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We study dimensional trends in ground states for soft-matter systems. Specifically, using a high-dimensional
version of Parrinello-Rahman dynamics, we investigate the behavior of the Gaussian core model in up to eight
dimensions. The results include unexpected geometric structures, with surprising anisotropy as well as formal
duality relations. These duality relations suggest that the Gaussian core model possesses unexplored symme-
tries, and they have implications for a broad range of soft-core potentials.
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I. INTRODUCTION

Soft-matter systems are notoriously difficult to analyze
theoretically, and much of what we know about their phase
diagrams is based on numerical simulations. Even classical
ground states can almost never be derived from first prin-
ciples �see Refs. �1–5� for some rare exceptions�. In this
article, we place phenomena such as crystallization and
solid-solid phase transitions in a broader context by studying
dimensional trends in the Gaussian core model �6�, in which
particles interact via a Gaussian pair potential.

The Gaussian potential models the entropic effective in-
teraction between the centers of mass of polymers �7�, and it
is one of the simplest and most elegant soft-core potentials.
The behavior of the Gaussian core model in two and three
dimensions is relatively well understood �see, for example,
Refs. �8,9��, but in higher dimensions, it remains mysterious.
Dimensions above three are an excellent test case for the
study of phenomena such as decorrelation �10�, and this fits
into the long tradition in statistical mechanics of studying the
effect of dimensionality in interacting systems, such as criti-
cal dimensions for mean-field behavior �see Section 16.7 in
Ref. �11� for an overview�.

Furthermore, higher dimensions play a fundamental role
in information theory. Sphere packing is the low-density lim-
iting case of the Gaussian core model, and sphere packings
are error-correcting codes for a continuous communication
channel. The dimension of the ambient space for the packing
depends on the channel and coding method used, and it can
be quite high in practice �12� �up to thousands of dimen-
sions�. Thus, coding theory is a powerful motivation for the
study of the high-dimensional Gaussian core model.

Our conclusions are based on molecular dynamics simu-
lations �13�. Such simulations are frequently used and often

highly informative, but the computational difficulties are im-
mense for many-body systems. Thanks to the curse of di-
mensionality �14�, high-dimensional simulations typically re-
quire exponentially many particles, which severely limits the
range of dimensions in which simulations are possible. To
address this problem, we use a high-dimensional version of
Parrinello-Rahman dynamics �15,16�. Instead of imposing
periodic boundary conditions using a fixed background lat-
tice, we dynamically update the lattice using the intrinsic
geometry of the space of lattices. By increasing the adaptiv-
ity of the simulation, we are able to minimize the number of
particles and avoid unnecessary computational complexity.
This lets us carry out higher-dimensional simulations than
were previously possible.

In this article, we carry out Parrinello-Rahman simula-
tions of the Gaussian core model in dimensions two through
eight. In addition to observing surprising geometrical phe-
nomena such as anisotropy, we find formal duality relations
between Gaussian core ground states at densities � and 1 /�.
Although such duality is known between reciprocal Bravais
lattices �see, for example, Ref. �17��, it rarely holds for other
structures, and its occurrence here suggests a deeper, not yet
understood symmetry of the Gaussian core model itself.

Our approach fits into a program pioneered by Gottwald
et al. �18� and applied in Refs. �19,20�. They use genetic
algorithms to search the space of candidate structures into
which a fluid can freeze. Our goals are similar, but we make
use of more analytic tools. Specifically, we compute gradi-
ents in the space of lattices, which enables us to use more
powerful optimization techniques such as gradient descent or
conjugate gradient.

II. FRAMEWORK

Consider a periodic configuration of particles in
n-dimensional Euclidean space Rn. Such a configuration is
specified by an underlying Bravais lattice ��Rn, together
with a collection of translation vectors v1 , . . . ,vN. In crystal-
lographic terms, it is a lattice with basis. The particles are
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located at the points x+vi for x�� and 1� i�N.
Given a radial pair potential V, the average energy per

particle is

1

2N
�
i=1

N

�
j=1

N

�
z��

z�0 if i=j

V��z + vi − v j�� .

This quantity is the potential energy of the system, and the
configuration is a classical ground state if it minimizes po-
tential energy, even allowing � and N to vary but keeping
the particle density fixed. �The density equals N /det���,
where det��� is the absolute value of the determinant of a
basis for �.� In other words, classical ground states corre-
spond to the canonical ensemble at zero temperature.

Simulations typically fix � and allow v1 , . . . ,vN to vary.
This amounts to using � to define periodic boundary condi-
tions. The lattice � remains the same throughout this pro-
cess, and it is often chosen to be proportional to a hypercubic
lattice Zn for computational simplicity. This imposes artificial
structure on the system, and N must be chosen quite large to
minimize the effects of this structure. For example, if one
wants the lattice spacing in � to be an order of magnitude
larger than the typical spacing between particles, then N
must grow roughly like 10n. For large n, this is clearly infea-
sible, and even for n=6, it requires careful use of all avail-
able computational improvements. Many simulations, such
as those in Ref. �21�, are therefore limited to roughly six
dimensions.

By allowing � to vary, one might hope to use a much
smaller value of N. In the most extreme case, one could take
N=1 and study all Bravais lattice configurations. The naive
dynamics then fail completely, because the forces in a Bra-
vais lattice balance perfectly. Nevertheless, the potential en-
ergy varies dramatically between different Bravais lattices,
with corresponding dynamics on the space of lattices. The
Parrinello-Rahman method uses these dynamics. It can there-
fore simultaneously update the underlying Bravais lattice �
and the particle locations v1 , . . . ,vN.

Before describing the simulation results, we will give a
derivation of the n-dimensional version of Parrinello-
Rahman dynamics. It is equivalent to the original formula-
tion in Refs. �15,16�, except of course for the change in
dimension. Instead of deriving it from a postulated Lagrang-
ian, we show how it follows naturally from the intrinsic ge-
ometry of the space of lattices. Presenting the derivation
gives us an opportunity to describe some of the computa-
tional issues that become important in higher dimensions,
such as the use of lattice basis reduction algorithms.

III. GEOMETRY OF THE SPACE OF LATTICES

We will represent Bravais lattices by positive-definite,
symmetric matrices. Specifically, there is a linear transforma-
tion with matrix T such that �=TZn. If v=Tw, then the
squared vector length vtv �the exponent t denotes transpose
and we use column vectors� is wtTtTw. Set G=TtT. This
Gram matrix represents the metric in coordinates in which
the underlying lattice is Zn. Instead of fixing the metric and

deforming the lattice, we will fix the lattice and deform the
metric. This approach is used to define the intrinsic geometry
on the space of lattices �see, for example, Ref. �22��, and it
makes the formulas quite a bit simpler.

To simplify the notation, define the function f of squared
distance by f�s�=V��s� /2. Furthermore, write the vectors
v1 , . . . ,vN in the new coordinates as vi=Tui. Now the poten-
tial energy of the system is

U�G� =
1

N
�
w

f�wtGw� ,

where we sum over all vectors w of the form ui−uj +x with
1� i, j�N, x�Zn, and x�0 if i= j.

The gradient of this sum as a function of G equals the
matrix

�U�G� =
1

N
�
w

f��wtGw�wwt.

To see why, note that if we vary the i , j component Gij of G
while leaving all other entries fixed �and write w
= �w1 , . . . ,wn��, we find that

�

�Gij
f�wtGw� = f��wtGw�wiwj .

When we update the configuration, we must fix det�G�, so
that the density of the system does not change �note that
det�G�=det���2�. However, the gradient does not respect this
constraint. Instead, we must use the modified gradient

�̃U�G� conditioned on fixing the determinant, which is com-
puted as follows. If we define the standard inner product �· , ·	
on the space of symmetric matrices by �A ,B	=tr�AB�, then
to preserve det�G�, we must remove the component of
�U�G� in the direction of G−1, because

det„G + � � U�G�… = det�G�„1 + ��G−1,�U�G�	 + O��2�… .

We define the modified gradient �̃U�G� by

�̃U�G� = �U�G� −
��U�G�,G−1	

�G−1,G−1	
G−1,

so that �G−1 , �̃U�G�	=0.
We could avoid this last complication by replacing the

canonical ensemble with the grand canonical ensemble and
controlling the particle density via the chemical potential.
However, the modified gradient is not difficult to use, and
our approach is convenient if one wishes to target a specific
density.

IV. PARRINELLO-RAHMAN DYNAMICS

The lattice gradient has two components, one for chang-
ing G �computed above as the modified gradient� and one for
changing u1 , . . . ,uN. For the latter, if we write w=ui−uj +x,
then we need the gradient of f�wtGw� as a function of ui and
uj, which is easily computed as follows. With w=ui−uj +x,
the gradient of f�wtGw� as a function of ui is 2f��wtGw�Gw.
Thus, the ui component of the gradient of potential energy is
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the sum of �2 /N�f��wtGw�Gw over all w of the form ui−uj
+x for some j plus the sum of −�2 /N�f��wtGw�Gw over all
w of the form uj −ui+x for some j. The full lattice gradient is
made up of both the G and the u1 , . . . ,uN components.

Parrinello-Rahman dynamics consists of using the lattice
gradient to define forces on the configuration. Thus, G
changes as well as u1 , . . . ,uN. The simplest application is
gradient descent, where we seek a local minimum for energy
by following the negative gradient �or, better yet, using the
conjugate gradient algorithm�. Of course, one could also use
the forces in the usual way to define accelerations rather than
simply velocities, but we will focus on gradient descent here
because of our interest in ground states.

The infinite sums in the algorithm must be truncated in
practice, by summing only over the w such that wtGw is at
most some bound �chosen based on the decay rate of f�.
Writing w=ui−uj +x, we must enumerate all x�Zn with this
property. To do so, we use the Fincke-Pohst algorithm �23�,
which is far more efficient than brute-force searches. By con-
trast, simply summing over all the vectors in a large box
becomes exponentially inefficient in high dimensions. We
also periodically apply the L3 lattice basis reduction algo-
rithm �24�, which changes basis so as to keep the entries of G
small, and we renormalize G to maintain a constant determi-
nant �so that small numerical errors do not accumulate�.

As the simulation progresses, the metric changes and the
connection with the original coordinates is lost. Neverthe-
less, using the Cholesky decomposition �25�, we can recover
the Bravais lattice TZn with basis Tu1 , . . . ,TuN from the ma-
trix G and the vectors u1 , . . . ,uN by finding T such that G
=TtT.

Because of the need to use tools from lattice basis reduc-
tion theory and linear algebra, the Parrinello-Rahman
method is not as simple to implement in high dimensions as
more straightforward methods are. However, in compensa-
tion it adapts itself to the structure of the system being con-
sidered and can therefore provide improved results. Further-
more, it is compatible with other standard computational
methods such as Ewald summation or fast multipole methods
�13�.

V. RESULTS FOR THE GAUSSIAN CORE MODEL

For the Gaussian core model, we take V�r�=exp�−�r2�
and hence f�s�=exp�−�s� /2. The choice of the constant �
amounts to fixing the length scale, and it is chosen to make V
self-dual under the Fourier transform. Let � denote the par-
ticle density.

The ground states of this model have been thoroughly
examined in up to three dimensions, although except in R1,
no proof is known �5�. In R2, at all densities, the ground state
is the triangular lattice A2. In R3, the face-centered cubic
lattice D3 is optimal at low densities, and the reciprocal
body-centered cubic lattice D3

� is optimal at high densities
�26�. The crossover point is at �=1, but in fact the Maxwell
double-tangent construction �i.e., the convexity of potential
energy as a function of 1 /�� leads to phase coexistence for
0.99899854. . . ���1.00100312. . .. This appears to give a
complete description of the phase transition from D3 to D3

�.

Little is known in higher dimensions, despite the connec-
tions with coding and information theory. Cohn and Kumar
�5� conjectured that the E8 and Leech lattices are universally
optimal when n=8 or 24, respectively. �In other words, they
are ground states for the Gaussian core model at all densities.
As shown in Ref. �5�, this implies optimality for many other
potentials, such as all inverse power laws.� Torquato and
Stillinger �17� conjectured that in at most eight dimensions,
certain Bravais lattices are always optimal at sufficiently
high or low densities, but their conjecture was disproved in
five and seven dimensions �27�. Despite extensive explora-
tion �28�, the true ground states have remained a mystery.
Because of the difficulty of simulation, previous studies have
made use only of structures already known for other reasons.
Comparing such structures in the Gaussian core model is of
course of value, and it can sometimes lead to surprising re-
sults, but it provides little evidence as to the true ground
states.

We have run numerous Parrinello-Rahman simulations
with 2�n�8, 1�N�24 �and occasionally larger�, and
various densities, with the following results �see also Table
I�.

In two and three dimensions, we observe the previously
known ground states. In four dimensions, we find the D4
lattice at all densities, in accordance with the conjecture in
Ref. �17�. Thus, it appears probable that, like E8 and the
Leech lattice, the D4 lattice is universally optimal.

In five dimensions, we find different structures. The �5
2

lattice was used in Ref. �27� to improve on Bravais lattices at
low density; it consists of parallel translates of D4, repeating
with period 4. Parrinello-Rahman simulations rapidly iden-
tify and improve on this structure. It can be deformed by
compressing the spacing between the parallel copies by some
factor. A local minimum for energy is achieved for carefully
optimized values of the compression factor, which are be-
tween 0.998749. . . and 1 when ��1 and between 0.25 and
0.250312. . . when ��1. Our simulations suggest that these
are the true ground states, with the exception of phase coex-
istence for 0.99836946. . . ���1.00163526. . ..

These structures fit into the following general family. Let

Dn = 
�x1, . . . ,xn� � Zn : x1 + . . . + xn is even�

denote the checkerboard lattice in Rn, and let Dn
+ be the union

of Dn with its translation by �1 /2,1 /2, . . . ,1 /2�. Let Dn
+���

be Dn
+ with the last coordinate scaled by a factor of �. That

is,

TABLE I. Lowest known energies in dimension n when �=1.
The third column specifies the putative ground state, with “pc1” and
“pc2” standing for phase coexistence between D3 and D3

� and be-
tween D5

+�1.99750. . .� and D5
+�0.50062. . .�, respectively.

n Energy State n Energy State

1 0.04321740. . . Z 5 0.17434205. . . pc2

2 0.07979763. . . A2 6 0.19437337. . . P6�1.0525. . .�
3 0.11576766. . . pc1 7 0.21222702. . . D7

+

4 0.14288224. . . D4 8 0.22788144. . . E8

GROUND STATES AND FORMAL DUALITY RELATIONS IN… PHYSICAL REVIEW E 80, 061116 �2009�

061116-3



Dn
+��� = 
�x1, . . . ,xn−1,�xn� : �x1, . . . ,xn� � Dn

+� .

Then D5
+��� is the deformation of �5

2 with compression fac-
tor � /2. This is not obvious, but it can be checked by a
straightforward computation, and in fact it gives a substan-
tially simpler construction of �5

2 than was previously known
�namely, as D5

+�2��.
One noteworthy aspect of these configurations is their an-

isotropy. As the density increases, they experience greater
compression along a distinguished axis than orthogonally to
it. However, an even more surprising phenomenon is that
there are formal duality relationships between these struc-
tures. Formal duality is a generalization of the relationship
between a Bravais lattice and its reciprocal lattice �see Sec.
VI for more details�. Formal duality relates the energies at
densities � and 1 /�: if E� is the Gaussian core energy at

density � for a given structure and Ẽ� is that for its formal
dual, then

2E� + 1

2Ẽ1/� + 1
= � .

More generally, formal duality relates the energy of one
structure under a given pair potential to that of the formally
dual structure under the Fourier transform of the potential.

A non-Bravais lattice typically has no formal dual. Thus,
it is remarkable that Dn

+��� is formally dual to Dn
+�1 /��. �See

Sec. VI for a proof.� Formal duality implies that the high-
density ground states in R5 tend to D5

+�1 /2�, because the
low-density ones tend to D5

+�2�=�5
2. Figure 1 illustrates the

formal dualities within the D5
+��� family of structures.

In six dimensions, the lowest-energy states previously
known were the Bravais lattice E6 for low density and its
reciprocal lattice E6

� for high density, with a narrow region of
phase coexistence in between. The lattices remain the
lowest-energy states known at extreme densities, but in be-
tween them, our simulations have identified other candidate
ground states. They are all deformations of the orthogonal
direct sum D3 � D3, together with its translates by three vec-
tors, namely,

�1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
 ,

�1,1,1,−
1

2
,−

1

2
,−

1

2
, and

�−
1

2
,−

1

2
,−

1

2
,1,1,1 .

�These vectors are made up of holes in D3.� Define P6��� to
be the structure obtained by scaling the first three coordinates
by a factor of � and the last three by 1 /�, so that volume is
preserved. For certain values of �, these structures improve
on E6 and E6

� for 0.25384516. . . ���3.93940925. . ., with
phase coexistence for 3.93255017. . . ���3.94624440. . .
and for the reciprocal range of densities. Unlike D5

+���,
which can be viewed as a modification of D5

+ or �5
2, the

structures P6��� differ more substantially from previously
analyzed structures. As in five dimensions, however, there
are formal duality relations. Specifically, P6��� is formally
dual to P6�1 /�� for each � �of course P6�1 /�� is isometric
to P6����.

In seven dimensions, we find the D7
+��� family of

structures at all densities. For 0.04660088. . . ��
�21.45881937. . ., the ground state seems to be D7

+ itself
�i.e., �=1�. For lower densities, we have �	1 and for
higher densities we have �
1. Unlike the case of R5, there
is no phase coexistence, because the optimal value of �
changes continuously as a function of density. The low-
density limit of D7

+��� is D7
+��2�, which is the same as the �7

3

structure studied in Ref. �27�. By formal duality, the high-
density limit is D7

+�1 /�2�.
Finally, in eight dimensions our simulations provide fur-

ther evidence that E8 �i.e., D8
+� is universally optimal.

Parrinello-Rahman simulations are by no means limited to
eight dimensions, and in fact, we have numerical results in as
many as twelve dimensions. These results, together with a
more extensive analysis of the structures presented here, will
appear elsewhere �29�.

Within the Dn
+��� family of structures for 1�n�8, the

best energy at low density �i.e., the best sphere packing� is
obtained when �=�9−n. For n�4, the Dn

+��9−n� configu-
ration is inferior to previously known sphere packings. How-
ever, for 5�n�8 it achieves the highest sphere packing
density currently known. Note that D6

+��3� is the �6
2 packing,

which has the same packing density as E6 but is slightly
inferior in the Gaussian core model at low densities. We have
no conceptual explanation for why the six-dimensional be-
havior is subtly different from that in five, seven, or eight
dimensions.

It is also interesting to examine the �=1 case. It seems
that the D5

+ and D6
+ structures are not local optima for the

Gaussian core model at any density. By contrast, D7
+ appears

to be the ground state over a large range of densities, and D8
+

is almost certainly the ground state at all densities. It is pos-
sible that D9

+ is also universally optimal: so far we have not
explored this case as thoroughly as those in lower dimen-
sions, but we have not yet found any structure that beats D9

+

at any density. We will examine this issue elsewhere �29�.

ln 1
2 ln1 ln2

1.348

1.520

FIG. 1. A plot of �−1/2�2U�+1� as a function of ln �, where U�

is the minimal energy attained by the structures D5
+��� at density �.

The reflection symmetry follows from formal duality.
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Universal optimality cannot hold for Dn
+ with n�10, because

these packings are not even optimal sphere packings.

VI. FORMAL DUALITY

Recall that Poisson summation relates the sum of a func-
tion over a Bravais lattice to the sum of its Fourier transform
over the reciprocal lattice. Specifically, given a sufficiently
well-behaved function f :Rn→R �for example, a Schwartz
function� and a Bravais lattice ��Rn,

�
x��

f�x� =
1

vol�Rn/�� �
y���

f̂�y� .

Here, vol�Rn /�� denotes the volume of a fundamental do-
main of � and we normalize the Fourier transform and re-
ciprocal lattice by

f̂�y� = �
Rn

f�x�e2�i�x,y	dx

and

�� = 
y � Rn : �x,y	 � Z for all x � �� .

Formal duality is a generalization of Poisson summation to
certain special structures that are not Bravais lattices. To
state it correctly, it is important to view the sum

�
x��

f�x�

not simply as a sum over points in �, but rather as a sum
over vectors between points in �. For a Bravais lattice these
notions are exactly the same, but in more general cases they
are not. �In fact, Poisson summation cannot be generalized
from the first point of view �30�.� For example, consider a
periodic configuration given by the union of N disjoint lattice
translates �+v1 , . . . ,�+vN. Then the analog of summing
over the lattice is

1

N
�
j=1

N

�
k=1

N

�
x��

f�x + v j − vk� .

Call this sum the average pair sum of f over the configura-
tion. It is the average over all points in the configuration of
the sum of f over all vectors from it to other points. �Thus, it
is independent of how the configuration is decomposed into
translates of Bravais lattices.�

Suppose P and Q are particle arrangements, where P has
particle density � and Q has particle density 1 /�. We say P
and Q are formal duals if for every Schwartz function f , the

average pair sum of f over P is � times that for f̂ over Q.
Poisson summation shows that this definition generalizes the
case of reciprocal Bravais lattices. If P is formally dual to
itself, we call it formally self-dual, and if it is formally dual
to an isometric copy of itself, we call it formally isodual. For
example, the triangular lattice in the plane is not self-dual,
since its reciprocal lattice is a rotated copy of itself, but it is
isodual.

For any periodic configuration, one can always write the

average pair sum of f in terms of f̂ , by using a generalized

Poisson summation formula: for a Bravais lattice � and
translation vector v,

�
x��

f�x + v� =
1

vol�Rn/�� �
y���

e−2�i�v,y	 f̂�y� .

�In fact, the right side is the Fourier expansion of the left side
as a function of v that is periodic modulo �.� The average
pair sum of f over �+v1 , . . . ,�+vN then becomes

N

vol�Rn/�� �
y���

f̂�y�� 1

N
�
j=1

N

e2�i�vj,y	�2

.

The factor of N /vol�Rn /�� is the density of the configura-
tion, so the question becomes whether the remaining sum is

the average pair sum of f̂ over some periodic structure. Ex-
cept when N=1, it usually is not: for example, the coefficient

of f̂�y� is generally irrational. Formal duality only arises in
exceptional cases. It is not obvious when a configuration has
a formal dual or, if it does have one, what the formal dual is.

Proposition 1. The Dn
+ structure is formally self-dual

when n is odd or a multiple of four. When n is even but not
a multiple of four, Dn

+ is formally isodual.
When n is even, Dn

+ is a Bravais lattice, whose reciprocal
lattice is Dn

+ if n is a multiple of four and Dn
+�−1� otherwise.

When n is odd, Dn
+ is not a Bravais lattice and the duality is

more subtle.
Proof. Let v= �1 /2,1 /2, . . . ,1 /2�, so Dn

+ is the union of
Dn and Dn+v. Then the average pair sum of f over Dn

+ is

1

4 �
y�Dn

�

f̂�y��1 + e2�i�v,y	�2 = �
y�Dn

�

f̂�y�
1 + cos�2��v,y	�

2
.

The reciprocal lattice Dn
� consists of four translates of Dn, by

the vectors 0, v, �0,0 , . . . ,0 ,1�, and �1 /2,1 /2, . . . ,1 /2,
−1 /2�. In each of these four cases, the inner product �v ,y	 is
easily understood. In the first case, it is an integer, in the
second it is an integer plus n /4, in the third it is an integer
plus 1/2, and in the fourth it is an integer plus �n−2� /4.

When n is odd, this yields weights of 1, 1/2, 0, and 1/2

multiplying f̂�y� in the four cases. Because n is odd, the
vector �1,1 , . . . ,1 ,0� is in Dn and hence translating Dn by
�1 /2,1 /2, . . . ,1 /2,−1 /2� is equivalent to translating it by
−v. Thus, the average pair sum for f is simply

1

2 �
x�Dn

„2 f̂�x� + f̂�x + v� + f̂�x − v�… ,

which is the same as the average pair sum for f̂ over Dn
+. It

follows that Dn
+ is formally self-dual when n is odd.

An analogous computation works in the even case, or it
can be verified more simply using the fact that Dn

+ is then a
Bravais lattice. �

Lemma 2. If P and Q are formally dual structures in Rn,
and T :Rn→Rn is an invertible linear transformation, then
TP and �Tt�−1Q are formally dual.

Here, Tt denotes the adjoint operator with respect to the
inner product �i.e., the transposed matrix�.

Proof. To compute the average pair sum for f on TP,
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simply compute it for the composition f �T on P. The Fourier

transform of f �T is �det T�−1( f̂ � �Tt�−1). Now applying formal
duality for P and Q completes the proof. �

It follows immediately that Dn
+��� is formally dual to

Dn
+�1 /�� when n is odd or a multiple of four: apply Lemma

2 with P=Q=Dn
+ and with T being the map that multiplies

the last coordinate by �.
The formal isoduality of P6��� is proved similarly. For

�=1, formal self-duality follows from a calculation much
like the proof for Proposition 1. Then Lemma 2 implies that
P6��� is formally dual to P6�1 /��, but of course, the two
configurations are isometric.

In the literature, formal duality is usually understood to
refer only to radial functions f �see, for example, p. 185 of
Ref. �31��. That is a weaker condition, which depends only
on the radial pair correlation functions of the structures. We
have defined a stronger version of formal duality in this pa-
per, without that restriction, because the stronger version in
fact holds for the structures we find in our simulations. �Fur-
thermore, it behaves better. For example, the proof of
Lemma 2 breaks down in the radial case, because f and f
�T will generally not both be radial.� However, for the dis-
cussion in Sec. V, the pair potential is isotropic, so only the
radial version of formal duality is needed. Note also that
radial symmetry erases the distinction between formal self-
duality and formal isoduality.

VII. CONCLUSIONS AND DISCUSSION

We have used Parrinello-Rahman dynamics to identify
ground states in dimensions that were previously beyond the
reach of simulation. This approach is effective because it
adapts to whichever underlying Bravais lattice is most favor-
able. That means it probably offers little advantage in detect-
ing disordered states or even phase coexistence, but it is
appropriate whenever one anticipates a high degree of sym-
metry.

The formal duality relations are the most noteworthy con-
sequence of our simulations. Such relations occur only rarely
for structures other than Bravais lattices, and it is far from
obvious why they arise here. A remarkable possibility is that
all periodic ground states of the Gaussian core model, in any
dimension, may occur in formally dual pairs. If true, this
hypothesis deserves a more conceptual explanation than a
case-by-case calculation, and it suggests that the model pos-
sesses deeper symmetries than are currently understood.
Even if it is false, there must be a reason why formal duality
arises so frequently in low dimensions.

The families of structures studied in this article have
much broader applicability than just to the Gaussian core
model. We believe that they will minimize many other repul-
sive potential functions, such as inverse power laws, al-
though we have done relatively little experimentation in this
direction.

One reason for our focus on the Gaussian core model is
that it is the natural setting for studying universal optimality
�5�. The known universal optima include some of the most
symmetrical and beautiful geometrical configurations, with

connections to many other topics such as sporadic finite
simple groups and exceptional Lie algebras. Relatively few
universal optima are known and any new examples are of
interest. In this article, we have described simulation evi-
dence that D4 is likely universally optimal and that D9

+ may
be. Both cases are surprising: the analog in spherical geom-
etry of the universal optimality of D4 turned out to be false
�32�, and there have not even been any previous hints that D9

+

might be universally optimal.
Our results also offer insight into the complexity of

ground states. One measure of the complexity of a lattice is
the number of Bravais lattice translates required to generate
it �in crystallographic terms, the minimal size of a particle
basis�. Bravais lattices have complexity 1, while disordered
structures can be considered to have infinite complexity. The
hexagonal close-packing has complexity 2, while the struc-
tures introduced here have complexity 2 �in five and seven
dimensions� and 4 �in six dimensions�.

Do the complexities of ground states grow with dimen-
sion? The Torquato-Stillinger decorrelation conjecture �10�
suggests that they do grow and eventually become infinite. If
so, how quickly do they grow? There is a striking example in
ten dimensions �the Best packing �31�, which is the densest
sphere packing known in R10, and which has complexity 40�,
but other low-dimensional ground states for repulsive poten-
tials that have been reported in the literature typically have
much smaller complexity, with the exception of phase coex-
istence.

In up to eight dimensions, our results for the Gaussian-
core model suggest that the ground states may indeed have
low complexity for most densities. The structures we have
identified seem difficult to improve, even if we allow the
algorithm the freedom of substantially higher complexity,
and we suspect that they are the true ground states. Of
course, we cannot rule out the possibility that extraordinarily
high-complexity states offer tiny improvements, but we con-
sider it unlikely.

We conclude with a computational challenge regarding
simulation in high dimensions. It is undoubtedly impossible
to carry out effective simulations in extremely high dimen-
sions, but where is the threshold for feasibility? For example,
is it possible in 24 dimensions? Many remarkable phenom-
ena in mathematics and information theory �such as the
Leech lattice �31�� occur there, and reliable simulation re-
sults would be very interesting.
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