide it and their solution could benefit from

the additional data, while leaving the more general type as a fall-back in the event

the underlying architecture changes and can no longer provide the detailed type.

While a full 00-style polymorphic type may not be practical in an efficient run-

time system, one can be simulated with an associative map. Certain general prop-

erties, such as number-of-processor-nodes and network-latency could be guar-

anteed to appear in the mapping, while more platform-specific properties, such as

processor-branch-mispredict-penalty could appear optionally, and applications

could adjust to their presence or absence accordingly.

4.1.2 Controlling distribution and consolidation

Of course, determining the run-time information to be presented to the program only

addresses half of the design problem. The other issue concerns the protocol by which

the graph is presented to the program by the architecture and the application suggests

23



(or commands!) a distribution pattern. There are two general approaches we might

take.

The first is the HPF approach, what we might call application-driven. In the

application-driven approach, at any point the application can request information

from the run-time system and request the allocation of processors and the distribution

of processes and data amongst them. This might seem ideal from a programmer's

point of view. She will have complete control of the distribution process (or at least

the virtual distribution process), and can deterministically reason about the evolution

of her processes and data.

There are two unfortunately consequences to this approach. For one, the require-

ment that the programmer trigger the process of distribution can lead to a tangling

of two distinct aspects of the code: the actual implementation of the parallel or dis-

tributed algorithm being executed and the code required to find and create an optimal

distribution. In some ways the distribution policy of code is what the Aspect Ori-

ented Programming community terms a "cross-cutting concern" [12]. A good example

is an image processing algorithm. The domain of the algorithm might merely be pix-

els on an image, yet in order to decide effectively in the application-driven approach

whether the processing of two segments of the image might be best split amongst

two processors, the application's code would need to perform run-time information

queries in the middle of an image processing routine.

The second consequence of a application-driven approach is that programmers

often cannot (or do not!) anticipate changes in the run-time situation that might

occur due to numerous events either inside or outside the programmer's purview.

Data dependent operations can lead to suboptimal performance that the programmer

may not have anticipated.

To return to the image processing example, suppose the particular algorithm be-

ing implemented requires finding a fixed point of multiple iterations, each iteration

involving a specific manipulation of adjacent pixels. If finding the fixed point of the

algorithm along the boundary of two segments will require far more than the usual

number of iterations, and those two segments are assigned to separate processors,
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the algorithm could be slowed substantially by the unexpectedly high communication

traffic between the two processors. The programmer has no way of anticipating this

problem, as in the usual case the two segments would be minimally coupled and the

distribution would result in a performance gain. However it could be apparent to

the run-time system that whatever is actually going on between the two processors,

their performance is being limited by the communication between them. One easy

way for the run-time system to make this determination would be to compare the

processor's cycle utilization with its network utilization. It then would become obvi-

ous that placing both processes on a single processor would improve performance, as

on-chip bandwidth and latency is usually at least an order of magnitude better than

inter-processor bandwidth and latency regardless of interconnect.

Similarly, factors external to the application's tasks could affect when it would be

globally optimal to reallocate processors and redistribute data. In a multi-programmed

system, a new application might be started, or another application might be given

higher or lower priority and a correspondingly greater or smaller allocation of pro-

cessors for its use. The physical layout of the machine could change, with processors

hotswapped in or out, or new networked machines added to a distributed system. Of

course, the application is likely to be completely unaware of these changes unless it

meticulously checks for updates in the run-time situation, which, in addition to being

a burden on the programmer, may also result in lower performance if these checks oc-

cur in a "polling" fashion even when the run-time situation has not changed. Without

this co-operation from the programmer, the run-time system faces two choices: it can

ruthlessly reallocate processors and change the virtual-to-physical processor mapping,

perhaps in a way that severely affects the performance of the application, or it can

put off any changes until the application naturally reallocates and redistributes or

finishes. Neither approach is particular appealing.

The alternative, then, is to allow the architecture and its run-time system to trig-

ger the distribution and consolidation of processes. From the application's perspec-

tive, these triggers will occur asynchronously, interrupting the algorithm mid-flight.

If the run-time system could make arbitrary requests, it would greatly burden the
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Figure 4-1: Computation
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programmer. She would be forced to take into account a huge array of scenarios,

generating correct behavior for each and would likely be unable to concentrate on

optimizing the likely cases. Therefore it makes sense to restrict as much as possible

the potential distribution and consolidation actions of the run-time system.

The approach taken by the SDC model relies on the notion of a process tree. Each

node and leaf of the process tree corresponds to a computation. Computations are

best imagined as process objects which contain sufficient metainformation and oper-

ations to respond to collection and distribution requests from the run-time system.

Initially, each application is represented by a single computation being executed on a

single (virtual) processing node.
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The run-time system initiates distribution by executing a split operation on a

computation (see Figure 4-1). Included in the split request is a graph representation

of the kind previously discussed. The run-time system is free to decide (again, as

described above) not only how detailed the representation is, but also what portion

of the underlying architecture to include. Higher priority tasks, for instance, might be

exposed to a larger collection of virtual processors so that they could be distributed

sensibly among larger collections of physical processors. We will discuss other possible

heuristics for this decision later.

Once it receives the split request, the computation must, on the basis of in-

trospection as well as examination of the representation graph, create and configure

a set of new computations to perform its original task in a parallel or distributed

fashion. We will refer to the original computation as the parent computation and

these new computations as child computations. It responds to the run-time system

with a computation map, mapping nodes in the representation graph to the child

computations.

In addition, the computation specifies one of the child computations to act as a

root. It is this computation which must be prepared to respond to a collect request

from the run-time system. Upon receiving a collect request, the root computation

must generate a single computation which can perform the task of its parent compu-

tation (see Figure 4-2). The behaviour of a non-root computation upon receiving a

collect request is undefined.

These requests can be made recursively, resulting in a tree structure. The growth

of the tree is triggered by the run-time system and controlled and implemented by

the application, while collapse of the tree is triggered and controlled by the run-time

system, and merely implemented by the application.

From an implementation perspective, there is a trivial means for a computation

to operate: a split request can result in a single computation, identified as the

root, that is identical to the parent computation. This pseudo-root can respond to a

collect request with itself. The implementation of more complex designs depends

on details of the SDC implementation. An implementation might, for instance, allow
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Figure 4-2: Computation collect operation
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a root computation some fixed period of time to generate the collected computation

before it is free to remove the other child processes. The simple Java-based implemen-

tation discussed in the next chapter used internal state of the root computation alone
to generate the collected computation. This approach resulted in a simple imple-
mentation, but limited the flexibility of distribution and made it difficult to extract

fine-grained parallelism out of some algorithms. We wil discuss this tradeoff more
later, as it is of crucial importance to the viability of the SDC approach.
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4.2 Advantages of the model

The SDC model overcomes many of the failings of traditional thread-based approaches

by providing an abstraction that does not conceal performance information that is

critical to the optimal execution of a parallel or distributed program. It also cleanly

separates distribution policy concerns from algorithmic execution. It frees program-

mers to anticipate design optimizations at design time. Many thread distribution

and scheduling systems implemented by operating systems or run-time systems, for

example, must make a blind tradeoff between the time required for analysis and the

benefits of a more optimized distribution. Too much time spent on analysis limits

available "productive" cycles, and may be wasted on truly unpredictable data depen-

dent algorithms that would be best distributed at random. Of course the programmer

is usually in a position to understand his algorithm and its requirements at design

time, and can choose the complexity of the distribution algorithm accordingly. Allow-

ing the application programmer control of these kinds of decisions was a key lesson

of the Exokernel project when applied to operating systems[9], and it is unsurprising

that it can be applied to distributed and parallel programming systems.

Correspondingly, it removes much of the burden of dealing with pathological and

exceptional cases from the run-time system. The failure of a processing node can

always be dealt with by collecting at a higher-level root computation, so long as

that computation's collection mechanism recognizes the possibility of node failure.

Similarly, dynamic changes in network configuration or other resource availablity can

be exploited by both the run-time system to accomodate its own policies and by

programs to optimally use resources available.

4.3 Limitations of the model

The SDC model does have several limitations. While representing available processing

and communication resources via a graph is a more general and flexible approach

than rectilinear arrays, it is difficult to represent "parameterized" conditions, such
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as network connection B's performance being dependent on connection A's load-

as might easily occur in a switched network-without extending the model beyond

recognition. However, there are advantages to the "first-order" nature of the graph

representation, as it lends itself to simple analysis and distribution heuristics, e.g.

"Choose the pair of processors with the least-latency interconnect and map these two

communication-bound computations to them." The run-time system might consider

"second-order" effects when it performs the physical mapping of these computations,

avoiding a distribution that would belie the indications of the graph representation.

Another difficulty arises from the asynchronous nature of distribution and collec-

tion requests from the run-time system to the running computation. To implement

a sensible distribution or collection policy, the request handler must be able to in-

trospect the current computation or set of child computations. However, given the

potentially inconsistent state of a computation at the time of a request, either the

request processor must make a "safe" and potentially suboptimal decision, or wait

until the computation reaches a consistent state to perform the necessary analysis.

Due to the interrupt-like nature of these requests, it is uncertain whether the run-

time system could allow the computation unlimited time and access to resources in

order to make its determination. One solution to this problem is to increase the

metainformation the computation makes available as it proceeds with its algorithm,

so that distribution and collection requests can be processed immediately with more

optimal results. Another approach, used by [9] would be to limit the expressive power

of the request handlers, allowing the run-time system to have guarantees about their

required processing time.

The Java implementation we'll discuss next uses the former approach, and we will

pay particular attention to how this affects the flexibility and programmability of the

model.
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Chapter 5

The Mimoid Implementation

To explore the viability of the SDC model, a prototype was created in the Java

language. Called Mimoid, it presented an opportunity to examine both architectural

and run-time implementation issues as well as programmability concerns. While not

particularly complex, the system and algorithm prototypes involve approximately

2,500 lines of code.

5.1 Mimoid structure

The prototype system is built around four modules, each with one or two key in-

terfaces (see Figure 5-1.). The Processor module concerns the actual execution of

computations, presenting both a virtual processor interface to the computation itself

and a physical processor interface to the rest of the system. The Network mod-

ule represents the interconnect between the processor nodes, with interfaces both to

these nodes and to the distribution policy. The Policy module contains types for the

run-time graph representation as well as types which allow the specification of rules

for distributing and collecting computations. The test computations themselves take

advantage of a Computer module, which simplifies the test programmer's interface

by taking care of much of the administrative work in creating a network of nodes,

assigning initial processes, and bootstrapping the system.
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Figure 5-1: Mimoid structural overview
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public interface Computation extends Runnable {
public VirtualProcessor getVirtualProcessoro;

public void setVirtualProcessor(VirtualProcessor vp);

public void runo;

public boolean isRunningo;

public boolean isDoneo;

public ComputationMap split(TargetGraph tg);

public Computation merge(NodeDescriptor nd);

}

Listing 1: Computation.java

5.2 Computations

The critical type from the programmer's perspective is the Computation (see List-

ing 1). Much like the Java Runnable interface (which Computation extends for im-

plementation reasons), a Computation is designed to encapsulate a locus of control

that can be executed by a thread (or in our case, a processing node). In addition

to the run() method, the Computation must support the split and collect actions

discussed previously. This is done through the implementation of the split() and

merge () methods.

The split () method is parameterized on a TargetGraph object (see Listing 2),
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public interface TargetGraph {
public Set getNodeDescriptorsO;

public Set getConnectionDescriptorsO;

public NodeDescriptor getCurrentO;

}

Listing 2: TargetGraph.java

public interface ComputationMap {
public Computation map(NodeDescriptor n);

public NodeDescriptor getRootO;

}

Listing 3: ComputationMap.java

which is the run-time graph representation discussed earlier. It is composed of two

sets, a set of NodeDescriptors which correspond to processing nodes in the underly-

ing run-time representation, and ConnectionDescriptors, which correspond to the

interconnect between nodes. It also contains a reference to a NodeDescriptor cor-

responding to the node currently occupied by the parent Computation. This allows

the Computation distributed to this node to rely on state information created there

by the parent Computation.

The split 0 method returns a ComputationMap (see Listing 3) which contains

both a mapping between NodeDescriptors and new Computations, as well as a

reference to a NodeDescriptor of the location of the new root Computation, which

is usually, but is not required to be, the location of the original parent.

The collect operation performed by the merge() method is parameterized on a

single NodeDescriptor. This parameter represents the future home of the collected

Computation, and during the collect operation, the root Computation can derive in-

formation from this descriptor that would allow it to optimally combine the current

child Computations. For example, a Computation designed to perform a search might

choose an algorithm for the reconstituted data that fits the performance characteris-

tics of the node on which it will be performed. The result of the merge0 method is

a single Computation, that, under the SDC model, will perform the same function as

the family of Computations of which this call was made on the root.
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public interface VirtualProcessor {
public int getMemSizeQ;

public void writeMem(int addr, int value);

public int readMem(int addr);

public void sendMessage(Message m);

public boolean isMessageWaitingO;
public VirtualProcessorAddress getAddressO;

public Message receiveMessageO;

public void commitMessage(int addr);

}

Listing 4: VirtualProcessor.java

5.3 Virtual processors

In order to best analyze the operation of test processes in this model, the Mi-

moid architecture provides a single, narrow interface through which Computations

can perform significant (i.e. visible to the external world) work. This interface is

the VirtualProcessor (see Listing 4). Far simpler than any actual processor, the

VirtualProcessor nonetheless has sufficient operations availble to perform any com-

putationally signficant task in a way that is easily instrumentable for control and

analysis.

The VirtualProcessor interface provides uniform access to a word-addressable

memory array, as well as a port for sending messages to other processors and a queue

of received messages. The memory interface is simplicity itself. The getMemSize()

method returns the size of the memory in words. The readMem() method retrieves a

word value from an address in memory, while the writeMem() method stores a word

value into an address in memory.

Message passing is slightly more complex. Each VirtualProcessor has an ad-

dress, retrievable by the Computation through a getAddress() call. The address

has a numeric representation that can be stored in a word for either future reference

or to pass to another Computation for its use. Messages themselves are created as

records containing the fields described in Table 5.1. Messages are sent through a

sendMessage() method.
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Table 5.1: Inter-computation Message Fields
Field Name Field Type Description
DestinationAddress VirtualProcessorAddress Identifies the virtual processor to

receive this message
BufferStart int Points to the location of a buffer

in the source processor's memory
to be used for the message content

BufferLength int Specifies the length of the buffer
MessagelD int A tag for communication protocol

use (e.g. a sequence number)

Upon reaching the destination VirtualProcessor, that processor will add it to

an internal queue. The Computation running on that processor can query the status

of that queue with the isMessageWaiting() method, and retrieve the top message

from the queue with the receiveMessage 0 method. Retrieving a message off the

queue does not place its content into the VirtualPro cessor's Computation-accessible

memory array. That requires a subsequent commitMessage 0 method call, which will

store the most recently received message content into local memory at an address

specified by a parameter to the method. Only the most recently received message

can be committed, which allows the VirtualProcessor implementation to discard

all old messages: either a message is committed after it is received, in which case it

can be discarded as delivered, or it will not be committed before another message

is received, in which case its content is inaccessible to the Computation and can be

discarded.

5.4 Physical processors

From the underlying system's perspective, processors are represented through the

PhysicalProcessor interface (see Listing 5). This interface provides the system

with the ability to start and stop a PhysicalProcessor, as well as execute a clock

"tick" through the tickO method. This allows the prototype to step each proces-

sor's execution and perform both administrative work (such as reporting activity to

the simulator user) and policy work (such as determining whether to issue a split
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public interface PhysicalProcessor extends Port {
public Computation getComputationO;

public void runO;

public void halto;

public void tickO;

}

public interface Port {
public void receiveMessage(NetworkMessage m);

}

Listing 5: PhysicalProcessor.java and Port.java

request).

A PhysicalProcessor must also provide a Port interface, which allows messages

from the network (typed, unsurprisingly, as NetworkMessages) to be sent to the

processor. It is through these messages, discussed further later, that the Mimoid

implementation implements process distribution and collection as well as interprocess

communcation.

The current PhysicalProcessor interface also provides direct access to the Computation

object executing on it. This is an unfortunate violation of encapsulation, as not

only does it expose what should be the province of the virtual architecture, but

also in so doing it prevents multiple Computations from executing on the same

PhysicalProcessor in a context-switched fashion. This is a failing of the current

interface between the Computation and the VirtualProcessor, which does not allow

the Computation to express to the VirtualProcessor that it has completed, which

is necessary knowledge for the simulator to determine correctly when to terminate.

This wart should be removed in the next version.

5.5 The network model

The network itself is simulated through a NetworkModel interface (see Listing 6). The

NetworkModel interface is suprisingly simple, though a number of complex implemen-

tations could be imagined. Essentially it provides an operation for the system to note
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public interface NetworkModel {
public void insertMessage(NetworkMessage nm, NodeAddress from);

public void tickO;

public Set getDeliveredMessagesO;

public TargetGraph getRepresentationO;

public boolean messagesWaitingO;

}

Listing 6: NetworkModel.java

public interface DistributionPolicy {

public Set chooseSplits(TargetGraph graph, Set nodes);

public Set chooseMerges(TargetGraph graph, Set nodes);

}

Listing 7: DistributionPolicy.java

when and where NetworkMessages enter the network (insertMessage()), an opera-

tion to denote the passage of time (t ickS()), and operations to locate and retrieve mes-

sages that have reached their destinations (messagesWaiting 0 and getDeliveredMessages 0).

In addition, the NetworkModel is the logical place to originate a representation

of the current state of the system, so a NetworkModel can provide, through the

getRepresentationO method, a TargetGraph that can form the basis for the TargetGraphs

which are included in split requests.

5.6 Distribution policy

The triggering of distribution and collection requests is controlled by implementations

of another interface, DistributionPolicy (see Listing 7). DistributionPolicy'con-

tains two methods, one for selecting splits and the other for selecting merges. Each

takes a current representation of the state of the system in the form of a TargetGraph

and a set of Nodes. The sets returned by each method contain either Distribution

or Merge objects, depending on the method called. Distribution objects contain an

address of the Node object containing the Computation to issue the split request to,

as well as the TargetGraph to include in the request. This may or may not be the

same TargetGraph passed to the policy, since the policy may specify the allocation of
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only a subset of the available processing nodes and network connections to a partic-

ular Computation. Merge objects contain the address of the Node object containing

the Computation to issue the collect request to, as well as the NodeDescriptor

describing the node where the resulting Computation will be placed.

5.7 Putting the pieces together

Perhaps not surprisingly, it was discovered that the easiest way to implement the

VirtualProcessor and PhysicalProcessor interfaces was through a single class, the

BasicProcessor. The BasicProcessor implements the memory array functionality

of the VirtualProcessor interface through an array of ints. The sendMessage()

method involves repackaging a virtual Message object as a NetworkMessage and

passing it along through a Port connected to the BasicProcessor at construction.

NetworkMessages received through the PhysicalProcessor receiveMessage() method

are examined for their type. If they are simple inter-process messages their virtual

Message objects are unpackaged and placed in a queue for access by the Computation

through the VirtualProcessor interface. Policy messages (such as split and collect

requests) are dealt with in a manner described below.

A BasicProcessor also contains a reference to a Computation object, as well as

a Thread object to execute the Computation. This means that the actions of Mimoid

Computations are specified in the Java language. An alternative would have been to

describe the execution of Computations in terms of some simple interpreted language,

which could be executed step-wise by the BasicProcessor. The consequences of this

approach would have been the obvious requirement of writing an interpreter, as well

as forcing test Computations to be written in a rather restricted language. Using a

Java thread as the "interpreter" requires some clever management overhead, but over-

all results in a simpler test environment, ensuring that programming issues are the

responsiblity of the SDC model, rather than of a hobbled implementation language.

Specifically, VirtualProcessor methods that will be called by the Computation's

thread must be instrumented to allow only a single operation to be performed during
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each PhysicalProcessor "tick." This is accomplished through use of the (depre-

cated, but still supported) Thread suspend() and resume() methods, which, while

deadlock-prone in the general case, are quite safe and useful here.

The processing of split and collect requests is handled through the messaging sys-

tem. When the BasicProcessor receives a NetworkMessage through its PhysicalProcessor

interface, it checks to see if the NetworkMessage is one of four special types.

If it is a SplitMessage, it represents a split request, and contains the neces-

sary TargetGraph. The BasicProcessor extracts this TargetGraph and calls its

Computation's split 0 method with the TargetGraph as a parameter. It then ana-

lyzes the returned ComputationMap. For each mapped Computation, it constructs an-

other special NetworkMessage of the DistributeMessage type. The DistributeMessage

type contains a representation of the new child Computation, and this message

is sent to the processor on the node corresponding to its NodeDescriptor in the

ComputationMap. In addition, a RootMessage is sent to a special replyTo address

included in the SplitMessage. This informs whichever entity triggered the distribu-

tion that a particular node contains the root Computation, and that future collect

requests should be directed there.

If a DistributeMessage is received by a BasicProcessor, it simply extracts the

contained Computation and replaces its current Computation (if any) with the new

Computation, severing the old Computation's reference to the VirtualProcessor

interface. Although the current Computation might still be executing, without a

reference to a VirtualProcessor, when it next attempts to read or write memory or

send or receive a message it will throw a NullPointerException and terminate.

The converse of the SplitMessage is the MergeMessage, which represents a col-

lect request. A NodeDescriptor is referenced in a SplitMessage, and this descrip-

tor is extracted and passed to the current Computation's merge() method. The

Computation returns another Computation result, which is packaged in a DistributeMessage

and entered into the network.

Finally, a BasicNetworkMessage represents an inter-process message and is pack-

aged into a Message object and added to the VirtualProcessor's queue as discussed
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above.

The chief consequence of the VirtualProcessor calling methods of the Computation

object to perform distribution and collection is that the Computation itself cannot

issue commands to the VirtualProcessor (such as reading and writing memory

or sending messages) when it is requested to split or collect. This means that

Computation objects must contain sufficient internal state to perform these opera-

tions in a sensible fashion. However, it also allows the run-time system reliable control

over exactly when Computations distribute and collect themselves.

The policy, network, processing nodes and initial computation(s) are connected

and managed by the Computer class. Given a mapping between nodes and their

addresses, a set of Computations, a NetworkModel and a DistributionPolicy,

the Computer starts the processors and begins sending tick() requests to each

processor and the NetworkModel, delivering NetworkMessages to processors as the

NetworkModel indicates they should be. After each tick it presents the current run-

time situation to the DistributionPolicy by retrieving the TargetGraph repre-

sentation from the NetworkModel. The DistributionPolicy responds with sets of

Distribution and Merge objects, each of which is packaged by the Computer into

an appropriate SplitMessage or MergeMessage and inserted into the network. It

monitors each Computation for its completion, and when all Computations on all

processors are finished, the simulation is terminated and a total tick count returned

to the user.

Some simple algorithms, including QuickSort[18] and Conway's Game of Life[15],

were implemented and tested with a variety of network models and distribution poli-

cies. We'll discuss some of the conclusions reached from this work in the next chapter.
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Chapter 6

Lessons Learned

From implementing and testing Mimoid, several insights into the SDC model were

gained that deserve further exploration. We will examine these insights in the context

of a QuickSort program implemented on Mimoid.

6.1 The QuickSort implementation

The Mimoid QuickSort implementation relies on three distinct types of computation,

each of which can be distributed to any processor on the system. Leaf computations

are simply responsible for applying the entire QuickSort algorithm to a chunk of data

they are sent from a Parent computation. Parent computations perform only the

partition stage of the QuickSort on data they receive, separating those elements that

are higher and lower than a pivot value and transmitting each set (higher and lower)

to one of two Leaf computations. Finally a special kind of Parent, the Root, has the

data to be sorted initially available in its processor's memory through a bootstrapping

routine. Results computed by Leaf nodes are retransmitted up through the Parent

nodes until they reach the Root and the computation is completed.
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Figure 6-1: Example QuickSort distribution evolution
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6.2 Distribution as protocol

Relying on the run-time system to trigger distribution and collection transforms the

distribution problem into what is fundamentally a protocol problem. This result is

similar to the shift in thinking required in the transition from thread-based concur-

rency to asynchronous programming. Each computation is essentially a pair of state

machines, one encapsulated in the other. The internal state machine represents the

underlying computational work to be done, acting on data read from memory and

input or messages from other computations. The external state machine responds to

split and collect messages from the system, maintaining both its own indepedent

state, as well as responding to state changes of the internal state machine.

In the case of the QuickSort implementation, a Leaf computation's internal state

is the array it is required to sort. It exposes to the external state machine a flag

which indicates whether or not it has completed its work. The external state ma-

chine chooses its response to split requests based on this flag. If the work is not

completed, the Leaf responds to a split by producing a Parent computation mapped
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to the original node and two Leaf nodes to perform QuickSorts on the partitioned

original array. However if the work has completed, the split request results in a

reproduction of the original Leaf. The Root computation responds to split requests

in the same way. See Figure 6-1 for an example of how this distribution could evolve.

Considering the startup costs required to perform a split in this manner, it might

be advantageous for the internal state machine to expose a measure of its progress

rather than a boolean flag of completion. This would allow the external state machine

to determine whether the performance of the split would require more time and re-

sources than simply finishing the computation at the Leaf. However, even without

this functionality, on a homogenous network with semi-frequent split requests, the

distributed QuickSort was able to complete in substantially (30-50% depending on the

number of splits) fewer ticks than a non-distributed version, despite the redundant

work required by this straightforward (and rather naive) distribution protocol.

6.3 Separating policy from algorithm

Separating out the distribution scheme of a program as a protocol has substantial

advantages. Most importantly, it abstracts many details of the process being per-

formed. Any algorithm involving dividing a work load in two and processing each

half independently could use the same protocol as the QuickSort implementation,

literally without modification. Although as it is currently designed, Mimoid does not

paramaterize the distribution protocol as an abstract data type, such an approach

would be extremely plausible. In fact, BasicComputation, an abstract implementa-

tion of the Computation interface actually provides a default "worst-case" protocol

which proved adequate for a range of simple test computations, including a network

Ping-Pong exchange, the included listing of which (see Listing 8) illustrates the ease

with which applications can be written for the Mimoid system.

Program distribution protocols covering a large range of complexity can be imag-

ined. In the case of indepedent worker threads servicing, for example, web page re-

quests, a trivial distribution protocol would be to create some number of new worker
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public class Ping extends BasicComputation {

public void run() {
isRunning = true;
for(int i=0; i < 10; ++i) {

BasicMessage ping = new BasicMessage(dest, 0, 0, 0);
getVirtualProcessor().sendMessage(ping);

System.out.println("Ping! on VP: " + getVirtualProcessorO);

}
isRunning = false;

}

}

public class Pong extends BasicComputation {

public void run() {
isRunning = true;
for(int i=0; i < 10; ++i) {

getVirtualProcessor 0 . receiveMessage 0;
System.out.println("Pong! on VP: " + getVirtualProcessor0);

}
isRunning = false;

}

}

Listing 8: Ping.java and Pong.java

threads on each split request, and remove them on a collect request. More interde-

pendent relationships, such as producer-consumer, require more complex protocols.

The conversion of process to protocol is also apparent in the run-time mechanism

for triggering split and collect requests. Here again policy can be abstracted

from details of implementation, both of the underlying architecture and the running

processes. In this case, the Mimoid architecture directly supports this approach,

as DistributionPolicy objects can be plugged into the system dynamically. This

approach was useful in testing, as it was trivial to transition from a simple policy with

only a single split to a more dynamic one which sent split requests to processors

performing excessive memory accesses, and collect requests to processors engaging
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mainly in network traffic. Here again we see the importance of state exposure, in this

case from the processor and network to the run-time distribution policy.

6.4 Unaddressed issues

Some issues that could arise in real-world implementations of an SDC model were

either impossible or impractical to address in the Mimoid implementation. While

none seem insurmountable, they should be discussed further.

6.4.1 Virtual to physical mapping

One issue largely unaddressed by the Mimoid implementation is the question of vir-

tual to physical mapping of processors and interconnect. Because of the degree of

expressiveness available in the SDC model, it would be tempting to simply use a

one-to-one mapping of processing nodes and interconnect in the representation graph

to physical processors and interconnect. While this approach is straightforward and

certainly feasible, experience developing sample applications such as the distributed

QuickSort indicate that it will probably not be optimal. Separating out different

structural roles for computations, as in QuickSort with the Root, Parent and Leaf

computations, leads to some computations serving as infrastructure and requiring few

resources. Certainly a Parent computation which spends most of its time waiting for

response messages from its children does not require the full resouces of a processor.

It might be sensible, then, for a physical architecture to present a single processor

capable of supporting multiple contexts as several nodes of fractional computational

power but fast interconnect. On the other hand, this kind of representation would

be suboptimal for a computation which required the full resources of the processor.

These limitations on the representation graph will be discussed more in the next

section.
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6.4.2 Addressing

Finally, a major issue for any implementation of SDC involving a non-global address

space will be inter-process addressing. Because of the unpredictable nature (from

the programmer's perspective) of split and collect requests, it is difficult to know

precisely where a particular computation will be executing or which computation

will own a particular piece of data. This difficulty can be overcome through careful

inter-process communication protocols. This approach was successful with distributed

QuickSort, where each child could wait for a parent to send it the required data and

could be assured that the parent would not change locations before it had completed

its work. However more flexibility would be available with a more convenient virtual

addressing scheme that would allow computations to have a single address regardless

of their node location.
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Chapter 7

Future Directions and Potential

Applications

7.1 Future directions

As we discussed in the previous chapter, there are several implementation issues that

deserve further exploration. In addition, much more work could be done in designing

and analyzing both application and run-time distribution policies.

7.1.1 Improving the graph representation

The key implementation question, and also the chief factor in the design of distribu-

tion policies, is what information to include in the graph representation created and

presented to the application by the run-time system. For simple distribution schemes

that produce computations which are not communication-dependent, a set of nodes

without interconnect would be sufficient, and indeed early versions of the distributed

QuickSort used just this sort of "graph." Essentially this representation is identical

to the integer result of the HPF number-of _processors function. Obviously com-

putation distributions with non-trivial communication requirements can benefit from

knowing something about available interconnect. While some interconnect schemes

are amenable to characterization through static figures-bandwidth in megabits or
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gigabits/second, latency in nanoseconds-these figures are often constantly changing,

dependent on both how the current application uses the interconnect, as well as the

influence of outside factors such as simultaneously running applications or external

traffic.

This presents a challenge to the SDC model, as it must be determined how best

to take a static "snapshot" of this data that will be useful to the application in

determining its distribution. On the other hand, it also demonstrates an advantage

of an asychronous, run-time driven approach over the application-driven approach of

such languages as HPF, as the SDC model ensures that applications will have the

opportunity to respond to changing circumstances, rather than locking them into a

single allocation scheme or forcing them to constantly check for situation changes.

It is unclear how much more useful information could be included in the run-

time representation. Characterizing the performance of processors in a heterogeneous

system, for example, is notoriously difficult, with MHz, MFLOPS, or even SPEC

figures often insufficient to communicate actual performance potential for a given

problem. On the other hand, even a foggy performance number is probably better

than none at all, as order-of-magnitude differences in a highly heterogeneous network

could certainly be significant to an application.

7.1.2 Exploring application distribution policies

What kinds of distribution policies might apply to different types of application is

an open question. Certainly much research has been done into parallelizing common

(and not-so-common) algorithms. Less work has been done on what we could imagine

as design patterns in the style of [10] for parallel or distributed applications. The dis-

tributed QuickSort implementation discussed here might be thought of as an instance

of an extremely simple pattern of binary distribution. [13] discusses a framework for

these sorts of patterns and classifies several.
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7.1.3 Designing run-time distribution policies

Finding good heuristics to trigger split and collect requests for various kinds of

parallel and distributed architectures would also be a useful endeavour. Many of the

same heuristics that are used currently for process scheduling, such as identifying I/O

bound and CPU bound processes, could easily be adapted to the SDC model. In fact,

a simple version of this approach was used in a distribution policy tested on Mimoid.

The implementation used counters in the BasicProcessor objects to determine how

many ticks each computation was allocating to memory references and how many

it was allocating to receiving and sending messages. Because the Mimoid processor

model treated each memory reference and message send or receive as a single tick,

this mechanism was somewhat crude, but provided the necessary infrastructure to

identify computations that were starved for data or starved for computational power.

In addition, we've spoken rather blithely about the "run-time system" as if it

were a single entity that is omniscient and omnipresent. While this assumption holds

true for tightly-coupled systems (usually ones in a single box), it is rarely true of

distributed systems, and certainly not true of Internet-spanning systems. Thus it

becomes pertinent to ask how responsibility for issuing split and collect requests

is distributed. What are the consequences of giving individual processing nodes the

ability to trigger "local" distributions and merges, versus giving a central authority

with more global information this ability? Similarly, it could be prudent to give

applications the ability to hint to the run-time system when it might be appropriate

for some computation to split or collect, similar to how Java, for instance, gives the

application the ability to suggest appropriate times for garbage collection to occur[8].

7.1.4 Adapting to a changing environment

Aside from optimizing heuristics, "real world" policy constraints and how to best

implement them in an SDC model is an interesting problem. How to fairly allocate

processors amongst multiple applications is one such constraint issue. Should the

run-time system evenly cut a virtual representation into pieces to present to each
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application? If the applications have vastly different computational requirements, this

approach could be extremely suboptimal. Factoring in differing application priorities

makes this issue even more complex.

Another set of constraints are physical: dealing with the addition and removal of

processing nodes and interconnect, either through operator intervention or changes in

the functional status of components. While the dynamism of the SDC model makes

these constraints easier to deal with-collect away from faulty hardware, split onto new

hardware-implementation issues surround how best to allow the application to adjust

to these changes. An implementation like Mimoid that requires a computation to

immediately respond to split and collect requests would deal well with these issues.

It would be useful to know how a more relaxed implementation could accomodate

them.

7.2 Potential applications

There are several classes of application which could benefit from the SDC model.

Server applications such as web or database servers are often multi-threaded to take

advantage of multiple processors and the asynchronicity of request/response process-

ing. Depending on the rate of network traffic as well as the number of processors and

their interconnect, a server application might take different approaches to distributing

the workload. The latest version of the Apache web server provides the application

programmer with several processing models, each suited to a particular class of ar-

chitecture. Generalizing this approach could certainly help server applications obtain

closer to optimal performance on a range of architectures without requiring platform-

specific rewrites.

The emerging field of peer-to-peer applications could also benefit from an SDC

approach. On an network as heterogenous as the Internet, it is impossible to rely on

the performance of a random network connection or processing node. It is critical

that an application adapt to the resources made available to it, and it is hard to

imagine that any run-time system, no matter how cleverly written, could intelligently
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distribute an application without the kind of feedback available in the SDC model.
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Chapter 8

Conclusions

Decisions are made best by those with the best information. For many of the deci-

sions involved in distributing computational tasks, the programmer knows what her

application needs to do, and how it is going to go about doing it. If the application

can make decisions paramaterized by information about the underlying architecture,

it is reasonable to assume that those decisions will be correct.

Correspondingly, only the machine on which the application is running is in a

position to know when the assumptions on which those decisions are based-network

performance, CPU load, application priority-no longer hold true.

By setting up a feedback loop between the system and the application, such that

they jointly make task distribution decisions, the SDC model allows the desiginer of

each to specify behavior free of guesswork.

Implementation experience with Mimoid has demonstrated that the asynchronic-

ity forced on the programmer by the SDC model is not a severe burden, as the

programmer can implement an entire range of behaviors, paying only for complexity

that will allow the application to better adapt for increased performance. In addi-

tion, the asynchronous approach encourages a cleaner separation between distribution

policy and the underyling algorithm.

It is impossible to abstract the performance characteristics of distributed and par-

allel architectures: if performance did not matter to, a sequential architecture would

be cheaper and easier to program. The lesson of SDC is that an abstraction can

52



make performace characteristics explicit, without sacrificing efficient resource use or

programmability. This lesson is particularly relevant to the software engineering dis-

cipline, which has been slow to adapt to novel parallel and distributed architectures.
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