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Abstract

This thesis examines important issues in the design of hardware and software for
microsensor networks, with particular attention paid to mechanisms for providing
power awareness. The pAMPS Revision 1 microsensor node is used as an example.
The design of this node implementation is described in detail, including, in particular,
the design of the pAMPS processor board and its power-scalable architecture. The
operating system and application programming interface for the node is described.
Finally, an analysis is made of the power consumed by each of the node's subsystems,
and these results are used to assess the degree of power-awareness provided by the
pAMPS Revision 1 node.
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Chapter 1

Microsensor Networks

1.1 Introduction

Microsensor networks are distributed collections of small, connected sensor nodes.

Although each node may have very limited sensing abilities, the nodes collaborate

to form a composite examination of their environment that may be richer than an

examination obtainable with a single, large, complex macrosensor. The size, number,

and distribution of the nodes depends highly on the purpose of the sensor network,

and can range from a few nodes distributed in a small room, to hundreds of larger

nodes spread across a mountainside, to thousands of nodes monitoring a factory

assembly line.

This thesis discusses microsensor networks in general, but pays particular atten-

tion to the hardware and software developed for MIT's pAMPS project. The details

of the design of the pAMPS Revision 1 sensor node are discussed, and an analysis of

the node's measured performance is made.

1.2 Microsensor Attributes

Figure 1.2 illustrates a typical microsensor setup. Sensor nodes are distributed

throughout the area under observation, and are connected via hierarchical communi-

cation network. Communication can be wired, but is generally wireless. At the root
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Figure 1-1: Generic microsensor application

of the communication network is the base-station node. This is the point where all

data is collected from the network. The base-station may be connected to a mass

storage system, or a special long-range communications system. In this generic ex-

ample, the base-station is the only special node: all of the other nodes are identical in

construction and programming. This generality facilitates deployment of the system,

but requires the use of potentially complicated ad-hoc networking protocols, as each

node must discover its role in the network. Network roles may even change over time,

in the event that some individual nodes fail, or run out of energy.

The primary advantage of microsensor networks derives from the spatial diversity

of the data collected by the network as a whole. This diversity can be exploited to

reveal details about the network's environment that would not necessarily have been

determinable using a single macrosensor. Such details might include the spatial loca-

tion of some signal source, or at least its direction. Alternatively, the sensor network

may be used to imitate a single very large sensor, one that might be impractically

large to build or deploy. [5, 3]

A second advantage of networked microsensor is the potential for increased reli-

ability through redundancy. In an ideally arranged network, the loss of any given

node should have only minimal impact on the functionality of the sensor system as
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a whole. Assuming the nodes are distributed densely, compared to the range of each

communication link, and that the links between nodes are reconfigurable, the network

should be able to reconfigure itself to maintain its connectedness. The missing data

from a failed node is only a small portion of the total data collected by the network.

Unfortunately, the single basestation node is an exception to this general redundancy.

However, since there is only one basestation, it is frequently possible to take measures

to increase its reliability, such as providing the basestation with an increased capacity

power source, and positioning the node such that it is easily maintainable.

Since networking is what makes microsensor systems interesting, the design of

inter-node communication mechanisms is critical. In some applications, it is possi-

ble to provide wired connectivity between nodes. Wired connections are simple to

implement, reliable, and use only small amounts of power. However, microsensor

applications requiring large numbers of nodes or fast deployment times necessitate

wireless communication. Wireless communication adds several complications. First

wireless transceivers are generally larger, more complex, and more power-hungry than

their wired counterparts. Second, wireless communication links are generally limited

to lower bandwidth and shorter distances than wired links. Limited bandwidth in

turn limits the amount of collaboration and data sharing between nodes. Limited link

distance either limits the maximum diameter of the network, or necessitates complex

multi-hop routing protocols.

The small size of microsensor nodes may facilitate their deployment, but it severely

complicates the problem of providing power to the nodes. Like wired networking,

the ability to tap into a large, external power source is a rare luxury. For most

applications, nodes must carry their own power supplies, and this generally means

batteries. In some cases, nodes may scavenge energy from their environment. Ex-

ample environmental energy sources include solar radiation, or mechanical vibration.

Self-powered nodes have the potential to create sensor networks with near infinite

lifetimes; however, generally only very small amounts of power can be extracted from

the environment, requiring nodes to run on very little power, and to manage their

energy consumption very carefully.
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1.3 Power Awareness

A key concept in power management is the difference between low-power design, and

power-aware design. Of course, if energy consumption is to be minimized, the design

should be optimized to use as little power as possible. However, reducing power

consumption frequently requires a corresponding decrease in some other performance

metric, such as computational speed or radio range. A power-aware design recognizes

that in practice, some performance metrics can occasionally be relaxed, without any

decrease in real performance.

For example, a design specification may require a radio transmitter powerful

enough to communicate over a distance of 100 meters. However, if, in some situ-

ation, the receiver is only 5 meters from the transmitter, it would be beneficial to be

able to reduce the transmit power to just the level required to reach the receiver. Sim-

ilarly, peak anticipated computational loads may require a 50MIPS processor. How-

ever, when the load is less than maximum, the additional processing performance

is wasted, along with the power necessary to maintain that level of performance.

A power-aware design would allow the processor clock speed to be varied, so that

50MIPS performance was available when needed, but power consumption could be

decreased when the processor load is less.

Power-aware designs are characterized by multiple operating modes that permit

power/performance tradeoffs to be made in real time. To be effective, it is neces-

sary to intelligently select which mode to use in any given scenario. In practice,

this is a difficult problem, often requiring feedback loops that compare measured

performance with target performance, and gradually home in on the optimal oper-

ating mode. Sensor systems are inherently real-time systems, where data-processing

deadlines must be met, or the data becomes stale. Even if it was possible to instan-

taneously determine the optimal operating mode for a given scenario, it is generally

not possible to instantaneously change modes. In power-aware systems, the delay in

changing operating modes is frequently greater when changing to a mode that of-

fers increased performance than when changing to a lower performance, lower-power

18
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mode--especially when additional hardware must be brought online in order to gen-

erate the increased performance. It is therefore necessary to anticipate the need for

increased performance, in order for it to be available exactly when needed.

1.4 The pAMPS Project

The MIT pAMPS (Micro, Adaptive, Multi-Domain, Power-Aware Sensors) project

is a four year effort to develop a flexible architecture for microsensors. pAMPS nodes

are not intended for any specific application: rather, the [LAMPS project focuses on

hardware, protocol, and algorithm building blocks that are useful for many different

applications. As implied by the project name, the pAMPS nodes are highly power-

aware. The final goal of the project is to develop a highly-miniaturized, self-powered

sensor node on a single chip.

1.4.1 Project Phases and Timeline

pAMPS is a three-phase project, with phase 0 presently complete, and phase 1

nearing completion.

Phase 0 Phase 0 was an exploratory, proof-of-concept project, in which various

microsensor node components were prototyped. To facilitate debugging, the proto-

types were based on commercial development board designs. The prototypes were

therefore neither small, nor highly power efficient, and there was little integration

between the different modules of the system at this point. These early prototypes,

however, served as a useful testbench and software development platform, and identi-

fied problems that were avoided in the next design iteration. Phase 0 was completed

in the Spring of 2000.

Phase 1 This thesis centers on the design of the Revision 1 uAMPS node, for

phase 1 of the pAMPS project. This is the first fully functional mAMPS node. It

is designed to be as small and power-efficient as possible, while still being based on
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off-the-shelf components. Phase 1 will be complete after the Summer of 2002.

Phase 2 The final phase of the pAMPS project will be a custom system-on-a-

chip implementation of the sensor node, which will build upon the successful ideas

from phase 0 and 1, and will also take advantage of additional opportunities afforded

by a chip-level design, including ultra-low-power VLSI design techniques, custom

power-aware computing architectures, and dedicated circuitry for low-power network

protocol processing. Phase 2 is expected to be completed during 2004.

1.4.2 Role of the Revision 1 Node

The primary purpose of the Revision 1 node is to implement a fully-functional mi-

crosensor node, and to demonstrate its functionality and its power-aware design in

a few assorted applications. Approximately ten nodes are to be built, in order to

allowing small networks to be deployed and tested.

Secondary goals were that the revision 1 node be as small and power efficient

as possible. Restricting the design to off-the-shelf components limits the degree to

which these secondary goals can be achieved. However, based on the performance

attained by modern cellular phones and personal digital assistants, lifetimes of about

a week should be attainable from a sensor node with a volume of about 100cm 3,

given relatively low duty cycles (active for 1-5% of the time, as typical of many

actual microsensor applications).

20

III



Chapter 2

Microsensor Node Architecture

2.1 Node Components

Figure 2.1 identifies the essential components of a wireless microsensor node, and

indicates some of the design considerations associated with each component.

Sensors A sensor node must include some form of sensor. The MAMPS project has

so far implemented only seismic and acoustic sensors, although many other sensing

mechanisms can be used effectively in a microsensor system. With COTS components,

as used in the current iterations of the pAMPS nodes, the sensor system (including

transducers, amplifiers, filters, and analog-to-digital converters) can be built to run

on only a few milliwatts, making it a very minor power consumer compared with the

radio or microprocessor. Therefore, the ability to turn off a sensor (lowering its power

consumption to a few microwatts) generally provides sufficient power scalability. The

development of custom micropower processors and radios dedicated to distributed

sensor applications promises to reduce the power consumption of these systems from

hundreds of milliwatts to a few milliwatts, or even microwatts. When this occurs, the

ability to make dynamic power/performance tradeoffs in the sensor hardware will be

much more important. Mechanisms for doing this might include changing the bias

current applied to a transducer, changing the number of gain stages in an amplifier

chain, or changing the order of a switched-capacitor filter.
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Figure 2-1: Microsensor components and key design considerations

Processors Power-awareness implies some rudimentary form of intelligence, and

that intelligence is invariably provided by a microprocessor. How much computa-

tional capability is required depends highly on the type of sensors used and the

amount of post-processing of the raw sensor signal required, the architecture of the

sensor network and how computational tasks are distributed among the nodes, as well

as latency, resolution, or other quality of service constraints placed on the overall net-

work. Achieving power-awareness in a processing element is a matter of dynamically

adjusting the computational capacity of the processor to exactly match its workload.

This can be achieved by varying the frequency of the clock along with the power

supply voltage, or by shutting down unused functional units.

Software Any system that includes a microprocessor necessarily also includes soft-

ware. In a typical microsensor network, software running on each node controls the

manner in which data is collected, the mechanisms for sharing data between nodes

and for combining data streams from multiple nodes (data aggregation), and the

algorithms for optimizing power consumption. Besides controlling power aware hard-

ware, software can be a means of power awareness in itself. An example would be the

22
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inclusion of multiple, scalable algorithms for the same task. When available power

is low, a computationally intensive, but highly optimized data aggregation algorithm

might be replaced by a much simpler but coarser algorithm. Another example would

be varying the number of taps in an FIR filter. The concept of low-power, or power-

aware software, is relatively new, and the tools necessary for creating it are only now

being developed. Traditional compilers have usually optimized for execution speed,

which is usually roughly equivalent to optimizing for lowest energy. However, the

use of specialized hardware, such as is found in a highly power-aware processor, will

change that.

Radios Once data has been collected by an individual sensor node, it must be

transported to the central collection point for the network, a job for the radio sys-

tem. Radio power consumption is fundamentally controlled by range and bandwidth

requirements. Receiving a signal can be more difficult than transmitting one: in low-

power, short-range radios typical of microsensors, the receiver may consume more

power than the transmitter. In physically dense networks, nodes must avoid in-

terfering with each other's radio transmissions. Radio systems present a variety of

opportunities for power aware design. Scaling transmitter power is but a simple ex-

ample. Realizing that a radio system encompasses more than just the RF circuitry,

power awareness can be achieved in the use of multiple error correction protocols and

multiple or variable higher-level networking protocols.

Power Sources Every node must have a power source. It is fundamentally the

finite capacity of common power sources that limits the lifetime of a sensor network

and motivates low-power or power-aware design. Size constraints frequently rule out

the possibility of extending the lifetime by simply enlarging each node's power source.

For most small, mass-produced sensor nodes, the only currently practical power

source is batteries. Primary (non-rechargeable) batteries provide the highest energy

density. Secondary (rechargeable) batteries may be appropriate in applications where

the sensor nodes can be collected afterwards and reused, however, the luxury of
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Figure 2-2: pAMPS Revision 1 block diagram

reusable batteries brings with it a significant reduction in energy density.

As the power consumption of sensor nodes continues to decrease, it is becoming

possible to build "self-powered" nodes that extract all of the energy they need from

their environment and can therefore run indefinitely without maintenance. Energy

can be extracted from sunlight using photovoltaic cells, from other forms of elec-

tromagnetic waves using appropriately sized antennas, or from mechanical vibration

using MEMs (micro-electromechanical systems) transducers. Direct sunlight provides

up to 1000W/m. Using modern high-efficiency solar cells, which achieve efficiencies

in the range of 18-25%, a 5cm square node could therefore extract up to about 500mW

of power, depending on the time of day. This is certainly sufficient to power even a

node based on off-the-shelf components at a low duty cycle.

Power Converters The output of energy storage devices is seldom directly com-

patible with microsensor electronics. The output voltage of a storage device is gener-

ally determined by the physics or chemistry of the storage mechanism. Furthermore,

the voltage may change, depending on the amount of energy available. Interfacing

the storage devices with the electronics is the task of power converters. Generally,

these converters take the form of switch mode dc/dc converters. Such converters are

never perfectly efficient, although conversion efficiencies of 95% are not uncommon

with carefully designed converters. Conversion efficiency is generally a function of

24
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the load on the converter, with efficiencies dropping as the load current drops. The

mobile electronics industry has resulted in a abundance of high efficiency dc/dc con-

verter controller chips for converters with outputs of 1-5V, and anywhere from 100mA

to 50A. Unfortunately, the time-varying current draw of a power-aware microsensor

makes it difficult to select a single, optimal controller from among the commercial

offering.

2.2 pAMPS Revision 1 Node Architecture

The pAMPS node is designed for flexibility. Since pAMPS is not dedicated to

any one particular microsensor application, it must be easy to equip the node with

virtually any kind of sensor. The node is, however, optimized for acoustic sensing,

since acoustic sensors are easy to test in the laboratory.

The electrical block diagram of the pAMPS Revision 1 node, shown in Figure

2.1, closely matches the typical node block diagram in Figure 2.1. The sensor block

consists of a microphone, amplifier, anti-aliasing filter, and analog-to-digital converter.

Power control signals from the processor allow each of the sensor components to be

shut down when not needed. Although the sensor is only active when all of its

components are powered, the ability to power down only selective portions of the

sensor circuitry creates additional power scalability by creating standby modes where

power consumption is intermediate between the full active and full shutdown states,

but the delay required to transition back to the active state from idle is less than the

delay to transition to the active state from the full shutdown state.

The processor block consists of a StrongARM microprocessor, along with low-

power static RAM and a flash ROM. The StrongARM processor was chosen because

of its high performance/power ratio, and its built-in variable frequency (59-221MHz)

core clock generator. Varying the processor clock speed, in real time, is an important

part of the pAMPS power-awareness strategy. In the pAMPS Revision 1 node, the

processor voltage is varied along with the clock frequency. This is accomplished with a

special dc/de converter built into the processor board. Reducing the voltage applied
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to the processor core to the lowest level possible to support the current operating

frequency increases power savings at low clock frequencies by reducing both switching

and leakage currents.

The radio block is subdivided into a digital baseband component (implemented

on an FPGA) and an RF component (implemented with discrete components and an

integrated radio IC). The digital component is responsible for encoding, decoding,

and error detection/correction, as well as controlling the timing of transmitter and

receiver according to the TDMA scheme employed by the network protocol. The RF

circuitry consists of an Linear Semiconductor LMX3162 2.4GHz radio, along with the

variable power amplifier for transmitting, low noise amplifiers for receiving, a VCO,

and an antenna. As with the sensor circuitry, power to the various components of

the radio is controlled by the processor, allowing components to be shutdown when

idle.[9, 15]

Figure 2.2 shows the physical architecture of the pAMPS Revision 1 node. The

node consists of a stack of three or four printed circuit boards. Each board is 55mm

square. A system connector, present on each board, links the boards electrically,

creating a common bus of control signals between the boards. The top-most board

contains the radio, including the RF circuitry and the FPGA used for digital cod-

ing and decoding. The second board contains an Intel StrongARM processor, and

associated RAM and flash ROM. Also on the processor board are an acoustic sen-

sor (microphone, amplifier, and analog-to-digital converter) and a collection of dc/dc

power converters that service the entire node. The optional third board down in the

stack is an additional sensor module, to replace the acoustic sensor on the processor

board. The pAMPS Revision 1 node can be easily adapted to different applications

by designing an appropriate sensor board. The bottom board in the stack contains

the power source. For a typical node, this consists of a battery pack, containing either

four AAA cells, or (not yet implemented) two lithium-ion rechargeable cells.

To convert a typical sensor node into a basestation node, the battery board is

replaced with a PC interface board. This board provides standard connectors (RS-232

and USB) for interfacing to a larger computer. The basestation board also contains
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Figure 2-3: pAMPS Revision 1 node physical architecture

voltage regulators that allow the basestation node to be powered from ac line power

using a 6-12V plug-in wall transformer. Special connectors on the interface board

allow easy connection of a logic analyzer to facilitate debugging of the node.

The pAMPS Revision 1 component boards plug together by means of a stan-

dardized connector. With the exception of the radio, power supply, and basestation

boards, which only have connectors on one surface, all other boards in the node are

equipped with a male, surface-mount connector on the top of the board, and a cor-

responding female connector directly underneath on the bottom of the board. Vias

connect the pins of the top connector directly to the corresponding pins on the bot-

tom connector, so that when the boards are stacked, a common bus of signals is

formed between all boards in the node. The bus carries portions of the processor's

address and data busses, RS-232, USB, and SPI serial busses, and both regulated

3.3V and raw battery power. Physically, the connectors are IEEE1386 "Mezzanine"

connectors, each of which have two rows of 32 pins, on 1 millimeter centers. Figure

2.2 shows the pinout of the connector.
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Figure 2-5: The pAMPS node. Clockwise from upper left: A complete basestation
node, with basestation, processor, and radio board; radio board; processor board; a
U.S. quarter for size comparison, and an example external sensor board providing
four microphone inputs for acoustic sensing and a battery pack.
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Chapter 3

Implementation of the Revision 1

Node

3.1 Overview

This chapter describes in detail the implementation of the component boards of the

UAMPS Revision 1, node, particularly the processor board. The processor board

is the core of the Revision 1 node, and contains a microprocessor, several power

supplies (including the supply for all digital logic on the node), and also the node's

default acoustic sensor element. Full schematics for all of the boards can be found in

Appendix B. Drawings of the printed circuit board layout for each board are shown

in Appendix C.

3.2 Processor Board

A block diagram of the circuitry contained on the processor board is shown in Figure

3.2. The processor board contains a 32-bit microprocessor and its associated ROM

and RAM, a collection of dc/dc converters, a small acoustic sensor, and assorted I/O

interface circuitry, including RS-232 drivers and a USB port.
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Figure 3-1: Block diagram of the processor board
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SA-1100 SA-1110
Part no. FADES1100EF GDS111OBB
Max. Rated Clock Speed (MHz) 206 206
Performance (MIPS) 220 235
Core Voltage (V) 1.50 1.75
Power 0 Max. Speed (mW) <330 <400

(Data is collected from [8] and [7].)

Table 3.1: Comparison of the SA-1100 and SA-1110

3.2.1 Processor and Memory

The pAMPS Revision 0 node was based on an Intel StrongARM SA-1100 proces-

sor. The StrongARM processor is a good match for the design goals of the pAMPS

project: it provides a significantly above average balance of computational perfor-

mance and power consumption (220MIPS and <330mW at 206MHz), a programmable

PLL for core clock generation (59-206MHz), and many important peripherals (three

UARTs, SPI interface, USB peripheral controller) on-chip. Its fully-static CMOS de-

sign permitted the development of a dynamically variable core power supply, which

further reduces the power consumption of the CPU core by up to 60%.[14]

For the pAMPS Revision 1 node, the updated StrongARM SA-1110 processor was

selected. This chip uses the same ARM V4 CPU core as the SA-1100, and is thus

code-compatible. Compared to the SA-1100, the SA-1110 consumes more power, but

provides slightly higher performance, as shown in 3.2.1.

The pAMPS Revision 0 node used the SA-1100 in a 208-pin LQFP package, which

facilitated printed circuit board design and assembly. The SA-1110 is only available

in a 256-ball BGA package, which forced the use of an expensive, 8-layer PCB with

5mil traces, 5mil between traces, and 10mil holes, but helped significantly reduce the

overall size of the board.

The pAMPS Revision 1 node was designed with 1MB of random access memory,

and 1MB of program storage memory. Random access memory is implemented using

two Cypress CY62146V 4Mbit (16 x 256k) low-power SRAMs. The devices are used in

parallel to match the StrongARM's 32-bit data bus. The Cypress parts were chosen
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for their low operating current, 7mA (at 3.6V and maximum access rate). Program

storage is implemented using two Sharp LH28F300BVE flash ROMs. Again these

parts are 4Mbit (16 x256k) and used in parallel to match the StrongARM 32-bit data

bus. The flash is programmed in-system using the SA-1110's JTAG port to manually

toggle the flash's data, address, and control lines. A Java program was written which

reads s-record files generated by the GNU compiler toolchain and uses a PC's parallel

port to drive the StrongARM's JTAG interface. The contents of flash memory can be

write-protected by a switch on the pAMPS Revision 1 processor board which controls

the write-protect pin on the flash components.

The SA-1110 provides 28 general purpose I/O (GPIO) pins, which can be indi-

vidually be configured as inputs or outputs, and can even generate interrupt signals.

The JIAMPS node primarily uses these pins for power management signals. Two

GPIO pins are used to drive LEDs, which are useful for debugging purposes. GPIO

pin 0 serves as a general purpose interrupt request line (IRQ) for the node. The IRQ

input present in the main system connector, so any interrupts can be signaled by

any of the node's board. Interrupt request is a negative logic, wired-or signal, with a

pullup resistor located on the processor board.

3.2.2 Power Supplies

The pAMPS Revision 1 node was designed to operate from a wide range of battery

voltages, allowing flexibility in the choice of batteries used to power the node and

ensuring that the node can continue to operate at decreasing battery voltages as the

battery is discharged. Jumpers are provided on the processor board to configure the

node for one of two input voltage ranges: 3.3-5V or 3.3-14V. The lower voltage range

is well matched to a battery pack containing three alkaline cells in series, as it allows

the individual cell voltage to range from 1.6V down to 1.1V.

The intended rechargeable battery configuration for the node is two lithium ion

(or lithium polymer) batteries in series. The safe operating voltage range for lithium

rechargeable cells is 2.7-4.1V, giving a pack voltage of 5.4-8.2V, which fits neatly into

the 3.3-14V node configuration.
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Supply Input Source

Digital Battery 3.3 All digital circuitry on
node (RAM, ROM, RS-232
transceiver, digital portions
of radio and sensor boards)

+5V Batterya or digital 5.0 Controller for processor core
power supply supply

Processor core Battery 0.9-2.0 StrongARM core logic
(ARM execution core and
most on-chip peripherals)

Analog Battery 3.3 Built-in acoustic sensor cir-
cuitry (microphone, ampli-
fier, filter, ADC)

ain which case battery must be <5V, because the 5V supply is a boost-mode dc/dc converter

Table 3.2: Summary of power supplies on the processor board

The pAMPS Revision 1 processor board carries four different power supplies which

convert the variable voltage from the battery into multiple regulated power busses

used by various node components. The three main supplies provide +3.3V for all

digital logic on the node, +0.9-2.OV for the StrongARM core, and +3.3V (with low

noise) for the analog circuitry in the sensor portion of the board. A fourth supply

provides the +5V needed by the the StrongARM core supply controller chip. Table

3.2.2 summarizes the roles of the four power supplies.

3.2.3 Analog Power Supply

To minimize noise, the 3.3V analog supply is generated directly from the battery by

a low-dropout linear regulator. A Linear LT1521 device was chosen, due to its small

quiescent current (12pA) and shutdown input.[2] Even though the linear regulator

is not very efficient (40% if the battery voltage is 8.2V), the current drawn by the

analog circuitry is very small (<5mA), and therefore the total power wasted by the

regulator is reasonably small (<25mW).

35

Output (V) Circuitry powered



Due to the close proximity of the microprocessor and the three switching power

supplies to the analog circuitry, minimizing the noise coupled into the analog circuitry

is a challenging problem. The analog circuitry is confined to a small area of the

processor board. The power and ground planes for this area are isolated from those

of the rest of the board, and the analog ground plane is tied to the digital ground

plane in one location, using a ferrite bead. A ferrite bead is also used in the connection

between the battery and the LT1521 regulator.

3.2.4 Digital Logic Supply

The processor board contains the node's main digital logic supply, which powers all

of the 3.3V logic in the node. This includes the microprocessor's I/O, memory, other

glue logic on the processor board, and the digital portion of the radio board. For

efficiency, a switching regulator is used to generate the digital supply. The regulator

is implemented using a Maxim MAX1685 buck-mode dc/dc controller, which can

supply up to lA, and has a fast 300kHz switching frequency, which enables the use

of a small inductor.[10] This component also includes a built-in MOSFET switch,

so the only critical components that need to be chosen to complete the design are

the inductor and output capacitors. The MAX1685 was chosen based on its small

size, internal switch (which further reduces the size of the overall supply) and high

efficiency at low load current (95% at as low as 1mA load, verified by testing with

Maxim's evaluation board).

Equations given in the datasheet for this part suggest using a 22PH inductor,

which sets the inductor ripple current at 400mA. A Toko inductor of type D62CB was

selected. This inductor is very small (6.0x6.3mm) with a low dc resistance (170mQ).

This saturation current for this inductor is 700mA, limiting the output of the supply

to 300mA, which is more than adequate for this application. A 150pF, Panasonic

specialty-polymer aluminum electrolytic output capacitor was used to minimize size,

while maintaining a low (15mQ) series resistance (which reduces output ripple and

increases efficiency).
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3.2.5 5V Supply

The five volt power supply exists only to power the MAX1717 controller for the

microprocessor core supply (discussed in Section 3.2.6). The 5V power supply is

generated by a Maxim MAX1675 boost-mode dc/dc converter. This part includes

a built-in power MOSFET. Based on recommendations in the datasheet, a 22pH

inductor was chosen.

Jumpers on the processor board allow the input to the 5V supply to be either

the raw battery voltage, or the output of the 3.3V supply. Powering the 5V supply

directly from the battery limits the battery voltage to between 3.3V and 5V. Powering

the 5V supply from the 3.3V supply increases the maximum battery voltage to 14V

(the maximum input voltage for the 3.3V supply), but decreases the efficiency of

the 5V supply, since the overall efficiency for this supply is then the product of the

efficiencies of the MAX1684 and MAX1675.

The MAX1675 includes a low-battery detector function. This is a voltage com-

parator with a fixed threshold of 1.3V. The output of this comparator is connected to

a StrongARM GPIO pin which can be programmed to generate an interrupt when the

comparator changes state. The input to the low-battery detector is derived from the

battery voltage by means of a voltage divider (R19 and R20). The specific resistances

of R19 and R20 must be chosen based on the type of battery being used.

3.2.6 Microprocessor Core Supply

Because the StrongARM microprocessor is the second largest power consumer on the

pAMPS Revision 1 node (after the radio power amplifier), the design of its power

supply is especially critical. Because this voltage of this supply is variable, it is the

most complicated supply on the processor board.

The microprocessor core supply is generated by a Maxim MAX1717 buck-mode

dc/dc controller. This part was designed for powering mobile Pentium processors, so

it is capable of supplying much more current than necessary (40A!) for the pAMPS

node. The MAX1717 includes a built-in, 5-bit digital-to-analog (DAC) converter
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Figure 3-2: Microprocessor core supply

which can be used to program the output voltage from 0.9V to 2.OV. In its intended

application of powering Pentium processors, the DAC inputs are wired to pins on the

socket for the processor. Inside the processor packaging, these pins are hard-wired to

power or ground, programming the appropriate voltage for each particular processor.

This allows motherboards to be designed to support a variety of processor models,

each of which might require a different core supply voltage. In the PAMPS Revision

1 node, the DAC inputs are wired to GPIO pins on the StrongARM processor, giving

the processor dynamic control over its own supply voltage.

The MAX1717 also supports Intel's SpeedStep technology, which allows a mobile

processor to run at one voltage and frequency while on AC power and a different

voltage and frequency while on battery power. This is accomplished by providing

two sets of DAC inputs, and an external pin to switch between them. In the pAMPS

Revision 1 node, this feature is used to ensure that the StrongARM core voltage is

always set to a safe value on startup. Figure 3.2.6 shows a simplified schematic of the

microprocessor core supply.

As with the 3.3V digital and 5V switching supplies, the choice of inductor and

output capacitors is critical to the performance of this supply. Since the MAX1717

does not include an internal power MOSFET, that component must also be chosen.

Due to the critical nature of this supply, a test board was constructed. This board

was used to try out different combinations of transistors and inductors. The Maxim
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evaluation board for the MAX1717 uses IRF7811 MOSFETs from International Rec-

tifier, with a on resistance of 12mQ. However, this part was not readily available.

Based on experimentation with several different transistors on the test board, it was

determined that minimizing on resistance gives maximum efficiency. Switching losses

due to gate capacitance are less significant than conduction losses, for this supply. The

lowest resistance transistor available, the IRF7413A (13.5mQ) was therefore selected.

As with the 3.3V and 5V switching supplies, to minimize size, a Toko D62CB in-

ductor was used. Experimentation showed that a 1pH inductor provided the greatest

efficiency. This inductor has a dc resistance of 11mQ, and saturates at 3.48A. The

low inductance means that the supply is operated in the discontinuous conduction

mode, but the MAX1717 employs a pulse-skip algorithm that provides high efficiency

in this regime.

The most complicated portion of the processor core supply is the logic for selecting

a safe voltage on startup. As described previously, the MAX1717 permits switching

between two voltages, via its A/B pin. The A/B pin selects between the A input of

the DAC, which is specified by the state of the five voltage select pins, and the B

input to the DAC, which is a register internal to the MAX1717. The B register is

automatically loaded whenever the A/B pin goes low (and at startup). The value

loaded is determined by checking the impedance of the voltage select pins. When

the A/B pin goes low, the MAX1717 weakly drives the voltage select pins low and

then high. If a particular pin follows the MAX1717's drive, then it is considered high

impedance, and a 1 is loaded into the corresponding bit of the B register. If the pin

does not follow the MAX1717's drive, then a 0 is loaded into the B register.

When the StrongARM is in reset, its GPIO pins are tristated, and therefore the

MAX1717's voltage select pins are not driven. Resistors R25-29 pull down the select

pins. These resistors have a high value (1MQ) so that they do not cause significant

power drain when the StrongARM is driving the select pins. The resistors on voltage

select pins D3 and D4 have a 4700pF capacitor wired in parallel with them. This

capacitor serves to reduce the apparent impedance of these pins when the StrongARM

is not driving them. Therefore, on startup, when the StrongARM is in reset, the B
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register of the MAX1717 is loaded with ObOO111, which programs a voltage of 1.650V

in B mode. NAND gates U23c and U23d form an S-R latch which is reset whenever

the StrongARM reset signal is active (low). The latch holds the MAX1717 in B mode

until the StrongARM has started up. Once the operating system has started and

the StrongARM has configured its GPIO pins to drive the voltage select bus, the set

input of the latch is driven low by another GPIO pin, giving the StrongARM direct

control over the voltage produced by the MAX1Y17.

Additional logic is necessary to ensure proper power supply sequencing on startup.

When power is first applied to the board, the digital 3.3V and 5V supplies start auto-

matically. A reset monitor (U2) holds the StrongARM reset input low until the 3.3V

supply stabilizes. While in reset, the StrongARM asserts its reset output, resetting

the S-R latch described above. When its reset input is released, the StrongARM

begins its initialization process. One of the first steps in this sequence is to assert its

PWR_EN pin to turn on the power supply for its core. This power enable is ANDed

(by U22) with a ready signal from the 5V supply and the result is used to drive the

shutdown pin of the MAX1717. The 5V power ready signal (generated by voltage

monitor U20) prevents the MAX1717 from starting before the 5V supply has reached

at least 4.1V. The core power supply must reach operating voltage within 10ms after

the StrongARM asserted its PWR_EN pin, or the processor will fail to come out of

reset.

3.2.7 Acoustic Sensor

The acoustic sensor built into the processor board consists of an electret microphone,

variable-gain amplifier, an analog-to-digital converter and anti-aliasing prefilter, and

a threshold detector. The sensor was designed for a 2kHz sampling rate, for analyzing

sounds from 20Hz to 1kHz. A simplified schematic of this circuitry is shown in Figure

3.2.7.

The microphone element is a Panasonic WM-54BT. A 2.2kQ pullup to 3.3V pro-

vides the bias current necessary to power the microphone's internal amplifier. The

output of the microphone is extremely small, on the order of a few tens of microvolts.
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A high-gain amplifier boosts this signal to a few volts in amplitude. The amplifier

is built from three stages, each constructed around a Burr-Brown OPA244 op-amp.

The first two stages have a fixed gain of 20; the gain of the final stage is variable from

unity to 31, set by a Maxim MAX5160 digital potentiometer.

To avoid the necessity of a negative power supply rail, all ac signals are biased

with a 1.22V dc offset. This 1.22V reference is generated by a Zetex ZXRE1004EFCT

bandgap reference, buffered with another OPA244 wired as a voltage follower.

A 10gF capacitor couples intermediate stages of the amplifier, and couples the

output of the microphone to the input of the first amplifier stage. The feedback

network in each amplifier stage was designed with a one-pole roll-off at 1kHz, to reduce

the amount of noise coupled in at each stage. An eight-pole elliptic 1kHz low-pass

filter prevents aliasing in the analog-to-digital converter. This filter is implemented

with a Maxim MAX7404, and provides 82dB of stopband rejection.[13] A 330pF

capacitor sets the cutoff frequency of the filter to 1kHz, according to the equation

found in the datasheet for this part.[13] The MAX7404 includes a shutdown input,

which is hard wired to the third of the node's four peripheral power enable signals

(labeled P2_PWREN in the schematics), allowing the filter to be shutdown without

powering off the remainder of the analog circuitry. This is particularly useful when

the sensor is operating in threshold detection mode.

Analog to digital conversion of the bandlimited filter output is performed by

an AD7887 from Analog Devices. This 12-bit converter dissipates only 3.5mW at

125ksps.[1] Its power consumption can be reduced substantially at the 2ksps conver-

sion rate required by pAMPS by placing the converter in standby mode between

conversions. The AD7887 communicates with the StrongARM processor via an SPI-

compatible synchronous serial interface.

The microphone, amplifier, filter, and analog converter require very little power-

no more than a few milliwatts-but in order to trigger conversions and examine

the output of the analog-to-digital converter, the StrongARM must be active, which

consumes almost 100mW even at low clock frequencies. Given the expected 1% active

duty cycle of the node, it is unacceptable to require the processor to continue running
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while the node is waiting for the microphone to hear something. The addition of

a fully-analog threshold detector allows the processor to sleep whenever no external

stimulus is present, but to be automatically awakened by an interrupt if the ambient

noise level reaches a programmable level.

The threshold detector is a peak detector and a voltage comparator, built from

op-amps U15 and U16 and diode D1. The diode allows C24 to charge whenever the

input to U15 is lower in voltage than the negative side of C24. Resistor R10 slowly

discharges C24, causing the capacitor voltage to decrease at a fixed rate whenever the

envelope of the acoustic signal decreases. The output of the peak detector is fed into

a voltage comparator, formed from a OPA244 op-amp (U16). The inverting input

of U16 is driven by digital potentiometer U17, which is wired as a voltage divider,

effectively implement a 5-bit DAC. The output of the voltage comparator is connected

to a StrongARM GPIO pin, which can be configured to generate an interrupt, waking

the processor from sleep when a sufficiently loud sound is detected by the microphone.

3.2.8 I/O

As described in Section 2.2, the system connector provides access to the StrongARM

memory buss, serial communication via RS-232, USB, and SPI, peripheral power

enable signals, and an interrupt request (IRQ) line.

Only a portion of the StrongARM memory bus signals are included in the system

connector. The connector carries the low 16 bits of the data bus, four address lines

(Al through A3), two chip selects, in addition to the WE and OE control lines. This

permits the processor to address up to 24 = 16 16-bit registers in up to two different

peripherals. (The two power enable signals available through the system connector

are intended to serve these two peripherals.)

In order to minimize loading of the StrongARM's pins, the memory bus signals

are buffered before the connector. A Texas Instruments SN74ALVCH16245DG 16-

bit bidirectional transceiver (U26) is used to buffer the data bus. The direction

input of the transceiver is driven by the StrongARM's WE signal, so that during a

write, the StrongARM signals are driven on to the connector, and during a read,
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the connector drives the StrongARM signals. The enable input of the transceiver is

driven by a logical OR (implemented with an AND gate, due to inverted logic) of

the two chip select signals available on the system connector. This reduces power

consumption, because the connector's data bus is only driven during access to an

off-board peripheral. An SN74ALVCH244PWR 8-bit buffer from Texas Instruments

(U27) buffers the address and control signals going to the system connector. To

ensure that a peripheral sees valid levels on these signals during the rising edge of the

write enable signal, this buffer drives the connector at all times.

The pAMPS Revision 1 processor board is equipped with two RS-232 serial ports.

One is carried by the main system connector; the other is brought out to a small

three pin connector. This second port is intended for debugging, particularly when

the processor is not connected to a basestation board that would provide convenient

access to the main serial port.

The StrongARM's serial ports are 0-3.3V signals. To convert these to the ±12V

signals required by the RS-232C standard, a MAX3223 RS-232 transceiver is used.

The MAX3223 incorporates an automatic shutdown system, which powers down the

charge pumps used to generate the ±12V supplies whenever the serial input and

output lines are idle for more than aproximately 30 seconds. The charge pumps

consume about 70mW when on.

The system connector provides a USB port for connecting to the StrongARM's

built-in USB peripheral controller. Resistors R40 and R41 are 22Q terminators,

required by the USB specification, while resistors R43 and R44 are pull-downs used

by the USB protocol to detect device attachment and detachment.[16]

According to the USB standard, a peripheral signals its presence on the bus by

pulling the non-inverted data line of the bus to +3.3V through a 1.5kQ resistor (R42).

Linear regulator U28 is used to provide the 3.3V for the pullup. By controlling the

shutdown input of U28 (through a StrongARM GPIO signal), the StrongARM can

effectively detach itself from the USB by shutting off the the regulator. This is useful

for ensuring that any necessary initialization code has a chance to run before the USB

host starts sending messages to the node.

44

III



The final I/O capability of the processor board is a bicolor LED. The LED is

controlled by two of the StrongARM's GPIO pins. Two spare NAND gates in a

74HC00 (U23) buffer the GPIO signals to drive the LED. Since turning on each color

(red or green) of the LED consumes 54mW, it is important not to overuse the LEDs

in power-sensitive applications. Software automatically turns off the LEDs if the

processor is put into sleep mode.

3.3 Processor Circuit Board

The processor board is fabricated on a 55mm square 8-layer circuit board, made from

FR-4 material. Since minimizing the size of the node was a major design goal, in-

tegrated circuits were used in their smallest available package, usually SO8, SOT23,

or TSSOP. Resistors and small capacitors were used in 0603 form, with 1206 pack-

ages used for medium (1pF) capacitors. Large capacitors are tantalum. Figure 3.3

shows a photo of the processor board, and identifies the location of select components

described in the preceding sections.

3.4 Radio Board

The details of the radio implementation are beyond the scope of this thesis. A com-

prehensive discussion of the RF portion of the radio board can be found in [9]. The

digital base-band portion of the radio, as well as the pAMPS radio network protocol

are discussed in [15]. Figure 3.4 shows a block diagram of the radio board.

3.5 Basestation board

The principle task of the basestation board is to facilitate connection of the pAMPS

node to a personal computer by providing industry standard connectors for the node's

communication ports. A block diagram of this board is shown in 3.5

The basestation board provides a male DB9 connector for RS-232 communications,
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as well as a USB "series B" peripheral connector. Both of these connectors are wired

directly to the standard pAMPS system connector: all of the hardware associated

with these communications ports is located on the processor board.

The interface board provides a coaxial power socket that allows a standard wall

transformer to be used to power the node. The transfer can be either ac or dc, but

must provide at least 6V at 600mA. A linear regulator on the interface board is used

to generate a constant 3.6V power supply that powers the node. Additional linear

regulators provide 3.3V and 5V to power a small amount of logic on the interface

board.

A terminal strip provides a connection where power can be fed directly to the

node, bypassing the regulator. The main power switch located on the interface board

is a DPDT, center-off type. In the center position, the node is off. When the switch

is pushed one way, the node is powered by the ac adapter. Pushed the other way,

the switch allows the regulated external power supply to power the node, while the

3.3V and 5V circuitry on the interface board is powered by the ac adapter. A jumper

allows easy insertion of a ammeter into the power supply to the node.

Four rows of 8 x 2 header pins provide easy access to all of the signals on the

pAMPS system connector. The headers are specifically designed to connect to probe

pods for a Tektronix TLA700-series logic analyzer.

Additional logic was designed into the interface board, but was never used. (These

parts were never populated.) A Cypress CY37128V 128-macrocell CPLD is present

on the interface board. The CPLD interfaces with the node via the StrongARM

memory bus and emulates an IEEE1284 parallel port. The parallel port was intended

to allow communication with the JAMPS Revision 0 radio board, while the revision

1 radio was developed. The CPLD also provides an interface to a Hewlett Packard

HDSP-2111 eight-character alphanumeric LED display. The display was intended to

facilitate debugging during the process of porting the eCos operating system to the

new processor board.
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Figure 3-7: Block diagram of four-channel acoustic sensor board

3.6 Four-Channel Acoustic Sensor Board

As part of a vehicle tracking demonstration, a four-channel acoustic sensor board was

designed for the JIAMPS Revision 1 node. This board is an example of an external

sensor that replaces the processor board's built-in acoustic sensor. Figure 3.6 shows

a block diagram of this board.

The four-channel sensor connects to up to four pre-amplified microphones via

1/8 inch headphone jacks. Four Burr-Brown OPA244 op-amps, one per channel,

further amplify the incoming signals. The gain of each of these amplifiers is set by an

individual potentiometer. Four Maxim 7404 eight-pole elliptic 1kHz low-pass filter

ICs perform anti-alias filtering. The cutoff frequency of these filters is set at 500Hz. A

Texas Instruments TLV2544 four-channel, 12-bit analog-to-digital converter samples

the output of the filters. The TLV2544 connects to the processor via the StrongARM's
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SPI port. Since the processor board does not contain any hardware to multiplex SPI

signals from different ADCs, the ADC component of the processor board's built-in

sensor must be removed before adding the four-channel sensor board to the node.

The sensor board includes a space for a 4-cell AAA battery holder, which can be

used to power the node. This battery is intended as an interim power source for the

node until the real pAMPS battery board is designed.

Figure 3.6 shows a photograph of the sensor board, identifying the location of

important components.

3.7 Battery

The battery board is still in the design stage. When completed, this component of the

node will include options for powering the node from either 4 AAA alkaline batteries,

or two lithium-polymer rechargeable cells. A charger for the lithium-polymer cells
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will be included on the battery board (but will not be powered unless the node is

connected to an external power supply for charging).

3.8 Summary of Power-Aware Design Techniques

In summary, the pAMPS Revision 1 node employs several key ideas for power-aware

design.

" Almost every system provides a means of completely removing power from that

system. This coarse, on/off control creates maximum power savings when par-

ticular systems will be idle for long periods of time.

* Some systems cannot be turned off, such as RAM for the processor and the

power supply for the RAM. These systems are responsible for the residual power

consumption when the node is in its deepest sleep state. An effort has been

made to minimize this power by using generally low-power devices, and selecting

static devices which draw very little power when not clocked.

" Most systems have multiple power controls. An example is the built-in acoustic

sensor. The entire sensor can be turned completely off by shutting down the

analog power supply. Additionally, the anti-aliasing filter and analog-to-digital

converter can be individually shut down. Having multiple power controls creates

additional states inbetween full on and full off. These states are useful because

they allow a faster return to the fully operational state than is possible from

the full-off state.

" The largest power consumers-the processor and radio power amplifier-provide

scalable performance when in active mode. This allows dynamic quality/energy

tradeoffs.
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Chapter 4

Microsensor Operating Systems

4.1 Requirements

A multitude of embedded operating systems are available today. Some of them are

more suited to the UAMPS project than others, but ultimately, none of them is a

perfect match. Effectively exploiting the power management control implemented in

the IAMPS hardware requires an operating system that is thin and lightweight. The

operating system must not provide too much isolation between between application

code and the hardware, and it must not add excessive overhead, as every instruc-

tion cycle not used to collecting, analyzing, or sharing sensor data represents wasted

energy.

In the context of pAMPS , the role of the operating system is to provide a frame-

work for multitasking and power management. There are three components to this

framework: support for multiple threads of execution, support for interrupts, and

support for changing global power states.

Threads are an excellent model for complicated, long-duration task, whose running

times might range from tens of microseconds to several seconds. Examples of such

tasks include the analysis or compression of raw sensor data or high-level network

protocol (such as routing, in a multi-hop network). There may be hard, real-time

deadlines on these tasks, but the deadlines are long: on the order of seconds, or so.

Because these tasks are long running, there are frequently more than one of them
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that need to run more or less simultaneously. In a low-power system, minimizing

the time required for a context switch is important. 1 Time spend saving or restoring

state represents wasted energy.

Some tasks must be completed virtually instantaneously, possibly at a very precise

moment in time. Examples include the periodic, low-jitter triggering of an analog-to-

digital conversion, or the transfer of data from a radio FIFO before overflow occurs.

It is important that the handling of interrupts be as swift as possible, not so much

because of the energy consumed by extra execution cycles, but because precisely timed

interrupts make possible not only higher quality data collection, but also enable more

aggressive power management strategies (such as powering up an analog-to-digital

converter only an instant before it is needed).

Power management tasks performed by the operating system range from as simple

as toggling a GPIO pin to control power to a peripheral, to as complex as restarting

the node after exiting from sleep mode. In pAMPS , the operating system does not

include any power management policies. Policies are left up to application code to

implement, so that they can be customized for each application. What the MAMPS

operating system does provide is simple procedures for changing power states when

the application's power management policy decides it is efficient to do so.

The only way to obtain an optimal operating system for a power-aware microsen-

sor node would be to develop one from scratch. Practically speaking, however, the

benefits of a developed and tested operating system and a comprehensive set of de-

bugging tools are enormous.

4.2 eCos

For the first and second phases of the MAMPS project, the eCos operating system has

been used. First released in 1998, eCos (Embedded Configurable Operating System)

is an open-source real-time operating system which provides compatibility with the

EL/IX Level 1 subset of the POSIX API (which means it looks vaguely like UNIX) [6].

'The same is true in high-performance, high-power systems!
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eCos is a lightweight operating system with no file system, memory protection, or

multiple process support (though multiple threads in a common memory space are

supported). eCos development is managed by RedHat and is written in C and C++

for the GNU toolchain. eCos supports many different processors, including ARM,

x86, MIPS, and PowerPC. eCos applications are statically linked, which means the

operating system itself is merely a library against which application code is linked.

Static linking eliminates the run-time overhead of dynamic linking, and permits the

detection of memory allocation errors at compile time.

The greatest strength of eCos is its extreme degree of configurability. The operat-

ing system is divided into modules, and modules unnecessary for a given application

can be removed. Associated with each module of the operating system is a configura-

tion script, which specifies the configuration options available for that module. The

configuration scripts also contain rules about how the module (and the values of its

configuration options) interact with other modules, thus allowing module dependen-

cies to be resolved automatically.

The process of porting eCos to a new system has been simplified by the effective use

of these module interfaces. Like most operating systems, eCos separates peripheral

driver code for peripherals from code responsible for the core functionality of the

system. The core code is further divided into architecture-independent code (such as

the thread scheduler) and architecture-dependent code (such as interrupt handlers).

The architecture-dependent portion is defined by an interface known as the HAL

(hardware abstraction layer). The HAL itself is composed of three layers: architecture

(e.g. ARM), variant (e.g. StrongARM), and platform (e.g., the Assabet development

board for the StrongARM). Porting eCos to a new system generally only requires

writing a new platform-level HAL module, assuming the system uses a processor for

which architecture- and variant-level modules have already been written.

4.2.1 RedBoot

Closely associated with eCos is the RedBoot bootloader. RedBoot is actually a very

simple eCos application, which means that the process of porting eCos and the pro-
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cess of porting RedBoot are virtually one and the same. Once the bootloader has

been ported to a platform, the underlying operating system is ready to be used for

application development.

RedBoot includes stubs for the GNU Debugger (GDB), which provides remote

debugging capability over a serial or ethernet link. RedBoot also implements a simple

flash file system, which allows multiple application images to be stored, loaded, and

run.

4.3 Porting eCos to MAMPS

For the pAMPS Revision 1 node, a custom platform-port of eCos was developed. The

port is based on the Intel SA-1110 development board known as "Assabet".

The principle difference between the Assabet and pAMPS boards is the use of

SDRAM in Assabet and SRAM for pAMPS . To accommodate this, code used to

initialize the SA-1110's internal DRAM controller was removed and replaced with

code to setup the correct number of wait cycles for SRAM accesses. Since memory

timings are derived from the processor clock, the timing values must be changed

whenever the processor clock frequency is changed. The mechanism for accomplishing

this is described in Section 4.4. SRAM and DRAM banks are hard-wired to different

physical addresses by the StrongARM's internal memory controller, but this was

compensated for using the memory management unit (MMU). Figure 4.3 shows a

complete memory map for the pAMPS Revision 1 node. eCos makes use of the

StrongARM's built-in MMU to map peripherals to convenient addresses, and to map

discontinuous memory segments into contiguous address ranges. The memory map

is static: it is not changed after startup. The MMU is not used to provide protected

memory spaces.

On startup, the processor automatically begins executing code at address OxOOOOOOOO,

corresponding to static memory bank 0, which is occupied by flash ROM on the

pAMPS processor board. A jump instruction at this location transfers control to

the RedBoot bootloader. The bootloader first checks the state of the sleep status
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Figure 4-1: pAMPS memory map

bit in the StrongARM's power manager sleep status register to see if the processor is

recovering from sleep. If the processor is recovering from sleep, control is transferred

to code responsible for restoring the state of the processor and resuming normal op-

eration. Otherwise, the bootloader initializes the memory controller, setting up the

appropriate memory timings for accessing the SRAM and flash banks given the de-

fault processor clock speed of 59MHz. (As part of the reset process, on power-up,

before any code was executed, the timings for static memory bank 0 were automat-

ically set to the slowest setting possible. They are now set to match the minimum

timings for the flash ROM, so that code can be read as fast as possible.) With the

memory timings initialized, it is now possible to access SRAM. The direction and de-

fault state of the GPIO pins is set. Next, in preparation for enabling the MMU, the

memory map is constructed in SRAM, with its base at physical location 0x08004000.

Note from Figure 4.3, that with the MMU enabled, the base of SRAM is mapped

to location 0x00000000 and the base of flash to location 0x50000000. This is an

eCos standard configuration that helps code compatibility between ports to different
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boards. Because the location of flash changes when the MMU is enabled, the pro-

cesses of enabling the MMU is tricky. The eCos designers dealt with this by taking

advantage of the three cycle delay between the execution of the coprocessor directive

that enables the MMU and the first instruction that is fetched using the MMU map-

pings. In the first of these three delay slots, a branch instruction changes the program

counter register to point to the new virtual memory address for the location in flash

where execution should continue. The remaining two delay slots (which are fetched

without translation) are filled with no-ops.

Once the MMU is enabled, control is returned to the standard eCos ARM startup

code, which performs the standard ARM interrupt initialization and starts the Red-

Boot bootloader.

4.4 Power Management in eCos

The official eCos distribution does not include provisions for high-level power man-

agement. Nor does the standard StrongARM variant package include support for the

power management features built into the StrongARM chip. Since power-awareness

is central to the pAMPS project, adding support for these features was important.

The StrongARM's internal power manager provides mechanisms for manually

switching between the chip's three operating modes: run, idle, and sleep. Run mode

is the only mode in which code is executed. In this mode, the full processor is active.

The idle and sleep modes differ in the amount of power savings they offer and in the

delay associated with returning to run mode.

In idle mode, the clock to the processor core is gated, so no execution takes place.

The PLL remains locked, however, and the assertion of any unmasked interrupt signal

causes the processor to immediately resume execution.

Sleep mode provides significantly greater power savings, at the expense of signifi-

cantly greater complexity in returning to normal operation. In sleep mode, the core

power supply is shut down. (A dedicated I/O pin is used to provide a shutdown signal

to the dc/dc converter). A very limited amount of state is preserved using the I/O
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power supply. The I/O supply also runs a 32kHz oscillator which clocks the power

management logic and a real-time clock. Return from sleep mode is initiated by ei-

ther an external interrupt signal, or by a real-time alarm. The processor performs

a "warm-start" upon returning from sleep: after the power supply is re-enabled, the

chip performs its standard reset procedure, and begins execution at the reset vec-

tor location (OxOOOOOOO). A flag in the power manager status register allows the

operating system to determine that the chip is returning from sleep.

For the pAMPS project, it was also important to take advantage of the Stron-

gARM's programmable clock frequency. The core clock for the StrongARM is gen-

erated by an on-chip PLL, based on a 3.6864MHz reference oscillator. The PLL

multiplier is programmable to twelve values, from 16 (to give 59MHz) to 60 (to give

221MHz). The multiplier value can be reprogrammed at any time, but doing so

introduces a 150ps interruption that may interfere with some of the StrongARM's

on-chip peripherals. Proper precautions must therefore be made to ensure the clock

frequency change occurs cleanly. The pAMPS platform additionally requires that

the core voltage supply be adjusted for the new clock frequency. If the frequency is

being increased, the voltage must be increased before the clock is adjusted. If the fre-

quency is being decreased, the voltage must be decreased after the clock is adjusted.

Memory access timings must be adjusted using a similar strategy.

The code for changing the processor clock speed, as well as for supporting idle

and sleep modes, is part of the pAMPS platform support module that was developed

for eCos, a full listing of which is found in Appendix D.

4.4.1 Idle Mode

Idle mode is initiated with the coprocessor instruction

mcr p15, 0, rO, c15, c2, 2

Idle mode is exited when an unmasked interrupt occurred, which in practice means

that no further code is needed to support idle mode. By putting the above coproces-

sor instruction in the eCos idle thread, the processor is automatically placed in idle
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mode whenever no other thread is ready for execution. The processor is automati-

cally awakened every 10ms by the operating system's time-slicing timer so that the

scheduler can run. Should any other interrupt occur, the processor is woken an the

interrupt serviced immediately.

4.4.2 Sleep Mode

Supporting sleep mode is significantly more difficult than idle mode, because all im-

portant state must be saved and then restored when the processor is awakened. The

state in question here includes not only the processor registers, but also configuration

registers for most on-chip peripherals. While the StrongARM is in sleep mode, the

core power supply is disabled. Only the real-time clock, power management, and

I/O driver circuitry remains powered (by the I/O power supply). Since the external

SRAM on the pAMPS board remains powered while the processor is asleep, state

can be saved in this memory.

Preparation for sleep mode involves three steps:

1. Save the configuration of on-chip peripherals

2. Safely shutdown on-chip peripherals

3. Disable and flush memory caches

4. Save the state of processor registers

The first three steps are performed by the procedure uamps-sleep. This procedure

begins by disabling interrupts, and then saving the necessary peripheral configura-

tion registers. Next, the procedure waits for the serial port transmit FIFOs to empty,

then disables the serial ports. If the serial ports are not disabled, they will transmit

several garbage characters as the core voltage supply falls. This could confuse the

A/D converter (attached to the SPI port) or a remote debugger (attached to one of

the RS-232 ports). At this time, the GPIO sleep state registers are programed. These

registers specify the state of the GPIO pins while the processor is asleep. They are
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programmed to match the current state of the GPIO pins, except where the state of

these pins is incompatible with power saving nature of sleep mode. (For example, the

LEDs are forced off, and the 3.3V digital supply is forced to standby in sleep mode.)

The uamps-sleep procedure next proceeds to drain and disable the write-back cache,

synchronize and disable the data cache, and then calls the uampssuspendprocessor

procedure. When uamps-suspendprocessor returns (after the processor has been

awoken out of sleep mode), uamps-sleep re-enables the caches, restores the configu-

ration of on-chip peripherals, re-enables the serial ports, and re-enables interrupts.

The uamps-suspendcprocessor procedure is written entirely in assembly, and

performs the process of saving all of the processor's registers (including coprocessor

registers) to memory, and then setting the sleep bit in the power manager register to

force entry into sleep mode.

When the processor is awakened (via a real-time clock alarm, which must be

set prior to calling uamps-sleep or an external interrupt signal), the StrongARM

performs an internal reset and begins executing code at address OxOOOOO0. The

eCos startup code detects that the processor is returning from sleep mode and jumps

to the uamps-resume-processor procedure. This procedure restores the processor's

registers, re-enables the MMU, and then performs a return-from-subroutine to return

control to the uamps-sleep procedure, which finishes wake-up procedure.

4.4.3 Clock and Voltage Scaling

The pAMPS Revision 1 node makes maximal use of the StrongARM's programmable

core clock PLL by changing the core clock frequency dynamically, while simultane-

ously scaling the core power supply voltage. Changing the clock frequency is as simple

as writing to the PLL configuration register. However, scaling the supply voltage and

ensuring that the frequency and voltages changes occur smoothly requires somewhat

more complexity.

Clock speed changes are performed using the uampsset-speed procedure, which

takes one argument: an integer from 0 to 11 indicating which of the 12 clock speeds

is to be selected. If the processor speed is being increased, the voltage and memory
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Flash ROM Timing

Speed Freq. Voltage Read
(1-11)

0
1
2
3
4
5
6
7
8
9

10
11

(MHz)
59.0
73.7
88.5
103.2
118.0
132.7
147.5
162.2
176.9
191.7
206.4
221.2

(V)
1.125
1.125
1.125
1.125
1.175
1.250
1.300
1.350
1.450
1.550
1.650
1.750

Cycles/ns
3/100
3/81
4/90
4/78
5/85
5/75
6/81
6/74

7/79
7/73
8/78
8/72

Write
Cycles/ns

2/67
2/54
3/68
3/58
3/51
4/60
4/54
5/62
5/57
5/52
6/58
6/54

Read
Cycles/ns

3/100
4/108
5/113
6/116
6/102
7/106
8/108
9/111
9/102
10/104
11/107
12/108

Write
Cycles/ns

3/100
4/108
5/113
6/116
6/102
7/106
8/108
9/111
9/102

10/104
11/107
12/108

Table 4.1: Frequency, voltage, and memory timing combinations. Memory read tim-
ing is the minimum access time, and is 70ns for RAM and 100ns for ROM. Write
timing is the minimum write enable assertion time, and is 50ns for RAM and 100ns
for ROM. Memory timings are specified in cycles of the StrongARM's MCLK, which
runs at half the processor clock frequency.

delay cycles are first increased in order to support the faster clock speed. The serial

ports are then disabled (as in preparation for sleep), and the PLL is changed. The

processor will stall until the PLL relocks. When execution resumes, the serial ports

are re-enabled. If uamps-setspeed is being used to decrease the processor speed,

then the voltage and memory delay cycles are now decreased to the appropriate,

most efficient levels for new processor speed.

Appropriate frequency, voltage, and memory delay cycle combinations are stored

in a table, illustrated in Table 4.4.3. Memory timings for each possible clock speed

were computed from the memory component data sheets. Intel does not, however,

specify a minimum core voltage for each speed, so the voltage column of the table

had to be derived experimentally, as described in Section 5.2.2.
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4.5 Application Programming Interface

Low-level driver code not essential to the operation of eCos or RedBoot has been

separated from the eCos source tree and placed in a separate code library known

as the /-AMPS API. This was done to streamline the process of developing the

radio, sensor, and power management code by not requiring everyone involved in the

development process to learn the details of the eCos source tree.

The API consists of a library, against which application code that uses the API

must be linked, and a collection of C header files. The contents of each header files

is described in detail in Appendix A.

The core modules of the API define power management procedures and implement

a high-resolution timer system.

The power management module itself includes only a few procedures, but it de-

fines a set of standard procedures that every power-scalable subsystem of the node

implements. Each system is allowed to define a set of power states. Generic states,

such as ACTIVE or SHUTDOWN are defined by the power module of the API, and

can be shared by any API module. Modules may also define their own, specialized

states where necessary. The power API module defines a class of procedures for

changing and monitoring the state of each subsystem. When checking the state of a

subsystem, the subsystem may return any of its static states (such as SHUTDOWN),

or a dynamic state (for example, CHANGINGTOSHUTDOWN). Dynamic states

encapsulate the idea that state changes are not instantaneous. There is a delay, for

example, between when a subsystem is switched into its ACTIVE state, and when the

subsystem can actually be used. When a subsystem is ordered into a given state X,

the subsystem should immediately change its reported state to CHANGINGTO-X.

Once the subsystem has actually reached state X, it should automatically begin re-

porting that it is in state X. This is facilitated by the timer module.

The timer module makes use of one of the StrongARM's timer peripherals to

provide accurate time measurements and programmed delays, with a resolution of

about 270ns. The timer module supports the simultaneous use of multiple software
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timers, so each subsystem may use a timer object to keep track of its current power

state, or perform other system-specific operations. Software timers can be used for

measurement, or for generating delays, or for setting up callbacks. A callback is an

indication that a specific piece of code is to be run at a certain time in the future.

Based on the power and timer modules, API modules have been developed for

the built-in acoustic sensor and the radio. The sensor module supports requests for

blocks of periodic samples from the microphone. Multiple, simultaneous requests are

queued, making for a simple implementation of double buffering schemes. Since, for

each block of samples, all future sampling times can be computed in advance, the

analog-to-digital converter can be automatically placed in standby mode whenever

possible. The radio implements a TDMA scheme, mostly in hardware, but relies on

the timer module for automatic frame synchronization.
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Chapter 5

Performance Analysis of the

pAMPS Revision 1 Node

5.1 Intent of the Analysis

The previous four chapters described the design of the Revision 1 IPAMPS node.

This chapter will show that the design described meets the original design goals, as

defined in Section 1.4.2. Those goals were

Compactness The node is to be as small as possible.

Power-Awareness The node is to consume a little power as possible and is to

provide viable opportunities for making dynamic energy/quality tradeoffs.

System Integration The components of the system should connect cleanly and

form a fully functional sensor node.

The degree to which the first of these goals, compactness, was achieved can be

determined by inspection. At 55mm square, and 30mm high (not including the bat-

tery), the Revision 1 node is much smaller than the three Revision 0 boards. The

reduction is due to the use of smaller components, and tighter circuit board layouts.

Compactness was the least important of the three design goals.
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The capability for power-awareness can be measured in the lab. Jumpers were

incorporated into the PCBs to allow for inserting an ammeter into the power supply

to each of the node's subsystems. A detailed profile of the node's power consumption

can thus be constructed. The profile will show not only which parts of the node

consume the most power, and how widely the power consumption of each part can be

varied, but also how the various modes of operation of each component of the node

can be combined to provide energy scalability at the system level.

Finally, demonstrating that the system is fully functional is an important part of

showing that the design is feasible, and that the project is ready to move on to the

next level.

5.2 Power Measurements

5.2.1 Subsystems and Their Modes of Operation

Figure 5.2.1 illustrates the power management controls provided by the PAMPS node

hardware. Chapter 3 described how the controls were implemented. Now, the effec-

tiveness of these controls is evaluated.

The Revision 1 processor and radio boards incorporate several power measure-

ment jumpers in their designs. These jumpers, shown as zero ohm resistors on the

schematics in Appendix B, can be desoldered and replaced with ammeters in order

to measure the current consumption of various major subsystem's of the node. Table

5.2.1 shows the power consumed by each of the individually measurable subsystems,

in various modes of operation.

The processor has two power supplies: one for the core, and one for I/O. The

core power varies greatly, depending on the processor clock speed in use. The two

extreme's of the StrongARM's frequency range are shown in Table 5.2.1; a more

detailed profiling of the processor core's power consumption will be discussed later.

In idle mode, portions of the core are still clocked, though the ARM core's execution

units are not. Power consumption is therefore less than in active mode, but still
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Filter: ADC: FPGA: RF circuitry: Receiver:

Active Active On On On

Standby Software Shutdown Off Off Off

Threshold ROM ROM LNA

I3.3V analog power supply Poesrcore 3.3V digital power supply
_ power supply

Analog Power: Processor: Transmitter

On Variable Frequency/Voltage Variable Ouput Power

Off Idle Off
Sleep

Figure 5-1: Power management capabilities of the pAMPS node

67



Subsystem

Processor (core)

Processor (I/O)

RAM

ROM

On-board Sensor

Radio (RF)

Mode

Active (59MHz)
Active (221MHz)
Idle (59MHz)
Idle (221MHz)
Sleep
Active (Caches on)
Active (Caches off)
Idle
Sleep
Active
Idle
Active
Idle
Active
Idle
Shutdown
Transmit (OdBm)
Transmit (15dBm)
Receive
Standby

Baseb

aAlso see Table 5.2.2 for power measurements at other frequencies
bResidual power consumption when all other systems are shut down.

Table 5.1: Power consumption of node subsystems in all supported modes of operation
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60

552
9

71
0

12
19
12

2
31
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0
28
15
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non-zero. In sleep mode, the processor's core power supply is turned off, resulting in

zero power consumption. The processor I/O power is predominantly affected by the

frequency of off-chip memory accesses. Table 5.2.1 shows values for operating with

the StrongARM's instruction and data caches on (and no cache misses occurring)-

resulting in very low I/O power-and with the caches off-resulting in higher I/O

power, since every instruction fetch results in a read from ROM. In a real application,

the I/O power would lie between these two extremes.

The caches were also toggled on and off while measuring the power consumed by

the memory circuits. With the caches on, and therefore no memory accesses, both

RAM and ROM consume extremely little power. Turning the caches off automatically

results in frequent ROM accesses due to instruction fetching. A short test program

was used to generate rapid RAM accesses. The ROM power is slightly higher than

that consumed by the RAM, probably because the flash chip used for ROM is an

older design than the SRAM, and because the program used for testing RAM did not

generate memory accesses quite as quickly as possible.

The acoustic sensor built into the processor board consumes almost 30mW in

active mode. About half of this is due to the switched capacitor anti-aliasing filter,

which is turned off in standby mode. Much of the remaining power is accounted for

by the necessary microphone bias current.

Radio power consumption varies from a few milliwatts in standby mode to more

than a watt when the transmitter's power amplifier is at its highest setting. Most

of the radio's power consumption in transmit and receive modes is due to the RF

circuitry. Radio standby mode power represents power consumed by the FPGA, with

the RF circuits powered down.

5.2.2 Frequency and Voltage Scaling of the StrongARM Pro-

cessor

A key component of the pAMPS power scaling strategy is varying the operating

frequency of the processor to exactly match the processing demand placed upon it
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at any given time. To further optimize power consumption, the core power supply

voltage is dynamically varied to match the current clock frequency. The StrongARM

clock frequency can be scaled in twelve steps from 59 to 221MHz, while the MAX1717-

based core voltage supply can range from 0.9 to 2.OV in 30 steps. The twelve most

optimal frequency/voltage pairs are stored in a table that is used by the operating

system to update the voltage whenever the clock frequency is changed.

Intel specifications for the SA-1110BB require a core voltage between 1.58 and

1.93V.[7] No comment is made about dynamically changing the voltage, although the

specifications do discourage dynamically changing the clock speed. Certainly, Intel

makes no guarantee that the processor will work reliably with changing clock speed,

and some decrease in stability is to be expected, as is variation from sample to sample

of the SA-1110.

Determining the optimal frequency voltage pairs for the SA-1110 first requires

characterizing several samples of the component. Table 5.2.2 shows the minimum

voltage required at each frequency, for two different SA-1110 samples. Data for the

table was generated using the test program listed in Appendix E. The program works

by performing a series of tasks at each possible core voltage setting. The tasks are

designed to determine if the processor is functioning correctly, and consist of cached

and uncached memory accesses, and simple arithmetic operations. The values in

Table 5.2.2 are the minimum voltages at which the processors correctly performed all

of the tasks. The two samples in Table 5.2.2 match rather closely, allowing operation

at as little as 0.925V at 59MHz, and requiring 1.550V at 221MHz.

Accepting the fact that pAMPS Revision 1 is an experimental platform, and that

some potential instability can be tolerated in order to show the full potential of a

power-awareness technique, the following frequency/voltage pairs were chosen, based

on the two SA-1110 samples in Table 5.2.2.

Freq. (MHz) 59 74 88 103 118 132

Voltage (V) 1.125 1.125 1.125 1.125 1.175 1.250

Freq. (MHz) 147 162 177 192 206 221
Voltage (V) 1.300 1.350 1.450 1.550 1.650 1.750
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Frequency. Processor 1 Processor 2

(MHz) (V) (V)
59 0.925 0.925
74 0.925 0.925
88 0.925 0.925

103 0.925 0.925

118 0.925 0.975
132 1.025 1.050
147 1.100 1.100
162 1.150 1.175
177 1.225 1.250
192 1.300 1.350
206 1.400 1.450
221 1.500 1.550

Table 5.2: Minimum voltage at each operating frequency, for three different SA-1110
processors.

These values were arrived at by adding 200mV to the minimum voltage from Table

5.2.2 for whichever of the sample parts had the higher voltage requirement at that

frequency. This table of frequency/voltage pairs was used to generate Table 5.2.2,

which shows the core power consumption for the SA-1110 at each of its operating

frequencies, in both active and idle modes. Active mode power measurements were

taken while running a test program which takes samples from the processor board's

microphone and prints them to the serial port. For comparison, Table 5.2.2 also shows

power measurements for the same sample application, but with a fixed 1.750V power

core power supply.

Figure 5.2.2 shows a plot of the information from Table 5.2.2. With a fixed

core voltage, power varies linearly with operating frequency. This means there is no

incentive to operate the processor at less than maximum speed. The optimal power

management scheme in a fixed-voltage application is to run the processor as fast as

possible, so that tasks are finished as quickly as possible, and put the processor into

sleep mode as frequently as possible. With a variable core voltage, active mode power

consumption is reduced by more than 60% at 59MHz. In a system with variable core

voltage, the processor should be run at the slowest speed that still allows all tasks to
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Variable Vcore
Active Power Idle Power

(mW) (mW)
60 9.1
74 10.6
88 12.5
102 14.1
127 17.1
162 21.5
195 25.6
233 30.2
294 38.1
368 47.7
453 58.7
552 71.4

Fixed Vcore
Active Power Idle Power

(mW) (mW)
159 25.4
196 29.6
233 33.9
271 38.1
306 42.1
342 46.3
378 50.5
413 54.8
449 58.8
484 63.2
520 67.4
552 71.4

Table 5.3: Core power consumption for the SA-1110 at each operating frequency

complete before their deadline.

5.2.3 Node-Level Power Management

Tabulating the power consumption of individual node components, as in Table 5.2.1,

illustrates the degree of power scaling permitted by the gAMPS Revision 1 hardware.

It is also important to consider the expected total power consumption of the node.

This is a difficult prediction to make for a power-aware system, because the average

total power consumption varies not just with the type of sensor application, but

also with the characteristics of the actual signals recorded. The problem can be

simplified by from among the node's many possible operating modes a few important

characteristic modes.

During the design of the revision 1 node, four canonical modes of operation for the

node were envisioned. These global modes and the respecitve states of each subsystem

in each mode, are shown in Table 5.2.3.

The first mode is a deep-sleep mode. The node would spend most of its time in

this lowest possible power mode. In this mode, all systems are shutdown. The only

way that the node can transition out of this mode is through an alarm generated by
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600

---- Active Power

- - Idle Power . -

500 -- - - - Active Power (Fixed Voltage). --. --.-.-.--.-.-

S0 - - Idle Power (Fixed Voltage)
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400---------------------------- - -- -- -------- - ------- - - -- -

-El'

30 0  - -.--.-.-.

2E) --.--.- ----------- 9-------- -) -- -- - --

1 0 0 - - -- - -- - -- ---- - - -- .-..-.-..- ---.--..--.0'

50 70 90 110 130 150 170 190 210 230

Frequency (MHz)

Figure 5-2: SA-1110 power consumption and minimum voltage versus frequency

Mode Processor Sensor Radio
Deep sleep Sleep Shutdown Shutdown
Threshold Sleep Threshold Shutdown
Sensing Active Active Shutdown
Receive Active Receive
Transmit Active - Transmit

Figure 5-3: Node operating states
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the StrongARM's real time clock. Deep sleep mode must be used carefully, because

once entered, the node remains asleep for a fixed amount of time. There is no way

for the node to know if it is missing an important event.

The second lowest power mode was invented as an attempt to avoid the problem

of complete unresponsiveness in sleep mode, without significantly increasing power

consumption. In threshold mode, only the sensor circuitry is powered up. Instead

of measuring the sensor output using an analog-to-digital converter, which would re-

quire putting the processor in active mode, an analog threshold comparator is used

to detect if the sensor signal exceeds some programmable threshold. If the threshold

is exceeded, an interrupt signal wakes the processor, which can begin recording the

event. The peak detector circuit described in Section 3.2.7 implements this function-

ality for the sensor built into the pAMPS Revision 1 processor board. The same

concept can be used, however, with any sensor built for the pAMPS Revision 1 node.

In the third canonical operating mode, the sensor and processor are both active.

This is the lowest power mode in which the node is capable of actually performing

any intricate task.

The fourth mode adds the use of the radio. Since the current radio design con-

sumes far more power than the built-in sensor, no distinction is made between whether

the sensor is on or off in this mode. When active, the radio can either be receiving or

transmitting data. Transmit/receive switching is under the control of hardware re-

sponsible for implementing the TDMA protocol, and, since the duty cycles generated

by this power-aware protocol are application and scenario dependent, it is simplest

to consider transmit and receive modes separately.

Figure 5.2.3 illustrates the total node power consumption, and its breakdown

into consumption by individual components, for the four canonical operating modes.

Because the variable processor clock speed and variable transmitter power amplifier

induce wide power consumption variations in each of the three active modes, both

minimum and a maximum power variations of each of these modes are illustrated.

Power consumption ranges from 28mW in deep sleep, to almost 2W while trans-

mitting at maximum power. Assuming the processor and power amplifier are seldom
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0
Sleep Threshold

Sensing
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Sensing
(max)

Receive
(min)

Receive
(max)

Transmit
(min)

Transmit
(max)

0 Radio 0.0 0.0 0.0 0.0 364.0 364.0 204.0 1224.0

0 Sensor 0.0 15.0 28.0 28.0 0.0 28.0 0.0 28.0

M Memory 0.0 0.0 4.0 80.0 4.0 80.0 4.0 80.0

" Processor 0.0 0.0 72.0 564.0 72.0 564.0 72.0 564.0

" Base 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0

Figure 5-4: Power consumption in canonical node operating modes

75



operated at their maximum power levels, power consumption in any of the active

modes should seldom be more than 400mW. Assuming the node spends 99% of its

life in deep-sleep mode (a typical duty cycle for a microsensor node), the average

power consumption is about 55mW, which produces a lifetime of about 100 hours

using a battery pack composed of four high-capacity AAA alkaline cells.[4]

5.3 Test Applications

Several simple demonstration applications have been developed for the pAMPS Re-

vision 1 node.

The first test application was a single-channel acoustic recorder. The microphone

built into the processor board was sampled at 2kS/s. Roughly every second, 500

consecutive samples worth of data was transmitted to a PC via the interface board's

RS-232 port. On the PC, a Java program displayed the recorded waveform. Figure 5.3

shows a screenshot of the Java application. This application was eventually extended

to utilize the pAMPS radio. Two nodes were used: one collected data from its

microphone, and sent them to the other node via radio. The second node then

transmitted the data to a PC via it's serial port.

A second demonstration application was developed using the four-channel acoustic

sensor board. In this application, three of the four microphone channels were sampled

at lkS/s, and the data was again sent over a serial link to a PC. The 12-bit analog-

to-digital converter results were truncated to seven bits in order to not exceed the

bandwidth of the serial link. On the PC, a Java program displayed the data and

recorded it to a file. This application was actually deployed at the U.S. Army's

Aberdeen Proving Grounds where it was used to record the sounds of tanks and

other military vehicle moving around a track. The data collected during this event

was later analyzed using a beamforming algorithm to determine a line-of-bearing from

the sensor node to the tank.

This three-microphone application was modified to perform the beamforming anal-

ysis on the sensor node itself. The radio was also incorporated, so that the sensor
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Figure 5-5:
microphone

Simple application showing data recorded from the processor board's
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node transmitted the line-of-bearing information to a basestation node, which com-

municated with a PC-based Java program that displayed the line-of-bearing on the

PC's display. The beamforming algoithm used in this application was jointly devel-

oped by MIT, the Army Research Laboratory, and University of Southern California

Information Sciences Institute.
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Chapter 6

Conclusions

The Revision 1 node described in this thesis represents a significant advancement of

the pAMPS project. A complete, fully functional pAMPS node has been demon-

strated, and has been shown to have the capacity for a significant degree of power-

awareness. The Revision 1 node will serve as a testbench for the development and

analysis of network protocols and complete microsensor applications. Furthermore,

lessons learned from the analysis of this node based on off-the-shelf components will

be applied to the next phase of the pAMPS project: creating a node on a chip.

The Revision 1 node achieves its goals of small size and reduced power consump-

tion, as compared to the Revision 0 node. The new node hardware provides many

power management mechanisms, allowing total node power to be scaled by a factor

of 70 x, from almost 2W down to just 28mW. This power-scalability is a good basis

for power-awareness, although the software necessary to intelligently select operating

modes has not been written yet.

Simple, sample applications developed for the node have demonstrated its ability

to collect, process, and communicate sensor data, at least in relatively well-controlled

lab environments. In the near future, additional applications will be developed. An

extension of the simple beamforming application to automotive vehicle tracking is

planned. This application will utilize at least two sensor nodes, each equipped with

three microphones and communicating with a third basestation node. Beamforming,

performed at both sensor nodes, will establish two lines-of-bearing, from which the
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location of vehicles will be determined through triangulation. This will the first

gAMPS application involving more than two nodes, and will thus be a test of the

nodes' network protocol.

Analysis of the Revision 1 node reveals limitations that will need to be carefully

considered during the development of future pAMPS nodes. Power consumption by

the node is currently dominated by the processor and radio power amplifier. Each of

these consume an order of magnitude more power than the sensor subsystem. Much

research has already been done on high-efficiency RF amplifiers. It is likely, therefore,

that the solution to reducing the power required by the pAMPS radio, lies not in a

better amplifier, but in a more robust signal encoding and a more flexible network

protocol. Similarly, reducing power consumption in the processor will likely be done

not by developing a new processor that magically provides the same performance as

the StrongARM with less power, but by developing a microsensor specific processor

architecture with exactly the amount of performance required by microsensor appli-

cations, and offers hardware support for common tasks which are particularly difficult

to implement in software.

Besides reducing active mode power, the design of the next pAMPS node will need

to focus on sleep state power. Due to the use of commercial dc/dc converters, which

must remain on during sleep mode in order to keep the contents of memory intact,

the Revision 1 nodes dissipate 28mW when in sleep mode. Only a few microwatts are

required to keep the SRAM alive; the remainder of this power is wasted by inefficient

power supplies. Given the high percentage of time the nodes are expected to spend

in deep sleep mode, minimizing power consumption in this mode has a huge effect on

the lifetime of the nodes.

Of course, the low-power and power-aware design techniques used in the /LAMPS

Revision 1 node implementation are not limited to the domain of microsensor nodes.

Any energy-constrained application can potentially benefit from power-aware hard-

ware and software design. The relatively new concept of networked microsensors

is particularly challenging energy-constrained problem due to the inherent real-time

requirements, necessary long node lifetimes, and complicated, potentially dynamic
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networking. Through the Revision 1 node, the pAMPS project demonstrates solu-

tions to all of these challenges.
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Appendix A

The pAMPS Revision 1 Low-Level

Node API

A.1 Overview

The pAMPS application programming interface is a collection of header files and an

archive of functions that extend the eCos operating system and provide basic access

to the radio, sensor, and power management components of the pAMPS node.

The API is implemented in C, and consists of a collection of header files containing

declarations of the procedures and data types defined by the API. User programs are

built by linking the user's code against a single archive file containing the object files

for each module of the API. The pAMPS API does not include eCos; therefore the

eCos library file must also be included in the linking process.

The API contains the following components
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uapi/analog h

uapi/power .h

uapi/radio .h

uapi/timer .h

uapi/uamps .h

Functions for controlling the acoustic sen-

sor built into the processor board.

Definitions and functions for power man-

agement.

Functions for directly accessing the

[AMPS radio.

Functions for microsecond-resolution tim-

ing.

System-level API components, including

system-level initialization and last-minute

eCos patches.

A.2 Acoustic Sensor: <uapi/analog.h>

This header file defines the interface for the acoustic sensor built into the pAMPS pro-

cessor board. The interface provides procedures for making one-time measurements

of the output of the microphone amplifier or the output of the envelope detector.

These simple commands are useful for debugging, but generally are not sufficient for

real applications, where many precisely spaced, sequential samples must be collected.

The primary sensor interface, therefore, is through the analog-submit.-request pro-

cedure, which enqueues a request for a specified number of samples, to be taken

with a specified inter-sample delay. Requests are processed sequentially, in the or-

der received. analog-request-completion-check is used to check the completion

of a request. Procedures for setting the microphone gain, and the threshold for the

envelope detector, are also provided.

The sensor system follows the standard pAMPS power management interface

(discussed in Section A.3). The following power modes are defined:

SHUTDOWN The power supply to all of the analog circuitry is turned off.

STANDBY The analog power supply is enabled, but the anti-aliasing prefilter is in its

shutdown state.
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CHANGINGTOSTANDBY The analog power supply has just been enabled. The power

state will automatically switch to STANDBY once the power supply has had a

chance to stabilize.

ACTIVE The analog power supply is enabled, and the prefilter is on.

CHANGINGTOACTIVE The prefilter has just been enabled. The power state will

automatically switch to ACTIVE once the prefilter has stabilized.

Changing and checking the sensor power state is accomplished with the procedures

analog get-pwrmst ate, analogget stablepwrnstate, and analogsetpwrmstate.

DATA TYPES AND CONSTANTS

analog-request t

Used to hold the parameters for a request for measurement data from the

analog system. The structure of this type is not intended to be visible to

the user.

ENVCHANNEL

Constant used to identify the envelope detector A/D channel.

MICCHANNEL

Constant used to identify the microphone A/D channel.

PROCEDURES

cyg-uint32 analog-get-pwrmstate (void)

Returns the current power state of the sensor.

cyg-uint32 analogget-stable.pwrmstate (void)

Returns the power state of the sensor after waiting, if necessary, for the sen-

sor to reach one of the stable power states: SHUTDOWN, STANDBY, or ACTIVE.
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CygErrNo analog-s et _pwrst ate (cyg-uint32 state)

Changes the sensor power state to the specified state. If state is not one

of SHUTDOWN, STANDBY, or ACTIVE, then the error code ENOSUP ("operation

not supported") is returned. Otherwise, ENOERR ("no error") is returned.

cyguint16 analog-measureumic (void)

Returns one sample, taken immediately, from the microphone.

cyguint16 analogumeasure-envelope (void)

Returns one sample, taken immediately, from the envelope detector.

void analogsetmicgain(cyguint8 gain)

Sets the microphone gain. The gain argument can range from 0 to 31.

void analog-set-signalthreshold(cyguint8 thresh)

Sets the envelope detector threshold. The argument thresh can range from

0 to 31.

void analog-init _request (analogrequestt *request, cyguint16 *buffer,

cyguint32 length, cyguint8 channel, cyguint32 period)

Initializes an anal ogrequestt object. The array *buffer will be used to

store the samples, and must be at least length entries long. The channel

argument can be either MICCHANNEL or ENVCHANNEL. period specifies the

delay between samples. Macros for specifying period in standard time units

are found in timer .h.

void analog-submit-request (analog-requestst *request)

Submits *request for processing. *request must have been initialized

previously.

cyg-bool analog-request completionscheck(analogrequestt *request)

Returns false if sensor is currently collecting samples for *request, or if
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*request is in the request queue. Otherwise, returns true.

A.3 Node Power Management: <uapi/power.h>

The power header file defines constants used by power management routines provided

by each of the pAMPS subsystems, and also provides procedures for placing the CPU

in its idle or sleep modes. Basic power management of the pAMPS subsystems is

enabled by procedures with names of the form

cyguint32 xxxxxget-pwrstate (void)

cyguint32 xxxxxget-stable-pwrstate (void)

CygErrNo xxxxxsetpwr_state (cyguint32 state)

where xxxxx represents the name of the subsystem in question. These routines are

defined in the drivers for the individual subsystems: see the API documentation for

each subsystem.

Procedures of the form xxxxxget-pwrstate return the instantaneous power

management state of a subsystem. This can be the constant for one of the stan-

dard modes defined in the power. h header file (and described below), or a constant

for a special mode defined in the subsystems own header file. The power. h header file

defines constants for a generic subsystem with three stable states: shutdown, standby,

and active. Constants are also defined to describe transient states: that is, when the

system is transitioning to any of the three stable states. Subsystems with more than

three stable states (or which are not well described by the generic states) define their

own power management states in their own header files.

xxxxget st able-pwrmstate procedures are similar to xxxxxget pwrstate pro-

cedures, but do not return transition states. If the subsystem is in a transition state,

xxxxxget-stable-pwrmstate will block until the subsystem finishes the transition.

The final, stable state will be returned.

The xxxxxset-pwrnstate (state) procedures are used to command a subsystem

to enter a specific power management state. Any transition may be commanded.

For example, if the active state can only be reached from the standby state, then if
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the subsystem is currently shutdown when a command to go to the active state is

received, the subsystem's driver must automatically transition the subsystem through

the standby state. Repetitive calls to xxxxxgetpwrmstate would therefore reveal

the following series of modes:

1. SHUTDOWN

2. CHANGINGTOSTANDBY

3. STANDBY

4. CHANGINGTLACTIVE

5. ACTIVE

DATA TYPES AND CONSTANTS

SHUTDOWN

Generic power management mode indicating that a subsystem is in its

lowest-power and least active state.

CHANGINGTOSHUTDOWN

Generic power management mode indicating that a subsystem is in the pro-

cess of changing to the SHUTDOWN mode.

STANDBY

Generic power management mode indicating that a subsystem is in a stable,

intermediate state between SHUTDOWN and ACTIVE. Returning to the ACTIVE

state from STANDBY should take less time than transitioning to ACTIVE from

SHUTDOWN.

CHANGINGTOSTANDBY

Generic power management mode indicating that a subsystem is in the pro-

cess of changing to the STANDBY state.
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ACTIVE

Generic power management mode indicating that a subsystem is in its most

active mode.

CHANGINGTOACTIVE

Generic power management mode indicating that a subsystem is in the pro-

cess of changing to the ACTIVE mode.

PROCEDURES

void idle(void)

Puts the processor in idle mode. The processor will wake up when the next

interrupt is signaled.

void pause(cyguint32 duration)

Puts the processor in idle mode, and also sets an alarm to bring the pro-

cessor out of sleep duration units later. (Macros for specifying duration in

standard units of time are defined in timer .h.)

void sleep(cyguint32 duration)

Puts the processor in sleep mode, after setting an alarm to wake up the

processor in duration time units.

A.4 Radio: <uapi/radio.h>

The final radio API is still under development. The current, complicated interface

will be reduced to just the components described here, plus procedures for setting

configuration options in the radio's low-level protocol.

In normal operation, the radio is in TDMA mode, and switching between transmit

and receive occurs automatically, under hardware control. The radio supports the

generic SHUTDOWN, STANDBY, and ACTIVE power modes, as well as the custom modes
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TRANSMIT, RECEIVE, and TDMA. In SHUTDOWN, all controllable radio circuits are powered

down, including the FPGA. Transitioning to STANDBY mode therefore requires waiting

for the FPGA to finish loading its configuration from EEPROM. In STANDBY mode,

the FPGA is active, but all RF circuits remain powered down. TRANSMIT and RECEIVE

modes are for debugging, and lock the radio into either full-time transmission (sending

packets whenever they are queued) or full-time reception (receiver is always listening

for packets). The ACTIVE and TDMA modes are synonyms, and indicate that the radio

is to synchronize itself with surrounding nodes and automatically switch between

transmit, receive, and idle states according to a TDMA schedule.

DATA TYPES AND CONSTANTS

PACKET-LENGTH

The length (in bytes) of the data portion of a radio packet.

RECEIVE

Power management mode where the receiver is active.

CHANGINGTOJRECEIVE

Power management mode indicating that the radio is in the process of chang-

ing to the RECEIVE mode.

TRANSMIT

Power management mode where the transmitter is active.

CHANGINGTO_-TRANSMIT

Power management mode indicating that the radio is in the process of chang-

ing to the TRANSMIT mode.

TDMA

Synonym for ACTIVE power management state. Indicates the use of a TDMA
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protocol for automatic switching between transmit and receive.

PROCEDURES

CygErrNo radioinit (void)

Initializes the radio.

cyguint32 radio-get-pwrmstate (void)

Returns the current power management state of the radio.

cyg.uint32 radio-getstablepwrstate (void)

Waits until the radio power state is SHUTDOWN, STANDBY or ACTIVE, and then

returns that state.

CygErrNo radiosetpwrstate(cyguint32 state)

Sets the radio power management state. Returns ENOSUP ("operation not

supported") if state is not one of SHUTDOWN, STANDBY, ACTIVE, or TDMA.

Otherwise, ENOERR ("no error") is returned.

CygErrNo radiosend(cyguint8 *buf)

Queues the data pointed to by *buf for transmission in the next available

TDMA transmit slot (or immediately, if the radio is in TRANSMIT mode).

CygErrNo radioget (cyguint8 *buf)

Copies the next available packet from the radio receive FIFO into *buf.

A.5 Timer: <uapi/timer.h>

The timer header file provides high-precision timing procedures for event duration

measurement and generating short time delays. The StrongARM's 3.6864MHz OS

clock serves as the base clock for all of the procedures defined in this header file.

The basic unit of time for all these procedures is therefore 1/3686400s = 271.267ns.
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Macros are provided for converting to and from more standard measures of time,

such as milliseconds or microseconds. Times are stored as unsigned 32-bit integers,

making the maximum representable time about 19 minutes.

Timer operations are all performed relative to a reference timestamp known as

the timer object's mark point. The mark point can be read and written using the

get-mark and set-mark procedures. Additionally, a timer's mark point can be set

to the present instant using the mark procedure. The initial value of a timer's mark

point is the OS timer value when the timer-create procedure was called to initialize

that timer.

DATA TYPES AND CONSTANTS

timernt

Container for timer objects.

void timermfn.t(timernt *t, cyg-uint32 d)

Procedure prototype for timer callbacks. Any user-supplied procedure match-

ing this prototype can be used as a callback procedure. When the callback

occurs, *t will contain the timer object that triggered the callback, and d

will contain the data value that was specified when the timerncallback

procedure was called to setup the callback.

PROCEDURES

void timerhinit(void)

Initializes the timer system. This procedure must be called before any timer

objects can be created.

void timermcreate(timert *timer)

Initializes *timer and sets its mark point to the current value of the OS

timer.
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cyg-uint32 timerimark(timer-t *timer)

Returns the current value of the OS timer and also sets the mark point of

*timer to that value.

cyg-uint32 timerzmeasure(timert *timer)

Returns the number of OS clock ticks since the mark point of *timer

void timerdelay(timert *timer, cyguint32 duration)

Delays until duration OS clock ticks after the mark point for *timer before

returning.

void timerscallback(timert *timer, timernfnrt *func, cyguint32 data,

cyguint32 duration)

Arranges for the function func to be called with the argument data after

duration OS clock ticks have passed since timer's mark point. The call to

func will occur in a DSR, so func may not do anything that requires the

scheduler to run.

cyguint32 times (cygtuint32 duration)

Converts durati on from seconds to OS clock ticks. The argument duration

must be between 0 and 1,165.

cyg-uint32 time-tos (cygauint32 duration)

Converts duration from OS clock ticks to seconds.

cyguint32 timems (cyguint32 duration)

Converts duration from milliseconds to OS clock ticks. The argument

duration must be between 0 and 116,508.

cyg-uint32 time-to-ms(cyguint32 duration)

Converts duration from OS clock ticks to milliseconds.
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cyguint32 timermus(cyguint32 duration)

Converts duration from microseconds to OS clock ticks. The argument

duration must be between 0 and 116,508.

cyguint32 time-to-us(cyguint32 duration)

Converts duration from OS clock ticks to microseconds.

cyguint32 timens (cyg-uint32 duration)

Converts duration from nanoseconds to OS clock ticks. The argument

duration must be between 272 and 429,496.

cyguint32 time-tons (cyguint32 duration)

Converts duration from OS clock ticks to nanoseconds.

A.6 General: <uapi/uamps.h>

This header file provides a few small, miscellaneous interfaces which do not fit into

any other modules.

DATA TYPES AND CONSTANTS

char *version

A text string describing the version of the

uamps API, including the date and time at which the API was compiled.

PROCEDURES

void uampsinit (void)

Performs any initialization tasks not automatically completed by eCos on

startup. This procedure will call the initialization procedures from the ana-

log, radio, and timer API modules, so frequently, calling uampshinit is the
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only initialization the user needs to perform. After this procedure is run, all

systems (analog, radio, ... ) will be in their SHUTDOWN state.

void uamps-green-led(cyg-uint32 state)

If state is 0, turns off the green LED on the processor board. Otherwise,

turns on the LED.

void uamps-redled(cyg-uint32 state)

If state is 0, turns off the red LED on the processor board. Otherwise,

turns on the LED.
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Appendix B

Schematics

This chapter contains full schematics for the pAMPS Revision 1 processor, basesta-

tion, and four-channel acoustic sensor boards. For schematics of the radio board, see

[9].
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Appendix C

PCB Layouts

All layouts are shown from the top (component) side of the board and at actual size.
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Appendix D

Implementation of Power

Mangement Additions to eCos

This chapter contains a listing of the important pieces of the power management

support that was added to eCos for the pAMPS project.

D.1 Platform Macros

File: packages/hal/arm/sallx0/uamps/current/include/uamps.h

This is a portion of the pAMPS platform header file, showing the definitions of

macros used to manipulate the various hardware power management signals on the

Revision 1 processor board.

masks
UAMPSVCOREDO

UAMPSVCORE_Dl

UAMPSVCORED2

UAMPSVCORED3

UAMPSVCORED4

UAMPSVCOREMASK

UAMPSDVSEN

UAMPSVCORESTABLE

0x00000020

0x00000040

0x00000080

Ox00000100

Ox00000200

Ox00000370

Ox00000400
0x00000800

Core
Core
Core
Core
Core

voltage
voltage
voltage
voltage
voltage

/* DVS enable

/* Core voltage

select
select
select
select
select

0
1

2

3

4

stable */

// Set the core voltage. @voltid@ is a five-bit code. Not all
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// GPIO
#define
#define
#define
#define
#define
#define
#define
#define



III

// values are allowed: see MAX1717 datasheet.

#define UAMPSSETVOLTAGE(voltid)

CYGMACROSTART
*SA11XOGPIOPINOUTPUTSET = ((voltjid)%32) << 5;
*SA11XOGPIOPINOUTPUTCLEAR = (((volt-id)X32) ^ 31) << 5; \
CYGMACROEND

// Enable processor voltage scaling. Voltage scaling is disabled

// whenever the processor's ~RESETOUT pin is asserted (which

// happens during hard reset, or sleep).

#define UAMPSENABLEDVSO

CYGMACROSTART
*SA11XOGPIOPINOUTPUTCLEAR = UAMPS_DVSEN;
*SA11XOGPIOPINOUTPUTSET = UAMPSDVS_EN;
CYGMACROEND

// Check whether the core voltage supply has stabilized. Returns

// true (not zero) if the supply is stable, false (zero) otherwise.

#define UAMPSCHECKVCORESTABLE()
(*SA11X0_GPIO_PIN_LEVEL & UAMPSVCORESTABLE)

D.2 Power Management Procedures

File: packages/hal/arm/sallxO/uamps/current/src/uamps-misc. c

This is a portion of the file containing assorted procedures for controlling the

pAMPS hardware. This file contains pocedures for changing the processor speed

and voltage, and for setting up for sleep mode.

// Structure for keeping track of combinations of processor speed,

// processor voltage, and memory timings

typedef struct {
cyg-uint32 pllval;

cyguint32 frequency;

cyguint32 dvs-val;

cyguint32 mscO;

cyguint32 mscl;

} uamps.speedrecord;

// This table defines the frequency/voltage/memory timing

// combinations.
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uamps-speedrecord uamps-speedtable[] = {
// PLL Frequency DVS Voltage MSCO MSC1
// (Hz) code (mV) (RAM/ROM) (Radio)
{ OxO, 59900000, 22, /* 1125 */ 0x01110210, OxFFFCFFFC },
{ Ox1, 73700000, 22, /* 1125 */ 0x01110318, OxFFFCFFFC },
{ Ox2, 88500000, 22, /* 1125 */ 0x02190420, OxFFFCFFFC },
{ Ox3, 103200000, 22, /* 1125 */ 0x02190528, OxFFFCFFFC },
{ Ox4, 118000000, 20, /* 1175 */ 0x02210528, OxFFFCFFFC },
{ Ox5, 132700000, 17, /* 1250 */ 0x03210630, OxFFFCFFFC },
{ Ox6, 147500000, 14, /* 1300 */ 0x03290738, OxFFFCFFFC },
{ Ox7, 162200000, 13, /* 1350 */ 0x04290840, OxFFFCFFFC },
{ Ox8, 176900000, 11, /* 1450 */ 0x04310840, OxFFFCFFFC },
{ Ox9, 191700000, 9, /* 1550 */ 0x04310948, OxFFFCFFFC },
{ OxA, 206400000, 7, /* 1650 */ 0x05390a50, OxFFFCFFFC },
{ OxB, 221200000, 5, /* 1750 */ 0x05390b58, OxFFFCFFFC } };

// This table is used to convert the MAX1717 settings (a number

// from 0-31) to the respective voltages (in milliolts).

cyg-uint32 dvs-table[] = {
2000, // 0
1950, // 1

1900, // 2

1850, // 3

1800, // 4

1750, // 5

1700, // 6

1650, // 7
1600, // 8

1550, // 9

1500, // 10

1450, // 11

1400, // 12

1350, // 13

1300, // 14

0, // 15

1275, // 16

1250, // 17

1225, // 18

1200, // 19

1175, // 20

1150, // 21

1125, // 22
1100, // 23
1075, // 24

1050, // 25
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1025, // 26

1000, // 27

975, // 28
950, // 29
925, // 30

0, // 31

// Keep track of the current voltage

cyg-uint32 currentvoltage = 7; // Voltage after reset is 1.650V

// This macro performs the actual task of changing the processor

// clock frequency in a safe manner.

#define UAMPSSETPROCCLOCK(speed)

CYGMACROSTART
/* Disable clock switching */

asm volatile ("mcr p15,0,rO,c15,c2,0x2" );

/* Force core clock to MCLK by reading from uncacheable memory */ \
{ int temp; temp = *((volatile unsigned int *) OxO8OOOO); }

/* Set the PLL. Processor will stall until PLL locks again. */
*((int *) SA11XOPWRMGRPLLCONFIG) = speed;

/* Enable clock switching /\

asm volatile ( "mcr p15,0,rO,c15,c1,0x2" );
CYGMACROEND

/** Set the core clock frequency. The speed parameter is a value between
* OxO and OxA.

void

uamps-set-processor-clock(cyg-uint32 val)

{
if (val == uamps-get.processor.clock() II val > 12) {

// Do nothing if speed is out of range, or the same as the

// current speed.

} else if (val > uamps-get-processor clockO) {
// We are about to increase the clock speed. It is important to

// change the memory timings first, as we may not be able to read

// the table at the faster processor speed otherwise.

*SA11XOSTATICCONTROL_0 = uamps-speedtable[val].msc0;
*SA11XOSTATICCONTROL_1 = uamps-speedtable[val].mscl;

UAMPSSETPROCCLOCK(val);
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} else {
// We are about to decrease the clock speed. We should not change

// the memory timings until after the clock has been slowed.

UAMPSSETPROCCLOCK(val);
*SA11XOSTATICCONTROL_0 = uamps-speed-table[val] .mscO;
*SA11XOSTATICCONTROL_1 = uamps-speedtable [val] .mscl;

}
}

/** Get the current clock setting, as a value from 0-11.

cyg-uint32

uamps.get.processor clock(void)

{
return (*SA11X0_PWRMGR_PLLCONFIG % 32);

}

/** Get the current clock frequency, in hertz.

cyg-uint32

uamps.get-processor clock.frequency(void)

{
return uamps-speedtable [uamps-get-processor clockO] .frequency;

I

/** Set the processor voltage. The val parameter is a number from
* 0-31. (See the MAX1717 voltage table above.)

void

uamps-setfdvs(cyg-uint32 val)

{
if (val == currentvoltage 11 val > 31 I1 dvs-table[val] == 0) {

// Do nothing if requested voltage is out of range, the same as the

// current voltage, or zero.

} else {
UAMPSENABLEDVSO;

UAMPSSETVOLTAGE(val);

currentvoltage = val;

while (! UAMPSCHECKVCORESTABLEo);

}

/** Return the current processor voltage as a value from 0-31.

cyg-uint32
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III

uamps.get-dvs(void)

{
return currentvoltage;

}

/** Return the current processor voltage in millivolts.

cyg-uint32

uampstget-dvs-voltage(void)

{
return dvstable[current voltage];

}

/** Set the speed of the processor by changing the frequency and the

* voltage. The val parameter is a number form 0 to 11.

void

uamps-set-speed(cyguint32 val)

{
// We can't assume that the current voltage is optimal for current

// frequency!

if (val > 12) {
// Do nothing if value is out of range.

return;

}

if (dvstable[current-voltage]

< dvstable[uamps-speedttable[val].dvs-val]) {

// Current voltage is not adequate for new frequency. Change

// voltage now.

uampstset-dvs(uamps-speedttable[val].dvsval);

}

// It is now safe to change the processor clock frequency

uampstset-processor-clock(val);

// Reduce the voltage, if possible

uamps-set-dvs(uamps-speedtable[val].dvs-val);

}

cyg-uint32

uamps-get-speed(void)

{
return uamps-get-processorclock();
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}

/** This procedure is responsible for actually putting the
* processor in sleep mode. When the processor wakes up,
* it will eventually perform a return from this subroutine,

* so execution resumes in the code that called this procedure.
*

* This procedure is defined in Suspend.S

extern void uamps-suspendprocessor(void);

// Structure for storing the state of the peripheral

// configuration registers

typedef struct {
cyg-uint32 gplr;

cyg-uint32 grer;

cyg.uint32 gfer;

cyg-uint32 gafr;

cyg-uint32 icmr;

cyg-uint32 iclr;

cyg.uint32 iccr;

cyg-uint32 rtsr;

cyg-uint32 rttr;

cyg-uint32 oscr;

cyg-uint32 osmrO;

cyg-uint32 osmrl;

cyg-uint32 osmr2;

cyg-uint32 osmr3;

cyg-uint32 ower;

cyg-uint32 ossr;

cyg.uint32 oier;

cyg-uint32 uarttutcrO;

cyg-uint32 uartlutcrl;

cyg-uint32 uartlutcr2;

cyg-uint32 uartlutcr3;

cyg-uint32 uart2_utcrO;

cyg-uint32 uart2_utcrl;

cyg-uint32 uart2_utcr2;

cyg-uint32 uart2_utcr3;

cyg-uint32 uart3_utcrO;

cyg-uint32 uart3_utcrl;

cyg-uint32 uart3_utcr2;

cyg-uint32 uart3_utcr3;

} uamps-sys-registerst;
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static uamps-sys.registers t uamps-systemlregs;

/** Shut down the serial ports cleanly.

* Must be run with interrupts disabled.

void

uamps-serial-suspend(void)

while (*SA11XOUART1_STATUS1 & SA11XOUARTTXBUSY);

uampstsystem-regs.uartlutcrO = *SA11XOUART1_CONTROLO;
uamps-systemnregs.uartlutcrl = *SA11XO_UART1_CONTROL1;

uamps.systemregs.uartlutcr2 = *SA11XOUART1_CONTROL2;

uamps-systemsregs.uartlutcr3 = *SA11XOUART1_CONTROL3;
*SA11XOUART1_CONTROL3 I=

(OxFF^ (SA11XOUARTRXENABLED I SA11XOUARTTXENABLED));

while (*SA11XOUART2_STATUS1 & SA11XOUARTTXBUSY);

uampstsystemlregs.uart2_utcrO = *SA11XOUART2_CONTROLO;

uamps-system-regs.uart2_utcrl = *SA11XO_UART2_CONTROL1;

uampstsystem-regs.uart2_utcr2 = *SA11XOUART2_CONTROL2;

uamps-systemnregs.uart2_utcr3 = *SA11XOUART2_CONTROL3;
*SA11XOUART2_CONTROL3 I=

(OxFF - (SA11XOUARTRXENABLED I SA11XOUARTTXENABLED));

while (*SA11XOUART3_STATUS1 & SA11XOUARTTXBUSY);

uampstsystem-regs.uart3_utcrO = *SA11XOUART3_CONTROLO;
uamps-systemregs.uart3_utcrt = *SA11XOUART3_CONTROLl;

uampstsystem-regs.uart3_utcr2 = *SA11XOUART3_CONTROL2;

uamps-system-regs.uart3_utcr3 = *SA11XOUART3_CONTROL3;
*SA11XOUART3_CONTROL3 I=

(OxFF- (SA11XOUARTRXENABLED I SA11XOUARTTXENABLED));
}

/** Re-enable the serial ports.

void uamps-serial resume(void)

{
*SA11XOUART1_CONTROLO = uamps-systemsregs.uartlutcrO;
*SA11XO_UART1_CONTROL1 = uampstsystemregs.uartlutcrl;
*SA11XOUARTiCONTROL2 = uamps-systemnregs.uartlutcr2;
*SA11XOUART1_CONTROL3 = uampstsystemregs.uartlutcr3;

*SA11XOUART2_CONTROLO = uampspsystemsregs.uart2_utcrO;
*SA11XO_UART2_CONTROL1 = uamps-system-regs.uart2_utcrl;

*SA11XOUART2_CONTROL2 = uamps-system-regs.uart2_utcr2;
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*SA11XOUART2_CONTROL3 = uamps-system-regs.uart2_utcr3;

*SA11XOUART3_CONTROLO

*SA11XOUART3_CONTROLl

*SA11XOUART3_CONTROL2

*SA11XOUART3_CONTROL3

= uampstsystem-regs.uart3_utcrO;
= uamps-systemsregs.uart3_utcrl;
= uamps-systemregs.uart3_utcr2;

= uampssystem-regs.uart3_utcr3;

/** Put the processor to sleep, then return from this proceudre

* after processor wakes up and the operating system is restarted.

* This procedure performs the task of saving and restoring the

* state of the StrongARM peripheral configuration registers.

void

uamps&sleep(void)

{
cyguint32 intstate, dcache, icache;

HALDISABLEINTERRUPTS(int-state);

// GPIO registers

uamps-systemnregs.grer

uamps-system-regs.gfer

uamps-systemregs. gafr

// Interrupt registers

uamps-system-regs.icmr

uamps-system-regs-iclr
uamps-systemregs.iccr

*SA11XOGPIORISINGEDGEDETECT;

*SA11XOGPIOFALLINGEDGEDETECT;

*SA11XOGPIOALTERNATEFUNCTION;

*SA11XOICMR;

*SA11XOICLR;

*SA11XOICCR;

// RTC registers. The RTC runs even when the processor is asleep:

// saving these registers might not be necessary.

uamps-systemnregs.rtsr = *SA11XORTSR & OxO3; / Mask flag bits

uamps-system-regs.rttr = *SA11XORTTR;

// OS timer
uamps-system-regs.oscr = *SA11XQOSCR;
uamps-system.regs.osmrO = *SA11XOOSMRO;
uamps-systemsregs.osmrl = *SA11XOOSMR1;
uamps-systemuregs.osmr2 = *SA11XOOSMR2;
uamps-system-regs.osmr3 = *SA11XOOSMR3;
uamps-systemtregs.ower = *SA11XOOWER;
// Save flags for sorting out OS timer later
uamps-system.regs.ossr = *SA11XOOSSR;
uamps-system.regs.oier = *SA11XOQIER;
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// Serial ports
uamps-serial-suspendO;

// Do not stop 3.6864MHz osc.
// Let 32kHz osc. stabilize on reset.
*SA11XO_PWRMGR_GENERALCONFIG = OxOO;
*SAi1XOPWRMGR_WAKEUPENABLE = Ox80000000; // RTC alarm enabled

// Set GPIO sleep states
uamps-system-regs.gplr = *SA11XOGPIOPINLEVEL;
*SA11XoPWRMGRGPIOSLEEPSTATE = *SA11XOGPIOPINLEVEL;
// Ensure LEDs are off
*SA11XOPWRMGR_GPIOSLEEPSTATE

= UAMPSUSBATTACH I UAMPSREDLED I UAMPSGREENLED;
// Put 3.3V power supply in standby mode
*SA11XOPWRMGRGPIOSLEEPSTATE &= OxFFFFFFF UAMPSV3_STBY;

// Disable caches
HALDCACHEISENABLED(dcache);

if (dcache) {
HALDCACHESYNCO;

HALDCACHEDISABLEO;

HALDCACHESYNC();
HALDCACHEINVALIDATEALL();

}

HALICACHEISENABLED(icache);

if (icache) {
HALICACHEDISABLEO;

HALICACHEINVALIDATEALLO;

}

// This procedure will actually put the processor to sleep
uamps-suspend-processor();

// Begin the process of restoring the peripherals and caches.

if (dcache) HALDCACHEENABLE(;

if (icache) HALICACHEENABLEO;

uamps-serial-resume(;

// GPIO registers
*SA11XOGPIOPINOUTPUTSET = uamps-systemnregs.gplr;
*SA11XOGPIOPINOUTPUTCLEAR = OxFFFFFFFF - uampssystem-regs.gplr;

124



*SA11XOGPIORISINGEDGEDETECT = uamps-systemnregs.grer;
*SA11XOGPIOFALLINGEDGEDETECT = uampssystemregs.gfer;
*SA11XOGPIOALTERNATEFUNCTION = uamps-systemregs.gafr;

// Interrupt registers

*SA11XOICMR = uamps-systemnregs.icmr;
*SA11XOICLR = uamps-systemregs.iclr;
*SA11XOICCR = uamps-system-regs.iccr;

// RTC registers.
*SA11XORTSR = uamps-system-regs.rtsr;
*SA11XORTTR = uampstsystemnregs.rttr;

// OS timer
*SA11XOSCR = uampssystemregs.oscr;
*SA11XOOSMRO = uamps-systemnregs.osmrO;

*SA11XOOSMR1 = uamps-system-regs.osmrl;

*SA11XOOSMR2 = uampssystemsregs.osmr2;
*SA11XOOSMR3 = uamps-systemregs.osmr3;
*SA11XOOWER = uamps-system-regs.ower;
*SA11XOOSSR = OxFFFFFFFF;
*SA11XOQIER = uamps-systemsregs.oier;

HALRESTORE_INTERRUPTS(int-state);

}

D.3 Saving and Restoring Processor Registers for

Sleep Mode

File: packages/hal/arm/sallx0/uamps/current/src/Suspend.S

The following assembly consists of two components which together make up the

uamps-suspendcprocessor procedure. The first component performs the task of

saving the processors registers and entering sleep mode. The second component is

branched to when the processor is awakened from sleep. This component restores

the processor's registers, enables the MMU, and returns to whatever code called

uamps-suspend.processor.

#include <cyg/hal/halisa11xO.h>
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// Macros for converting between physical and virtual addresses.

#define PHYS_TOVIRT(x) ((x)-0x50000000)

#define VIRTTOPHYS(x) ((x)+0x50000000)

// CPSR settings for each of

// modes

#define ARMUSRMODE OxtO

#define ARMFIQ_MODE Oxl

#define ARMIRQ_MODE Ox12

#define ARMSVCMODE Ox13

#define ARM_ABT_MODE 0x15

#define ARMUNDMODE OxiB

#define ARMSYSMODE OxiF

#define ARMMODEMASK OxiF

the ARM processors

// Storage area for CPU registers during sleep

.section ".fixedvectors"
sleep-savedregs:

// uamps-suspendprocessor procedure

//
// The following code saves all processor registers and

// enters sleep mode.

.text

.global uamps-suspendbprocessor

.align

uampstsuspendprocessor:

// Save (most) supervisor mode registers on stack

stmfd sp!, {rO, ri, r2, r3, r4, r5, r6, r7, r8, r9, riO, r11, r12, lr}

ldr

// Save
mrs
bic
orr
msr

rO, =sleep saved_regs

abort mode registers

ri, cpsr

ri, ri, #ARMMODEMASK

ri, ri, #ARMABTMODE

cpsr, ri
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str r13, [rO], #4 // Save ABTR13 (00)

str r14, [r0], #4 // Save ABT_R14 (04)

mrs ri, spsr // Save ABTSPSR (08)

str ri, [r0], #4

Save undefined mode registers

mrs ri, cpsr

bic ri, ri, #ARMMODEMASK

orr ri, ri, #ARMUNDMODE

msr cpsr, ri

str r13, [r0], #4 / Save UNDR13 (OC)
str r14, [r0l, #4 / Save UNDR14 (10)
mrs ri, spsr // Save UNDSPSR (14)

str ri, [r0], #4

Save interrupt mode registers

mrs ri, cpsr

bic ri, ri, #ARMMODEMASK

orr ri, ri, #ARMIRQMODE

msr cpsr, ri

str r13, [r0], #4 / Save IRQR13 (18)

str r14, ErG], #4 // Save IRQR14 (1C)

mrs ri, spsr // Save IRQSPSR (20)

str ri, [r0], #4

Save fast interrupt mode registers

mrs ri, cpsr

bic ri, r1, #ARMMODEMASK

orr ri, ri, #ARM_FIQMODE

msr cpsr, ri

str r8, [r0], #4 / Save FIQR8 (24)

str r9, [rO], #4 // Save FIQR9 (28)
str riO, [r0], #4 / Save FIQR10 (2C)

str r11, [rO], #4 // Save FIQ_R11 (30)

str r12, [r0], #4 / Save FIQR12 (34)
str r13, [r0], #4 / Save FIQR13 (38)

str r14, [r0], #4 / Save FIQR14 (3C)
mrs ri, spsr // Save FIQSPSR (40)

str ri, [r0], #4

Return to supervisor mode and save SPSR and SP

mrs ri, cpsr
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bic ri, ri, #ARM_MODE_MASK

orr ri, ri, #ARM_SVC_MODE

msr cpsr, ri

mrs ri, spsr // Save SVCSPSR (44)

str ri, [rO], #4

str sp, [rO], #4 // Save SVCSP (R13) (48)

// Save coprocessor registers

// CI has MMU enable, other CPU configuration controls

mrc p15, 0, ri, ci, cO, 0 // Save CI (48)

str rl, [rO], #4

// C2 has MMU table base

mrc p15, 0, ri, c2, cO, 0 / Save C2 (4C)

str ri, [rO], #4

// C3 has domain access control bits

mrc p15, 0, ri, c3, cO, 0 / Save C3 (50)

str ri, [rO], #4

// C5 has fault status

mrc p15, 0, ri, c5, cO, 0 / Save C5 (54)

str ri, [rO], #4

// C6 has last fault address

mrc p15, 0, ri, c6, cO, 0 // Save C6 (58)

str ri, [rO], #4

// C13 has process virtual ID

mrc p15, 0, ri, c13, cO, 0 / Save C13 (5C)

str ri, [rO], #4

// Disable clock switching

mcr p15, 0, ri, c15, c2, 2

// Put resume address in power manager scratchpad

ldr rO, =uampsresume-processor

ldr ri, =Ox4FPFFFFF

cmp rO, ri

bls if

sub rO, rO, #0x50000000

b 2f

add rO, rO, #0x08000000

2:

ldr ri, =SA11XOPWRMGRSCRATCHPAD

str rO, [ri]

// Set force sleep bit in power manager control register
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ldr
mov
str

rO, =SA11XOPWRMGRCONTROL

ri, #Oxl

ri, [rO]

// Loop forever (or at least until the processor goes to sleep).
1:

b lb

// uamps-resume-processor procedure

This is the second half of the uamps-suspendprocessor
procedure. When the processor awakens from sleep, the startup
code will detect that a return from sleep is in progress, and
will branch here. This code restores the state of the
processor's registers, enables the MMU, and performs a
return-from-subroutine, returning control to whatever code
originally called uamps-suspendprocessor.

uampsresume-processor:

// Release
ldr
ldr
str

peripheral hold (set by RESET)

ri, =SA11XOPWRMGRSLEEPSTATUS

r2, =SA11XOPERIPHERALCONTROLHOLD

r2, [r1]

ldr rO, =sleep-savedregs
add rO, rO, #0x08000000

// Restore abort mode registers
mrs ri, cpsr

bic ri, ri, #ARMMODE_MASK
orr ri, ri, #ARMABTMODE

msr cpsr, ri

ldr
ldr
ldr
msr

r13, [rO], #4
r14, [rO], #4
ri, [rO], #4
spsr, ri

//
//1

//

// Restore undefined mode
mrs ri, cpsr
bic ri, ri, #ARMMOD

orr ri, ri, #ARMUND
msr cpsr, ri

Restore ABTR13

Restore ABT_R14
(00)
(04)

Restore ABTSPSR (08)

registers

EMASK

_MODE

129

//
//
//1
//
//1
//
//1
//1
//

================================



ldr r13, [rO], #4 // Restore UNDR13 (OC)

ldr r14, [rO], #4 / Restore UNDR14 (10)

ldr ri, [rO], #4

msr spsr, ri // Restore UNDSPSR (14)

// Restore interrupt mode registers

mrs ri, cpsr

bic ri, ri, #ARMMODEMASK

orr ri, ri, #ARMIRQJMODE

msr cpsr, ri

ldr r13, [r0], #4 // Restore IRQ_R13 (18)

ldr r14, [r0], #4 // Restore IRQR14 (IC)

ldr ri, [r0], #4

msr spsr, ri // Restore IRQSPSR (20)

// Restore fast interrupt mode registers

mrs ri, cpsr

bic ri, ri, #ARMMODEMASK

orr ri, ri, #ARMFIQMODE

msr cpsr, ri

ldr r8, [r0], #4 // Restore FIQR8 (24)

ldr r9, [r0], #4 // Restore FIQ_R9 (28)

ldr riO, [rO], #4 // Restore FIQ-R1O (2C)

ldr r11, [r0], #4 // Restore FIQRl (30)

ldr r12, [r0], #4 // Restore FIQR12 (34)

ldr r13, [r0], #4 / Restore FIQR13 (38)

ldr r14, [r0], #4 // Restore FIQR14 (3C)

ldr ri, [r0], #4

msr spsr, ri // Restore FIQSPSR (40)

// Return to supervisor mode

mrs ri, cpsr

bic ri, ri, #ARMMODEMASK

orr ri, ri, #ARMSVCMODE
msr cpsr, ri

ldr ri, [r0], #4

msr spsr, ri // Restore SVCSPSR (44)

ldr sp, [r0], #4 / Restore SVCSP (48)

// Restore most coprocessor registers (don't turn on MMU yet)

ldr r2, [rO], #4
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ri, [rOl, #4
p15, 0, ri,

ri, [rO], #4
p15, 0, ri,

ri, [rO], #4

p15, 0, ri,

ri, [rO], #4
pi5, 0, ri,

ri, [rO], #4

p15, 0, ri,

c2, cO, 0

c3, cO, 0

c5, co, 0

c6, cO, 0

c13, cO ,0

// Enable MMU

ldr r3, =resumemmuon

b resumemmu

.align 5

resumemmu:

mcr p15, 0, r2, ci, cO, 0

mov pc, r3

nop

nop

nop

.align 5

resumemmuon:

// Return

ldmxfd

mov

to caller
sp!, {rO, ri, r2, r3, r4, r5, r6, r7, r8, r9, r1O, r1, r12, lr}
pc, 1r
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Appendix E

StrongARM Voltage Test Program

The following code is for an eCos application which tests the range of voltages required

by the StrongARM SA-1110 processor at each operating frequency. The code consists

of a series of procedures-which each perform some test of the correct functionality

of the processor-and a main loop. The main loop sets the processor voltage, then

runs each of the test procedures. If all tests pass, the voltage is reduced and the tests

are run again.

#include <cyg/infra/cygtype.h>

#include <cyg/hal/halcache.h>

#include <cyg/infra/diag.h>

#include <cyg/hal/uamps .h>

#include <cyg/hal/halsa11xO.h>

#include <uapi/power.h>

#include <uapi/timer.h>

#include <uapi/uamps .h>

extern void uampssetdvs(cyguint32 val);

extern cyg-uint32 uamps-get-dvs-voltage(void);

extern cyg-uint32 uamps-get-processor clockfrequency(void);
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#define SETLENGTH (8*1024)

cyguint32 temp[SETLENGTH];

cyg-uint32 *uctemp

= ((cyg-uint32 *) (((unsigned int) temp) + 0x08000000));

/** Write and read all zeros from a block of memory

cyg-bool

testmemory-zeros(cyg-uint32 *addr, cyguint32 length)

{

cyg-uint32 i;

for (i=O; i<length; i++) { addr[i] = 0; }

for (i=0; i<length; i++) {

cyg-uint32 d = addr[i];

if (d!= 0) {

diag-printf ("FAILED: read Ox/08x at OxY08x. \n",

d, ((unsigned int) (i+addr)));

return 0;

}

}

return 1;

}

/** Write and read all ones from a block of memory

cyg-bool

testmemory-ones(cyg-uint32 *addr, cyguint32 length)

{
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cyguint32 i;

for (i=0; i<length; i++) { addr[i] = OxFFFFFFPF; }

for (i=0; i<length; i++) {

cyg-uint32 d = addr[i];

if (d != OxFFFFFFFF) {

diag-printf("FAILED: read Ox%08x at OxX08x.\n",

d, ((unsigned int) (i+addr)));

return 0;

}

}

return 1;

}

/** Write and read a checkerboard pattern from a block of memory

cyg-bool

testmemory-checkerboard(cyguint32 *addr, cyguint32 length)

{

cyg_uint32 i, d;

for (i=0; i<length; i++) {

addr[i] = i%2 ? OxAAAAAAAA : Ox55555555;

}

for (i=0; i<length; i++) {

d = addr[i];

if (d != (%2 ? OxAAAAAAAA : Ox55555555)) {

diag-printf("FAILED: read Ox%08x at Ox%08x.\n",

d, ((unsigned int) (i+addr)));

return 0;

}

}
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return 1;

}

/** Test the process of flushing the data cache. This procedure

* first writes a set of sequential numbers to a block of cached

* memory pointer to by *addr. It then writes zeros directly to

* the physical memory correpsong to the same locations as

* *addr. This is accomplished by having *ucaddr point to an

* uncached portion of the virtual memory space which is mapped

* to the same physical memory locations as *addr. The data

* cache is flushed and disabled, and the contents of *addr

* and *ucaddr are read back. They should both contain the data

* that was originally written to *addr.

cyg-bool

testdcacheflush(cyg-uint32 *caddr,

cyg-uint32 *ucaddr,

cyg-uint32 length)

{

cyg-uint32 i, tc, tuc, dcache;

// Clear physical memory

for (i=O; i<length; i++) {

ucaddr[i] = 0;

}

// Put count in cache

for (i=O; i<length; i++) {

caddr[i] =

}

// Flush cache

HALDCACHEISENABLED(dcache);
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if (dcache) {

HALDCACHESYNCO;

HALDCACHEDISABLEO;

HALDCACHESYNC();

HAL_DCACHEINVALIDATEALL();

}

// Read physical memory

for (i=O; i<length; i++) {

tuc = ucaddr[i];

tc = caddr[i];

if ((tuc != tc) I| (tuc != i)) {

diag-printf("FAILED: expected Ox%08X,

"got Ox%08X at Ox%08X (cached)

"and Ox%08X at Ox%08X (uncached).\n",

i, tc, ((unsigned int) (caddr+i)),

tuc, ((unsigned int) (ucaddr+i)));

return 0;

}

}

if (dcache) HALDCACHEENABLEO;

return 1;

}

/** Test the adder by adding a long series of numbers and

* comparing with a precomputed result.

cyg-bool

testadd(void)

{

cyguint32 a, b, i, t;
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a = 1;

b = 0;

for (i=0; i<10000; i++) {

t =a+b;

b = a;

a =t;

}

t = Ox7F1BE43D;

if (a != t) {

diag-printf("got Ox%08x, expected Ox08x.\n", a, t);

return 0;

}

return 1;

}

/** Test the multiplier by multiplying a long series of

* numbers and comparing with a precomputed result.

cyg-bool

testmultiply(void)

{

cyguint32 a, i, t;

a = 1;

for (i=O; i<10000; i++) {

a = a*i+1;

}

t = Ox9E4301CC;

if (a != t) {

diag.printf("FAILED: got Ox%08x, expected Ox/08x.\n", a, t);

return 0;
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return 1;

}

int

main(void)

{

cyguint32 i, f, v, e, intstate;

HALDISABLEINTERRUPTS(int-state);

v = uampstget-processor clockjfrequencyO;

diag-printf ("Clock frequency is %d.Y03dMhz.\n",

v/1000000, (v/1000)%1000);

for (i=3; i<31; i++) {

if (i==15) i++;

uampsset-dvs(i);

v = uamps-getdvs-voltageo;

diag-printf ("\nVoltage is %d.%03dV\n", v/1000, v%1000);

diag-printf("------------------------------------------\n")

f = *SA11XO0OSCR;

while (*SA11X03OSCR < f+368640);

diag-printf(" Write zeros.....................");

f = testmemory-zeros(temp, 1024);

if (f) { diag-printf("passed\n"); } else { e++; }

diag-printf(" Write ones....................... ");
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f = testmemoryones(temp, 1024);

if (f) { diagprintf("passed\n"); } else { e++; }

diag-printf (" Write checkerboard...............");

f = testmemory.checkerboard(temp, 1024);

if (f) { diagprintf("passed\n"); } else { e++; }

diag-printf(" (Long) write zeros ..............

f = testmemory-zeros(temp, SETLENGTH);

if (f) { diag-printf("passed\n"); } else { e++; }

diag-printf(" (Long) write ones ...............

f = testmemory-ones(temp, SETLENGTH);

if (f) { diag-printf("passed\n"); } else { e++; }

diag-printf(" (Long) write checkerboard.......I");

f = testmemory-checkerboard(temp, SETLENGTH);

if (f) { diag-printf("passed\n"); } else { e++; }

diag-printf(" Flush cache.....................

f = testdcacheflush(temp, uctemp, 1024);

if (f) { diag-printf("passed\n"); } else { e++; }

HALDCACHESYNCO;

HALDCACHEDISABLEO;

HALDCACHESYNCO;

HALDCACHEINVALIDATEALLO;

diag-printf(" Uncached write zeros ............ "

f = testmemory.zeros(temp, SETLENGTH);
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if (f) { diag-printf("passed\n"); } else { e++; }

diag-printf(" Uncached write ones............

f = testmemory-ones(temp, SETLENGTH);

if (f) { diag.printf("passed\n"); } else { e++; }

diag-printf(" Uncached write checkerboard.....");

f = testmemoryscheckerboard(temp, SETLENGTH);

if (f) { diag-printf("passed\n"); } else { e++; }

HAL_DCACHEENABLEO;

diag-printf(" Addition........................

f = testaddO;

if (f) { diagprintf("passed\n"); } else { e++; }

diag-printf(" Multiplication.................

f = testmultiplyO;

if (f) { diag-printf("passed\n"); } else { e++; }

while (e != 0);

}

while (1);

}
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