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Conformal loop ensembles:

the Markovian characterization and the loop-soup

construction

Scott Sheffield∗ and Wendelin Werner†

Abstract

For random collections of self-avoiding loops in two-dimensional domains, we
define a simple and natural conformal restriction property that is conjecturally
satisfied by the scaling limits of interfaces in models from statistical physics. This
property is basically the combination of conformal invariance and the locality of
the interaction in the model. Unlike the Markov property that Schramm used
to characterize SLE curves (which involves conditioning on partially generated
interfaces up to arbitrary stopping times), this property only involves conditioning
on entire loops and thus appears at first glance to be weaker.

Our first main result is that there exists exactly a one-dimensional family of
random loop collections with this property—one for each κ ∈ (8/3, 4]—and that
the loops are forms of SLEκ. The proof proceeds in two steps. First, uniqueness
is established by showing that every such loop ensemble can be generated by an
“exploration” process based on SLE.

Second, existence is obtained using the two-dimensional Brownian loop-soup,
which is a Poissonian random collection of loops in a planar domain. When the
intensity parameter c of the loop-soup is less than 1, we show that the outer
boundaries of the loop clusters are disjoint simple loops (when c > 1 there is a.s.
only one cluster) that satisfy the conformal restriction axioms. We prove various
results about loop-soups, cluster sizes, and the c = 1 phase transition.

Taken together, our results imply that the following families are equivalent:

1. The random loop ensembles traced by branching Schramm-Loewner Evolu-
tion (SLEκ) curves for κ in (8/3, 4].

2. The outer-cluster-boundary ensembles of Brownian loop-soups for c ∈ (0, 1].

3. The (only) random loop ensembles satisfying the conformal restriction ax-

ioms.
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1 Introduction

1.1 General introduction

SLE and its conformal Markov property. Oded Schramm’s SLE processes intro-
duced in [35] have deeply changed the way mathematicians and physicists understand
critical phenomena in two dimensions. Recall that a chordal SLE is a random non-self-
traversing curve in a simply connected domain, joining two prescribed boundary points
of the domain. Modulo conformal invariance hypotheses that have been proved to hold
in several cases, the scaling limit of an interface that appears in various two-dimensional
models from statistical physics, when boundary conditions are chosen in a particular
way, is one of these SLE curves. For instance, in the Ising model on a triangular lattice,
if one connected arc d+ of the boundary of a simply connected region D is forced to
contain only + spins whereas the complementary arc d− contains only − spins, then
there is a random interface that separates the cluster of + spins attached to d+ from
the cluster of − spins attached to d−; this random curve has recently been proved by
Chelkak and Smirnov to converge in distribution to an SLE curve (SLE3) when one
lets the mesh of the lattice go to zero (and chooses the critical temperature of the Ising
model) [46, 7].

Note that SLE describes the law of one particular interface, not the joint law of
all interfaces (we will come back to this issue later). On the other hand, for a given
model, one expects all macroscopic interfaces to have similar geometric properties, i.e.,
to locally look like an SLE.

Figure 1: A coloring with good boundary conditions (black on one boundary arc, white
on the complementary boundary arc) and the chordal interface (sketch)

The construction of SLE curves can be summarized as follows: The first observation,
contained in Schramm’s original paper [35], is the “analysis” of the problem: Assuming
that the two-dimensional models of statistical physics have a conformally invariant
scaling limit, what can be said about the scaling limit of the interfaces? If one chooses
the boundary conditions in a suitable way, one can identify a special interface that
joins two boundary points (as in the Ising model mentioned above). Schramm argues
that if this curve has a scaling limit, and if its law is conformally invariant, then it
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should satisfy an “exploration” property in the scaling limit. This property, combined
with conformal invariance, implies that it can be defined via iterations of independent
random conformal maps. With the help of Loewner’s theory for slit mappings, this
leads naturally to the definition of the (one parameter) family of SLE processes, which
are random increasing families of compact sets (called Loewner chains), see [35] for
more details. Recall that Loewner chains are constructed via continuous iterations of
infinitesimal conformal perturbations of the identity, and they do not a priori necessarily
correspond to actual planar curves.

A second step, essentially completed in [34], is to start from the definition of these
SLE processes as random Loewner chains, and to prove that they indeed correspond to
random two-dimensional curves. This constructs a one-parameter family of SLE random
curves joining two boundary points of a domain, and the previous steps shows that if
a random curve is conformally invariant (in distribution) and satisfies the exploration
property, then it is necessarily one of these SLE curves.

One can study various properties of these random Loewner chains. For instance, one
can compute critical exponents such as in [18, 19], determine their fractal dimension as
in [34, 1], derive special properties of certain SLE’s – locality, restriction – as in [18, 21],
relate them to discrete lattice models such as uniform spanning trees, percolation, the
discrete Gaussian Free Field or the Ising model as in [20, 45, 46, 5, 38], or to the
Gaussian Free Field and its variants as in [38, 10, 27, 28] etc. Indeed, at this point the
literature is far too large for us to properly survey here. For conditions that ensure that
discrete interfaces converge to SLE paths, see the recent contributions [12, 43].

Conformal Markov property for collections of loops. A natural question is
how to describe the “entire” scaling limit of the lattice-based model, and not only that
of one particular interface. In the present paper, we will answer the following question:
Supposing that a discrete random system gives rise in its scaling limit to a conformally
invariant collection of loops (i.e., interfaces) that remain disjoint (note that this is not
always the case; we will comment on this later), what can these random conformally
invariant collections of loops be?

More precisely, we will define and study random collections of loops that combine
conformal invariance and a natural restriction property (motivated by the fact that
the discrete analog of this property trivially holds for the discrete models we have in
mind). We call such collections of loops Conformal Loop Ensembles (CLE). The two
main results of the present paper can be summarized as follows:

Theorem 1.1. • For each CLE, there exists a value κ ∈ (8/3, 4] such that with
probability one, all loops of the CLE are SLEκ-type loops.

• Conversely, for each κ ∈ (8/3, 4], there exists exactly one CLE with SLEκ type
loops.

In fact, these statements will be derived via two almost independent steps, that
involve different techniques:
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Figure 2: A coloring and the corresponding outermost loops (sketch)

1. We first derive the first of these two statements together with the uniqueness part
of the second one. This will involve a detailed analysis of the CLE property, and
consequences about possible ways to “explore” a CLE. Here, SLE techniques will
be important.

2. We derive the existence part of the second statement using clusters of Poisson
point processes of Brownian loops (the Brownian loop-soups).

In the end, we will have two remarkably different explicit constructions of these
conformal loop ensembles CLEκ for each κ in (8/3, 4] (one based on SLE, one based
on loop-soups). This is useful, since many properties that seem very mysterious from
one perspective are easy from the other. For example, the (expectation) fractal di-
mensions of the individual loops and of the set of points not surrounded by any loop
can be explicitly computed with SLE tools [40], while many monotonicity results and
FKG-type correlation inequalities are immediate from the loop-soup construction [50].
One illustration of the interplay between these two approaches is already present in this
paper: One can use SLE tools to determine exactly the value of the critical intensity
that separates the two percolative phases of the Brownian loop-soup (and to our knowl-
edge, this is the only self-similar percolation model where this critical value has been
determined).

In order to try to explain the logical construction of the proof, let us outline these
two parts separately in the following two subsections.

1.2 Main statements and outline: The Markovian construction

Let us now describe in more detail the results of the first part of the paper, corresponding
to Sections 2 through 8. We are going to study random families Γ = (γj, j ∈ J) of non-
nested simple disjoint loops in simply connected domains. For each simply connected
D, we let PD denote the law of this loop-ensemble in D. We say that this family is
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conformally invariant if for any two simply connected domains D and D′ (that are
not equal to the entire plane) and conformal transformation ψ : D → D′, the image of
PD under ψ is PD′ .

We also make the following “local finiteness” assumption: if D is equal to the unit
disc U, then for any ε > 0, there are PU almost surely only finitely many loops of radius
larger than ǫ in Γ.

Consider two simply connected domains D1 ⊂ D2, and sample a family (γj, j ∈ J)
according to the law PD2 in the larger domain D2. Then, we can subdivide the family
Γ = (γj, j ∈ J) into two parts: Those that do not stay in D1, and those that stay in D1

(we call the latter (γj, j ∈ J1)). Let us now define D∗
1 to be the random set obtained

when removing from the set D1 all the loops of Γ that do not fully stay in D1, together
with their interiors. We say that the family PD satisfies restriction if, for any such D1

and D2, the conditional law of (γj, j ∈ J1) given D
∗
1 is PD∗

1
(or more precisely, it is the

product of PD for each connected component D of D∗
1). When a family is conformally

invariant and satisfies restriction, we say that it is a Conformal Loop Ensemble (CLE).
The goal of the paper is to characterize and construct all possible CLEs.

Figure 3: Restriction property (sketch): given the set of loops intersecting D2 \D1 (the
grey wedge on the left of the right figure) the conditional law of the remaining loops is
an independent CLE in each component of the (interior of the) complement of this set.

By conformal invariance, it is sufficient to describe PD for one given simply connected
domain. Let us for instance consider D to be the upper half-plane H. A first step in
our analysis will be to prove that for all z ∈ H, if Γ is a CLE, then the conditional
law of the unique loop γ(z) ∈ Γ that surrounds z, conditionally on the fact that γ(z)
intersects the ε-neighborhood of the origin, converges as ε→ 0 to a probability measure
P z on “pinned loops”, i.e., loops in H that touch the real line only at the origin. We
will derive various properties of P z, which will eventually enable us to relate it to SLE.
One simple way to describe this relation is as follows:

Theorem 1.2. If Γ is a CLE, then the measure P z exists for all z ∈ H, and it is
equal to the limit when ε → 0 of the law of an SLEκ from ε to 0 in H conditioned
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to disconnect z from infinity in H, for some κ ∈ (8/3, 4] (we call this limit the SLEκ
bubble measure).

This shows that all the loops of a CLE are indeed in some sense “SLEκ loops” for
some κ. In fact, the way in which P z will be described (and in which this theorem will
actually be proved) can be understood as follows (this will be the content of Proposition
4.1) in the case where z = i: Consider A the lowest point on [0, i] ∩ γ(i), and H the
unbounded connected component of the domain obtained by removing from H \ [0, A]
all the loops of the CLE that intersect [0, A). Consider the conformal map Φ from H
onto H with Φ(i) = i and Φ(A) = 0. Then, the law of Φ(γ(i)) is exactly P i.

i i

Figure 4: Description of P i (sketch).

Theorem 1.2 raises the question of whether two different CLE distributions can
correspond to the same measure P z. We will prove that it is not possible, i.e., we will
describe a way to reconstruct the law of the CLE out of the knowledge of P z only, using
a construction based on a Poisson point process of pinned loops:

Theorem 1.3. For each κ ∈ (8/3, 4], there exists at most one CLE such that P z is the
SLEκ bubble measure.

In a way, this reconstruction procedure can be interpreted as an “excursion theory”
for CLEs. It will be very closely related to the decomposition of a Bessel process via
its Poisson point process of excursions. In fact, this will enable us to relate our CLEs
to the random loop ensembles defined in [43] using branching SLE processes, which we
now briefly describe. Recall that when κ ≤ 4, SLEκ is a random simple curve from one
marked boundary point a of a simply connected domain D to another boundary point
b. If we now compare the law of an SLE from a to b in D with that of an SLE from a
to b′ in D when b 6= b′, then they clearly differ, and it is also immediate to check that
the laws of their initial parts (i.e., the laws of the paths up to the first time they exit
some fixed small neighborhood of a) are also not identical. We say that SLEκ is not
target-independent. However, a variant of SLE(κ) called SLE(κ, κ−6) has been shown
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by Schramm and Wilson [42] (see also [43]) to be target-independent. This makes it
possible to couple such processes starting at a and aiming at two different points b and
b′ in such a way that they coincide until the first disconnection point. This in turn
makes it possible to canonically define a conformally invariant “exploration tree” of
SLE (κ, κ− 6) processes rooted at a, and a collection of loops called Conformal Loop
Ensembles in [43]. It is conjectured in [43] that this one-parameter collection of loops
indeed corresponds to the scaling limit of a wide class of discrete lattice-based models,
and that for each κ, the law of the constructed family of loops is independent of the
starting point a.

The branching SLE (κ, κ−6) procedure works for any κ ∈ (8/3, 8], but the obtained
loops are simple and disjoint loops only when κ ≤ 4. In this paper, we use the term
CLE to refer to any collection of loops satisfying conformal invariance and restriction,
while using the term CLEκ to refer to the random collections of loops constructed in
[43]. We shall prove the following:

Theorem 1.4. Every CLE is in fact a CLEκ for some κ ∈ (8/3, 4].

Let us stress that we have not yet proved at this point that the CLEκ are themselves
CLEs (and this was also not established in [43]) – nor that the law of CLEκ is root-
independent. In fact, it is not proved at this point that CLEs exist at all. All of this
will follow from the second part.

1.3 Main statements and outline: The loop-soup construction

We now describe the content of Sections 9 to 11. The Brownian loop-soup, as defined
in [23], is a Poissonian random countable collection of Brownian loops contained within
a fixed simply-connected domain D. We will actually only need to consider the outer
boundaries of the Brownian loops, so we will take the perspective that a loop-soup is
a random countable collection of simple loops (outer boudaries of Brownian loops can
be defined as SLE8/3 loops, see [53]). Let us stress that our conformal loop ensembles
are also random collections of simple loops, but that, unlike the loops of the Brownian
loop-soup, the loops in a CLE are almost surely all disjoint from one another.

The loops of the Brownian loop-soup L = (ℓj, j ∈ J) in the unit disk U are the
points of a Poisson point process with intensity cµ, where c is an intensity constant,
and µ is the Brownian loop measure in U. The Brownian loop-soup measure P = Pc is
the law of this random collection L.

When A and A′ are two closed bounded subsets of a bounded domain D, we denote
by L(A,A′;D) the µ-mass of the set of loops that intersect both sets A and A′, and
stay in D. When the distance between A and A′ is positive, this mass is finite [23].
Similarly, for each fixed positive ǫ, the set of loops that stay in the bounded domain D
and have diameter larger than ǫ, has finite mass for µ.

The conformal restriction property of the Brownian loop measure µ (which in fact
characterizes the measure up to a multiplicative constant; see [53]) implies the following
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two facts (which are essentially the only features of the Brownian loop-soup that we
shall use in the present paper):

1. Conformal invariance: The measure Pc is invariant under any Moebius transfor-
mation of the unit disc onto itself. This invariance makes it in fact possible to
define the law PD of the loop-soup in any simply connected domain D 6= C as the
law of the image of L under any given conformal map Φ from U onto D (because
the law of this image does not depend on the actual choice of Φ).

2. Restriction: If one restricts a loop-soup in U to those loops that stay in a simply
connected domain U ⊂ U, one gets a sample of PU .

We will work with the usual definition (i.e., the usual normalization) of the measure µ
(as in [23] — note that there can be some confusion about a factor 2 in the definition,
related to whether one keeps track of the orientation of the Brownian loops or not).
Since we will be talking about some explicit values of c later, it is important to specify
this normalization. For a direct definition of the measure µ in terms of Brownian loops,
see [23].

Figure 5: Sample of a random-walk loop-soup approximation [22] of a Brownian loop-
soup in a square, by Serban Nacu

As mentioned above, [50] pointed out a way to relate Brownian loop-soups clusters
to SLE-type loops: Two loops in L are said to be adjacent if they intersect. Denote by
C(L) the set of clusters of loops under this relation. For each element C ∈ C(L) write
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C for the closure of the union of all the loops in C and denote by C the family of all
C’s.

Figure 6: A loup-soup and the fillings of its outermost clusters (sketch)

We write F (C) for the filling of C, i.e., for the complement of the unbounded
connected component of C \ C. A cluster C is called outermost if there exists no C ′

such that C ⊂ F (C ′). The outer boundary of such an outermost cluster C is the
boundary of F (C). Denote by Γ the set of outer boundaries of outermost clusters of L.

Let us now state the main results of this second step:

Theorem 1.5. Suppose that L is the Brownian loop-soup with intensity c in U.

• If c ∈ (0, 1], then Γ is a random countable collection of disjoint simple loops that
satisfies the conformal restriction axioms.

• If c > 1, then there is almost surely only one cluster in C(L).

It therefore follows from our Markovian characterization that Γ is a CLEκ (according
to the branching SLE(κ, κ− 6) based definition in [43]) for some κ ∈ (8/3, 4]. We will
in fact also derive the following correspondence:

Theorem 1.6. Fix c ∈ (0, 1] and let L be a Brownian loop-soup of intensity c on U.
Then Γ is a CLEκ where κ ∈ (8/3, 4] is determined by the relation c = (3κ−8)(6−κ)/2κ.

1.4 Main statements and outline: Combining the two steps

Since every κ ∈ (8/3, 4] is obtained for exactly one value of c ∈ (0, 1] in Theorem 1.6,
we immediately get thanks to Theorem 1.4 that the random simple loop configurations
satisfying the conformal restriction axioms are precisely the CLEκ where κ ∈ (8/3, 4],
which completes the proof of Theorem 1.1 and of the fact that the following three
descriptions of simple loop ensembles are equivalent:
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1. The random loop ensembles traced by branching Schramm-Loewner Evolution
(SLEκ) curves for κ in (8/3, 4].

2. The outer-cluster-boundary ensembles of Brownian loop-soups for c ≤ 1.

3. The (only) random loop ensembles satisfying the CLE axioms.

Let us now list some further consequences of these results. Recall from [1] that the
Hausdorff dimension of an SLEκ curve is almost surely 1+ (κ/8). Our results therefore
imply that the boundary of a loop-soup cluster of intensity c ≤ 1 has dimension

37− c−
√
25 + c2 − 26c

24
.

Note that just as for Mandelbrot’s conjecture for the dimension of Brownian boundaries
[17], this statement does not involve SLE, but its proof does. In fact the result about
the dimension of Brownian boundaries can be viewed as the limit when c → 0 of this
one.

Furthermore we may define the carpet of the CLEκ to be the random closed set
obtained by removing from U the interiors (i.e. the bounded connected component of
their complement) of all the loops γ of Γ, and recall that SLE methods allowed [40] to
compute its “expectation dimension” in terms of κ. The present loop-soup construction
of CLEκ enables to prove (see [29]) that this expectation dimension is indeed equal to
its almost sure Hausdorff dimension d, and that in terms of c,

d(c) =
187− 7c+

√
25 + c2 − 26c

96
(1)

The critical loop-soup (for c = 1) corresponds therefore to a carpet of dimension 15/8.
Another direct consequence of the previous results is the “additivity property” of

CLE’s: If one considers two independent CLE’s in the same simply connected domain
D with non-empty boundary, and looks at the union of these two, then either one can
find a cluster whose boundary contains ∂D, or the outer boundaries of the obtained
outermost clusters in this union form another CLE. This is simply due to the fact that
each of the CLE’s can be constructed via Brownian loop soups (of some intensities c1
and c2) so that the union corresponds to a Brownian loop-soup of intensity c1 + c2.
This gives for instance a clean direct geometric meaning to the general idea (present on
various occasions in the physics literature) that relates in some way two independent
copies of the Ising model to the Gaussian Free Field in their large scale limit: The
outermost boundaries defined by the union of two independent CLE3’s in a domain
(recall [7] that CLE3 is the scaling limit of the Ising model loops, and note that it
corresponds to c = 1/2) form a CLE4 (which corresponds to “outermost” level lines of
the Gaussian Free Field, see [39, 10] and to c = 1 = 1/2 + 1/2).
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1.5 Further background

In order to put our results in perspective, we briefly recall some closely related work on
conformally invariant structures.

Continuous conformally invariant structures giving rise to loops. There
exist several natural ways to construct conformally invariant structures in a domain D.
We have already mentioned the Brownian loop-soup that will turn out be instrumental
in the present paper when constructing explicitely CLEs. Another natural conformally
invariant structure that we have also just mentioned is the Gaussian Free Field. This
is a classical basic object in Field Theory. It has been shown (see [38, 10]) that it is
very closely related to SLE processes, and that one can detect all kinds of SLEs within
the Gaussian Free Field. In particular, this indicates that CLEs (at least when κ = 4)
can in fact also be defined and found as “geometric” lines in a Gaussian Free Field.

Discrete models. A number of discrete lattice-based models have been conjectured
to give rise to conformally invariant structures in the fine-mesh limit. For some of
these models, these structures can be described by random collections of loops. We
have already mentioned that Smirnov [45, 46, 47] has proved this conjecture for some
important models (percolation, Ising model — see also [20, 37, 38] for some other
cases). Those models that will be directly relevant to the present paper (i.e., with
disjoint simple loops) include the Ising model and the discrete Gaussian Free Field level
lines ([47, 7, 38, 10]). The scaling limits of percolation and of the FK-model related to
the Ising model give rise to interfaces that are not disjoint. These are of course also
very interesting objects (see [41, 5, 48] for the description of the percolation scaling
limit), but they are not the subject of the present paper. Conjecturally, each of the
CLEs that we will be describing corresponds to the scaling limit of one of the so-called
O(N) models, see e.g. [30, 13], which are one simple way to define discrete random
collections of non-overlapping loops.

In fact, if one starts from a lattice-based model for which one controls the (con-
formally invariant) scaling limit of an observable (loosely speaking, the scaling limit
of the probability of some event), it seems possible (see Smirnov [46]) to use this to
actually prove the convergence of the entire discrete “branching” exploration procedure
to the corresponding branching SLE(κ, κ − 6) exploration tree. It is likely that it is
not so much harder to derive the “full” scaling limit of all interfaces than to show the
convergence of one particular interface to SLE.

Another quite different family of discrete models that might (more conjecturally)
be related to the CLEs that we are studying here, are the “planar maps”, where one
chooses at random a planar graph, defined modulo homeomorphisms, and that are
conjecturally closely related to the above (for instance via their conjectured relation
with the Gaussian Free Field). It could well be that CLEs are rather directly related
to random planar maps chosen in a way to contain “large holes”, such as the ones that
are studied in [24]. In fact, CLEs, planar maps and the Gaussian Free Field should all
be related to each other via Liouville quantum gravity, as described in [11].
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Conformal Field Theory. Note finally that Conformal Field Theory, as developed
in the theoretical physics community since the early eighties [2], is also a setup to
describe the scaling limits of all correlation functions of these critical two-dimensional
lattice models. This indicates that a description of the entire scaling limit of the lattice
models in geometric SLE-type terms could be useful in order to construct such fields.
CLE-based constructions of Conformal Field Theoretical objects “in the bulk” can be
found in Benjamin Doyon’s papers [8, 9]. It may also be mentioned that aspects of
the present paper (infinite measures on “pinned configurations”) can be interpreted
naturally in terms of insertions of boundary operators.
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Part one: the Markovian
characterization

2 The CLE property

2.1 Definitions

A simple loop in the complex plane will be the image of the unit circle in the plane
under a continuous injective map (in other words we will identify two loops if one of
them is obtained by a bijective reparametrization of the other one; note that our loops
are not oriented). Note that a simple loop γ separates the plane into two connected
components that we call its interior int(γ) (the bounded one) and its exterior (the
unbounded one) and that each one of these two sets characterizes the loop. There are
various natural distances and σ-fields that one can use for the space L of loops. We will
use the σ-field Σ generated by all the events of the type {O ⊂ int(γ)} when O spans the
set of open sets in the unit plane. Note that this σ-field is also generated by the events
of the type {x ∈ int(γ)} where x spans a countable dense subset Q of the plane (recall
that we are considering simple loops so that O ⊂ int(γ) as soon as O ∩Q ⊂ int(γ)).

In the present paper, we will consider (at most countable) collections Γ = (γj, j ∈ J)
of simple loops. One way to properly define such a collection is to identify it with the
point-measure

µΓ =
∑

j∈J
δγj .

Note that this space of collections of loops is naturally equipped with the σ-field gen-
erated by the sets {Γ : #(Γ ∩ A) = k} = {Γ : µΓ(A) = k}, where A ∈ Σ and
k ≥ 0.

We will say that (γj, j ∈ J) is a simple loop configuration in the bounded simply
connected domain D if the following conditions hold:

• For each j ∈ J , the loop γj is a simple loop in D.

• For each j 6= j′ ∈ J , the loops γj and γj′ are disjoint.

• For each j 6= j′ ∈ J , γj is not in the interior of γj′: The loops are not nested.

• For each ε > 0, only finitely many loops γj have a diameter greater than ε. We
call this the local finiteness condition.

All these conditions are clearly measurable with respect to the σ-field discussed above.

We are going to study random simple loop configurations with some special proper-
ties. More precisely, we will say that the random simple loop configuration Γ = (γj, j ∈
J) in the unit disc U is a Conformal Loop Ensemble (CLE) if it satisfies the following
properties:
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• Non-triviality: The probability that J 6= ∅ is positive.

• Conformal invariance: The law of Γ is invariant under any conformal transforma-
tion from U onto itself. This invariance makes it in fact possible to define the law
of the loop-ensemble ΓD in any simply connected domain D 6= C as the law of
the image of Γ under any given conformal map Φ from U onto D (this is because
the law of this image does not depend on the actual choice of Φ). We can also
define the law of a loop-ensemble in any open domain D 6= C that is the union
of disjoint open simply connected sets by taking independent loop-ensembles in
each of the connected components of D. We call this law PD.

• Restriction: To state this important property, we need to introduce some notation.
Suppose that U is a simply connected subset of the unit disc. Define

I = I(Γ, U) = {j ∈ J : γj 6⊂ U}

and J∗ = J∗(Γ, U) = J \ I = {j ∈ J : γj ⊂ U}. Define the (random) set

U∗ = U∗(U,Γ) = U \ ∪j∈I int(γj).

This set U∗ is a (not necessarily simply connected) open subset of U (because
of the local finiteness condition). The restriction property is that (for all U),
the conditional law of (γj, j ∈ J∗) given U∗ (or alternatively given the family
(γj, j ∈ I)) is PU∗ .

This definition is motivated by the fact that for many discrete loop-models that are
conjectured to be conformally invariant in the scaling limit, the discrete analog of this
restriction property holds. Examples include the O(N) models (and in particular the
critical Ising model interfaces). The goal of the paper is to classify all possible CLEs,
and therefore the possible conformally invariant scaling limits of such loop-models.

The non-nesting property can seem surprising since the discrete models allow nested
loops. The CLE in fact describes (when the domain D is fixed) the conjectural scaling
limit of the law of the “outermost loops” (those that are not surrounded by any other
one). In the discrete models, one can discover them “from the outside” in such a way
that the conditional law of the remaining loops given the outermost loops is just made
of independent copies of the model in the interior of each of the discovered loops. Hence,
the conjectural scaling limit of the full family of loops is obtained by iteratively defining
CLEs inside each loop.

At first sight, the restriction property does not look that restrictive. In particular, as
it involves only interaction between entire loops, it may seem weaker than the conformal
exploration property of SLE (or of branching SLE(κ, κ − 6)), that describes the way
in which the path is progressively constructed. However (and this is the content of
Theorems 1.2 and 1.3), the family of such CLEs is one-dimensional too, parameterized
by κ ∈ (8/3, 4].
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2.2 Simple properties of CLEs

We now list some simple consequences of the CLE definition. Suppose that Γ = (γj, j ∈
J) is a CLE in U.

1. Then, for any given z ∈ U, there almost surely exists a loop γj in Γ such that
z ∈ int(γj). Here is a short proof of this fact: Define u = u(z) to be the probability
that z is in the interior of some loop in Γ. By Moebius invariance, this quantity
u does not depend on z. Furthermore, since P (J 6= ∅) > 0, it follows that u > 0
(otherwise the expected area of the union of all interiors of loops would be zero).
Hence, there exists r ∈ (0, 1) such that with a positive probability p, the origin is
in the interior of some loop in Γ that intersects the slit [r, 1] (we call A this event).
We now define U = U \ [r, 1) and apply the restriction property. If A holds, then
the origin is in the interior of some loop of Γ. If A does not hold, then the origin
is in one of the connected components of Ũ and the conditional probability that it
is surrounded by a loop in this domain is therefore still u. Hence, u = p+(1−p)u
so that u = 1.

2. The previous observation implies immediately that J is almost surely infinite.
Indeed, almost surely, all the points 1− 1/n, n ≥ 1 are surrounded by a loop, and
any given loop can only surround finitely many of these points (because it is at
positive distance from ∂U).

3. Let M(θ) denote the set of configurations Γ = (γj , j ∈ J) such that for all j ∈ J ,
the radius [0, eiθ] is never locally “touched without crossing” by γj (in other words,
θ is a local extremum of none of the arg(γj)’s). Then, for each given θ, Γ is almost
surely in M(θ). Indeed, the argument of a given loop that does not pass through
the origin can anyway at most have countably many “local maxima”, and there
are also countably many loops. Hence, the set of θ’s such that Γ /∈ M(θ) is at
most countable. But the law of the CLE is invariant under rotations, so that
P (Γ ∈ M(θ)) does not depend on θ. Since its mean value (for θ ∈ [0, 2π]) is 1, it
is always equal to 1.

If we now define, for all r > 0, the Moebius transformation of the unit disc such
that ψ(1) = 1, ψ(−1) = −1 and ψ′(1) = r, the invariance of the CLE law under
ψ shows that for each given r, almost surely, no loop of the CLE locally touches
ψ([−i, i]) without crossing it.

4. For any r < 1, the probability that rU is entirely contained in the interior of
one single loop is positive: This is because each simple loop γ that surrounds the
origin can be approximated “from the outside” by a loop η on a grid of rational
meshsize with as much precision as one wants. This implies in particular that
one can find one such loop η in such a way that the image of one loop γ in the
CLE under a conformal map from int(η) onto U that preserves the origin has an
interior containing rU. Hence, if we apply the restriction property to U = int(η),
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we get readily that with positive probability, the interior of some loop in the CLE
contains rU. Since this property will not be directly used nor needed later in the
paper, we leave the details of the proof to the reader.

5. The restriction property continues to hold if we replace the simply connected
domain U ⊂ U with the union U of countably many disjoint simply connected
domains Ui ⊂ U. That is, we still have that the conditional law of (γj, j ∈ J∗)
given U∗ (or alternatively given the family (γj, j ∈ I)) is PU∗ . To see this, note first
that applying the property separately for each Ui gives us the marginal conditional
laws for the set of loops within each of the Ui. Then, observe that the conditional
law of the set of loops in Ui is unchanged when one further conditions on the set
of loops in ∪i′ 6=iUi′ . Hence, the sets of loops in the domains U∗

1 , . . . , U
∗
i , . . . are in

fact independent (conditionally on (γj, j ∈ I)).

3 Explorations

3.1 Exploring CLEs – heuristics

Suppose that Γ = (γj, j ∈ J) is a CLE in the unit disc U. Suppose that ε > 0 is
given. Cut out from the disc a little given shape S = S(ε) ⊂ U of radius ε around 1.
If y is a point on the unit circle, then we may write yS for y times the set S — i.e.,
S rotated around the circle via multiplication by y. The precise shape of S will not
be so important; for concreteness, we may at this point think of S as being equal to
the ε-neighborhood of 1 in the unit disc. Let U1 denote the connected component that
contains the origin of the set obtained when removing from U ′

1 := U \ S all the loops
that do not stay in U ′

1. If the loop γ0 in the CLE that surrounds the origin did not go
out of U\S, then the (conditional) law of the CLE restricted to U1 (given the knowledge
of U1) is again a CLE in this domain (this is just the CLE restriction property). We
then define the conformal map Φ1 from U1 onto U with Φ1(0) = 0 and Φ′

1(0) > 0.
Now we again explore a little piece of U1: we choose some point y1 on the unit

circle and define U ′
2 to be the domain obtained when removing from U1 the preimage

(under Φ1) of the shape S centered around y1 (i.e., U ′
2 = Φ−1

1 (U \ y1S)). Again, we
define the connected component U2 that contains the origin of the domain obtained
when removing from U ′

2 the loops that do not stay in U ′
2 and the conformal map Φ2

from U2 onto U normalized at the origin.
We then explore in U2 if γ0 ⊂ U2, and so on. One can iterate this procedure until

we finally “discover” the loop γ0 that surrounds the origin. Clearly, this will happen
after finitely many steps with probability one, because at each step the derivative Φ′

n(0)
is multiplied by a quantity that is bounded from below by a constant v > 1 (this is
because at each step, one composes Φn with a conformal map corresponding to the
removal of at least a shape ynS in order to define Φn+1). Hence, if we never discovered
γ0, it would follow from Koebe’s 1/4-Theorem that d(∂Un, 0) → 0 as n → ∞, and this
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Figure 7: The first exploration step (sketch)

would contradict the fact that γ0 is almost surely at positive distance from 0.
We call N the random finite step after which the loop γ0 is discovered i.e., such that

γ0 ⊂ UN but γ0 6⊂ U ′
N+1. It it important to notice that at each step until N , one is in

fact repeating the same experiment (up to a conformal transformation), namely cutting
out the shape S from U and then cutting out all loops that intersect S. Because of
the CLE’s conformal restriction property, this procedure defines an i.i.d. sequence of
steps, stopped at the geometric random variable N , which is the first step at which one
discovers a loop surrounding the origin that intersects U \ yNS. This shows also that
the conditional law of the CLE in U given the fact that γ0 ∩ S 6= ∅ is in fact identical
to the image under y−1

N ΦN of the CLE in UN .
In the coming sections, we will use various sequences yn = yn(ε). One natural possi-

bility is to simply always choose yn = 1. This will give rise to the ε radial-explorations
that will be discussed in Section 4. However, we first need another procedure to choose
yn(ε) that will enable to control the behavior of ΦN(ε), of UN(ε) and of yN(ε) as ε tends
to 0. This will then allow us show that the conditional law of the CLE in U given the
fact that γ0 ∩ S(ε) 6= ∅ has a limit when ε → 0.

3.2 Discovering the loops that intersect a given set

The precise shape of the sets S that we will use will in fact not be really important, as
long as they are close to small semi-discs. It will be convenient to define, for each y on
the unit circle, the set D(y, ε) to be the image of the set {z ∈ H : |z| ≤ ε}, under the
conformal map Ψ : z 7→ y(i− z)/(i+ z) from the upper half-plane H onto the unit disc
such that Ψ(i) = 0 and Ψ(0) = y. Note that |Ψ′(0)| = 2, so that when ε is very small,
the set D(y, ε) is close to the intersection of a small disc of radius 2ε around y with the
unit disc. This set D(1, ε) will play the role of our set S(ε).
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Suppose that Γ = (γj, j ∈ J) is a given (deterministic) simple loop-configuration in
U. (In this section, we will derive deterministic statements that we will apply to CLEs
in the next section.) We suppose that:

1. In Γ, one loop (that we call γ0) has 0 in its interior.

2. A ⊂ U is a given closed simply connected set such that U\A is simply connected,
A is the closure of the interior of A, and the length of ∂A ∩ ∂U is positive.

3. The loop γ0 does not intersect A.

4. All γj’s in Γ that intersect ∂A also intersect the interior of A.

Our goal will be to explore almost all (when ε is small) large loops of Γ that intersect
A by iterating explorations of ε-discs.

When ε > 0 is given, it will be useful to have general critera that imply that a subset
V of the unit disc contains D(y, ε) for at least one y ∈ U: Consider two independent
Brownian motions, B1 and B2 started from the origin, and stopped at their first hitting
times T1 and T2 of the unit circle. Consider Ua and U b the two connected components
of U \ (B1[0, T1] ∪ B2[0, T2]) that have an arc of ∂U on their boundary. Note that for
small enough ǫ, the probability p(ε) that both Ua and U b contain some D(y, ε) is clearly
close to 1.

Suppose now that V is a closed subset of U such that U \ V is simply connected,
and let u(V ) be the probability that one of the two random sets Ua or U b is a subset
of V . Then:

Lemma 3.1. For all u > 0, there exists a positive ε0 = ε0(u) such that there exists
y ∈ ∂U with D(y, ε) ⊂ V as soon as u(V ) ≥ u.

Proof. The definition of p(ε) and of u(V ) shows that V contains some D(y, ε) with
a probability at least u − (1 − p(ε)). Since this is a deterministic fact about V , we
conclude that the set V does indeed contain some set D(y, ε) for some y ∈ ∂U as soon as
p(ε) ≥ 1−u/2. It therefore suffices to choose ε0 in such a way that u0 = 2(1−p(ε0)).

Define now a particular class of iterative exploration procedures as follows: Let
U0 = U and Φ0(z) = z. For j ≥ 0:

• Choose some yj on ∂U in such a way that Φ−1
j (D(yj, ε)) ⊂ A.

• Define Uj+1 as the connected component that contains the origin of the set ob-
tained by removing from U ′

j+1 := Uj \Φ−1
j (D(yj, ε)) all the loops in Γ that do not

stay in U ′
j+1.

• Let Φj+1 be the conformal map from Uj+1 onto U such that Φj+1(0) = 0 and
Φ′
j+1(0) > 0.
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There is only one way in which such an iterative definition can be brought to an
end, namely if at some step N0, it is not possible anymore to find a point y on ∂U
such that Φ−1

N0
(D(y, ε)) ⊂ A (otherwise it means that at some step N , one actually has

discovered the loop γ0, so that UN+1 is not well-defined but we know that this cannot
be the case because we have assumed that γ0∩A = ∅). Such explorations (Φn, n ≤ N0)
will be called ε-admissible explorations of the pair (Γ, A).

Figure 8: A domain A, sketch of a completed ε-admissible exploration of (Γ, A)

Our goal is to show that when ε gets smaller, the set UN0 is close to Ũ , where Ũ is
the connected component containing the origin of U \ ∪i∈I(U)γi (here U = U \ A).

The local finiteness condition implies that the boundary of Ũ consists of points that
are either on ∂U or on some loop γj (in this case, we say that this loop γj contributes
to this boundary).

Lemma 3.2. For every α > 0, there exists ε′0 = ε′0(Γ, α, A) such that for all ε ≤ ε′0,
every loop of diameter greater than α that contributes to ∂Ũ is discovered by any ε-
admissible exploration of (Γ, A).

Proof. Suppose now that γj is a loop in Γ that contributes to the boundary of Ũ . Our
assumptions on Γ and A ensure that γj therefore intersects both the interior of A and
U \ A. This implies that we can define three discs d1, d2 and d3 in the interior of γj
such that d1 ⊂ U \ A, and d2 ⊂ d3 ⊂ A.

Suppose that for some n ≤ N0, this loop γj has not yet been discovered at step n.
Since γj ∩ ∂Ũ 6= ∅ and Ũ ⊂ Un, we see that γj ⊂ Un. Since this loop has a positive
diameter, and since Γ is locally finite, we can conclude that with a positive probability
u that depends on (Γ, A, γj, d1, d2, d3), two Brownian motions B1 and B2 started from
the origin behave as follows:
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d1

Figure 9: The loop γj , the three discs and the Brownian motions (sketch)

• They both enter d1 without hitting A or ∂U or any of the other loops γi for
i ∈ I(U).

• They both subsequently enter d2 without going out of int(γj).

• They both subsequently disconnect d2 from the boundary of d3 before hitting it.
(This in particular guarantees that the curves hit one another within the annulus
d3 \ d2.)

• They both subsequently hit ∂U without going out of A.

This shows that one of the sets Ua and U b as defined before Lemma 3.1 is contained in
A with probability at least u. In fact, if we stop the two Brownian motions at their first
exit of Un instead on the hitting time of ∂U, the same phenomenon will hold: One of the
two sets Ua

n and U b
n (with obvious notation) will be contained in Un∩A with probability

at least u. By conformal invariance of planar Brownian motion, if we apply Lemma 3.1
to the conformal images of these two Brownian motions under Φn, we get that if ε is
chosen to be sufficiently small, then it is always possible to find an ε-admissible point
yn+1. Hence, N0 > n, i.e. n is not the final step of the exploration.

As a consequence, we see that the loop γj is certainly discovered before N0, i.e., that
γj ⊂ U \ UN0 , for all ε ≤ ε′0(γj,Γ, A). The lemma follows because for each positive α,
there are only finitely many loops of diameter greater than α in Γ.

Loosely speaking, this lemma tells us that indeed, UN0 converges to Ũ as ε → 0.
We now make this statement more precise, in terms of the conformal maps ΦN0 and Φ̃,
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where Φ̃ denotes the conformal map from Ũ onto U with Φ̃(0) = 0 and Φ̃′(0) > 0. Let
us first note that Ũ ⊂ UN0 because the construction of UN0 implies that before N0 one
can only discover loops that intersect A.

Let us now consider a two-dimensional Brownian motion B started from the origin,
and define T (respectively T̃ ) the first time at which it exits U (resp. Ũ). Let us make
a fifth assumption on A and Γ:

• 5. Almost surely, BT ∈ ∂U ∪ (∪j int(γj)).

Note that this is indeed almost surely the case for a CLE (because Γ is then inde-
pendent of BT so that BT is a.s. in the interior of some loop if it is not on ∂U). This
assumption implies that almost surely, either T̃ < T (and BT̃ is on the boundary of

some loop of positive diameter) or BT = BT̃ ∈ ∂U. The previous result shows that if T̂

denotes the exit time of UN0 (for some given ε-admissible exploration), then T̂ = T̃ for
all small enough ε.

It therefore follows that ΦN0 converges to Φ̃ in the sense that for all proper compact
subsets K of U, the functions Φ−1

N0
converge uniformly to Φ̃−1 in K as ε→ 0. We shall

use this notion of convergence on various occasions throughout the paper. Note that
this it corresponds to the convergence with respect to a distance d, for instance

d(ϕ1, ϕ2) =
∑

n≥1

2−n max
|z|≤1−1/n

‖ϕ−1
1 (z)− ϕ−1

2 (z)‖.

We have therefore shown that:

Lemma 3.3. For each given loop configuration and A (satisfying conditions 1-5),
d(ΦN0 , Φ̃) tends to 0 as ε → 0, uniformly with respect to all ε-admissible explorations
of (Γ, A).

Suppose now that γ0 intersects the interior of A. Exactly the same arguments show
that there exists ε1 = ε(Γ, A) such that for all “ε-admissible choices” of the yj’s for
ε ≤ ε1, one discovers γ0 during the exploration (and this exploration is then stopped in
this way).

3.3 Discovering random configurations along some given line

For each small δ, we define the wedge Wδ = {ueiθ : u ∈ (0, 1) and |θ| ≤ δ}. For each
positive r, let W̃r denote the image of the positive half disc {z ∈ U : Re (z) > 0} under
the Moebius transformation of the unit disc with ψ(1) = 1, ψ(−1) = −1 and ψ′(1) = r.
Note that r 7→ W̃r is continuously increasing on (0, 1] from W̃0+ = {1} to the positive
half-disc W̃1. For all non-negative integer k ≤ 1/δ, we then define

Aδ,k =Wδ ∩ W̃kδ.
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Suppose that δ is fixed, and that Γ is a loop-configuration satisfying conditions 1-5 for
all set Aδ,k for k ≤ K, where

K = K(Γ, δ) = max{k : γ0 ∩ Aδk = ∅}.

We are going to define the conformal maps Φ̃δ,1, . . . , Φ̃δ,K corresponding to the conformal
map Φ̃ when A is respectively equal to Aδ,1, . . . , Aδ,K .

For each given δ and ε, it is possible to define an ε-admissible chain of explorations
of Γ and Aδ,1, Aδ,2, . . . as follows: Let us first start with an ε-admissible exploration
of (Γ, Aδ,1). If K ≥ 1, then such an exploration does not encounter γ0, and we then
continue to explore until we get an ε-admissible exploration of (Γ, Aδ,2), and so on, until
the last value K ′ of k for which the exploration of (Γ, Aδ,k) fails to discovers γ0. In this
way, we define conformal maps

Φ̃δ,1ε , . . . , Φ̃
δ,K ′

ε

corresponding to the sets discovered at each of theseK ′ explorations. Note thatK ′ ≥ K.
One can then also start to explore the set Aδ,K

′+1 until one actually discovers the loop
γ0.

Figure 10: An exploration-chain and γ0 (sketch)

This procedure therefore defines a single ε-admissible exploration (via some sequence
(Φn, yn)), that explores the sets A

δ,j’s in an ordered way, and finally stops at some step
N , i.e., the last step before one actually discovers γ0. We call this an ε-admissible
exploration chain of Aδ,1, Aδ,2, . . .. Our previous results show that uniformly over all
such ε-admissible exploration-chains (for each given Γ and δ):

• K ′ = K for all sufficiently small ε.
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• limε→0(Φ̃
δ,1
ε , . . . , Φ̃

δ,K ′

ε ) = (Φ̃δ,1, . . . , Φ̃δ,K).

We now suppose that Γ is a random loop-configuration. Then, for each δ, K =
K(Γ, δ) is random. We assume that for each given δ, the conditions 1-5 hold almost
surely for each of the K sets Aδ1, . . . , A

δ
K . The previous results therefore hold almost

surely; this implies for instance that for each η > 0, there exists ε2(δ) such that for all
such ε-admissible exploration-chain of (Γ, Aδ1, A

δ
2, . . .) with ε ≤ ε2(δ),

P (K ′ = K and d(Φ̃δ,Kε , Φ̃δ,K) < η) ≥ 1− η.

We will now wish to let δ go to 0 (simultaneously with ε, taking ε(δ) sufficiently
small) so that we will (up to small errors that disappear as ε and δ vanish) just explore
the loops that intersect the segment [0, 1] “from 1 to 0” up to the first point at which
it meets γ0. We therefore define

R = max{r ∈ [0, 1] , r ∈ γ0}.

We define the open set Û as the connected component containing the origin of the
set obtained by removing from U \ [R, 1] all the loops that intersect (R, 1]. Note that
γ0 ⊂ Û ∪ {R}. We let Φ̂ denote the conformal map from Û onto U such that Φ̂(0) = 0
and Φ̂′(0) > 0. We also define ŷ = Φ̂(R).

γ0

1

R

Û

Figure 11: Exploring up to γ0 (sketch)

Proposition 3.4. For a well-chosen function ε3 = ε3(δ) (that depends on the law
of Γ only), for any choice of ε(δ)-admissible exploration-chain of the random loop-
configuration Γ and Aδ,1, . . . with ε(δ) ≤ ε3(δ), the random pair (ΦN , yN) converges
almost surely to the pair (Φ̂, ŷ) as δ → 0.

25



Proof. Note first that our assumptions on Γ imply that almost surely Φδ,K → Φ̂ as
δ → 0 (this is a statement about Γ that does not involve explorations).

We know that γ0 intersects Aδ,K+1 \ Aδ,K . The local finiteness of Γ and the fact
that any two loops are disjoint therefore implies that the diameter of the second largest
loop (after γ0) of Γ that intersects this set almost surely tends to 0 as δ → 0. This in
particular implies that almost surely, the distance between ΦN and Φ̃δ,Kε tends to 0 as
δ → 0 (uniformly with respect to the choice of the exploration, as long as ε(δ) tends to
0 sufficiently fast).

Recall finally that for each given δ, Φ̃δ,Kε → Φδ,K as ε → 0. Hence, if ε(δ) is chosen
small enough, the map ΦN indeed converges almost surely to Φ̂ as δ → 0.

It now remains to show that yN → ŷ. Note that R ∈ UN (because at that step, γ0
has not yet been discovered), that R ∈ Aδ,K

′+1 \ Aδ,K ′

(with high probability, if ε(δ)
is chosen to be small enough). On the other hand, the definition of the exploration
procedure and of K ′ shows that

Φ−1
N (D(yN , ε)) ∩ (Aδ,K

′+1 \ Aδ,K ′

) 6= ∅

so that if we choose ε(δ) small enough, then the Euclidean distance between Φ−1
N (D(yN , ε))

and R tends to 0 almost surely.
Let us look at the situation at stepN : The loop ΦN (γ0) in the unit disc is intersecting

D(yN , ε) (by definition of N), and it contains also the point ΦN(R) (because R ∈ γ0).
Suppose that |ΦN (R) − yN | does not almost surely tend to 0 (when δ → 0); then,
with positive probability, we could find a sequence δj → 0 such that ΦN(R) and yN
converge to different points on the unit circle along this subsequence. In particular, the
harmonic measure at the origin of any of the two parts of the loop between the moment
it visits ΦN(R) and the ε-neighborhood of yN in U is bounded away from 0. Hence,
this is also true for the preimage γ0 under ΦN : γ0 contains two disjoint paths from R
to Φ−1

N (D(yN , ε)) such that their harmonic measure at 0 in U is bounded away from 0.
Recall that Φ−1

N (D(yN , ε)) ⊂ Aδ,K
′+1. In the limit when δ → 0, we therefore end up with

a contradiction, as we have two parts of γ0 with positive harmonic measure from the
origin, that join R to some point of [R, 1], which is not possible because γ0 ∩ (R, 1] 6= ∅
and γ0 is a simple loop. Hence, we can conclude that |ΦN(R)− yN | → 0 almost surely.

Finally, let us observe that ΦN (R) → Φ̂(R) almost surely (this follows for instance
from the fact that a continuous path that stays inside γ0 and joins the origin to R stays
both in all UN ’s and in Û). It follows that yN converges almost surely to ŷ.

4 The one-point pinned loop measure

4.1 The pinned loop surrounding the origin in U

We will use the previous exploration mechanisms in the context of CLEs. It is natural
to define the notion of Markovian explorations of a CLE. Suppose now that Γ is a CLE
in the unit disc and that ε is fixed. When γ0 ∩ D(1, ε) = ∅, define just as before the
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set U1 and the conformal map Φ1 obtained by discovering the set of loops Γ1 of Γ that
intersect D(y0, ε). Then we choose y1 and proceed as before, until we discover (at step
N +1) the loop γ0 that surrounds the origin. We say that the exploration is Markovian
if for each n, the choice of yn is measurable with respect to the σ-field generated by
Γ1, . . . ,Γn, i.e., the set of all already discovered loops.

A straightforward consequence of the CLE’s restriction property is that for each n,
conditionally on Γ1, y1, . . . ,Γn, yn (and n ≤ N), the law of the set of loops of Γ that stay
in Un is that of a CLE in Un. In other words, the image of this set of loops under Φn is
independent of Γ1, y1, . . . ,Γn, yn (on the event {n ≤ N}). In fact, we could have used
this independence property as a definition of Markovian explorations (it would allow
extra randomness in the choice of the sequence yn).

In other words, an exploration is Markovian if we can choose yn as we wish using the
information about the loops that have already been discovered, but we are not allowed
to use any information about the yet-to-be-discovered loops. This ensures that one
obtains an iteration of i.i.d. explorations as argued in subsection 3.1. In particular, if
an exploration is Markovian, the random variable N is geometric

P (N ≥ n) = P (γ0 ∩D(1, ε) = ∅)n,

and y−1
N Φ−1

N (γ0) is distributed according to the conditional law of γ0 given {γ∩D(1, ε) 6=
∅}.

Recall that a CLE is a random loop configuration such that for any given δ and
k ≤ 1/δ, almost surely, all loops that intersect Aδ,k also intersect its interior. We can
therefore apply Proposition 3.4, and use Markovian ε(δ)-admissible successive explo-
rations of Aδ,1, Aδ,2, . . . Combining this with our description of the conditional law of γ0
given {γ ∩D(1, ε) 6= ∅}, we get the following result:

Proposition 4.1. When ε→ 0, the law of γ0 conditioned on the event {γ0∩D(1, ε) 6= ∅}
converges to the law of ŷ−1Φ̂(γ0) (using for instance the weak convergence with respect
to the Hausdorff topology on compact sets).

Note that local finiteness of the CLE ensures that Φ̂(γ0) is a simple loop in U that
intersects ∂U only at ŷ, so that ŷ−1Φ̂(γ0) is indeed a loop in U that touches ∂U only at
1.

This limiting law will inherit from the CLE various interesting properties. The loop
γ0 in the CLE can be discovered along the ray [1, 0] in the unit disc as in this proposition,
but one could also have chosen any other smooth continuous simple curve from ∂U to
0 instead of that ray and discovered it that way. This fact should correspond to some
property of the law of this pinned loop. Conformal invariance of the CLE will also
imply some conformal invariance properties of this pinned loop. The goal of the coming
sections is to derive and exploit some of these features.
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Figure 12: The law of γ0 conditioned on the event {γ0∩D(1, ε) 6= ∅} converges (sketch)

4.2 The infinite measure on pinned loops in H

We are now going to associate to each CLE a natural measure on loops that can loosely
be described as the law of a loop “conditioned to touch a given boundary point”. In
the previous subsection, we have constructed a probability measure on loops in the unit
disc that was roughly the law of γ0 (the loop in the CLE that surrounds the origin)
“conditioned to touch the boundary point 1”. We will extend this to an infinite measure
on loops that touch the boundary at one point; the measure will be infinite because
we will not prescribe the “size” of the boundary-touching loop; it can be viewed as
a CLE “excursion measure” (“bubble measure” would also be a possible description).
We find it more convenient at this stage to work in the upper half-plane rather than

Figure 13: The construction of µi (sketch)

the unit disc because scaling arguments will be easier to describe in this setting. We
therefore first define the probability measure µi as the image of the law of Φ̂(γ0) under
the conformal map from U onto the half-plane that maps 0 to i, and ŷ to 0 (we use the
notation µi instead of P i as in the introduction, because we will very soon be handling
measures that are not probability measures). In other words, the probability measure
µi is the limit as ε → 0 of the law of the loop γ(i) that surrounds i in a CLE in the

28



upper half-plane, conditioned by the fact that it intersects the set Cε defined by

Cε = {z ∈ H : |z| = ε}.

For a loop-configuration Γ in the upper half-plane and z ∈ H, we denote by γ(z)
the loop of Γ that surrounds z (if this loop exists).

When z = iλ for λ > 0, scale invariance of the CLE shows that the limit as ε → 0
of the conditional law of γ(iλ) given that it intersects the disc of radius λε exists, and
that it is just the image of µi under scaling.

Let us denote by u(ε) the probability that the loop γ(i) intersects the disc of radius
ε around the origin in a CLE. The description of the measure µi (in terms of Φ̂) derived
in the previous section shows that at least for almost all λ sufficiently close to one, the
loop that surrounds i also surrounds iλ and i/λ with probability at least 1/2 under µi,
and that i/λ as well as λi are a.s. not on γ(i) (when λ is fixed).

Let Oi denote the interior of the loop γ(i). We know that

lim
ε→0

P (λi ∈ Oi and γ(i) ∩ Cλε 6= ∅)
u(λε)

= µi(λi ∈ Oi).

On the other hand, the scaling property of the CLE shows that when ε→ 0,

P (λi ∈ Oi and γ(i) ∩ Cλε 6= ∅)
u(λε)

=
P (i ∈ Oλi and γ(λi) ∩ Cλε 6= ∅)

u(λε)

=
P (i/λ ∈ Oi and γ(i) ∩ Cε 6= ∅)

u(ε)
× u(ε)

u(λε)

∼ µi(i/λ ∈ Oi)×
u(ε)

u(λε)

Hence, for all λ sufficiently close to 1, we conclude that

lim
ε→0

u(λε)

u(ε)
=
µi(i/λ ∈ Oi)

µi(λi ∈ Oi)
.

If we call f(λ) this last quantity, this identity clearly implies that this convergence in
fact holds for all positive λ, and that f(λλ′) = f(λ)f(λ′). Furthermore, we see that
f(λ) → 1 as λ→ 1. Hence:

Proposition 4.2. There exists a β ≥ 0 (β cannot be negative since ε 7→ u(ε) is non-
decreasing) such that for all positive λ,

f(λ) = lim
ε→0

u(λε)

u(ε)
= λβ.
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This has the following consequence:

Corollary 4.3. u(ε) = εβ+o(1) as ε→ 0+.

Proof. Note that for any β ′ < β < β ′′, there exists ε0 = 2−n0 such that for all ε ≤ ε0,

2β
′

< u(2ε)/u(ε) < 2β
′′

.

Hence, for all n ≥ 0 it follows that

u(ε0)2
−nβ′′

< u(ε02
−n) < u(ε0)2

−nβ′

.

It follows that u(ε02
−n) = 2−nβ+o(n) when n→ ∞. Since ε 7→ u(ε) is an non-decreasing

function of ε, the corollary follows.

Because of scaling, we can now define for all z = iλ, a measure µz on loops γ(z)
that surround z and touch the real line at the origin as follows:

µz(γ(z) ∈ A) = λ−βµi(λγ(i) ∈ A)

for any measurable set A of loops. This is also the limit of u(ε)−1 times the law of γ(z)
in an CLE, restricted to the event {γ(z) ∩ Cε 6= ∅}.

Let us now choose any z in the upper half-plane. Let ψ = ψz now denote the Moebius
transformation from the upper half-plane onto itself with ψ(z) = i and ψ(0) = 0. Let
λ = 1/ψ′(0). Clearly, for any given a > 1, for any small enough ε, the image of Cε
under ψ is “squeezed” between the circles Cε/aλ and Caε/λ. It follows readily (using the
fact that f(a) → 1 as a→ 1) that the measure µz defined for all measurable A by

µz(γ(z) ∈ A) = λ−βµi(ψ−1(γ(i)) ∈ A)

can again be viewed as the limit when ε → 0 of u(ε)−1 times the distribution of γ(z)
restricted to {γ(z) ∩ Cε 6= ∅}.

Finally, we can now define our measure µ on pinned loops. It is the measure on
simple loops that touch the real line at the origin and otherwise stay in the upper half-
plane (this is what we call a pinned loop) such that for all z ∈ H, it coincides with
µz on the set of loops that surround z. Indeed, the previous limiting procedure shows
immediately that for any two points z and z′, the two measures µz and µz

′

coincide
on the set of loops that surround both z and z′. On the other hand, we know that a
pinned loop necessarily surrounds a small disc: thus, the requirement that µ coincides
with the µz’s (as described above) fully determines µ.

Let us sum up the properties of the pinned measure µ that we will use in what
follows:
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• For any conformal transformation ψ from the upper half-plane onto itself with
ψ(0) = 0, we have

ψ ◦ µ = |ψ′(0)|−βµ.
This is the conformal covariance property of µ. Note that the maps z 7→ −za/(z−
a) for real a 6= 0 satisfy ψ′(0) = 1 so that µ is invariant under these transforma-
tions.

• For each z in the upper half-plane, the mass µ({γ : z ∈ int(γ)}) is finite and equal
to ψ′(0)β, where ψ is the conformal map from H onto itself with ψ(0) = 0 and
ψ(z) = i.

• For each z in the upper half-plane, the measure µ restricted to the set of loops
that surround z is the limit as ε → 0+ of u(ε)−1 times the law of γ(z) in a
CLE restricted to the event {γ(z) ∩ Cε 6= ∅}. In other words, for any bounded
continuous (with respect to the Hausdorff topology, say) function F on the set of
loops,

µ(1{z is surrounded by γ}F (γ)) = lim
ε→0

1

u(ε)
E(1{γ(z)∩Cε 6=∅}F (γ(z))).

Since this pinned measure is defined in a domain with one marked point, it is also
quite natural to consider it in the upper half-plane H, but to take the marked point at
infinity. In other words, one takes the image of µ under the mapping z 7→ −1/z from H

onto itself. This is then a measure µ′ on loops “pinned at infinity, i.e. on double-ended
infinite simple curves in the upper-half plane that go from and to infinity. It clearly
also has the scaling property with exponent β, and the invariance under the conformal
maps that preserve infinity and the derivative at infinity is just the invariance under
horizontal translations.

4.3 Discrete radial/chordal explorations, heuristics, background

We will now (and also later in the paper) use the exploration mechanism corresponding
to the case where all points yn are chosen to be equal to 1, instead of being tailored in
order for the exploration to stay in some a priori chosen set A as in Section 3. Let us
describe this discrete radial exploration (this is how we shall refer to it) in the setting
of the upper half-plane H: We fix ε > 0, and we wish to explore the CLE in the upper
half-plane by repeatedly cutting out origin-centered semi-circles Cǫ of radius ε (and the
loops they intersect) and applying conformal maps. The first step is to consider the
set of loops that intersect Cε. Either we have discovered the loop γ(i) (i.e., the loop
that surrounds i), in which case we stop, or we haven’t, in which case we define the
connected component of the complement of these loops in H \ Cε that contains i, and
map it back onto the upper half-plane by the conformal map ϕε1 such that ϕε1(i) = i
and (ϕε1)

′(i) > 0. We then start again, and this defines an independent copy ϕε2 of ϕε1.
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In this way, we define a random geometric number N = N(ε) of such conformal maps
ϕε1, . . . , ϕ

ε
N . The N + 1-th map can not be defined because one then discovers the loop

that surrounds i. The probability that N ≥ n is equal to (1 − u(ε))n. The difference
with the exploration procedure of Section 3 is that we do not try to explore “along
some prescribed curve”, but we just iterate i.i.d. conformal maps in such a way that
the derivative at i remains a positive real, i.e. we consistently target the inner point i.

Another natural exploration procedure uses a discrete chordal exploration that tar-
gets a boundary point: We first consider the set of loops in a CLE in H that intersect
Cε. Now, we consider the unbounded connected component H1 of the complement in
H \Cε of the union of these loops. We map it back onto the upper half-plane using the
conformal map ϕε1 normalized at infinity, i.e. ϕε1(z) ∼ z+o(1) as z ∈ H. Then we iterate
the procedure, defining an infinite i.i.d. sequence ϕε1, ϕ

ε
2, . . . of conformal maps, and a

decreasing family of domains Hn = (ϕεn ◦ · · · ◦ ϕε1)−1(H) (unlike the radial exploration,
this chordal exploration never stops).

Let us make a little heuristic discussion in order to prepare what follows. When ε
is very small, the law of the sets that one removes at each step in these two exploration
mechanisms can be rather well approximated thanks to the measure µ. Let us for
instance consider the chordal exploration. Because of µ’s scaling property, the µ-mass
of the set of loops of half-plane capacity (which scales like the square of the radius) larger
than η should decay as η−β/2. In particular, in the discrete exploration, the average
number of exploration steps where one removes a set ϕεn(Hn \ Hn+1) with half-plane
capacity larger than x is equal (in the ε → 0 limit) to x−β/2 times the average number
of exploration steps where one removes a set with half-plane capacity larger than one.

Readers familiar with Lévy processes will probably have recognized that in the ε→ 0
limits, the capacity jumps of the chordal exploration process will be distributed like the
jumps of a (β/2)-stable subordinator. It is important to stress that we know a priori that
the limiting process has to possess macroscopic capacity jumps (corresponding to the
discovered macroscopic loops). Since α-stable subordinators exist only for α ∈ (0, 1),
we expect that β < 2. Proving this last fact will be the main goal of this section.

In fact, we shall see that the entire discrete explorations (and not only the process of
accumulated half-plane capacities) converge to a continuous “Lévy-exploration” defined
using a Poisson point process of pinned loops with intensity µ. We however defer the
more precise description of these Lévy explorations to Section 7, where we will also make
the connection with branching SLE(κ, κ−6) processes and show how to reconstruct the
law of a CLE using the measure µ only, i.e., that the measure µ characterizes the law
of the CLE.

In fact, the rest of this part of the paper (until the constructive part using Brownian
loop-soups) has two main goals: The first one is to show that the CLE definition yields
a description of the pinned measure µ in terms of SLEκ for some κ ∈ (8/3, 4]. The
second one is to prove that the pinned measure µ characterizes the law of the entire
CLE and also to make the connection with SLE(κ, κ − 6). We choose to start with
the SLE-description of µ; in the next subsection, we will therefore only derive those
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two results that will be needed for this purpose, leaving the more detailed discussion of
continuous chordal explorations for later sections.

For readers who are not so familiar with Lévy processes or Loewner chains, let us
now briefly recall some basic features of Poisson point processes and the stability of
Loewner chains that will hopefully help making the coming proofs more transparent.

Stability of Loewner chains: Let S denote the class of conformal maps ϕ = ϕH
from a subset H of the complex upper half-plane back onto the upper half-plane H such
that i ∈ H , ϕ(i) = i and ϕ′(i) is a positive real. Note that (because H ⊂ H), ϕ′(i) ≥ 1.
Let us then define a(ϕ) = logϕ′(i). This is a decreasing function of the domain H (the
smaller H , the larger a), which is closely related to the conformal radius of the domain
(one can for instance conjugate with z 7→ (i − z)/(i + z) in order to be in the usual
setting of the disc). It is immediate to check that for some universal constant C, for all
r < 1/2 and for all ϕ such that the diameter of H \H is smaller than r,

a(ϕ) ≤ Cr2.

On the other hand, for some other universal constant C, for all r < 1/2 and for all H
such that ir /∈ H ,

a(ϕ) ≥ C ′r2.

Suppose now that ϕ1, . . . , ϕN are N given conformal maps in S. Define Φ = ϕN ◦. . .◦
ϕ1 to be the composition of these conformal maps. It is an easy fact (that can be readily
deduced from simple distortion estimates, or via Loewner’s theory to approximate these
maps via Loewner chains for instance) that for any family (ψδ0, . . . , ψ

δ
N)δ>0 of conformal

maps in S such that
lim
δ→0

a(ψδ0) + . . .+ a(ψδN ) = 0,

the conformal maps

Φδ = ψδN ◦ ϕN ◦ ψδN−1 ◦ ϕN−1 ◦ . . . ϕ1 ◦ ψδ0
converge in Carathéodory topology (viewed from i) to Φ as δ → 0. In other words,
putting some perturbations of the identity between the iterations of ϕ’s does not change
things a lot, as long as the accumulated “size” (measured by a) of the perturbations is
small.

Poisson point processes discrete random sequences: We will approximate Pois-
son point processes via discrete sequences of random variables. We will at some point
need some rather trivial facts concerning Poisson random variables, that we now briefly
derive. Suppose that we have a sequence of i.i.d. random variables (Xn, n ≥ 1) that
take their values in some finite set {0, 1, . . . , k} with P (X1 = 0) > 0. Let N denote the
smallest n value at which Xn = 0. For each j ∈ {1, . . . , k}, let Nj denote the cardinality
of {n ∈ {1, . . . , N − 1} : Xn = j}. We want to control the joint law of (N1, . . . , Nk).

One convenient way to represent this joint law is to consider a Poisson point process
(Xj, Tj)j∈J on A × [0,∞) with intensity M × dt, where M is some σ-finite measure
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on a space A. Consider disjoint measurable sets A,A1, · · · , Ak in A with M(A) = 1,
M(A1) = a1 <∞, . . . , M(Ak) = ak <∞. We define

T = inf{t > 0 : ∃j ∈ J such that Tj ≤ t and Xj ∈ A},

i.e., loosely speaking, if we interpret t as a time-variable, T is the first time at which
one observes an X in A. Since M(A) = 1, the law of T is exponential with parameter
1. In particular, P (T > 1) = 1/e. We now define, for j = 1, . . . , k,

Nj = #{j : Tj ≤ T and Xj ∈ Aj},

i.e., the number of times one has observed an X in Aj before the first time at which
one observes an X in A. Then the law of N1, . . . , Nk is the same as before, where
P (X1 = j) = aj/(1 + a1 + . . .+ aj).

Because of the independence properties of Poisson point processes, the conditional
law of (N1, . . . , Nk) given T is that of K independent Poisson random variables with
respective means TM(A1), . . . , TM(Ak). Hence, E(Nj) = E(T )M(Aj) = M(Aj). Fur-
thermore, if we condition on the event {T > 1}, the (joint) conditional distribution of
N1, . . . , Nk “dominates” that of k independent Poisson random variables of parameter
a1, . . . , ak.

4.4 A priori estimates for the pinned measure

Let us denote the “radius” of a loop γ in the upper half-plane by

R(γ) = max{|z| : z ∈ γ}.

Lemma 4.4. The µ-measure of the set of loops with radius greater than 1 is finite.

Proof. Let us use the radial exploration mechanism. The idea of the proof is to see that
if the µ-mass of the set of loops of radius greater than 1 is infinite, then one “collects”
too many macroscopic loops before finding γ(i) in the exploration mechanism, which
will contradict the local finiteness of the CLE.

Recall that, at this moment, we know that for any given point z ∈ H, the measure
µz is the limit when ε → 0 of u(ε)−1 times the law of γ(z) restricted to the event
that γ(z) intersects the ε-neighborhood of the origin. Furthermore, for any given point
z ∈ H, the distance between z and γ is µ-almost always positive. This implies that
for any given finite family of points z1, . . . , zn in H, the measure µ restricted to the
set A = A(z1, . . . , zn) of loops that surrounds at least one of these points is the limit
when ε → 0 of u(ε)−1 times the (sum of the) laws of loops in A that intersect the
ε-neighborhood of the origin.

Suppose now that µ({γ : R(γ) ≥ 1)} = ∞. This implies clearly that for each
M > 1, one can find a finite set of points z1, . . . , zn at distance greater than one of the
origin such that µ(A(z1, . . . , zn)) > M . Hence, it follows that when ε is small enough,

34



at each exploration step, the probability to discover a loop in A is at least M times
bigger than u(ε). The number of exploration steps before N at which this happens
is therefore geometric with a mean at least equal to M . It follows readily that with
probability at least c0 (for some universal positive c0 that does not depend on ε), this
happens at least M/4 times.

Note that the harmonic measure in H at i of a loop of radius at least 1 that intersects
also C1/2 is bounded from below by some universal positive constant c1. If at some step
j ≤ N , the radius of H \ (ϕεj)−1(H) is greater than 1, then it means that there is a loop
in the CLE in H that one explores at the j-th step that has a radius at least 1 and that
intersects C1/2. Its preimage under ϕεj−1 ◦ . . . ◦ ϕε1 (which is a loop of the original CLE
that one is discovering) has therefore also has a harmonic measure (in H and at i) that
is bounded from below by c1. Hence, we conclude that with probability at least c0, the
original CLE has at least M/4 different loops such that their harmonic measure seen
from i in H is bounded from below by some universal constant c1.

This statement holds for all M , so that with probability at least c0, there are in-
finitely many loops in the CLE such that their harmonic measure seen from i in H is
bounded from below by c1.

On the other hand, we know that γ(i) is almost surely at positive distance from i,
and this implies that for some positive α, the probability that some loop in the CLE is
a distance less than α of i is smaller than c0/2. Hence, with probability at least c0/2,
the CLE contains infinitely many loops that are all at distance at least α from i and all
have harmonic measure at least c1. A similar statement is therefore true for the CLE
in the unit disc if one maps i onto the origin. It is then easy to check that the previous
statement contradicts the local finiteness (because the diameter of the conformal image
of all these loops is bounded from below). Hence, the µ-mass of the set of pinned loops
that reach the unit circle is indeed finite.

Let us now list various consequences of Lemma 4.4:

• For all r > 0, let us define Ar := {γ : R(γ) > r}. Because of scaling, we
know that for all r > 0, µ(Ar) = r−βµ(A1). Clearly, this cannot be a constant
finite function of r; this implies that β > 0. Also, we get that for each fixed r,
µ(R(γ) = r) = 0.

• We can now define the function v(ε) as the probability that in the CLE, there
exists a loop that intersects Cε and C1. We know that

lim
ε→0+

v(ε)

u(ε)
= µ(R(γ) ≥ 1) (2)

(because µ(R(γ) = 1) = 0). Hence, it follows that for any δ < 1, v(δε)/v(ε) → δβ

as ε→ 0. This will be useful later on.
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• We can rephrase in a slightly more general way our description of µ in terms of
limits of CLE loops. Note that Ar = ∪nA(z1, . . . , zn), where (zn, n ≥ 1) is some
given dense sequence on {z : |z| = r}.
For each simple loop configuration Γ, and for each ε, let us define γ̃(ε) to be the
loop in the configuration Γ that intersects the disc of radius ε and with largest
radius (in case there are ties, take any deterministic definition to choose one). We
know from (2) that the probability that R(γ̃(ε)) > r decays like u(ε)× r−βµ(A1)
as ε→ 0 (for each fixed r > 0).

Furthermore, we note that the probability that there exist two different loops of
radius greater than r that intersect the circle Cε decays like o(u(ε)) as ε→ 0. In-
deed, otherwise, for some sequence εn → 0, the probability that in our exploration
procedure, two macroscopic loops are discovered simultaneously remains positive
and bounded from below, which is easily shown to contradict the fact that almost
surely, any two loops in our CLE are at positive distance from each other.

Hence, for each n, the measure µ restricted to A(z1, . . . , zn) is the limit when
ε→ 0 of u(ε)−1 times the law of γ̃(ε), restricted to the event that it surrounds at
least one of the points z1, . . . , zn.

We conclude that the measure µ restricted to Ar can be viewed as the weak limit
when ε → 0 of u(ε)−1 times the law of γ̃(ε) restricted to Ar. In other words, if
we consider the set of pinned loops of strictly positive size (i.e., the loop of zero
length is not in this set) endowed with the Hausdorff metric, we can say that µ is
the vague limit of u(ε)−1 times the law of γ̃(ε).

Let us finally state another consequence of this result, that will turn out to be
useful in the loop-soup construction part of the paper. Consider a CLE in H and let
us consider the set of loops that intersect the unit circle. Define R to be the radius of
the smallest disc centered at the origin that contains all these loops. Note that scaling
shows that P (R > x) = v(1/x) for x ≥ 1.

Corollary 4.5. If β > 1, then E(R(1+β)/2) <∞.

Proof. Just note that

E(R(1+β)/2) =

∫ ∞

0

drP (R(1+β)/2 ≥ r)

≤ 1 +

∫ ∞

1

dr v(r−2/(1+β))

≤ 1 +

∫ ∞

1

dr

r2β/(1+β)+o(1)
< ∞

because 2β > 1 + β.

With the 8/κ = 1 + β identification that we will derive later, β > 1 corresponds to
κ < 4 and then (1 + β)/2 = 4/κ.
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The next proposition corresponds to the fact that α-stable subordinators exist only
for α ∈ (0, 1).

Proposition 4.6. The scaling exponent β described above lies in (0, 2).

Proof. We use the radial exploration mechanism again. Let us now assume that β ≥ 2
and focus on the contribution of the “small” loops that one discovers before actually
discovering γ(i).

Let A1, . . . ,Ak be k fixed disjoint (measurable) sets of loops that do not surround i,
with al = µ(Al) <∞. We suppose that all Al’s for l ≤ k belong to the algebra of events
generated by the events of the type {γ : γ surrounds z}. We let Nε(Al) denote the
number of loops in Al that one has discovered in this way before one actually discovers
the loop that surrounds i. Our previous results show that when ε→ 0, the joint law of
Nε(A1), . . . , Nε(Ak) converges to that of the N1, . . . , Nk that we described at the end
of the previous subsection.

For each integer j, we define Aj to be the set of loops that surround 2−ji but that
do not surround any point 2−ki for k < j. The scaling property of µ implies that for
all j, µ(Aj) = 2jβµ(A0) and it is easy to check that µ(A0) > 0 (because the loops that
surround i have a finite radius so that

∑

j≤0 µ(Aj) ≥ 1 > 0). Hence, for all positive j,

µ(Aj) ≥ 4jµ(A0).

Recall that if ψ is a conformal map in S from a simply connected subset H of H that
does contain i but not 2−j0i for some j0 ≥ 1, then

a(ψ) ≥ C ′4−j0.

Furthermore, for each fixed j0, when ε is small enough, we can compare the number of
loops in A1, . . . ,Aj0 that have been discovered before γ(i) via the chordal exploration
mechanism with i.i.d. Poisson random variables N1, . . . , Nj0. Note also that when one
composes conformal maps in S, the derivatives at i get multiplied and the a’s therefore
add up.

Hence, it follows immediately that if β ≥ 2, then for each j0, with a probability that
is bounded from below independently of j0, when ε is small enough,

a(ϕ1 ◦ · · · ◦ ϕN) ≥
C ′

2

j0
∑

j=1

Nj4
−j.

Hence, we conclude that there exists c2 > 0 such that for each M > 0, if one chooses
ε small enough, the probability that a(ϕ1 ◦ · · · ◦ ϕN) ≥ M is at least c2. But this
contradicts the fact that γ(i) is at positive distance from i (for instance using Koebe’s
1/4 Theorem). Hence, we conclude that β is indeed smaller than 2.
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5 The two-point pinned probability measure

5.1 Restriction property of the pinned measure

We now investigate what sort of “restriction-type” property the pinned measure µ
inherits from the CLE. Note that µ is an infinite measure on single pinned loops (rather
than a probability measure on loop configurations), so the statement will necessarily be
a bit different from the restriction property of CLE.

Suppose now that A is a closed bounded set such that H\A is simply connected, and
that d(0, A) > 0. Our goal is to find an alternative description of the infinite measure
µ restricted to the set of loops γ that do not intersect A.

Suppose that a deterministic pinned (at zero) loop γ (in the upper half-plane) is
given. Sample a CLE Γ# in the upper half-plane. This defines a random H# which is
the connected component that has the origin on its boundary of the set obtained by
removing from H\A all loops of Γ# that intersect A. Then, we define a conformal map
ψ# from H onto H# such that

ψ#(0) = 0 and (ψ#)′(0) = 1.

In order to fix ψ#, another normalization is needed. We can for instance take ψ#(∞) =
∞, but all of what follows would still hold if one replaced ψ# by the map G# such that
G#(z) = z + o(z2) as z → 0 (we will in fact also use this map in the coming sections).
Finally, we define γ# = ψ#(γ). Clearly, this is a pinned loop that stays in H# and
therefore avoids A almost surely.

Suppose now that we use the product measure µ ⊗ P on pairs (γ,Γ#) (where P is
the law of the same CLE that was used to define the pinned measure µ). For each pair
(γ,Γ#) we define the loop γ# = γ#(γ,Γ#) = ψ#(γ) as before, and we define µA to be
the image measure of µ⊗ P via this map. This µA is an infinite measure on the set of
loops that do not intersect A.

γ

ψ#(γ)

Figure 14: Construction of µA (sketch)

We are now ready to state the pinned measure’s restriction property:

Proposition 5.1 (Restriction property of µ). The measure µ restricted to the set {γ ∩
A = ∅} is equal to µA.
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Recall that we constructed the pinned measure by “exploring” a CLE in U until we
discover γ0. If we started with a pinned loop — together with a CLE in the complement
of the pinned loop — we might try to “explore” this configuration until we hit the
pinned loop. This would be a way of constructing a natural measure on loops pinned
at two points. We will essentially carry out such a procedure later on, and the above
proposition will be relevant.

Proof. Let us now consider the set A and a CLE Γ#, and define H# and the map ψ#

as before. For each ε, the event that no loop in Γ# intersects both Cε and A is identical
to the event that Cε ⊂ H#. Let us now condition on the set H# (for a configuration
where Cε ⊂ H#); the restriction property of the CLE tells us that the conditional law
of the CLE-loops that stay in H# is exactly that of an “independent CLE” defined in
this random set H#. Hence, we get an identity between the following two measures:

• The law of γ̃(ε) in the CLE (the loop with largest radius that intersects Cε),
restricted to the event that no loop in the CLE intersects both Cε and A.

• Sample first a CLE Γ#, define H#, restrict ourselves to the event where Cε ⊂ H#,
define ψ#, consider an independent CLE Γ̃ in the upper half-plane and its image
ψ#(Γ̃), and look at the law of the loop with largest radius in this family that
intersects Cε.

Note that the total mass of these two measures is the probability that no loop in the
CLE intersects both Cε and A.

Now, we consider the vague limits when ε → 0 of 1/u(ε) times these two measures.
It follows readily from our previous considerations that:

• For the first construction, the limit is just µ restricted to the set of pinned loops
that do not hit A.

• For the second construction, the limit is just µA (recall that ψ# has been chosen
in such a way that (ψ#)′(0) = 1, so that when ε is small ψ#(Cε) is very close to
Cε).

In fact, it will be useful to upgrade the previous result to the space of “pinned
configurations”: We say that (γ̄, Γ̄) is a pinned configuration if γ̄ is a pinned loop in the
upper half-plane and if Γ̄ is a loop-configuration in the unbounded connected component
of H \ γ̄.

Let us define a first natural measure on the space of pinned configurations. Suppose
that one is given a pinned loop γ and a loop-configuration Γ (that is not necessarily
disjoint from γ). Define Hγ the unbounded connected component of the complement of
γ, and φγ the conformal map from H onto Hγ that is normalized at infinity (φγ(z) =
z+ o(1)). Then (γ̄, Γ̄) = (γ, φγ(Γ)) is clearly a pinned loop configuration. We now let µ̄
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Figure 15: A pinned configuration (sketch)

denote the image of the product measure µ⊗P under this map (γ,Γ) 7→ (γ̄, Γ̄). We call
it the pinned CLE configuration measure. Clearly, the marginal measure of γ̄ (under
µ̄) is µ (because P is a probability measure and γ̄ = γ).

γ Γ (γ, φγ(Γ))

Figure 16: Construction of (γ̄, Γ̄) (sketch)

Suppose now that A is a set as before. If (γ̄, Γ̄) is a pinned configuration, then we
define:

• Γ̃A to be the set of loops of Γ̄ that intersect A.

• H̄A to be the unbounded connected component of H \ (Γ̃A ∪A)

• Γ̄A to be the set of loops of Γ̄ that stay in H̄A.

Hence, when γ̄ ∩ A = ∅, we define a triplet (γ̄, Γ̄A, Γ̃A). Let µ̄A denote the image of µ̄
(restricted to the set γ̄ ∩A = ∅) under this transformation.

We now construct another measure that will turn out to be identical to µ̄A: Start
on the one hand with a pinned measure configuration (γ̄, Γ̄) and on the other hand with
a loop-configuration in H that we denote by Γ#. We define ψ# as before (using A and
Γ#). We also let Γ#

A denote the loops in Γ# that intersect A. Then we consider the
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triplet (ψ#(γ̄), ψ#(Γ̄),Γ#
A). This triplet is a function of ((γ̄, Γ̄),Γ#). We now define µ#

A

to be the image of the product measure µ̄⊗ P under this mapping.

(γ̄, Γ̄)

ψ#((γ̄, Γ̄))
Loops of Γ# that intersect A

Figure 17: The measure µ#
A (sketch)

Proposition 5.2 (Restriction property for pinned configurations). The two measures
µ̄A and µ#

A are identical.

If we consider the marginal measures on the pinned loops of µ̄A and µ#
A , we recover

Proposition 5.1. The proof is basically identical to that of Proposition 5.1: One just
needs also to keep track of the remaining loops, and this in done on the one hand thanks
to the CLE’s restriction property, and on the other hand (in the limiting procedure)
thanks to the fact that loops are disjoint and at positive distance from the origin. In
order to control the ε → 0 limiting procedure applied to loop configurations, one can
first derive the result for the law of finitely many loops in the loop configuration (for
instance those that surround some given point).

5.2 Chordal explorations

As in the case of the CLE, we are going to progressively explore a pinned configuration,
cutting out recursively small (images of) semi-circles, and trying to make use of the
pinned measure’s restriction property in order to define a “two-point pinned measure”.
However, some caution will be needed in handling ideas involving independence because
µ̄ is not a probability measure.

Recall that µ̄ is a measure on configurations in a simply connected domain with
one special marked boundary point (i.e., the origin, where the pinned loop touches the
boundary of the domain). It will therefore be natural to work with chordal ε-admissible
explorations instead of radial ones. This will be rather similar to the radial case, but it
is nonetheless useful to describe it in some detail:

It is convenient to first consider the domain to be the upper half-plane and to
take ∞ as the marked boundary point instead of the origin. Suppose that Γ is a loop
configuration (with no pinned loop) in the upper half-plane H and choose some bounded
closed simply connected set A ⊂ H such that
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1. H \A is simply connected,

2. A is the closure of the interior of A,

3. the interior of A is connected, and

4. the length of ∂A ∩ ∂H is positive.

Suppose furthermore that all γj’s in Γ that intersect ∂A also intersect the interior of A.
Here, when x ∈ R, D(x, ε) will denote the set of points in H that are at distance

less than ε from x. We choose some x1 on the real line, such that D(x1, ε) ⊂ A. Then,
we define the set H1 to be the unbounded connected component of the set obtained
when removing from H \D(x1, ε) all loops of Γ that intersect D(x1, ε). We also define
the conformal map g1 from H1 onto H that is normalized at infinity (g1(z) = z + o(1)
as z → ∞), and we let A2 = g1(H1 ∩ A).

Then, we proceed inductively: For each n ≥ 1, we choose (when it is possible) xn+1

on the real line such that D(xn, ε) ⊂ An. Then we consider the set Hn+1 to be the
unbounded connected component of the set obtained when removing from H \D(xn, ε)
all loops of gn ◦ . . . ◦ g1(Γ) that intersect D(xn, ε). We also define the conformal map
gn+1 from Hn+1 onto H that is normalized at infinity (gn+1(z) = z + o(1) as z → ∞),
and we let An+1 = gn+1(Hn+1 ∩An).

This procedure necessarily has to stop at some step N , i.e., at this step N , it is not
possible to find a point x such that D(x, ε) ⊂ HN . This is just because of additivity
of the half-plane capacity under composition of the conformal maps (and because the
half-plane capacity of A is finite). We say that such an exploration is an ε-admissible
(chordal) exploration of (Γ, A) rooted at infinity. The results of Subsection 3.2 and
their proofs can be immediately adapted to the present setting. It is for instance easy
to check that for any given Γ, for any given loop γj in Γ that intersects such a given A,
there exists a positive ε0 = ε0(Γ, A, γj) such that any ε-admissible chordal exploration
of (Γ, A) necessarily discovers the loop γj as soon as ε ≤ ε0. Hence, after the last step
N of this ε-exploration of (Γ, A), for all positive α, when ε is chosen to be sufficiently
small, one has necessarily discovered all loops of diameter greater than α of Γ that
intersect A.

Let us now suppose that Γ is a loop configuration and A is a set satisfying the same
conditions as before, except that we also assume that it is at positive distance of the
origin. We can now define chordal ε-explorations of (Γ, A) that are rooted at 0: These
are just the image under z 7→ −1/z of the previous explorations of (−1/Γ,−1/A), where
−1/Γ denotes the loop configuration obtained when one considers the loops (−1/γj).
The difference between the exploration rooted at the origin and the exploration rooted
at infinity in fact only lies in what we call D(x, ε), and how one renormalizes the
conformal maps gn at each step. In the exploration rooted at the origin, D(x, ε) would
have to be replaced by the conformal image of D(x, ε) under the conformal mapping
from H onto H that fixes x, has derivative 1 at x and maps ∞ onto 0, and the conformal
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map g−1
n would have to be replaced by the conformal map Gn from H onto Hn such

that Gn(z) = z + o(z2) when z → 0.
Let us describe more precisely an iteration step in this case: Let us define, for

each x ∈ R \ {0} and each small ε, Cε(x) to be the image of Cε under the Moebius
transformation Ix : z 7→ −x/(xz−1) of H that maps 0 onto x and ∞ onto 0. Note that
for all x and y in R \ {0}, Ix ◦ I−1

y (z) ∼ z when z → 0 and that Ix ◦ I−1
y (Cε(y)) = Cε(x).

When ε is very small, Cε(x) is very close to the semi-circle of radius x2ε around x (i.e.,
it is squeezed between to semi-circles of radii close to x2ε) because I ′x(0) = x2.

Suppose that Hn, Gn are already defined. The choice of xn is then said to be
ε-admissible if Cε(xn) ⊂ G−1

n (Hn ∩ A). We then define Hn+1 to be the unbounded
connected component the domain by removing from Hn \Gn(Cε(xn)) all the loops that
intersect Gn(Cε(xn)).

Clearly, after the last step N of this exploration rooted at the origin (when no ε-
admissible point can be found), we again have a set HN that is in some sense close to H
(which is the unbounded connected component of the domain obtained when removing
from H \ A all loops that intersect A). One way to make this more precise is to use
the Carathéodory topology “seen from the origin”. Even if the origin is a boundary
point of the simply connected domains HN and H , we can symmetrize these domains
(by considering their union with their symmetric sets with respect to the real axis),
and therefore view the conformal maps GN and G as conformal maps normalized at
the origin, which is now an inner point of the domain. We will implicitely use this
topology for domains in the upper half-plane “viewed from the origin”. Then, just as in
Subsection 3.2, we get that (for each given Γ and A) HN converges to H , when ε→ 0,
uniformly with respect to all possible ε-admissible explorations.

5.3 Definition of the two-point pinned measure

We know that the µ-mass of the set of pinned loops that intersect the segment [1, 1+ i]
is positive and finite. By scaling, we can choose a in such a way that the µ-mass of the
set of pinned loops that intersect [a, a(1+ i)] is equal to 1. On this set of configurations,
µ can therefore be viewed as a probability measure. Similarly, the pinned configuration
measure µ̄ restricted to the set

A = A([a, a+ ia]) = {(γ̄, Γ̄) : γ̄ ∩ [a, a+ ia] 6= ∅}

is a probability measure that we will denote by P̃[a,a+ia].
Let us now consider a pinned configuration (γ̄, Γ̄) in A. Define u = min{y : a+iy ∈

γ̄} so that a+ iu is the lowest point of γ̄ ∩ [a, a+ ia]. Let ψ denote the conformal map
from the unbounded connected component Hψ of the set obtained by removing from
H \ [0, a + iu] all the loops of Γ̄ that intersect this segment back onto H, normalized
by ψ(0) = 0, ψ′(0) = 1 and ψ(a + iu) = 1. We then define P̃ to be the distribution of
γ̃ = ψ(γ̄), i.e. the image of the probability measure P̃[a,a+ia] under the transformation
(γ̄, Γ̄) 7→ ψ(γ̄). A by-product of the coming arguments will be that in fact:
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γ̃ = ψ(γ̄)

γ̄

0 a

a + iu

0 1

Figure 18: The construction of of the two-point pinned loop (sketch)

Proposition 5.3. Under P̃[a,a+ia], the loop γ̃ is independent of ψ.

Define on the other hand the probability measure P̃ε to be the measure µ restricted
to the set of pinned loops that intersect Cε(1), and renormalized in order to be a
probability measure. The main first goal of this subsection is to derive the following
proposition (which we will later prove together with Proposition 5.3):

Proposition 5.4 (Definition of the two-point pinned measure P̃ ). As ε → 0, P̃ε con-
verges to P̃ .

As we have already indicated, the basic idea of the proof will be similar in spirit
with the construction of the pinned measure itself: We will use discrete explorations of
pinned configurations, and use the restriction property of the pinned measure in order
to deduce some independence property between the already discovered loops and the
yet-to-be-discovered ones along the exploration; this will enable us to conclude.

Suppose now that A is a set that is at positive distance from the origin, and that
satisfies the conditions 1-4 described in the previous subsection. Clearly, if we define

Ā(A) = {(γ̄, Γ̄) : γ̄ ∩ A 6= ∅},

then µ̄(Ā(A)) is finite and positive. We can therefore define P̃A to be µ̄ restricted to
this set, and renormalized in order to be a probability measure.

Suppose now that H ⊂ H is a simply connected domain with d(0,H\H) > 0. Define
φ to be the conformal map from H onto H such that φ(z) = z + o(z2) when z → 0,
and suppose that C ⊂ H is a set such that A := φ(C) satisfies the same conditions as
before. We then define P̃H

C to be the image of P̃A under φ−1. Basically, P̃H
C is the “law”

of a pinned configuration in H rooted at the origin and “conditioned” on the event that
the pinned loop intersects C.
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Suppose now that B is another set at positive distance of the origin that satisfies
the four conditions described in the previous subsection and such that A ⊂ B. We
are now going to define, for each such B and A, the measure µ̄B,A to be the measure
µ̄ on pinned configurations (γ̄, Γ̄), restricted to the set Ā(B,A) = Ā(B) \ Ā(A) of
configurations such that γ̄ intersects B but not A. When µ̄(Ā(B)) > µ̄(Ā(A)), we then
define P̃B,A to be µ̄B,A normalized to be a probability measure.

Finally, when we are given Γ̄ and A, we can define the set H̄A as before (i.e., the
unbounded connected component of the set obtained by removing from H \ A all the
loops of Γ̄ that intersect A). Then, it follows immediately from the pinned measure’s
restriction property (Proposition 5.2) that:

Corollary 5.5. Suppose that (γ̄, Γ̄) is sampled according to P̃B,A. Then the conditional
law of γ̄ given Γ̃A (i.e., the loops of Γ̄ that intersect A) is P̃H

B∩H where H = H̄A.

Suppose now that we are given a configuration (γ̄, Γ̄) that is sampled according to
P̃A. For each given ε, we can perform a “Markovian” ε-admissible exploration as before
(Markovian can simply mean here that we have chosen some deterministic procedure
to choose each xn). When γ̄ intersects A, this exploration procedure can discover γ̄ at
some (random) step that we call N̄ +1, and we know that when ε → 0, the probability
that N̄ exists tends to 1.

Corollary 5.5 shows that conditionally on N̄ = n, on Hn and on xn, the law of γ̄ is
P̃Hn

Gn(Cε(xn))
. This implies in particular that the conditional law of I1 ◦ I−1

xN̄
◦G−1

N̄
(γ̄) is P̃ε

(recall that ψN̄ := I1 ◦ I−1
xN̄

◦G−1
N̄

is just the conformal map from HN̄ onto H that maps
the origin onto itself, has derivative at the origin equal to 1, and that maps GN̄(xN̄ )
onto 1). Hence (on the event N̄ <∞), ψN̄ (γ̄) is in fact independent of N̄ and of HN̄ .

It is worth stressing at this point that the law of N̄ is not geometric as in the CLE
case, and that the iteration steps are not i.i.d. anymore, but this will not prevent us
from now proving Propositions 5.4 and 5.3:

Proof. The arguments are again close in spirit to the definition of the pinned measure
itself. Suppose that K is a large integer, that δ = 1/K, and consider the rectangles
Aδ,k = [a−δ/2, a+δ/2]×[0, akδ] for k = 1, . . . , K. Note that because of scale-invariance
and translation invariance, for each given δ, up to a set of configurations of zero measure,
all the loops of (γ̄, Γ̄) that intersect some Aδ,k also intersect its interior (when δ is fixed).
Furthermore, the probability measure P̃Aδ,K

converges to P̃[a,a(1+i)].
For each fixed δ = 1/K, we can start to explore each (Γ̄∪{γ̄}, Aδ,1) by a Markovian

chordal ε-admissible exploration rooted at 0, then continue exploring (Γ̄ ∪ {γ̄}, Aδ,2)
and so on until we either complete a chordal ε-admissible exploration of Aδ,K = [a −
δ, a + δ] × [0, a], or we have discovered γ̄. When (γ̄, Γ̄) is sampled according to P̃ , the
probability to discover γ̄ is going to 1 as ε → 0+. Let us call (as before) N̄ + 1 the
(random) step at which γ̄ is discovered.

Furthermore, for each given δ, it is possible to choose ε small enough, so that the
probability that the exploration processes misses no loop of Γ̄ of diameter greater than
4δ that intersects [a, a+ ia] is as close to 1 as we want.
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Figure 19: Exploration of the thin rectangle (sketch)

The very same arguments as in the proof of Proposition 3.4 then show that if ε(δ) is
chosen to be sufficiently small, then the set HN̄ converges to Hψ almost surely, and that
ψN̄ converges almost surely to ψ. We then conclude using the independence between
ψN̄ and ψN̄ (γ̄). We safely leave the details to the reader.

A consequence of Proposition 5.4 is that the probability measure P̃ is invariant under
all Moebius transformations of H onto itself that have 0 and 1 as fixed points. This
follows immediately from the conformal covariance property of µ and the description of
P̃ as limits of P̃ε given in the proposition.

In fact, our proof of Proposition 5.4 works also if we replace the straight segment
[a, a(1 + i)] by any given other piecewise linear path starting at 1 such that the µ mass
of the set of pinned loops that it intersects is finite (we can then just multiply µ by
a constant to turn it into a probability measure on this set): Suppose that η is some
finite piecewise linear path that starts on the real line, has no double points, and such
that all of its segments are horizontal or vertical. We parametrize it “from the real axis
to the tip”.

For each pinned configuration (γ̄, Γ̄) such that γ̄ ∩ η 6= ∅, we can define the first
meeting time T of η with γ̄, i.e. T = min{t : η(t) ∈ γ̄}. Let us now consider Γ̃η to
be the set of loops of Γ̄ that intersect η[0, T ], and let ψ denote the conformal map as
before (that maps the set obtained by removing from H \ η[0, T ] all the loops of Γ̄ that
intersect η[0, T ] back onto H, normalized by ψ(0) = 0, ψ′(0) = 1 and ψ(η(T )) = 1.
Note that ψ(γ̄) is a pinned loop (the map ψ is smooth near the origin). Note also that
µ̄(γ̄ ∩ η 6= ∅) is positive and finite. Then:

Proposition 5.6. If we consider the measure µ̄ on the event {γ̄ ∩ η 6= ∅} and if we
renormalize it to be a probability measure, then under this probability measure, γ̃ =
ψ(γ̄) is distributed according to the two-point pinned distribution P̃ . Furthermore, γ̃ is
independent of the conformal map ψ.
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5.4 Independence property of two-point pinned loops

We are now going to derive the key independence property of the two-point pinned
measure. Suppose that γ̃ is a two-point pinned loop in H that touches the real line at
0 and 1. We can define two simple paths γ∗ and γ∗ from 0 to 1 in H in such a way
that their union is γ̃ and that γ∗ is “below” γ∗. We now define ψ∗ to be the conformal
map from the unbounded connected component H∗ of H\γ∗ onto H that fixes the three
boundary points 0, 1 and ∞, and finally, we define U(γ̃) = ψ∗(γ∗).

γ∗

γ∗

ψ∗

U(γ̃) = ψ∗(γ
∗)

γ̃

Figure 20: Construction of U(γ̃) (sketch)

Proposition 5.7. If γ̃ is chosen according to the two-point pinned measure P̃ , then
U(γ̃) and γ∗ are independent.

Recall on the one hand that P̃ is the limit of P̃ε when ε → 0. Let us now consider
a hull A ⊂ H that is attached to the interval (0, 1) that satisfies the conditions 1-4 as
before. Let B = A ∪ Cε(1) where ε is sufficiently small, so that Cε(1) ∩ A = ∅. Let us
now describe the law of γ̃ conditioned to avoid A, trying to use Corollary 5.5. Remark
first that it is the limit when ε → 0 of the pinned measure “renormalized in order to
be a probability” on the event A(B,A) i.e. on the event where γ intersects Cε(1) but
not A.

But this measure can be described using Corollary 5.5, and we could use this to
prove Proposition 5.7 directly. Let us however describe first the “explicit restriction-
type-property” for the law P̃ of the two-point pinned loop γ̃. Suppose that A is such
that A ∩ R ⊂ (0, 1), and that H \ A is simply connected. We would like describe the
conditional law of γ̃ given that it does not intersect A.

In order to do so, let us use a CLE Γ# that is independent of γ̃. We will use Ẽ, E#

and Ẽ# to denote the expectation with respect to γ̃, to Γ# and to both. We define H#,
the unbounded connected component of the set obtained by removing from H \ A all
the loops of Γ# that intersect A. Then, we define the conformal map ϕ# from H# onto
H such that ϕ#(0) = 0, ϕ#(1) = 1 and ϕ′

#(1) = 1. It is easy to check that ϕ′
#(0) ≤ 1.

The loop ϕ−1
# (γ̃) is clearly two-point pinned loop that avoids A almost surely.
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Proposition 5.8. The conditional law of γ̃ given γ̃ ∩ A = ∅ satisfies, for a bounded
continuous function F on the set of loops,

Ẽ(F (γ̃)|γ̃ ∩A = ∅) =
Ẽ#(ϕ′

#(0)
βF (ϕ−1

# (γ̃)))

E#((ϕ′
#(0))

β)
.

Proof. Proposition 5.4 shows that

Ẽ(F (γ̃)|γ̃ ∩A = ∅) = lim
ε→0

µ(F (γ)1γ∩A=∅1γ∩Cε(1)6=∅)

µ(1γ∩A=∅1γ∩Cε(1)6=∅)
.

The measure µ restricted to the set of loops that do not intersect A, is equal to µA by
Proposition 5.1. Recall that in order to define µA, we use another CLE Γ#, that we
consider the set H# and the conformal map ψ# from H onto H# such that ψ#(0) = 0,
(ψ#)′(0) = 1 and ψ(∞) = ∞, and that µA is the image of the product measure µ⊗ P
under the mapping (γ,Γ#) 7→ ψ#(γ). Hence,

Ẽ(F (γ̃)|γ̃ ∩ A = ∅) = lim
ε→0

E#(µ(F (ψ#(γ))1ψ#(γ)∩Cε(1)6=∅))

E#(µ(1ψ#(γ)∩Cε(1)6=∅))
.

But when ε is very small, the ε-neighborhood of 1 is not much distorted by ϕ#. Fur-
thermore, ψ# ◦ ϕ# is a conformal mapping from the upper half-plane into itself, that
depends on Γ# only, that maps the origin onto itself and its derivative at the origin is
equal to ϕ′

#(0). Recall also that µ satisfies conformal covariance with the exponent β.
It follows easily by dominated convergence that

Ẽ(F (γ̃)|γ ∩ A = ∅)

= lim
ε→0

E#(ϕ′
#(0)

βµ(F (ϕ−1
# (γ))1γ∩Cε(1)6=∅))

E#(ϕ′
#(0)

βµ((1γ∩Cε(1)6=∅)))

= lim
ε→0

(

E#(ϕ′
#(0)

βµ(F (ϕ−1
# (γ))1γ∩Cε(1)6=∅))

µ(1γ∩Cε(1)6=∅)
× µ(1γ∩Cε(1)6=∅)

E#(ϕ′
#(0)

βµ(1γ∩Cε(1)6=∅))

)

=
E#(ϕ′

#(0)
βẼ(F (ϕ−1

# (γ̃))))

E#(ϕ′
#(0)

β)
.

We now use this to derive Proposition 5.7:

Proof. Let us consider an independent CLE Γ# as before, and for each A as before, such
that A∩R ⊂ (0, 1), define ϕ#. It is important to observe that if γ̃ is a two-point pinned
loop, then ϕ−1

# (γ̃) is always a two-point pinned loop, and that U(ϕ−1
# (γ̃)) = U(γ̃).

Furthermore, note that the event A ∩ γ̃ = ∅ is identical to the event that A ∩ γ∗ = ∅.
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γ∗

γ∗

0 1
A

Figure 21: Proof of independence (sketch)

Hence, we get that for all continuous bounded function F on the space of loops
(recall that γ and ϕ# are independent)

Ẽ(F (U(γ̃))|γ∗ ∩A = ∅) = E#(ϕ′
#(0)

β)−1Ẽ#(ϕ′
#(0)

βF (U(ϕ−1
# (γ̃))))

= E#(ϕ′
#(0)

β)−1Ẽ#(ϕ′
#(0)

βF (U(γ̃)))

= E#(ϕ′
#(0)

β)−1E#(ϕ′
#(0)

β)Ẽ(F (U(γ̃)))

= Ẽ(F (U(γ̃))).

Since this is true for all such A, it follows that U(γ̃) and γ∗ are indeed independent.

In the sequel, we call P ∗ the law of U(γ̃). This is a probability measure on paths
joining 1 to 0 in the upper half-plane. Note here that P ∗ is invariant under the Moebius
transformations from H onto itself that preserve 0 and 1. This follows easily from the
corollary and from the fact that the same is true for the two-point pinned measure.

Let us define P ∗∗ to be the image of P ∗ under the conformal map z 7→ 1−(1/z) of H
onto itself (that maps 1 to 0 and 0 to ∞). P ∗∗ is then a probability measure on simple
paths in H from 0 to infinity, that is scale-invariant (because the multiplications by
positive constants are the Moebius transformations in H that leave 0 and ∞ invariant).

6 Pinned loops and SLE excursions

6.1 Two-point pinned measure and SLE paths

The goal of this section is show that the pinned measure µ associated to a CLE is
necessarily one of the “SLE excursion measures”. Let us first combine the results of the
previous section and reformulate them into a single tractable statement: Consider the
pinned configuration measure µ̄ and some finite piecewise linear path η in H that starts
on the positive real half-line, has no double points, and such that all of its segments
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are horizontal or vertical. We parametrize it “from the real axis to the tip”. We also
suppose that

µ({γ : γ ∩ η 6= ∅}) = 1.

so that we can view µ (and µ̄ on the corresponding set of configurations) as a probability
measure.

For each pinned configuration (γ̄, Γ̄) such that γ̄ ∩ η 6= ∅, we can define the first
meeting time T of η with γ̄, i.e. T = min{t : η(t) ∈ γ̄}. Let us now consider Γ̃η to be
the set of loops of Γ̄ that intersect η[0, T ]. We also call γ− the part of γ (when oriented
counterclockwise) between 0 and η(T ), and γ+ the other part. Let us now define the set
H− to be the unbounded connected component of the set obtained by removing from
H the union of γ−, η[0, T ] and the loops of Γ̃η. We let ψ− denote the conformal map
from H− onto H such that ψ−(0−) = 0, ψ−(ηT ) = 1 and ψ−(∞) = ∞.

Note that ψ−, γ− and Γ̃η are all deterministic functions of the triple (γ̄, Γ̄, η). We
will sometimes write ψ−,η and γ−,η, γ+,η to indicate the dependence in η.

γ+

γ
−

η

η(T )

Γ̃η

η(0)

Figure 22: Use of independence (sketch)

Proposition 6.1. ψ−(γ+) is independent of ψ− and γ−, and its law is P ∗.

Proof. This is a direct combination of our previous results. Let ψη denote the conformal
map from H \ (η[0, T ] ∪ Γ̃η) onto H with ψη(0) = 0, ψη(η(T )) = 1 and ψη(∞) = ∞.
Conformal invariance of P̃ under the maps that preserve 0 and 1, and the definition of
the two-point pinned measure shows that ψη(γ) is independent of ψη and that its law
is the two-point pinned measure P̃ .

If we now define γ∗ = ψη(γ−) and γ
∗ = ψη(γ

+), and ψ∗ (which depends on γ∗ alone)
as before, we know from Proposition 5.7 that ψ∗(γ∗) is independent of γ∗, and its law
is P ∗. Hence, ψ∗(γ∗) is independent of (γ∗, ψ∗, ψη).

We can now conclude, noting that ψ∗(γ∗) = ψ−(γ+) and that γ− = ψ−1
η (γ∗).

Suppose now that η : [0, l] → H ∪ η(0) is a finite piecewise linear path as before,
except that µ({γ : γ ∩ η[0, l] 6= ∅}) is not equal to one. We can use scaling in order to
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find some constant λ, in such a way that we can apply the previous statement to λη,
and it therefore follows that Proposition 6.1 still holds if we consider the measure µ on
the event {γ : γ ∩ η[0, l] 6= ∅}, and renormalized in order to be a probability measure
on this event. Since this is true for all l, it also follows that:

Corollary 6.2. The same statement holds if we consider the measure µ restricted to
the event that γ intersects only the last segment of η (and not the previous ones), and
if we renormalize the measure µ to be a probability measure on this event.

We now want to deduce from this corollary that P ∗ is the law of some SLEκ from
1 to 0 in H i.e., that P ∗∗ is the law of some chordal SLEκ in H. We will use Oded
Schramm’s conformal Markov property characterization of SLE that we now briefly
recall. Suppose that one is given a continuous simple curve ξ in H ∪ {0} starting at
0. Let us parametrize ξ according to its half-plane capacity, i.e., in such a way that
for each t, there exists a conformal map gt from Ht := H \ ξ[0, t] onto H such that
gt(z) = z + 2t/z + o(1/z) as z → ∞. Suppose that the half-plane capacity of ξ is not
bounded (i.e., that ξ is defined for all t ≥ 0), and define ft(z) = gt(z) − gt(γt), i.e. the
conformal map from Ht onto H with ft(ξt) = 0 and ft(z) ∼ z at infinity. Then:

Lemma 6.3 (Schramm [35]). If the law of ξ is scale-invariant in distribution (i.e., the
law of (λ−1ξλ2t, t ≥ 0) does not depend on λ), and if for all t ≥ 0, the conditional law
of ft(ξ[t,∞)) given ξ[0, t] is identical to the initial law of ξ, then ξ is an SLE curve.

Recall that this result can be easily understood using Loewner’s theory of slit map-
pings that shows that the curve ξ is characterized by the function t 7→ Wt := gt(ξt).
Indeed, the previous conditions imply on the one hand that the random function t 7→Wt

has the Brownian scaling property (because ξ is scale-invariant in distribution) and on
the other hand that it is a continuous process with independent increments. These
two fact imply that W it is a multiple of a standard Brownian motion (and one can
call this multiplicative constant

√
κ). As the function W fully characterizes ξ, this

determines the law of the path ξ (up to this one-parameter choice). Furthermore, SLE
computations (see [35]) show that the fact that the curve is simple implies that κ ≤ 4.

There are several natural ways that one can use in order to parametrize a pinned
loop. We are going to choose one that is tailored for our purpose, i.e., to recognize SLE
excursions. Let us first define r0 in such a way that

µ(R(γ) ≥ r0) = 1.

Then, the measure µ restricted to the set Q = {γ : R(γ) ≥ r0} is a probability measure
that we will call Q in the present section. Until the rest of the present subsection, we
will assume that γ is sampled from this probability measure.

Suppose now that γ ∈ Q and let us orient it “anti-clockwise”, i.e., γ starts at 0,
makes a simple anti-clockwise loop in H and comes back to 0. On the way, there is
the first intersection point z0 of γ with {z : |z| = r0}. We define b0 := b0(γ) the
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beginning part of the loop between 0 and z0 (with the anti-clockwise orientation) and
we call e0 := e0(γ) the other (end-)part of the loop γ between z0 and 0.

Let h0 denote the conformal mapping from H \ b0 onto H normalized by h0(z0) = 0,
h0(∞) = 1 and h0(0−) = ∞ (where h0(0−) denotes the image of the left-limit of 0 in
H\b0). The end-part e0 = e0(γ) of the loop between z0 and 0 is a continuous simple path
from z0 to 0− in (H \ b0)∪ {z0, 0−}. Hence, its image under h0 is a simple path from 0
to infinity in the upper half-plane that we now call ξ. We parametrize ξ according to its
half-plane capacity as before (and define the conformal maps gt and ft). This therefore
defines (via the map h−1

0 ) a parametrization of the path e0.

b0

e0[0, t]

zt = e0(t)
et = e0[t,∞)

z0

Figure 23: Definition of et(γ) and bt(γ) (sketch)

For each t ≥ 0, we now define zt = e0(t),

bt := bt(γ) = b0(γ) ∪ e0[0, t] and et := et(γ) = e0[t,∞).

Let us insist on the fact that bt and et are paths (and not points). ht will denote the
conformal map from H \ bt(γ) with ht(zt) = 0, ht(0−) = ∞ and ht(∞) = 1. We will
now prove the following statement that we will then combine with Lemma 6.3:

Lemma 6.4. Under the probability measure Q, for each given t ≥ 0, ht(et(γ)) =
ft(ξ[t,∞)) is independent of bt(γ). Furthermore, its law is P ∗∗.

Proof. Let us fix t ≥ 0. Define ψt the conformal map fromH\bt(γ) onH with ψt(zt) = 1,
ψt(∞) = ∞, ψt(0−) = 0. Then, the lemma is clearly equivalent to the fact that ψt(et)
is independent of bt(γ), and that its law is P ∗.

Define bt(γ) as before (when γ is defined under the probability measure Q). The
proof will be based on the independence property of the two-point pinned measure. In
order to use this, we will need to discover the pinned loop via some grid-based path
that turns out to be close to bt. Take n ≥ 1. Let us try to associate to each b = bt(γ) a
grid approximation of bt “from the right side”, that we will call βn.
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First of all, let us note that the diameter of bt+2/n \ bt−1/n goes to 0 almost surely
when n→ ∞ and that we can find some sequence εn → 0 such that

lim
n→∞

Q(d(bt−1/2n, et) ≥ εn) = 1

(this follows easily from the fact that γ is Q-almost surely a simple curve), where here
d denotes the usual Euclidean distance. Then, when δ is a mesh-size, we try to define
a particular grid-approximation of bt−1/n on the grid (δN) × (δZ) as follows: Delete
all the edges from the grid that are distance less than δ from bt−1/n, and consider the
unbounded connected component C of the graph that one obtains. Let f denote the
first edge of C that γ hits (it is therefore after “time” t − 1/n). It is clearly on the
“boundary of C seen from bt−1/n”, and one can find the simple nearest-neighbor path
from the positive real axis to f (where f is its last edge) on C that is “closest” to bt−1/n.
We call this path β = β(b, t, n, δ).

Figure 24: Grid-approximation of some bt(γ) (sketch)

Clearly, when t, n and b are fixed, then when δ → 0, the (Hausdorff) distance
between β and b is going to 0. Hence, we can choose δn in such a way that

lim
n→∞

Q(dH(β, bt−1/n) ≤ ε2n) = 1

(where dH denotes the Hausdorff distance).
Once these sequences δn and εn are chosen, we denote for each given n, the grid

approximation β(b, t, n, δn) by βn. The previous estimates also ensure that

lim
n→∞

Q((γ ∩ βn) ⊂ bt+1/n \ bt−1/n) = 1.

Furthermore, we can observe that if we are given bt and a finite grid-path η on
δnZ× δnN, it suffices to look at the path bt only until the moment it hits η for the first
time to check whether βn = η or not.

53



Suppose now that η is some given grid-path that has a positive probability to be
equal to βn. Let us consider a pinned configuration (γ, Γ̄) such that γ intersects ηT ,
and let us define ψ− = ψ−,η, γ− = γ−,η and γ+ = γ+,η as before (recall that γ− and
γ+ are the two parts of γ, before and after it hits η(T ), which is the first point of η
that intersects γ, and that ψ− corresponds to the domain where one from H \ η[0, T ]
the loops of Γ̄ that intersect η[0, T )). Then, we know on the one hand that ψ−(γ+) is
independent of ψ− and γ−, and that its law is P ∗. On the other hand, we have just
argued that the event {βn = η} is measurable with respect to γ− (this is because γ−
contains the part of γ up to the first time it hits η), so that the conditional law of
ψ−(γ+) given {βn = η} is also P ∗.

When βn = η, we define ψn,− to be this map ψ−, and we also define γn,+ and γn,− to
be these γ+ and γ−. Note that when n is very large, the probability that βn intersects
some macroscopic loop of Γ̄ is very small (this is because they are all at positive distance
of γ̄, and that βn is very close to γ). This, and our definition of βn ensures readily that
γn,− converges (in Hausdorff topology) to bt, and that ψn,−(γn,+) converges to ψt(et).

We are now almost ready to conclude: For any continuous bounded functions F and
G with respect to the Hausdorff topology, we get that:

Q(F (bt(γ))G(ψt(et))) = lim
n→∞

Q(F (γn,−)G(ψn,−(γ
n,+)))

= lim
n→∞

∑

η

Q(1{βn=η}F (γ−,η)G(ψ−,η(γ
+,η)))

= lim
n→∞

∑

η

Q(1{βn=η}F (γ−,η))× P ∗(G)

= lim
n→∞

P ∗(G)×Q(F (γn,−))

= P ∗(G)×Q(F (bt(γ)))

where we have use the independence property of Corollary 6.2 between the second and
the third line.

This lemma has a number of consequences: It implies (taking t = 0) that the law
of ξ itself is P ∗∗. We know also that P ∗∗ is scale-invariant. Hence, we get that ξ is a
continuous simple curve from 0 to infinity in the upper half-plane, that is scale-invariant
in law, and such that for all t, the conditional law of ft(ξ[t,∞)) given ξ[0, t] is the same
as the law of ξ itself. The previous characterization of SLE therefore implies that:

Corollary 6.5. The curve ξ is an SLEκ for some κ ∈ [0, 4]. Furthermore, ξ is inde-
pendent of b0(γ).

The independence between b0(γ) and ξ shows that the probability measure Q can
be constructed as follows: First sample b0(γ); this defines its tip z0. Then draw an
SLEκ (for some given value of κ) from z0 to 0− in H \ b0. Standard SLE computations
(see [36]) show that the probability that an SLEκ from 1 to 0 in H hits the (semi-)circle
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of radius ρ > 1 around the origin decays like ρ−(8/κ)+1+o(1) when ρ → ∞. It follows
immediately that if κ is the value associated to the pinned measure µ,

µ({γ : R(γ) ≥ ρ}) = Q({γ : R(γ) ≥ ρ}) = ρ−(8/κ)+1+o(1)

as ρ→ ∞. If we compare this with the scaling property of µ, i.e., the fact that

µ({γ : R(γ) ≥ ρ) = ρ−βµ({γ : R(γ) ≥ 1}),

we get that:

Corollary 6.6. One necessarily has κ = 8/(1 + β), β ∈ [1, 2) and κ ∈ (8/3, 4].

The last two statements in the corollary are just due to the fact that we know
already that β < 2 (so that κ > 8/3) and also that κ ≤ 4 (because γ does not touch
the boundary elsewhere than at the origin), which implies that β ≥ 1.

6.2 Pinned measure and SLE excursion measure

In order to show that Corollary 6.5 in fact characterizes the measure µ, let us first recall
the following rather standard facts concerning SLE processes and excursions of Bessel
processes:

Lemma 6.7. Suppose that κ ∈ (8/3, 4], and that P ε denotes the law of an SLEκ from
ε to 0 in the upper half-plane. Then, the measures ε1−(8/κ)P ε converge (vaguely) to an
infinite measure ν on the set of pinned loops, that we call the SLEκ excursion measure.

Vague convergence here means that for all r > 0, when restricted on the set of
paths with diameter greater than r, ε1−(8/κ)P ε converges weakly (with respect to the
Hausdorff topology for instance).

Proof. Let us fix a positive ε and consider an SLEκ curve (for κ ∈ (8/3, 4]) from ε to 0
in H. It is possible to parametrize this curve as a Loewner chain in the upper half-plane,
with time measured via the half-plane capacity. If we use this parametrization, then
the SLE path is defined up to some (random) time τ , and one can define for each t ≥ 0,
the conformal map gt from H \ γ[0, t] normalized at infinity, and it satisfies Loewner’s
equation ∂tgt(z) = 2/(gt(z) − Ut) for all t ≤ τ and z /∈ γ[0, t], where Ut = gt(γt). Note
also that τ is the hitting time of 0 by Ut − gt(0) (because γ is almost surely a simple
curve).

It is quite easy to argue that the process Xt := Ut − gt(0) is necessarily a Markov
process with the same scaling property as Brownian motion, and therefore the multiple
of some Bessel process. In fact, direct computations (see for instance [42]) shows that
γ is a so-called SLE(κ, κ− 6) process stopped at its first swallowing time of 0, i.e., that

dUt =
√
κdBt +

κ− 6

Ut − gt(0)
dt
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and

dXt =
√
κdBt +

κ− 4

Xt
dt

where B is a standard Brownian motion. Note that U can be recovered from X because

Ut − U0 = Xt −X0 +

∫ t

0

2dt/Xt.

An important feature here is (and this follows immediately from Itô’s formula) that
for β = 8/κ − 1, (Xt)

β is a local martingale up to its first hitting time of 0. For
instance, when X0 = ε, then the probability that X hits ε′ > ε before hitting 0 is
(ε/ε′)β. This makes it possible (in the standard procedure to define Bessel excursions,
see for instance [32]) to define a measure ν on the space of one-dimensional excursions
(Yt, t ≤ τ) (i.e., such that Y0 = Yτ = 0 and Y (0, τ) ⊂ (0,∞)) in such a way that the
ν-mass of the set of paths that reach level ε (at some time τε) is ε−β, and that the
(εβν)-law of (Yt+τε , t ∈ [0, τ − τε]) is the law of X as before started from level ε and
stopped at its first hitting of 0. Furthermore, one can check (for instance via scaling
considerations) that for ν-almost all Y ,

∫ τ

0
dt/Yt <∞.

Each such excursion Y clearly defines (via Loewner’s equation, replacing X by Y
and using the fact that

∫ τ

0
dt/Yt is finite) a two-dimensional pinned loop γ. So, we can

view the measure ν as a measure on the set of loops, and it satisfies the following two
statement:

• The ν-mass of the set of pinned loops γ such that Y hits ε is ε−β.

• On this set, the measure νε = εβν is a probability measure, and one can sample
γ by first sampling γ[0, τε], and then finishing the curve by an SLEκ in H\ γ[0, τε]
from γ(τε) to 0.

It follows that the difference between the two probability measures νε and P ε is just
due to the mapping by the random conformal mapping normalized at infinity from
H \ γ[0, τε] onto H. But, when ε → 0, this mapping clearly converges to the identity
away from the origin, which proves the claim.

Proposition 6.8. The pinned measure µ is the multiple of the SLEκ-excursion measure
ν for κ = 8/(1 + β) (where β is the “exponent” associated to µ), that is normalized in
such a way that µ(γ surrounds i) = 1.

A consequence of this proposition is that two CLE’s with the same exponent β have
the same pinned measure.

Proof. Recall that we have the following description of µ (this is just the combination
of the scaling property of µ and of the definition of r0): For each ε ≥ 0, the µ-mass
of the set of loops with radius at least εr0 is ε−β. If we restrict ourselves to this set
of loops, and renormalize µ so that it is a probability measure on this set, we can first
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sample the part of γ up to the point at which it reaches the circle of radius ε, and then
complete it with an SLEκ back to the origin in the remaining domain.

We can note that for some absolute constant K0, if we consider a loop that does
not reach the circle of radius r0, then the corresponding Loewner-type function Y as
before does not reach K0. Let us now sample the beginning of the loop γ as before up
to the first hitting point of the circle of radius εr0. Then continue the SLE up to the
first time (if it exists) at which the function Y associated to the loop reaches K0ε. A
fixed positive fraction K1 (independent of ε because of scale-invariance) of these SLEs
succeed in doing so. Then, after this point, we still are continuing with an SLEκ in the
remaining domain, so that γ is close to a sample of P ε.

Hence, we conclude readily that µ is a constant multiple of ν (where the constant
is given in terms of K0, K1 and β). Another way to describe this constant is to recall
that µ(γ surrounds i) = 1.

Let us now make the following comment: Suppose that a CLE in H is given. This
defines a random collection of loops (γj). If we now define the symmetry S with respect
to the imaginary axis (i.e. the map z 7→ −z̄), then it is clear from our CLE axioms
that the family (S(γj)) is also a CLE in H. We have just seen that each CLE defines
a pinned measure µ that happens to be the (multiple of an) SLEκ excursion measure.
But, by construction, the pinned measure associated to the CLE (S(γj)) is simply the
image of µ by the map S. Therefore (noting that both these CLEs correspond to the
same exponent β), the CLEs (S(γj)) and (γj) correspond to the same SLE excursion
measure. Hence:

Corollary 6.9. If the pinned measure of a CLE is the SLEκ excursion measure for
some κ, then it implies that the law of the corresponding SLEκ bubble (as defined in the
introduction) is reversible: The trace of SLEκ bubble traced clockwise has the same law
as that of an SLEκ bubble traced anti-clockwise.

It has been proved by Dapeng Zhan that SLEκ for κ ≤ 4 is indeed reversible (see
[55]), which in fact implies this last statement. The present set-up therefore provides
an alternative approach to reversibility of SLE paths for these values of κ.

7 Reconstructing a CLE from the pinned measure

The goal of the present section is to show that if one knows µ, then one can recover the
law of the initial CLE. This will conclude the proof of Theorem 1.3.

The rough idea is to use the radial exploration and to use the same idea as in the
proof of the fact that β < 2, but “backwards”: The fact that β < 2 will ensure that
this exploration (described in Section 4.4) can be approximated by keeping only those
steps that discover “large” loops, because the cumulative contribution of the small ones
vanish. Furthermore, these large loops can be described using a Poisson point process
of intensity µ. This will lead to the description of a “continuous exploration mecanism”
that we will relate to SLE(κ, κ− 6) processes in the next section.
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7.1 The law of γ(i)

It is useful to first show how one can recover the law of the loop in the CLE that
contains i. Recall that the set-up is the following: We suppose that we are given the
law P of a CLE. The previous sections enable us to define its pinned measure µ and
we have seen that it is necessarily equal (up to a multiplicative constant) to the SLEκ
excursion measure for some κ in (8/3, 4].

Lemma 7.1. The pinned measure µ characterizes the law of γ(i) under P . In other
words, if two (laws of) CLEs define the same pinned measure, then γ(i) is distributed
in the same way for both CLEs.

Proof. Let us use on the one hand the radial exploration mechanism in H. This de-
fines (for each ε) the geometric number N of exploration steps, the conformal maps
ϕε1, . . . , ϕ

ε
N that are normalized at i (i.e., ϕεn(i) = i and the derivative at i is positive).

We also define for all n ≤ N ,
Φεn = ϕεn ◦ · · · ◦ ϕε1

and Φε = ΦεN . Recall that:

• The random variable N is geometric with mean 1/u(ε).

• Conditionally on the value of N , the maps ϕε1, . . . , ϕ
ε
N are i.i.d. (and their law does

not depend on N — these are the maps corresponding to the CLE exploration
conditioned on the fact that γ(i) does not intersect Cε).

• What one “discovers” at the (N +1)-th step is independent of the value of N and
of the maps ϕε1, . . . , ϕ

ε
N . It is just a CLE conditioned by the event that the loop

surrounding i intersects Cε.

On the other hand, define a Poisson point process of pinned loops (γ̄t, t ≥ 0) with
intensity µ, and let T be the first time at which one γ̄t surrounds i. The µ-mass of the
set of loops that surround i is equal to 1, so that T is an exponential random variable of
parameter 1 (see for instance [33] for background on Poisson point processes). For each
of the countably many t in (0, T ) such that γ̄t exists, we denote by ft the conformal map
normalized at i by ft(i) = i and f ′

t(i) > 0, from the unbounded connected component
of H \ γ̄t onto H. The fact that β < 2 shows that

E

(

∑

t<T

a(ft)1R(γ̄t)<1/2

)

≤ E(T )µ(a(f)1R(γ)<1/2)

≤ Cµ(R(γ)21R(γ)<1/2) ≤ C ′
∫ 1/2

0

x2dx

x1+β
< ∞.

Since µ(R(γ) ≥ 1/2) < ∞, the number of times t before T at which R(γ̄t) ≥ 1/2 is
almost surely finite, so that almost surely,

∑

t<T a(ft) is finite (here and in this section,
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we shall re-use notations and arguments that have been presented in the “stability of
Loewner chains” paragraph of Section 4.3). Hence, if for each r > 0, we define the
iteration Ψr of the finitely many ft’s for t < T (in their order of appearance, let us call
the corresponding times t1(r), . . . , tk(r)) that correspond to pinned loops γ̄tj ’s of radius
greater than r, we get that as r → 0+, the maps Ψr converge (in Carathéodory topology,
with respect to the marked point i) to some conformal map Ψ that can be interpreted
as the iteration of all the conformal maps (ft, t < T ) in their order of appearance. Note
that Ψ maps some open set onto the upper half-plane, but that we have no information
at this point on the regularity of the boundary of this open set (whether it is a curve
or not, etc.).

Our goal now is to prove that when ε is small, then Ψ and Φε are very close (in law –
with respect to the Carathéodory topology from i). This will ensure that the law of γ(i)
in the CLE is identical to that of Ψ−1(γ̄T ), i.e. the image under Ψ−1 of an independent
sample of µi. In order to do so, we are going to introduce the cut-off Ψr as before.
For each r > 0, we define n1(r), . . . , nk(r) the steps before N at which one discovers
a loop intersecting Cr (note that this number of steps k and the values of the nj’s are
random, and depend on ε as well). The description of µ shows that for each fixed r > 0,
the joint law of (ϕεn1(r)

, . . . , ϕεnk(ε)(r)
) converges precisely to that of the corresponding

(ft1(r), . . . , ftk(r)); the law of their composition ϕεnk(r)
◦ · · · ◦ϕεn1(r)

therefore converges to
that of Ψr.

It now just remains to control
∑

n≤N
1n/∈{n1(r),...,nk(r)}a(ϕ

ε
n)

as r → 0, uniformly with respect to ε. We will bound the expected value of this
quantity. Recall that β < 2, that the half-plane capacity of a set contained in a disc of
radius smaller than r around the origin is bounded by a constant C times r2, that N
follows a geometric random variable of mean 1/u(ε), and that conditionally on N , the
maps ϕε1, . . . , ϕ

ε
N are i.i.d. It follows that

E(
∑

n≤N
1n/∈{n1(r),...,nk(r)}a(ϕ

ε
n)) ≤ E(N)E(a(ϕε1)1n1(r)6=1)

and that
E(a(ϕε1)1n1(r)6=1) ≤ C ×E(R(γ̃(ε))21R(γ̃(ε))≤r).

This last expectation will be controlled thanks to the bound β < 2: Let us first fix
δ = 1/2 and choose some a ∈ (0, (2− β)/2), for instance a = (2− β)/4. We know that

lim
η→0

v(δη)

v(η)
≥ δ2−2a.

In particular, for some η0 > 0, we get that for all η < η0,

v(δη)

v(η)
≥ δ2−a.
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Hence, there exists a constant C ′ such that for all m ≥ n ≥ 1

v(δm)

v(δn)
≥ C ′(δm−n)2−a.

Hence, if δn0+1 ≤ ε ≤ δn0 ≤ δn1+1 ≤ r ≤ δn1, we get that

E(
∑

n≤N
1n/∈{n1(r),...,nk(r)}a(ϕ

ε
n))

≤ E(N)× E(R(γ̃(ε))21R(γ̃(ε))2≤r)

≤ C

u(δn0)

∑

j∈[n1,n0]

δ2jP (R(γ̃(δn0)) ≥ δj+1)

≤ C ′′
∑

j∈[n1,n0]

δ2j
v(δn0−j−1)

u(δn0)

≤ C ′′′
∑

j≥n1

δ2j(δj)−2+a

≤ C ′′′ra

where all the constants do not depend on r and ε, so that this quantity converges to 0
as r → 0+ independently of ε; this completes the proof of the fact that the law of Φε

converges to Ψ (in Carathéodory topology).
Recall that for each ε > 0, the law of γ(i) is described as follows: We consider

on the one hand a sample of the conformal map Φε = ΦεN , and on the other hand,
an independent sample of the loop γ̄ε that surrounds i in a CLE in H conditioned to
intersect Cε. Then, γ(i) is distributed exactly as (Φε)−1(γ̄ε).

We have just seen that Φε converges in law to Ψ and we have also proved that
the (conditional) law of γ̄ε converges to µi. It follows therefore that the law of γ(i) is
described as the image under Ψ−1 of an independent sample of µi. This description is
based solely on the measure µ, so that the law of γ(i) can indeed be fully recovered
from µ.

We may observe that the previous proof also shows that if (z1, . . . , zm) are other
points in H, if we restrict ourselves to the event where all these m other points are
surrounded by some macroscopic loops that one discovered in this radial exploration
mechanism before (or at) the N -th step, the joint distribution of these m loops (some
of which may be the same if some loops surround several of these points) in the ε → 0
limit is also described via the Poisson point process of pinned loops i.e. via µ.

7.2 Several points

We now want to prove the more general result:
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Proposition 7.2. Two CLE probability measures that define the same pinned measure
µ are necessarily equal.

In other words, the pinned measure µ characterizes the law of the corresponding
CLE. This clearly implies Theorem 1.3.

Proof. Note that the law of the CLE is characterized by its “finite-dimensional marginals”,
i.e., by the joint distribution of

(γ(i), γ(z1), γ(z2), . . . , γ(zm))

for any finite set of points z1, . . . , zm in H (if we consider the CLE defined in the upper
half-plane).

Let us first focus on the law of (γ(i), γ(z)) for some given z ∈ H (the general case
will be very similar). In order to motivate what follows, let us informally describe what
could happen if we simply try to use exactly the same procedure as in the previous
subsection. That is, we consider the conformal maps ϕεn, Φ

ε
n for n ≤ N as before. Let

K denote the largest k ≤ N such that z ∈ (Φεk)
−1(H) (and write K = N if z is not

swallowed during the first N steps). We want to keep track of what happens to z, so
we define ak = Φǫk(z) (which will be defined up to k ≤ K). Let us now fix some small
positive δ and consider ε < δ.

We will also introduce another step K ′ ≤ K, which is the first step k at which either
|ak| ≤ δ or k = K. Note that if K ′ < K, this means that after the K ′-th step, neither
γ(z) nor γ(i) have been discovered, but that the points z and i are “conformally” quite
far away from each other in the domain HK ′ = (ΦεK ′)−1(H) (i.e., the Green’s function
GHK′

(z, i) is small — recall that δ is small). This can happen if the exploration gets
close to one of the two points i or z in H, or if it almost disconnects one from the other
in H (and this is in fact a scenario that might really occur with positive probability,
even in the δ → 0 limit).

We can subdivide the case K ′ = K into three possibilities: The loop γ(z) has been
discovered before the N -th step (in other words: K < N), the loop γ(z) is discovered
at the N -th step (then with high probability γ(i) = γ(z) when ε → 0), or it has still
to be discovered after then N -th step. In all these three cases, the arguments of the
previous subsection allow us to conclude that the joint law of (γ(i), γ(z)) on the event
that K ′ = K can be described via the Poisson point process of pinned loops, i.e. thanks
to the knowledge of µ.

When K ′ < K, we could just try to continue the exploration process after K ′,
but at some later step k, it could happen that the exploration procedure captures z
because |ak| ≤ ε. Or more generally, the loop γ(z) could be discovered in the discrete
exploration process at some step k via some loop that intersects Cε and that has a
very small radius (this does not necessarily contradict the fact the γ(z) is at positive
distance of z). In such a case, the previous argument will clearly not work, as the
exploration step corresponding to the discovery of γ(z) would not be apparent in the
limiting Poisson point process of “macroscopic” pinned loops.
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Here is a simple way of fixing this: At the step K ′, instead of doing an exploration
using the semi-circle Cε, we use the semi-circle C√

δ of radius
√
δ. Note that we are only

exploring the loops that hit the semicircle (not all the loops hitting the semi-disc) and
that |aK ′| ≤ δ. The harmonic measure of this semi-circle in H seen from aK ′ or from i
is small (if δ is small). After this K ′-th step, z and i are then in two different domains.
Furthermore, the probability to discover a loop that intersects also Cδ3/4 or Cδ1/4 at this
K ′-th step is very small.

i

z

Φ−1(∂C(
√

δ))

Figure 25: Near separation of z from i (sketch).

The same arguments as above show convergence (as ǫ → 0) of the laws of the ΦǫK ′

(in the Carathéodory sense, with normalization at i). With high probability, the K ′-th
exploration step changes the log conformal radius viewed from either z or i by a fraction
that goes to 0 when δ → 0. If we keep in mind that the restriction property still holds
for non-simply connected subsets of H (this is the final observation of Section 2), we see
that we can then continue the discrete radial exploration (aiming towards i) with ε-semi-
circles in the connected component containing i after the K ′-th step, and independently
another discrete radial exploration (aiming at z) in the domain containing z. In both
cases, we continue until we discover γ(i) and γ(z), and the same arguments as above
allow to approximate the laws of these two loops in the two respective domains via two
Poison point processes of loops.

We can therefore conclude that up to an error that tends to 0 with δ, the joint law
of (γ(i), γ(z)) on the event where K ′ < K is also fully described via a procedure that is
based on the knowledge of µ only. Hence, the joint law of (γ(i), γ(z)) is fully determined
by the pinned measure µ.
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Let us now consider the case where there is more than one additional point, i.e., when
we look at the joint law of (γ(i), γ(z1), . . . , γ(zm)). We then use the same argument as
above, stopping at the first time that at least one of the images of the other points gets
to a distance less than δ from the origin, i.e., at the step

K ′ = min{k : min(|a1k|, . . . , |amk |) ≤ δ},

where ajk = Φεk(zj). Note that at this step, it could happen that several |ajk| are in
fact quite small simultaneously. If we would explore as before by cutting out the semi-
circle C√

δ, we might be unlucky and have some ajk that lies very close to this semi-circle.
However, it is clear that for at least one semi-circle Cδ1/j out of the m semi-circles, Cδ1/2 ,
Cδ1/3 , . . . , Cδ1/m+1 , the harmonic measure of Cδ1/j in H seen from any of the m points
a1k, . . . , a

m
k is very small (i.e., tends uniformly to 0 when δ → 0). We therefore choose

to use this particular semi-circle for the (K ′ + 1)-th exploration step. This reduces the
problem to two independent explorations in two new domains as before, and each of the
two domains contains strictly less than m+1 points. We can then inductively continue
the discrete exploration procedure.

For each fixed δ, this shows that up to a small error (that vanishes when δ → 0),
the ε → 0 limit of this exploration procedure is well-approximated via Poisson point
processes with intensity µ. This enables to conclude that the joint law of the loops
(γ(i), γ(z1), . . . , γ(zm)) can be fully described in terms of µ.

8 Relation to CLEκ’s

It now remains to make the connection with the CLEκ families defined in [43] via
SLE(κ, κ− 6) branching trees. This will prove of Theorem 1.4.

8.1 Background about SLE(κ, κ− 6) processes

We first briefly review some of the properties of SLE(κ, κ− 6), in the case where κ ≤ 4
that we are focusing on in the present paper. We refer to [43] for the more precise
statements and their proofs. We have already encountered the SLE(κ, κ− 6) process in
Section 6.2. Recall that a process (Xt, t ≥ 0) started from X0 = x 6= 0 is called a Bessel
process of dimension δ ≥ 0 if it is the solution to the ordinary differential equation

dXt = dBt +
δ − 1

2Xt
dt (3)

and that this process is well-defined up to its first hitting time of the origin (which is
almost surely finite if δ < 2). When δ > 0, it is possible to define it (uniquely) also after
it hits the origin, in such a way that Xt ≥ 0 when t ≥ 0 and that the Lebesgue measure
of the time spent by X at the origin is 0. This is the “instantaneously reflected Bessel
process”, that can also be defined by concatenating a Poisson point process (eℓ)ℓ≥0 of
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Bessel excursions (see for instance [33] for background on Bessel processes). We will
also use a variation of this process obtained when tossing a fair coin for each excursion
of the Bessel process in order to decide if it is positive or negative (this process is
therefore defined on a larger probability space than the Brownian motion B), which is
the “symmetrized Bessel process”.

To each excursion e of the Bessel process of dimension δ, we associate J(e) the
integral of dt/e(t) on this excursion. Recall that (Xt)

β is a local martingale as long
as Xt stays away from the origin (for β = 2 − δ); it follows from a simple scaling
argument that the J(e)’s are finite and that the intensity of the Poisson point process
(J(eℓ), ℓ ≥ 0) is a multiple of dx/x1+β/2.

It is already apparent in Section 6.2 that it will be essential to try to make sense of a
quantity like

∫ t

0
ds/Xs when X is a Bessel process. In fact, we will need to focus on the

case where δ = 3−8/κ ∈ (0, 1] and β ∈ [1, 2), where this integral is infinite as soon as X
starts touching the origin (this is because

∫

0
dx/x1+(β/2) diverges so that almost surely,

∑

ℓ≤1 J(eℓ) = ∞). There are two ways around it this problem. The first one involves
the notion of “principal values” and is described in [43]. The other one, which works for
all δ ∈ (0, 1], is simply to consider the symmetrized Bessel process that chooses its signs
at random according to independent fair coin tosses on each excursion. In this case, the
integral

∫ t

0
ds/Xs is not absolutely convergent, but the process t 7→ It :=

∫ t

0
ds/Xs can

be nevertheless easily defined (this corresponds exactly to the existence of symmetric α-
stable processes for α ∈ [1, 2), even if α-stable subordinators do not exist when α ≥ 1).
We refer to [43] for a more detailed description of the possible options. What we will
need here is that in all these cases, one defines a continuous Markov process (Xt, It)t≥0

such that:

• X is a solution to the SDE (3) when it is away from the origin.

• The Lebesgue measure spent by X at the origin is 0.

• On the set of times where Xt is away from the origin, t 7→ It is differentiable and
its derivative is 1/Xt.

• (Xt, It)t≥0 satisfies the Brownian scaling property.

The way to define an SLE(κ, κ − 6) process out of this couple (Xt, It)t≥0 goes as
follows: Define for all t ≥ 0, the continuous process

Ut =
√
κXt + 2It/

√
κ

and construct the chordal Loewner chain driven by this function, i.e., solve the Loewner
differential equation for all z ∈ H

∂gt(z) = 2/(gt(z)− Ut)

started from g0(z) = z in order to define a random Loewner chain. If we define Ot =
It/

√
κ, then when Xt is away from the origin, i.e., when Ut 6= Ot, one has ∂tOt =
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2/(Ot−Ut), i.e., Ot follows the image of some boundary point under the Loewner flow.
Hence, putting our various equations together (definitions of Xt, It, Ot, and the relation
between κ and δ), we get that on the set of times where Ot 6= Ut,

dUt =
√
κdBt + (κ− 6)

dt

Ot − Ut
and dOt =

2dt

Ot − Ut
.

This continuous driving function t 7→ Ut defines a Loewner chain, but it is not clear
whether this chain is almost surely generated by a path. However, on those time-
intervals where Xt 6= 0, the law of t 7→ Ut/

√
κ is (locally) absolutely continuous to that

of a standard Brownian motion, and the Loewner chain is therefore tracing streches
of simple paths during these intervals. In fact, each of these intervals correspond to a
simple loop traced by the SLE(κ, κ − 6) Loewner chain. We can say that the positive
excursions of X correspond to anti-clockwise loops while the negative ones correspond
to clockwise loops.

We have already mentioned that such chordal SLE(κ, κ− 6) chains are of particular
interest because of the following properties [42]: They are target-independent, and if
Xt > 0, then the process locally continues exactly as an SLEκ targeting g−1

t (Ot). This
makes it is possible (see [43]) to construct a branching SLE(κ, κ− 6) process whose law
is invariant under conformal automorphisms of H that fix the origin. In fact, it is also
possible to define a radial version of the SLE(κ, κ− 6) process (see [42, 43]) in order to
also explore the connected components that are “cut out” without having a point on
the boundary of H. This can be either defined using a “radial-chordal” equivalence (like
that of SLE(6)) or viewed as a rather direct consequence of the target-independence
of the (chordal) SLE(κ, κ− 6) (just interpreting the past of the SLE as new boundary
points). The obtained set is then dense in the upper half-plane, and it is therefore
possible to define the family of all loops that are traced in this way: these are exactly
the CLEκ defined in [43]. In particular, for any given choice of the root (say at the
origin i.e., the SLE(κ, κ− 6) is started from (0, 0)), any given z in the upper half-plane
is almost surely surrounded by an (outermost) loop in this CLEκ, and we will denote
it by γ̂(z).

Let us make the following simple observation that will be useful later on: Suppose
that z1 and z2 are two points in the upper half-plane, and that the (random) time τ at
which this (branching) SLE(κ, κ− 6) process separates z1 from z2 is finite. Then, there
are two possible ways in which this can happen:

• Either τ is the end-time of an excursion of X , where the SLE traced a closed loop
that surrounds one of the two points but not the other.

• Or the SLE has not yet traced a closed loop that surrounds one of the two points
and not the other, but the Loewner chain traced by the paths nevertheless sep-
arates the two points from one another. This can for instance happen if the
SLE(κ, κ − 6) touches the boundary of the domain at a limit time that occurs
after the tracing of infinitely many small loops (recall that the SLE(κ, κ − 6) is
not a simple path).
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8.2 SLE(κ, κ− 6) and Poisson point process of pinned loops

The definition of SLE(κ, κ−6) clearly shows that it is possible to reconstruct the process
(Xt, t ≥ 0) starting from a Poisson point process of (positive) Bessel excursions (eℓ)ℓ≥0

of the corresponding dimension. More precisely (for the symmetrized Bessel process),
one defines also an i.i.d. family (εℓ)ℓ≥0 (with P (εℓ = 1) = P (εℓ = −1) = 1/2) of
“random signs” and then defines X by concatenating the excursions (εℓeℓ, ℓ ≥ 0). Each
individual excursion corresponds to a pinned loop γ̄ℓ in the upper-half plane. In fact,
this pinned loop is an SLE excursion, and one has tossed the fair coin in order to decide
whether to trace it clockwise or anti-clockwise. Hence, an SLE(κ, κ − 6) defines the
same Poisson point process of pinned loops (γ̄ℓ)ℓ≥0 with intensity µ as in Section 7.1.

But there is a difference in the way this Poisson point process is used in order to
construct the “composition” of the corresponding conformal maps fℓ. Here, one does
not compose the conformal maps fℓ that are normalized to have real derivative at i.
Instead, one keeps track of the previous location of the tip of the curve and continues
growing from there. More precisely, suppose that a pinned loop γ̄ is given, and that
one decides to trace it clockwise. Consider the unbounded connected component H of
its complement in H and let 0+ denote the boundary point of H defined as “the origin
seen from the right”. Define the conformal map f̃ from H onto H such that f̃(0+) = 0
and f̃(i) = i. If the loop was traced counterclockwise, just replace 0+ by 0− in this
definition of f̃ .

Then, if one focuses on the radial SLE(κ, κ−6) only at those times t at which Xt = 0
and before it draws a loop surrounding i, we have exactly the iteration of the conformal
maps f̃ℓ.

In other words, let us define cℓ ∈ (−π, π] in such a way that f̃ ′
ℓ(i) = eicℓ ; then the

difference between the radial SLE exploration procedure and the continuous iteration
of maps (fℓ) described in Section 7.1 is this “Moebius rotation” at the end of each
discovered loop. More precisely, let θc denote the Moebius transformation of H onto
itself with θc(i) = i and θ′c(i) = eic; then f̃ℓ = θcℓ ◦ fℓ.

This gives a motivation to modify the discrete radial exploration mechanism of a
CLE that we used in Lemma 7.1 as follows: After each step, instead of normalizing the
maps ϕεn at i by ϕεn(i) = i and (ϕεn)

′(i) > 0, we use the modified map ϕ̃εn defined by
ϕ̃εn(i) = i and by tossing a fair coin in order to decide whether ϕ̃εn(−ε) = 0 or ϕ̃n(ε) = 0.
Because the law of a CLE in H is invariant under Moebius transformations, this does
not change the fact that the (ϕ̃εn)’s are i.i.d., that N is a geometric random variable
with mean 1/u(ε), and that what one discovers at the (N + 1)-th step is independent
of the value of N and of the maps ϕ̃ε1, . . . , ϕ̃

ε
N .

We would now like to see that this discrete exploration mechanism converges (as
ε→ 0) exactly to the radial SLE(κ, κ−6) procedure described before. We already know
from the proof of Lemma 7.1 that if we focus on the discovered pinned loops of radius
larger than r (for each fixed r), then the corresponding discovered loops converge in law
to the corresponding SLE loops (and that the laws of the corresponding conformal maps
therefore converge too). The point is therefore only to check that the effect of all these
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additional “Moebius rotations” remains under control (in other words, that it tends to
0 when r → 0, uniformly with respect to ε). But as we shall now see, this follows from
the same arguments that allow us to define symmetrized Bessel processes (respectively
symmetric α-stable processes) as almost sure limits of processes obtained by the cut-off
of all Bessel excursions of small height or length (resp. the cut-off of all jumps of small
size) i.e., it is a straightforward consequence of the fact that β < 2: For each n ≤ N ,
we define ϕεn and ϕ̃εn as before, and choose cεn in such a way that ϕ̃εn = θcεn ◦ ϕεn.

Note that there exists a universal constant such that as soon as R(γ̃(ε)) ≤ 1/2, the
corresponding cε satisfies |cε| ≤ C ×R(γ̃(ε)) (because harmonic measure scales like the
diameter). It follows, using the independence between the exploration steps, and the
symmetry (i.e., the fact that cε1 and −cε1 have the same law) that

E
(

(
∑

n≤N
1n/∈{n1(r),...,nk(r)}c

ε
n)

2
)

= E(N)E((cε1)
2116=n1(r)) ≤

C

u(ε)
E(R(γ̃(ε))21R(γ̃(ε))<r).

We have already shown in the proof of Lemma 7.1 that this last quantity goes to 0 as
r → 0, uniformly with respect to ε. Note also that m 7→∑

n≤min(m,N) 1n/∈{n1(r),...,nk(r)}c
ε
n

is a martingale. Hence, Doob’s inequality ensures that uniformly with respect to ε,

lim
r→0+

E
(

sup
m≤N

(
∑

n≤m
1n/∈{n1(r),...,nk(r)}c

ε
n)

2
)

→ 0.

From this, it follows that forgetting or adding these “rotations” to the exploration
procedure does not affect it much (in Carathéodory sense, seen from i); one can for
instance use the Loewner chain interpretation of this exploration procedures, and the
above bound on the supremum of the cumulative rotations implies that the radial
Loewner driving functions (with or without these rotations) are very close.

8.3 CLE and the SLE (κ, κ− 6) exploration “tree”

In this section, we finally complete the proof of Theorem 1.4 by showing that indeed
the loops in CLE necessarily have the same law as the set of loops generated by an
SLE(κ, κ − 6) (as constructed in [43]). As before, it is enough to prove that for every
finite set {z1, . . . , zm} of points in H, the joint law of the γ(zj) is the same for the CLE
as for the CLEκ loops (more precisely, as the outermost loops surrounding these points
in the CLEκ).

Fix the points {z1, . . . , zm} in H and consider a radial SLE(κ, κ − 6) targeting z1,
say. We do not know whether SLE(κ, κ− 6) is a continuous curve, but we recall that it
is continuous at times in the interior of the loop-tracing intervals (during the excursions
of the Bessel process). For each t > 0, the hull of the process Kt ⊂ H is compact and
its complement Ht = H \Kt contains z1. The chain (Kt) also traces loops as explained
before. We define τ to be the first time at which at least one of the points z2, . . . , zm
is “swallowed” by Kt, i.e. separated from z1. We will use Kt− to denote ∪s<tKs. Note
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that by the target invariance property, the law of (Kt, t < τ) does not depend on the
fact that we singled out z1 i.e., τ is just the first time at which Kt− separates the set
of m points into at least two parts. As mentioned earlier, the time τ can occur in two
different ways: either the SLE has traced a loop surrounding some zj or it has simply
disconnected the domain into two parts.

Lemma 8.1. Consider the following method of generating a random loop γ̃(zj) sur-
rounding each zj.

1. For each j, if zj is surrounded by one of the loops traced by (Kt, t ≤ τ), then we
let γ̃(zj) be that loop.

2. In each component of H \Kτ− that is not surrounded by a loop traced by (Kt, t ≤
τ), we then construct an independent copy of the CLE (conformally mapped to
that ensemble), and for each zj in that component, we let γ̃(zj) be the loop that
surrounds zj in this CLE.

Then the set {γ̃(z1), γ̃(z2), . . . γ̃(zm)} agrees in law with {γ(z1), γ(z2), . . . γ(zm)}.

Given this lemma, Theorem 1.4 follows immediately by induction. Indeed, suppose
that the collections {γ̂(z′j), j ≤ m − 1} and {γ(z′j), j ≤ m − 1} agree in law for all
collections of (z′j, j ≤ m − 1). By construction, each component of H \Kτ− has fewer
than m points; moreover, conditioned on (Kt, t ≤ τ), the remainder of the branching
radial SLE (κ, κ−6) consists of an independent radial SLE((κ, κ−6) in each component
of H\Kτ− not surrounded by a loop—by inductive hypothesis, the loops traced by such
a process agree in law with the γ̃(zj).

We now proceed to prove Lemma 8.1.

Proof. First, we claim that it is enough to prove (for each given δ > 0) the statement
of Lemma 8.1 where the time τ is replaced by τδ defined as follows. Let first σδ denote
the first time at which at least one of the images of the zj gets within distance δ of
Ut. Note that typically, at time σδ, the Bessel process X will be in the middle of some
excursion away from 0. Then, let τδ be the first time t at which either:

1. The SLE(κ, κ− 6) completes a loop that surrounds some zj .

2. The SLE completes the loop it is tracing at σδ (i.e., t ≥ σδ and Xt = 0).

Indeed, we know that each of the loops γ(zj) is at finite distance from the zj . Hence,
almost surely, the conformal radius of Hτδ− from each of the zj ’s remains bounded as
δ → 0; thus, in the Carathéodory sense seen from zj , the domain surrounding Hτδ−
tends to a limit as δ → 0 almost surely (note that the τδ increase as δ decreases).
It is therefore clear that the law of the γ̃’s (conditioned on Kτδ−) tends to a limit as
δ → 0 and also that (by the arguments of Section 7.2) this limit is indeed that of an
independent CLE in each of the component of Hτδ−.
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Now it remains only to prove the claim for these τδ. To do this, it suffices to return
to the modified radial ǫ-exploration scheme (the one including the cεn “rotations”) that
we have just defined and studied, and use the fact that for each fixed δ, up to τδ, it
approximates the continuous mechanism corresponding to the SLE(κ, κ−6) excursions.
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Part two: construction via
loop-soups

9 Loop-soup percolation

We now begin the second part of the paper, focusing on properties of clusters of Brow-
nian loops. The next three sections are structured as follows. We first study some
properties of the Brownian loop-soup and of the clusters it defines. The main result
of the present section is that when c is not too large (i.e. is subcritical), the outer
boundaries of outermost Brownian loop-soup clusters form a random collection of dis-
joint simple loops that does indeed satisfy the conformal restriction axioms. By the
main result of the first part, this implies that they are CLEκ ensembles for some κ. In
Section 10, we compare how loop-soups and SLEκ curves behave when one changes the
domain that they are defined in, and we deduce from this the relation between κ and
c in this subcritical phase. In Section 11, we show that if the size of the clusters in a
Brownian loop-soup satisfy a certain decay rate property, then the corresponding c is
necessary strictly subcritical. This enables to show that the loop-soup corresponding
to κ = 4 is the only possible critical one, and completes the identification of all CLEκ’s
for κ ∈ (8/3, 4] as loop-soup cluster boundaries.

We will in fact directly use SLE results on only three distinct occasions: we use
the standard SLE restriction properties from [21] and the description of CLE in terms
of SLE excursions in Section 10, and we use an estimate about the size of an SLEκ
excursions in Section 11.

Recall that we consider a Brownian loop-soup L in U with intensity c (which is in
fact a random countable collection of simple loops because we take the outer boundaries
of Brownian loops). Note that almost surely, for any two loops in the loop-soup, either
the two loops are disjoint or their interiors are not disjoint. We say that two loops l and
l′ in L are in the same cluster of loops if one can find a finite chain of loops l0, . . . , ln in
L such that l0 = l, ln = l′ and lj ∩ lj−1 6= ∅ for all j ∈ {1, . . . , n}. We then define C to
be the family of all closures of loop-clusters. Finally, we let Γ denote the family of all
outer boundaries of outermost elements of C (i.e. elements of C that are surrounded by
no other element of C).

The goal of this section is to prove the following proposition:

Proposition 9.1. There exists a positive constant c0 such that for all c in (0, c0), the
set Γ satisfies the conformal restriction axioms, whereas when c is (strictly) greater than
c0, L has only one cluster almost surely.

Throughout this section, we will use neither SLE-type results nor results derived
earlier in the paper. We will focus on properties of the collection C of (closures of) the
clusters defined by the loop-soup L. The proposition will follow immediately from a
sequence of six lemmas that we now state and prove.
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It is easy to see (and we will justify this in a moment) that when c is very large,
there almost surely exists just one cluster, and that this cluster is dense in U, i.e., that
almost surely, C = {U}.

Lemma 9.2. Suppose that Pc(C = {U}) < 1. Let U ⊂ U denote some open subset of U,
and define U∗ to be the set obtained by removing from U all the (closures of) loop-soup
clusters C that do not stay in U . Then, conditionally on U∗ (with U∗ 6= ∅), the set of
loops of L that do stay in U∗ is distributed like a Brownian loop-soup in U∗.

Figure 26: Loop-soup clusters that stay in the rectangle U are dashed (sketch)

Note that we have not yet proved at this point that in this case, Γ is a locally finite
collection of disjoint simple loops (this fact will be proved later in this section).

Proof. Let us define for any n ≥ 1, the set U∗
n = U∗

n(U
∗) to be the largest union of dyadic

squares of side-lengths 2−n that is contained in U∗ (note that this is a deterministic
function of U∗). For each n ≥ 1, and for each union Vn of such dyadic squares the loop-
soup restricted to Vn is independent of the event {U∗

n = Vn}. It implies immediately that
conditionally on U∗, the set of loops that do stay in U∗

n is distributed like a Brownian
loop-soup in U∗

n. Since this holds for all n, the statement of the lemma follows.

Lemma 9.3. Suppose that Pc(C = {U}) < 1 and that there is a Pc positive probability
that C contains an element intersecting the boundary of U. Then for all positive c′,
Pc+c′(C = {U}) = 1.

Proof. Assume the hypotheses of the lemma, and let A1 be the union of all elements of
C that intersect some prescribed boundary arc ∂ of U of positive length. By invariance
under rotation, Pc(A1 6= ∅) > 0. Using the same argument as in the previous lemma,
we get that if U is a fixed open set such that U ⊂ U, then conditioned on the event
U ∩ A1 = ∅, the law of the set of loops in L that are contained in U is the same as its
original law (since changing the set of loops within U has no effect on A1). Since this
holds for any U , conformal invariance of the loop soup implies that conditioned on A1,
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the law of the elements of L that do not intersect A1 is that of independent copies of L
conformally mapped to each component of U \ A1. Note that this in fact implies that
the event that A1 is empty is independent of L, and hence has probability zero or one
(but we will not really need this).

The conformal radius ρ1 of U \ A1 seen from 0 has a strictly positive probability
to be smaller than one. We now iterate the previous procedure: We let U2 denote the
connected component of U\A that contains the origin. Note that the harmonic measure
of ∂2 := ∂ ∪ A1 at 0 in U1 is clearly not smaller than the harmonic measure of ∂ in U

at 0 (a Brownian motion started at the origin that exits U in ∂ with necessarily exit U1

through ∂2). We now consider the loop-soup in this domain U2, and we let A2 denote
the union of all loop-soup clusters that touch ∂2. We then iterate the procedure, and
note that the conformal radius of Un (from 0) is dominated by a product of i.i.d. copies
of ρ1.

This shows that for any positive δ one can almost surely find in Γ a finite sequence
of clusters C1, . . . , Ck, such that d(Cj, Cj+1) = 0 for all j < k, such that C1 touches
∂ and d(Ck, 0) ≤ δ. By conformal invariance, it is easy to check that the same is
true if we replace the origin by any fixed point z. Hence, the statement holds almost
surely, simultaneously for all points z with rational coordinates, for all rational δ, and
all boundary arcs of ∂U of positive length.

Note that almost surely, each loop of the loop soup surrounds some point with
rational coordinates. We can therefore conclude (see Figure 27) that almost surely, any
two clusters in C are “connected” via a finite sequence of adjacent clusters in C.

Figure 27: The dark solid loop is part of a crossing of (light solid) loops from the left
boundary segment to the right boundary segment. The dark dotted loop is part of a
crossing of loops from the lower boundary segment to the upper boundary segment.

If we now augment L by adding an independent Brownian loop-soup L′ of intensity c′

for any given positive c′, the new loops will almost surely join together any two adjacent
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clusters of C into a single cluster (this is just because any given point z′ ∈ U – for instance
one chosen contact point between two adjacent clusters of C – will almost surely be
surrounded by infinitely many small loops of L′). Furthermore, for an analogous reason,
almost surely, any loop of L′ intersects some loop of L. It follows that for all c′ > 0,
Pc+c′ almost surely, there exists just one single cluster, i.e., C = {U}.
Lemma 9.4. There is a critical constant c0 ∈ [0,∞] such that

1. If c > c0, then Pc(C = {U}) = 1.

2. If c ∈ (0, c0), then Pc almost surely

(a) C has infinitely many elements.

(b) No element of C intersects the boundary of U.

(c) No two elements of C intersect each other.

Proof. Suppose that Pc(C = {U}) < 1; if there is a Pc positive probability that two ele-
ments of C intersect each other, then (applying Lemma 9.2 to some U that contains one
but not the other with positive probability) we find that there is a positive probability
that an element of C intersects ∂U.

Also, if c > 0 and C has only finitely many elements with positive probability, then
(with the same probability) at least one of these elements must intersect ∂U (since the
loops of L are dense in U a.s.).

Thus, Lemma 9.3 implies that if c0 is the supremum of c for which (a), (b), and (c)
hold almost surely, then L has only one cluster Pc almost surely whenever c > c0.

We say c is subcritical if the (a), (b), and (c) of Lemma 9.4 hold Pc almost surely. We
will later show that c0 is subcritical, but we have not established that yet. We remark
that the proof of Lemma 9.4 shows that in order to prove that some c is subcritical, it
suffices to check (b).

Lemma 9.5. The c0 of Lemma 9.4 lies in (0,∞). Moreover, when c > 0 is small
enough, there are Pc almost surely continuous paths and loops in D that intersect no
element of L.
Proof. We first prove the latter statement: for small c > 0 there exist almost surely
simple paths crossing U that intersect no element of L. This will also imply c0 > 0.
To this end we will couple the loop-soup with a well-known fractal percolation model.
The argument is similar in spirit to the one for multi-scale Poisson percolation in [26],
Chapter 8.

Consider the unit square D = (0, 1)2 instead of U. For each n, we will divide it
into 4n (closed) dyadic squares of side-length 2−n. To each such square C, associate a
Bernoulli random variable X(C) equal to one with probability p. We assume that the
X(C) are independent. Then, define

M = [0, 1]2 \
⋃

C : X(C)=0

C. (4)
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This is the fractal percolation model introduced by Mandelbrot in [25] (see also the book
[26]). It is very easy to see that the area of M is almost surely zero as soon as p < 1.
Chayes, Chayes and Durrett [6] have shown that this model exhibits a phase transition:
There exists a pc, such that for all p ≥ pc, M connects the left and right sides of the
unit square with positive probability, whereas for all p < pc, this is a.s. not the case
(note that in fact, if p ≤ 1/4, then M is almost surely empty by a standard martingale
argument). Here, we will only use the fact that for p large enough (but less than one),
M connects the two opposite sides of the unit square with positive probability. We
remark that the proof in [6] actually gives (for large p) a positive probability that there
exists a continuous path from the left to right side of the unit square in M that can
be parameterized as t → (x(t), y(t)) where t ∈ [0, 1] and x(t) is non-decreasing. It
also shows (modulo a straightforward FKG-type argument) thatM contains loops with
positive probability.

Now, let us consider a loop-soup with intensity c in the unit square. For each loop l,
let d(l) ∈ (0, 1) denote its L1-diameter (i.e., the maximal variation of the x-coordinate
or of the y-coordinate), and define n(l) ≥ 0 in such a way that d(l) ∈ [2−n−1, 2−n). Note
that l can intersect at most 4 different dyadic squares with side-length 2−n. We can
therefore associate in a deterministic (scale-invariant and translation-invariant) manner
to each loop l ⊂ (0, 1)2, a dyadic site s = (j2−n(l), j′2−n(l)) ∈ (0, 1)2 such that l is
contained in the square Sl with side-length 2× 2−n(l) and bottom-left corner at s. Note
that Sl ⊂ (0, 2)2.

We are first going to replace all loops l in the loop-soup by the squares Sl. This
clearly enlarges the obtained clusters. By the scale-invariance and the Poissonian char-
acter of the loop-soup, for each fixed square

S = [j2−m, (j + 2)2−m]× [j′2−m, (j′ + 2)2−m] ⊂ [0, 2]2, (5)

the probability that there exists no loop l in the loop-soup such that Sl = S is (at least)
equal to exp(−bc) for some positive constant b (that is independent ofm). Furthermore,
all these events (when one lets S vary) are independent.

Hence, we see that the loop-soup percolation process is dominated by a variant of
Mandelbrot’s fractal percolation model: let X̃ denote an independent percolation on
squares of type (5), with each X̃(S) equal to 1 with probability p̃ = exp(−bc) and define
the random compact set

M̃ = [0, 2]2 \
⋃

S : X̃(S)=0

S. (6)

Note that in the coupling between the loop-soup and M̃ described above, the distance
between M̃ and each fixed loop in the loop-soup is (strictly) positive almost surely. In
particular, M̃ is contained in the complement of the union of the all the loops (and
their interiors).

We now claim that this variant of the percolation model is dominated by Mandel-
brot’s original percolation model with a larger (but still less than 1) value of p = p(p̃)
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that we will choose in a moment. To see this, let X̂ be a p̂-percolation (with p̂ = p1/4)
on the set of (C, S) pairs with C a dyadic square and S a square comprised of C and
three of its neighbors. Take

X(C) = min
S : C⊂S

X̂(C, S) and X̃(S) = max
C : C⊂S

X̂(C, S).

Clearly X(C) is a Bernoulli percolation with parameter p = p̂4 and X̃(S) is a Bernoulli
percolation with parameter 1 − (1 − p̂)4. Let us now choose p in such a way that
p̃ = 1 − (1 − p̂)4. Note that p tends monotonically to 1 as p̃ tends to 1. Hence, by
taking p̃ sufficiently close to 1, i.e. c sufficiently small, we can ensure that p is as close
to 1 as we want (so that M contains paths and loops with positive probability). But in
our coupling, by construction we have

X(C) ≤ min
C⊂S

X̃(S),

and thus M ⊂ M̃ .
We have now shown that c0 > 0, but we still have to show that c0 < ∞. We use a

similar coupling with the fractal percolation model. For any dyadic square that does not
touch the boundary of [0, 1]2, we let X(C) be 0 if C is surrounded by a loop in L that
is contained in the set of eight neighboring dyadic squares to C (of the same size). The
X(C) are i.i.d. (for all C whose eight neighbors are contained in D), and have a small
probability (say smaller than 1/4) of being 1 when c is taken sufficiently large. We now
use the fact, mentioned above, that if p ≤ 1/4, then M is almost surely empty; from
this we conclude easily that almost surely, for each C (whose incident neighbors are in
D) every point in C is surrounded by a loop in L almost surely. It follows immediately
that almost surely, every point in D is surrounded by a loop in L. This implies that
almost surely all loops of L belong to the same cluster (since otherwise there would be
a point on the boundary of a cluster that was not surrounded by a loop).

Lemma 9.6. If c is sub-critical, the probability that there are k disjoint chains of loops
in C crossing from the inside to the outside of a fixed annulus decays exponentially in
k.

Proof. We know that c is subcritical, so that for all r < 1, the probability that there
exists a crossing of the annulus {z : r < |z| < 1 − 1/n} by a chain of loops goes
to 0 as n → ∞. Hence, there exists r1 ∈ (r, 1) such that the probability that there
is a single crossing of {z : r < |z| < r1} is strictly smaller than one. Hence, it
follows easily that if we consider any given annulus, {z : r < |z − z0| < r′} ⊂ U,
there exists a positive probability that no cluster of the loop-soup crosses the annulus
(just consider the two independent events of positive probability that the loop-soup
restricted to {z : |z − z0| < r′/r1} contains no crossing of the annulus, and that no
loop intersects both the circles of radius r′ and r′/r1 around z0). In other words, the
probability that there exists a crossing of the annulus is strictly smaller than one. The
result then follows from the BK inequality for Poisson point processes (see for instance
[3] and the references therein).
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As a consequence (letting k → ∞), we see that for each fixed annulus, the probability
that it is crossed by infinitely many disjoint chains of loops is zero. We are now ready
to state and prove the final lemma of this section:

Lemma 9.7. If c is sub-critical, the set C is almost surely locally finite. Moreover,
when c is sub-critical, then almost surely, all elements of Γ are continuous simple loops.

Proof. If the set C is not locally finite (i.e. if there exists some ǫ such that there are
infinitely many clusters of diameter at least ǫ), then for some positive ǫ there exists
a point z ∈ U and a sequence Cn of elements of C of size greater than ǫ such that
d(z, Cn) → 0 as n → ∞. Hence any annulus with outer radius less than ǫ/2 that
surrounds z will have infinitely many crossings by disjoint chains of loops. By Lemma
9.6, the probability that such a point exists is zero (this result just follows from the
lemma by considering a countable collection of annuli such that each point in U is
surrounded by arbitrarily small annuli from this collection).

Note that by construction, no element of C can have a cut point (recall that almost
surely no two loops of L intersect at only a single point – and that the elements of L
are all simple loops).

It therefore remains only to check that the outer boundary of a cluster is a continuous
loop. Several approaches are possible to justify this. Let us first show that the outer
boundary of a cluster can be viewed as the outer boundary of a single continuous (non-
simple) loop. Let (ηk) be any given countable collection of simple loops in U such that
the graph whose vertices are the loops (with two loops connected if they intersect) is
connected. Assume that there are at most finitely many loops above any given diameter,
and at most finitely many disjoint crossings by chains of loops of any given annulus (note
that all this holds almost surely when (ηk) is the family of loops in a given sub-critical
loop-soup cluster). We would like to define a single continuous loop that traces exactly
through all of the points on the closure of the union of the ηk. It is not so surprising
that this is possible, but requires some justification:

Let T be a spanning tree of the adjacency graph on the ηk and fix a root vertex.
Now, relabeling appropriately if necessary (for instance by choosing η1 to be the root
loop and then inductively choose ηk to be the largest child in T of η1, . . . , ηk−1), assume
that η1, η2, . . . are enumerated in such a way that for every k > 1, the loop ηk has one
of η1, η2, . . . , ηk−1 as a parent in T . We can inductively define a parameterization of
each of the ηk, starting and ending at a point xk on ηk and taking 2−k time, as follows.
Pick a point on η1 and traverse the loop in time 2−1 starting and ending at an arbitrary
point x1 on the loop. Given the parameterizations up to k− 1, let xk be the location of
the first place that the parameterization of the parent loop of ηk hits ηk. Then choose
an arbitrary parameterization of ηk starting and ending at xk and taking 2−k time.

Now we can define a single loop L that traverses all of the ηj in a total time 1 =
∑∞

j=1 2
−j : We define a sequence of loops Li converging to L uniformly. First L1 is the

loop that traverses η1 in order except that each time it hits a point which is an xk
for some k > 1 it waits at that point for a time equal to the sum of all the lengths
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of ηk and all of its descendants. Thus L1 traverses η1 in unit time. We define L2 the
same way except that at each one of the xk that the L1 loop paused at we actually
traverse the loop ηk (pausing at each xℓ on that loop for an amount of time equal to the
sum of the lengths of ηℓ and all of its descendants). Inductively we similarly define Lk,
which traverses all loops η1, . . . , ηk, and note that the finite diameter and finite number
of annulus crossing conditions imply that L1, L2, . . . converge uniformly to a limiting
continuous loop L whose range contains the range of each of L1, L2, . . ., hence each ηj .
The range of L is therefore exactly the closure of ∪kηk.

Now, it is easy to see that the outer boundary of a continuous loop in the plane
is necessarily a continuous loop (this is for instance explained and used the proof of
Theorem 1.5(ii) in [4], page 1003). In the case of our loop-soup clusters, we know that
this loop is almost surely simple because the cluster has no cut-point.

Proposition 9.1 now follows from the results proved in this section: Lemma 9.5 gives
the existence of c0, Lemma 9.7 implies that the loops are simple and locally finite a.s.
(which in particular also implies the existence of outermost clusters), and Lemma 9.2
yields the restriction property.

10 Relation between c and κ

The main result of our Markovian characterization, combined with Proposition 9.1 now
implies the following:

Corollary 10.1. If c is sub-critical, then the set Γ is a CLEκ for some κ ∈ (8/3, 4]. In
other words, for such c, the Γ is equivalent in law to the loop ensemble constructed in
[43] via branching SLE(κ, κ− 6).

We will now identify κ in terms of c.

Proposition 10.2. For all subcritical c, the set Γ is in fact a CLEκ with c = (3κ −
8)(6− κ)/2κ.

Note that in our proof, we will not really use the description of CLEκ via branching
SLE(κ, κ− 6). We will only use the description of the conformal loop-ensemble via its
pinned loop measure, as described in the earlier sections: Suppose that Γ is a random
loop ensemble that satisfies the conformal restriction axioms. Consider its version in
the upper half-plane H, and consider the loop γ(i) of Γ that surrounds i. Let us now
consider the law of γ(i) conditioned on the event {d(0, γ(i)) ≤ ε}. We have seen
that this law converges when ε → 0 to some limit P i, and furthermore that for some
κ ∈ (8/3, 4], P i is equal to an SLE-excursion law P i,κ that we will describe in the next
paragraph. Furthermore, when this is the case, it turns out that the entire family Γ is
a CLEκ for this value of κ.

Consider an SLEκ in the upper half-plane, started from the point ε > 0 on the real
axis to the point 0 (on the real axis as well). Such an SLE path will typically be very
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small when ε is small. However, one can show that the limit when ε→ 0 of (the law of)
this SLE, conditioned on disconnecting i from ∞ in the upper half-plane exists. This
limit (i.e., its law) is what we call P i,κ.

Conformal invariance of SLEκ enables to define an analogous measure in other simply
connected domains. Suppose for instance that H = {z ∈ H : |z| < 3}. We can again
consider the limit of the law of SLEκ in H from ε to 0, and conditioned to disconnect i
from 3i. This limit is a probability measure P i,κ

H that can also be viewed as the image of
P i,κ under the conformal map Φ from H onto H that keeps the points 0 and i invariant.
Note that the same argument holds for other choices of H , but choosing this particular
one will be enough H to identify the relationship between c and κ.

One can use SLE techniques to compare “directly” the laws of an SLE γ from ε to
0 in H and of an SLE γ′ also from ε to 0 in H . More precisely, the SLE martingale
derived in [21] show that the Radon-Nikodym of the former with respect to the latter
is a multiple of

exp(−cL(γ,H \H ;H))

on the set of loops γ that stay in H (recall that L(A,A′;D) denotes the µ-mass of the
set of Brownian loops in D that intersect both A and A′), where

c = c(κ) =
(3κ− 8)(6− κ)

2κ
.

This absolute continuity relation is valid for all ε, and it therefore follows that it still
holds after passing to the previous limit ε → 0, i.e., for the two probability measures P i,κ

and P i,κ
H . This can be viewed as a property of P i,κ itself because P i,κ

H is the conformal
image of P i,κ under Φ.

Note that the function κ 7→ c(κ) is strictly increasing on the interval (8/3, 4]. Only
one value of κ corresponds to each value of c ∈ (0, 1]. Hence, in order to identify the
value κ associated to a family Γ of loops satisfying the conformal restriction axioms,
it suffices to check that the probability measure P i satisfies the corresponding absolute
continuity relation for the corresponding value of c.

Proof. Suppose that c is subcritical, that L is a loop-soup with intensity c in H, and that
Γ is the corresponding family of disjoint loops (i.e., of outer boundaries of outermost
clusters of loops of L). For the semi-circle H defined above, we denote by L′ the loops
of L that stay in H , and we denote by Γ′ the corresponding family of disjoint loops (i.e.
outermost boundaries of outermost clusters). Note that L′ is a loopsoup in H . Let γ(i)
denote the loop in Γ that surrounds i, and let γ′(i) denote the loop in Γ′ that surrounds
i. Note that if γ(i) 6= γ′(i), then necessarily γ(i) /∈ H . Furthermore, in order for γ(i)
and γ′(i) to be equal it suffices that:

• L \ L′ contains no loop that intersects γ′(i) (note that the probability of this
event– conditionally on γ′(i) – is exp(−cL(γ′(i),H \H ;H)).
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• One did not create another disjoint cluster that goes “around” γ′(i) by adding to
L′ the loops of L that do not stay in H . When γ′(i) already intersects the disk of
radius ε, the conditional probability that one creates such an additional cluster
goes to 0 as ε → 0 (using the BK inequality for Poisson point processes, as in the
proof of Lemma 9.6).

If we now condition on the event that γ′(i) intersects the disk of radius ε and let ε→ 0,
it follows that under the limiting law P i satisfies the absolute continuity relation that
we are after: On the set of curves γ that stay in H , the Radon-Nikodym derivative of P i

with respect to the measure defined directly in H instead of H is exp(−cL(γ,H\H ;H)).
Hence, one necessarily has P i = P i,κ for c = c(κ).

This identification allows us to give a short proof of the following fact, which will
be instrumental in the next section:

Proposition 10.3. c0 is subcritical.

Note that the standard arguments developed in the context of Mandelbrot perco-
lation (see [26, 6]) can be easily adapted to the present setting in order to prove that
c0 is subcritical, but not in the sense we have defined it. It shows for instance easily
that at c0, there exist paths and loops that intersect no loop in the loop-soup, but
non-trivial additional work would then be required in order to deduce that no cluster
touches the boundary of the domain. Since we have this identification via SLEκ loops
at our disposal, it is natural to prove this result in the following way:

Proof. Let Cc be the outermost cluster surrounding i if the loop-soup (in H) has inten-
sity c. If we take the usual coupled Poisson point of view in which the set L = L(c)
is increasing in c (with loops “appearing” at random times up to time c) then we
have by definition that almost surely Cc0 = ∪c<c0Cc (this is simply because, almost
surely, no loop appears exactly at time c0). Let d(c) denote the Euclidean distance
between Cc and the segment [1, 2]. Clearly d(c) > 0 almost surely for each c < c0 and
d(c0) = limc→c0− d(c).

By the remark after Lemma 9.4, we know that in order to prove that c0 is sub-
critical, it suffices to show that d(c0) > 0 almost surely (by Moebius invariance, this
will imply that almost surely, no cluster touches the boundary of H). Note that d is
a non-increasing function of the loop-soup configuration (i.e., adding more loops to a
configuration can not increase the corresponding distance d). Similarly, the event Eε
that the outermost cluster surrounding i does intersect the ε-neighborhood of the ori-
gin is an increasing event (i.e., adding more loops to a configuration can only help this
event to hold). Hence it follows that for each ε, the random variable d(c) is negatively
correlated with the event Eε. Letting ε → 0, we get that (for subcritical c), the law of
d(c) is “bounded from below” by the law of the distance between the curve γ (defined
under the probability measure P i,κ) and [1, 2], in the sense that for any positive x,

P (d(c) ≥ x) ≥ P i,κ(d(γ, [1, 2]) ≥ x).
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But we also know that c0 ≤ 1, so that κ0 := limc→c0− κ(c) ≤ 4. It follows readily that
for all c < c0 and for all x,

lim
c→c0−

P (d(c) ≥ x) ≥ lim
κ→κ0−

P i,κ(d(γ, [1, 2]) ≥ x) ≥ P i,κ0(d(γ, [1, 2]) ≥ 2x).

But we know that for any κ ≤ 4, the SLE excursion γ stays almost surely away from
[1, 2]. Putting the pieces together, we get indeed that

P (d(c0) > 0) = lim
x→0+

P (d(c0) ≥ x) ≥ lim
x→0+

lim
c→c0−

P (d(c) ≥ x)

≥ lim
x→0+

P i,κ0(d(γ, [1, 2]) ≥ 2x) ≥ P i,κ0(d(γ, [1, 2]) > 0) = 1.

11 Identifying the critical intensity c0

11.1 Statement and comments

The statements of our main results on Brownian loop-soup cluster, Theorems 1.5 and
1.6, are mostly contained in the results of the previous section: Corollary 10.1, Propo-
sition 10.2, Proposition 10.3. It remains only to prove the following statement:

Proposition 11.1. The critical constant of Lemma 9.4 is c0 = 1 (which corresponds
to κ = 4, by Proposition 10.2).

Propositions 9.1, 10.2 and our Markovian characterization results already imply that
we cannot have c0 > 1, since in this case the Γ corresponding to c ∈ (1, c0) would give
additional random loop collections satisfying the conformal axioms (beyond the CLEκ
with κ ∈ (8/3, 4]), which was ruled out in the first part of the paper. It remains only
to rule out the possibility that c0 < 1.

The proof of this fact is not straightforward, and it requires some new notation and
several additional lemmas. Let us first outline the very rough idea. Suppose that c0 < 1.
This means that at c0, the loop-soup cluster boundaries are described with SLEκ-type
loops for κ = κ(c0) < 4. Certain estimates on SLE show that SLE curves for κ < 4
have a probability to get ǫ close to a boundary arc of the domain that decays quickly
in ǫ, and that this fails to hold for SLE4. In fact, we will use Corollary 4.5 roughly
shows that the probability that the diameter of the set of loops intersecting a small ball
on the boundary of H is large, decays quickly with the size of this ball when κ < 4.
Hence, one can intuitively guess that when κ < 4, two big clusters will be unlikely to
be very close, i.e., in some sense, there is “some space” between the clusters. Therefore,
adding a loop-soup with a very small intensity c′ on top of the loop-soup with intensity
c0 might not be sufficient to make all clusters percolate, and this would contradict the
fact that c0 is critical.
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We find it convenient in this section to work with a loop-soup in the upper half
plane H instead of the unit disk. To show that there are distinct clusters in such a
union of two CLEs Γ and Γ′, we will start with the semi-disk A1 of radius 1 centered
at the origin. We then add all the loops in Γ that hit A1, add the loops in Γ′ that hit
those loops, add the loops in Γ that hit those loops, etc. and try to show that in some
sense the size of this growing set remains bounded almost surely. The key to the proof
is to find the right way to describe this “size”, as the usual quantities such as harmonic
measure or capacity turn out not to be well-suited here.

11.2 An intermediate way to measure the size of sets

We will now define a generalization of the usual half-plane capacity. Suppose that
α ∈ (0, 1], and that A is a bounded closed subset of the upper half-plane H. We define

M(A) =Mα(A) := lim
s→∞

sE((ImBis
τ(A))

α), (7)

where Bis is a Brownian motion started at is stopped at the first time τ(A) that it
hits A ∪ R. Note that M1 = hcap is just the usual half-plane capacity used in the
context of chordal Loewner chains, whereas limα→0+Mα(A) is the harmonic measure
of A ∩ H “viewed from infinity”. Recall that standard properties of planar Brownian
motion imply that the limit in (7) necessarily exists, that it is finite, and that for some
universal constant C0 and for any r such that A is a subset of the disk of radius r
centered at the origin, the limit is equal to C0r

−1×E((ImBτ(A))
α) where the Brownian

motion B starts at a random point reiθ, where θ distributed according to the density
sin(θ)dθ/2 on [0, π].

A hull is defined to be a bounded closed subset of H whose complement in H is
simply connected. The union of two hulls A and A′ is not necessarily a hull, but we
denote by A∪A′ the hull whose complement is the unbounded component of H\(A∪A′).

When A is a hull, let us denote by ΦA : H \ A → H the conformal map normalized
at infinity by limz→∞ΦA(z)− z = 0. Recall that for all z ∈ H\A, Im (ΦA(z)) ≤ Im (z).
Then, when A′ is another hull, the set ΦA(A

′ ∩ (H \ A)) is not necessarily a hull. But
we can still define the unbounded connected component of its complement in the upper
half-plane, and take its complement. We call it ΦA(A

′) (by a slight abuse of notation).
It is well-known and follows immediately from the definition of half-plane capacity

that for any bounded closed A and any positive a, hcap(aA) = a2hcap(A). Similarly, for
any two A and A′, hcap(A∪A′) ≤ hcap(A)+hcap(A′). Furthermore hcap is increasing
with respect to A, and behaves additively with repect to composition of conformal maps
for hulls.

We will now collect easy generalizations of some of these four facts. Observe first
that for any positive a we have

M(aA) = aα+1M(A). (8)
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Similarly, we have that for any two (bounded closed) A and A′,

M(A ∪ A′) ≤M(A) +M(A′). (9)

This follows from the definition (7) and the fact that for each sample of the Brownian
motion we have

(ImBτ(A∪A′))
α = (ImBτ(A)∧τ(A′))

α ≤ (ImBτ(A))
α + (ImBτ(A′))

α.

Applying the optional stopping time theorem to the local supermartingale (ImBt)
α, we

know that
A ⊂ A′ implies M(A) ≤M(A′), (10)

since
E
(

(ImBτ(A))
α|Bτ(A′)

)

≤ (ImBτ(A′))
α.

We next claim that for any three given hulls A′, A1 and A2, we have

M(ΦA1∪A2(A
′)) ≤M(ΦA1(A

′)). (11)

To verify the claim, note first that for A3 = ΦA1(A2), we have ΦA3◦ΦA1 = ΦA1∪A2 . Recall
that ImΦA3(z) ≤ Im (z) for all z ∈ H, so that in particular, Im (ΦA3(Bσ)) ≤ Im (Bσ)
where σ is the first hitting time of ΦA1(A

′) by the Brownian motion. We let the starting
point of the Brownian motion tend to infinity as before, and the claim follows.

It will be useful to compareM(A) with some quantities involving dyadic squares and
rectangles that A intersects. (This is similar in spirit to the estimates for half-plane
capacity in terms of hyperbolic geometry given in [14].) We will consider the usual
hyperbolic tiling of H by squares of the form [a2j, (a+1)2j ]× [2j , 2j+1], for integers a, j.
Let S be the set of all such squares. For each hull A, we define S(A) to be the set of
squares in S that A intersects, and we let Â be the union of these squares, i.e.

Â = ∪S∈S(A)S.

Lemma 11.2. There exists a universal positive constant C such that for any hull A,

CM(Â) ≤M(A) ≤ M(Â).

Proof. Clearly, M(Â) ≥ M(A) by (10) since A ⊂ Â. On the other hand, if we stop
a Brownian motion at the first time it hits Â i.e. a square S of S(A), then it has
a bounded probability of later hitting A at a point of about the same height, up to
constant factor: This can be seen, for example, by bounding below the probability that
(after this hitting time of Â) the Brownian motion makes a loop around S before it hits
any square of S that is not adjacent to S, which would in particular imply that it hits
A during that time. This probability is universal, and the lemma follows.
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Figure 28: A hull A and its corresponding Â

Lemma 11.3. There exists a universal positive constant C ′ such that for any hull A,

C ′
∑

S∈S(A)
M(S) ≤M(A) ≤

∑

S∈S(A)
M(S).

Proof. The right-hand inequality is obvious by (9) and Lemma 11.2. By Lemma 11.2,
it is sufficient to prove the result in the case where A = Â is the union of squares in S.

For each j in Z, we will call Sj the set of squares that are at height between 2j and
2j+1. We will say that a square S = [a2j, (a+1)2j ]× [2j , 2j+1] in Sj is even (respectively
odd) if a is even (resp. odd). We know that

∑

S∈S(A)
M(S) ≤ lim

s→∞
sE





∑

S∈S(A)
(ImBis

τ(S))
α



 . (12)

To bound this expectation, we note that for each j ∈ Z, for each even square S ∈ Sj ,
and for each z ∈ S, the probability that a Brownian motion started from z hits the real
line before hitting any other even square in Sj is bounded from below independently
from z, j and S. Hence, the strong Markov property implies that the total number of
even squares in Sj hit by a Brownian motion before hitting the real line is stochastically
dominated by a geometric random variable with finite universal mean (independently
of the starting point of the Brownian motion) that we call K/2. The same is true for
odd squares.

Note also that if the starting point z of Bz is in S ∈ Sj and if k ≥ 1, then the
probability that the imaginary part of B reaches 2j+1+k before B hits the real line is
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not larger than 2−k. It follows from the strong Markov property that the expected
number of squares in Sj+k+1 that B visits before exiting H is bounded by K × 2−k. It
follows that for a Brownian motion started from z with 2j ≤ Im (z) ≤ 2j+1

E

(

∑

S∈S
(ImBz

τ(S))
α

)

≤
∑

k≤1

K(2j+k+1)α +
∑

k≥2

K2−k(2j+k+1)α ≤ C2jα ≤ C(Im z)α

for some universal constant C (bear in mind that α < 1 and that for S ∈ Sj+k,
(ImBx

τ(S)) ≤ 2(j+k+1)). If we now apply this statement to the Brownian motion Bis

after its first hitting time τ(A) of A ∪ R = Â ∪ R, we get that for all large s and for
some universal positive constant C ′,

E
(

(ImBis
τ(A))

α
)

≥ C ′E





∑

S∈S(A)
(ImBis

τ(S))
α



 .

Combining this with (12) concludes the proof.

For each square S = [a2j , (a+1)2j]× [2j, 2j+1] of S, we can define the union R(S) of
S with all the squares of S that lie strictly under S, i.e. R(S) = [a2j , (a+1)2j]×[0, 2j+1].
Note that that scaling shows immediately that for some universal constant C ′′ and for
all S ∈ S,

M(R(S)) = C ′′M(S). (13)

11.3 Estimates for loop-soup clusters

Let us now use these quantities to study our random loop-ensembles. Suppose that Γ
is the conformal loop ensemble corresponding to any given c ∈ (0, c0]. Given a hull
A we denote by Ã = Ã(A,Γ) the random hull whose complement is the unbounded
component of the set obtained by removing from H \A all the loops of Γ that intersect
A. Local finiteness implies that Ã is itself a hull almost surely.

Now define
N(A) = Nκ(A) := E(M(ΦA(Ã))).

Recall that if c < 1 and c ≤ c0 then Pc defines a CLEκ with κ < 4. We can therefore
reformulate Corollay 4.5 in terms of c as follows (this corresponds intuitively to the
statement that SLE is unlikely to be very close to a boundary arc when κ < 4):

Proposition 11.4. If c < 1 and c ≤ c0, then there is an α(c) ∈ (0, 1) such that, if we
denote by diam(A) the diameter of A, then we have E(diam(Ã)1+α) < ∞ for all hulls
A.

Throughout the remainder of this subsection, we will suppose that c1 < 1 and
c1 ≤ c0, and that this c1 is fixed. We then choose α = α(c1), and we define M and N
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Figure 29: Construction of ΦA(Ã) (sketch)

using this value of α. We will then let c vary in [0, c1]. It follows from the previous
proposition that for all c ≤ c1,

N(A) = E(M(ΦA(Ã))) ≤ E(M(Ã)) ≤ E(diam(Ã)1+α) <∞.

Here is a more elaborate consequence of the previous proposition:

Corollary 11.5. Consider c ≤ c1 and α = α(c1) fixed as above. For any hull A and
any S ∈ S, if AS = A ∩ S, then

E(M(ΦA(ÃS))) ≤ C(c)M(S),

for some constant C(c) depending only on c and tending to zero as c→ 0.

Proof. By scaling, it suffices to consider the case where S = [0, 1] × [1, 2] and hence
R = R(S) is the rectangle [0, 1]× [0, 2]. Proposition 11.4 then implies that

E(M(ΦA(ÃS))) ≤ E(M(ÃS)) ≤ E(M(R̃)) ≤ E(diam(R̃)1+α) <∞.

We want to prove that E(M(ΦA(ÃS))) tends to zero uniformly with respect to A as
c → 0. Let E(c) denote the event that some loop-soup cluster (in the loop-soup of
intensity c) intersecting the rectangle R has radius more than ǫ2. When E(c) does not
hold, then standard distortion estimates yield an ǫ bound on the height of (i.e., the
largest imaginary part of an element of) ΦA(ÃS). But we then also know that ÃS is a
subset of [−1, 3]× [0, 3], so that a Brownian motion started from is will hit ÃS before
hitting A ∪ R with a probability bounded by s−1 times some universal constant C.
Hence, unless E(c) holds, we have M(ΦA(ÃS)) ≤ Cεα.

Summing up, we get that

E(M(ΦA(ÃS))) ≤ Cεα + E(1E(c)M(ÃS)) ≤ Cεα + E(1E(c)diam(R̃c1)1+α),

where R̃c1 denotes the R̃ corresponding to a larger loop-soup of intensity c1 that we cou-
ple to the loop-soup of intensity c. But P(E(c)) → 0 as c→ 0 and E(diam(R̃c1)1+α) <
∞, so that if we take c sufficiently small,

E(M(ΦA(ÃS))) ≤ 2Cεα
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for all hulls A. This completes our proof.

We are now ready to prove our final Lemma:

Lemma 11.6. For c ≤ c1, there exists a finite constant C1 = C1(c) such that for all
hulls A, N(A) ≤ C1(c)M(A). Furthermore, we can take C1(c) in such a way that C1(c)
tends to zero as c→ 0.

Proof. Putting together the estimates in Lemma 11.3 and Corollary 11.5 we have

N(A) = E(M(ΦA(Ã)))

= E(M(ΦA(∪S∈S(A)ÃS)))
= E(M(∪S∈S(A)ΦA(ÃS)))
≤ E(

∑

S∈S(A)
M(ΦA(ÃS)))

≤
∑

S∈S(A)
C(c)M(S)

≤ C(c)(C ′)−1M(A)

and C(c) → 0 when c→ 0+, whereas C ′ does not depend on c.

As we will now see, this property implies that for c = c0, N is necessarily infinite
for all positive α (i.e. it shows that the size of clusters at the critical point can not
decay too fast), and this will enable us to conclude the proof of Proposition 11.1 in the
manner outlined after its statement:

Proof. Suppose that c0 < 1. We choose c1 = c0 (and α = α(c1)). We take c′ to be
positive but small enough so that the product of the corresponding constants C1(c0) and
C1(c

′) in Lemma 11.6 is less than 1. We will view the loop-soup L with intensity c0+ c′

as the superposition of a loop-soup L0 with intensity c0 and an independent loop-soup
L′ with intensity c′ i.e. we will construct Γ via the loop-soup cluster boundaries in Γ0

and Γ′.
Now let us begin with a given hull A (say the semi-disk of radius 1 around the

origin). Suppose that L contains a chain of loops that join A to the line LR = {z ∈
H : Im (z) = R}. This implies that one can find a finite chain γ1, . . . , γn (chain
means that two consecutive loops intersect) of loops in Γ0 ∪ Γ′ with γ1 ∩ A 6= ∅ and
γn ∩ LR 6= ∅. Since the loops in Γ0 (resp. Γ′) are disjoint, it follows that the loops
γ1, . . . , γn alternatively belong to Γ0 and Γ′.

Consider the loops of Γ0 that intersect A. Let us consider A1 the hull generated by
the union of A with these loops (this is the Ã associated to the loop-soup L0). Recall
that the expected value of M(A1) is finite because α = α(c1). Then add to A1, the
loops of Γ′ that intersect A1. This generates a hull B2 (which is the Ã1 associated
to the loop-soup L′). Then, add to B2 the loops of Γ0 that intersect B2. Note that
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in fact, one basically adds only the loops of Γ0 that intersect A1 \ A (the other ones
were already in A1) in order to define a new hull B3, and continue iteratively. Let F
be the limiting set obtained. We can also describe this sort of exploration by writing
for all n ≥ 1, An+1 = ΦAn(Ãn), where Ãn is alternately constructed from An using a
loop-soup with intensity c0 or c′ as n is even or odd. The expected value of M(An)
decays exponentially, which implies (Borel-Cantelli) that M(An) almost surely decays
eventually faster than some exponential sequence.

We note that if A is a hull such that for all z ∈ A, Im (z) ≤ 1, we clearly have
hcap(A) ≤ M(A). On the other hand, we know that if A is a hull such that there
exists z ∈ A with Im (z) ≥ 1, then M(A) ≥ c for some absolute constant c. Hence,
we see that almost surely, for all large enough n, hcap(An) ≤ M(An), which implies
that almost surely

∑

n hcap(An) < ∞. But the half-plane capacity behaves additively
under conformal iterations, so that in fact hcap(F ) =

∑

n≥0 hcap(An). Hence, for
large enough R, the probability that F does not intersect LR is positive, and there
is a positive probability that no chain of loops in L joins A to LR. It follows that
Pc0+c′(C = {H}) < 1 and Proposition 9.1 would then imply that c0 + c′ ≤ c0 which
is impossible. This therefore implies that c0 ≥ 1. As explained after the proposition
statement, we also know that c0 can not be strictly larger than 1, so that we can finally
conclude that c0 = 1.

As explained at the beginning of this section, this completes the proof of Theorems
1.5 and 1.6.

12 An open problem

When κ ∈ (4, 8), the CLEκ described in [43] are random collections of non-simple
loops. However, the outer boundaries of the sets of points traversed by the outermost
loops should be simple loops. We expect (though this was not established in [43],
in part because of the CLEκ construction was not shown there to be starting-point
independent) that these random loop collections will satisfy all of the axioms we used
to characterize CLE except that they will a.s. contain loops intersecting one another
and the boundary of the domain. Are these the only random loop collections for which
this is the case?

This is an apparently difficult type of question. We expect that the constructions
of one-point and two-point pinned measures in the present paper will have analogs in
this non-disjoint setting; however the pinned loop will intersect the boundary at other
points as well, and our argument for establishing the connection with SLE does not
appear to extend to this setting in a straightforward way. Moreover, we have no direct
analog of the loop-soup construction of CLEs in the case where κ ∈ (4, 8).
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